
B
R

IC
S

D
S

-03-1
C

.B
rabrand:

D
om

ain
S

pecific
Languages

for
Interactive

W
eb

S
ervices

BRICS
Basic Research in Computer Science

Domain Specific Languages for
Interactive Web Services

Claus Brabrand

BRICS Dissertation Series DS-03-1

ISSN 1396-7002 January 2003

Copyright c© 2003, Claus Brabrand.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/03/1/

Domain Specific Languages
for

Interactive Web Services
Claus Brabrand

PhD Dissertation

Department of Computer Science
University of Aarhus

Denmark

Domain Specific Languages
for

Interactive Web Services

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Claus Brabrand
March 26, 2004

Abstract

This dissertation shows how domain specific languages may be applied to the
domain of interactive Web services to obtain flexible, safe, and efficient solu-
tions.

We show how each of four key aspects of interactive Web services involving
sessions, dynamic creation of HTML/XML documents, form field input vali-
dation, and concurrency control, may benefit from the design of a dedicated
language.

Also, we show how a notion of metamorphic syntax macros facilitates inte-
gration of these individual domain specific languages into a complete language.

The result is a domain specific language, <bigwig>, that supports virtually
all aspects of the development of interactive Web services and provides flexible,
safe, and efficient solutions.

v

Acknowledgments

First of all, I would like to thank Michael Schwartzbach for supervising my
Ph.D. and especially for bringing my attention to the Ph.D. program.

A special thanks go to my office mate, colleague, and good friend, Anders
Møller.

I thank my undergraduate study group: Tom Sørensen, Thomas Hune, and
Flemming Friche Rodler, and the entire <bigwig> team; in particular Anders
Sandholm, Mikkel Ricky, and Steffan Olesen.

I also thank the BRICS research center for providing an inspiring and truly
international environment; in particular the following set of BRICS people: {
Jesus Almansa, Marco Carbone, Olivier Danvy, Uffe Engberg, Jesper Gulmann,
Martin Lange, Paulo Oliva, Rasmus Pagh, Pawel Sobocinski, Frank Valencia,
Mads Vanggaard, Maria Grazia Vigliotti }.

I would also like to thank IBM Research for the three valuable months I
spent there. Thanks go to my manager, Roger Pollak, my mentor, John Ponzo,
my colleagues Kristoffer Rose and Phillipe Audebaud, and my office mates.

I thank the people I got to know from studying one year in Strasbourg: in
particular, Jacob Grydholt and Patricia d’Erneville.

Furthermore, I thank all my friends.
Last, but not least, many thanks to my mom, Lise Krause, my dad, Keld

Brabrand, and brother, Mads Brabrand, and to the rest of my family.

Tak / thanks / merci / grazie / danke / jërë jëf,

Claus Brabrand,
Aarhus, March 26, 2004.

vii

Contents

Abstract v

Acknowledgments vii

I Context 1

1 Introduction 5
1.1 Domain Specific Languages for Interactive Web Services 5
1.2 Domain Specific Languages . 5
1.3 Interactive Web Services . 6
1.4 Structure of the Dissertation . 7

2 Sessions 9
2.1 Introduction . 9
2.2 The Session-Centered Approach 12
2.3 Structure of <bigwig> Services 14
2.4 A Session-Based Runtime Model 15
2.5 Other Related Work . 17

3 Dynamic Generation of XML Documents 19
3.1 Introduction . 19
3.2 A Language for Dynamic Generation of XML 20
3.3 Flexibility . 23
3.4 Safety . 24
3.5 Efficiency . 26
3.6 Other Related Work . 28
3.7 Conclusion . 29

4 Static Validation of Dynamically Generated XML 31
4.1 Introduction . 31
4.2 Summary Graph Analysis . 31
4.3 An Abstract DTD for XHTML 33
4.4 Validation . 33
4.5 Experiments . 33
4.6 Related Work . 35
4.7 Conclusion . 35

ix

5 Caching of Dynamically Generated XML 37
5.1 Introduction . 37
5.2 Our Solution . 38
5.3 Evaluation . 39
5.4 Related Work . 40
5.5 Conclusion . 41

6 Form Field Validation 43
6.1 Introduction . 43
6.2 PowerForms . 44
6.3 Field Interdependency . 46
6.4 Related Work . 48
6.5 Conclusion . 48

7 Concurrency Control 49
7.1 Introduction . 49
7.2 Our Solution . 49
7.3 Conclusion . 51

8 Metamorphic Syntax Macros 53
8.1 Introduction . 53
8.2 Related Work . 54
8.3 Our Solution . 55
8.4 Metamorphisms . 56
8.5 Growing Language Concepts . 59
8.6 Integration . 61
8.7 Very Domain Specific Languages: vDSL 62

9 Conclusion 65
9.1 Flexibility, Safety, and Efficiency 65
9.2 Sessions: Runwig . 65
9.3 Dynamic Documents: DynDoc . 66
9.4 Form Field Validation: PowerForms 66
9.5 Concurrency Control: SyCoLogic 67
9.6 Metamorphic Syntax Macros . 68
9.7 Domain Specific Languages for Interactive Web Services 68

II Publications 69

10 The <bigwig> Project 71
10.1 Introduction . 71

10.1.1 Motivation . 72
10.1.2 The <bigwig> Language 74
10.1.3 Overview . 76

10.2 Session-Centered Web Services 76
10.2.1 The Script-Centered Approach 76
10.2.2 The Page-Centered Approach 78

x

10.2.3 The Session-Centered Approach 79
10.2.4 Structure of <bigwig> Services 81
10.2.5 A Session-Based Runtime Model 82

10.3 Dynamic Construction of HTML Pages 83
10.3.1 Analysis of Template Construction and Form Input . . . 86
10.3.2 HTML Validity Analysis 87
10.3.3 Caching of Dynamically Generated HTML 88
10.3.4 Code Gaps and Document Clusters 89

10.4 Form Field Validation . 90
10.5 Concurrency Control . 93
10.6 Syntax Macros . 95
10.7 Other Web Service Aspects . 98

10.7.1 HTML Deconstruction . 99
10.7.2 Seslets . 99
10.7.3 Databases . 100
10.7.4 Security . 100

10.8 Evaluation . 101
10.8.1 Experience with <bigwig> 101
10.8.2 Performance . 102

10.9 Conclusion . 103
10.9.1 Acknowledgments . 103

11 A Runtime System for Interactive Web Services 105
11.1 Introduction . 105
11.2 Motivation . 106

11.2.1 The session concept . 106
11.2.2 CGI scripts and sequential session threads 107
11.2.3 Other CGI shortcomings 108
11.2.4 Handling safety requirements consistently 109

11.3 Components in the Runtime System 109
11.4 Dynamics of the Runtime System 110

11.4.1 Execution of a thread . 111
11.4.2 Starting up a session thread 111
11.4.3 Interaction with the client 112
11.4.4 Interaction with the controller 113

11.5 Extending the Runtime System 116
11.6 Related Work . 117
11.7 Conclusions and Future Work . 118

12 PowerForms: Declarative Client-Side Form Field Validation 121
12.1 Introduction . 122

12.1.1 Input validation . 122
12.1.2 Field interdependencies 123
12.1.3 JavaScript programming 123
12.1.4 Our solution: PowerForms 124
12.1.5 Related work . 124

12.2 Validation of Input Formats . 125

xi

12.2.1 Syntax . 126
12.2.2 Semantics of regular expressions 127
12.2.3 Semantics of format declarations 127
12.2.4 Examples . 128

12.3 Interdependencies of Form Fields 131
12.3.1 Syntax . 131
12.3.2 Semantics of boolean expressions 131
12.3.3 Semantics of interdependencies 132
12.3.4 Examples . 133

12.4 Applet results . 137
12.5 Translation to JavaScript . 138
12.6 Availability . 138
12.7 Conclusion . 138

13 Static Validation of Dynamically Generated HTML 141
13.1 Introduction . 141
13.2 XHTML Documents in <bigwig> 142
13.3 Summary Graphs . 146
13.4 Gap Track Analysis . 147
13.5 Summary Graph Analysis . 148
13.6 An Abstract DTD for XHTML 151
13.7 Validating Summary Graphs . 154
13.8 Experiments . 156
13.9 Related Work . 158
13.10Extensions and Future Work . 159
13.11Conclusion . 159

14 Language-Based Caching of Dynamically Generated HTML 161
14.1 Introduction . 161
14.2 Related Work . 164
14.3 Dynamic Documents in <bigwig> 166

14.3.1 Dynamic Document Representation 169
14.4 Client-Side Caching . 170

14.4.1 Caching . 171
14.4.2 Compact Representation 172
14.4.3 Clustering . 174

14.5 Experiments . 175
14.6 Future Work . 176
14.7 Conclusion . 177

15 Growing Languages with Metamorphic Syntax Macros 179
15.1 Introduction . 179
15.2 Related Work Survey . 180

15.2.1 General Properties . 182
15.2.2 Syntax Properties . 183
15.2.3 Type Properties . 183
15.2.4 Definition Properties . 184

xii

15.2.5 Invocation Properties . 184
15.2.6 Implementation Properties 185
15.2.7 Other Related Work . 185

15.3 Designing a Macro Language . 185
15.3.1 Syntax . 186
15.3.2 Parsing Definitions . 187
15.3.3 Parsing Invocations . 188
15.3.4 Well-Formedness . 190
15.3.5 Hygienic Macros . 190

15.4 Growing Language Concepts . 191
15.5 Metamorphisms . 192

15.5.1 Parsing Invocations . 196
15.5.2 Well-Formedness . 196
15.5.3 Hygienic Macros . 196

15.6 Multiple Results . 196
15.7 Metamorph Arguments . 197
15.8 Growing New Languages . 198
15.9 Implementation . 198

15.9.1 Transparent Representation 199
15.9.2 Generic Pretty Printing 199
15.9.3 Error Reporting . 200

15.10Conclusion and Future Work . 201

Appendix 205

Bibliography 207

xiii

Part I

Context

1

List of Publications

• The <bigwig> Project
with Anders Møller and Michael I. Schwartzbach.
Transactions on Internet Technology (TOIT), Vol. 2, No. 2, pp. 79–114,
ACM, May 2002.

• A Runtime System for Interactive Web Services
with Anders Møller, Anders Sandholm, and Michael I. Schwartzbach.
In Proceedings of the Eighth International World Wide Web Conference
(WWW8), pp. 313–324, Elsevier, May 1999.
Also in Journal of Computer Networks, Vol. 31, No. 11–16, pp. 1391–
1401, Elsevier, May 1999.

• PowerForms: Declarative Client-Side Form Field Validation
with Anders Møller, Mikkel Ricky, and Michael I. Schwartzbach.
In World Wide Web Journal, Vol. 3, No. 4, pp. 205–214, Baltzer Science
Publishers, December 2000.

• Static Validation of Dynamically Generated HTML
with Anders Møller and Michael I. Schwartzbach.
In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Pro-
gramming Analysis for Software Tools and Engineering (PASTE’01), pp.
38–45, ACM, June 2001.

• Language-Based Caching of Dynamically Generated HTML
with Anders Møller, Steffan Olesen, and Michael I. Schwartzbach.
In World Wide Web Journal, Vol. 5, No. 4, pp. 305–323, Kluwer Aca-
demic Publishers, 2002.

• Growing Languages with Metamorphic Syntax Macros
with Michael I. Schwartzbach.
In Proceedings of the 2002 ACM SIGPLAN Workshop on Partial Evalua-
tion and Semantics-Based Program Manipulation (PEPM’02), pp. 31–40,
ACM, January 2002.

3

Chapter 1

Introduction

1.1 Domain Specific Languages for Interactive Web

Services

This dissertation shows how domain specific languages can be applied to the
domain of interactive Web services to achieve flexible, safe, and efficient solu-
tions.

We will examine this thesis by breaking down the domain of interactive Web
services into relatively independent aspects. Each of these aspects will then be
analysed and addressed by its own dedicated domain specific language. We
will also show how each of these resulting sub-languages are integrated into a
language, <bigwig>, for developing interactive Web services. Finally, we will
show how this integration can be supported by a notion of metamorphic syntax
macros.

First, however, we will briefly introduce the two concepts of the title: domain
specific languages and interactive Web services.

1.2 Domain Specific Languages

Domain specific languages (DSL) are unlike general purpose languages (GPL)
designed to write a particular kind of programs.

Of course, domain specific languages do not add expressive power beyond
Turing completeness; any program that can be written in a DSL can also be
written in a GPL. Even so, domain specific languages have many advantages
over general purpose languages.

The paramount advantage is that the level of abstraction can be made to
correspond directly to that of the problem domain. Concepts inherent to the
problem domain can be turned into abstractions in the DSL.

Although similar abstractions can be defined in libraries of general purpose
languages, they must still be used in the full context of the GPL with all the
details of parameter mechanisms, scope rules, and so on. Furthermore, they
are limited to the abstraction mechanisms and invocation syntax of the GPL.
In contrast, domain specific languages may be given any syntax that more

5

6 Chapter 1. Introduction

directly reflects the idiom of the problem domain. Also, certain problematic
constructions may be explicitly prohibited in the syntax.

Domain specific languages also permit sophisticated domain specific analy-
ses which may be used to restrict usage or as a basis for optimization. Compar-
atively, this can never be achieved with a library in a GPL. In general, nothing
prevents the programmer from misusing a library, for instance by calling certain
functions in the wrong order.

Domain specific languages are often declarative which make them easier
to read, write, and modify. They are often simple enough to be used by non-
programmer domain experts. To this end, programs are more concise, almost to
the point of being self-documenting in that they embody directly the knowledge
from the domain.

Domain specific languages really only have one, yet considerable, disadvan-
tage: the cost of construction. Their realization often requires many iterations
of analysis, design, implementation, and evaluation. However, once created,
they increase productivity, reliability, and maintainability.

We refer to [89] for more information on domain specific languages, including
advantages over general purpose languages.

1.3 Interactive Web Services

The HyperText Transfer Protocol, HTTP, was originally designed for browsing
static HTML documents on the World Wide Web. The need for up-to-date and
customized documents spawned the creation of the Common Gateway Interface,
CGI, which is a platform-independent method for creating documents dynami-
cally based on client input. To this end, HTML was equipped with a collection
of standard input widgets for selecting and entering various kinds of data. The
notion of interactive Web services is obtained by appropriately sequencing such
client interactions. In our work, we focus on interactive Web services, which are
Web servers on which clients can initiate sessions that involve several exchanges
of information mediated by HTML forms.

We have identified the following relatively independent key aspects of inter-
active Web services that must be addressed in all realistic services:

• sessions: clients must be guided appropriately through interactions while
retaining state;

• dynamic documents: HTML documents must be constructed dynamically;

• form field validation: data entered by clients must be validated;

• concurrency control: session processes run in parallel which means that
concurrency aspects must be dealt with;

• database integration: most services employ a database that must be inte-
grated; and

• security: Web services are inherently distributed which means that vari-
ous security aspects must be addressed.

1.4. Structure of the Dissertation 7

We have analysed the first four of these aspects and for each of them designed
a domain specific language targeted uniquely for that particular domain.

1.4 Structure of the Dissertation

Chapter 2 introduces the concept of a session, presents the main challenges
along with our solution; a runtime system, Runwig. The runtime system is
futher explained in the paper [16] which can be found in Chapter 11.

Chapter 3 presents the DynDoc language [72] for dynamically constructing
HTML/XML documents which forms a basis for the next two chapters. Chap-
ter 4 shows how the DynDoc language can be analysed to statically guarantee
that only valid HTML documents are ever shown to a client. This result is from
the paper [17] which is included in Chapter 13. Chapter 5 then shows how the
static parts of dynamically generated documents can be cached on the clients.
This solution was the topic of the paper [14] which can be found in Chapter 14.

Chapter 6 presents our sub-language for addressing form field input valida-
tion, PowerForms, which was presented in the paper [15] and which is included
in Chapter 12.

Chapter 7 describes the concurrency control sub-language [13,71], SyCoLogic.
Chapter 8 introduces a notion of metamorphic syntax macros which may

be used to integrate the many sub-languages in the <bigwig> language. This
macro language is further explained in the paper [19] which is found in Chap-
ter 15.

Chapter 9 concludes by demonstrating how the domain specific languages
have obtained flexible, safe, and efficient solutions for each of their domains.
It is also shown how these sub-languages are integrated into the <bigwig>
language1 for developing interactive Web services. The <bigwig> language is
presented in the paper [18] which is included in Chapter 10.

1See the <bigwig> project homepage: http://www.brics.dk/bigwig/ for documentation
and implementation.

8 Chapter 1. Introduction

Chapter 2

Sessions

2.1 Introduction

Most interactive Web services today are implemented using a single interaction
paradigm wherein the focus is on a single interaction with a client. Conceptually,
there is one program per interaction and a whole service is constructed as the
appropriate sequential composition of essentially independent programs. Such
a program is executed upon request from a client, receiving form data as input
and producing HTML as output before terminating. Individual requests are tied
together by inserting appropriate links to other programs in the reply pages.
Thus, a Web service is defined by a collection of loosely related programs. This
process is illustrated in Figure 2.1.

A major problem with this approach is that the flow of control is implicit.
The overall behavior of a service is distributed over numerous individual pro-
grams and depends on the implicit manner in which they pass control to each
other. This design complicates maintenance in that it is hard to identify which
programs together form a service and how they are related. The design also
precludes any sort of automated global analysis, leaving a whole class of errors
to be detected in the running service [3, 34]. In particular, there is no way

HTML
PAGE

PAGE
HTML

PAGE
HTML

PROGRAM
ANOTHER

PROGRAM
A

compute

compute

save state

restore state

Figure 2.1: An interactive Web service specified as the sequential composition of two
essentially independent programs. On the left is the client’s browser, on the right are
the two programs running on the server.

9

10 Chapter 2. Sessions

of checking interaction correspondence of programs; that is, whether the form
input fields in the output of one program correspond to those expected as input
to the next.

Another major problem is handling local state. While persistent data shared
among all session threads is stored naturally in a database, data local to a par-
ticular session or sequence of interactions has to be managed explicitly. Since
individual programs terminate between interactions, the local state must some-
how be passed on to the next programs. One solution is to pass the local
session data via the client to subsequent programs in hidden input fields, in
cookies, or encoded as part of the URL. However, these three approaches all
store the state on clients which has some obvious security implications in that
it may be tampered with or contain sensitive information that should not be
disclosed. Another solution is for a program to explicitly save the state on the
server before it terminates so that it can be reloaded and restored by the next
program. In any case, the programmer needs to deal with these low-level issues
of handling and serializing the state.

The single interaction paradigm can be divided into two main approaches:
the script-centered and the page-centered. Each is supported by various tools
and suggests a particular set of concepts inherent to Web services. The two
approaches will be briefly outlined in the following.

The Script-Centered Approach

The script-centered approach builds directly on top of the plain, stateless HTTP/-
CGI protocol. An interaction is specified in the form of a program written in
some general purpose programming language obeying the CGI protocol for re-
ceiving input and producing output. Input in the form of textual data from
form input fields is decoded from a special environment variable, QUERY STRING,
or from standard input, depending on the submission method used for invok-
ing the script. HTML output is typically created on the fly using print-like
statements.

A prototypical scripting language is Perl, but almost any programming lan-
guage has been suggested for this role. CGI scripting is often supported by a
large collection of library functions for decoding form data, validating input,
accessing databases, and realizing semaphores. Even though such libraries are
targeted at the domain of Web services, the language itself is not.

The Java Servlets language also fits into this category. The overall struc-
ture of a service written with servlets is the same as for Perl. Every possible
interaction is essentially defined by a separate script, and one must use cookies,
hidden input fields, or similar techniques to connect sequences of interactions
with the clients. Servlets provide a session tracking API that hides many of
these details. Many servlet servers use cookies if the browser supports them,
but automatically revert to URL rewriting when cookies are unsupported or
explicitly disabled. This API is exemplified by the following code inspired by
two Servlet tutorials1:

1http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/ and
http://java.sun.com/docs/books/tutorial/servlets/

2.1. Introduction 11

public class SessionServlet extends HttpServlet {

public void doGet(HttpServletRequest request ,

HttpServletResponse response)

throws ServletException, IOException {

ServletContext context = getServletContext();

HttpSession session = request.getSession(true);

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML><HEAD><TITLE>Servlet Demo</TITLE></HEAD><BODY>");

if (session.isNew()) {

out.println("<FORM ACTION=SessionServlet>" +

"Enter your name: <INPUT NAME=handle>" +

"<P><INPUT TYPE=SUBMIT></FORM>");

session.putValue("state", "1");

} else {

String state = (String) session.getValue("state");

if (state.equals("1")) {

String name = (String) request.getParameter("handle");

int users =

((Integer) context.getAttribute("users")).intValue() + 1;

context.setAttribute("users", new Integer(users));

session.putValue("name", name);

out.println("<FORM ACTION=SessionServlet>" +

"Hello " + name + ", you are user number " + users +

"<P><INPUT TYPE=SUBMIT></FORM>");

session.putValue("state", "2");

} else /* state.equals("2") */ {

String name = (String) session.getValue("name");

out.println("Goodbye " + name);

session.invalidate();

}

}

out.println("</BODY></HTML>");

}

}

Clients running this service are guided through a series of interactions: first, the
service prompts for the client’s name, then the name and the total number of in-
vocations is shown, and finally a “goodbye” page is shown. The ServletContext

object contains information shared to all sessions, while the HttpSession ob-
ject is local to each session. The code is essentially a switch statement that
branches according to the current interaction. An alternative approach is to
make a servlet for each kind of interaction. In spite of the API, one still needs
to explicitly maintain both the state and the identity of the session.

The model of sessions that is supported by Servlets and other script-centered
approaches tends to fit better with “shopping basket applications” where the
client browses freely among dynamically generated pages, than with complex
services that need to impose more strict control of the interactions.

The Page-Centered Approach

The page-centered approach is covered by language such as ASP, PHP, and
JSP, where the dynamic code is embedded in the HTML pages. In a sense,
this is the inverse of the script-centered languages where HTML fragments are

12 Chapter 2. Sessions

embedded in the program code. When a client requests a page, a specialized
Web server interprets the embedded code, which typically produces additional
HTML snippets while accessing a shared database. In the case of JSP, im-
plementations work by compiling each JSP page into a servlet using a simple
transformation.

This approach is often beautifully motivated by simple examples, where
pages are mainly static and only sporadically contain computed contents. For
example, a page that displays the time of day or the number of accesses clearly
fits this mold. The following JSP page dynamically inserts the current time
together with a title and a user name based on the CGI input parameters:

<HTML><HEAD><TITLE>JSP Demo</TITLE></HEAD><BODY>

Hello <%

String name = request.getParameter("who");

if (name ==null) name = "stranger";

out. print(name);

%>!

<P>

This page was last updated: <%= new Date() %>

</BODY></HTML>

The special <%. . . %> tags contain Java code that is evaluated at the time of
the request. As long as the code parts only generate strings without markup
it is easy to statically guarantee that all shown pages are valid HTML and
other relevant properties. But as the services become more complex, the page-
centered approach tends to converge towards the script-centered one. Instead
of a mainly static HTML page with some code inserted, the typical picture is a
single large code tag that dynamically computes the entire contents. Thus, the
two approaches are closely related, and the page-centered technologies are only
superior to the degree in which their scripting languages are generally better
designed.

The ASP and PHP languages are very reminiscent of JSP. ASP is closely
tied to Microsoft’s Internet Information Server, although other implementa-
tions exist. Instead of being based on Java it defines a language-independent
connection between HTML pages and scripting languages, typically either Vi-
sual Basic Script or Microsoft’s version of JavaScript. PHP is a popular Open
Source variant whose scripting language is a mixture of C, Java, and Perl.

These languages generally provide only low-level support for tracking client
sessions and maintaining session state. Cookies, hidden input fields, and some
library support is the common solution. Also for other Web service aspects,
such as databases and security, there is often a wide range of libraries available
but no direct language support.

2.2 The Session-Centered Approach

The pure session-centered approach was pioneered by the MAWL project. A
service is here viewed as a collection of distinct sessions that access some shared
data. A client may initiate a session thread, which is conceptually a process
running on the server. Interaction with the client is viewed as remote procedure

2.2. The Session-Centered Approach 13

HTML
PAGE

PAGE
HTML

PAGE
HTML

SHOW

PROGRAM

compute

compute

SERVICE

state preserved

Figure 2.2: Client-server sessions in Web services. On the left is the client’s browser,
on the right is a session thread of the service program running on the server. The
thread is initiated by a client request and controls the sequence of interactions.

calls from the server, as known from classical construction of distributed systems
but with the roles reversed.

The flow of an entire session is programmed as a single sequential program,
which is closer to ordinary programming practice and offers the compiler a
chance to obtain a global view of the service. Figure 2.2 illustrates the flow of
control in this approach. Important issues such as concurrency control become
simpler to understand in this context and standard programming solutions are
more likely to be applicable.

The following MAWL program is equivalent to the previous Servlet example:

static int users = 0;

session GreetingSession {

auto form {} -> {handle} hello ;

auto string name = hello.put().handle;

auto form {string who, int count} -> {} greeting ;

users ++;

greeting.put({name , users });

auto form {string who} -> {} goodbye ;

goodbye.put({name });

}

The HTML templates hello , greeting , and goodbye are placed in separate
files. Here is hello.mhtml:

<HTML><HEAD><TITLE>MAWL Demo</TITLE></HEAD><BODY>

Enter your name: <INPUT NAME=handle>

</BODY></HTML>

and greeting.mhtml:

<HTML><HEAD><TITLE>MAWL Demo</TITLE></HEAD><BODY>

Hello <MVAR NAME=who>, you are user number <MVAR NAME=count>

</BODY></HTML>

14 Chapter 2. Sessions

The template for goodbye is similar. A form tag and a continue button are
implicitly inserted. Variables declared static contain persistent data, while
those declared auto contain per-session data. The form variables are declared
with two record types. The former defines the set of gaps that occur in the
template, and the latter defines the input fields. In the templates, gaps are
written with MVAR tags. Template variables all have a put method. When this
is executed, the arguments are inserted in the gaps, the resulting page is sent
to the client who fills in the fields and submits the reply, which is turned into a
record value in the program. Note how the notion of sessions is explicit in the
program, that private and shared state is simply a matter of variable declaration
modifiers, and that the templates are cleanly separated from the service logic.
Obviously, the session flow is more clear, both to the programmer and to the
compiler, than with the non-session based approaches. One concrete benefit is
that it is easy to statically check both validity and correct use of input fields.

The main force of the session-centered approach is for services where the
control flow is complex. Many simple Web services are in actuality more loosely
structured. If all sessions are tiny and simply does the work of a server mod-
ule from the page-centered approach, then the overhead associated with ses-
sions may seem to large. Script-centered services can be seen as a subset of
the session-centered where every session contains only one client interaction.
Clearly, the restriction in the script-centered and the page-centered languages
allow significant performance improvements. For instance, J2EE Servlet/JSP
servers employ pools of short-lived threads that store only little local state. For
more involved services, however, the session-centered approach makes program-
ming easier since session management comes for free.

2.3 Structure of <bigwig> Services

The overall structure of <bigwig> programs is directly inspired by MAWL. A
<bigwig> program contains a complete specification of a Web service. A service
contains a collection of named sessions, each of which is essentially an ordinary
sequential program. A client has the initiative to invoke a thread of a given ses-
sion, which is a process on the server that executes the corresponding sequential
code and exclusively communicates with the originating client. Communication
is performed by showing the client an HTML page, which is implicitly made
into a form with an appropriate URL return address. While the client views
the given document, the session thread is suspended on the server. Eventually
the client submits the form, which causes the session thread to be resumed and
any form data entered by the client to be received into program variables. A
simple <bigwig> service that communicates with a client as in the Servlet and
MAWL examples is the following:

service {

html hello = <html>Enter your name: <input name="handle "></html>;

html greeting =

<html>Hello <[who]>, you are user number <[count]></html>;

2.4. A Session-Based Runtime Model 15

html goodbye = <html>Goodbye <[who]></html>;

shared int users = 0;

session Hello() {

string name;

show hello receive[name=handle];

users++;

show greeting<[who =name,count =users];

show goodbye<[who =name];

}

}

The program structure is obviously as in MAWL, except that the session code
and the templates are wrapped into a service block. The show-receive state-
ments produce the client interactions similarly to the put methods in MAWL.
However, <bigwig> provides a number of new features. Most importantly,
HTML templates are now first-class values. That is, html is a built-in data
type, and its values can be passed around and stored in variables as for any
other data type. Also, the HTML templates are higher-order. This means that
instead of only allowing text strings to be inserted into the template gaps, we
also allow insertion of other templates. This is done with the special plug op-
erator, x<[y=z] which inserts a string or template z into the y gaps of the x
template. Clearly, this constitutes a more flexible document construction mech-
anism, but it also calls for new ideas for statically verifying for instance HTML
validity. This is the topic of Chapter 3 and 4. Other new features include the
techniques for improving form field validation and concurrency control, together
with the syntax macro mechanism, all of which are described in the following
chapters.

2.4 A Session-Based Runtime Model

The session-based model can be implemented on top of the CGI protocol. One
naive approach is to create session threads as CGI scripts where all local state
is stored on disk. At every session interaction, the thread must be started
again and restore its local state, including the call stack, in order to continue
execution. A better approach is to implement each session thread as a process
that runs for the whole duration of the session. For every interaction, a tiny
transient CGI script called a connector process is executed, acting as a pipe
between the Web server and the session process. This approach resembles
FastCGI [66] and is described in detail in [16]. Our newest implementation is
instead based on a specialized Apache server module2. Naturally, this is much
faster than the CGI solutions since it does not create a new process for every
single interaction, but only for the session processes. The runtime system is
also available as a stand-alone implementation called Runwig3.

Two common sources of problems with standard implementations of sessions
are the history buffers and the bookmarking features found in most browsers.

2See http://httpd.apache.org/.
3available from http://www.brics.dk/bigwig/runwig/.

16 Chapter 2. Sessions

WWW
SESSION

PROCESS

WEB SERVER

HTML
FILE

Figure 2.3: Session-based runtime model with reply indirection. Each session thread
is implemented as a separate process that writes its HTML reply to a designated file.

With the history buffers and the back button, the users can step back to a
page from a previous interaction, and either intentionally or unintentionally
resubmit an old input form. Sometimes this can be a useful feature, but more
often this causes confusion and annoyance to the users who may for instance
order something twice. It is a general problem that the information shown to
the user in this way can be obsolete since it was tailor-made only for the exact
time of the initial request. Since the information was generated from a shared
database that may have changed entirely, it does generally not make sense to
“step back in time” using the history buffer. This is no different from ordinary
programs. The problem is not only with external side-effects. Even observation
may have consequences as also known from quantum theory’s “modification by
observation”; being able to backtrack would render the high-score feature of
the number guessing game obsolete. Even if the programmer has been aware
of this stepping back in time and has added serial number checks, the history
buffer will be full of URLs to obsolete requests. If the service really needs a
“back” feature, it can be programmed explicitly into the flow of the sessions.
It also becomes hazardous to try to use bookmarks to temporarily suspend a
session. Invoking the bookmark will then typically cause a CGI script to be
executed a second time instead of just displaying its results again.

<bigwig> provides a simple but unique solution to these problems: Each
session thread is associated a URL which points to a file on the server containing
the latest HTML page shown to the client. Instead of sending the contents
directly to the client at every show statement, we redirect the browser to this
URL, as illustrated in Figure 2.3. Since the URL serves as the identification
of the session thread, this solves the problems mentioned above: The history
list of the browser now only contains a single entry for the duration of the
session, the sessions can now be bookmarked for later use, and in addition the
session identity URL can be passed around manually—to another browser for
instance—without problems. When using URLs instead of cookies to represent
the session identity it also becomes possible for a single user to simultaneously
run multiple sessions in different windows but with the same browser.

With this simple solution we can furthermore automatically provide the
client with feedback while the server is processing a request. This is done by
after a few seconds writing a temporary response to the HTML file, which

2.5. Other Related Work 17

informs the client about the status of the request. This temporary file reloads
itself frequently in the client’s browser, allowing for updated status reports.
When the final response is ready, it simply overwrites the temporary reply file,
causing the reloading to stop and the response to be shown. This functionality is
provided by the flash construct which takes an HTML document, instruments
it will the necessary automatic reloading, and writes it to the associated reply
file. By default, the runtime system redirects the client after eight seconds,
providing a message stating “Reply not ready yet. Please wait...”. This simple
technique may prevent the client from becoming impatient and abandoning the
session.

The <bigwig> runtime system additionally contains a garbage collector pro-
cess that monitors the service and shuts down session processes which have been
abandoned by the clients. By default, this occurs if the client has not responded
within 24 hours. The sessions are allowed to execute some clean-up actions be-
fore terminating.

2.5 Other Related Work

Guide [57] is a rule-based language belonging to the single interaction paradigm.
A context is carried across the scripts and handles state, distinguishing between
local, session, and global variables. However, these contexts have to be managed
explicitly by the programmer.

WASH/CGI [85] is an embedded DSL for server-side Web scripting based on
the purely functional programming language Haskell and, in particular, on its
monads. Like Hanus’s Curry library [40], it provides a session abstraction using
a callback mechanism in which submit handlers are bound to submit buttons,
permitting evaluation to continue at different points according to which button
was depressed. It allows session to be backtracked by idempotent reevaluation
of the submit handler given the local state which is stored in a hidden input
field on the client. In addition to efficiency issues, storing the state on the client
has some security issues; it is vulnerable to tampering and may expose sensitive
information. For example, a high-score is easily achieved on the GuessNumber
WASH/CGI game either by inspecting the local state or by backing up the
session once the number is guessed.

18 Chapter 2. Sessions

Chapter 3

Dynamic Generation of XML Documents

3.1 Introduction

An important aspect of Web service development is the construction of HTML
reply documents customized for individual clients upon request.

Currently, nearly all Web services construct document replies through ei-
ther the script- or page-centered programming approaches. Although the two
approaches appear fundamentally different, they are related by an interesting
duality. In the script-centered approach, default is programming, but the pro-
grammer can escape to printing HTML via a print-like command; whereas
in the page-centered approach, default is printing HTML and escaping to pro-
gramming is available through special embedded scripting tags, such as <% ...
%> in the case of JSP. In fact, this is exactly what happens when a JSP page
is lexically transformed into a Java Servlet; HTML entities are wrapped in in-
vocations of out.print and embedded code is inlined in the resulting Servlet
program. That this is a purely lexical process is illustrated by the following
legal JSP fragment:

<% if (use_bold) { %> if (use_bold) {

bold out.print("bold");

<% } else { %> ==> } else {

<i>italic</i> out.print("<i>italic</i>");

<% } %> }

This example also shows that the structure is an illusion; we cannot reason
about even the presence of HTML constituents independent of the scripting
elements. This means that also in the script-centered approach, all parts of the
reply document and not just the dynamic content must be assumed to come
as the output of a Turing complete computation. The output document is es-
sentially constructed as the concatenation of several dynamically constructed
strings. Thus, it is hard to reason statically about resulting documents. Specif-
ically, this way of constructing documents

• precludes static validation, as it is impossible to statically analyse
the program to determine whether all possible documents produce valid
HTML; and

19

20 Chapter 3. Dynamic Generation of XML Documents

• prevents checking of interaction correspondence, since it is im-
possible to statically determine which form input fields are present in an
output document, there is no way of checking whether this corresponds
to what is expected as input to the next interaction.

In addition to the absence of static safety, there are also some important limi-
tations on flexibility. This way of constructing documents

• intermixes designer and programmer aspects, as bits and pieces of
HTML markup and program code are scattered about the service pro-
gram, making it difficult for designers and programmers to identify their
respective parts and operate independently [29]; and

• forces linear document construction, as documents must be con-
structed linearly from the first <html> element to the last </html> ele-
ment, as opposed to being composed from components in a more logical
manner.

These are four fundamental limitations that current developers must be willing
to accept.

The MAWL Approach

The MAWL [55] language, has addressed these issues by introducing a notion
of first-order HTML templates. A MAWL template is a complete HTML docu-
ment with a fixed collection of named variables which can be substituted with
simple dynamically computed string values when the document is to be pre-
sented to a client. Templates are placed in separate files, completely separating
the service code and HTML code permitting programmers and designers to
operate more independently. It is also possible to issue the two static safety
guarantees, as the template readily contains all the HTML markup of the reply
document.

A disadvantage of this approach is that reply documents cannot be cus-
tomized beyond a fixed number of simple parameterizations; only the dynam-
ically inserted string data may vary. This is partially alleviated by a special
iteration construction, MITER, that permits an unbounded list of simple val-
ues to be inserted into repetitions of an HTML fragment. However, this is
insufficient to produce nested lists or tree structures.

3.2 A Language for Dynamic Generation of XML

In the following we will present a flexible, safe, and efficient language for dy-
namically generating XML documents that solves all these problems. We will
now show how to regain the flexibility lost without compromising safety by
generalizing the MAWL solution to higher-order templates.

3.2. A Language for Dynamic Generation of XML 21

Document Construction: The plug Operator

A document template constant is delimited by <html>...</html> and may in
addition to normal HTML contain any number of named gaps; a gap named g is
syntactically written as <[g]>. Documents are first-class values since they may
be assigned, passed around, and stored in variables. A special plug operation
is available for document construction. The expression, x<[g=y], creates a new
document value by inserting copies of z into all g gaps of a copy of x:

x:

g

y:

x<[g=y]

Since the documents designated by x and y may contain further gaps, this is
a highly flexible and dynamic mechanism for constructing documents. It is
reminiscent of higher-order functions, except that there is no alpha-conversion
and only one implicit layer of binding gap names at the outermost level.

In full generality, the plug operation accepts full document expressions
rather than document variables. The value plugged may also be a string or
an integer in which case it is coerced to a document by converting any an-
gled braces, “<” and “>” to “<” and “>”, respectively; this ensures that
markup only comes from the constant templates. Multiple gaps may be plugged
in that x<[g1=y1,g2=y2] is syntactic sugar for x<[g1=y1]<[g2=y2]. We have
also introduced a notion of attribute gaps which are gaps written inside elements
that may provide an attribute with a dynamically computed value. Syntacti-
cally, they are written <... a=[g] ...>; where a is the name of the attribute
and g the gap name. Of course, attribute gaps cannot be plugged with HTML,
but only with string or integer values.

The following example gradually composes a “Welcome to BRICS” docu-
ment.

service {

html cover = <html>

<head><title>Hi!</title></head>

<body bgcolor=[color]><[contents]></body>

</html>;

html greeting = <html>Hello <[who]>, welcome to <[what]>.</html>;

service {

html h;

h = cover<[contents =greeting];

show h<[color ="#9966ff", who ="Stranger", what =<html>BRICS</html>];

}

}

First, the contents gap of the template cover is plugged with the document
greeting and assigned to h. This yields a new document with an attribute gap,

22 Chapter 3. Dynamic Generation of XML Documents

<body bgcolor="#9966ff">

</body>

</body>

<body bgcolor= >

<head><title>Hi!</title></head>

<body bgcolor= >

<head><title>Hi!</title></head>

<head><title>Hi!</title></head>

</body>

,

.

Hello

welcome to

Hello

,

.welcome to

color

contents

.

color

cont
ents

,

welcome to

Hello who

what

greeting:

who

what

brics:

BRICS

Stranger

what

who

BRICS

h:

#9966ff

Stranger

color

Figure 3.1: Building a document by plugging into template gaps. The construction
starts with the five constants on the left and ends with the complete document on the
right.

color from the original cover template and two HTML gaps, who and what ,
stemming from the greeting document. Then, these three gaps are plugged
in succession and the result is shown to the client. The document construction
process is illustrated in Figure 3.1

Client Interaction: The show Statement

Client interaction is provided by the show statement that takes a document
value, implicitly plugs any remaining gaps with the empty string, shows it to
the client, and suspends computation. The document is automatically wrapped
with a form element with an appropriate action URL, so that when the client
submits the document, it will reactivate the process with the same state as
whence it paused. If not present, a default submit button is added, allowing the
form to be submitted. The show statement may also have a receive part which
provides a mechanism for receiving the values of form input fields into program
variables. The following example illustrates the show-receive mechanism:

service {

int n;

string s;

html input = <html>

Name: <input type="text" name="name ">

Age: <input type="text" name="age ">

</html>;

html output = <html>

Hello <[user]>, <p>

Next year, you will be <[next]> years old.

</html>;

session InputOutput() {

show input receive[s = name , n = age];

3.3. Flexibility 23

n++;

show output<[user = s, next = n];

}

}

It shows a document, input, prompting the client for name and age using two
text input fields, name and age . When this document is submitted, the values
entered are received into the program variable s and n. Hereafter, n is increased
by one after which s and n are plugged into the output document that is finally
shown to the client.

3.3 Flexibility

In this section, we will evaluate the flexibility of our document construction
approach and contrast it to other mechanisms.

A service often needs to display a page presenting a dynamically generated
list of data; for instance, the list of results from a search engine. The following
JSP example displays twenty entries of an array as options of a select field:

<select name="choice">

<option value="1"><%= array[1] %>

<option value="2"><%= array[2] %>

...

<option value="20"><%= array[20] %>

</select>

Clearly, the number of entries must be determined at compile-time and is hard-
wired into the template. If another number is required, another template must
be used.

If the number of options is not known at compile-time, the page must be
constructed by one big generate-all script element:

<select name="choice">

<%

for (int i=1; i<=N; i++) {

out.print("<option value=\"" + i + "\">" + array[i]);

}

%>

</select>

However, the static HTML for marking up individual entries is now hidden
away inside the script element and hard to discern from the programming.

With our mechanism, the same list can, for instance, be generated by two
templates and a simple recursive function:

html Select = <html><select name="choice "><[options]></select></html>;

html Option = <html><option value=[value]><[option]><[options]></html>;

html genSelect(int n) {

if (n==0) return Select;

return genSelect(n-1)<[options = Option<[value =n, option =array[n]]];

}

24 Chapter 3. Dynamic Generation of XML Documents

The Select template is responsible for rendering the context for the list. It
has a gap, options , into which the list of entries will be inserted. The Option
template contains the layout for one entry followed by an options gap into
which subsequent entries will be plugged. Now, the function genSelect may
invoked with an arbitrary number; genSelect(27) will for instance generate a
list with 27 entries.

Note how the HTML markup is completely separated from the program
logic. In fact, we can change the layout independent of the program code. If
we replace the two templates by:

html Select = <html><[options]></html>;

html Option = <html>

<[option]>: <input type="radio" name="choice " value=[value]>

<[options]>

</html>;

the same program instead displays the choices as a bullet list of radio buttons.
The separation can be further enhanced by placing HTML fragments in individ-
ual files and including them through the compile-time lexical inclusion directive,
#include. As long as the designer and programmer agree on which gaps and
fields are in an HTML fragment, they may operate completely independently.
To facilitate this, we have added a language construction for dynamic inclusion
that makes this contract explicit. Any template constant may be followed by @
and a URL. The semantics is that if an HTML file with the same gaps and fields
is found at the end of the URL, then it is used, otherwise the inlined prototype
document is used. This enables the programmer to rapidly prototype a service
which may then be incrementally improved by the designer.

Note that <bigwig> is as general as all other languages for producing XML
trees, since it is possible to define for each different element a tiny fragment
like:

<html><ul type=[type]><[items]></html>

that corresponds to a constructor function. The typical use of larger fragments
is mostly a convenience for the <bigwig> programmer.

Our higher-order construction mechanism overcomes both of the flexibility
limitations presented earlier. Not only may documents be constructed top-down
and bottom-up, but also as any combination of the two. As we shall see in the
next section, the flexibility is gained without sacrificing static safety.

3.4 Safety

The plug and show operations may be misused in a number of ways. A plug
operation, x<[g =y], fails:

• if the document held in x does not have a g gap; or

• if an HTML fragment is plugged into an attribute gap.

3.4. Safety 25

The first case could of course be given a sensible semantics; it could evaluate to a
copy of x. However, we have chosen to interpret this as a program error which
ensures that no HTML plugged is “lost”. Plugging HTML elements into an
attribute gap would create non-wellformed HTML. A show-receive statement
fails:

• if a field designated in the receive part is not present in the document
shown; or

• if a field is not received or received into a program variable of the wrong
type.

This guarantees the interaction correspondence between what is shown and re-
ceived as mentioned earlier. Regarding the types of values received, we distin-
guish between atomic values and vector values. Atomic values are, for instance,
produced by a text input field or any number of radio buttons with the same
name. Vector values are produced, for instance, by multiple checkbox fields
or by a single select multiple field permitting any number of items to be
selected. If we want to intercept these errors at compile-time, we clearly need
to know the names and kinds of gaps and fields present in documents plugged
and shown.

One solution is to explicily declare the exact types of all html variables used
in the program. However, this means that all gaps and fields along with their
individual kinds would have to be described, which may be rather voluminous.
Another drawback is that html variables would be required to have the same
type at all program points. Thus, a document cannot be gradually constructed
without the introduction of variables to hold all the temporary documents.

For these reasons, we rely instead on flow-sensitive type inference to deter-
mine the exact types of all document expressions and variables at all program
points. In our experience, this results in a more liberal and useful mechanism.

We employ standard data flow analysis [65] techniques, but with highly
specialized lattice structures to represent document types. For every document
variable and expression that occurs in the given program, we associate a lattice
element that captures the relevant gap and field information and abstracts
away everything else. It is possible to define monotone transfer functions which
abstractly describe the effect of the program statements.

Given a <bigwig> program we now construct a flow graph. This is straight-
forward since there are no higher-order functions or virtual methods in <bigwig>.
All language constructs that do not involve documents are abstracted away.
This produces a constraint system which we solve using a classical fixed point
iteration technique. From this solution, we inspect all plug and show opera-
tions and make sure the errors mentioned above do not occur. In case they do,
appropriate error messages indicating the causes are generated.

With this approach, the programmer is only restricted by the requirement
that at every program point, the template type of an expression must be fixed.
In practice, this does not limit the expressibility, rather, it tends to enforce a
more comprehensible structure of the programs.

26 Chapter 3. Dynamic Generation of XML Documents

"Hello "

", welcome to "

"."

who

what

(a) Leaf: greeting

g

s

d

(b) Node: strplug(d,g,s)

1 2

g

dd

(c) Node: plug(d1,g,d2)

Figure 3.2: Constituents of the DynDocDag representation.

This was implemented in <bigwig> as a monovariant and interprocedural
data flow analysis. However, extensive evaluation exposed a recurring annoy-
ance. Often, gaps were only plugged along one branch and not the other, yield-
ing errors at such points of confluence. Consequently, programmers needed to
explicitly plug in the empty string along the other branch. Since lots of code
was dedicated to this, we decided instead to automate this process. It was
solved by carefully placing gap absence above gap presence in the lattice, so
that a least-upper-bound of the two kinds at confluence points yielded absence
of a gap. To maintain a consistent runtime representation, the solution in-
spection was augmented to instrument the code, by inserting the missing plug
statements. We believe this implicit plugging increases the usability of our
document construction mechanism.

Another important safety aspect is to ensure that only valid HTML doc-
uments are ever shown to clients. This task will be covered extensively in
Chapter 4.

3.5 Efficiency

Having devised the document construction mechanism, we need an efficient rep-
resentation to handle documents at runtime. Representing documents naively
as complete parse trees, would cause the space complexity of a document to be
proportional to its printed size. Also, the time complexity of the plug operation
would be linear in the lexical sizes of the documents involved. The paper [72]
describes a switchboard data structure that shares all template constants in-
volved and supports the plug in constant time. However, that data structure
does not support multiple gaps with the same name and cannot be generalized
to do so without compromising the constant plug time bound.

The following will present an even more efficient data structure, DynDocDag,
that overcomes this limitation.

A dynamic document is at runtime represented as a binary directed acyclic
graph. The leaves are either HTML or string constants that have been plugged
into the document and the nodes represent pluggings that have constructed
the document. The data structure supports four operations: constructing con-
stant documents, constant(c); string plugging, strplug(d,g,s); document
plugging, plug(d1,g,d2); and showing documents, show(d).

A constant template is represented as an ordered sequence of its text and

3.5. Efficiency 27

color who

what

contents

"..."

"..."

"..."

"..."

"..."

"..."

"..."

"..."

color

contents

who

what

"#9966ff"

(anonymous
fragment)

brics

person

greetingcover

Figure 3.3: DynDocDag representation of the document shown in the BRICS
example.

gap constituents. For instance, the greeting template from the “Welcome
to BRICS” example is represented as displayed in Figure 3.2(a); it has three
text entries with the two gaps between them. A constant template is shared
among the documents it has been plugged into and thus only represented once
in memory. This causes the data structure to be a DAG in general and not a
tree.

The string plug operation, strplug, combines a DAG and a constant string
by adding a new string plug root node with the name of the gap, as illustrated in
Figure 3.2(b). Analogously, the plug operation combines two DAGs as shown in
Figure 3.2(c). For both operations, the left branch is the document containing
the gap being plugged and the right branch is the value being plugged into the
gap. Thus, the data structure merely records plug operations and defers the
actual document construction to subsequent show operations.

Figure 3.3 shows the representation of the document constructed in the
“Welcome to BRICS” example.

The show operation linearizes a document DAG by recursively traversing the
DAG data structure. The constant(c), strplug(d,g,s), plug(d1,g,d2), and
show(d) operations have optimal complexities, O(1), O(1), O(1), and O(|d|)1,
respectively, where |d| is the lexical size of the d document.

Even though the asymptotic complexities of the plug and show operations
are the same as that of the old switchboard representation, the new DynDocDag
is considerably faster. Plugging a simple document into itself 20.000 times in a C
implementation was 7 times faster with the new representation and linearization
of this document was 3 times faster.

Note that for some documents, the representation is exponentially more
succinct than the expanded document. This is for instance the case with the
following function:

1Actually, this bound assumes there are no textless documents with gaps.

28 Chapter 3. Dynamic Generation of XML Documents

html list = <html><[gap]><[gap]></html>;

html tree(int n) {

if (n==0) return <html>foo</html>;

return list<[gap =tree(n-1)];

}

which given n, in O(n) time and space will produce a document of lexical size
O(2n).

In Chapter 5 we will show how to push the show complexity even further
to sub-linear time complexities by exploiting the browser’s standard caching
mechanism.

3.6 Other Related Work

Guide [57] provides a flat template mechanism much like that of MAWL tem-
plates. The templates may contain named gaps and fields which are implicitly
plugged with and received into variables with the same name in the associated
context.

In WASH/CGI [85], a notion of monad transformers permits higher-order
and first-class document construction. It is embedded in a GPL (Haskell) and
thus requires intricate details of this underlying host language and monads. In
particular, HTML construction must be conducted through explicit invocation
of Haskell constructor libraries which do not look and feel like HTML; any
library misuse is signalled as Haskell errors.

Input field handlers are bound to input fields and thus permit the interaction
correspondence to be type checked. The relationship between input handlers
and HTML permits modular construction of new input widgets. Similar func-
tionality could conceivably be achieved with our documents by adding receive
code to collate the input fields of a template into externally visible abstract
input fields which could then be received.

The Curry [40] library is also capable of typing the interaction correspon-
dence by using logical variables to tie input fields with submit handler code.

XDuce [43,44] is a statically typed domain specific language for XML pro-
cessing. It has a notion of first-order XML documents typed with regular expres-
sion types which correspond to schemas. Values in the program are statically
typed using explicit programmer annotations. The flexibility of this approach
is made practically useful by a subtyping relation which is based directly on
tree automata. It also provides a typed document deconstruction mechanism
based on regular expression pattern matching.

JWIG [26] is the successor of the <bigwig> language. It is essentially Java,
extended with the sessions, dynamic documents, and form field validation con-
cepts of <bigwig>.

The main differences pertaining to document construction are that the inter-
action correspondence analysis is run on summary graphs which are introduced
in the next chapter instead of using special gap and field lattices. In JWIG, gaps
are never implicitly plugged, just not pluggable if not present on all branches.

3.7. Conclusion 29

Also, the receive part is detached from the show statement meaning that unused
input values do not have to be received.

3.7 Conclusion

We have presented a domain specific language capable of dynamically gener-
ating XML documents in a flexible, safe, and efficient way that solves all four
problems mentioned in the introduction.

30 Chapter 3. Dynamic Generation of XML Documents

Chapter 4

Static Validation of Dynamically Generated

XML

4.1 Introduction

In this chapter we will look at how to ensure that clients are only presented
with valid HTML documents in the sense that they conform to the official DTD
for HTML 4.01, or rather XHTML 1.0 [67]. For static HTML documents this is
easy; they can readily be validated by tools made available by W3C and others.
For documents dynamically generated by scripts a frequently employed strategy
is to validate them after they have been produced at runtime. However, this is
an incomplete and costly process which does not provide any static guarantees
about the behavior of the script.

In this chapter we will show how to analyse our document construction
mechanism to statically guarantee that only valid HTML documents are ever
presented to clients.

In short, our approach is to first conservatively approximate the possibly
infinite set of XML documents that may be constructed at show statements,
capture the infinite set of valid XML documents through a schema formalism,
and finally decide validation as the inclusion of these two sets of XML docu-
ments.

4.2 Summary Graph Analysis

Like in the previous chapter, we will employ standard data flow-analysis tech-
niques to collect information about documents. This time, our lattice will con-
sist of summary graphs that approximates the set of HTML documents that a
given document expression may evaluate to. This structure essentially records
all plug operations involved in the construction of a document.

More precisely, given a set, N , of template constants, a set, G, of gap names,
and a set, C, of constant strings occuring in the program, a summary graph has
three constituents (R,E,α). The first constituent, R ⊆ N , is a root set that
designates the possible outermost templates in the document. The second,
E ⊆ N × G × N , is an edge set that contains an edge from template n to m
labelled g, written (n, g,m), if template m has been plugged into the g gap of

31

32 Chapter 4. Static Validation of Dynamically Generated XML

template n. Finally, α : G×N → S, where S = 2C ∪{•}, is a labelling function
that, for each gap of each template contains either the set of constant strings
have been plugged into the gap or “•” if it may contain strings whose values
cannot be determined at compile-time.

As an example, consider the following summary graph consisting of one root
template node, four plug edges, and a single attribute labeling:

items

items

text

ε

text

items

 <[]>

<[]>

itemslarge

<ul class=[]>
 <[]>

kind

kind
items

Template nodes, root nodes, and attribute labels are drawn as circles, double
circles, and boxes, respectively. The “ε” node models the empty template.

Each summary graph G defines a possibly infinite set of XML documents,
denoted L(G). Intuitively, this set is obtained by unfolding the graph from
each root while performing all possible pluggings enabled by the edges and
the labeling function. The language of the summary graph depicted above is
the set of all ul lists of class large with one or more character data items.
Summary graphs turns out to provide an ideal abstraction level for verifying
HTML validity.

It is possible to model the document and string plug operations with good
precision using transfer functions. The plug transfer function takes two sum-
mary graphs and a gap name. The second summary graph is plugged into the
first by adding edges from all relevant template gaps of the first to the roots
of the second. Ignoring the internal edges of each of the two summary graphs,
here depicted as disjoint, the plug operation can be illustrated as follows:

<[g =]

g

Similarly, a string plug transfer function models the effect of plugging in a
string.

However, in order to achieve sufficient precision of this analysis, two pre-
liminary analyses are required. One for tracking string constants, and one,
called a gap track analysis, for tracking the origins of gaps. The latter tells us
for each template variable and gap name, which constant templates contain-
ing such a gap can flow into that variable at any given program point. This

4.3. An Abstract DTD for XHTML 33

helps cut down the number of new edges introduced by the summary graph
plug operation. Clearly, all these analyses are highly specialized for the domain
of dynamic document construction and for <bigwig>’s higher-order template
mechanism, but they all fit into the standard data-flow analysis frameworks.
For more details we refer to [17].

4.3 An Abstract DTD for XHTML

Once we have the summary graphs for all the show statements, we need to
verify that the sets of documents they define all are valid HTML according to
W3C’s official definition. To simplify the process we reformulate the notion of
Document Type Definition (DTD) as a simpler and more convenient formalism
that we call abstract DTD. An abstract DTD consists of a number of element
declarations whereof one is designated as the root. An element declaration
defines the requirements for a particular type of elements. Each declaration
consists of an element name, a set of names of attributes and subelements that
may occur, and a boolean expression constraining the element type instances
with respect to their attribute values and contents. The official DTD for HTML
is easily rewritten into our abstract DTD notation. In fact, the abstract DTD
version captures more validity requirements than those expressible by standard
DTDs and merely appear as comments in the HTML DTD. As a technicality we
actually work with XHTML 1.0 which is an XML reformulation of HTML 4.01.
There are no conceptual differences, except that the XML version provides a
cleaner tree view of documents for the analysis.

4.4 Validation

Given a summary graph and an abstract DTD description of HTML, validity
can be checked by a recursive traversal of the summary graph starting at the
roots. We memoize intermediate results to ensure termination since the sum-
mary graphs may contain loops. If no violations are encountered, the summary
graph is valid. Since all validity properties are local to single elements and their
contents, we are able to produce precise error messages in case of violations.
Analysis soundness is ensured by the following property: if all summary graphs
corresponding to show expressions are verified to be valid with respect to the
abstract DTD, then all concrete documents are guaranteed to be valid HTML.

4.5 Experiments

The program analyses described here all have high worst-case complexities be-
cause of the complex lattices. Nevertheless, our implementations and experi-
ments show that they work well in practice, even for large intricate programs.

The validation analysis has been fully implemented as part of the <bigwig>
system. It has then been applied to all available benchmarks, some of which
are shown in the following table:

34 Chapter 4. Static Validation of Dynamically Generated XML

Name Lines Templates Size Shows Sec

chat 65 3 (0,5) 2 0.1
guess 75 6 (0,3) 6 0.1
calendar 77 5 (8,6) 2 0.1
xbiff 561 18 (4,12) 15 0.1
webboard 1,132 37 (34,18) 25 0.6
cdshop 1,709 36 (6,23) 25 0.5
jaoo 1,941 73 (49,14) 17 2.4
bachelor 2,535 137 (146,64) 15 8.2
courses 4,465 57 (50,45) 17 1.3
eatcs 5,345 133 (35,18) 114 6.7

The entries for each benchmark are its name, the lines of code derived from a
pretty print of the source with all macros expanded, the number of templates,
the size (|E|, |α|) of the largest summary graph, the number of program points
with show statements, and the analysis time in seconds (on an 800 MHz Pentium
III Linux PC).

The analysis found numerous validation errors in all benchmarks, which
could then be fixed to yield flawless services. No false errors were reported. As
seen in the table above, the enhanced compiler remains efficient and practical.

Error Diagnostics

The <bigwig> compiler provides detailed diagnostic messages in case of valida-
tion errors. For the flawed example:

1 service {
2 html cover = <html>
3 <head><title>Welcome</title></head>
4 <body bgcolo=[color]>
5 <table><[contents]></table>
6 </body>
7 </html>;
8
9 html greeting = <html>

10 <td>Hello <[who]>,<br clear=[clear]>
11 welcome to <[what]>.
12 </td>
13 </html>;
14
15 html person = <html>
16 <i>Stranger</i>
17 </html>;
18
19 session welcome() {
20 html h;
21 h = cover<[color="#9966ff",
22 contents=greeting<[who=person],
23 clear="righ"];
24 show h<[what=<html>BRICS</html>];

4.6. Related Work 35

25 }
26 }

the compiler generates the following messages for the single show statement:
--- brics.wig:24: HTML validation:

brics.wig:4:

warning: illegal attribute ’bgcolo’ in ’body’

template: <body bgcolo=[color]><form>...</form></body>

brics.wig:5:

warning: possible illegal subelement ’td’ of ’table’

template: <table><[contents]></table>

contents: td

plugs: contents:brics.wig:22

brics.wig:10:

warning: possible element constraint violation at ’br’

template: <br clear=[clear]/>

constraint: value(clear,left,all,right,clear,none)

plugs: clear:brics.wig:23

At each error message, a line number of an XML element is printed together with
an abbreviated form of the involved template, the names of the root elements of
each template that can be plugged into the gaps, the constraint being violated,
and the line numbers of the involved plug operations. Such reasonably precise
error diagnostics is clearly useful for debugging.

4.6 Related Work

Since the documents of MAWL [3, 4, 55] and Guide [57] are restricted to tem-
plates that are only parameterizable with character data, they may be pre-
validated.

The paper [84] shows how to achieve validity by encoding a DTD as in-
stance classes in an extension of Haskell’s type system. However, the author
reports that the encodings are too restrictive to be practically useful for gener-
ating parameterized documents unless the validity requirements for attributes
are relaxed. In addition to documents having to be composed in an element-
transforming style, validation errors are reported as Haskell instance class type
errors which may be hard to “decode”.

As previously mentioned, all XDuce [43,44] values are statically typed with
regular expression types which are essentially equivalent to DTD’s. In its present
form, XDuce is incapable of coping with attributes. However, preliminary at-
tempts to integrate attributes have been made [42], but it is unclear how this
is to proceed. Apart from attributes, XDuce achieves validation, but relies on
explicit programmer annotations to do so.

JWIG [26] has extended the validation presented here from abstract DTD’s
to the more powerful schema language, DSD2 [51].

4.7 Conclusion

We have combined a data-flow analysis with a generalized validation algorithm
to enable the <bigwig> compiler to guarantee that all HTML or XHTML docu-

36 Chapter 4. Static Validation of Dynamically Generated XML

ments shown to the client are valid according to the official DTD. The analysis
is efficient and does not generate many spurious error messages in practice.
Furthermore, it provides precise error diagnostics in case a given program fails
to verify.

Since our algorithm is parameterized with an abstract DTD, our technique
generalizes in a straightforward manner to arbitrary XML languages that can be
described by DTDs. In fact, we can even handle more expressive grammatical
formalisms. The analysis has proved to be feasible for programs of realistic sizes.
All this lends further support to the unique design of dynamic documents in
the <bigwig> language.

Chapter 5

Caching of Dynamically Generated XML

5.1 Introduction

Caching documents on the client-side is an important technique for saving band-
width, time, and clock-cycles. The HTTP protocol provides explitcit support
for this by associating an “expiration time” with all documents sent from the
server to the client. A document that never or rarely changes may then be
associated an appropriate future expiration time so that browsers and proxy
servers may avoid reloading it before that time. However, this mechanism is
clearly not applicable to dynamically generated documents that change on ev-
ery request. For such documents, the expiration must always be set to “now”,
voiding the benefits of caching.

Though caching does not work for whole dynamically generated documents,
most Web services construct HTML documents using some sort of constant
parts that ideally ought to be cached, as also observed in [31,97]. In Figure 5.1,
we show a condensed view of five typical HTML pages generated by different
Web services using the document construction mechanism described in Chap-
ter 3. Each column depicts the dynamically generated raw HTML text output
produced from interaction with each of our five benchmark Web services. Each
non-space character has been colored either grey or black. The grey sections are
characters that originate from a large number of small, constant HTML tem-
plates in the source code; the black sections are dynamically computed strings
of character data, specific to the particular interaction. The templates appear
to constitute a significant part of generated documents.

Experiments have shown that many of our templates tend to occur again
and again in documents shown to a client across the lifetime of a service, either
because they occur 1) many times in the same document, 2) in many different
documents, or 3) simply in documents that are shown many times.

Since the templates account for a large part and reoccur there is potentially
much to gain if they could be cached on the client. We will now show how to
exploit our document generation mechanism to do this.

37

38 Chapter 5. Caching of Dynamically Generated XML

(a) lycos (b) bachelor (c) jaoo (d) webboard (e) dmodlog

Figure 5.1: Benchmark services: cachable (grey) vs. dynamic (black) parts.

5.2 Our Solution

The DynDocDag representation described in Section 3.5 has a useful property:
it explicitly maintains a separation of the constant templates occurring in a
document, the strings that are plugged into the document, and the structure
describing how to assemble the document. In Figure 3.3, these constituents are
depicted as framed rectangles, oval rectangles, and circles, respectively.

The templates are inherently static. The strings and structure of a docu-
ment, however, are typically customized for an individual interaction and thus
change with each document.

The solution is to move the unfolding of the DynDocDag data structure from
the server to the client. Instead of transmitting the unfolded HTML document,
the server will now transmit only a compact representation of the dynamic
parts of the DynDocDag data structure along with some generic JavaScript
code capable of reconstructing the document on the client. The templates are
not present in the document transmitted, but each placed in its own JavaScript
file on the server and merely referenced by a JavaScript include directive in the
file transmitted. This way, each JavaScript template file can be cached by the
browser just as any other file. In fact, the generic JavaScript unfolding code
can also be placed in its own file and cached.

Consequently, only the dynamic string and structure constituents are trans-
mitted; the browser’s standard caching mechanism will ensure that templates
already seen are not reloaded.

Since the templates are statically known at compile-time, the compiler can
enumerate the templates and for each of them generate a file with appropri-
ate JavaScript code. By postfixing template filenames with version numbers,
caching can be enabled across recompilations where only certain templates have

5.3. Evaluation 39

original static + dynamic dynamic only

0

20

40

60

80

100

| {z }

lycos

| {z }

bachelor

| {z }

jaoo

| {z }

webboard

| {z }

dmodlog

KB

(b) size

0

2

4

6

8

10

| {z }

lycos

| {z }

bachelor

| {z }

jaoo

| {z }

webboard

| {z }

dmodlog

sec

(c) download+rendering (128K ISDN)

Figure 5.2: Experiments with the template representation.

been modified.
We could have chosen Java instead of JavaScript, but JavaScript is more

lightweight and is sufficient for our purposes. Alternatively, similar effects could
be obtained using browser plug-ins or proxies, but implementation and instal-
lation would become more difficult.

Our approach could be adapted to languages such as ASP, PHP, JSP, but the
cachable text and markup we have in one structured template would essentially
have to be cut into the strings between the gaps. These pieces are likely to be
smaller and unstructured yielding a bigger overhead and less opportunities for
reuse.

5.3 Evaluation

Figure 5.2 recounts the effect of applying our caching technique to the five Web
service benchmarks mentioned earlier.

In Figure 5.2(b) we show the sizes of the data transmitted to the client. The
grey columns show the original document sizes, ranging between 20 and 90 KB.
The white columns show the sizes of the total data that is transmitted using
our technique, none of which exceeds 20 KB. Of ultimate interest is the black
column which shows the asymptotic sizes of the transmitted data which are
reached when all templates have been cached by the client. In this case, we see
reductions of factors between 4 and 37 compared to the original document size.
When employing our technique, the amount of data downloaded is anywhere
between what indicated by the white and black columns, depending on how
many of the templates has been cached. In any case, our technique substantially
reduces the number of bytes transmitted from the server to the client.

40 Chapter 5. Caching of Dynamically Generated XML

The HTTP 1.1 protocol [37] introduces automatic compression using general-
purpose algorithms, such as gzip. Of course, adding compression drastically
reduces the benefits of our caching technique. However, we still see asymptotic
reduction factors between 1.3 and 2.9 suggesting that our approach remains
worthwhile even in these circumstances. Clearly, there are documents for which
the asymptotic reduction factors will be arbitrarily large, since large constant
text fragments count for zero on our side of the scales while gzip can only
compress them to a certain size. Thus, compression is essentially orthogonal to
our approach.

In cutting down the network traffic, we of course seize client clock cycles
for the unfolding. However, in a context of fast client machines and compar-
atively slow networks, this is a sensible tradeoff. In Figure 5.2(c) we quantify
the end-to-end latency for our technique. The total download and rendering
times for the five services are shown for both the standard documents and our
cached versions. The client is Internet Explorer 5 running on an 800 MHz
Pentium III Windows PC connected to the server via a 128K ISDN modem.
These are still realistic configurations, since by August 2000 the vast majority
of Internet subscribers used dial-up connections [46] and this situation will not
change significantly within the next couple of years [64]. The times are averaged
over several downloads (plus renderings) with browser caching disabled. The
download and rendering times reduce by factors between 1.4 and 3.9. Even the
dmodlog benchmark which presents lots of dynamically generated data benefits
in this setup. For higher bandwidth dimensions, the results will of course be
less impressive.

5.4 Related Work

Caching of dynamic contents has received increasing attention the last years
since it became evident that traditional caching techniques were becoming in-
sufficient.

Most existing techniques labeled “dynamic document caching” are server-
based, for instance [25, 47, 69, 100]. The primary goal for server-based caching
techniques is not to lower the network load or end-to-end latency as we aim
for, but to relieve the server by memoizing the generated documents in order
to avoid redundant computations. Such techniques are orthogonal to the one
we propose. Other techniques are proxy-based, e.g. [23, 77], and require the
installation of special proxy servers. Our technique and the HPP language [31]
are client-based and neither require intrusive modifications to existing protocols.

The HPP language [31] is closely related to our approach. Both are based
on the observation that dynamically constructed documents usually contain
common constant fragments. HPP is an HTML extension which allows an
explicit separation between static and dynamic parts of a dynamically generated
document. The static parts of a document are collected in a template file while
the dynamic parameters are in a separate binding file. The template file can
contain simple instructions, akin to embedded scripting languages such as ASP,
PHP, or JSP, specifying how to assemble the complete document. According

5.5. Conclusion 41

to [31], this assembly and the caching of the templates can be done either using
cache proxies or in the browser with Java applets or plug-ins, but it should be
possible to use JavaScript instead, as we do.

An essential difference between HPP and our approach is that the HPP so-
lution is not integrated with the programming language used to make the Web
service. With some work it should be possible to combine HPP with popular
embedded scripting languages, but the effort of explicitly programming the doc-
ument construction remains. Our approach is based on the source language,
meaning that all caching specifications are automatically extracted from the
Web service source code by the compiler and the programmer is not required
to be aware of caching aspects. Regarding cachability, HPP has the advantage
that the instructions describing the structure of the resulting document are lo-
cated in the template file which is cached, while in our solution the equivalent
information is in the dynamic file. However, in HPP the constant fragments
constituting a document are collected in a single template. This means that
HTML fragments that are common to different document templates cannot be
reused by the cache. Our solution is more fine-grained since it caches the in-
dividual fragments separately. Also, HPP templates are highly specialized and
hence more difficult to modify and reuse for the programmer. Being fully au-
tomatic, our approach guarantees cache soundness. Analogously to optimizing
compilers, we claim that the <bigwig> compiler generates caching code that is
competitive to what a human HPP programmer could achieve. This claim is
substantiated by our lycos benchmark which is equivalent to one presented for
HPP [31], except that our reconstruction is of course in <bigwig>. It is seen
that the size of our residual dynamic data (from 20,183 to 3,344 bytes) is virtu-
ally identical to that obtained by HPP (from 18,000 to 3,250 bytes). However,
in that solution all caching aspects are hand-coded with the benefit of human
insight, while ours is automatically generated by the <bigwig> compiler. The
other four benchmarks construct more complicated documents and would be
more challenging for HPP.

5.5 Conclusion

With our approach, the programmer need not be aware of caching issues since
the decomposition of pages into cachable and dynamic parts is performed au-
tomatically by the compiler. The resulting caching policy is guaranteed to
be sound, and experiments show that it results in significantly smaller trans-
missions and reduced latency. Our technique is non-intrusive and requires no
extensions to existing protocols, clients, servers, or proxies.

As a result, we obtain a simple and practically useful technique for saving
network bandwidth and reviving the cache mechanism present in all modern
Web browsers in the context of dynamically generated Web pages.

42 Chapter 5. Caching of Dynamically Generated XML

Chapter 6

Form Field Validation

6.1 Introduction

A considerable effort in Web programming is expended on making sure the data
supplied by the client in a form input field has the right format. A field might
for instance expect a valid number, date, or email address to be entered in a
certain way.

This is often achieved through server-side input validation. When the page
containing the input fields is submitted, the program on the server determines
whether the entered data is of the required form. If this is not the case, the
program outputs a page containing appropriate error messages along with the
erroneous input fields, allowing the client to correct them. This process is
repeated until all input fields contain valid data. Although widely used, the
approach has some considerable drawbacks

• it takes time;

• it causes excess network traffic; and

• it requires explicit programming.

Note that these drawbacks affect all parties involved. The client is clearly an-
noyed by the extra time incurred by the round-trip to the server for validation,
the server by the extra network traffic and “wasted” cycles, and the program-
mer by having to explicitly wrap the showing of such documents in loops that
retransmit documents along with appropriate error messages until the input
validates. Also, adding extra control structures clutter up the main logic of the
service with validation code.

The first two drawbacks are solved by moving the validation from the server
to the client, yielding client-side input validation. The actual validation is then
undertaken by a client-side scripting language, typically JavaScript.

The move from server-side to client-side also opens for another important
benefit, namely the possibility of performing the validation incrementally. The
client no longer needs to click the submit button before getting the validation
report. This allows errors to be be signalled as they occur, which clearly eases
the task of correctly filling out the form. Also, the browser features made

43

44 Chapter 6. Form Field Validation

available in the scripting language may help provide more sophisticated inter-
actions with the client, such as pop up error and help messages and coloring of
erroneous input fields.

However, writing JavaScript input validators that at the same time capture
all validity requirements and also signal errors appropriately is a tedious and
error-prone task and is further complicated by diverging browser implemen-
tations. In fact, whole Web sites are dedicated to explaining how JavaScript
implementations differ in browsers1.

[although many libs exist 2, they must be used in the context of a GPL]
Since JavaScript may be unsupported or disabled by the client, the server

must always perform a second validation. Thus, the same code must essentially
be written both in the client and server scripting languages that may be very
different in nature.

6.2 PowerForms

To address these issues we have designed a language, PowerForms, targeted
uniquely at the domain of input validation.

We allow the service programmer to define formats and attach them to
textual input fields. Submission of form input to the server is prohibited while
data entered in the input fields does not comply with the attached formats.
Thus, clients are only allowed to continue a session when all input fields contain
appropriate data.

The formats are specified as standard regular expressions enhanced with in-
tersection, complement, and integer intervals for convenience. There are several
motivations for choosing regular expressions over other specification formalisms,
such as context-free grammars or Turing-complete languages. Regular expres-
sions are simple, well known, and widely used for other text pattern-matching
purposes, as for instance in Perl.

Also, regular expressions are inherently declarative and thus abstract away
all operational details making the validation easier to read, write, and modify.
Comparatively, operational formalisms, such as JavaScript, force programmers
to deal with details of how fields and contents are validated and in what order.
Since programming in the operational sense is not required, input validation is
available to a wider audience.

Finally, it can be efficiently decided whether a string is in the language
defined by a regular expression through the use of deterministic finite automata,
DFAs.

It is our experience that regular expressions are sufficiently expressive to
capture most common validation requirements, such as validating dates, email
addresses, and zip-codes. Anything requiring expressiveness beyond regularity
is deferred to the server-side, but this is rarely needed.

1See e.g. http://www.webdevelopersjournal.com/articles/javascript
limitations.html or http://www.xs4all.nl/ ppk/js/version5.html.

2http://developer.netscape.com/docs/examples/javascript/formval/overview.html

6.2. PowerForms 45

When a document is shown, all its regular expressions are compiled into
minimized DFAs and the HTML is instrumented with JavaScript code to incre-
mentally run the automata on the data entered in their associated input fields.
These automata are also used on the server side to double check the submitted
data upon reception. The compilation only generates code within the subset of
JavaScript that is known to work on all common browser implementations.

Regarding efficiency, all automata are remembered to avoid trivial recom-
pilation and placed in individual JavaScript files so that they may be cached
by the browser. Also, the <bigwig> compiler will statically compile all regu-
lar expressions available at compile-time; only dynamically generated regular
expressions are subjected to dynamic compilation.

To provide continuous feedback to the client about the state of the vali-
dation, we visualize the states of all automata using images displayed next to
all textual input fields. These images are then dynamically changed to always
reflect the state of an automaton. By default, the compiler uses “traffic light”
icons, displaying either red, yellow, or green light corresponding to whether an
automaton is in a crash, reject, or accept state when run on its input. Thus,
red means not prefix of valid input; yellow, strict prefix of valid input; and
green, valid input. Input fields may be instructed to use other icons or means
for visualization or even to auto-complete when there is only one possible suffix
yielding valid input.

An Example

The definition of formats is syntactically disjoint from the form itself. This
allows a modular development in that validation can be added to an input field
in an existing HTML form without knowing anything but its name. Consider
for instance an HTML document with an input field, address , expecting a
valid email address:

<html> .. Your email: <input type="text" name="address " size="25"/> .. </html>

Email addresses are easily captured by a regular expression. Valid emails could
for instance be defined as follows, assuming word is appropriately defined:

<regexp id="email ">

<regexp idref="word "/>

<const value="@"/>

<plus>

<regexp idref="word "/>

<const value="."/>

</plus>

<repeat low="2" high="3">

<range low="a" high="z"/>

</repeat>

</regexp>

or alternatively in a more compact Perl-style syntax:

<regexp id="email " exp="<word >@(<word >\.)+[a-z]{2,3}"/>

46 Chapter 6. Form Field Validation

Figure 6.1: Checking email addresses.

Figure 6.2: Conference questionnaire.

An email is here defined as the concatenation of a word, a “@” character, one or
more words followed by a dot, and two alphanumeric characters. This format
can then be independently added to the HTML page by the following definition:

<format field="address " help="Enter email address" error="Illegal email">

<regexp idref="email "/>

</format>

The field attribute refers to the input field to which the regular expression
is to be bound. While the input field has focus, the help string appears in
the status line of the browser. If the client attempts to submit the form with
invalid data in this field, then the error text appears in an alert box. Initially,
the field has a yellow light. This status persists, as seen in Figure 6.1, while we
enter the text “brabrand@brics.d” which is a legal prefix of an email address.
Entering another “@” yields a red light. Deleting this character and entering k
will finally give a legal value and a green light.

6.3 Field Interdependency

Many forms contain fields whose values are constrained by selections made or
text entered in other fields. Figure 6.2 exhibits a simple questionnaire from a
conference, in which participants were invited to state whether they have at-
tended past conferences and if so, how this one compared. The second question
clearly depends on the first, since it may only be answered if the first answer
was positive. Conversely, an answer to the second question may be required if
the first answer was “Yes”.

Such interdependencies are almost always handled on the server, even if the
rest of the validation is addressed on the client-side. The reason is presumably
that interdependencies require even more delicate JavaScript code.

6.3. Field Interdependency 47

Figure 6.3: Collecting customer information.

To address these issues, we have made two extensions. Firstly, we permit
formats to be associated with all kinds of input fields, not just textual ones.
Individual checkbox and radio buttons are automatically depressed and cannot
be checked if their values are not in the language of the regular expression. For
select fields, illegal options are automatically deselected and filtered from the
menu.

Secondly, formats are extended to describe boolean decision trees whose
conditions probe the values of other fields and whose leaves are simple regular
expression formats. In addition to conjunction, disjunction, and negation, two
basic predicates, equal and match, exist for specifying boolean expressions.
The match predicate takes a field name and a regular expression and decides
whether the value of the designated input field is in the language of the regular
expression. The equal predicate is a shorthand for comparing the value to a
constant string.

As an example, consider the form displayed in Figure 6.3 where customers
select their country, write their phone number, and check whether or not the
want a visit from the New York City office. Since this last option is only
available to customers living in New York City, it is constrained by the following
format:

<format field="visit ">

<if>

<and>

<equal name="country " value="US"/>

<match name="phone "><regexp exp="(212|347|646|718|917).*"/></match>

</and>

<then><regexp exp="yes|no"/></then>

<else><regexp exp="no"/></else>

</if>

</format>

Both “yes” and “no” are acceptable values for the visit field if the “US”
option is selected in the country field and the phone text field contains a New
York City area-code prefix. Otherwise, “no” is the only value accepted.

Since the evaluation of a format may produce side-effects in that selections
may be unmade, the order in which formats are evaluated clearly matters. We
have chosen to process the formats in the sequence they appear in a document
because this typically coincides with the order in which the client is supposed
to consider them. All formats are processed repeatedly until a fixed-point is
reached. Since buttons can only be released, this iteration is guaranteed to

48 Chapter 6. Form Field Validation

terminate. It is our experience that in practise, the evaluation order does not
matter and the fixed point is reached in one or two iterations.

6.4 Related Work

ColdFusion [21] provides direct support for server-side validation. However,
the validation produces an error report involving the internal names of input
fields which are unknown to the client. Also, the required corrections must be
remembered when the erroneous form is redisplayed.

The XHTML-FML language [73] provides client-side input validation by
adding an attribute to textual input fields. However, this attribute is restricted
to a collection of predefined input validation types and there is no support for
field inderdependency. The validation is compiled into JavaScript and their so-
lution is non-intrusive in that it does not require installation of special software
on the client.

The extensible form description language, XFDL3, is a more elaborate lan-
guage that deals with the whole lifecycle of a form including workflow. It
provides simple interdependeny and a rigid mechanism for defining new for-
mats which is not flexible enough to permit the definition of valid emails as in
the New York City example.

XForms [32] is a proposal from W3C that separates the data and presen-
tation of forms. Form data is represented and returned to the server as XML.
Validation of this XML data is based on XML Schema [88] and interdepen-
dency is achieved using XPath [27] for referencing other parts of the data on a
form. However, it is not capable of handling the dependency in the New York
City example without involving operational programming. The main problem
with XForms is that no complete implementation exists and that it requires an
XForms processor on the client.

Both XForms and XFDL have a really useful feature in that fields may be
hidden and visualized incrementally as they are required.

The paper [75] is similar to our approach in that it translates a language
into client-side validation based on JavaScript and server-side revalidation code.
However, validation is not performed incrementally on the client and specifica-
tion requires explicit programming in a general purpose functional language.

6.5 Conclusion

PowerForms provides incremental and interdependent validation in a declara-
tive way that does not require programming skills. Furthermore, it is modular
in the sense that validation can be added to an input field in an existing HTML
form without knowing anything but its name. The validation markup being
completely separate from the form markup allows the layout of a form to be
redesigned at any time in any HTML editor. PowerForms is fully implemented
as part of the <bigwig> language and is also available as a stand-alone tool4.

3available from http://www.pureedge.com/xfdl/
4available from http://www.brics.dk/bigwig/powerforms/. A Java implementation is

also available from http://www.brics.dk/~ricky/powerforms/ which is integrated in JWIG.

Chapter 7

Concurrency Control

7.1 Introduction

As services have several session threads, there is a need for synchronization and
other concurrency control to discipline the concurrent behavior of the active
threads. A simple case is to control access to the shared variables using mu-
tex regions or the readers/writers protocol. Another issue is enforcement of
priorities between different session kinds, such that a management session may
block other sessions from running. Another example is event handling, where
a session thread may wait for certain events to be caused by other threads.

We deal with all of these scenarios in a uniform manner based on a central
controller process in the runtime system, which is general enough to enforce a
wide range of safety properties [71]. The support for concurrency control in the
previously mentioned Web languages is limited to more traditional solutions,
such as file locking, monitor regions, or synchronized methods.

7.2 Our Solution

A <bigwig> service has an associated set of event labels. During execution,
a session thread may request permission from the controller to pass a spe-
cific event checkpoint. Until such permission is granted, the session thread
is suspended. The policy of the controller must be programmed to maintain
the appropriate global invariants for the entire service. Clearly, this calls for a
domain-specific sub-language. We have chosen a succinct, well-known, and very
general formalism, temporal logic. In particular, we use a variation of monadic
second-order logic [87]. A formula describes a set of strings of event labels, and
the associated semantics is that the trace of all event labels being passed by all
threads must belong to that set. To guide the controller, the <bigwig> compiler
uses the MONA tool [50] to translate the given formula into a minimal deter-
ministic finite-state automaton that is used by the controller process to grant
permissions to individual threads. When a thread asks to pass a given event
label, it is placed in a corresponding queue. The controller continually looks for
non-empty queues whose event labels correspond to enabled transitions from
the current DFA state. When a match is found, the corresponding transition is

49

50 Chapter 7. Concurrency Control

performed and the chosen thread is resumed. Of course, the controller must be
implemented to satisfy some fairness requirements. All regular trace languages
can be expressed in the logic.

Applying temporal logics is a very abstract approach that can be harsh on
the average programmer. However, using syntax macros, which are described
in Chapter 8, it is possible to capture common concurrency primitives, such
as semaphores, mutex regions, the readers/writers protocol, monitors, and so
on, and provide high-level language constructs hiding the actual formulas. The
advantage is that <bigwig> can be extended with any such constructs, even
some that are highly customized to particular applications, while maintaining
a simple core language for concurrency control.

The following example illustrates a simple service that implements a critical
region using the event labels enter and leave:

service {

shared int i;

session Critical() {

constraint {

label leave,enter;

all t1,t3: (t1<t3 && enter(t1) && enter(t3)) =>

is t2: t1<t2 && t2<t3 && leave(t2);

}

wait enter;

i = i+1;

wait leave;

}

}

The formula states that for any two enter events there is a leave event in
between, which implies that at any time at most one thread is allowed in the
critical region.

Using syntax macros, programmers are allowed to build higher-level ab-
stractions such that the following can be written instead:

service {

shared int i;

session Critical() {

region {

i = i+1;

}

}

}

We omit the macro definitions here. In its full generality, the wait statement is
more like a switch statement that allows a thread to simultaneously attempt to
pass several event labels and request a timeout after waiting a specified time.

A different example implements an asynchronous event handler. Without
the macros, this could be programmed as:

service {

shared int i;

constraint {

7.3. Conclusion 51

label handle,cause;

all t1: handle(t1) => is t2: t2<t1 && cause(t2) &&

(all t3: t2<t3 && t3<t1 => !handle(t3));

}

session Handler() {

while (true) {

wait handle;

i++;

}

}

session Application() {

wait cause;

}

}

This non-trivial formula allows the handler to proceed, without blocking the
application, whenever the associated event has been caused at least once since
the last invocation of the handler. Fortunately, the macros again permit high-
level abstractions to be introduced with more palatable syntax:

service {

shared int i;

event Increment {

i++;

}

session Application() {

cause Increment;

}

}

We have dubbed the concurrency language SyCoLogic as an abbreviation of
synthesizing controller logic.

7.3 Conclusion

The runtime model with a centralized controller process ensuring satisfaction
of safety constraints is described in [16] and in more detail in [13]. Using a cen-
tralized process hardly qualifies as an efficient approach. However, as pointed
out in [71], it is possible to analyse the constraints and distribute the safety
controller. Also, in a context of relatively fast machines and comparatively slow
networks, the network is likely to be the bottleneck.

The use of monadic second-order logic for controller synthesis was intro-
duced in [71] where additionally the notions of triggers and counters are intro-
duced to gain expressive power beyond regular sets of traces, and conditions
for distributing the controller for better performance are defined.

The session model provides an opportunity to get a global view of the con-
current behavior of a service. Our current approach does not exploit this knowl-
edge of the control flow. However, we plan to investigate how it can be used in
specialized program analyses that check whether liveness and other concurrency
requirements are complied with.

52 Chapter 7. Concurrency Control

Chapter 8

Metamorphic Syntax Macros

8.1 Introduction

As previously mentioned, <bigwig> contains a notion of macros. Although
not specific to Web services, this abstraction mechanism is an essential part
of <bigwig> that serves to keep the sub-languages minimal and to tie them
together.

A compiler with syntax macros accepts collections of grammatical rules that
extend the syntax in which a subsequent program may be written. They have
long been advocated as a means for extending programming languages [22,56,
95]. Recent interest in domain-specific and customizable languages poses the
challenge of using macros to realize new language concepts and constructs or
even to grow entire new languages [10,59,79].

Existing macro languages are either unsafe or not expressive enough to live
up to this challenge, since the syntax allowed for macro invocations is too restric-
tive. Also, many macro languages resort to compile-time meta-programming,
making them difficult to use safely.

In this chapter we propose a new macro language that is at once sufficiently
expressive and based entirely on simple declarative concepts like grammars and
substitutions.

Our contributions are:

• a macro language design with guaranteed type safety and termination of
the macro expansion process;

• a concept of metamorphism to allow a user defined grammar for invocation
syntax;

• a mechanism for operating simultaneously on multiple parse trees;

• a full and efficient implementation for a syntactically rich host language;
and

• a survey of related work, identifying and classifying relevant properties;

This work is carried out in the context of the <bigwig> project [74], but could
find uses in many other host languages for which a top-down parser can be
constructed. For a given application of our approach, knowledge of the host

53

54 Chapter 8. Metamorphic Syntax Macros

grammer is required. However, no special properties of such a grammar are
used. In fact, it is possible to build a generator that for a given host grammar
automatically will provide a parser that supports our notion of syntax macros.

8.2 Related Work

We have closely investigated the following eight macro languages and their
individual semantic characteristics: the C preprocessor, CPP [49, 78]; the Unix
macro preprocessor, M4; TEX’s built-in macro mechanism; the macro mechanism
of Dylan [76]; the C++ templates [80]; Scheme’s hygienic macros [48, 53]; the
macro mechanism of the Jakarta Tool Suite, JTS [10]; and the Meta Syntactic
Macro System, MS2 [95].

The JSE system [6] is a version of Dylan macros adapted to Java and is not
treated independently here. This survey has led us to identify and group 31
properties that characterize a macro language and which we think are relevant
for comparing such work. The details of our survey are presented in [19].

Our macro language shares some features of a previous work on extensible
syntax [24], although that is not a macro language. Rather, it is a framework
for defining new syntax that is represented as parse tree data structures in a
target language, in which type checking and code generation is then performed.
In contrast, our new syntax is directly translated into parse trees in a host
language. Also, the host language syntax is always available on equal footing
with the new syntax. However, the expressiveness of the extensible syntax
that is permitted in [24] is very close to the argument syntax that we allow,
although there are many technical differences, including definition selection,
parsing ambiguities, expansion strategy, and error trailing. Also, we allow a
more general translation scheme.

The paramount characteristic of a macro language is whether it operates at
the lexical or syntactical level. Lexical macro languages allow tokens to be sub-
stituted by arbitrary sequences of characters or tokens. These definitions may
be parameterized so that the substitution sequence contains placeholders for
the actual parameters that are themselves just arbitrary character sequences.
CPP, M4, and TEX are well-known lexical macro languages. Conceptually, lex-
ical macro processing precedes parsing and is thus ignorant of the syntax of
the underlying host language. In fact, CPP and M4 are language independent
preprocessors for which there is no concept of host language. As a direct con-
sequence of syntactic independence, all lexical macro languages share many
dangers that can only be avoided by clever hacks and workarounds, which are
by now folklore.

A representative example is the following square macro:

#define square(X) X*X

which works as expected in most cases. However, if invoked with the argument
z+1 the result will be the character sequence z+1*z+1 which is interpreted as
z+(1*z)+1. A solution to this particular problem is explicitly to add parenthe-
ses around the arguments to control subsequent parsing:

8.3. Our Solution 55

;Srepeat

until (

)

;

(

repeat E)

until E

repeat S ;)E(Suntil

Original Macro
definition

Expanded
programprogram

ES
E

S

E

S

Figure 8.1: Syntax macros—operators on parse trees. The white parts are writ-
ten by the service programmer and the gray parts by the macro programmer.

#define square(X) (X)*(X)

However, programmers are required to consider how individual macro invoca-
tions are being expanded and parsed. Syntactic macros amend this by operate
on parse trees instead of token sequences [96]. Types are added to the macro ar-
guments and bodies in the form of nonterminals of the host language grammar.
Macro definitions can now be syntax checked at definition time, guaranteeing
that parse errors no longer occur as a consequence of macro expansion. Using
syntax macros, the syntax of the programming language simply appears to be
extended with new productions.

In contrast, syntactical languages operate on parse trees, as depicted in
Figure 8.1, which of course requires knowledge of the host language and its
grammar. In our case, we have made all 55 nonterminals of a standardized
version of the <bigwig> grammar available for extension.

8.3 Our Solution

Our macros are syntactic and based entirely on simple declarative concepts
such as grammars and substitution, making them easy and safe to use by ordi-
nary Web service programmers. Other macro languages, such as MS2, Scheme
macros, and Maya [7], instead apply full Turing complete programming lan-
guages for manipulating parse trees at compile-time, making them more difficult
to use.

As an example, we will extend the core language of <bigwig> with a
repeat-until control structure that is easily defined in terms of a while loop.
Incidently, this is the macro shown in Figure 8.1.

macro <stm > repeat <stm S> until (<exp E>) ; ::= {

{

bool first = true;

while (first || !<E>) {

<S>

first = false;

}

}

}

56 Chapter 8. Metamorphic Syntax Macros

The first line is the header of the macro definition. It specifies the nonter-
minal type of the macro abstraction and the invocation syntax including the
typed arguments. As expected, the type of the repeat-until macro is <stm>

representing statements. This causes the body of the macro to be parsed as
a statement and announces that invocations are only allowed in places where
an ordinary statement would be. We allow the programmer to design the in-
vocation syntax of the macro. This is used to guide parsing and adds to the
transparency of the macro abstractions. This particular macro is designed to
parse two appropriately delimited arguments, a statement S and an expression
E. The body of the macro implements the abstraction using a boolean variable
and a while loop. When the macro is invoked, the identifiers occurring in the
body are α-converted to avoid name clashes with the invocation context.

8.4 Metamorphisms

Macro definitions specify two important aspects: the syntax definitions charac-
terizing the syntactic structure of invocations and the syntax transformations
specifying how “new syntax” is morphed into host language syntax.

In the following we will show how to move beyond a macro taking a fixed
number of arguments each described by a host grammar nonterminal in a declar-
ative way and without compromising syntactic safety. We will initially focus
on the syntax definition aspects.

To present our solution and illustrate how other languages approach this,
we will use an enum abstraction as known from C as a running example.

A first step towards greater syntactic definition flexibility is to permit the
definition of macros with the same name but different invocation syntax and ar-
guments. A notion of specificity selects the definition that most closely matches
an invocation. Relying on a notion of specificity has the advantage of being in-
dependent of the order in which the macros are defined. This permits us to
define the enum abstraction such that it can take one, two, or three identifier
arguments:

macro <decls> enum { <id X> } ; ::= {

const int <X> = 0;

}

macro <decls> enum { <id X> , <id Y> } ; ::= {

const int <X> = 0;

const int <Y> = 1;

}

macro <decls> enum { <id X> , <id Y> , <id Z> } ; ::= {

const int <X> = 0;

const int <Y> = 1;

const int <Z> = 2;

}

Evidently, it is not possible to define macros with arbitrary arity and the spec-
ifications exhibit a high degree of redundancy. In terms of syntax definition,

8.4. Metamorphisms 57

the three enum definitions correspond to adding three unrelated right-hand side
productions for the nonterminal decls:

decls : enum { id } ;
| enum { id , id } ;
| enum { id , id , id } ;

Scheme amends this by introducing a special ellipsis construction, “...” to
specify lists of nonterminal s-expressions. MS2 moves one step further by per-
mitting also tuples and optional arguments, corresponding to allowing the use
of regular expressions over the terminals and nonterminals of the host gram-
mar on the right-hand sides of productions. The ubiquitous EBNF syntax is
available for designating options “?”, lists “*” or “+”, and tuples “{...}” (for
grouping). In addition, MS2 provides a convenient variation of the Kleene star
for specifying token-separated lists of nonterminals. Here, we use N⊕ as no-
tation for one-or-more comma separated repetitions of the nonterminal N . An
enum macro defined via this latter construction corresponds to extending the
grammar as follows:

decls : enum { id⊕ } ;

The Dylan language has taken the full step by allowing the programmer to
describe the macro invocation syntactic structure via a user defined grammar,
permitting the introdution of new user defined nonterminals. This context-free
language approach is clearly more general than the regular language approach,
since it can handle balanced tree structures. The enum invocation syntax could
be described by the following grammar fragment that introduces a user defined
nonterminal called enums (underlined for readability):

decls : enum { id enums } ;
enums : , id enums

| ε

In Dylan, the result of parsing a user defined nonterminal also yields a result
that can be substituted into the macro body. However, this result is an unparsed
chunk of tokens with all the associated lexical macro language pitfalls.

We want to combine this great definition flexibility with type safety. Thus,
we need some way of specifying and checking the type of the result of parsing
a user defined nonterminal. Clearly, such nonterminals cannot exist on an
equal footing with those of the host language; a syntax macro must ultimately
produce host syntax and thus cannot return user defined ASTs. To this end,
we associate to every user defined nonterminal a host nonterminal result type
from which the resulting parse tree must be derived. Thus, the syntax defined
by the user defined nonterminals is always morphed directly into host syntax.
The specification of this morphing is inductively given for each production of
the grammar. In contrast, MS2 relies on programming and computation for
specifying and transforming their regular expressions of nonterminals into parse
trees.

58 Chapter 8. Metamorphic Syntax Macros

To distinguish clearly from the host grammar, we call the user defined
nonterminal productions typed with host nonterminals for metamorphisms. A
metamorphism is a rule specifying how the macro syntax is morphed into host
language syntax. A parameter may now also be of the form <M: N a>, meaning
that it is named a, has an invocation syntax that is described by the metamorph
nonterminal M, and that its result has type N . The metamorph syntax and the
inductive translation into the host language is described by the metamorph rules.
To the left of the “-->” token is the result type and name of the metamorph
nonterminal, and to the right is a parameter list defining the invocation syntax
and a body defining the translation into the host language. The metamorph
rules may define an arbitrary grammar. In its full generality, a metamorph rule
may take parse trees as arguments and produce multiple results each defined
by a separate body.

We are now ready to define the general enum macro in our macro language.
The three production rules above translates into the following three definitions:

macro <decls> enum { <id I> <enums: decls Ds> } ; ::= {

int e = 0;

const int <I> = e++;

<Ds>

}

metamorph <decls> enums --> , <id I> <enums: decls Ds> ::= {

const int <I> = e++;

<Ds>

}

metamorph <decls> enums --> ::= {}

The first rule defines a macro enum with the metamorph argument <enums:
decls Ds> describing a piece of invocation syntax that is generated by the non-
terminal enums in the metamorph grammar. However, enums parse trees are
never materialized, since they are instantly morphed into parse trees of the
nonterminal decls in the host grammar.

The body of our enum macro commences with the declaration of a variable
e used for enumerating all the declared variables at runtime. This declaration
is followed by the morphing of the (first) identifier <I> into a constant inte-
ger declaration with initialization expression e++. Then comes <Ds> which is
the decls result of metamorphing the remaining identifiers to constant integer
declarations.

The next two productions in the enum grammar translates into two meta-
morph definitions. The first will take a comma and an identifier followed by
a metamorph argument and morph the identifier into a constant integer dec-
laration as above and return this along with whatever is matched by another
metamorph invocation. The second metamorph definition offers a termination
condition by parsing nothing and returning the empty declarations.

For simplicity, the constant integer declarations in the bodies of the first
two rules are identical. This redundance can be alleviated either by placing this
constant declaration in the body of another macro or by introducing another
metamorphism returning the declaration at the place of the identifiers.

8.5. Growing Language Concepts 59

macro <formula> allow <id L> when <formula F> ::= {

all now: <L>(now) => restrict <F> by now;

}

macro <formula> forbid <id L> when <formula F> ::= {

allow <L> when !<F>

}

macro <formula> mutex (<id A> , <id B>) ::= {

forbid <A> when (is t: <A>(t) && (all s: t<s => !(s)))

}

macro <toplevel> region <id R> ; ::= {

constraint {

label <R>~A, <R>~B;

mutex(<R>~A, <R>~B);

}

}

macro <stm> exclusive (<id R>) <stm S> ::= {

{ wait <R>~A;

<S>

wait <R>~B;

}

}

macro <toplevels> resource <id R> ; ::= {

region <R>;

constraint { ... }

}

macro <stm> reader (<id R>) <stm S> ::= {

{ wait <R>~enterR;

<S>

wait <R>~exitR;

}

}

macro <stm> writer (<id R>) <stm S> ::= {

{ wait <R>~P;

exclusive (<R>) <S>

}

}

macro <toplevels> protected <type T> <id I> ; ::= {

<T> <I>; resource <I>;

}

Figure 8.2: Concurrency control abstractions.

Metamorph nonterminals are checked at definition time to intercept left-
recursion so that our top-down specificity parsing terminates. Also, it is verified
that possible invocations exist and that they all have a uniquely most specific
match, so that the definition selection remains unambiguous.

8.5 Growing Language Concepts

Our macro language allows the host language to grow, not simply with handy
abbreviations but with new concepts and constructs.

60 Chapter 8. Metamorphic Syntax Macros

allow-when

forbid-when

mutex

region

resource

protected

<bigwig> core language

writer

exclusive

reader

1.

2.

3.

4.

5.

6.

0.

Figure 8.3: A stack of macro abstractions.

Figure 8.2 shows a whole stack of increasingly high-level concepts that are
introduced on top of each other, profiting from the possibility to define macros
for all nonterminals of the host language. The allow, forbid, and mutex
macros abbreviate common constructs in temporal logic presented in Chapter 7
and produce results of type formula. The macro region of type toplevel is
different; it introduces a new concept of regions that are declared on equal
footing with other native concepts. The exclusive macro of type stm defines
a new control structure that secures exclusive access to a previously declared
region. The resource macro of type toplevel list declares an instance of another
novel concept that together with the macros reader and writer realizes the
reader/writer protocol for specified resources. Finally, the protected macro
seemingly provides a modifier that allows any declared variable to be subject
to that protocol. The macros all build on top of each other and produce no less
than six levels of abstraction as depicted in Figure 8.3.

An example of a program using the high-level abstractions is:

service {

protected shared int counter;

html Doc = <html>

You are visitor number <[number]>

</html>;

session Access() {

html D;

reader (counter) D = Doc <[number=counter];

writer (counter) counter++;

show D;

}

}

This program is a Web service that shows a page with the ubiquitous page
counter which is declared using the protected macro. When a client issues
a request to run the session Access, the value of the counter is read inside a

8.6. Integration 61

reader region and a document showing this value is assembled. Subsequently,
the counter is incremented in a writer region. Finally, the document is trans-
mitted to the client.

A similar development could have implemented other primitives, such as
semaphores, monitors, and fifo pipes. This demonstrates how the host language
becomes highly tailorable with very simple means. The <bigwig> language
employs an extensive collection of predefined macros to enrich the core lan-
guage. They are bundled up into packages extending the various sub-languages
of <bigwig> in different ways, helping to keep the <bigwig> language minimal.
For instance, the form field validation language is extended with an optional
and a one-or-more regular expression construct, and database language macros
transform SQL-like queries into an iterative construction called factor.

8.6 Integration

Macros are also used to tie together different sub-languages, making them col-
laborate to provide tailor-made extensions of the language. For instance, the
sub-languages dealing with sessions, dynamic documents, and concurrency con-
trol can be combined into a publish macro. This macro is useful when a service
wishes to publish a page that is mostly static, yet once in a while needs to be re-
computed, when the underlying data changes. The following macros efficiently
implements such an abstraction:

macro <toplevels > publish <id D> { <exp E> } ::= {

shared html <D>~cache;

shared bool <D>~cached;

session <D>() {

exclusive if (!<D>~cached) {

<D>~cache = <E>;

<D>~cached = true;

}

show <D>~cache;

}

}

macro <stm> touch <id d> ; ::= {

<d>~cached = false;

}

The publish macro recomputes the document if the cache has expired, and then
shows the document, while the touch macro causes the cache to expire. The ~
operator is used to create new identifiers by concatenation of others. Using this
extended syntax, a service maintaining for example a high-score list can look
like:

require "publish.wigmac"

service {

shared int record;

shared string holder;

publish HiScore {

computeWinnerDoc(record, holder)

62 Chapter 8. Metamorphic Syntax Macros

}

session Play() {

int score = play();

if (score>=record) {

show EnterName receive[holder=name];

record = score;

touch HiScore;

} else {

show <html>Sorry, no record.</html>;

}

}

}

Here, the high-score document is only regenerated when a player beats the
record. This code is clearly easier to understand and maintain than the corre-
sponding expanded code.

8.7 Very Domain Specific Languages: vDSL

At the University of Aarhus, undergraduate Computer Science students must
complete a Bachelor’s degree in one of several fields. The requirements that
must be satisfied are surprisingly complicated. To guide students towards this
goal, they must maintain a so-called “Bachelor’s contract” that plans their re-
maining studies and discovers potential problems. This process is supported by
a Web service that for each student iteratively accepts past and future course
activities, checks them against all requirements, and diagnoses violations until a
legal contract is composed. This service was first written as a straight <bigwig>
application, but quickly became annoying to maintain due to constant changes
in the curriculum. Thus it was redesigned in the form of a VDSL, where study
fields and requirements are conceptualized and defined directly in a more nat-
ural language style. This makes it possible for non-programmers to maintain
and update the service. An small example input is:

require "bachelor.wigmac"

studies

course Math101

title "Mathematics 101"

2 points fall term

...

course Phys202

title "Physics 202"

2 points spring term

course Lab304

title "Lab Work 304"

1 point fall term

exclusions

Math101 <> MathA

Math102 <> MathB

prerequisites

Math101,Math102 < Math201,Math202,Math203,Math204

CS101,CS102 < CS201,CS203

Math101,CS101 < CS202

Math101 < Stat101

8.7. Very Domain Specific Languages: vDSL 63

CS202,CS203 < CS301,CS302,CS303,CS304

Phys101,Phys102 < Phys201,Phys202,Phys203,Phys301

Phys203 < Phys302,Phys303,Lab301,Lab302,Lab303

Lab101,Lab102 < Lab201,Lab202

Lab201,Lab202 < Lab301,Lab302,Lab303,Lab304

field "CS-Mathematics"

field courses

Math101,Math102,Math201,Math202,Stat101,CS101,CS102,CS201,CS202,CS203,

CS204,CS301,CS302,CS303, CS304,Project

other courses

MathA,MathB,Math203,Math204,Phys101,Phys102,Phys201,Phys202

constraints

has passed CS101,CS102

at least 2 courses among CS201,CS202,CS203

at least one of Math201,Math202

at least 2 courses among Stat101,Math202,Math203

has 4 points among Project,CS303,CS304

in total between 36 and 40 points

None of the syntax displayed is plain <bigwig>, except the macro package
require instruction. The entire program is the argument to a single macro
studies that expands into the complete code for a corresponding Web service.
The file bachelor.wigmac is only 400 lines and yet defines a complete imple-
mentation of the new language. Thus, the <bigwig> macro mechanism offers
a rapid and inexpensive realization of new ad-hoc languages with almost any
syntax desired.

64 Chapter 8. Metamorphic Syntax Macros

Chapter 9

Conclusion

9.1 Flexibility, Safety, and Efficiency

In this section we will conclude by investigating the thesis: that domain spe-
cific languages provide flexible, safe, and efficient solutions for interactive Web
services.

We will do this by investigating the claim for each of the sub-languages
designed for the aspects mentioned in the Introduction chapter. Also, we will
show how each of these domain specific languages contribute to the overall
design of the <bigwig> language for developing interactive Web services.

9.2 Sessions: Runwig

The session model and runtime system provide the service and session ab-
stractions which are explicitly reflected in the overall structuring of <bigwig>
services. It also offers the show-receive abstraction for state-preserving client
interaction as well as the flash language feature for addressing client impatience.

Flexibility Since the runtime system automatically preserves the state across
client interactions; programmers are able to show documents at any time, even
from within deeply mutually recursively nested function calls. Without such a
show abstraction, programmers would have to manually encode and save the call
stack upon termination, only to decode and restore it again upon continuation.

The flash feature, based on the runtime system’s reply indirection, enables
asynchronous feedback to clients about the state of the execution. Also, the
reply indirection always gives clients the freedom to bookmark a running session
and continue it later. Both these features would be hard to achieve manually.

Finally, form field values submitted are automatically decoded upon recep-
tion and handed to the <bigwig> service. This means that programmers are
never exposed to CGI encoded data.

Safety By automatically preserving the state across show statements on the
server, the local state is never exposed to clients and the error-prone task of
having to encode, save, decode, and restore the local state is avoided altogether.

65

66 Chapter 9. Conclusion

All the problems concerning the backtracking and displaying of old inter-
actions are avoided by the session model and the runtime system. In addition,
a random interaction key protects pages from old interactions from being sub-
mitted.

Efficiency The simplicity of the single interaction paradigm permits many
optimization tricks that are not possible in the session-based paradigm. How-
ever, for complex services, our implementation of the runtime system alleviates
many server resources by not having to preserve local state and start new pro-
cesses for every interaction.

9.3 Dynamic Documents: DynDoc

The DynDoc sub-language provides HTML/XML documents as a data type on
equal footing with the other host language types. The plug and show operations
are available for document construction and client interaction.

Flexibility The notion of first-class and higher-order templates with gaps
enables documents to be constructed in any order; outside-in, inside-out, or
any combination.

The explicit separation of programming and HTML enables programmers
and designers to operate more independently. Furthermore, since documents
are written in standard HTML/XML syntax, designers may write the templates
using any HTML/XML authoring tools such as Microsoft FrontPage.

Safety The domain-specific static analyses provide strong compile-time safety
guarantees such as interaction correspondence and validation that are not avail-
able in other languages.

Efficiency The DynDocDag datastructure provides an efficient runtime rep-
resentation of documents. Furthermore, it enables the static parts to be cached
on clients which saves bandwidth and server resources by performing the doc-
ument unfolding on the client.

9.4 Form Field Validation: PowerForms

The PowerForms sub-language provides the concept of regular expressions for
form field validation. It also introduces simple conditional branching based on
regular expressions for specifying field interdependencies.

Flexibility Being based on a declarative formalism such as regular expres-
sions, validation is easy to read, write, and modify. Inherently non-operational,
it focuses on what to do as opposed to how to do it and is thus available to a
wider audience; even non-programmers. Also clients benefit from our approach
by automatically getting the validation incrementally and with visual feedback.

9.5. Concurrency Control: SyCoLogic 67

Safety All the problems pertaining to diverging and incomplete JavaScript
implementations in different browsers are completely eliminated. The compiler
generates code that uses only a simple subset of JavaScript that is known to
work correctly in all common browser implementations.

The PowerForms compiler also automatically generates server-side valida-
tion identical to that performed on the client-side. Additionally, the server-side
revalidation is augmented to double check that forms are not tampered with;
for instance, that the maxlength attribute of text fields is not bypassed and
that options submitted from selection widgets were indeed available.

Efficiency The JavaScript implementation works by interpreting minimized
deterministic finite automata and is thus highly efficient. This could possibly
be sped up even further by inlining the automaton in the JavaScript control
flow. Finally, performing the validation incrementally on the client saves time,
bandwidth, and cycles.

9.5 Concurrency Control: SyCoLogic

The SyCoLogic concurrency sub-language is integrated in the <bigwig> lan-
guage through the wait statement, label declarations, and monadic second-order
logic.

Flexibility Our approach presents programmers with a uniform way of deal-
ing with all concurrency control aspects while separating the service code and
the safety logic. This means that the safety logic may be added independently
to constrain the overall behaviour of the service and is pervious to changes
made in the service code.

Like regular expressions, monadic second-order logic is a declarative formal-
ism that focuses on what to do as opposed to how to do it, rendering the safety
requirements easier to maintain.

Finally, the logic is succinct in that a formula may be non-elementarily
smaller than its operational counterpart, the minimized deterministic finite au-
tomaton.

Safety The safety controller employes queues and a token ring strategy to
ensure that no session threads waiting at enabled checkpoints are blocked in-
definitely.

Efficiency Using a centralized process hardly qualifies as an efficient ap-
proach. However, as pointed out in [71], it is possible to analyse the constraints
and distribute the safety controller. Also, in a context of relatively fast machines
and comparatively slow networks, the network is likely to be the bottleneck.

68 Chapter 9. Conclusion

9.6 Metamorphic Syntax Macros

The syntax macros in <bigwig> can not really be classified as a DSL, but serve
to extend the language and glue the many sub-languages together. Also, they
may be used to create whole new domain specific languages.

The syntax macros provide a uniform abstraction mechanism for language
extension that works alike for all syntactic categories of the host language. It
is based entirely on declarative concepts such as pattern matching and sub-
stitution. The metamorphisms provide a flexible invocation syntax based on
grammars along with an inductive type safe transformation into host language
syntax.

The macros are geared towards extensibility, providing a notion of specificity
that resolves grammar ambiguities locally and in a way that disregards the order
in which macros are defined.

The macros are syntactically safe, checked at definition-time to guarantee
termination and that no syntax errors occur as a result of macro expansion.
Automatic alpha conversion avoids identifier name clashes. Also, metamorphic
grammars are checked to ensure that our specificity resolution always has a
unique final winner and that possible invocations exist for all the macros defined.

9.7 Domain Specific Languages for Interactive Web

Services

Domain specific languages applied to the domain of interactive Web services
achieve flexible, safe, and efficient solutions for sessions, documents, forms, and
concurrency. These sub-languages may be integrated into a host language and
conveniently tied together through metamorphic syntax macros. The result is
a domain specific language, <bigwig>, that provides support for virtually all
aspects of the development of interactive Web services.

Part II

Publications

69

Chapter 10

The <bigwig> Project

with Anders Møller and Michael I. Schwartzbach

Abstract

We present the results of the <bigwig> project, which aims to design
and implement a high-level domain-specific language for programming in-
teractive Web services.

A fundamental aspect of the development of the World Wide Web dur-
ing the last decade is the gradual change from static to dynamic generation
of Web pages. Generating Web pages dynamically in dialogue with the
client has the advantage of providing up-to-date and tailor-made infor-
mation. The development of systems for constructing such dynamic Web
services has emerged as a whole new research area.

The <bigwig> language is designed by analyzing its application domain
and identifying fundamental aspects of Web services inspired by problems
and solutions in existing Web service development languages. The core
of the design consists of a session-centered service model together with a
flexible template-based mechanism for dynamic Web page construction.
Using specialized program analyses, certain Web specific properties are
verified at compile-time, for instance that only valid HTML 4.01 is ever
shown to the clients. In addition, the design provides high-level solutions to
form field validation, caching of dynamic pages, and temporal-logic based
concurrency control, and it proposes syntax macros for making highly
domain-specific languages.

The language is implemented via widely available Web technologies,
such as Apache on the server-side and JavaScript and Java Applets on the
client-side. We conclude with experience and evaluation of the project.

10.1 Introduction

The <bigwig> project was founded in 1998 at the BRICS Research Center at
the University of Aarhus to design and implement a high-level domain-specific
language for programming interactive Web services. In the following we will
argue that existing Web service programming languages in various ways provide
only low-level solutions to problems specific to the domain of Web services. Our

71

72 Chapter 10. The <bigwig> Project

overall ambitions of the project are to identify the key areas of the Web service
domain, analyze the problems with the existing approaches, and provide high-
level solutions that will support development of complex services.

10.1.1 Motivation

Specifically, we will look at the following Web service technologies: the HTTP/
CGI Web protocol [39], Sun’s Java Servlets [81] and their JavaServer Pages
(JSP) [82], Microsoft’s Active Server Pages (ASP) [41], the related Open Source
language PHP [5], and the research language MAWL [3,4,55].

CGI was the first platform for development of Web services. It is based
on the simple idea of letting a script generate the reply to incoming HTTP
requests dynamically on the server, rather than returning a static HTML page
from a file. Typically, the script is written in the general-purpose scripting
language Perl, but any language supported by the server can be used. Being
based on general-purpose programming languages, there is no special support
for Web specific tasks, such as generation of HTML pages, and knowledge of
the low-level details of the HTTP protocol are required. Also, HTTP/CGI is a
stateless protocol that by itself provides no help for tracking and guiding users
through series of individual interactions. This can to some degree be alleviated
by libraries. In any case, there are no compile-time guarantees of correct run-
time behavior when it comes to Web specific properties, for instance ensuring
that invalid HTML is never sent to the clients.

Servlets are a popular higher-level Java-specific approach. Servlets, which
are special Java programs, offers the common Java advantages of network sup-
port, strong security guarantees, and concurrency control. However, some sig-
nificant problems still exist. Services programmed with servlets consist of col-
lections of request handlers for individual interactions. Sessions consisting of
several interactions with the same client must be carefully encoded with cookies,
URL rewriting, or hidden input fields, which is tedious and error prone, even
with library support, and it becomes hard to maintain an overview of large
services with complex interaction flows. A second, although smaller, problem is
that state shared between multiple client sessions, even for simple services, must
be explicitly stored in a name–value map called the “servlet context” instead
of using Java’s standard variable declaration scoping mechanism. Thirdly, the
dynamic construction of Web pages is not improved compared to CGI. Web
pages are built by printing string fragments to an output stream. There is
no guarantee that the result always becomes valid HTML. This situation is
slightly improved by using HTML constructor libraries, but they preclude the
possibility of dividing the work of the programmers and the HTML designers.
Furthermore, since client sessions are split into individual interactions that are
only combined implicitly, for instance by storing session IDs in cookies, it is not
possible to statically analyze that a given page sent to a client always contains
exactly the input fields that the next servlet in the session expects.

Both JSP, ASP, PHP, and the countless homegrown variants were designed
from a different starting point. Instead of aiming for complex services where all
parts of the pages are dynamically generated, they fit into the niche where pages

10.1. Introduction 73

have mostly static contents and only little fragments are dynamically generated.
A service written in one of these languages typically consists of a collection of
“server pages” which are HTML pages with program code embedded in special
tags. When such a page is requested by the client, the code is evaluated and
replaced by the resulting string. This gives better control over the HTML
construction, but it only gives an advantage for simple services where most of
every page is static.

The MAWL language was designed especially for the domain of interactive
Web services. One innovation of MAWL is to make client sessions explicit in
the program logic. Another is the idea of building HTML pages from templates.
A MAWL service contains a number of sessions, shared data, and HTML tem-
plates. Sessions serve as entry points of client-initiated session threads. Rather
than producing a single HTML page and then terminating as CGI scripts
or Servlets, each session thread may involve multiple client interactions while
maintaining data that is local to that thread. An HTML template in MAWL is
an HTML document containing named gaps where either text strings or special
lists may be inserted. Each client interaction is performed by inserting appro-
priate data into the gaps in an HTML template, and then sending it to the
client who fills in form fields and submits the reply back to the server.

The notions of sessions and document templates are inherent in the language
and being compilation-based it allows important properties to be verified stati-
cally without actually running the service. Since HTML documents are always
constructed from the templates, HTML validity can be verified statically. Also,
since it is clear from the service code where execution resumes when a client
submits form input, it can be statically checked that the input fields match
what the program expects. One practical limitation of the MAWL approach is
that the HTML template mechanism is quite restrictive as one cannot insert
markup into the template gaps.

We describe more details of these existing languages in the following sec-
tions. By studying services written in any of these language, some other com-
mon problems show up. First of all, often surprisingly large portions of the
service code tend to deal with form input validation. Client-server interaction
takes place mainly through input forms, and usually some fields must be filled
with a certain kind of data, perhaps depending on what has been entered in
other fields. If invalid data is submitted, an appropriate error message must
be returned so that the client can try again. All this can be handled either
on the client-side—typically with JavaScript [35], in the server code, or with a
combination. In any case, it is tedious to encode.

Secondly, one drawback of dynamically generated Web pages compared to
static ones is that traditional caching techniques do not work well. Browser
caches and proxy servers can cause major improvements in saving network
bandwidth, load time, and clock cycles, but when moving towards interactive
Web services, these benefits disappear.

Thirdly, most Web services act as interfaces to underlying databases that for
instance contain information about customers, products, and orders. Accessing
databases from general-purpose programming languages where database queries
are not integrated requires the queries to be built as text strings that are sent

74 Chapter 10. The <bigwig> Project

to a database engine. This means that there is no static type checking of the
queries. As known from modern programming languages, type systems allow
many programming bugs to be caught at compile-time rather than at run-time,
and thereby improve reliability and reduce development cost.

Fourthly, since running Web services contain many concurrently executing
threads and they access shared information, for instance in databases on the
server, there is a fundamental need for concurrency control. Threads may
require exclusive access to critical regions, be blocked until certain events occur,
or be required to satisfy more high-level behavioral constraints. All this while
the service should run smoothly without deadlocks and other abrupt obstacles.
Existing solutions typically provide no or only little support for this, for instance
via low-level semaphores as Perl or synchronized methods in Servlets. This can
make it difficult to guarantee correct concurrent execution of entire services.

Finally, since Web services usually operate on the Internet rather than on
secure local networks, it is important to protect sensitive information both from
hostile attacks and from programming leaks. A big step forward is the Secure
Sockets Layer (SSL) protocol [36] combined with HTTP Authentication [11].
These techniques can ensure communication authenticity and confidentiality,
but using them properly requires insight of technical protocol and implemen-
tation details. Furthermore, they do not protect against programming bugs
that unintentionally leak secret information. The “taint mode” in Perl offers
some solution to this. However, it is run-time based so no compile-time guaran-
tees are given. Also, it only checks for certain predefined properties, and more
specialized properties cannot be added.

10.1.2 The <bigwig> Language

Motivated by the languages and problems described above we have identified
the following areas as key aspects of Web service development:

• sessions: the underlying paradigm of interactive Web services;

• dynamic documents: HTML pages must be constructed in a flexible, effi-
cient, and safe fashion;

• concurrency control : Web services consist of collections of processes run-
ning concurrently and sharing resources;

• form field validation: validating user input requires too much attention
of Web programmers so a higher-level solution is desirable;

• database integration: the core of a Web service is often a database with a
number of sessions providing Web access; and

• security : to ensure authenticity and confidentiality, both regarding mali-
cious clients and programming bugs.

To attack the problems we have from scratch designed a new language called
<bigwig>, as a descendant of the MAWL language. This language is a high-
level, domain-specific language [89], meaning that it employs special syntax and

10.1. Introduction 75

constructs that are tailored to fit its particular application domain and allow
specialized program analyses, in contrast to library based solutions. Its core is
a C or Java-like skeleton, which is surrounded by domain-specific sub-languages
covering the above key aspects. A notion of syntax macros tie the sub-languages
together and provide additional layers of abstraction. This macro language,
which operates on the parse tree level, rather that the token sequence level as
conventional macro languages, has proved successful in providing extensions of
the core language. This has helped each of the sub-languages remain minimal,
since desired syntactic sugar is given by the macros. Syntax macros can be
taken to the extreme where they with little effort can define a completely new
syntax for very-domain-specific languages tailored to highly specialized appli-
cation domains.

It is important that <bigwig> is based on compilation rather than on inter-
pretation of a scripting language. Unlike many other approaches, we can then
apply type systems and static analysis to catch many classes of errors before
the service is actually installed.

The <bigwig> compiler uses common Web technologies as target languages.
This includes HTML [68], HTTP [11], JavaScript [35], and Java Applets [2].
Our current implementation additionally relies on the Apache Web server. It is
important to apply only standard technologies on the client-side in order not to
place restrictions on the clients. In particular, we do not use browser plug-ins,
and we only use the subset of JavaScript that works on all common browsers.
As new technologies become standard, the compiler will merely obtain corre-
sponding opportunities for generating better code. To the degree it is possible,
we attempt to hide the low-level technical details of the underlying technologies.

We have made no effort to contribute to the graphical design of Web services.
Rather, we provide a clean separation between the physical layout of the HTML
pages and the logical structure of the service semantics. Thus, we expect that
standard HTML authoring tools are used, conceivably by others than the Web
programmer. Also, we do not focus on efficiency, but on providing higher levels
of abstraction for the developers. For now, we regard it as less important to
generate solutions that seamlessly scale to thousands of interactions per second,
although scalability of course is an issue for the design.

The main contributions of the <bigwig> project are the following results:

• The notion of client sessions can and should be made explicit in Web
service programming languages;

• dynamic construction of Web pages can be made at the same time flexible
and fast while still permitting powerful compile-time analyses;

• form field validation can be made easier with a domain-specific language
based on regular expressions and boolean logic;

• temporal logic is a useful formalisms for expressing concurrency con-
straints and synthesizing safety controllers; and

• syntax macros can be used to create very-domain-specific high-level lan-
guages for extremely narrow application domains.

76 Chapter 10. The <bigwig> Project

We focus on these key contributions in the remainder of this paper, but also
describe less central contributions, such as a technique for performing client-
side caching of dynamically generated pages, a built-in relational database,
and simple security mechanisms. The individual results have been published in
previous more specialized papers [14–17,19,71,72]. Together, these results show
that there is a need for high-level programming languages that are tailor-made
to the domain of Web service development.

10.1.3 Overview

We begin in Section 10.2 by classifying the existing Web service languages as
either script-, page-, or session-centered, arguing for the latter as the best choice
for complex services. In Section 10.3, we show how the HTML template mech-
anism from MAWL can be extended to become more flexible using a notion of
higher-order templates. Using novel type systems and static analyses the safety
benefits of MAWL templates remain, in spite of the increased expressibility.
Also, we show how our solution can be used to cache considerable parts of the
dynamically generated pages in the browser. In Section 10.4, we address the
problem of validating form input more easily. Section 10.5 describes a tech-
nique for generating concurrency controllers from temporal logic specifications.
Section 10.6 gives an introduction to the syntax macro mechanism that ties
together the sub-languages of <bigwig>. In Section 10.7, we mention various
less central of the <bigwig> language. Finally, in Section 10.8 we describe our
implementation and a number of applications, and evaluate various practical
aspects of <bigwig>.

10.2 Session-Centered Web Services

Web programming covers a wide spectrum of activities, from composing static
HTML documents to implementing autonomous agents that roam the Web. We
focus in our work on interactive Web services, which are Web servers on which
clients can initiate sessions that involve several exchanges of information medi-
ated by HTML forms. This definition includes large classes of well-known ser-
vices, such as news services, search engines, software repositories, and bulletin
boards, but also covers services with more complex and specialized behavior.

There are a variety of techniques for implementing interactive Web services.
These can be divided into three main paradigms: the script-centered, the page-
centered, and the session-centered. Each is supported by various tools and
suggests a particular set of concepts inherent to Web services.

10.2.1 The Script-Centered Approach

The script-centered approach builds directly on top of the plain, stateless HT-
TP/CGI protocol. A Web service is defined by a collection of loosely related
scripts. A script is executed upon request from a client, receiving form data as
input and producing HTML as output before terminating. Individual requests

10.2. Session-Centered Web Services 77

are tied together by explicitly inserting appropriate links to other scripts in the
reply pages.

A prototypical scripting language is Perl, but almost any programming lan-
guage has been suggested for this role. CGI scripting is often supported by a
large collection of library functions for decoding form data, validating input, ac-
cessing databases, and realizing semaphores. Even though such libraries are tar-
geted at the domain of Web services, the language itself is not. A major problem
is that the overall behavior is distributed over numerous individual scripts and
depends on the implicit manner in which they pass control to each other. This
design complicates maintenance and precludes any sort of automated global
analysis, leaving all errors to be detected in the running service [3, 34].

HTML documents are created on the fly by the scripts, typically using
print-like statements. This again means that no static guarantees can be issued
about their correctness. Furthermore, the control and presentation of a service
are mixed together in the script code, and it is difficult to factor out the work
of programmers and HTML designers [29].

The Java Servlets language also fits into this category. The overall struc-
ture of a service written with servlets is the same as for Perl. Every possible
interaction is essentially defined by a separate script, and one must use cookies,
hidden input fields, or similar techniques to connect sequences of interactions
with the clients. Servlets provide a session tracking API that hides many of
the details of cookies, hidden input fields, and URL rewriting. Many servlet
servers use cookies if the browser supports them, but automatically revert to
URL rewriting when cookies are unsupported or explicitly disabled. This API
is exemplified by the following code inspired by two Servlet tutorials1:

public class SessionServlet extends HttpServlet {

public void doGet(HttpServletRequest request ,

HttpServletResponse response)

throws ServletException, IOException {

ServletContext context = getServletContext();

HttpSession session = request.getSession(true);

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML><HEAD><TITLE>Servlet Demo</TITLE></HEAD><BODY>");

if (session.isNew()) {

out.println("<FORM ACTION=SessionServlet>" +

"Enter your name: <INPUT NAME=handle>" +

"<P><INPUT TYPE=SUBMIT></FORM>");

session.putValue("state", "1");

} else {

String state = (String) session.getValue("state");

if (state.equals("1")) {

String name = (String) request.getParameter("handle");

int users =

((Integer) context.getAttribute("users")).intValue() + 1;

context.setAttribute("users", new Integer(users));

session.putValue("name", name);

out.println("<FORM ACTION=SessionServlet>" +

1http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/ and
http://java.sun.com/docs/books/tutorial/servlets/

78 Chapter 10. The <bigwig> Project

"Hello " + name + ", you are user number " + users +

"<P><INPUT TYPE=SUBMIT></FORM>");

session.putValue("state", "2");

} else /* state.equals("2") */ {

String name = (String) session.getValue("name");

out.println("Goodbye " + name);

session.invalidate();

}

}

out.println("</BODY></HTML>");

}

}

Clients running this service are guided through a series of interactions: first, the
service prompts for the client’s name, then the name and the total number of in-
vocations is shown, and finally a “goodbye” page is shown. The ServletContext

object contains information shared to all sessions, while the HttpSession ob-
ject is local to each session. The code is essentially a switch statement that
branches according to the current interaction. An alternative approach is to
make a servlet for each kind of interaction. In spite of the API, one still needs
to explicitly maintain both the state and the identity of the session.

The model of sessions that is supported by Servlets and other script-centered
approaches tends to fit better with “shopping basket applications” where the
client browses freely among dynamically generated pages, than with complex
services that need to impose more strict control of the interactions.

10.2.2 The Page-Centered Approach

The page-centered approach is covered by language such as ASP, PHP, and
JSP, where the dynamic code is embedded in the HTML pages. In a sense,
this is the inverse of the script-centered languages where HTML fragments are
embedded in the program code. When a client requests a page, a specialized
Web server interprets the embedded code, which typically produces additional
HTML snippets while accessing a shared database. In the case of JSP, im-
plementations work by compiling each JSP page into a servlet using a simple
transformation.

This approach is often beautifully motivated by simple examples, where
pages are mainly static and only sporadically contain computed contents. For
example, a page that displays the time of day or the number of accesses clearly
fits this mold. The following JSP page dynamically inserts the current time
together with a title and a user name based on the CGI input parameters:

<HTML><HEAD><TITLE>JSP Demo</TITLE></HEAD><BODY>

Hello <%

String name = request.getParameter("who");

if (name ==null) name = "stranger";

out. print(name);

%>!

<P>

This page was last updated: <%= new Date() %>

</BODY></HTML>

10.2. Session-Centered Web Services 79

SESSION
THREAD

PAGE
HTML

Figure 10.1: Client-server sessions in Web services. On the left is the client’s browser,
on the right is a session thread running on the server. The thread is initiated by a
client request and controls the sequence of interactions.

The special <%. . . %> tags contain Java code that is evaluated at the time of
the request. As long as the code parts only generate strings without markup
it is easy to statically guarantee that all shown pages are valid HTML and
other relevant properties. But as the services become more complex, the page-
centered approach tends to converge towards the script-centered one. Instead
of a mainly static HTML page with some code inserted, the typical picture is a
single large code tag that dynamically computes the entire contents. Thus, the
two approaches are closely related, and the page-centered technologies are only
superior to the degree in which their scripting languages are better designed.

The ASP and PHP languages are very reminiscent of JSP. ASP is closely
tied to Microsoft’s Internet Information Server, although other implementa-
tions exist. Instead of being based on Java it defines a language-independent
connection between HTML pages and scripting languages, typically either Vi-
sual Basic Script or Microsoft’s version of JavaScript. PHP is a popular Open
Source variant whose scripting language is a mixture of C, Java, and Perl.

These languages generally provide only low-level support for tracking client
sessions and maintaining session state. Cookies, hidden input fields, and some
library support is the common solution. Also for other Web service aspects,
such as databases and security, there is often a wide range of libraries available
but no direct language support.

10.2.3 The Session-Centered Approach

The pure session-centered approach was pioneered by the MAWL project. A
service is here viewed as a collection of distinct sessions that access some shared
data. A client may initiate a session thread, which is conceptually a process
running on the server. Interaction with the client is viewed as remote procedure
calls from the the server, as known from classical construction of distributed
systems but with the roles reversed.

The flow of an entire session is programmed as a single sequential program,
which is closer to ordinary programming practice and offers the compiler a

80 Chapter 10. The <bigwig> Project

chance to obtain a global view of the service. Figure 10.1 illustrates the flow of
control in this approach. Important issues such as concurrency control become
simpler to understand in this context and standard programming solutions are
more likely to be applicable.

The following MAWL program is equivalent to the previous Servlet example:

static int users = 0;

session GreetingSession {

auto form {} -> {handle} hello ;

auto string name = hello.put().handle;

auto form {string who, int count} -> {} greeting ;

users ++;

greeting.put({name , users });

auto form {string who} -> {} goodbye ;

goodbye.put({name });

}

The HTML templates hello , greeting , and goodbye are placed in separate
files. Here is hello.mhtml:

<HTML><HEAD><TITLE>MAWL Demo</TITLE></HEAD><BODY>

Enter your name: <INPUT NAME=handle>

</BODY></HTML>

and greeting.mhtml:

<HTML><HEAD><TITLE>MAWL Demo</TITLE></HEAD><BODY>

Hello <MVAR NAME=who>, you are user number <MVAR NAME=count>

</BODY></HTML>

The template for goodbye is similar. A form tag and a continue button are
implicitly inserted. Variables declared static contain persistent data, while
those declared auto contain per-session data. The form variables are declared
with two record types. The former defines the set of gaps that occur in the
template, and the latter defines the input fields. In the templates, gaps are
written with MVAR tags. Template variables all have a put method. When this
is executed, the arguments are inserted in the gaps, the resulting page is sent
to the client who fills in the fields and submits the reply, which is turned into a
record value in the program. Note how the notion of sessions is explicit in the
program, that private and shared state is simply a matter of variable declaration
modifiers, and that the templates are cleanly separated from the service logic.
Obviously, the session flow is more clear, both to the programmer and to the
compiler, than with the non-session based approaches. One concrete benefit is
that it is easy to statically check both validity and correct use of input fields.

The main force of the session-centered approach is for services where the
control flow is complex. Many simple Web services are in actuality more loosely
structured. If all sessions are tiny and simply does the work of a server mod-
ule from the page-centered approach, then the overhead associated with ses-
sions may seem to large. Script-centered services can be seen as a subset of

10.2. Session-Centered Web Services 81

the session-centered where every session contains only one client interaction.
Clearly, the restriction in the script-centered and the page-centered languages
allow significant performance improvements. For instance, J2EE Servlet/JSP
servers employ pools of short-lived threads that store only little local state. For
more involved services, however, the session-centered approach makes program-
ming easier since session management comes for free.

10.2.4 Structure of <bigwig> Services

The overall structure of <bigwig> programs is directly inspired by MAWL. A
<bigwig> program contains a complete specification of a Web service. A service
contains a collection of named sessions, each of which essentially is an ordinary
sequential program. A client has the initiative to invoke a thread of a given ses-
sion, which is a process on the server that executes the corresponding sequential
code and exclusively communicates with the originating client. Communication
is performed by showing the client an HTML page, which implicitly is made
into a form with an appropriate URL return address. While the client views
the given document, the session thread is suspended on the server. Eventually
the client submits the form, which causes the session thread to be resumed and
any form data entered by the client to be received into program variables. A
simple <bigwig> service that communicates with a client as in the Servlet and
MAWL examples is the following:

service {

html hello = <html>Enter your name: <input name=handle ></html>;

html greeting =

<html>Hello <[who]>, you are user number <[count]></html>;

html goodbye = <html>Goodbye <[who]></html>;

shared int users = 0;

session Hello() {

string name;

show hello receive[name=handle];

users++;

show greeting<[who =name,count =users];

show goodbye<[who =name];

}

}

The program structure is obviously as in MAWL, except that the session code
and the templates are wrapped into a service block. For instance, the show-
receive statements produce the client interactions similarly to the put methods
in MAWL. However, <bigwig> provides a number of new features. Most impor-
tantly, HTML templates are now first-class values. That is, html is a built-in
data type, and its values can be passed around and stored in variables as for
any other data type. Also, the HTML templates are higher-order. This means
that instead of only allowing text strings to be inserted into the template gaps,
we also allow insertion of other templates. This is done with the the special

82 Chapter 10. The <bigwig> Project

plug operator, x<[y=z] which inserts a string or template z into the y gaps of
the x template. Clearly, this constitutes a more flexible document construction
mechanism, but it also calls for new ideas for statically verifying for instance
HTML validity. This is the topic of Section 10.3. Other new features include
the techniques for improving form field validation and concurrency control, to-
gether with the syntax macro mechanism, all of which are described in the
following sections.

10.2.5 A Session-Based Runtime Model

The session-based model can be implemented on top of the CGI protocol. One
naive approach is to create session threads as CGI scripts where all local state
is stored on disk. At every session interaction, the thread must be started
again and restore its local state, including the call stack, in order to continue
execution. A better approach is to implement each session thread as a process
that runs for the whole duration of the session. For every interaction, a tiny
transient CGI script called a connector process is executed, acting as a pipe
between the Web server and the session process. This approach resembles
FastCGI [66] and is described in detail in [16]. Our newest implementation is
instead based on a specialized Apache server module2. Naturally, this is much
faster than the CGI solutions since it does not create a new process for every
single interaction, but only for the session processes.

Two common sources of problems with standard implementations of sessions
are the history buffers and the bookmarking features found in most browsers.
With the history buffers and the “back” button, the users can step back to a
previous interaction, and either intentionally or unintentionally resubmit an old
input form. Sometimes this can be a useful feature, but more often this causes
confusion and annoyance to the users who may for instance order something
twice. It is a general problem that the information shown to the user in this
way can be obsolete since it was tailor-made only for the exact time of the
initial request. Since the information was generated from a shared database
that may have changed entirely, it does generally not make sense to “step back
in time” using the history buffer. This is no different from ordinary programs.
Even if the programmer has been aware of this and has added serial number
checks, the history buffer will be full of URLs to obsolete requests. If the service
really needs a “back” feature, it can be programmed explicitly into the flow of
the sessions. It also becomes hazardous to try to use bookmarks to temporarily
suspend a session. Invoking the bookmark will then typically cause a CGI script
to be executed a second time instead of just displaying its results again.

<bigwig> provides a simple but unique solution to these problems: Each
session thread is associated a URL which points to a file on the server containing
the latest HTML page shown to the client. Instead of sending the contents
directly to the client at every show statement, we redirect the browser to this
URL, as illustrated in Figure 10.2. Since the URL serves as the identification
of the session thread, this solves the problems mentioned above: The history

2See http://httpd.apache.org/.

10.3. Dynamic Construction of HTML Pages 83

WWW
SESSION

PROCESS

WEB SERVER

HTML
FILE

Figure 10.2: Session-based runtime model with reply indirection. Each session thread
is implemented as a separate process that writes its HTML reply to a designated file.

list of the browser now only contains a single entry for the duration of the
session, the sessions can now be bookmarked for later use, and in addition the
session identity URL can be passed around manually—to another browser for
instance—without problems. When using URLs instead of cookies to represent
the session identity it also becomes possible for a single user to simultaneously
run multiple sessions in different windows but with the same browser.

With this simple solution we can furthermore automatically provide the
client with feedback while the server is processing a request. This is done by
after a few seconds writing a temporary response to the HTML file, which
informs the client about the status of the request. This temporary file reloads
itself frequently, allowing for updated status reports. When the final response
is ready, it simply overwrites the temporary reply file, causing the reloading
to stop and the response to be shown. This simple technique may prevent the
client from becoming impatient and abandoning the session.

The <bigwig> runtime system additionally contains a garbage collector pro-
cess that monitors the service and shuts down session processes which have been
abandoned by the clients. By default, this occurs if the client has not responded
within 24 hours. The sessions are allowed to execute some clean-up actions be-
fore terminating.

10.3 Dynamic Construction of HTML Pages

In MAWL, all HTML templates are placed in separate files and viewed as a kind
of procedures, with the arguments being strings that are plugged into gaps in
the template and the results being the values of the form fields that the template
contains. This allows a complete separation of the service code and the HTML
code. Two benefits are that static guarantees are possible, and that the work of
programmers and HTML designers can be separated, as previously mentioned.
A disadvantage is that the template mechanism becomes too rigid compared
to the flexibility of the print-like statements available in the script-centered
languages. However those languages permit essentially no static guarantees or
work separation. Furthermore, with the script-centered solutions the HTML
must often be constructed in a linear fashion from top to bottom, instead of
being composed from components in a more logical manner. The <bigwig>

84 Chapter 10. The <bigwig> Project

<body bgcolor="#9966ff">

</body>

</body>

<body bgcolor= >

<head><title>Hi!</title></head>

<body bgcolor= >

<head><title>Hi!</title></head>

<head><title>Hi!</title></head>

</body>

,

.

Hello

welcome to

Hello

,

.welcome to

color

contents

.

color

cont
ents

,

welcome to

Hello who

what

greeting:

who

what

brics:

BRICS

Stranger

what

who

BRICS

h:

#9966ff

Stranger

color

Figure 10.3: Building a document by plugging into template gaps. The construction
starts with the five constants on the left and ends with the complete document on the
right.

solution provides the best from the two worlds. Higher-order HTML templates
as first-class values are in practice as flexible as print statements, and still the
MAWL benefits are preserved.

We define DynDoc as the sub-language of <bigwig> that deals with docu-
ment construction, that is, the control structures, HTML template constants,
variables and assignments, plug operations, and show-receive statements. Tem-
plate constants are delimited by <html>. . . </html>. Gaps are written with spe-
cial <[. . .]> tags. Special attribute gaps can be used in place of attribute values,
as shown in the example below. Of course, only strings should be plugged into
such gaps, not templates with markup. The plug operation x<[y=z] creates a
new template by inserting a copy of z in the y gaps of a copy of x. When used
in a show-receive statement, a template is converted to a complete document
by implicitly plugging empty strings into all remaining gaps. Also, it is auto-
matically wrapped into a form element whose action is to continue the session,
unless the session terminates immediately after. And finally, it is inserted into
an outermost template like:

<html><head><title>service</title></head><body>. . . </body></html>

unless already inside a body element. The following example illustrates that
documents can be built gradually using higher-order templates:

service {

html brics = <html>

<head><title>Hi!</title></head>

<body bgcolor=[color]><[contents]></body>

</html>;

html greeting = <html>Hello <[who]>, welcome to <[what]>.</html>;

session Welcome() {

html h = brics<[contents =greeting];

show h<[color ="#9966ff",who ="Stranger",what ="BRICS"];

}

10.3. Dynamic Construction of HTML Pages 85

}

The construction process is shown in Figure 10.3. Note that gaps may be
plugged in any order, not necessarily “bottom up”. MAWL does provide little
functionality beyond plugging text strings into gaps. The special MITER tag
allows list structures to be built iteratively, but that still precludes general
tree-like structures. The following <bigwig> example uses a recursive function
to construct an HTML document representing a binary tree:

service {

html list = <html><[gap]><[gap]></html>;

html tree(int i) {

if (i==0) return <html>foo</html>;

return list<[gap =tree(i-1)];

}

session ShowTree() {

show tree(10);

}

}

Something similar could not be done with MAWL’s first-order templates. In
a script-centered or a page-centered language it is of course possible, but not
with such a simple program structure reflecting the logical composition of the
document, because it must be generated linearly by printing to the output
stream. An alternative is to use an HTML tree constructor library, however,
that forces documents to be built bottom up which is often inconvenient.

The use of higher-order templates generally leads to programs with a large
number of relatively small template constants. For that reason it is convenient
to be able to inline the constants in the program code, as in these examples,
rather than always placing them in separate files. However, we do offer explicit
support for factoring out the work of graphical designers using a #include con-
struct like in C. Alternatively, each HTML constant appearing in a <bigwig>
program may have associated a URL pointing to an alternate, presumably more
elaborate version:

service {

session Hello {

show <html>Hello World</html> @ "fancy/hello.html";

}

}

The compiler retrieves the indicated file and uses its contents in place of the
constant, provided it exists and contains well-formed HTML. In this manner,
the programmer can use plain versions of the templates while a graphical de-
signer simultaneously produces fancy versions. The compiler checks that the
two versions have the same gaps and fields. In order to accommodate the use of
HTML authoring tools, we permit gaps to be specified in an alternative syntax
using special tags.

The DynDoc sub-language was introduced in [72] where it is also shown how
this template model can be implemented efficiently with a compact runtime
representation. The plug operation takes only constant time, and showing a

86 Chapter 10. The <bigwig> Project

document takes time linear in the size of the output. Also, the size of the
runtime representation of a document may be only a fraction of its printed size.
For example, a binary tree of height n shown earlier has a representation of size
O(n) rather than O(2n).

10.3.1 Analysis of Template Construction and Form Input

We wish to devise a type checker that allows as liberal a use of dynamic docu-
ments as possible, while guaranteeing that no errors occur. More precisely, we
would like to verify the following properties at compile-time:

• at every plug operation, x<[y=z], there always exists a y gap in x;

• the gap types are compatible with the values being plugged in, in partic-
ular, HTML with markup tags is never inserted into attribute gaps;

• for every show-receive statement, the fields in the receive part always
exist in the document being shown;

• the field types are compatible with the receive parts, for instance, a select
menu allowing multiple items to be selected yields a vector value; and

• only valid HTML 4.01 [68] is ever sent to the clients.

The first four properties are addressed in [72] as summarized in the following.
The last property is covered in the next section.

It is infeasible to explicitly declare the exact types of higher-order templates
for two reasons. Firstly, all gaps and all fields and their individual capabilities
would have to be described, which may become rather voluminous. Secondly,
this would also imply that an HTML variable has the same type at every pro-
gram point, which is too restrictive to allow templates to be composed in an
intuitive manner. Consequently, we rely instead on a flow analysis to infer the
types of template variables and expressions at every program point. In our
experience, this results in a liberal and useful mechanism.

We employ a monovariant interprocedural flow analysis, which guarantees
that the form fields in a shown document correspond to those that are received,
and that gaps are always present when they are being plugged. This analysis fits
into standard data-flow frameworks [65], however it applies a highly specialized
lattice structure representing the template types. For every template variable
and expression that occurs in the given program, we associate a lattice element
that abstractly captures the relevant template properties. The lattice consists
of two components: a gap map and a field map. The gap map records for every
occurring gap name whether or not the gap occurs at that point, and in case
it does occur, whether it is an HTML gap or an attribute gap. Similarly, the
field map records for every occurring input field name information about the
input fields, which can be of type text, radio, select, or checkbox, representing
the different interaction methods.

Given a <bigwig> program we construct a flow graph. This is quite easy
since there are no higher-order functions or virtual methods. All language

10.3. Dynamic Construction of HTML Pages 87

large

����

ε

kind text

textitems

items

 <[]>

kind
items

<[]>

 <[]><ul class=[]> text

items

Figure 10.4: A summary graph representing a set of HTML fragments.

constructs that are not included in DynDoc are abstracted away. It is now
possible to define transfer functions which abstractly describe the effect of the
program statements. This produces a constraint system which we solve using a
classical fixed point iteration technique. From this solution, we inspect that the
first three properties mentioned above are satisfied, and if not, generate error
messages indicating the cause.

With this approach, the programmer is only restricted by the requirement
that at every program point, the template type of an expression must be fixed.
In practice, this does not limit the expressibility, rather, it tends to enforce
a more comprehensible structure of the programs. Also, the compiler silently
resolves conflicts at flow join points by implicitly plugging superfluous gaps with
empty contents.

10.3.2 HTML Validity Analysis

The fifth property, HTML validity, is addressed with a similar but more com-
plicated approach as described in [17].

The main idea is the following: We define a finite structure called a summary
graph that approximates the set of templates that a given HTML expression
may evaluate to. This structure contains the plug operations and the constant
templates and strings that are involved.

As an example, consider the summary graph in Figure 10.4. The nodes
correspond to program constants, and the edges correspond to plug operations.
For instance, the li template may here be plugged into the items gaps in the ul

template. The • node represents arbitrary text strings and ε is the empty string.
The root of the graph corresponds to the outermost template. By “unfolding”
this graph according to the plug edges, this summary graph defines a possibly
infinite set of HTML fragments without gaps, in this case the set of all ul lists
of class large with one or more character data items. This structure turns out
to provide an ideal abstraction level for verifying HTML validity.

Again, we apply a data-flow analysis to approximate the flow of template
values in the program. This time we use a lattice consisting of summary graphs.
It is possible to model plug operations with good precision using transfer func-
tions, however two preliminary analyses are required. One for tracking string
constants, and one, called a gap track analysis, for tracking the origins of gaps.
The latter tells us for each template variable and gap name, which constant tem-
plates containing such a gap can flow into that variable at any given program
point. Clearly, these analyses are highly specialized for the domain of dynamic

88 Chapter 10. The <bigwig> Project

document construction and for <bigwig>’s higher-order template mechanism,
but they all fit into the standard data-flow analysis frameworks. For more
details we refer to [17].

Once we have the summary graphs for all the show statements, we need
to verify that the sets of document fragments they define all are valid HTML
according to W3C’s official definition. To simplify the process we reformulate
the notion of Document Type Definition (DTD) as a simpler and more con-
venient formalism that we call abstract DTD. An abstract DTD consists of a
number of element declarations whereof one is designated as the root. An el-
ement declaration defines the requirements for a particular type of elements.
Each declaration consists of an element name, a set of names of attributes and
subelements that may occur, and a boolean expression constraining the ele-
ment type instances with respect to their attribute values and contents. The
official DTD for HTML is easily rewritten into our abstract DTD notation. In
fact, the abstract DTD version captures more validity requirements than those
expressible by standard DTDs and merely appear as comments in the HTML
DTD. As a technicality we actually work with XHTML 1.0 which is an XML
reformulation of HTML 4.01. There are no conceptual differences, except that
the XML version provides a cleaner tree view of documents for the analysis.

Given a summary graph and an abstract DTD description of HTML, valid-
ity can be checked by a recursive traversal of the summary graph starting at the
roots. We memoize intermediate results to ensure termination since the sum-
mary graphs may contain loops. If no violations are encountered, the summary
graph is valid. Since all validity properties are local to single elements and their
contents, we are able to produce precise error messages in case of violations.
Analysis soundness is ensured by the following property: if all summary graphs
corresponding to show expressions are verified to be valid with respect to the
abstract DTD, then all concrete documents are guaranteed to be valid HTML.

The program analyses described here all have high worst-case complexities
because of the complex lattices. Nevertheless, our implementations and exper-
iments show that they work well in practice, even for large intricate programs.
These experiments are mentioned in Section 10.8.

10.3.3 Caching of Dynamically Generated HTML

Traditional Web caching based on HTTP works by associating an expiration
time to all documents sent by the servers to the clients. This has helped in
decreasing both network and server load and response times. By default, no
expiration is set, and by using “now”, caching is effectively disabled. This
technique was designed primarily for documents whose contents rarely or never
changes, not for documents dynamically generated by interactive Web services.
The gradual change from statically to dynamically generated documents has
therefore caused the impact of Web caching to degrade.

Existing proposals addressing this include Active Cache, HPP, and various
server-based techniques, as explained in the survey in [14]. Server-based tech-
niques aim for relieving the server of redundant computations, not for decreas-
ing network load. They typically work by simplifying assumptions, for instance

10.3. Dynamic Construction of HTML Pages 89

that many interactions can be handled without side-effects on the global service
state, that interactions are often identical for many clients, or that the dynam-
ics of the pages is limited to e.g. banner ad rotation. None of this applies to
complex interactive services. Active Cache is a proxy-based solution that em-
ploys programmable cache applets. This can be very effective, but it requires
both specialized proxy servers and careful programming to ensure consistency
between the proxies and the main server.

HPP tries to separate the constant parts from the dynamic parts of the
generated documents. We apply a similar technique. In contrast to HPP, our
solution is entirely automatic while HPP requires extra programming. The idea
is to exploit the clear division between the service code and the HTML templates
present in <bigwig>. In our normal implementation of DynDoc, the internal
template representation is converted to an HTML document on the server when
the show statement is executed. Instead, we now store each template constant
in a fixed file on the server, and defer the conversion to the client using a
JavaScript representation of the dynamic parts. The template files can now be
cached by the ordinary browser caches. More details of the technique can be
found in [14]. We summarize our evaluation results in Section 10.8.

10.3.4 Code Gaps and Document Clusters

In the following, we describe two extensions to the DynDoc language. Occa-
sionally, the page-centered approach is admittedly more appropriate than the
session-centered. Consider the following example, which gives the current time
of day:

service {

session Time() {

html h = <html>Right now, the time is <[t]></html>;

show h<[t =now()];

}

}

An equivalent but less clumsy version can be written using code gaps, which
implicitly represent expressions whose values are computed and plugged into
gaps when the document is being shown:

service {

session Time() {

html h = <html>Right now, the time is <[(now())]></html>;

show h;

}

}

Documents with code gaps remain first-class values, since the code can only
access the global scope. Note that code gaps in <bigwig> are more powerful
than the usual page-centered approach, since the code exists in the full context
of sessions, shared variables, and concurrency control. In fact, with the idea of
published documents described in Section 10.6, the page-centered approach is
now included as a special case of <bigwig>.

90 Chapter 10. The <bigwig> Project

Some services may want to offer the client more than a single document
to browse, for example, the response could be a tiny customized Web site.
In <bigwig> we have experimented with support for showing such document
clusters. The difficulty is to provide a simple notation for specifying an arbitrary
graph of documents connected by links. We introduce for an HTML variable
x the document reference notation &x which can be used as the right-hand
side of a plug operation. It will eventually expand into a URL, but not until
the document is finally shown. Until then, the flow analysis just records the
connection between the gap and the variable. When a document is shown, the
transitive closure of document references is computed, and the resulting cluster
of documents is produced with references replaced by corresponding URLs.
The following example shows a cluster of two documents that are cyclically
connected. Notice that the cluster can be browsed freely without cluttering the
control-flow:

service {

session Cluster() {

html greeting = <html>

Hi! Click here for a kind word.

</html>;

html kind = <html>How nice to see you! Back</html>;

kind = kind<[there = &Greeting];

show greeting<[where =&kind];

}

}

The compiler checks that all cluster documents with submit buttons contain the
same form fields. It is also necessary to perform an escape analysis to ensure
that document variables are not exported out of their scope.

10.4 Form Field Validation

A considerable effort in Web programming is expended on form field validation,
that is, checking whether the data supplied by the client in form fields are valid,
and when it is not, producing error messages and requesting the fields to be
filled in again. Apart from details about regular expression matching, the main
problem is to program a solution that is robust, efficient, and user friendly.

One approach is server-side validation, where the form fields are validated
on the server when the page has been submitted. None of the languages men-
tioned in Section 10.1 provides any help for this, except the regular expression
matching in Perl. Therefore, the main logic of the service often becomes clut-
tered with validation code. In a sense, every program part that sends a page
to a client must be wrapped into a while-loop that repeats until the input is
valid. Other disadvantages include wasting bandwidth and causing delays to
the users. One proposal addressing some of these problems without requiring
browser extensions or Java applets is

The alternative is client-side validation, which usually requires the pro-
grammer to use JavaScript in the pages being generated. This permits more

10.4. Form Field Validation 91

sophisticated user interactions and reduces the communication overhead. How-
ever, client-side validation should not be used alone. The reason is that the
client is perfectly capable of bypassing the JavaScript code, so an additional
server side validation must always be performed. Thus, the same code must
essentially be written both in JavaScript and in the server scripting language.
In practice, writing JavaScript input validators that at the same time capture
all validity requirements and also are user friendly can be very difficult since
most browsers unfortunately differ in their JavaScript support. Whole Web
sites are dedicated to explaining how the various subsets of JavaScript work in
different browsers3.

In <bigwig>we have introduced a domain-specific sub-language, called Pow-
erForms, for form field validation [15]. It handles complex interdependencies
between form fields, and the compiler generates the required code for both
client and server. By compiling into JavaScript, only the PowerForms imple-
mentors need to know the details of how browsers support JavaScript, rather
than all Web service programmers. Also, the programmer needs not anymore
write essentially the same code in a server-side version and a client-side version.

PowerForms is a declarative language. Informally, this means that the pro-
grammer specifies what the input requirements are, not how to check them. In
its simplest form, PowerForms allows regular-expression formats to be associ-
ated to form fields:

service {

format Digit = range(’0’,’9’);

format Number = plus(Digit);

format Alpha = union(range(’a’,’z’),range(’A’,’Z’));

format Word = concat(Alpha,star(union(Digit,Alpha)));

format Name = concat(Word,star(concat(" ",Word)));

format Email = concat(Word,"@",Word,star(concat(".",Word)));

session Validate() {

html form = <html>

Please enter your email address:

<input name=email type=text size=20>

<format name=Email field=email >

</html>;

string s;

show Form receive[s=email];

}

}

This example shows how to constrain input in the email field to a certain
regular expression. The <bigwig> compiler generates the JavaScript code that
checks the user input on the client-side and provides help and error messages,
and also the code performing the server-side double-check. Using “traffic-light”
icons next to the input fields, the user is provided with continuous feedback
about the string entered so far. “Green” means valid, “yellow” means invalid
but prefix of something valid, and “red” means not prefix of something valid.
Other alternatives can be chosen, such as checkmark symbols, arrows, etc. We

3See e.g. http://www.webdevelopersjournal.com/articles/javascript
limitations.html or http://www.xs4all.nl/~ppk/js/version5.html.

92 Chapter 10. The <bigwig> Project

also allow the usual Perl-style syntax for regular expressions in the subset of
our notation that excludes the intersection and complement operators.

Formats can be associated to all kinds of form fields, not just those of type
text. For select fields, the format is used to filter the available options. For
radio and checkbox fields, only the permitted buttons can be depressed.

As noted in [32], many forms contain fields whose values may be constrained
by those entered in other fields. A typical example is a field that is not applicable
if some other field has a certain value. Such interdependencies are almost
always handled on the server, even if the rest of the validation is performed
on the client. The reason is presumably that interdependencies require even
more delicate JavaScript programming. The <bigwig> solution is to allow
such field interdependencies to be specified using an extension of the regular
expressions: the format tags are extended to describe boolean decision trees,
whose conditions probe the values of other form fields and whose leaves are
simple formats. The interdependence is resolved by a fixed-point process that
is computed on the client by JavaScript code automatically generated by the
<bigwig> compiler. A simple example is the following, where the client chooses
a letter group and the select menu is then dynamically restricted to those
letters:

service {

format Vowel = charset("aeiouy");

format Consonant = charset("bcdfghjklmnpqrstvwxz");

html form = <html>

Favorite letter group:

<input type=radio name=group value=vowel checked>vowels

<input type=radio name=group value=consonant>consonants

Favorite letter:

<select name=letter >

<option value="a">a

<option value="b">b

<option value="c">c

...

<option value="z">z

</select>

<format field=letter >

<if><equal field=group value=vowel>

<then><format name=Vowel></then>

<else><format name=Consonant></else>

</if>

</format>

</html>;

session Letter() {

string s;

show form receive[s=letter];

}

}

ColdFusion [21] provides a mechanism reminiscent of PowerForms. However,
it does not support field interdependencies or validation of non-text fields.
PowerForms have shown to be a simple language with a clean semantics that
appears to handle most realistic situations. We have implemented it both as

10.5. Concurrency Control 93

part of the <bigwig> compiler and as a stand-alone tool that can be used to
add input validation to general HTML pages.

10.5 Concurrency Control

As services have several session threads, there is a need for synchronization and
other concurrency control to discipline the concurrent behavior of the active
threads. A simple case is to control access to the shared variables using mu-
tex regions or the readers/writers protocol. Another issue is enforcement of
priorities between different session kinds, such that a management session may
block other sessions from running. Another example is event handling, where
a session thread may wait for certain events to be caused by other threads.

We deal with all of these scenarios in a uniform manner based on a central
controller process in the runtime system, which is general enough to enforce a
wide range of safety properties [71]. The support for concurrency control in the
previously mentioned Web languages is limited to more traditional solutions,
such as file locking, monitor regions, or synchronized methods.

A <bigwig> service has an associated set of event labels. During execu-
tion, a session thread may request permission from the controller to pass a
specific event checkpoint. Until such permission is granted, the session thread
is suspended. The policy of the controller must be programmed to maintain
the appropriate global invariants for the entire service. Clearly, this calls for
a domain-specific sub-language. We have chosen a well-known and very gen-
eral formalism, temporal logic. In particular, we use a variation of monadic
second-order logic [87]. A formula describes a set of strings of event labels, and
the associated semantics is that the trace of all event labels being passed by all
threads must belong to that set. To guide the controller, the <bigwig> compiler
uses the MONA tool [50] to translate the given formula into a minimal deter-
ministic finite-state automaton that is used by the controller process to grant
permissions to individual threads. When a thread asks to pass a given event
label, it is placed in a corresponding queue. The controller continually looks for
non-empty queues whose event labels correspond to enabled transitions from
the current DFA state. When a match is found, the corresponding transition is
performed and the chosen thread is resumed. Of course, the controller must be
implemented to satisfy some fairness requirements. All regular trace languages
can be expressed in the logic.

Applying temporal logics is a very abstract approach that can be harsh on
the average programmer. However, using syntax macros, which are described
in Section 10.6, it is possible to capture common concurrency primitives, such
as semaphores, mutex regions, the readers/writers protocol, monitors, and so
on, and provide high-level language constructs hiding the actual formulas. The
advantage is that <bigwig> can be extended with any such constructs, even
some that are highly customized to particular applications, while maintaining
a simple core language for concurrency control.

The following example illustrates a simple service that implements a critical
region using the event labels enter and leave:

94 Chapter 10. The <bigwig> Project

service {

shared int i;

session Critical() {

constraint {

label leave,enter;

all t1,t3: (t1<t3 && enter(t1) && enter(t3)) =>

is t2: t1<t2 && t2<t3 && leave(t2);

}

wait enter;

i = i+1;

wait leave;

}

}

The formula states that for any two enter events there is a leave event in
between, which implies that at any time at most one thread is allowed in the
critical region. Using syntax macros, programmers are allowed to build higher-
level abstractions such that the following can be written instead:

service {

shared int i;

session Critical() {

region {

i = i+1;

}

}

}

We omit the macro definitions here. In its full generality, the wait statement is
more like a switch statement that allows a thread to simultaneously attempt to
pass several event labels and request a timeout after waiting a specified time.

A different example implements an asynchronous event handler. Without
the macros, this could be programmed as:

service {

shared int i;

constraint {

label handle,cause;

all t1: handle(t1) => is t2: t2<t1 && cause(t2) &&

(all t3: t2<t3 && t3<t1 => !handle(t3));

}

session Handler() {

while (true) {

wait handle;

i++;

}

}

session Application() {

wait cause;

}

}

This non-trivial formula allows the handler to proceed, without blocking the
application, whenever the associated event has been caused at least once since
the last invocation of the handler. Fortunately, the macros again permit high-
level abstractions to be introduced with more palatable syntax:

10.6. Syntax Macros 95

service {

shared int i;

event Increment {

i++;

}

session Application() {

cause Increment;

}

}

The runtime model with a centralized controller process ensuring satisfaction
of safety constraints is described in [16]. The use of monadic second-order logic
for controller synthesis was introduced in [71] where additionally the notions of
triggers and counters are introduced to gain expressive power beyond regular
sets of traces, and conditions for distributing the controller for better perfor-
mance are defined.

The session model provides an opportunity to get a global view of the con-
current behavior of a service. Our current approach does not exploit this knowl-
edge of the control flow. However, we plan to investigate how it can be used in
specialized program analyses that check whether liveness and other concurrency
requirements are complied with.

10.6 Syntax Macros

As previously mentioned, <bigwig> contains a notion of macros. Although
not specific to Web services, this abstraction mechanism is an essential part
of <bigwig> that serves to keep the sub-languages minimal and to tie them
together.

A macro language can be characterized by its level of operation which is
either lexical or syntactic. Lexical macro languages operate on sequences of
tokens and conceptually precede parsing. Because of this independence of syn-
tax, macros often have unintended effects, and parse errors are only discovered
at invocation time. Consequently, programmers are required to consider how
individual macro invocations are being expanded and parsed. Syntactic macros
amend this by operate on parse trees instead of token sequences [96]. Types
are added to the macro arguments and bodies in the form of nonterminals of
the host language grammar. Macro definitions can now be syntax checked at
definition time, guaranteeing that parse errors no longer occur as a consequence
of macro expansion. Using syntax macros, the syntax of the programming lan-
guage simply appears to be extended with new productions.

Our macros are syntactic and based entirely on simple declarative concepts
such as grammars and substitution, making them easy and safe to use by ordi-
nary Web service programmers. Other macro languages, such as MS2, Scheme
macros, and Maya, instead apply full Turing complete programming languages
for manipulating parse trees at compile-time, making them more difficult to
use.

As an initial example, we will extend the core language of <bigwig> with a
repeat-until control structure that is easily defined in terms of a while loop.

96 Chapter 10. The <bigwig> Project

macro <stm> repeat <stm S> until (<exp E>) ; ::= {

{

bool first = true;

while (first || !<E>) {

<S>

first = false;

}

}

}

The first line is the header of the macro definition. It specifies the nonter-
minal type of the macro abstraction and the invocation syntax including the
typed arguments. As expected, the type of the repeat-until macro is <stm>

representing statements. This causes the body of the macro to be parsed as
a statement and announces that invocations are only allowed in places where
an ordinary statement would be. We allow the programmer to design the in-
vocation syntax of the macro. This is used to guide parsing and adds to the
transparency of the macro abstractions. This particular macro is designed to
parse two appropriately delimited arguments, a statement S and an expression
E. The body of the macro implements the abstraction using a boolean variable
and a while loop. When the macro is invoked, the identifiers occurring in the
body are α-converted to avoid name clashes with the invocation context.

With a concept of packages, macros can be bundled up in collections. Our
experience with <bigwig> programming has led us to develop a “standard
macro package”, std.wigmac, that extends the sub-languages of <bigwig> in
various ways and has helped keep the language minimal. For instance, the form
field validation language is extended with an optional regular expression con-
struct, and database language macros transform SQL-like queries into our own
iterative factor construction. Also, various composite security modifiers are
defined, and concurrency control macros, such as the region from Section 10.5,
gradually build on top of each other to implement increasingly sophisticated
abstractions.

Macros are also used to tie together different sub-languages, making them
collaborate to provide tailor-made extensions of the language. For instance,
the sub-languages dealing with sessions, dynamic documents, and concurrency
control can be combined into a publish macro. This macro is useful when a
service wishes to publish a page that is mostly static, yet once in a while needs
to be recomputed, when the underlying data changes. The following macros
efficiently implements such an abstraction:

macro <toplevels> publish <id D> { <exp E> } ::= {

shared html <D>~cache;

shared bool <D>~cached;

session <D>() {

exclusive if (!<D>~cached) {

<D>~cache = <E>;

<D>~cached = true;

}

show <D>~cache;

}

}

10.6. Syntax Macros 97

macro <stm> touch <id d> ; ::= {

<d>~cached = false;

}

The publish macro recomputes the document if the cache has expired, and then
shows the document, while the touch macro causes the cache to expire. The ~
operator is used to create new identifiers by concatenation of others. Using this
extended syntax, a service maintaining for example a high-score list can look
like:

require "publish.wigmac"

service {

shared int record;

shared string holder;

publish HiScore {

computeWinnerDoc(record, holder)

}

session Play() {

int score = play();

if (score>=record) {

show EnterName receive[holder=name];

record = score;

touch HiScore;

} else {

show <html>Sorry, no record.</html>;

}

}

}

Here, the high-score document is only regenerated when a player beats the
record. This code is clearly easier to understand and maintain than the corre-
sponding expanded code.

The expressive power of syntax macros is extended with a concept of meta-
morphisms, as explained in [19]. This declaratively permits tree structures to be
transformed into host language syntax without compromising syntactic safety,
something not possible with other macro languages. Using this mechanism in
an extreme way, it is possible to define whole new languages. We call this
concept a very domain-specific language, or VDSL.

At the University of Aarhus, undergraduate Computer Science students
must complete a Bachelor’s degree in one of several fields. The requirements
that must be satisfied are surprisingly complicated. To guide students towards
this goal, they must maintain a so-called “Bachelor’s contract” that plans their
remaining studies and discovers potential problems. This process is supported
by a Web service that for each student iteratively accepts past and future course
activities, checks them against all requirements, and diagnoses violations until a
legal contract is composed. This service was first written as a straight <bigwig>
application, but quickly became annoying to maintain due to constant changes
in the curriculum. Thus it was redesigned in the form of a VDSL, where study
fields and requirements are conceptualized and defined directly in a more nat-
ural language style. This makes it possible for non-programmers to maintain
and update the service. An small example input is:

98 Chapter 10. The <bigwig> Project

require "bachelor.wigmac"

studies

course Math101

title "Mathematics 101"

2 points fall term

...

course Phys202

title "Physics 202"

2 points spring term

course Lab304

title "Lab Work 304"

1 point fall term

exclusions

Math101 <> MathA

Math102 <> MathB

prerequisites

Math101,Math102 < Math201,Math202,Math203,Math204

CS101,CS102 < CS201,CS203

Math101,CS101 < CS202

Math101 < Stat101

CS202,CS203 < CS301,CS302,CS303,CS304

Phys101,Phys102 < Phys201,Phys202,Phys203,Phys301

Phys203 < Phys302,Phys303,Lab301,Lab302,Lab303

Lab101,Lab102 < Lab201,Lab202

Lab201,Lab202 < Lab301,Lab302,Lab303,Lab304

field "CS-Mathematics"

field courses

Math101,Math102,Math201,Math202,Stat101,CS101,CS102,CS201,CS202,CS203,

CS204,CS301,CS302,CS303, CS304,Project

other courses

MathA,MathB,Math203,Math204,Phys101,Phys102,Phys201,Phys202

constraints

has passed CS101,CS102

at least 2 courses among CS201,CS202,CS203

at least one of Math201,Math202

at least 2 courses among Stat101,Math202,Math203

has 4 points among Project,CS303,CS304

in total between 36 and 40 points

None of the syntax displayed is plain <bigwig>, except the macro package
require instruction. The entire program is the argument to a single macro
studies that expands into the complete code for a corresponding Web service.
The file bachelor.wigmac is only 400 lines and yet defines a complete imple-
mentation of the new language. Thus, the <bigwig> macro mechanism offers a
rapid and inexpensive realization of new ad-hoc languages with almost any syn-
tax desired. Similar features do not occur in any of the Web service languages
mentioned in the previous sections.

10.7 Other Web Service Aspects

There are of course other features in <bigwig> that are necessary to support
Web service development but for which we have no major innovations. These
are briefly presented in this section.

10.7. Other Web Service Aspects 99

10.7.1 HTML Deconstruction

The template mechanism is used to construct HTML documents, but when
“run in reverse” it also allows for deconstruction. This is realized by using the
templates as patterns in which the gaps play the role of variables, as illustrated
in this example:

service {

html Template = <html>

<[]><[]>

</html>;

session Dilbert() {

string data = get("http://www.dilbert.com/");

string s;

match(data,Template)[s =source];

exit Template<[source ="http://www.dilbert.com"+s];

}

}

which grabs the daily strip from the Dilbert home page. Gaps without names
serve as wildcards.

10.7.2 Seslets

For some interaction patterns, a strict session model can be inappropriate since
the client and server must alternate between being active and suspended. Fur-
thermore, information cannot be pushed on the server’s initiative while the
client is viewing a page. A simple example is a chat room where new messages
should appear automatically, without the client having to reload the page be-
ing viewed, and where only the new message and not the entire new page is
transmitted. The essence of this concept is client-side computations that are
able to contact the server on their own accord.

The <bigwig> solution is a notion of seslets. A seslet is a kind of light-
weight session which is allowed to do anything an ordinary session can do,
except perform show operations. It is invoked by the client with some arguments
and eventually returns a reply of any <bigwig> type. Typically, it performs
database operations or waits for certain events to occur, and reports back to
the client.

Since we are limited by the existing technologies on the client-side, our
current implementation is restricted to using Java applets or JavaScript. To
facilitate the writing of applets, the <bigwig> compiler generates the Java code
for an abstract class extending Applet, which must be inherited from in order
to access the available seslets. Alternatively, we have experimented with a
JavaScript interface. However, this approach is limited by the lack of client-
server communication support from JavaScript, so we currently apply cookies
for the communication.

An important use of seslets is to allow client-side code to synchronize with
other active threads on the server. For example, the chat room solution could
employ a seslet that uses the concurrency control mechanisms of <bigwig> to
wait until the next message is available, which then is returned to the applet.
In this way, no client pulling or busy waiting is required.

100 Chapter 10. The <bigwig> Project

10.7.3 Databases

Most Web services are centered around a database. In the general case, this is an
existing, external database which the service must connect to. The <bigwig>
system supports the ODBC interface for this purpose. However, queries are
not built as strings but are written in a query language that is part of the
<bigwig> syntax. This allows for compile-time checking of the syntax and types
of queries, eliminating another source of errors. Since many smaller services use
only simple data, we also offer an internal database that is implemented on top
of the file system.

10.7.4 Security

There are many aspects of Web service security4. The security in <bigwig> can
be divided into two categories, depending on whether it is generically applicable
to all services or specific to the behavior of a particular service.

The former category mostly relates to the runtime environment and com-
munication, dealing with concepts such as integrity, authenticity, and confi-
dentiality. Integrity of a session thread’s local state is achieved by keeping it
exclusively on the server. Integrity of shared data is provided by the database.
An interaction key is generated and embedded in every document shown to the
client and serves to prevent submission of old documents. Clients and session
threads are associated through a random key which is created by the server
upon the first request and carried across interactions in a hidden input field.
This mechanism may optionally be combined with other security measures,
such as SSL, to provide the necessary level of security. Authenticity and con-
fidentiality is addressed through general declarative security modifiers that the
programmer can attach on a service, session, or show basis. The modifiers ssl
and htaccess enforce that the SSL and HTTP Authentication protocols are
used for communication. The selective modifier restricts access to a session
to those clients whose IP numbers match a given set of prefixes. Finally, the
singular modifier ensures that the client has the same IP address throughout
the execution of a session.

We envision performing some simple static analyses relating to the behav-
ioral security of particular services. Values are classified as secret or trusted,
and, in contrast to tainting in Perl, the compiler keeps track of the propagation
of these properties. Furthermore, there are restrictions on how each kind of
data can be used. Form data is always assumed to be untrusted and gaps are
never allowed to be plugged with secret values. Variables can be declared with
the modifiers secret or trusted and may then only contain the corresponding
values. The system function can only be called with a trusted string value. To
change the classification of a value, there are two functions trust and disclose.
The programmer must make the explicit choice of using these coercions. An
example involving trust is the following service:

service {

session Lookup() {

4http://www.w3.org/Security/faq/

10.8. Evaluation 101

html Error = <html>Invalid URL!</html>;

html EnterURL = <html>Enter a URL: <input type=text name=URL></html>;

string u,domain;

show EnterURL receive[u = URL];

if (|u|<7 || u[0..7]!="http://") show Error;

for (i=7; i<|u| && u[i]!=’/’; i++);

domain = u[7..i];

if (system("/usr/sbin/nslookup ’" + domain + "’").stderr!="") {

show Error;

}

}

}

This code performs an nslookup on the URL supplied by the user to check
whether its domain exists. Since the value of domain is derived from the form
field URL it should not be trusted, and its use in the call of system will be
flagged by the compiler. And, indeed, it would be unfortunate if the client
enters "http://foo’;rm -rf /’" in the form. A similar analysis is performed
for secret. Consider the example:

service {

shared secret string password;

bool odd(int n) { return n%2==1; }

session Reveal() {

if (odd(|password|)) show <html>foo</html>;

}

}

The compiler is sufficiently paranoid to reject this program, since the branching
of the if-statement depends on a function applied to information derived from
a secret value. These analyses are not particularly original, but are not seen in
other Web service programming languages.

There is still much work to be done in this area. So far, we have not
considered using cryptological techniques to ensure service integrity, the role of
certificates, or more sophisticated static analyses.

10.8 Evaluation

The <bigwig> language should be evaluated according to two different criteria.
First, the quality of our language design as seen from concrete programming
experiences. This is necessarily a somewhat intangible and subjective criterion.
Second, the performance of our language implementation as seen from observed
benchmarks.

10.8.1 Experience with <bigwig>

<bigwig> is still mainly an experimental research tool, but we have gained
experiences from numerous minor services that we have written for our own
edification, a good number of services that are used for administrative purposes
at the University of Aarhus, and a couple of production services on which we
have collaborated. Apart from these applications, we estimate that <bigwig>

102 Chapter 10. The <bigwig> Project

has been downloaded roughly 2500 times from our Web site, and we have mainly
received positive feedback from the users.

One production service is the Web site of the European Association for The-
oretical Computer Science (www.eatcs.org), handling newsletters, webboards,
and several membership services. It is written in 5,345 lines of <bigwig>, using
133 HTML templates, and 114 show statements. Another is the Web site of the
JAOO 2001 conference (www.jaoo.dk), handling all aspects of advertisement,
schedules, registration, and attendant services. It is written is 7,943 lines of
<bigwig>, using 248 HTML templates, and 39 show statements.

These experiences have shown that <bigwig> has two very strong points.
First, the session concept greatly simplifies the programming of complicated
control flow with multiple client interactions. Second, the HTML templates are
very easy and intuitive to use and the static guarantees catch numerous errors,
many of which are difficult to find by other means. It is particularly helpful
that the HTML analyzers provide precise and intuitive error messages.

The JAOO application has been particularly interesting, since it involved
collaboration with an external HTML designer. This experience confirmed that
our templates are successful in defining an interface between programmers and
designers and that gaps and fields define a useful contract between the two.

The main weak point that we have identified is the core language which is
often found to be lacking minor features. We plan to address this in future
work, as mentioned in Section 10.9.

The stand-alone version of the PowerForms sub-language has been surpris-
ingly popular in its own right. It has many active users, and has been integrated
into a proprietary Web deployment system.

10.8.2 Performance

When evaluating the performance of the <bigwig> implementation, we want
to focus on the areas where we have attempted to provide improvements. We
are not aiming for simple high-load services, but are focusing on services with
intricate flow of control. Still, informal tests show that the throughput of our
services is certainly comparable with that of straight CGI-based services or
Servlet applications running on J2SE.

The automatic caching scheme based on our HTML templates is designed
to exploit their intricate structure to cache static fragments on the client-side.
We have obtained real benefits from this approach. The experiments reported
in [14] show that the size of the transmitted data may shrink by a factor of 3
to 30, which on a dial-up connections translates into a reduction in download
times by a factor of 2 to 10.

It is also relevant to evaluate the performance of the <bigwig> compiler,
since we employ a series of theoretically quite expensive static analyses. How-
ever, in practice they perform very well, as documented in [17,72]. The EATCS
service is analyzed for HTML validity in 6.7 seconds and the JAOO service in
2.4 seconds.

10.9. Conclusion 103

10.9 Conclusion

The <bigwig> project has identified central aspects of interactive Web services
and has provided solutions in a coherent framework based on programming
language theory. At the same time, the <bigwig> project is a case study in
applications of the domain-specific language design paradigm.

We have argued that the notion of sessions is essential to Web services and
should constitute the basic structure of a Web service programming language.
Together with higher-order document templates, such as in the DynDoc sub-
language, the dynamic construction of Web pages becomes at the same time
flexible, making it is easy to use, and safe, through compile-time guarantees
regarding document validity and the use of input forms. We have shown that
form field validation, compared to traditional approaches, can be made easier
with a domain-specific sub-language, such as PowerForms, which automatically
translates high-level specifications into a combination of more low-level server-
side and client-side code. We have examined how temporal logics can be use to
synthesize concurrency controllers. Finally, we have demonstrated how macro
mechanisms can be made effective for extending and combining languages, in
the context of the sub-languages of <bigwig>.

Version 2.0 of the <bigwig> compiler and runtime system is freely available
from the project home page at www.brics.dk/bigwig/where documentation and
examples also can be found.

Regarding the future development of <bigwig> we now move towards Java.
We are developing JWIG [26] as an extension of Java where we add the most
successful features of <bigwig>, such as the session model, dynamic documents,
form field validation, and syntax macros. Since the design of <bigwig> has fo-
cused on the Web specific areas, we hope that the many standard programming
issues of Web services become easier to develop with JWIG. However, a num-
ber of new challenges arise. For instance, the program analyses described in
Section 10.3 all assume that we have access to precise control-flow graphs of the
programs. This is trivial for <bigwig>, but certainly not for Java. Other fu-
ture plans include type-safe support for XML document transformation, WML
and VoiceXML support, and broadening the view towards development and
management of whole Web sites comprising many services.

10.9.1 Acknowledgments

Tom Ball provided us with extensive and very helpful information about expe-
riences with the MAWL language. Anders Sandholm has been a key participant
during his PhD studies at BRICS. Mikkel Ricky Christensen and Steffan Olesen
have worked tirelessly as student programmers during the entire project. Niels
Damgaard, Uffe Engberg, Mads Johan Jurik, Lone Haudrum Olesen, Christian
Stenz, and Tommy Thorn have provided valuable feedback and suggestions. We
also appreciate the efforts made by the participants of the WIG Projects course
in Spring 1998. Finally, we are grateful for the insightful comments we have
received from the anonymous reviewers.

Chapter 11

A Runtime System for Interactive Web

Services

with Anders Møller, Anders Sandholm, and Michael I. Schwartzbach

Abstract

Interactive web services are increasingly replacing traditional static
web pages. Producing web services seems to require a tremendous amount
of laborious low-level coding due to the primitive nature of CGI program-
ming. We present ideas for an improved runtime system for interactive
web services built on top of CGI running on virtually every combination
of browser and HTTP/CGI server. The runtime system has been imple-
mented and used extensively in <bigwig>, a tool for producing interactive
web services.

11.1 Introduction

An interactive web service consists of a global shared state (typically a database)
and a number of distinct sessions that each contain some local private state and
a sequential, imperative action. A web client may invoke an individual thread
of one of the given session kinds. The execution of this thread may interact
with the client and inspect or modify the global state.

One way of providing a runtime system for interactive web services would be
to simply use plain CGI scripts [39]. However, being designed for much simpler
tasks, the CGI protocol by itself is inadequate for implementing the session con-
cept. It neither supports long sessions involving many user interactions nor any
kind of concurrency control. Being the only widespread standard for running
web services, this has become a serious stumbling stone in the development of
complex modern web services.

We present in this paper a runtime system built on top of the CGI protocol
that among other features has support for sessions and concurrency control.
First, we motivate the need for a runtime system such as the one presented
here. This is done by presenting its advantages over a simple CGI script based
solution. Afterwards, a description of the runtime system, its different parts,

105

106 Chapter 11. A Runtime System for Interactive Web Services

and its dynamic behavior is given. We round off with a discussion of related
work, a conclusion, and directions for future work.

In the appendices, we briefly describe an implementation of the suggested
runtime system. Also, we give a short presentation of <bigwig> [74], which is
a tool for producing interactive web services that makes extensive use of the
self-contained runtime system package.

11.2 Motivation

The technology of plain CGI scripts lacks several of the properties one would
expect from a modern programming environment. In the following we discuss
various shortcomings of traditional CGI programming and motivate our solution
to these problems, namely the design of an improved runtime system built on
top of the standard CGI protocol.

11.2.1 The session concept

First, we will describe and motivate the concept of an interactive web service.
The HTTP protocol was originally designed for browsing static documents

connected with hyperlinks. CGI together with forms allows dynamic creation of
documents, that is, the contents of a document are constructed on the server at
the time the document is requested. Dynamic documents have many advantages
over static documents. For instance, the contents of the documents can be
tailor-made, and up-to-date.

A natural extension of the dynamic-document model is the concept of in-
teractive services, which is illustrated in Figure 11.1. Here the client does not

browse

reply
compute

show page

start session

forms etc.
fill out

submit

CLIENT SERVER

Figure 11.1: An interactive web session

browse a number of more or less independent statically or dynamically gener-
ated pages but is guided through a session controlled by a session thread on
the server. This session can involve a number of user interactions. The session
is initiated by the client submitting a “start session” request. The server then

11.2. Motivation 107

starts a thread controlling the new session. This thread generates a reply page
which is sent back to the client. The page typically contains some input fields
that are filled in by the client. That information is sent to the server, which
then generates the next reply, and so on, until the session terminates.

This session concept allows a large class of services to be defined. However,
a number of practical problems needs to be solved in order to implement this
model on top of the CGI model.

11.2.2 CGI scripts and sequential session threads

As explained above, a web service session consists of a sequential computation
that along the way presents information to the client and waits for replies.
However, CGI is a state-less protocol, meaning that execution of a CGI script
only lasts until a page is shown to the web client. This fact makes it rather
tedious to program larger web services involving many client interactions. The
sequential computation has to be split up into the small bits of computation
that happen between client interactions. Each of these small bits will then
constitute a CGI script or an instance of a CGI call.

Furthermore, to achieve persistency of the local state, one has to store
and restore it explicitly between CGI-calls, for instance “hidden” in the web
page sent to the client. For simple services where the full session approach is
not needed this stateless-server approach might be preferable, but it is clearly
inadequate in general.

Thus, the problem of forced termination of the CGI script at each client
interaction is two-fold:

• Having to deal with many small scripts makes the writing and mainte-
nance of a web service rather difficult because the control-flow of the
service tends to become less clear from the program code.

• Starting up a whole new process every time a client interaction is per-
formed is expensive in itself. On top of this a complete image of the
local state has to be stored and restored each time a client interaction
is required. The local state can potentially hold a lot of data, such as
database contents. Thus one gets a substantial overhead in the execution
of a web service.

We provide a simple solution which splits CGI scripts into two components,
namely connectors and session threads. A connector is a tiny transient CGI
script that redirects input to a session thread, receives the response from that
thread, and redirects it back to the web client. The session threads are persistent
processes running residently on the web server. They survive CGI calls and
can therefore implement a long sequential computation involving several client
interactions. The use of transient connectors and persistent session threads
decreases the difficulty of writing and maintaining web services. Furthermore,
it improves substantially on the overhead of the web server during execution of
a service.

108 Chapter 11. A Runtime System for Interactive Web Services

11.2.3 Other CGI shortcomings

Traditionally, reply pages from session threads are sent directly to the client.
That is, the session thread (or the connector if using the system described
above) writes the page to standard-output and the web server sends it on to
the client browser. This basic approach imposes some annoying problems on
the client:

• The client is not able to use “bookmarks” to identify the session, since
selecting a bookmark might imply resending an old query to the server
while the server expects a reply to a more recent interaction. It would
be natural to the client if selecting a bookmarked session would continue
the session from its current state. Obviously, this requires the server to
always keep some kind of backup of the latest page sent to the client.

• In the session concept described in the previous section, it does not make
sense to roll back execution of a session thread to a previous state. A
thread can only be continued from its current point of execution. As a
result of sending pages directly using the standard-output method, every
new page shown to the client gets stacked up in the client’s browser. This
means that the stack of visited pages becomes filled up with references
to outdated pages. One result is that the “back” button in the browser
becomes rather useless.

We suggest a simple solution where—instead of sending the reply itself—the
session thread writes its reply to a file visible to the client and then sends to
the client a reference to the reply file. By choosing the same URL for the
duration of the session, this reference can then function as an identification of
that particular session. This solves both the problem with bookmarks and with
the “back” button. Pressing “back” will now bring the client back to the web
page where he started the session, which seems like a natural effect.

This method also opens up for an easy solution to another problem. Some-
times the server requires a long time to compute the information for the next
page to be shown to the client. Naturally, the client may become impatient and
lose interest in the service or assume that the server or the connection is down if
no response is received within a certain amount of time. If confirmation in the
form of a temporary response page is sent, the client will know that something
is happening and that waiting will not be in vain.

This extra feature is implemented in the runtime system as follows. If a
response is not ready within for instance 8 seconds, the connector responds
with a reference to a temporary page (for instance saying “please wait”) and
terminates. This page will then automatically be loaded by the clients web
browser and reload itself, say every 5 seconds. Once the session thread finishes
its computation and the real response page is ready, the thread just replaces the
temporary page with the real response page. This will have the effect that next
time the page is reloaded, the real response page will be shown to the client.

This reloading can be done with standard HTML functionality. Of course
the reloading causes some extra network traffic, but using this method is prob-
ably as close as one gets to server pushing in the world of CGI programming.

11.3. Components in the Runtime System 109

11.2.4 Handling safety requirements consistently

Another serious problem with traditional CGI programming is that concurrency
control, such as synchronization of sessions and locking of shared variables, gets
handled in an ad-hoc fashion. Typically, this is done using low-level semaphores
supplied by the operating system.

As a result, web services often implement these aspects incorrectly resulting
in unstable execution and sometimes even damaging behavior.

Our solution allows one to put safety requirements, such as mutual exclusion
or much more complex requirements, separately in a centralized supervising
process called the controller. This approach significantly simplifies the job
of handling safety requirements. Also, since each of the requirements can be
formulated separately, the solution is much more robust towards changes in
various parts of the code.

It is generally considered inefficient and unsafe to have centralized com-
ponents in distributed systems. However, in this case the bottleneck is more
likely to be the HTTP/CGI server and the network than the safety controller.
In spite of that, we do try to distribute the functionality of our safety controller
as discussed in Section 11.5.

11.3 Components in the Runtime System

At any time there will be a number of web clients accessing the HTTP/CGI
server through the CGI protocol. On the server side we will have a controller
and a number of session threads running. The session threads access the global
data and produce response pages for the web clients. From time to time a
connector will be started as the result of a request from a web client. The
connector will make contact with the running session thread. A connector is
shut down again after having delegated the answer from a session thread back
to the web client.

In the following we give a more detailed description of these components.
For an overview of the components in the runtime system, see Figure 11.2.

Web clients Web clients are the users of the provided web service. They
make use of the service essentially by filling in forms and submitting HTTP/CGI
requests using a browser.

The HTTP/CGI server The HTTP/CGI server handles the incoming HT-
TP/CGI requests by retrieving web pages and starting up appropriate CGI
scripts, in our case connectors. It also directs response pages back to the web
clients.

Session threads Session threads are the resident processes running on the
web server surviving several CGI calls. They represent the actual service
code that implements the provided web service. They do calculations, search
databases, produce response web pages, etc.

110 Chapter 11. A Runtime System for Interactive Web Services

session thread

reply

controller

internet

client

HTTP/CGI server

connector

Figure 11.2: The runtime system

Connectors When a web client makes a request through the server, a con-
nector is started up. If this request is the first one made, the controller starts
up a new session thread corresponding to the request made by the web client.
Otherwise—that is, if the web client wants to continue execution of a running
session thread—the connector notifies the relevant session thread that a request
has been made and forwards the input to that thread.

Reply pages Each session thread has a designated file which contains the
current web page visible to the client of the session. When writing to this file,
the whole contents is through a buffer updated atomically since the client may
read the file at any time.

The controller The controller is a central component. It supervises session
threads and has the possibility of suspending their execution at various points.
This way it is ensured that the stated safety requirements are satisfied.

Furthermore, the runtime system also contains a global-state database (could
be the file-system or a full-fledged database), and a service manager, which takes
care of garbage-collecting abandoned session threads and other administrative
issues.

11.4 Dynamics of the Runtime System

In this section we describe the dynamic behavior of the runtime system. We
start by explaining the overall structure of the execution of a session thread.
Starting from this, we present each of the possible thread transitions.

First, it is described how a session thread is started. Then, transitions
involving interaction with a web client, that is, showing web pages and getting
replies, are dealt with. Finally, the transitions involving interaction with the
controller are presented.

11.4. Dynamics of the Runtime System 111

For each transition we give a description of the components involved and
their interaction.

11.4.1 Execution of a thread

The lifetime of a session thread is depicted in the diagram in Figure 11.3. When

start

��

showing

vv
active

77

��ww
end waiting

^^

Figure 11.3: Possible states and transitions for a session thread

a thread is first started, it enters the state active. Here it can do all sorts of
computations.

Eventually it reaches a point where it has composed a response HTML page.
This page is shown to the web client and the thread enters the state showing.
Here it waits for the web client to respond via yet another HTTP/CGI request.
Upon re-submission the thread reenters the state active and resumes execution.

Note that in the world of naive CGI programming when moving from active
to showing and back one would have to store a complete image of the local state
before terminating the script. Then, when started again a new process would
be started and the local state would have to be reconstructed from the image
that was saved. This substantial overhead of saving and restoring local state is
avoided completely by the use of transient connectors and resident threads.

While in state active a thread can get to a point in execution where safety
critical computation, such as accessing a shared resource, needs to be carried
out. When reaching such a point the thread asks the controller for permission
to continue and enters the state waiting. When permission is granted from the
controller the thread reenters the active state and continues execution.

With a traditional approach one would have to merge the code implementing
the intricate details dealing with concurrency control with the service code. This
intermixing would in addition to substantially reducing the readability of the
code also increase the risk of introducing errors. Our solution separates the
code dealing with concurrency control from the service code.

When the session is complete, the thread will leave the state active and end
its execution.

11.4.2 Starting up a session thread

This section describes the transition from start to active.
When a new web client makes an HTTP/CGI request, the server will start

up a new connector as a CGI script. Since this request is the first one made

112 Chapter 11. A Runtime System for Interactive Web Services

by the web client, a new thread is started according to the session name given
in the request. As will be described later, a response page will be sent back to
the client when the thread reaches a show call or a certain amount of time, for
instance 8 seconds, has passed.

When a session thread is initiated or when it moves from showing to active,
the contents of the reply file is immediately overwritten by a web page contain-
ing a “reply not ready—please wait” message and a “refresh” HTML command.
The “refresh” command makes the browser reload the page every few seconds
until the temporary reply file is overwritten by the real reply as described in
the following section. The default contents of the “please wait” page can be
overridden by the service programmer by simply overwriting the reply file with
a message more appropriate for the specific situation.

11.4.3 Interaction with the client

During execution of a running thread the service can show a page to the web
client and continue execution when receiving response from the client. In the
following we describe these two actions.

Showing a page

This section describes the transition from active to showing.
During execution of a session thread one can do computations, inspect the

input from the client, produce response documents, etc. When a response
document has been constructed and the execution reaches a point where the
page is to be shown to the client, the following actions will be taken:

1. First, the document to be shown is written to the reply file as indicated
in Figure 11.2. This file always contains a “no cache” pragma-command,
so that the client browser always fetches a new page even though the
same URL is used for the duration of the whole session. Unfortunately
we thereby lose the possibility of browser caching, but being restricted to
building on top of existing standards we cannot get it all.

2. If the connector, that is, the CGI script started by the web client, has not
already terminated due to the 8 second timeout, the session thread tells
it that the reply page is ready. After this, the thread goes to sleep.

3. When the connector either has been waiting the 8 seconds or it receives
the “reply ready” signal from the session thread, the connector writes a
location-reference containing the URL for the reply page onto standard-
output (using the CGI “location” feature), and then dies.

4. Finally, the HTTP/CGI server will transmit the URL back to the web
clients browser which then will fetch the reply page through the HTTP/-
CGI server and show it to the client.

In Figure 11.2, these actions describe a flow of data starting at the session
thread and ending at the client.

11.4. Dynamics of the Runtime System 113

Receiving client response

This section describes the transition from showing to active.
While the session thread is sleeping in the showing state, the web client will

read the page, fill out appropriate form fields, and resubmit. This will result in
the following flow of data from the client to the session thread (see Figure 11.2):

1. First, a request is made by the client via the CGI protocol. This request
can be initiated either by clicking on a link or by pressing a submit button.

2. As a result, the HTTP/CGI server starts up a CGI script, that is, a
connector.

3. The connector will then see that the client is already associated with a
running thread and thus wake up that sleeping session thread and supply
its new arguments.

11.4.4 Interaction with the controller

The controller allows the programmer to restrict the execution of a web service
in such a way that stated safety requirements are satisfied.

Threads have built-in checkpoints at places where safety critical code is
to be executed. At these checkpoints the thread must ask the controller for
permission to continue. The controller, in turn, is constructed in such a way
that it restricts execution according to the safety requirements and only allow
threads that are not about to violate the requirements to continue.

In the following we describe in further detail the controller itself, what
happens when session threads ask for permission, and how permission is granted
by the controller.

The controller

The controller consists of three parts: some control logic, a number of check-
point-event queues, and a timeout queue. Figure 11.4 gives an overview of the
controller.

3S

3S

S3

QUEUE

E

CHECKPOINT EVENT QUEUES

CONTROL LOGIC

1

2E

TIMEOUTE3

Figure 11.4: Components of the controller

114 Chapter 11. A Runtime System for Interactive Web Services

The control logic The control logic is the actual component representing
the safety requirements. It controls whether events are enabled, and hence
when the various session threads may continue execution at checkpoints. One
could imagine various approaches, such as, the use of finite state machines or
petri-nets. For that reason, the internals of the control logic are not specified
here. The only requirement is that the interface must contain the following two
functions available to the runtime system:

• check enabled — takes a checkpoint-event ID as argument and replies
whether that event is currently enabled.

• event occurred — takes the ID of an enabled checkpoint-event as argu-
ment and updates the internal state of control logic with the information
that the event has occurred.

We explain in the following how these functions are used in the controller.

Checkpoint-event queues The checkpoint-event queues form the interface
to the running threads of the service. There is a queue for each possible check-
point event. When a thread reaches a checkpoint it asks the controller for
permission to continue by adding its process-ID onto the queues corresponding
to the events it wants to wait for at the checkpoint.

Timeout queue As an extra feature one can specify a timeout when asking
the controller for permission to continue. For this purpose the controller has a
timeout queue. If permission is not granted within the specified time bound,
the controller wakes up the thread with the information that permission has not
been granted yet, but a timeout event has occurred. The specified timeouts are
put in the special timeout queue (which is implemented as a priority queue).

Asking for permission at checkpoints

This section describes the transition from active to waiting.
As mentioned earlier, one has the possibility of adding checkpoints to session

code where critical code is to be executed. The runtime system interface makes
some functions available to the service programmer for specifying checkpoints.
Conceptually, the programmer uses them to specify a “checkpoint statement”
as illustrated with an example in Figure 11.5. This example would have the
effect that whenever a thread instance of this session reaches this point it will
do the following:

1. First, it will tell the controller that it waits for either an E1 event, an E3

event, or a timeout of 20 seconds.

2. Having sent this request to the controller, the thread goes to sleep waiting
for a response.

11.4. Dynamics of the Runtime System 115

wait {
case E1:

...
case E3:

...
timeout 20:

...
}

Figure 11.5: A checkpoint example

Controller actions

When the controller is up and running, it loops doing the following:

• If it receives a request to pass a checkpoint from a client, the controller
pushes the ID of the client onto the appropriate queues. These entries are
chained so that later, when permission is granted, they can all be removed
at once. Figure 11.4 illustrates the effect of the example from Figure 11.5
where entries belonging to a session, S3, are in the E1, E3 and timeout
queues.

• If a timeout has occurred, the controller deletes the affected entries in the
queues and informs the involved thread.

• Otherwise, it will look for an enabled event using the check enabled
function from the control logic. If the queue corresponding to an enabled
event is non-empty then the controller makes the event occur by doing
the following:

1. It removes the linked entries with the thread-ID of the enabled event
from the respective queues,

2. tells the control logic that the event has occurred using the event -
occurred function, and

3. wakes up the involved thread with a “permission granted” signal
containing the name of the event.

If several events become enabled, a token-ring scheduling policy is used.
This ensures fairness in the sense that if a thread waits for an enabled
event, it will at some point be granted permission to continue.

Permission granted

This section describes the transition from waiting to active.
Having sent a request for permission to continue the thread is sleeping,

waiting for the controller to make a response. If a “permission granted” signal
is sent to the thread, it wakes up and continues, branching according to the

116 Chapter 11. A Runtime System for Interactive Web Services

event signaled by the controller. In the example checkpoint in Figure 11.5, if
the controller grants permission for an E1 event, execution is continued at the
code following case E1. If the controller sends a “timeout” signal, execution
continues after timeout.

11.5 Extending the Runtime System

The runtime system described in the previous sections can be extended in sev-
eral ways. The following extensions either have been implemented in an exper-
imental version of the runtime system package or will be in near future. With
these extensions, we believe that we begin reaching the limits of what is possi-
ble with the standard CGI protocol and the current functionality of standard
browsers.

Distributed safety controller

To smoothen presentation, we have so far described the controller as one cen-
tralized component. In most cases it is possible to divide the control logic into
independent parts controlling disjoint sets of checkpoint events. The controller
can then be divided into a number of distributed control processes [71]. This
way the problem of the controller being a bottleneck in the system is successfully
avoided.

Service monitors

Using the idea of connectors and controllers, one can construct a “remote service
monitor”, that is, a program run by a super-client, which is able to access logs
and statistics information generated by the connectors and controllers, and to
inspect and change the global state and the state of the control logic in the
controllers. This can be implemented by having a dedicated monitor process
for each service.

Secure communication

The system presented here is quite vulnerable to hostile attacks. It is easy to
hijack a session, since the URL of the reply file is enough to identify a session.
A simple solution is to use random keys in the URLs, making it practically
impossible to guess a session ID. Of course, all information sent between the
clients browser and the server, such as the session ID and all data written in
forms, can still be eavesdropped. To avoid this, we have been doing experiments
with cryptography, making all communication completely secure in practice.
This requires use of browser plug-ins, which unfortunately has not been stan-
dardized. The protocols being used in the experiments are RSA, DES3, and
RIPE-MD160. They prevent hijacking, provide secure channels, and verify user
ID—all transparently to the client.

11.6. Related Work 117

Document clusters

In the session concept illustrated in Figure 11.1, only one page is generated and
shown to the client at a time. However, often the service wants to generate a
whole “cluster” of linked documents to the client and let the client browse these
documents without involving the session thread. With the current implemen-
tation, a solution would be to program the possibility of browsing the cluster
into the service code—inevitably a tedious and complicated task.

Document clusters can be implemented by simply having a reply file for
each document in the cluster. Recall, however, that in the presented setup, the
name of the reply file was fixed for the duration of a session. That way, the
history buffer of the browser got a reasonable functionality. Therefore, to get
that functionality we need a somewhat different approach: the reply files are
not retrieved directly by the HTTP server but via a connector process. This
connector receives the ID of the session thread in the CGI query string and the
document number in a hidden variable.

Single process model

If all server processes (the session threads, safety controllers, etc.) are running
on the same machine, that is, the possibility of distributing the processes is not
being exploited, they might as well be combined into a single process using light-
weight threads. This decreases the memory use (unless the operating system
provides transparent sharing of code memory) and removes the overhead of
process communication. The resulting system becomes something very close to
being a dedicated web server. The important difference being that it still builds
upon the CGI protocol.

11.6 Related Work

The idea of having persistent processes running residently on the server is cen-
tral in the FastCGI [66] system. One difference is that FastCGI requires platform-
and server-dependent support, while our approach works for all servers that
support CGI. Also, our runtime system is tailored to support more specific
needs.

A more detailed and formal description of how one can make use of safety
requirements written separately in a suitable logic can be found in [13, 71]. A
language for writing safety requirements is presented, the compilation process
into a safety controller is described, and optimizations for memory usage and
flow capacity of the controller are developed. A recent paper [45] generalizes
these ideas resulting in a standard scheme for generating controllers for discrete
event systems with both controllable and uncontrollable events.

The Mawl language [3, 29, 55] has been suggested as a domain-specific lan-
guage for describing sequential transaction-oriented web applications. Its high-
level notation is also compiled into low-level CGI scripts. Mawl directly provides
programming constructs corresponding to global state, dynamic document, ses-
sions, local state, imperative actions, and client interactions. This system shows

118 Chapter 11. A Runtime System for Interactive Web Services

great promise to facilitate the efficient production of reliable web services. While
Mawl thus offers automatic synthesis of many advanced concepts, it still relies
on standard low-level semaphore programming for concurrency control. Also,
it does not have a FastCGI-like solution but in instead it is possible to compile a
service into a dedicated server for that particular service. Though being faster
than using simple CGI scripts this solution is, as opposed to using a FastCGI-like
solution, not easily ported between different machine architectures.

11.7 Conclusions and Future Work

The implementation as briefly described in Appendix 11.7 constitutes the core
of the <bigwig> tool which currently is being developed at BRICS. In the
<bigwig> tool, the runtime system we propose here has shown to provide simple
and efficient solutions to problems occurring more and more often due to the
increased use of interactive web services. Furthermore, the session concept
seems to constitute a framework which is very natural to use for designing
complex services. By basing the design of the runtime system on very widely
used protocols, the system is easy to incorporate. The further development of
the runtime system can be followed on the <bigwig> homepage [74].

Implementation

A UNIX version of the runtime system has been implemented (in C) as a package
“runwig” containing the following components (corresponding to Figure 11.2):

• The connector. It provides connection between the other components and
the clients through the HTTP/CGI server.

• The safety controller, which handles syncronization and concurrency con-
trol. For the reasons described in Section 11.4.4, the control-logic is not
included in the package but needs to be supplied separately.

• The runtime library, which is linked into the service code. It provides
functions for easy interaction with the other components.

An experimental version of the runtime package implements the extensions
described in Section 11.5. The runwig package—including all source code,
detailed documentation, and examples—is available online1.

<bigwig>

<bigwig> is a high-level programming language for developing interactive web
services. Complete specifications are compiled into a conglomerate of lower-
level technologies such as CGI-scripts, HTML, JavaScript, Java applets, and
plug-ins running on top the runtime system presented in this paper. <bigwig>

1http://www.brics.dk/bigwig/runwig/

11.7. Conclusions and Future Work 119

is an intellectual descendant of the Mawl project but is a completely new design
and implementation with vastly expanded ambitions.

The <bigwig> language is really a collection of tiny domain-specific lan-
guages focusing on different aspects of interactive web services. To minimize
the syntactic burdens, these contributing languages are held together by a C-
like skeleton language. Thus, ¡bigwig¿ has the look and feel of C-programs with
special data- and control-structures.

A <bigwig>service executes a dynamically varying number of threads. To
provide a means of controlling the concurrent behavior, a thread may synchro-
nize with a central controller that enforces the global behavior to conform to
a regular language accepted by a finite-state automaton. That is, the ’control
logic’ in <bigwig> consists of finite-state automata. The controlling automa-
ton is not given directly, but is computed (by the MONA [50,62] system) from
a collection of individual concurrency constraints phrased in first-order logic.
Extensions with counters and negated alphabet symbols add expressiveness be-
yond regular languages.

HTML documents are first-class values that may be computed and stored in
variables. A document may contain named gaps that are placeholders for either
HTML fragments or attributes in tags. Such gaps may at runtime be plugged
with concrete values. Since those values may themselves contain further gaps,
this is a highly dynamic mechanism for building documents. The documents
are represented in a very compressed format, and the plug operations takes
constant time only. A flow-sensitive type checker ensures that documents are
used in a consistent manner.

A standard service executes with hardly any security. Higher levels of se-
curity may be requested, such that all communications are digitally signed or
encrypted using using 512 bit RSA and DES3. The required protocols are
implemented using a combination of Java, Javascript, and native plug-ins.

The familiar struct and array datastructures are replaced with tuples and
relations which allow for a simple construction of small relational databases.
These are efficiently implemented and should be sufficient for databases no
bigger than a few MBs (of which there are quite a lot). A relation may be
declared to be external, which will automatically handle the connection to some
external server. An external relation is accessed with (a subset of) the syntax
for internal relations, which is then translated into SQL.

An important mechanism for gluing these components together is a fully
general hygienic macro mechanism that allows ¡bigwig¿ programmers to extend
the language by adding arbitrary new productions to its grammar. All nonter-
minals are potential arguments and result types for such macros that, unlike
C-front macros, are soundly implemented with full alpha-conversions. Also,
error messages remain sensible, since they are threaded back through macro
expansion. This allows the definition of Very Domain-Specific Languages that
contain specialized constructions for building chat rooms, shopping centers, and
much more. Macros are also used to wrap concurrency constraints and other
primitives in layers of user-friendly syntax.

Version 0.9 of <bigwig> is currently undergoing internal evaluation at BRICS.
If you want to try it out, then contact us for more information. The documen-

120 Chapter 11. A Runtime System for Interactive Web Services

tation is very rough as yet, but this has a high priority in the next few months.
The project is scheduled to deliver a version 1.0 of the <bigwig> tool in June
1999. This will be freely available in an open source distribution for UNIX.

Chapter 12

PowerForms: Declarative Client-Side Form

Field Validation

with Anders Møller, Mikkel Ricky, and Michael I. Schwartzbach

Abstract

All uses of HTML forms may benefit from validation of the specified
input field values. Simple validation matches individual values against
specified formats, while more advanced validation may involve interde-
pendencies of form fields.

There is currently no standard for specifying or implementing such vali-
dation. Today, CGI programmers often use Perl libraries for simple server-
side validation or program customized JavaScript solutions for client-side
validation.

We present PowerForms, which is an add-on to HTML forms that al-
lows a purely declarative specification of input formats and sophisticated
interdependencies of form fields. While our work may be seen as inspira-
tion for a future extension of HTML, it is also available for CGI program-
mers today through a preprocessor that translates a PowerForms docu-
ment into a combination of standard HTML and JavaScript that works on
all combinations of platforms and browsers.

The definitions of PowerForms formats are syntactically disjoint from
the form itself, which allows a modular development where the form is
perhaps automatically generated by other tools and the formats and in-
terdependencies are added separately.

PowerForms has a clean semantics defined through a fixed-point pro-
cess that resolves the interdependencies between all field values. Text fields
are equipped with status icons (by default traffic lights) that continuously
reflect the validity of the text that has been entered so far, thus providing
immediate feed-back for the user. For other GUI components the available
options are dynamically filtered to present only the allowed values.

PowerForms are integrated into the <bigwig> system for generating
interactive Web services, but is also freely available in an Open Source
distribution as a stand-alone package.

121

122 Chapter 12. PowerForms: Declarative Client-Side Form Field Validation

12.1 Introduction

We briefly review some relevant aspects of HTML forms. The CGI protocol
enables Web services to receive input from clients through forms embedded in
HTML pages. An HTML form is comprised of a number of input fields each
prompting the client for information.

The visual rendering of an input field and how to enter the information it
requests is determined by its type. The most widely used fields range from
expecting lines of textual input to providing choices between a number of fixed
options that were determined at the time the page was constructed. Many of
the fields only differ in appearance and are indistinguishable to the server in
the sense that they return the same kind of information. Fields of type text
and password, although rendered differently, each expect one line of textual
input from the client. Multiple lines of textual input can be handled through
the textarea field. The fields of types radio and select both require exactly
one choice between a number of static options, whereas an arbitrary number of
choices are permitted by the checkbox and select (multiple) fields. Individ-
ual radio and checkbox fields with common name may be distributed about
the form and constitute a group for which the selection requirements apply.
The options of a select field, on the other hand, are grouped together in one
place in the form. In addition, there are the more specialized fields, image,
file, button, and hidden, which we shall not treat in detail. Finally, two
fields control the behavior of the entire form, namely reset and submit, which
respectively resets the form to its initial state and submits its contents to the
server.

12.1.1 Input validation

Textual input fields could possibly hold anything. Usually, the client is expected
to enter data of a particular form, for instance a number, a name, a ZIP-
code, or an e-mail address. The most frequent solution is to determine on
the server whether the submitted data has the required form, which is known
as server-side input validation. If some data are invalid, then those parts are
presented once again along with suitable error messages, allowing the client
to make the necessary corrections. This process is repeated until all fields
contain appropriate data. This solution is simple, but it has three well-known
drawbacks:

• it takes time;

• it causes excess network traffic; and

• it requires explicit server-side programming.

Note that these drawbacks affect all parties involved. The client is clearly
annoyed by the extra time incurred by the round-trip to the server for validation,
the server by the extra network traffic and “wasted” cycles, and the programmer
by the explicit programming necessary for implementing the actual validation
and re-showing of the pages. An obvious solution to the first two drawbacks is

12.1. Introduction 123

Figure 12.1: Conference questionnaire.

to move the validation from the server to the client, yielding client-side input
validation. The third drawback, however, is only partially alleviated. All the
details of re-showing pages are no longer required, but the actual validation still
needs to be programmed.

The move from server-side to client-side also opens for another important
benefit, namely the possibility of performing the validation incrementally. The
client no longer needs to click the submit button before getting the validation
report. This allows errors to be be signalled as they occur, which clearly eases
the task of correctly filling out the form.

12.1.2 Field interdependencies

Another aspect of validation involves interdependent fields. Many forms con-
tain fields whose values may be constrained by values entered in other fields.
Figure 12.1 exhibits a simple questionnaire from a conference, in which partici-
pants were invited to state whether they have attended past conferences and if
so, how this one compared. The second question clearly depends on the first,
since it may only be answered if the first answer was positive. Conversely, an
answer to the second question may be required if the first answer was “Yes”.

Such interdependencies are almost always handled on the server, even if the
rest of the validation is addressed on the client-side. The reason is presumably
that interdependencies require some tedious and delicate JavaScript code. This
kind of validation is explicitly requested in the W3C working draft on extending
forms [32]. One could easily imagine more advanced dependencies. Also, it
would be useful if illegal selections could somehow automatically be deselected.

12.1.3 JavaScript programming

Traditionally, client-side input validation is implemented in JavaScript. We will
argue that this may not be the best choice for most Web authors.

First of all, using a general-purpose programming language for a relatively
specific purpose exposes the programmer to many unnecessary details and
choices. A small high-level domain-specific language dedicated to input val-
idation would involve only relevant concepts and thus be potentially easier to
learn and use. Many assisting libraries exist [63], but must still be used in the
context of a full programming language.

Secondly, JavaScript code has an operational form, forcing the programmer
to think about the order in which the fields and their contents are validated.

124 Chapter 12. PowerForms: Declarative Client-Side Form Field Validation

However, the simplicity of the input validation task permits the use of a purely
declarative approach. A declarative specification abstracts away operational
details, making programs easier to read, write, and maintain. Also, such an
approach is closer to composing HTML than writing JavaScript, making input
validation available to more people. As stated in the W3C working draft on
extending forms:

“It should be possible to define a rich form, including validations,
dependencies, and basic calculations without the use of a scripting
language.”

Our solution will precisely include such mechanisms for validations and depen-
dencies.

Finally, the traditional implementation task is further complicated by di-
verging JavaScript implementations in various browsers. This forces the pro-
grammer to stay within the subset of JavaScript that is supported by all
browsers—a subset that may be hard to identify. In fact, a number of sites
and FAQs are dedicated to identifying this subset [54, 94]. A domain-specific
language could be compiled into this common subset of JavaScript, implying
that only the compiler writer will be concerned with this issue.

12.1.4 Our solution: PowerForms

As argued above, our solution is to introduce a high-level declarative and
domain-specific language, called PowerForms, designed for incremental input
validation.

Section 12.2 presents our solution for simple validation; Section 12.3 ex-
tends this to handle field interdependencies; Section 12.4 exhibits how other
common uses of JavaScript also can be handled through declarative specifica-
tion; Section 12.5 presents the overall strategy of the translation to JavaScript;
and Section 12.6 describes the availability of the PowerForms packages.

12.1.5 Related work

Authoring systems like Cold Fusion [21] can automate server-side verification of
some simple formats, but even so the result is unsatisfactory. A typical response
to invalid data is shown in Figure 12.2. It refers to the internal names of input
fields which are unknown to the client, and the required corrections must be
remembered when the form is displayed again.

Active Forms [86] is based on a special browser supporting Form Applets
programmed as Tcl scripts. It does not offer high-level abstractions or integra-
tion with HTML.

Web Dynamic Forms [38] offer an ambitious and complex solution. They
propose a completely new form model that is technically unrelated to HTML
and exists entirely within a Java applet. Inside this applet, they allow com-
plicated interaction patterns controlled through an event-based programming
model in which common actions are provided directly and others may be pro-
grammed in Java. When a form is submitted, the data are extracted from

12.2. Validation of Input Formats 125

Figure 12.2: Typical server-side validation.

the applet and treated as ordinary HTML form data. The intervening years
have shown that Web authors prefer to use standard HTML forms instead and
then program advanced behavior in JavaScript. Thus, our simpler approach of
automatically generating this JavaScript code remains relevant. An important
reason to stay exclusively with HTML input fields is that they can be integrated
into HTML tables to control their layout.

The XHTML-FML language [73] also provides a means for client-side input
validation by adding an attribute called ctype to textual input fields. However,
this attribute is restricted to a (large) set of predefined input validation types
and there is no support for field inderdependency.

Our PowerForms notation is totally declarative and requires no program-
ming skills. Furthermore, it is modular in the sense that validation can be
added to an input field in an existing HTML form without knowing anything
but its name. The validation markup being completely separate from the form
markup allows the layout of a form to be redesigned at any time in any HTML
editor.

12.2 Validation of Input Formats

The language is based on regular expressions embedded in HTML that is sub-
sequently translated into a combination of standard HTML and JavaScript.
This approach benefits from an efficient implementation through the use of
finite-state automata which are interpreted by JavaScript code.

Named formats may be associated to fields whose values are then required
to belong to the corresponding regular sets. The client is continuously receiving
feedback, and the form can only be submitted when all formats are satisfied.
The server should of course perform a double-check, since the JavaScript code
is open to tampering.

Regular expressions denoting sets of strings are a simple and familiar formal-
ism for specifying the allowed values of form fields. As we will demonstrate, all

126 Chapter 12. PowerForms: Declarative Client-Side Form Field Validation

reasonable input formats can be captured in this manner. Also, the underlying
technology of finite-state automata gives a simple and efficient implementation
strategy.

12.2.1 Syntax

We define a rich XML syntax [20] for regular expressions on strings:

regexp → <const value=stringconst/> |
<empty/> |
<anychar/> |
<anything/> |
<charset value=stringconst/> |
<fix low=intconst high=intconst/> |
<relax low=intconst high=intconst/> |
<range low=charconst high=charconst/> |
<intersection> regexp* </intersection> |
<concat> regexp* </concat> |
<union> regexp* </union> |
<star> regexp </star> |
<plus> regexp </plus> |
<optional> regexp </optional> |
<repeat count=intconst> regexp </repeat>
<repeat low=intconst high=intconst> regexp </repeat>
<complement> regexp </complement> |
<regexp exp=stringconst/> |
<regexp id=stringconst> regexp </regexp> |
<regexp idref=stringconst/> |
<regexp uri=stringconst/> |
<include uri=stringconst/>

Here, regexp* denotes zero or more repetitions of regexp . The nonterminals
stringconst , intconst , and charconst have the usual meanings.

Note that the verbose XML syntax also allows standard Perl syntax for
regular expressions through the construct <regexp exp=stringconst/>. Our
full syntax is however more general, since it includes intersection, general com-
plementation, import mechanisms, and a richer set of primitive expressions.

A regular expression is associated with a form field through a declaration:

formatdecl → <format name=stringconst
help=stringconst
error=stringconst>

regexp

</format>

The value of the optional help attribute will appear in the status line of the
browser when the field has focus; similarly, the value of the optional error
attribute will appear if the field contains invalid data.

The format takes effect for a form field of type type text, password, select,
radio, or checkbox whose name is the value of the name attribute. The need
for input formats is perhaps only apparent for text and password fields, but
we need the full generality later in Section 12.3.

12.2. Validation of Input Formats 127

12.2.2 Semantics of regular expressions

Each regular expression denotes an inductively defined set of strings. The const
element denotes the singleton set containing its value. The empty element de-
notes the empty set. The anychar element denotes the set of all characters.
The anything element denotes the set of all strings. The charset denotes the
set of characters in its value. The fix element denotes the set of numerals
from low to high all padded with leading zeros to have the same length as
high. The relax element denotes the set of numerals from low to high. The
range element denotes the set of singleton strings obtained from the charac-
ters low to high. The intersection element denotes the intersection of the
sets denoted by its children. The concat element denotes the concatenation
of the sets denoted by its children. The union element denotes the union of
the sets denoted by its children. The star element denotes zero or more con-
catenations of the set denoted by its child. The plus element denotes one or
more concatenations of the set denoted by its child. The optional element
denotes the union of the set containing the empty string and the set denoted
by its child. The repeat element with attribute count denotes a fixed power
of the set denoted by its child. The repeat element with attributes low and
high denotes the corresponding interval of powers of the set denoted by its
child, where low defaults to zero and high to infinity. The complement element
denotes the complement of the set denoted by its child. The regexp element
with attribute exp denotes the set denotes by its attribute value interpreted
as a standard Perl regular expression. The regexp element with attribute id
denotes the same set as its child, but in addition names it by the value of id.
The regexp element with attribute idref denotes the same set as the regular
expression whose name is the value of idref. It is required that each id value
is unique throughout the document and that each idref value matches some
id value. The regexp element with attribute uri denotes the set recognized by
a precompiled automaton. The include element performs a textual insertion
of the document denoted by its url attribute.

12.2.3 Semantics of format declarations

The effect on a form field of a regular expression denoting the set S is defined
as follows. For a text or password field, the effect is to decorate the field with
one of four annotations:

• green light, if the current value is a member of S;

• yellow light, if the current value is a proper prefix of a member of S;

• red light, if the current value is not a prefix of a member of a non-empty
S; or

• n/a, if S is the empty set.

The form cannot be submitted if it has a yellow or red light. The default an-
notations, which are placed immediately to the right of the field, are tiny icons
inspired by traffic lights, but they can be customized with arbitrary images

128 Chapter 12. PowerForms: Declarative Client-Side Form Field Validation

traffic star check ok blank

green light

yellow
light

red light

n/a

Figure 12.3: Different styles of status icons.

to obtain a different look and feel as indicated in Figure 12.3. Other annota-
tions, like colorings of the input fields, would also seem reasonable, but current
limitations in technology make this impossible.

For a select field, the effect is to filter the option elements, allowing only
those whose values are members of S. There is a slight deficiency in the design
of a singular select, since it in some browser implementations will always show
one selected element. To account for the situation where no option is allowed,
we introduce an extension of standard HTML, namely <option value="foo"
error> which is legal irrespective of the format. The form cannot be submitted
if the error option is selected, unless S is the empty set.

For a radio field, the effect is that the button can only be depressed if its
value is a member of S; if S is not the empty set, then the form cannot be
submitted unless one button is depressed. Note that the analogue of the error
option is the case where no button is depressed.

For a checkbox field, the effect is that the button can only be depressed if
its value is a member of S.

Using our mechanism, it is possible to create a deadlocked form that cannot
be submitted. The simplest example is the following, assuming the input field
below is the only one in the radio button group named foo:

<input type="radio" name="foo" value="aaa">
<format name="foo"><const value="bbb"></format>

Regardless of whether the radio button foo is depressed or not, foo will never
satisfy its requirements. Thus, the form can never be submitted. This behavior
exposes a flaw in the design of the form, rather than an inherent problem with
our mechanisms.

12.2.4 Examples

All reasonable data formats can be expressed as regular expressions, some more
complicated than others. A simple example is the password format for user

12.2. Validation of Input Formats 129

ID registration, seen in Figure 12.4, which is five or more characters not all
alphabetic:

<regexp id="pwd">
<intersection>

<repeat low="5"><anychar/></repeat>
<complement>
<star>
<union>

<range low="a" high="z"/>
<range low="A" high="Z"/>

</union>
</star>

</complement>
</intersection>

</regexp>

or alternatively using the Perl syntax where possible:

<regexp id="pwd">
<intersection>

<regexp exp=".{5,}"/>
<complement>
<regexp exp="[a-zA-Z]*"/>

</complement>
</intersection>

</regexp>

To enforce this format on the existing form, we just add the declarations:

<format name="Password1"><regexp idref="pwd"/></format>
<format name="Password2"><regexp idref="pwd"/></format>

Figure 12.4: User ID registration.

At our Web site we show more advanced examples, such as legal dates including
leap days, URIs, and time of day. As a final example, consider a simple format
for ISBN numbers:

130 Chapter 12. PowerForms: Declarative Client-Side Form Field Validation

Figure 12.5: Checking ISBN numbers.

<regexp id="isbn">
<concat>

<repeat count="9">
<concat>
<range low="0" high="9"/>
<optional><charset value=" -"/></optional>

</concat>
</repeat>
<charset value="0123456789X"/>

</concat>
</regexp>

or more succinctly:

<regexp id="isbn">
<regexp exp="([0-9]([-]?)){9}[0-9X]"/>

</regexp>

An input field that exploits this format is:

Enter ISBN number: <input type=text name="isbn" size=20>
<format name="isbn"

help="Enter an ISBN number"
error="Illegal ISBN format">

<regexp idref="isbn"/>
</format>

Initially, the field has a yellow light. This status persists, as seen in Figure 12.5,
while we enter the text "0-444-50264-" which is a legal prefix of an ISBN
number. Entering another "-" yields a red light. Deleting this character and
entering 5 will finally give a legal value and a green light.

While the input field has focus, the help string appears in the status line
of the browser. If the client attempts to submit the form with invalid data in
this field, then the error text appears in an alert box.

An ISBN format that includes checksums can be described as a complex
regular expression that yields a 201-state automaton. This full format would
only accept 5 as the last digit, since that is the correct checksum. Such a
regular expression could hardly be written by hand; in fact, we generated it
using a C program. But as precompiled automata may be saved and provided as
formats, this shows that our technology also allows us to construct and publish

12.3. Interdependencies of Form Fields 131

a collection of advanced default formats, similarly to the datatypes employed
in XML Schema [12] and the predefined ctype formats suggested in [73].

12.3 Interdependencies of Form Fields

We present a simple, yet general mechanism for expressing interdependencies.
We have strived to develop a purely declarative notation that requires no pro-
gramming skills. Our proposal is based on dynamically evolving formats that
are settled through a fixed-point process.

12.3.1 Syntax

We extend the syntax for formats as follows:

formatdecl → <format name=stringconst> format </format>

format → regexp |
<if> boolexp

<then> format </then>
<else> format </else>

</if> |
<format id=stringconst> format </format> |
<format idref=stringconst/>

boolexp → <match name=stringconst> regexp </match> |
<equal name=stringconst value=stringconst/> |
<and> boolexp* </and> |
<or> boolexp* </or> |
<not> boolexp* </not>

Now, the format that applies to a given field is dependent on the values of
other fields. The specification is a binary decision tree, whose leaves are regular
expressions and whose internal nodes are boolean expressions. Each boolean
expression is a propositional combination of the primitive match and equal
elements that each test the field indicated by name. Even this simple language
is more advanced than required for most uses.

12.3.2 Semantics of boolean expressions

A boolean expression evaluates to true or false. For a text or password field,
equal is true iff its current value equals value; match is true iff its current value
is a member of the set denoted by regexp. For a select field, equal is true iff
the value of a currently selected option equals value; match is true iff the value
of a currently selected option is a member of the set denoted by regexp. For
a collection of radio or checkbox fields, equal is true iff a button whose value
equals value is currently depressed; match is true iff a button whose value is a
member of the set denoted by regexp is currently depressed.

For the boolean operators, and is true iff all of its children are true, or is
true if one of its children is true, and not is true if all of its children are false.

132 Chapter 12. PowerForms: Declarative Client-Side Form Field Validation

12.3.3 Semantics of interdependencies

Given a collection of form fields F1,. . . ,Fn with associated formats and values,
we define an iteration which in order does the following for each Fi:

• evaluate the current format based on the current values of all form fields;

• update the field based on the new current format.

The updating varies with the type of the form field:

• for a text field, the status light is changed to reflect the relationship
between the current value and the current format;

• for a select field, the options are filtered by the new format, and the
selected options that are no longer allowed by the format are unselected;
if the current selection of a singular select is disallowed, the error option
is selected;

• for a radio or checkbox field, a depressed button is released if its value
is no longer allowed by the format.

An iteration is monotonic, which intuitively means that it can only delete user
data. Technically, an iteration is a monotonic function on a specific lattice of
form status descriptions. It follows that repeated iteration will eventually reach
a fixed-point. In fact, if b is the total number of radio and checkbox buttons, p
is the total number of select options, and s is the number of singular selects,
then at most b+ p+ s+ 1 iterations are required. Usually, however, the fixed-
point will stabilize after very few iterations; also, a compile-time dependency
analysis can keep this number down. Only complex forms with a high degree
of interdependency will require many iterations.

The behavior of a PowerForm is to iterate to a new fixed-point whenever the
client changes an input field; furthermore, the form data can only be submitted
when all the form fields are in a status that allows this.

Note that the fixed-point we obtain is dependent on the order in which
the form fields are updated: permuting the fields may result in a different
fixed-point. We choose to update the fields in the textual order in which they
appear in the document. This is typically the order in which the client is
supposed to consider them, and the resulting fixed-point appears to coincide
with the intuitively expected behavior. For simpler forms, the order is usually
not significant.

With form interdependency it is not only possible to create a deadlocked
form that can never be submitted, but also to create buttons that can never
be depressed. Consider again the example from Section 12.2. Since the value
aaa is different from bbb, the foo button will instantly be released whenever
it is depressed. Such behavior can of course also stem from more complicated
interdependent behavior.

The possible behaviors of PowerForms can in principle be analyzed stati-
cally. Define the size |R| of a regular expression to be the number of states in
the corresponding minimal, deterministic finite-state automaton, and the size

12.3. Interdependencies of Form Fields 133

|F | of an input field to be the product of the sizes of all regular expressions that
it may be tested against. Then a collection of input fields F1, . . . , Fn determines
a finite transition system with |F1||F2| · · · |Fn| states for which the reachability
problem is decidable but hardly feasible in practice. We therefore leave it to
the Web author to avoid aberrant behavior.

12.3.4 Examples

As a first example, we will redo the questionnaire from Figure 12.1:

Have you attended past WWW conferences?
<input type="radio" name="past" value="yes">Yes
<input type="radio" name="past" value="no">No

 If Yes, how did WWW8 compare?
<input type="radio" name="compare" value="better">Better
<input type="radio" name="compare" value="same">Same
<input type="radio" name="compare" value="worse">Worse

To obtain the desired interdependence, we declare the following format:

<format name="compare">
<if><equal name="past" value="yes"/>
<then><complement><const value=""/></complement></then>
<else><empty/></else>

</if>
</format>

Only if the first question is answered in the positive, may the second group
of radio buttons may be depressed and an answer is also required. A second
example shows how radio buttons may filter the options in a selection:

Favorite letter group:
<input type="radio" name="group" value="vowel" checked>vowels
<input type="radio" name="group" value="consonant">consonants

Favorite letter:
<select name="letter">
<option value="a">a
<option value="b">b
<option value="c">c
...
<option value="x">x
<option value="y">y
<option value="z">z

</select>

The unadorned version of this form allows inconsistent choices such as group
having value vowel and letter having value z. However, we can add the
following format:

<format name="letter">
<if><equal name="group" value="vowel"/>

<then><charset value="aeiouy"/></then>

134 Chapter 12. PowerForms: Declarative Client-Side Form Field Validation

Figure 12.6: Only vowels are presented.

<else><charset value="bcdfghjklmnpqrstvwxz"/></else>
</if>

</format>

Apart from enforcing consistency, the induced behavior will make sure that the
client is only presented with consistent options, as shown in Figure 12.6. Next,
consider the form:

Personal info
<p>
Name: <input type="text" name="name" size="30">

Birthday: <input type="text" name="birthday" size="20">

<table border="0" cellpadding="0" cellspacing="0">
<tr><td valign="top">Marital status:</td>
<td><input type=radio name="marital" value="single" checked>single

<input type="radio" name="marital" value="married">married

<input type="radio" name="marital" value="widow">widow[er]
</td>
</tr>
</table>
<p>
Spousal info
<p>
Name: <input type="text" name="spouse" size="30">

Deceased <input type="radio" name="deceased" value="deceased">

Several formats can be used here. For the birthday, we select from our standard
library a 35-state automaton recognizing legal dates including leap days:

<format name="birthday">
<regexp uri="http://www.brics.dk/bigwig/powerforms/date.dfa"/>

</format>

Among the other fields, there are some obvious interdependencies. Spousal info
is only relevant if the marital status is not single, and the spouse can only
be deceased if the marital status is widow:

12.3. Interdependencies of Form Fields 135

Figure 12.7: Collecting personal information.

<format name="spouse">
<if><equal name="marital" value="married"/>

<then><regexp idref="handle"/></then>
<else>
<if><equal name="marital" value="single"/>
<then><empty/></then>
<else><regexp idref="handle"/></else>

</if>
</else>

</if>
</format>

<format name="deceased">
<if><equal name="marital" value="widow"/>

<then><const value="deceased"/></then>
<else><empty/></else>

</if>
</format>

Here, handle refers to some regular expression for the names of people. Note
that if the marital status changes from widow to single, then the deceased
button will automatically be released. Dually, it seems reasonable that after
a change from single to widow, the deceased button should automatically
be depressed. However, such action is generally not meaningful, since it may
cause the form to oscillate between two settings. In our formalism, this would
violate the monotonicity property that guarantees termination of the fixed-
point iteration. Still, the form cannot be submitted until the deceased button
is depressed for a widow. The initial form is shown in Figure 12.7.

An example of a more complex boolean expression involves the form in
Figure 12.8. Here, simple formats determine that the correct style of phone

136 Chapter 12. PowerForms: Declarative Client-Side Form Field Validation

Figure 12.8: Collecting customer information.

numbers is used for the chosen country. The option of requesting a visit from
the NYC office is only open to those customers who live in New York City. This
constraint is enforced by the following format:

<format name="nyc">
<if><and><equal name="country" value="US"/>

<match name="phone">
<concat>

<union>
<const value="212"/>
<const value="347"/>
<const value="646"/>
<const value="718"/>
<const value="917"/>

</union>
<anything/>

</concat>
</match>

</and>
<then><anything/></then>
<else><empty/></else>

</if>
</format>

Residents from other cities will find that they cannot depress the button.
As a final example of the detailed control that we offer, consider the form

in Figure 12.9 which invites users to request a new version of a product. Until
the client has stated whether he has a license or not, it is impossible to choose
a version. Once the choice has been made, licensed users can choose between
all versions, others are limited to versions 1.1 and 1.2. The format on the last
group of radio buttons is:

<format name="version">
<if><equal name="license" value="yes"/>

<then><anything/></then>
<else>

12.4. Applet results 137

Figure 12.9: Collecting user information.

<if><equal name="license" value="no"/>
<then><union>

<const value="1.1"/>
<const value="1.2"/>

</union>
</then>
<else><empty/></else>

</if>
</else>

</if>
</format>

12.4 Applet results

Java applets can be used in conjunction with forms to implement new GUI
components that collect data from the client. However, it is not obvious how to
extract and validate data from an applet and submit it to the server on equal
footing with ordinary form data.

We propose a simple mechanism for achieving this goal. We extend the
applet syntax to allow result elements in addition to param elements. An
example is the following:

<applet codebase="http://www.brics.dk/bigwig/powerapplets"
code="slidebar.class">

<param name="low" value="32">
<param name="high" value="212">
<result name="choice">

</applet>

When this applet is displayed, it shows a slide bar ranging over the interval
[32..212]. When the form is submitted, the applet will be requested to supply
a value for the choice result. This value is then assigned to a hidden form
field named choice and will now appear with the rest of the form data. If the
applet is not ready with the result, then the form cannot be submitted.

This extension only works for applets that are subclasses of the special
class PowerApplet that we supply. It implements the method putResult that
is used by the applet programmer to supply results, as well as the methods
resultsReady and getResult that are called by the JavaScript code that im-
plements the form submission.

138 Chapter 12. PowerForms: Declarative Client-Side Form Field Validation

In relation to PowerForms, applet results play the same role as input fields.
Thus, they can have associated formats and be tested in boolean expressions.
The value of an optional error attribute will appear in the alert box if an
attempt is made to submit the form with a missing or invalid applet result.

12.5 Translation to JavaScript

A PowerForms document is parsed according to a very liberal HTML grammar
that explicitly recognizes the special elements such as format and regexp. The
generated HTML document retains most of the original structure, except that
it contains the generated JavaScript code. Also, each input field is modified to
include onKeyup, onChange, and onClick functions that react to modifications
from the client.

A function update foo is defined for each input field name foo. This func-
tion checks if the current data is valid and reacts accordingly. Another function
update all is responsible for computing the global fixed-point.

Each regular expression is by the compiler transformed into a minimal, de-
terministic finite-state automaton, which is directly represented in a JavaScript
data structure. It is a simple matter to use an automaton for checking if a data
value is valid. For text and password fields, the status lights green, yellow,
and red correspond to respectively an accept state, a non-accept state, and
the crash state. For efficiency, the generated automata are time-stamped and
cached locally; thus, they are only recompiled when necessary.

The generated code is quite small, but relies on a 500 line standard library
with functions for manipulating automata and the Document Object Model [1].

12.6 Availability

The PowerForms system is freely available in an open source distribution from
our Web site located at http://www.brics.dk/bigwig/powerforms/. The
package includes documentation, the examples from this paper and many more,
and the compiler itself which is written in 4000 lines of C. The generated
JavaScript code has been tested for Netscape on Unix and Windows and for
Explorer on Windows.

PowerForms are also directly supported by the <bigwig> system which is a
high-level language for generating interactive Web services [16,18,71,72]. It is
likewise available at http://www.brics.dk/bigwig/.

12.7 Conclusion

We have shown how to enrich HTML forms with simple, declarative concepts
that capture advanced input validation and field interdependencies. Such forms
are subsequently compiled into JavaScript and standard HTML. This allows the
design of more complex and interesting forms while avoiding tedious and error-
prone JavaScript programming.

12.7. Conclusion 139

We would like to thank the entire <bigwig> team for assisting in experiments
with PowerForms. Thanks also goes to the PowerForms users, in particular
Frederik Esser, for valuable feedback.

Chapter 13

Static Validation of Dynamically Generated

HTML

with Anders Møller and Michael I. Schwartzbach

Abstract

We describe a static analysis of <bigwig> programs that efficiently
decides if all dynamically computed XHTML documents presented to the
client will validate according to the official DTD. We employ two data-
flow analyses to construct a graph summarizing the possible documents.
This graph is subsequently analyzed to determine validity of those docu-
ments. By evaluating the technique on a number of realistic benchmarks,
we demonstrate that it is sufficiently fast and precise to be practically
useful.

13.1 Introduction

Increasingly, HTML documents are dynamically generated by scripts running
on a Web server, for instance using PHP, ASP, or Perl. This makes it much
harder for authors to guarantee that such documents are really valid, meaning
that they conform to the official DTD for HTML 4.01 or XHTML 1.0 [67]. Static
HTML documents can easily be validated by tools made available by W3C and
others. So far, the best possibility for a script author is to validate the dynamic
HTML documents after they have been produced at runtime. However, this is
an incomplete and costly process which does not provide any static guarantees
about the behavior of the script. Alternatively, scripts may be restricted to
use a collection of pre-validated templates, but this is generally not sufficiently
expressive.

We present a novel technique for static validation of dynamic XHTML doc-
uments that are generated by a script. Our work takes place in the context of
the <bigwig> language [18, 72], which is a full-fledged programming language
for developing interactive Web services. In <bigwig>, XHTML documents are
first-class citizens that are subjected to computations like all other data values.
We instrument the compiler with an interprocedural data-flow analysis that

141

142 Chapter 13. Static Validation of Dynamically Generated HTML

extracts a grammatical structure, called a summary graph, covering the class of
XHTML documents that a given program may produce. Based on this infor-
mation, the compiler statically determines if all documents in the given class
conform to the DTD for XHTML 1.0. To accomplish this, we need to reformu-
late DTDs in a novel way that may be interesting in its own right. The analysis
has efficiently handled all available examples. Furthermore, our technique can
be generalized to more powerful grammatical descriptions.

Outline

First, in Section 13.2, we give a brief introduction to dynamically generating
XHTML documents in the <bigwig> language. Section 13.3 formally defines
the notion of summary graphs. In Sections 13.4 and 13.5, the two parts of the
data-flow analysis are specified. Then, in Section 13.6, a notion of abstract
DTDs is defined and used for specifying XHTML 1.0. Section 13.7 describes
the algorithm for validating summary graphs with respect to abstract DTDs.
In Section 13.8 we evaluate our implementation on ten <bigwig> programs.
Finally, in Sections 13.9 and 13.10 we briefly describe related techniques and
plans and ideas for future work.

13.2 XHTML Documents in <bigwig>

XHTML documents are just XML trees. In the <bigwig> language, XML
templates are first-class data values that may be passed and stored as any
other values. Templates are more general than XML trees since they may
contain gaps, which are named placeholders that can be plugged with templates
and strings: If x is an XML template with a gap named g and y is another
XML template or a text string, then the plug operation, x<[g =y], results in a
new template which is copy of x where a copy of y has been inserted into the
g gap:

x:

x<[=y]:

y:

g

g

A <bigwig> service consists of a number of sessions. A session thread can be
invoked by a client who is subsequently guided through a number of interactions,
controlled by the service code on the server. A document is a template where
all gaps have been filled. When a complete XHTML document has been built
on the server, it can be shown to the client who fills in the input fields, selects
menu options, etc., and then continues the session by submitting the input to
the session thread.

This plug-and-show mechanism provides a very expressive way of dynam-
ically constructing Web documents. It is described in more detail in [18, 72]
where a thorough comparison with other mechanisms is given and other aspects

13.2. XHTML Documents in <bigwig> 143

of <bigwig> are described. Since templates can be plugged into templates,
these are higher-order templates, as opposed to the less flexible templates in
the Mawl language [3, 4, 55] where only strings can be plugged in.

Note that the number of gaps may both grow and shrink as the result of a
plug operation. Also, gaps may appear in a non-local manner, as exemplified by
the what gap being plugged with the template BRICS in the following
simple example in the actual <bigwig> syntax:

service {
html cover = <html>

<head><title>Welcome</title></head>
<body bgcolor=[color]>
<[contents]>

</body>
</html>;

html greeting = <html>
Hello <[who]>, welcome to <[what]>.

</html>;

html person = <html>
<i>Stranger</i>

</html>;

session welcome() {
html h;
h = cover<[color="#9966ff",

contents=greeting<[who=person]];
show h<[what=<html>BRICS</html>];

}
}

This service contains four constant templates and a session which when invoked
will assemble a document using plug operations and show it to the client. Note
that color is an attribute gap which can only be plugged with a string value,
while the other gaps can also be plugged with templates. Constant templates
are delimited by <html>. . . </html>. Implicitly, the mandatory surrounding
<html> element is added to a document before being shown. Also, <head>,
<title>, and <body> elements and a form with a default submit button is
added if not already present. To simplify the presentation, we do not distinguish
between HTML and XHTML since there are only minor syntactical differences.
In the implementation, we allow HTML syntax but convert it to XHTML.

Note that <bigwig> is as general as all other languages for producing XML
trees, since it is possible to define for each different element a tiny template
like:

<html><ul style=[style]><[items]></html>

that corresponds to a constructor function. The typical use of larger templates
is mostly a convenience for the <bigwig> programmer.

144 Chapter 13. Static Validation of Dynamically Generated HTML

The <bigwig> compiler already contains an interprocedural data-flow analy-
sis that keeps track of gaps and input fields in templates to enable type checking
of plug and show operations [72]. That analysis statically ensures that the gaps
are present when performing a plug operation and that the input fields in the
documents being shown match the code that receives the values. However, the
validity of the documents being shown has not been considered before, neither
for <bigwig> or—to our knowledge—for any other programming language with
such a flexible document construction mechanism.

XML Templates

We now formally define an abstract XML template. We are given an alphabet
Σ of characters, an alphabet E of element names, an alphabet A of attribute
names, an alphabet G of template gap names, and an alphabet H of attribute
gap names. For simplicity, all alphabets are assumed to be disjoint. An XML
template is generated by Φ in the following grammar:

Φ → ε
→ •
→ g g ∈ G
→ e(∆)Φ e ∈ E
→ Φ1Φ2

∆→ ε
→ (a = s) a ∈ A, s ∈ Σ∗

→ (a = h) a ∈ A, h ∈ H
→ ∆1∆2

An XML template is a list of ordered trees where the internal nodes are elements
with attributes and the leaves are either empty nodes, character data nodes, or
gap nodes. Element attributes are generated by ∆. The • symbol represents
an arbitrary sequence of character data. We ignore the actual data, since those
are never constrained by DTDs, unlike attribute values which we accordingly
represent explicitly. As an example, we view the cover template abstractly as
follows if we ignore character data nodes consisting only of white-space:

l
l

l
,

,
,

title()

head() body(bgcolor=color)

•

contents

We introduce a function:

gaps : (Φ ∪∆) → 2G∪H

13.2. XHTML Documents in <bigwig> 145

which gives the set of gap names occurring in a template or attribute list:

gaps(ε) = ∅
gaps(•) = ∅
gaps(g) = {g}

gaps(e(δ)φ) = gaps(δ) ∪ gaps(φ)
gaps(φ1φ2) = gaps(φ1) ∪ gaps(φ2)
gaps(a = s) = ∅
gaps(a = h) = {h}
gaps(δ1δ2) = gaps(δ1) ∪ gaps(δ2)

A template φ with a unique root element and with gaps(φ) = ∅ is considered a
complete document.

Programs

We represent a <bigwig> program abstractly as a control-flow graph with
atomic statements at each program point. The actual syntax for <bigwig>
is very liberal and resembles C or Java code with control structures and func-
tions. For <bigwig> it is a simple task to extract the normalized representa-
tion. If the underlying language had a richer control structure, for instance
with inheritance and virtual methods or higher-order functions, we would need
a preliminary control-flow analysis to provide the control-flow graph.

A program uses a set X of XML template variables and a set Y of string
variables. The atomic statements are:

xi = xj; (template variable assignment)
xi = φ; (template constant assignment)
yi = yj; (string variable assignment)
yi = s; (string constant assignment)
yi = •; (arbitrary string assignment)
xi = xj<[g=xk]; (template gap plugging)
xi = xj<[h=yk]; (attribute gap plugging)
show xi; (client interaction)

where x ∈ X and y ∈ Y for each x and y. The assignments have the obvious
semantics. The plug statement replaces all occurrences of a named gap with
the given value. The show statement implicitly plugs all remaining gaps with ε
before the template is displayed to the client. Also, the template is implicitly
plugged into a wrapper template like the following:

<html>
<head><title></title></head>
<body>

<form action="...">
<[doc]>
<input type="submit" value="continue">

</form>
</body>

</html>

146 Chapter 13. Static Validation of Dynamically Generated HTML

for completing the document and adding a “continue” button. The <head>,
<title>, <body>, and <input> elements are of
course only added if not already present. Since we here ignore input fields in
documents, the receive part of show statements is omitted in this description.

13.3 Summary Graphs

Given a program control-flow graph, we wish to extract a finite representation of
all the templates that can possibly be constructed at runtime. A program con-
tains a finite collection of constant XML templates that are identified through
a mapping function:

f : N → Φ

where N is the finite set of indices of the templates occuring in the program.
A program also contains a finite collection of string constants, which we shall
denote by C ⊆ Σ∗. We now define a summary graph as a triple:

G = (R,E,α)

whereR ⊆ N is a set of roots, E ⊆ N×G×N is a set of edges, and α : N×H → S
is an attribute labeling function, where S = 2C ∪{•}. Intuitively, • denotes the
set of all strings.

Each summary graph G defines a set of XML templates, which is called the
language of G and is denoted L(G). Intuitively, this set is obtained by unfolding
the graph from each root while performing all possible pluggings enabled by the
edges and the labeling function. Formally, we define:

L(G) = {φ ∈ Φ | ∃r ∈ R : G, r ` f(r) ⇒ φ}
where the derivation relation ⇒ is defined for templates as:

G,n ` ε⇒ ε G, n ` • ⇒ •

(n, g,m) ∈ E G,m ` f(m) ⇒ φ

G,n ` g ⇒ φ

G,n ` δ ⇒ δ′ G,n ` φ⇒ φ′

G,n ` e(δ)φ ⇒ e(δ′)φ′

G,n ` φ1 ⇒ φ′1 G,n ` φ2 ⇒ φ′2
G,n ` φ1φ2 ⇒ φ′1φ

′
2

and for attribute lists as:
α(n, h) 6= • s ∈ α(n, h)
G,n ` (a = h) ⇒ (a = s)

α(n, h) = • s ∈ Σ∗

G,n ` (a = h) ⇒ (a = s)

G,n ` δ1 ⇒ δ′1 G,n ` δ2 ⇒ δ′2
G,n ` δ1δ2 ⇒ δ′1δ′2

13.4. Gap Track Analysis 147

As an example, consider the following summary graph consisting of four tem-
plate nodes, four plug edges, and a single attribute labeling:

items

items

text

ε

text

items

 <[]>

<[]>

itemslarge

<ul class=[]>
 <[]>

kind

kind
items

Template nodes, root nodes, and attribute labels are drawn as circles, double
circles, and boxes, respectively. The language of this summary graph is the set
of all ul lists of class large with one or more character data items.

13.4 Gap Track Analysis

To obtain sufficient precision of the actual validation analysis, we first perform
an initial analysis that tracks the origins of gaps. We show in Section 13.5
exactly why this information is necessary.

Lattices

The lattice for this analysis is simply:

T = (G ∪H) → 2N

ordered by pointwise subset inclusion. For each program point ` we wish to
compute an element of the derived lattice:

TrackEnv ` : X → T

which inherits its structure from T . Intuitively, an element of this lattice tells
us for a given variable x and a gap name g whether or not g can occur in the
value of x, and if it can, which constant templates g can originate from.

Transfer Functions

Each atomic statement defines a transfer function TrackEnv ` → TrackEnv `

which models its semantics in a forward manner. If the argument is χ, then the
results of applying this transfer function are:

xi = xj; χ[xi 7→ χ(xj)]
xi = φ; χ[xi 7→ tfrag(φ, n)], where φ has index n
xi = xj<[g=xk]; χ[xi = tplug(χ(xj), g, χ(xk))]
xi = xj<[h=yk]; χ[xi = tplug(χ(xj), h, λp.∅)]

where we make use of some auxiliary functions:

148 Chapter 13. Static Validation of Dynamically Generated HTML

tfrag(φ, n) = λp.if p ∈ gaps(φ) then {n} else ∅

tplug(τ1, p, τ2) = λq.if p=q then τ2(q) else τ1(q) ∪ τ2(q)

For the remaining statement types, the transfer function is the identity function.
The tfrag function states that all gaps in the given template originates from
just that template. The tplug function adds all origins from the template being
inserted and removes the existing origins for the gap being plugged.

The Analysis

It is easy to see that all transfer functions are monotonic, so we can compute
the least fixed point iteratively in the usual manner [65]. The end result is for
each program point ` an environment track ` : X → T , which we use in the
following as a conservative, upper approximation of the origins of the gaps. We
omit the proof of correctness.

13.5 Summary Graph Analysis

We wish to compute for every program point and for every variable a summary
of its possible values. A set of XML templates is represented by a summary
graph and a set of string values by an element of S.

Lattices

To perform a standard data-flow analysis, we need both of these representations
to be lattices. The set S is clearly a lattice, ordered by set inclusion and with
• as a top element. The set of summary graphs, called G, is also a lattice with
the ordering defined by:

G1 v G2 ⇔ R1 ⊆ R2 ∧ E1 ⊆ E2 ∧ α1 v α2

where the ordering on S is lifted pointwise to labeling functions α. Clearly,
both S and G are finite lattices. For each program point we wish to compute
an element of the derived lattice:

Env ` = (X → G)× (Y → S)

which inherits its structure from the constituent lattices.

Transfer Functions

Each atomic statement defines a transfer function Env ` → Env `, which models
its semantics. If the argument is the pair of functions (χ, γ) and ` is the entry
program point of the statement, then the results are:

xi = xj; (χ[xi 7→ χ(xj)], γ)
xi = φ; (χ[xi 7→ frag(n)], γ), where φ has index n
yi = yj; (χ, γ[yi 7→ γ(yj)])

13.5. Summary Graph Analysis 149

yi = s; (χ, γ[yi 7→ {s}])
yi = •; (χ, γ[yi 7→ •])
xi = xj<[g=xk]; (χ[xi 7→ gplug(χ(xj), g, χ(xk),

track `(xj))], γ)
xi = xj<[h=yk]; (χ[xi 7→ hplug(χ(xj), h, γ(yk),

track `(xj))], γ)
show xi; (χ, γ)

where we make use of some auxiliary functions:

frag(n) = ({n}, ∅, λ(m,h).∅)

gplug(G1, g,G2, τ) = (R1,
E1 ∪E2 ∪
{(n, g,m) | n ∈ τ(g) ∧ m∈R2},

α1 t α2)

hplug(G,h, s, τ) = (R,E,
λ(n, h′).if n ∈ τ(h) then α(n, h′) t s

else α(n, h′))

where Gi = (Ri, Ei, αi) and G = (R,E,α). A careful inspection shows that all
transfer functions are monotonic. The frag function constructs a tiny summary
graph whose language contains only the given template. The gplug function
joins the two summary graphs and adds edges from all relevant template gaps
to the roots of the summary graph being inserted, which can be illustrated as
follows:

<[g =]

g

The hplug function adds additional string values to the relevant attribute gaps:

h

<[=h]

We are now in a position to point out the need for the gap track analysis
specified in Section 13.4. Without that initial analysis, the τ argument to gplug
and hplug would always have to be the set N of all constant template indices to
maintain soundness. Plugging a value into a gap g would then be modeled by
adding an edge from all nodes having a g gap, even from nodes that originate
from completely unrelated parts of the source code or nodes where the g gaps
already have been filled. For instance, it is likely that a program building lists as
in the summary graph example in Section 13.4 would contain other templates

150 Chapter 13. Static Validation of Dynamically Generated HTML

with a gap named items . Requiring each gap name to appear only in one
constant template would solve the problem, but such a restriction would limit
the flexibility of the document construction mechanism significantly. Hence, we
rely on a program analysis to disregard the irrelevant nodes when adding plug
edges.

The Analysis

Since we are working with monotonic functions on finite lattices, we can again
use standard iterative techniques to compute a least fixed point [65]. The proof
of soundness is omitted here, but it is similar to the one presented in [72]. The
end result is for each program point ` an environment summary ` : X → G
such that L(summary `(xi)) contains all possible XML templates that xi may
contain at `. Those templates that are associated with show statements are
required to validate with respect to the XHTML specification. We assume that
the implicitly surrounding continue-button wrapper from Section 13.2 has been
added already. Still, we must model the implicit plugging of empty templates
and strings into the remaining gaps, so for the statement:

show xi;

with entry program point q, the summary graph that must validate with respect
to the XHTML DTD is:

close(summary `(xi), track `(xi))

where close is defined by:

close(G, τ) = (R,
E ∪ {(n, g,mε) |n ∈ τ(g)},
λ(n, h).if n ∈ τ(h) then α(n, h) t {ε}

else α(n, h))

where G = (R,E,α) and it is assumed that f(mε) = ε. The close function
adds edges to an empty template for all remaining templates gaps, and adds
the empty string as a possibility for all remaining attribute gaps.

The Example Revisited

For the small <bigwig> example in Section 13.2, the summary graph describing
the document being shown to the client is inferred to be:

<head><title>Welcome</title></head>

</body>

<i>Stranger</i>

color

<body bgcolor=[]>color
 <[]>contents

who

what

Hello <[]>, welcome to <[]>.who what

contents

<html>
...

</html>

#9966ff

BRICS

13.6. An Abstract DTD for XHTML 151

As expected for this simple case, the language of the summary graph contains
exactly the single template actually being computed: Note that the XHTML
template is implicitly completed with the <html> fragment.

13.6 An Abstract DTD for XHTML

XHTML 1.0 is described by an official DTD [67]. We use a more abstract
formalism which is in some ways more restrictive and in others strictly more
expressive. In any case, the DTD for XHTML 1.0 can be captured along with
some restrictions that merely appear as comments in the official version. We
define an abstract DTD to be a quintuple:

D = (N , ρ,A, E ,F)

where N ⊆ E is a set of declared element names, ρ ∈ N is a root element
name, A : N → 2A is an N -indexed family of attribute name declarations,
E : N → 2N •

a family of element name declarations, and F : N → Ψ a family
of formulas. We let N • = N ∪{•}, where • represents arbitrary character data.

Intuitively, an abstract DTD consists of a number of element declarations
whereof one is designated as the root. Each element declaration consists of an
element name, a set of allowed attribute names, a set of allowed contents, and a
formula constraining the use of the element with respect to its attribute values
and contents. A formula has the syntax:

Ψ → Ψ ∧ Ψ
→ Ψ ∨ Ψ
→ ¬Ψ
→ true
→ attr(a) a ∈ A
→ content(c) c ∈ N •

→ order(c1, c2) ci ∈ N •

→ value(a, {s1, . . . , sk}) a ∈ A, k ≥ 1, si ∈ Σ∗

We define the language of D as follows:

L(D) = {ρ(δ)φ | D |= ρ(δ)φ ∧ gaps(φ) = ∅}

That is, the language is the set of documents where the root element is ρ and
the acceptance relation |= is satisfied. This relation is defined inductively on
templates as follows:

D |= ε D |= •

D |= φ1 D |= φ2

D |= φ1φ2

names(δ)⊆A(e) D, δ, φ |= F(e)
set(φ)⊆E(e) D |= φ

D |= e(δ)φ

152 Chapter 13. Static Validation of Dynamically Generated HTML

For each element, it is checked that its attributes and contents are declared and
that the associated formula is satisfied. The auxiliary functions names and set
are formally defined by:

names(ε) = ∅
names(a = s) = {a}
names(a = h) = {a}
names(δ1δ2) = names(δ1) ∪ names(δ2)

set(ε) = ∅
set(•) = {•}
set(g) = ∅

set(e(δ)φ) = {e}
set(φ1φ2) = set(φ1) ∪ set(φ2)

On formulas, the |= relation is defined relative to the attributes and contents
of an element:

D, δ, φ |= ψ1 D, δ, φ |= ψ2

D, δ, φ |= ψ1 ∧ ψ2

D, δ, φ |= ψ1

φ |= ψ1 ∨ ψ2

D, δ, φ |= ψ2

φ |= ψ1 ∨ ψ2

D, δ, φ |= true
D, δ, φ 6|= ψ

D, δ, φ |= ¬ψ

a ∈ names(δ)
D, δ, φ |= attr(a)

exists(word (φ), c)
D, δ, φ |= content(c)

before(word (φ), c1, c2)
D, δ, φ |= order(c1, c2)

a /∈ names(δ)
D, δ, φ |= value(a, {s1, . . . , sk})

(a, si) ∈ atts(δ) 1 ≤ i ≤ k

D, δ, φ |= value(a, {s1, . . . , sk})

The attr(a) formula checks whether an attribute of name a is present, and
content(c) checks whether c occurs in the contents. The value(a, {s1, . . . , sk})
formula checks whether an a attribute has one of the values in s1, . . . , sk or
is absent, and order(c1, c2) checks that no occurence of c1 comes after an
occurence of c2 in the contents sequence. The auxiliary functions atts and word
and the predicates exists and before are formally defined by:

atts(ε) = ∅
atts(a = s) = {(a, s)}
atts(a = h) = {(a, h)}
atts(δ1δ2) = atts(δ1) ∪ atts(δ2)

13.6. An Abstract DTD for XHTML 153

word(ε) = ε
word (•) = •
word (g) = ε

word (e(δ)φ) = e
word (φ1φ2) = word (φ1)word (φ2)

exists(w1 · · ·wk, c) ≡ ∃1 ≤ i ≤ k : wi =c

before(w1 · · ·wk, c1, c2) ≡ ∀1 ≤ i, j ≤ k :
wi =c1 ∧ wj =c2 ⇒ i ≤ j

Two common abbreviations are unique(c) ≡ order(c, c) (“c occurs at most
once”) and exclude(c1, c2) ≡ ¬ (content(c1) ∧ content(c2)) (“c1 and c2 ex-
clude each other”).

Standard DTDs use restricted regular expressions to describe content se-
quences. Instead, we use boolean combinations of four basic predicates, each of
which corresponds to a simple regular language. This is less expressive, since
for example we cannot express that a content sequence must have exactly three
occurrences of a given element. It is also, however, more expressive than DTDs
since we allow the requirements on contents and attributes to be mixed in a
formula. While the two formalism are thus theoretically incomparable, our
experience is that XML languages described by DTDs or by more advanced
schema languages typically are within the scope of our abstract notion.

Examples for XHTML

The DTD for XHTML 1.0 can easily be expressed in our formalism. The root
element ρ is html and some examples of declarations and formulas are:

A(html) = {xmlns, lang, xml:lang, dir}
E(html) = {head, body}
F(html) = value(dir, {ltr, rtl}) ∧ content(head) ∧

content(body) ∧ unique(head) ∧
unique(body) ∧ order(head, body)

A(head) = {lang, xml:lang, dir, profile}
E(head) = {script, style, meta, link, object, isindex

title, base}
F(head) = value(dir, {ltr, rtl}) ∧ content(title) ∧

unique(title) ∧ unique(base)

A(input) = {id, class, style, title, lang, xml:lang,
dir, onclick, ondblclick, onmousedown,
onmouseup, onmouseover, onmousemove,
onmouseout, onkeypress, onkeydown,
onkeyup, type, name, value, checked,
disabled, readonly, size, maxlength,
src, alt, usemap, tabindex, accesskey,
onfocus, onblur, onselect, onchange,
accept, align}

E(input) = ∅
F(input) = value(dir, {ltr, rtl}) ∧

154 Chapter 13. Static Validation of Dynamically Generated HTML

value(checked, {checked}) ∧
value(disabled, {disabled}) ∧
value(readonly, {readonly}) ∧
value(align, {top, middle, bottom,

left, right}) ∧
value(type, {text, password, checkbox,

radio, submit, reset, file,
hidden, image, button}) ∧

(value(type, {submit, reset}) ∨ attr(name))

In five instances we were able to express requirements that were only stated as
comments in the official DTD, such as the last conjunct in F(input). The full
description of XHTML is available at http://www.brics.dk/bigwig/xhtml/.

Exceptions in <bigwig>

In one situation does <bigwig> allow non-standard XHTML notation. In the
official DTD, the ul element is required to contain at least one li element. This
is inconvenient, since the items of a list are often generated iteratively from a
vector that may be empty. To facilitate this style of programming, <bigwig>
allows empty ul elements but removes them at runtime before the XHTML is
sent to the client. Accordingly, the abstract DTD that we employ differs from
the official one in this respect. Similar exceptions are allowed for other kinds
of lists and for tables. In the implementation, these fragment removal rules
are specified the same way as the element constraints in the abstract DTD for
XHTML, so essentially, we have just moved a few of the DTD constraints into
a separate file.

13.7 Validating Summary Graphs

For every show statement, the data-flow analysis computes a summary graph
G = (R,E,α). We must now for all such graphs decide the validation require-
ment:

L(G) ⊆ L(D)

for an abstract DTD D = (N , ρ,A, E ,F). The root element name requirement
of D is first checked separately by verifying that:

∀r ∈ R : f(r) = ρ(δ)φ for some δ and φ

Then for each sub-template e(δ)φ of a template with index n in G we perform
the following checks:

• e ∈ N (the element is defined)

• names(δ) ⊆ A(e) (the attributes are declared)

• occurs(n, φ) ⊆ E(e) (the content is declared)

• n, δ, φ F(e) (the constraint is satisfied)

13.7. Validating Summary Graphs 155

The validity relation is given by:1

n, δ, φ ψ1 n, δ, φ ψ2

n, δ, φ ψ1 ∧ ψ2

n, δ, φ ψ1

n, δ, φ ψ1 ∨ ψ2

n, δ, φ ψ2

n, δ, φ ψ1 ∨ ψ2

n, δ, φ true
n, δ, φ 6 ψ
n, δ, φ ¬ ψ

a ∈ names(δ)
n, δ, φ attr(a)

c ∈ occurs(n, φ)
n, δ, φ content(c)

order(n, φ, c1, c2)
n, δ, φ order(c1, c2)

a 6∈ names(δ)
n, δ, φ value(a, {s1, . . . , sk})

(a, si) ∈ atts(δ) 1 ≤ i ≤ k

n, δ, φ value(a, {s1, . . . , sk})

(a, h) ∈ atts(δ) α(n, h) ⊆ {s1, . . . , sk}
n, δ, φ value(a, {s1, . . . , sk})

where occurs is the least function satisfying:

occurs(n, ε) = ∅
occurs(n, •) = {•}
occurs(n, g) =

⋃

(n,g,m)∈E

occurs(m, f(m))

occurs(n, e(δ)φ) = {e}
occurs(n, φ1φ2) = occurs(n, φ1) ∪ occurs(n, φ2)

and order is the most restrictive function satisfying:

order (n, ε, c1, c2) = true
order (n, •, c1, c2) = true
order (n, g, c1, c2) =

∧

(n,g,m)∈E

order (m, f(m), c1, c2)

order (n, e(δ)φ, c1 , c2) = true
order (n, φ1φ2, c1, c2) = order (n, φ1, c1, c2)∧

order (n, φ2, c1, c2)∧
¬ (c2∈occurs(n, φ1)∧

c1∈occurs(n, φ2))
1Errata: Unfortunately, these rules are erroneous as presented. The rules can be amended

by extending to a four-valued logic with the values always, sometimes, never, and don’t know,
with appropriate boolean connectives. The problem with using just true and false is that
a predicate may hold only conditionally; the presence of negation implies that we cannot
conservatively answer one over the other. This is for instance the case with the predicate
content which may sometimes hold and sometimes not, depending of which of two templates
is plugged into a gap.

156 Chapter 13. Static Validation of Dynamically Generated HTML

The definition of the validity relation is straightforward. It duals the definition
of the acceptance relation in Section 13.6, except that we now have to take gaps
into account. Only the auxiliary functions, occurs and order , are non-trivial.
The function occurs(n, φ) finds the subset of N • that can occur as contents of
the current element after plugging some gaps according to the summary graph,
and order(n, φ, c1, c2) checks that it is not possible to obtain an c2 before an
c1 in the contents φ. These two functions are defined as fixed points because
the summary graphs may contain loops. In the implementation we ensure
termination by applying memoization to the numerous calls to occurs and order .

Note that the validation algorithm is both sound and complete2 with respect
to summary graphs: A graph is rejected if and only if its language contains a
template that is not in the language of the abstract DTD. Thus, in the whole
validation analysis the only source of imprecision is the data-flow analysis that
constructs the summary graph.

Also note that our notion of abstract DTDs has a useful locality property:
All requirements defined by an abstract DTD specify properties of single XML
document nodes and their attributes and immidiate contents, so if some re-
quirement is not fulfilled by a given summary graph, it is possible to give a
precise error message.

13.8 Experiments

The validation analysis has been fully implemented as part of the <bigwig>
system using a monovariant data-flow analysis framework. It has then been
applied to all available benchmarks, some of which are shown in the following
table:

Name Lines Templates Size Shows Time

chat 65 3 (0,5) 2 0.1
guess 75 6 (0,3) 6 0.1
calendar 77 5 (8,6) 2 0.1
xbiff 561 18 (4,12) 15 0.1
webboard 1,132 37 (34,18) 25 0.6
cdshop 1,709 36 (6,23) 25 0.5
jaoo 1,941 73 (49,14) 17 2.4
bachelor 2,535 137 (146,64) 15 8.2
courses 4,465 57 (50,45) 17 1.3
eatcs 5,345 133 (35,18) 114 6.7

The entries for each benchmark are its name, the lines of code derived from a
pretty print of the source with all macros expanded, the number of templates,
the size (|E|, |α|) of the largest summary graph, the number of show statements,
and the analysis time in seconds (on an 800 MHz Pentium III with Linux).

2Errata: Due to the issues mentioned in the previous footnote, the validation is sound but
not complete. However, we have not encountered any spurious errors in practise, using the
abstract DTD for XHTML.

13.8. Experiments 157

The chat benchmark is a simple chat service, guess is a number guessing
game, calendar shows a monthly calendar,
xbiff is a soccer match reservation system, webboard is a bulletin board ser-
vice, cdshop is a demonstration of an online shop, jaoo is a conference ad-
ministration system, bachelor is a student management service, courses is a
course administration system, and eatcs is a collection of services used by the
EATCS organization. Some of the benchmarks are taken from the <bigwig>
documentation, others are services currently being used or developed at BRICS.

The analysis found numerous validation errors in all benchmarks, which
could then be fixed to yield flawless services. No false errors were reported.
As seen in the table above, the enhanced compiler remains efficient and practi-
cal. The bachelor service constructs unusually complicated documents, which
explains its high complexity.

Error Diagnostics

The <bigwig> compiler provides detailed diagnostic messages in case of valida-
tion errors. For the flawed example:

1 service {
2 html cover = <html>
3 <head><title>Welcome</title></head>
4 <body bgcolo=[color]>
5 <table><[contents]></table>
6 </body>
7 </html>;
8
9 html greeting = <html>
10 <td>Hello <[who]>,<br clear=[clear]>
11 welcome to <[what]>.
12 </td>
13 </html>;
14
15 html person = <html>
16 <i>Stranger</i>
17 </html>;
18
19 session welcome() {
20 html h;
21 h = cover<[color="#9966ff",
22 contents=greeting<[who=person],
23 clear="righ"];
24 show h<[what=<html>BRICS</html>];
25 }
26 }

the compiler generates the following messages for the single show statement:

--- brics.wig:24: HTML validation:

brics.wig:4:

warning: illegal attribute ’bgcolo’ in ’body’

template: <body bgcolo=[color]><form>...</form></body>

158 Chapter 13. Static Validation of Dynamically Generated HTML

brics.wig:5:

warning: possible illegal subelement ’td’ of ’table’

template: <table><[contents]></table>

contents: td

plugs: contents:{brics.wig:22}

brics.wig:10:

warning: possible element constraint violation at ’br’

template: <br clear=[clear]/>

constraint: value(clear,{left,all,right,clear,none})

plugs: clear:{brics.wig:23}

At each error message, a line number of an XML element is printed together with
an abbreviated form of the involved template, the names of the root elements of
each template that can be plugged into the gaps, the constraint being violated,
and the line numbers of the involved plug operations. Such reasonably precise
error diagnostics is clearly useful for debugging.

13.9 Related Work

There are other languages for constructing XML documents that also consider
validity. The XDuce language [43, 44] is a functional language in which XML
templates are data types, with a constructor for each element name and pattern
matching for deconstruction. A type is a regular expression over E•. Type
inference for pattern variables is supported. In comparison, we have a richer
language and consequently need more expressive types that also describe the
existence and capabilities of gaps. It seems unlikely that anything simpler than
summary graphs would work. Also, we do not rely on type annotations. Since
we perform an interprocedural data-flow analysis, we obtain a high degree of
polymorphism that is difficult to express in a traditional type system. The
XMλ language [60] compares similarly to our approach.

The initial design of the <bigwig> template mechanism was inspired by the
Mawl language [3, 4, 55]. The main difference is that Mawl only allows strings
to plugged into the gaps. Validating that Mawl programs only generate valid
XHTML is therefore as easy as validating static documents, but such a simple
document construction mechanism often becomes too restrictive for practical
use. We have shown that using a highly flexible mechanism does not require
validity guarantees to be sacrificed.

Most Web services are currently written either in Perl using CGI, in em-
bedded scripting languages such as ASP, PHP, or JSP, or as server-integrated
modules, for instance with Apache. Common to all these approaches is that
there is no inherent type system for HTML or XML documents. In general,
documents are constructed by concatenating text strings. These strings contain
HTML or XML tags, attributes, etc., but the compiler or interpreter is com-
pletely unaware of that. This means that even well-formedness, that is, that
tags are balanced and nested properly, which is one requirement for validity,
becomes difficult to verify. We get that for free during parsing of the individ-
ual constant XML fragments and can concentrate on the many other validity
requirements given by specific DTDs.

13.10. Extensions and Future Work 159

However, a common way of programming services in these languages is to
use HTML or XML constructor functions to build documents more abstractly
as trees instead of strings. This style is not enforced by the language, but if
used consistently well-formedness is guaranteed. The difference between this
and the <bigwig> style is that gaps in <bigwig> templates may appear non-
locally, as described in Section 13.1, which gives a higher degree of flexibility.
Since the constructor-based style is subsumed under the <bigwig> style as also
described in Section 13.1, the summary graph technique could be applied for
other languages.

13.10 Extensions and Future Work

Instead of our four basic predicates we could allow general regular expressions
over the alphabet E•. We could then still validate a summary graph, but this
would reduce to deciding if a general context-free language is a subset of a
regular language, which has an unwieldy algorithm compared to the simple
transitive closures that we presently rely upon. Fortunately, our restricted
regular languages appear sufficient. It is also possible to include many features
from a richer XML schema language such as DSD [51], in particular context
dependency and regular expression constraints on attribute values and character
data.

Since our technique is parameterized in the choice of the abstract DTD,
it easily generalizes to many other XML languages that can be described by
such abstract DTDs. Finally, we could enrich <bigwig> with a set of operators
for combining and deconstructing XML templates, making it a general XML
transformation language. All such ideas readily permit analysis by means of
summary graphs. However, a method for translating a DTD into a summary
graph will be required.

13.11 Conclusion

We have combined a data-flow analysis with a generalized validation algorithm
to enable the <bigwig> compiler to guarantee that all HTML or XHTML docu-
ments shown to the client are valid according to the official DTD. The analysis
is efficient and does not generate many spurious error messages in practice.
Furthermore, it provides precise error diagnostics in case a given program fails
to verify.

Since our algorithm is parameterized with an abstract DTD, our technique
generalizes in a straightforward manner to arbitrary XML languages that can be
described by DTDs. In fact, we can even handle more expressive grammatical
formalisms. The analysis has proved to be feasible for programs of realistic sizes.
All this lends further support to the unique design of dynamic documents in
the <bigwig> language.

Chapter 14

Language-Based Caching of Dynamically

Generated HTML

with Anders Møller, Steffan Olesen, and Michael I. Schwartzbach

Abstract

Increasingly, HTML documents are dynamically generated by interac-
tive Web services. To ensure that the client is presented with the newest
versions of such documents it is customary to disable client caching caus-
ing a seemingly inevitable performance penalty. In the <bigwig> system,
dynamic HTML documents are composed of higher-order templates that
are plugged together to construct complete documents. We show how to
exploit this feature to provide an automatic fine-grained caching of doc-
ument templates, based on the service source code. A <bigwig> service
transmits not the full HTML document but instead a compact JavaScript
recipe for a client-side construction of the document based on a static
collection of fragments that can be cached by the browser in the usual
manner. We compare our approach with related techniques and demon-
strate on a number of realistic benchmarks that the size of the transmitted
data and the latency may be reduced significantly.

14.1 Introduction

One central aspect of the development of the World Wide Web during the
last decade is the increasing use of dynamically generated documents, that
is, HTML documents generated using e.g. CGI, ASP, or PHP by a server at
the time of the request from a client [8, 98]. Originally, hypertext documents
on the Web were considered to be principally static, which has influenced the
design of protocols and implementations. For instance, an important technique
for saving bandwidth, time, and clock-cycles is to cache documents on the
client-side. Using the original HTTP protocol, a document that never or rarely
changes can be associated an “expiration time” telling the browsers and proxy
servers that there should be no need to reload the document from the server
before that time. However, for dynamically generated documents that change

161

162 Chapter 14. Language-Based Caching of Dynamically Generated HTML

on every request, this feature must be disabled—the expiration time is always
set to “now”, voiding the benefits of caching.

Even though most caching schemes consider all dynamically generated doc-
uments “non-cachable” [9, 93], a few proposals for attacking the problem have
emerged [23, 25, 31, 47, 69, 100]. However, as described below, these proposals
are typically not applicable for highly dynamic documents. They are often
based on the assumptions that although a document is dynamically generated,
1) its construction on the server often does not have side-effects, for instance
because the request is essentially a database lookup operation, 2) it is likely that
many clients provide the same arguments for the request, or 3) the dynamics
is limited to e.g. rotating banner ads. We take the next step by considering
complex services where essentially every single document shown to a client is
unique and its construction has side-effects on the server. A typical example of
such a service is a Web-board where current discussion threads are displayed
according to the preferences of each user. What we propose is not a whole new
caching scheme requiring intrusive modifications to the Web architecture, but
rather a technique for exploiting the caches already existing on the client-side
in browsers, resembling the suggestions for future work in [98].

Though caching does not work for whole dynamically constructed HTML
documents, most Web services construct HTML documents using some sort of
constant templates that ideally ought to be cached, as also observed in [31,97].
In Figure 14.1, we show a condensed view of five typical HTML pages generated
by different <bigwig> Web services [18]. Each column depicts the dynamically
generated raw HTML text output produced from interaction with each of our
five benchmark Web services. Each non-space character has been colored either
grey or black. The grey sections, which appear to constitute a significant part,
are characters that originate from a large number of small, constant HTML
templates in the source code; the black sections are dynamically computed
strings of character data, specific to the particular interaction.

The lycos example simulates a search engine giving 10 results from the
query “caching dynamic objects”; the bachelor service will based on a course
roster generate a list of menus that students use to plan their studies; the jaoo
service is part of a conference administration system and generates a graphical
schedule of events; the webboard service generates a hierarchical list of active
discussion threads; and the dmodlog service generates lists of participants in a
course. Apart from the first simulation, all these examples are sampled from
running services and use real data. The dmodlog example is dominated by string
data dynamically retrieved from a database, as seen in Figure 14.1, and is thus
included as a worst-case scenario for our technique. For the remaining four, the
figure suggests a substantial potential gain from caching the grey parts.

The main idea of this paper is—automatically, based on the source code of
Web services—to exploit this division into constant and dynamic parts in order
to enable caching of the constant parts and provide an efficient transfer of the
dynamic parts from the server to the client.

Using a technique based on JavaScript for shifting the actual HTML docu-
ment construction from the server to the client, our contributions in this paper
are:

14.1. Introduction 163

(a) lycos (b) bachelor (c) jaoo (d) webboard (e) dmodlog

Figure 14.1: Benchmark services: cachable (grey) vs. dynamic (black) parts.

• an automatic characterization, based on the source code, of document
fragments as cachable or dynamic, permitting the standard browser caches
to have significant effect even on dynamically generated documents;

• a compact representation of the information sent to the client for con-
structing the HTML documents; and

• a generalization allowing a whole group of documents, called a document
cluster, to be sent to the client in a single interaction and cached efficiently.

All this is possible and feasible due to the unique approach for dynamically
constructing HTML documents used in the <bigwig> language [18, 72], which
we use as a foundation. Our technique is non-intrusive in the sense that it builds
only on preexisting technologies, such as HTTP and JavaScript—no special
browser plug-ins, cache proxies, or server modules are employed, and no extra
effort is required by the service programmer.

As a result, we obtain a simple and practically useful technique for saving
network bandwidth and reviving the cache mechanism present in all modern
Web browsers.

Outline

Section 14.2 covers relevant related work. In Section 14.3, we describe the
<bigwig> approach to dynamic generation of Web documents in a high-level
language using HTML templates. Section 14.4 describes how the actual doc-
ument construction is shifted from server-side to client-side. In Section 14.5,
we evaluate our technique by experimenting with five <bigwig> Web services.
Finally, Section 14.6 contains plans and ideas for further improvements.

164 Chapter 14. Language-Based Caching of Dynamically Generated HTML

14.2 Related Work

Caching of dynamic contents has received increasing attention the last years
since it became evident that traditional caching techniques were becoming in-
sufficient. In the following we present a brief survey of existing techniques that
are related to the one we suggest.

Most existing techniques labeled “dynamic document caching” are either
server-based, e.g. [25, 47, 69, 100], or proxy-based, e.g. [23, 77]. Ours is client-
based, as e.g. the HPP language [31].

The primary goal for server-based caching techniques is not to lower the
network load or end-to-end latency as we aim for, but to relieve the server
by memoizing the generated documents in order to avoid redundant computa-
tions. Such techniques are orthogonal to the one we propose. The server-based
techniques work well for services where many documents have been computed
before, while our technique works well for services where every document is
unique. Presumably, many services are a mixture of the two kinds, so these dif-
ferent approaches might support each other well—however, we do not examine
that claim in this paper.

In [69], the service programmer specifies simple cache invalidation rules in-
structing a server caching module that the request of some dynamic document
will make other cached responses stale. The approach in [100] is a variant of
this with a more expressive invalidation rule language, allowing classes of doc-
uments to be specified based on arguments, cookies, client IP address, etc. The
technique in [47] instead provides a complete API for adding and removing doc-
uments from the cache. That efficient but rather low-level approach is in [25]
extended with object dependency graphs, representing data dependencies be-
tween dynamic documents and underlying data. This allows cached documents
to be invalidated automatically whenever certain parts of some database are
modified. These graphs also allow representation of fragments of documents
to be represented, as our technique does, but caching is not on the client-side.
A related approach for caching in the Weave Web site specification system is
described in [99].

In [77], a protocol for proxy-based caching is described. It resembles many of
the server-based techniques by exploiting equivalences between requests. A no-
tion of partial request equivalence allows similar but non-identical documents to
be identified, such that the client quickly can be given an approximate response
while the real response is being generated.

Active Cache [23] is a powerful technique for pushing computation to prox-
ies, away from the server and closer to the client. Each document can be
associated a cache applet, a piece of code that can be executed by the proxy.
This applet is able to determine whether the document is stale and if so, how
to refresh it. A document can be refreshed either the traditional way by asking
the server or, in the other extreme, completely by the proxy without involving
the server, or by some combination. This allows tailor-made caching policies
to be made, and—compared to the server-side approaches—it saves network
bandwidth. The drawbacks of this approach are: 1) it requires installation of
new proxy servers which can be a serious impediment to wide-spread practical

14.2. Related Work 165

use, and 2) since there is no general automatic mechanism for characterizing
document fragments as cachable or dynamic, it requires tedious and error-prone
programming of the cache applets whenever non-standard caching policies are
desired.

Common to the techniques from the literature mentioned above is that truly
dynamic documents, whose construction on the server often have side-effects
and essentially always are unique (but contain common constant fragments),
either cannot be cached at all or require a costly extra effort by the programmer
for explicitly programming the cache. Furthermore, the techniques either are
inherently server-based, and hence do not decrease network load, or require
installation of proxy servers.

Delta encoding [61] is based on the observation that most dynamically con-
structed documents have many fragments in common with earlier versions. In-
stead of transferring the complete document, a delta is computed representing
the changes compared to some common base. Using a cache proxy, the full doc-
ument is regenerated near the client. Compared to Active Cache, this approach
is automatic. A drawback is—in addition to requiring specialized proxies—that
it necessitates protocols for management of past versions. Such intrusions can
obviously limit widespread use. Furthermore, it does not help with repeti-
tions within a single document. Such repetitions occur naturally when dynam-
ically generating lists and tables whose sizes are not statically known, which
is common to many Web services that produce HTML from the contents of a
database. Repetitions may involve both dynamic data from the database and
static markup of the lists and tables.

The HPP language [31] is closely related to our approach. Both are based
on the observation that dynamically constructed documents usually contain
common constant fragments. HPP is an HTML extension which allows an
explicit separation between static and dynamic parts of a dynamically generated
document. The static parts of a document are collected in a template file while
the dynamic parameters are in a separate binding file. The template file can
contain simple instructions, akin to embedded scripting languages such as ASP,
PHP, or JSP, specifying how to assemble the complete document. According
to [31], this assembly and the caching of the templates can be done either using
cache proxies or in the browser with Java applets or plug-ins, but it should be
possible to use JavaScript instead, as we do.

An essential difference between HPP and our approach is that the HPP so-
lution is not integrated with the programming language used to make the Web
service. With some work it should be possible to combine HPP with popular
embedded scripting languages, but the effort of explicitly programming the doc-
ument construction remains. Our approach is based on the source language,
meaning that all caching specifications are automatically extracted from the
Web service source code by the compiler and the programmer is not required
to be aware of caching aspects. Regarding cachability, HPP has the advantage
that the instructions describing the structure of the resulting document are lo-
cated in the template file which is cached, while in our solution the equivalent
information is in the dynamic file. However, in HPP the constant fragments
constituting a document are collected in a single template. This means that

166 Chapter 14. Language-Based Caching of Dynamically Generated HTML

x:

x<[=y]:

y:

g

g

Figure 14.2: The plug operator.

HTML fragments that are common to different document templates cannot be
reused by the cache. Our solution is more fine-grained since it caches the in-
dividual fragments separately. Also, HPP templates are highly specialized and
hence more difficult to modify and reuse for the programmer. Being fully au-
tomatic, our approach guarantees cache soundness. Analogously to optimizing
compilers, we claim that the <bigwig> compiler generates caching code that
is competitive to what a human HPP programmer could achieve. This claim
is substantiated by the experiments in Section 14.5. Moreover, we claim that
<bigwig> provides a more flexible, safe, and hence easier to use template mecha-
nism than does HPP or any other embedded scripting language. The <bigwig>
notion of higher-order templates is summarized in Section 14.3. A thorough
comparison between various mechanisms supporting document templates can
be found in [18].

As mentioned, we use compact JavaScript code to combine the cached and
the dynamic fragments on the client-side. Alternatively, similar effects could be
obtained using browser plug-ins or proxies, but implementation and installation
would become more difficult. The HTTP 1.1 protocol [37] introduces both auto-
matic compression using general-purpose algorithms, such as gzip, byte-range
requests, and advanced cache-control directives. The compression features are
essentially orthogonal to what we propose, as shown in Section 14.5. The byte-
range and caching directives provide features reminiscent of our JavaScript
code, but it would require special proxy servers or browser extensions to apply
them to caching of dynamically constructed documents. Finally, we could have
chosen Java instead of JavaScript, but JavaScript is more lightweight and is
sufficient for our purposes.

14.3 Dynamic Documents in <bigwig>

The part of the <bigwig> Web service programming language that deals with
dynamic construction of HTML documents is called DynDoc [72]. It is based on
a notion of templates which are HTML fragments that may contain gaps. These
gaps can at runtime be filled with other templates or text strings, yielding a
highly flexible mechanism.

A <bigwig> service consists of a number of sessions which are essentially
entry points with a sequential action that may be invoked by a client. When
invoked, a session thread with its own local state is started for controlling the
interactions with the client. Two built-in operations, plug and show, form

14.3. Dynamic Documents in <bigwig> 167

the core of DynDoc. The plug operation is used for building documents. As
illustrated in Figure 14.2, this operator takes two templates, x and y, and a gap
name g and returns a copy of x where a copy of y has been inserted into every
g gap. A template without gaps is considered a complete document. The show
operation is used for interacting with the client, transmitting a given document
to the client’s browser. Execution of the client’s session thread is suspended on
the server until the client submits a reply. If the document contains input fields,
the show statement must have a receive part for receiving the field values into
program variables.

As in Mawl [4, 55], the use of templates permits programmer and designer
tasks to be completely separated. However, our templates are first-class values
in that they can be passed around and stored in variables as any other data type.
Also they are higher-order in that templates can be plugged into templates. In
contrast, Mawl templates cannot be stored in variables and only strings can be
inserted into gaps. The higher-order nature of our mechanism makes it more
flexible and expressive without compromising runtime safety because of two
compile-time program analyses: a gap-and-field analysis [72] and an HTML
validation analysis [17]. The former analysis guarantees that at every plug, the
designated gap is actually present at runtime in the given template and at every
show, there is always a valid correspondence between the input fields in the
document being shown and the values being received. The latter analysis will
guarantee that every document being shown is valid according to the HTML
specification. The following variant of a well-known example illustrates the
DynDoc concepts:

service {
html ask = <html>What? <input name="what"></html>;
html hello = <html>Hello, <[thing]>!</html>;

session HelloWorld() {
string s;
show ask receive [s=what];
hello = hello<[thing=s];
show hello;

}
}

Two HTML variables, ask and hello, are initialized with constant HTML
templates, and a session HelloWorld is declared. The entities <html> and
</html> are merely lexical delimiters and are not part of the actual templates.
When invoked, the session first shows the ask template as a complete document
to the client. All documents are implicitly wrapped into an <html> element and
a form with a default “continue” button before being shown. The client fills
out the what input field and submits a reply. The session resumes execution by
storing the field value in the s variable. It then plugs that value into the thing
gap of the hello template and sends the resulting document to the client. The
following more elaborate example will be used throughout the remainder of the
paper:

168 Chapter 14. Language-Based Caching of Dynamically Generated HTML

service {
html cover = <html>

<head><title>Welcome</title></head>
<body bgcolor=[color]>
<[contents]>

</body>
</html>;

html greeting = <html>
Hello <[who]>, welcome to <[what]>.

</html>;

html person = <html><i>Stranger</i></html>;

session welcome() {
html h;
h = cover<[color="#9966ff",

contents=greeting<[who=person]];
show h<[what=<html>BRICS</html>];

}
}

It builds a “welcome to BRICS” document by plug-

Figure 14.3: webboard

ging together four constant templates and a single
text string, shows it to the client, and terminates.
The higher-order template mechanism does not re-
quire documents to be assembled bottom-up: gaps
may occur non-locally as for instance the what gap in
h in the show statement that comes from the greet-
ing template being plugged into the cover template
in the preceding statement. Its existence is statically
guaranteed by the gap-and-field analysis.

We will now illustrate how our higher-order tem-
plates are more expressive and provide better cacha-
bility compared to first-order template mechanisms.
First note that ASP, PHP, and JSP also fit the first-
order category as they conceptually correspond to
having one single first-order template whose special
code fragments are evaluated on the server and im-
plicitly plugged into the template. Consider now the
unbounded hierarchical list of messages in a typical Web bulletin board. This
is easily expressed recursively using a small collection of DynDoc templates.
However, it can never be captured by any first-order solution without casting
from templates to strings and hence losing type safety. Of course, if one is
willing to fix the length of the list explicitly in the template at compile-time,
it can be expressed, but not with unbounded lengths. In either case, sharing
of repetitions in the HTML output is sacrificed, substantially cutting down the
potential benefits of caching. Figure 14.3 shows the webboard benchmark as
it would appear if it had been generated entirely using first-order templates:

14.3. Dynamic Documents in <bigwig> 169

"Hello "

", welcome to "

"."

who

what

(a) Leaf: greeting

g

s

d

(b) Node: strplug(d,g,s)

1 2

g

dd

(c) Node: plug(d1,g,d2)

Figure 14.4: DynDocDag representation constituents.

only the outermost template remains and the message list is produced by one
big dynamic area. Thus, nearly everything is dynamic (black) compared to the
higher-order version displayed in Figure 14.1(d).

Languages without a template mechanism, such as Perl and C, that simply
generate documents using low-level print-like commands generally have too
little structure of the output to be exploited for caching purposes.

All in all, we have with the plug-and-show mechanism in <bigwig> success-
fully transferred many of the advantages known from static documents to a
dynamic context. The next step, of course, being caching.

14.3.1 Dynamic Document Representation

Dynamic documents in <bigwig> are at runtime represented by the DynDocDag
data structure supporting four operations: constructing constant templates,
constant(c); string plugging, strplug(d,g,s); template plugging, plug(d1,g,
d2); and showing documents, show(d). This data structure represents a dy-
namic document as a binary DAG (Directed Acyclic Graph), where the leaves
are either HTML templates or strings that have been plugged into the document
and where the nodes represent pluggings that have constructed the document.

A constant template is represented as an ordered sequence of its text and gap
constituents. For instance, the greeting template from the BRICS example
service is represented as displayed in Figure 14.4(a) as a sequence containing
two gap entries, who and what , and three text entries for the text around and
between the gaps. A constant template is represented only once in memory
and is shared among the documents it has been plugged into, causing the data
structure to be a DAG in general and not a tree.

The string plug operation, strplug, combines a DAG and a constant string
by adding a new string plug root node with the name of the gap, as illustrated
in Figure 14.4(b). Analogously, the plug operation combines two DAGs as
shown in Figure 14.4(c). For both operations, the left branch is the document
containing the gap being plugged and the right branch is the value being plugged
into the gap. Thus, the data structure merely records plug operations and defers
the actual document construction to subsequent show operations.

Conceptually, the show operation is comprised of two phases: a gap linking
phase that will insert a stack of links from gaps to templates and a print traversal
phase that performs the actual printing by traversing all the gap links. The
need for stacks comes from the template sharing.

170 Chapter 14. Language-Based Caching of Dynamically Generated HTML

color who

what

contents

"..."

"..."

"..."

"..."

"..."

"..."

"..."

"..."

color

contents

who

what

"#9966ff"

(anonymous
fragment)

brics

person

greetingcover

Figure 14.5: DynDocDag representation of the document shown in the BRICS
example.

The strplug(d,g,s), plug(d1,g,d2), and show(d) operations have opti-
mal complexities, O(1), O(1), and O(|d|), respectively, where |d| is the lexical
size of the d document.

Figure 14.5 shows the representation of the document shown in the BRICS
example service. In this simple example, the DAG is a tree since each constant
template is used only once. Note that for some documents, the representation is
exponentially more succinct than the expanded document. This is for instance
the case with the following recursive function:

html tree(int n) {
html list = <html><[gap]><[gap]></html>;
if (n==0) return <html>foo</html>;
return list<[gap=tree(n-1)];

}

which, given n, in O(n) time and space will produce a document of lexical size
O(2n). This shows that regarding network load, it can be highly beneficial to
transmit the DAG across the network instead of the resulting document, even
if ignoring cache aspects.

14.4 Client-Side Caching

In this section we will show how to cache reoccurring parts of dynamically
generated HTML documents and how to store the documents in a compact
representation. The first step in this direction is to move the unfolding of the
DynDocDag data structure from the server to the client. Instead of transmit-
ting the unfolded HTML document, the server will now transmit a DynDocDag
representation of the document in JavaScript along with a link to a file con-
taining some generic JavaScript code that will interpret the representation and

14.4. Client-Side Caching 171

unfold the document on the client. Caching is then obtained by placing the
constant templates in separate files that can be cached by the browser as any
other files.

As we shall see in Section 14.5, both the caching and the compact repre-
sentation substantially reduce the number of bytes transmitted from the server
to the client. The compromise is of course the use of client clock cycles for the
unfolding, but in a context of fast client machines and comparatively slow net-
works this is a sensible tradeoff. As explained earlier, the client-side unfolding is
not a computationally expensive task, so the clients should not be too strained
from this extra work, even with an interpreted language like JavaScript.

One drawback of our approach is that extra TCP connections are required
for downloading the template files the first time, unless using the “keep connec-
tion alive” feature in HTTP 1.1. However, this is no worse than downloading a
document with many images. Our experiments show that the number of trans-
missions per interaction is limited, so this does not appear to be a practical
problem.

14.4.1 Caching

The DynDocDag representation has a useful property: it explicitly maintains a
separation of the constant templates occurring in a document, the strings that
are plugged into the document, and the structure describing how to assemble the
document. In Figure 14.5, these constituents are depicted as framed rectangles,
oval rectangles, and circles, respectively.

Experiments suggest that templates tend to occur again and again in docu-
ments shown to a client across the lifetime of a <bigwig> service, either because
they occur 1) many times in the same document, 2) in many different docu-
ments, or 3) simply in documents that are shown many times. The strings
and the structure parts, however, are typically dynamically generated and thus
change with each document.

The templates account for a large portion of the expanded documents. This
is substantiated by Figure 14.1, as earlier explained. Consequently, it would
be useful to somehow cache the templates in the browser and to transmit only
the dynamic parts, namely the strings and the structure at each show state-
ment. This separation of cachable and dynamic parts is for the BRICS example
illustrated in Figure 14.6.

As already mentioned, the solution is to place each template in its own
file and include a link to it in the document sent to the client. This way, the
caching mechanism in the browser will ensure that templates already seen are
not retransmitted.

The first time a service shows a document to a client, the browser will
obviously not have cached any of the JavaScript template files, but as more and
more documents are shown, the client will download fewer and fewer of these
files. With enough interactions, the client reaches a point of asymptotic caching
where all constant templates have been cached and thus only the dynamic parts
are downloaded.

172 Chapter 14. Language-Based Caching of Dynamically Generated HTML

s[0]

s[] = {"#9966ff"}

Document structure:

color

contents

who

what

d1_2.js d2_3.js d3_3.js

d4_1.js

String Pool:

(a) Dynamic document structure reply file.

"..."

"..."

"..."

"..."

"..."

"..."

"..." "..."

color

contents

who

what

d1_2.js d2_3.js

d4_1.jsd3_3.js

(b) Cachable template files.

Figure 14.6: Separation into cachable and dynamic parts.

Since the templates are statically known at compile-time, the compiler enu-
merates the templates and for each of them generates a file containing the
corresponding JavaScript code. By postfixing template numbers with version
numbers, caching can be enabled across recompilations where only some tem-
plates have been modified.

In contrast to HPP, our approach is entirely automatic. The distinction
between static and dynamic parts and the DynDocDag structure are identified
by the compiler, so the <bigwig> programmer gets the benefits of client-side
caching without tedious and error-prone manual programming of bindings de-
scribing the dynamics.

14.4.2 Compact Representation

In the following we show how to encode the cachable template files and the
reply documents containing the document representation. Since the reply doc-
uments are transmitted at each show statement, their sizes should be small.
Decompression has to be conducted by JavaScript interpreted in browsers, so
we do not apply general purpose compression techniques. Instead we exploit
the inherent structure of the reply documents to obtain a lightweight solution:
a simple yet compact JavaScript representation of the string and structure parts
that can be encoded and decoded efficiently.

Constant Templates

A constant template is placed in its own file for caching and is encoded as a call
to a JavaScript constructor function, F, that takes the number and version of
the template followed by an array of text and gap constituents respectively con-
structed via calls to the JavaScript constructor functions T and G. For instance,
the greeting template from the BRICS example gets encoded as follows:

F(T(’Hello ’),G(3),T(’, welcome to ’),G(4),T(’.’));

Assuming this is version 3 of template number 2, it is placed in a file called
d2 3.js. The gap identifiers who and what have been replaced by the numbers
3 and 4, respectively, abstracting away the identifier names. Note that such a
file needs only ever be downloaded once by a given client, and it can be reused
every time this template occurs in a document.

14.4. Client-Side Caching 173

Dynamics

The JavaScript reply files transmitted at each show contain three document
specific parts: include directives for loading the cachable JavaScript template
files, the dynamic structure showing how to assemble the document, and a string
pool containing the strings used in the document.

The structure part of the representation is encoded as a JavaScript string
constant, by a uuencode-like scheme which is tuned to the kinds of DAGs that
occur in the observed benchmarks.

Empirical analyses have exposed three interesting characteristics of the
strings used in a document: 1) they are all relatively short, 2) some occur
many times, and 3) many seem to be URLs and have common prefixes. Since
the strings are quite short, placing them in individual files to be cached would
drown in transmission overhead. For reasons of security, we do not want to
bundle up all the strings in cachable string pool files. This along with the mul-
tiple occurrences suggests that we collect the strings from a given document
in a string pool which is inlined in the reply file sent to the client. String oc-
currences within the document are thus designated by their offsets into this
pool. Finally, the common prefix sharing suggests that we collect all strings in
a trie which precisely yields sharing of common prefixes. As an example, the
following four strings:

"foo",
"http://www.brics.dk/bigwig/",
"http://www.brics.dk/bigwig/misc/gifs/bg.gif",
"http://www.brics.dk/bigwig/misc/gifs/bigwig.gif"

are linearized and represented as follows:

"foo|http://www.brics.dk/bigwig/[misc/gifs/b(igwig.gif|g.gif)]"

When applying the trie encoding to the string data of the benchmarks, we
observe a reduction ranging from 1780 to 1212 bytes (on bachelor) to 27728
to 10421 bytes (on dmodlog).

The reply document transmitted to the client at the show statement in the
BRICS example looks like:

<html>
<head>
<script src="http://www.brics.dk/bigwig/dyndoc.js"></script>
<script>I(1,2,3,4, 2,3,3,1);</script>
<script>S("#9966ff"); D("/&Ë$Î&I%",2,8,4);</script>
</head>
<body onload="E();"></body>

</html>

The document starts by including a generic 15K JavaScript library, dyndoc.js,
for unfolding the DynDocDag representation. This file is shared among all ser-
vices and is thus only ever downloaded once by each client as it is cached after
the first service interaction. For this reason, we have not put effort into writing

174 Chapter 14. Language-Based Caching of Dynamically Generated HTML

it compactly. The include directives are encoded as calls to the function I whose
argument is an array designating the template files that are to be included in
the document along with their version numbers. The S constructor function re-
constructs the string trie which in our example contains the only string plugged
into the document, namely “#9966ff”. As expected, the document structure
part, which is reconstructed by the D constructor function, is not humanly read-
able as it uses the extended ASCII set to encode the dynamic structure. The
last three arguments to D recount how many bytes are used in the encoding of a
node, the number of templates plus plug nodes, and the number of gaps, respec-
tively. The last line of the document calls the JavaScript function E that will
interpret all constituents to expand the document. After this, the document
has been fully replaced by the expansion. Note that three script sections are
required to ensure that processing occurs in distinct phases and dependencies
are resolved correctly. Viewing the HTML source in the browser will display
the resulting HTML document, not our encodings.

Our compact representation makes no attempts at actual compression such
as gzip or XML compression [58], but is highly efficient to encode on the server
and to decode in JavaScript on the client. Compression is essentially orthogonal
in the sense that our representation works independently of whether or not the
transmission protocol compresses documents sent across the network, as shown
in Section 14.5. However, the benefit factor of our scheme is of course reduced
when compression is added.

14.4.3 Clustering

In <bigwig>, the show operation is not restricted to transmit a single docu-
ment. It can be a collection of interconnected documents, called a cluster. For
instance, a document with input fields can be combined in a cluster with a
separate document with help information about the fields.

A hypertext reference to another document in the same cluster may be cre-
ated using the notation &x to refer to the document held in the HTML variable
x at the time the cluster is shown. When showing a document containing such
references, the client can browse through the individual documents without in-
volving the service code. The control-flow in the service code becomes more
clear since the interconnections can be set up as if the cluster were a single
document and the references were internal links within it.

The following example shows how to set up a cluster of two documents,
input and help, that are cyclically connected with input being the main doc-
ument:

service {
html input = <html>

Please enter your name: <input name="name"><p>
Click here for help.

</html>;

html help = <html>
You can enter your given name, family name, or nickname.

14.5. Experiments 175

<p>Back to the form.
</html>;

html output = <html>Hello <[name]>!</html>;

session cluster_example() {
html h, i;
string s;
h = help<[back=&i];
i = input<[help=&h];
show i receive [s=name];
show output<[name=s];

}
}

The cluster mechanism gives us a unique opportunity for further reducing net-
work traffic. We can encode the entire cluster as a single JavaScript document,
containing all the documents of the cluster along with their interconnections.
Wherever there is a document reference in the original cluster, we generate
JavaScript code to overwrite the current document in the browser with the ref-
erenced document of the cluster. Of course, we also need to add some code to
save and restore entered form data when the client leaves and re-enters pages
with forms. In this way, everything takes place in the client’s browser and the
server is not involved until the client leaves the cluster.

14.5 Experiments

Figure 14.7 recounts the experiments we have performed. We have applied
our caching technique to the five Web service benchmarks mentioned in the
introduction.

In Figure 14.7(b) we show the sizes of the data transmitted to the client.
The grey columns show the original document sizes, ranging between 20 and
90 KB. The white columns show the sizes of the total data that is transmitted
using our technique, none of which exceeds 20 KB. Of ultimate interest is the
black column which shows the asymptotic sizes of the transmitted data, when
the templates have been cached by the client. In this case, we see reductions of
factors between 4 and 37 compared to the original document size.

The lycos benchmark is similar to one presented for HPP [31], except that
our reconstruction is of course in <bigwig>. It is seen that the size of our
residual dynamic data (from 20,183 to 3,344 bytes) is virtually identical to that
obtained by HPP (from 18,000 to 3,250 bytes). However, in that solution all
caching aspects are hand-coded with the benefit of human insight, while ours is
automatically generated by the <bigwig> compiler. The other four benchmarks
would be more challenging for HPP.

In Figure 14.7(c) we repeat the comparisons from Figure 14.7(b) but under
the assumption that the data is transmitted compressed using gzip. Of course,
this drastically reduces the benefits of our caching technique. However, we
still see asymptotic reduction factors between 1.3 and 2.9 suggesting that our

176 Chapter 14. Language-Based Caching of Dynamically Generated HTML

approach remains worthwhile even in these circumstances. Clearly, there are
documents for which the asymptotic reduction factors will be arbitrarily large,
since large constant text fragments count for zero on our side of the scales
while gzip can only compress them to a certain size. Hence we feel justified
in claiming that compression is orthogonal to our approach. When the HTTP
protocol supports compression, we represent the string pool in a naive fashion
rather than as a trie, since gzip does a better job on plain string data. Note
that in some cases our uncompressed residual dynamic data is smaller than the
compressed version of the original document.

In Figure 14.7(d) and 14.7(e) we quantify the end-to-end latency for our
technique. The total download and rendering times for the five services are
shown for both the standard documents and our cached versions. The client is
Internet Explorer 5 running on an 800 MHz Pentium III Windows PC connected
to the server via either a 28.8K modem or a 128K ISDN modem. These are
still realistic configurations, since by August 2000 the vast majority of Internet
subscribers used dial-up connections [46] and this situation will not change sig-
nificantly within the next couple of years [64]. The times are averaged over sev-
eral downloads (plus renderings) with browser caching disabled. As expected,
this yields dramatic reduction factors between 2.1 and 9.7 for the 28.8K mo-
dem. For the 128K ISDN modem, these factors reduce to 1.4 and 3.9. Even our
“worst-case example”, dmodlog, benefits in this setup. For higher bandwidth
dimensions, the results will of course be less impressive.

In Figure 14.7(f) we focus on the pure rendering times which are obtained
by averaging several document accesses (plus renderings) following an initial
download, caching it on the browser. For the first three benchmarks, our times
are in fact a bit faster than for the original HTML documents. Thus, generating
a large document is sometimes faster than reading it from the memory cache.
For the last two benchmarks, they are somewhat slower. These figures are of
course highly dependent on the quality of the JavaScript interpreter that is
available in the browser. Compared to the download latencies, the rendering
times are negligible. This is why we have not visualized them in Figure 14.7(d)
and 14.7(e).

14.6 Future Work

In the following, we describe a few ideas for further cutting down the number
of bytes and files transmitted between the server and the client.

In many services, certain templates often occur together in all show state-
ments. Such templates could be grouped in the same file for caching, thereby
lowering the transmission overhead. In <bigwig>, the HTML validation anal-
ysis [17] already approximates a graph from which we can readily derive the
set of templates that can reach a given show statement. These sets could then
be analyzed for tightly connected templates using various heuristics. However,
there are certain security concerns that need to be taken into consideration. It
might not be good idea to indirectly disclose a template in a cache bundle if
the show statement does not directly include it.

14.7. Conclusion 177
original original and dynamics dynamics

0

20

40

60

80

100

| {z }

lycos

| {z }

bachelor

| {z }

jaoo

| {z }

webboard

| {z }

dmodlog

KB

(b) size

0

2

4

6

8

10

| {z }

lycos

| {z }

bachelor

| {z }

jaoo

| {z }

webboard

| {z }

dmodlog

KB

(c) gzip size

0

5

10

15

20

25

30

| {z }

lycos

| {z }

bachelor

| {z }

jaoo

| {z }

webboard

| {z }

dmodlog

sec

(d) 28.8K modem download+rendering

0

2

4

6

8

10

| {z }

lycos

| {z }

bachelor

| {z }

jaoo

| {z }

webboard

| {z }

dmodlog

sec

(e) 128K ISDN download+rendering

0

500

1000

1500

2000

| {z }

lycos

| {z }

bachelor

| {z }

jaoo

| {z }

webboard

| {z }

dmodlog

msec

(f) pure rendering

Figure 14.7: Experiments with the template representation.

Finally, it is possible to also introduce language-based server-side caching
which is complementary to the client-side caching presented here. The idea is
to exploit the structure of <bigwig> programs to automatically cache and in-
validate the documents being generated. This resembles the server-side caching
techniques mentioned in Section 14.2.

14.7 Conclusion

We have presented a technique to revive the existing client-side caching mecha-
nisms in the context of dynamically generated Web pages. With our approach,
the programmer need not be aware of caching issues since the decomposition of
pages into cachable and dynamic parts is performed automatically by the com-
piler. The resulting caching policy is guaranteed to be sound, and experiments

178 Chapter 14. Language-Based Caching of Dynamically Generated HTML

show that it results in significantly smaller transmissions and reduced latency.
Our technique requires no extensions to existing protocols, clients, servers, or
proxies. We only exploit that the browser can interpret JavaScript code. These
results lend further support to the unique design of dynamic documents in
<bigwig>.

Chapter 15

Growing Languages with Metamorphic

Syntax Macros

with Michael I. Schwartzbach

Abstract

“From now on, a main goal in designing a language should be to plan for
growth.”

— Guy Steele: Growing a Language, OOPSLA’98 invited talk.

We present our experiences with a syntax macro language which we
claim forms a general abstraction mechanism for growing (domain-specific)
extensions of programming languages. Our syntax macro language is de-
signed to guarantee type safety and termination.

A concept of metamorphisms allows the arguments of a macro to be
inductively defined in a meta level grammar and morphed into the host
language. We also show how the metamorphisms can be made to operate
simultaneously on multiple parse trees at once and to accept parse trees
as arguments. The result is a highly flexible mechanism for growing new
language constructs without resorting to compile-time programming. In
fact, whole new languages can be defined at surprisingly low cost.

This work is fully implemented as part of the <bigwig> system for
defining interactive Web services, but could find use in many other lan-
guages.

15.1 Introduction

A compiler with syntax macros accepts collections of grammatical rules that
extend the syntax in which a subsequent program may be written. They have
long been advocated as a means for extending programming languages [22,56,
95]. Recent interest in domain-specific and customizable languages poses the
challenge of using macros to realize new language concepts and constructs or
even to grow entire new languages [10,59,79].

179

180 Chapter 15. Growing Languages with Metamorphic Syntax Macros

Existing macro languages are either unsafe or not expressive enough to live
up to this challenge, since the syntax allowed for macro invocations is too restric-
tive. Also, many macro languages resort to compile-time meta-programming,
making them difficult to use safely.

In this paper we propose a new macro language that is at once sufficiently
expressive and based entirely on simple declarative concepts like grammars and
substitutions. Our contributions are:

• a macro language design with guaranteed type safety and termination of
the macro expansion process;

• a concept of metamorphism to allow a user defined grammar for invocation
syntax;

• a mechanism for operating simultaneously on multiple parse trees;

• a full and efficient implementation for a syntactically rich host language;
and

• a survey of related work, identifying and classifying relevant properties;

This work is carried out in the context of the <bigwig> project [74], but could
find uses in many other host languages for which a top-down parser can be
constructed. For a given application of our approach, knowledge of the host
grammer is required. However, no special properties of such a grammar are
used. In fact, it is possible to build a generator that for a given host grammar
automatically will provide a parser that supports our notion of syntax macros.

15.2 Related Work Survey

Figure 15.1 contains a detailed survey of the predominant macro languages
that have previously been proposed. We have closely investigated the follow-
ing eight macro languages and their individual semantic characteristics: the
C preprocessor, CPP [49, 78]; the Unix macro preprocessor, M4; TEX’s built-in
macro mechanism; the macro mechanism of Dylan [76]; the C++ templates [80];
Scheme’s hygienic macros [48, 53]; the macro mechanism of the Jakarta Tool
Suite, JTS [10]; and the Meta Syntactic Macro System, MS2 [95]. The JSE
system [6] is a version of Dylan macros adapted to Java and is not treated
independently here. This survey has led us to identify and group 32 properties
that characterize a macro language and which we think are relevant for compar-
ing such work. Our own macro language is designed by explicitly considering
exactly those properties; for comparison, it is included in the last column of the
survey table.

15.2. Related Work Survey 181

P
r
o
p
e
r
ty

\
L
a
n
g
u
a
g
e

C
P
P

M
4

T
E
X

D
y
l
a
n

C
+
+

t
e
m
p
l
a
t
e
s

S
c
h
e
m
e

J
T
S

M
S
2

<
b
i
g
w
i
g
>

Gen.

L
ev

el
o
f
o
p
er

a
ti
o
n

le
x
ic

a
l

le
x
ic

a
l

le
x
ic

a
l

h
y
b
ri

d
sy

n
ta

ct
ic

a
l

sy
n
ta

ct
ic

a
l

sy
n
ta

ct
ic

a
l

sy
n
ta

ct
ic

a
l

sy
n
ta

c
ti

c
a
l

L
a
n
g
u
a
g
e

d
ep

en
d
en

t
n
o

n
o

y
es

y
es

y
es

y
es

y
es

y
es

y
e
s

P
ro

g
ra

m
m

a
b
le

co
n
d
it

io
n
a
ls

a
ri

th
m

et
ic

y
es

n
o

co
n
st

a
n
t

fo
ld

in
g

y
es

n
o

y
es

n
o

Syntax

D
efi

n
it

io
n

k
ey

w
o
rd

#
d
e
f
i
n
e

d
e
f
i
n
e

\
d
e
f

d
e
f
i
n
e

m
a
c
r
o

t
e
m
p
l
a
t
e

d
e
f
i
n
e
-
s
y
n
t
a
x

m
a
c
r
o

s
y
n
t
a
x

m
a
c
r
o

F
o
rm

a
l
a
rg

u
m

en
t

d
ef

id
N

/
A

#
1

to
#
9
?
id

:i
d
,
?
:i
d
,
?
id

<
n
t
id
>

id
n
t
id

$
$
n
t:
:
id

,
$
$
..
.:
:
id
<
n
t
id
>
,
<
id
:

n
t
id
>

F
o
rm

a
l
a
rg

u
m

en
t

u
se

id
$
0

to
$
9

#
1

to
#
9

?
id

id
id

id
$
id

<
id
>

In
v
o
ca

ti
o
n

sy
n
ta

x
id
(
,

,
)

id
(
,

,
)

\
id

..
.

id
..
.

id
<
,

,
>

(
id

)
#
id
(
,

,
)

id
..
.

id
..
.

Type

A
rg

u
m

en
t

ty
p
es

d
ec

la
re

d
N

/
A

N
/
A

N
/
A

y
es

y
es

im
p
li
ci

tl
y

y
es

y
es

y
e
s

A
rg

u
m

en
t

n
o
n
te

rm
in

a
ls

N
/
A

N
/
A

N
/
A

7
+

to
ke

n
id

,
ty

pe
,
co

n
st

s-
ex

p
6

1
5

a
ll

5
5

A
rg

u
m

en
t

ty
p
es

ch
ec

k
ed

N
/
A

N
/
A

N
/
A

y
es

y
es

y
es

y
es

y
es

y
e
s

R
es

u
lt

ty
p
es

d
ec

la
re

d
N

/
A

N
/
A

N
/
A

y
es

n
o

im
p
li
ci

tl
y

y
es

y
es

y
e
s

R
es

u
lt

n
o
n
te

rm
in

a
ls

N
/
A

N
/
A

N
/
A

st
m

,
fc
a
ll
,
d
ef

d
ec

l
s-

ex
p

5
1
5

a
ll

5
5

R
es

u
lt

ty
p
es

ch
ec

k
ed

N
/
A

N
/
A

N
/
A

n
o

N
/
A

n
o

y
es

y
es

y
e
s

Definition

M
u
lt
ip

le
d
efi

n
it
io

n
s

n
o

n
o

n
o

y
es

y
es

y
es

n
o

n
o

y
e
s

D
efi

n
it
io

n
se

le
ct

io
n

N
/
A

N
/
A

N
/
A

o
rd

er
li
st

ed
sp

ec
ifi

ci
ty

o
rd

er
li
st

ed
N

/
A

N
/
A

sp
e
c
ifi

c
it
y

D
efi

n
it
io

n
sc

o
p
e

o
n
e

p
a
ss

o
n
e

p
a
ss

o
n
e

p
a
ss

o
n
e

p
a
ss

o
n
e

p
a
ss

o
n
e

p
a
ss

o
n
e

p
a
ss

tw
o

p
a
ss

tw
o

p
a
ss

U
n
d
efi

n
e

y
es

re
d
efi

n
e

re
d
efi

n
e

n
o

n
o

re
d
efi

n
e

n
o

N
/
A

N
/
A

L
o
ca

l
m

a
cr

o
d
efi

n
it

io
n
s

n
o

y
es

y
es

n
o

y
es

y
es

y
es

n
o

y
e
s

D
ir

ec
t

re
cu

rs
io

n
n
o

y
es

y
es

y
es

n
o

y
es

n
o

n
o

r
e
je

c
te

d
In

d
ir

ec
t

re
cu

rs
io

n
n
o

y
es

y
es

y
es

y
es

y
es

N
/
A

y
es

N
/
A

A
rg

u
m

en
t

st
ru

ct
u
re

fi
x
ed

fi
x
ed

fi
x
ed

g
ra

m
m

a
r

fi
x
ed

li
st

fi
x
ed

o
p
ti

o
n
,
li
st

,
tu

p
le

g
r
a
m

m
a
r

Invocation

B
o
d
y

ex
p
a
n
si

o
n

la
zy

ea
g
er

la
zy

la
zy

la
zy

la
zy

ea
g
er

ea
g
er

e
a
g
e
r

O
rd

er
o
f
ex

p
a
n
si

o
n

p
re

sc
a
n

p
re

sc
a
n

o
u
te

r
p
re

sc
a
n

N
/
A

o
u
te

r
in

n
er

o
u
te

r
in

n
e
r

P
a
rs

in
g

a
m

b
ig

u
it
ie

s
N

/
A

N
/
A

sh
o
rt

es
t

sh
o
rt

es
t

N
/
A

N
/
A

N
/
A

g
re

ed
y

g
r
e
e
d
y

H
y
g
ie

n
ic

ex
p
a
n
si

o
n

n
o

n
o

n
o

y
es

n
o

y
es

(y
es

)
n
o

y
e
s

M
a
cr

o
s

a
s

re
su

lt
s

n
o

y
es

y
es

n
o

n
o

y
es

y
es

y
es

n
o

G
u
a
ra

n
te

ed
te

rm
in

a
ti

o
n

y
es

n
o

n
o

n
o

n
o

n
o

y
es

n
o

y
e
s

Impl.

T
ra

n
sp

a
re

n
t

y
es

N
/
A

y
es

y
es

y
es

y
es

y
es

y
es

y
e
s

E
rr

o
r

tr
a
il
in

g
N

/
A

N
/
A

n
o

n
o

n
o

y
es

n
o

n
o

y
e
s

P
re

tt
y

p
ri

n
ti

n
g

n
o

n
o

n
o

n
o

n
o

y
es

n
o

n
o

y
e
s

P
a
ck

a
g
e

M
ec

h
a
n
is

m
n
o

n
o

n
o

n
o

n
o

y
es

n
o

n
o

y
e
s

Figure 15.1: A macro language survey.

182 Chapter 15. Growing Languages with Metamorphic Syntax Macros

15.2.1 General Properties

The paramount characteristic of a macro language is whether it operates at the
lexical or syntactical level. Lexical macro languages allow tokens to be sub-
stituted by arbitrary sequences of characters or tokens. These definitions may
be parameterized so that the substitution sequence contains placeholders for
the actual parameters that are themselves just arbitrary character sequences.
CPP, M4, and TEX are well-known lexical macro languages. Conceptually, lex-
ical macro processing precedes parsing and is thus ignorant of the syntax of
the underlying host language. In fact, CPP and M4 are language independent
preprocessors for which there is no concept of host language. As a direct con-
sequence of syntactic independence, all lexical macro languages share many
dangers that can only be avoided by clever hacks and workarounds, which are
by now folklore.

A representative example is the following square macro:

#define square(X) X*X

which works as expected in most cases. However, if invoked with the argument
z+1 the result will be the character sequence z+1*z+1 which is interpreted as
z+(1*z)+1. A solution to this particular problem is explicitly to add parenthe-
ses around the arguments to control subsequent parsing:

#define square(X) (X)*(X)

A more subtle problem arises when invoking the following macro:

#define swap(X,Y) { int t=X; X=Y; Y=t; }

in this context:

if (a>b) swap(a,b); else a = 0;

This program gives an unexpected “parse error before ‘else’” because
there are two statements between the keywords if and else. The first is the
compound statement from the expansion of the swap macro, the second is the
empty statement (the semicolon) following the invocation of the swap macro. A
workaround employed by skilled CPP programmers is to rewrite the macro body
as a do-while construct without a terminating semicolon and with a constant
false condition:

#define swap(X,Y) do { int t=X; X=Y; Y=t; } while (0)

Now, invocations of the swap macro can be safely terminated with a semicolon,
expanding to one statement only. These are the kind of low-level issues that
plague lexical macro programmers.

In contrast, syntactical languages operate on parse trees, as depicted in
Figure 15.2, which of course requires knowledge of the host language and its
grammar. Syntactical macro languages include C++ templates, Scheme, JTS,

15.2. Related Work Survey 183

;Srepeat

until (

)

;

(

repeat E)

until E

repeat S ;)E(Suntil

Original Macro
definition

Expanded
programprogram

ES
E

S

E

S

Figure 15.2: Syntax macros—operators on parse trees.

and MS2. The language Dylan is a hybrid that operates simultaneously on token
streams and parse trees.

Some macro languages allow explicit programming on the parse trees that
are being constructed, while others only use pattern matching and substitution.
CPP only allows simple conditionals, M4 offers simple arithmetic, C++ templates
performs constant folding (which together with multiple definitions provide a
Turing-complete compile-time programming language [90]), while Scheme and
MS2 allow arbitrary computations.

15.2.2 Syntax Properties

The syntax for defining and invoking macros varies greatly. The main point
of interest is how liberal an invocation syntax is allowed. At one end of the
spectrum is CPP which requires parenthesized and comma separated actual ar-
guments, while at the other end Dylan allows an almost arbitrary invocation
syntax following an initial identifier.

15.2.3 Type Properties

There are two notions of type in conjunction with syntactical macro languages,
namely result types and argument types, both ranging over the nonterminals
of the host language grammar. These are often explicitly declared, by nam-
ing nonterminals of some standardized host language grammar. Using these,
syntactical macro languages have the possibility of type checking definitions
and invocations. Definitions may be checked to comply with the declared non-
terminal return type of the macro, assuming that the placeholders have the
types dictated by the arguments. Invocations may be checked to ensure that
all arguments comply with their declared types. Often the argument type in-
formation is used to guide parsing, in which case this last check comes for free.
If both checks are performed, no parse errors can occur as a direct consequence
of macro expansion.

Only JTS and MS2 take full advantage of this possibility. The others men-
tioned fall short in various ways, for example by not checking that the macro
body conforms to the result nonterminal. The languages also differ in how
many nonterminals from the host grammar can be used as such types.

184 Chapter 15. Growing Languages with Metamorphic Syntax Macros

15.2.4 Definition Properties

There are many relevant properties of macro definitions. The languages Dylan,
CPP, and Scheme, allow more than one macro to be defined with the same name;
a given invocation then selects the appropriate definition either by trying them
out in the order listed or by using a notion of specificity.

Most macro languages have one-pass scope rules for macro definitions,
meaning that a macro is visible from its lexical point of definition and on-
ward. Only MS2 employs a two-pass strategy, in which macro definitions are
available even before their lexical point of definition. With one-pass scope
rules, the order in which macros are defined is significant, whereas with two-
pass scope rules the macro definitions may be viewed as a set. The latter has
the nice property that the definition order can be rearranged without affecting
the semantics. However, this is not completely true of MS2 since its integrated
compile-time programming language has one-pass scope rules. Some of the lan-
guages allow macros to be undefined or redefined which of course only makes
sense in the presence of one pass scope rules. Many languages permit local
macro definitions, but CPP, Dylan, and JTS have no such concept.

There are two kinds of macro recursion; direct and indirect. Direct recursion
occurs when the body of a macro definition contains an invocation of itself. This
always causes non-termination. Indirect recursion occurs when a self-invocation
is created during the expansion. This can either be the result of a compile-time
language creating a self-invocation or the result of the expansion being reparsed
as in the prescan expansion strategy (see below). Without a compile-time pro-
gramming language with side-effects to “break the recursion”, indirect recursion
also causes non-termination. The above generalizes straightforwardly to mutual
recursion. Most of the languages tolerate some form of macro recursion, only
CPP and JTS completely and explicitly avoid recursion.

An important issue is the argument structure that is allowed. Most lan-
guages require a fixed number of arguments for each macro. Scheme allows lists
of arguments, MS2 allows lists, tuples, and optional arguments, while Dylan is
the most flexible by allowing the argument syntax to be described by a user
defined grammar.

15.2.5 Invocation Properties

A macro body may contain further macro invocations. The languages are evenly
split as to whether a macro body is expanded eagerly at its definition or lazily
at each invocation. An eager strategy will find all errors in the macro body at
definition time, even if the macro is never invoked.

Similarly, the actual arguments may contain macro invocations; here, the
languages split on using an inner or outer expansion strategy. However, CPP,
M4, and Dylan use a more complex strategy known as argument prescan. When
a macro invocation is discovered, all arguments are parsed and any macros
inside are invoked. These expanded arguments are then substituted for their
placeholders in a copy of the macro body. Finally, the entire result is rescanned,
processing any newly produced macro invocations. Note that this strategy only

15.3. Designing a Macro Language 185

makes sense for lexical macro languages.
The languages that allow a liberal invocation syntax where the arguments

are not properly delimitered sometimes face ambiguities in deciding how to
match actual to formal macro arguments. The lexical languages, TEX and
Dylan, resolve such ambiguities by chosing the shortest possible match; in con-
trast, the syntactical language MS2 employs a greedy strategy that for each for-
mal argument parses as much as possible. None of the languages investigated
employed back-tracking for matching invocations with definitions.

Most syntactical languages use automatic α-conversion to obtain hygienic
macros; MS2 requires explicit renamings to be performed by the programmer.
Several languages allow new macro definitions to be generated by macro expan-
sions. Only CPP and JTS guarantee termination of macro expansion; the others
fail either by a naive treatment of recursive macros or by allowing arbitrary
computations during expansion.

15.2.6 Implementation Properties

Macro languages are generally designed to be transparent, meaning that subse-
quent phases of the compilation need not be aware of macro expansions. How-
ever, none apart from Scheme seem to allow pretty printing of the unexpanded
syntax and error trailing, meaning that errors from subsequent phases are traced
back to the unexpanded syntax. Finally, a package concept for macros seems
again only to be considered by Scheme [92].

15.2.7 Other Related Work

Our macro language shares some features of a previous work on extensible
syntax [24], although that is not a macro language. Rather, it is a framework
for defining new syntax that is represented as parse tree data structures in a
target language, in which type checking and code generation is then performed.
In contrast, our new syntax is directly translated into parse trees in a host
language. Also, the host language syntax is always available on equal footing
with the new syntax. However, the expressiveness of the extensible syntax
that is permitted in [24] is very close to the argument syntax that we allow,
although there are many technical differences, including definition selection,
parsing ambiguities, expansion strategy, and error trailing. Also, we allow a
more general translation scheme.

15.3 Designing a Macro Language

The ideal macro language would allow all nonterminals of the host language
grammar to be extended with arbitrary new productions, defining new con-
structs that appear to the programmer as if they were part of the original
language. The macro languages we have seen in the previous section all ap-
proximate this, some better than others.

In this section we aim to come as close to this ideal as practically possi-
ble. Later, we take a further step by allowing the programmer to define also

186 Chapter 15. Growing Languages with Metamorphic Syntax Macros

new nonterminals. Another goal is to obtain a safe macro language, where
type checking and termination are guaranteed. We will carefully consider the
semantic aspects identified in Figure 15.1 in our design.

15.3.1 Syntax

Our syntax macro language looks as follows:

macro : macro <nonterm> id 〈param〉∗ ::= { body }
param : token

| <nonterm id>

A syntax macro has four constituents: a result type (which is a nonterminal of
the host grammar), an identifier naming the macro, a parameter list specifying
the invocation syntax, and a body that must comply with the result type.

The result type declares the type of the body and thereby the syntactic con-
texts in which invocations of the macro are permitted. Adhering to Tennent’s
Principle of Abstraction [83], we allow nonterm to range over all nonterminals
of the host language grammar. Of course, the nonterminals are from a particu-
lar standardized abstract grammar. In the case of the <bigwig> host language,
55 nonterminals are available.

As in MS2, a macro must start with an identifier. It is technically possible to
lift this restriction [70], but it serves to make macro invocations easier to rec-
ognize. The parameter list determines the rest of the invocation syntax. Here,
we allow arbitrary tokens interspersed among arguments that are identifiers
typed with nonterminals. The list ends with the “::=” token. The macro body
enclosed in braces conforms to the result type and references the arguments
through identifiers in angled brackets.

Simple Examples

A simplest possible macro without arguments is:

macro <floatconst> pi ::= {
3.1415927

}

whose invocation pi is only allowed in places where a floatconst may appear.
The next macro takes an argument and executes it with 50% probability:

macro <stm> maybe <stm S> ::= {
if (random(2)==1) <S>

}

A more interesting invocation syntax is:

macro <stm> repeat <stm S> until (<exp E>); ::= {
{
bool first = true;
while (first || !<E>) {

15.3. Designing a Macro Language 187

<S>
first = false;

}
}

}

which extends the host language with a repeat construct that looks and feels
exactly like the real thing. Identifiers such as repeat and until are even treated
as keywords in the scope of the macro definition. The semantic correctness of
course relies on α-conversion of first. Incidentally, this is the macro used in
Figure 15.2.

An example with multiple definitions supplies a Francophile syntax for ex-
isting constructs:

macro <stm> si (<exp E>) <stm S> ::= {
if (<E>) <S>

}

macro <stm> si (<exp E>) <stm S> sinon <stm S2> ::= {
if (<E>) <S> else <S2>

}

The two definitions are both named si but have different parameters.

Macro Packages

Using macros to enrich the host language can potentially create a Babylonic
confusion. To avoid this problem, we have created a simple mechanism for scop-
ing and packaging macro definitions. A package containing macro definitions
is viewed as a set, that is, we use two pass scope rules where all definitions
are visible to each other and the order is insignificant. A dependency analysis
intercepts and rejects recursive definitions.

A package may require or extend other packages. Consider a package P
that contains a set of macro definitions M , requires a package R, and extends
another package E. The definitions visible inside the bodies of macros in M
are M ∪R∪E and those that are exported from P are M ∪E. Thus, require
is used for obtaining local macros. The strict view that a package defines a set
eliminates many potential problems and confusions.

15.3.2 Parsing Definitions

Macro definitions are parsed in two passes yielding a set of definitions. First,
the macro headers are collected into a structure that will later guide the parsing
of invocations. The bodies are lexed to discover macro invocations from which
a dependency graph is constructed. Second, the macro bodies are parsed in
topological order to respect these dependencies. To ensure termination, we in-
tercept and reject cycles. The result is for each body a parse tree that conforms
to the result type and contains placeholder nodes for occurrences of arguments.
It is checked that the body can be derived from the result nonterminal when

188 Chapter 15. Growing Languages with Metamorphic Syntax Macros

the placeholders are assumed to be derived from the corresponding argument
nonterminals. Note that this yields an eager expansion strategy allowing parse
errors in the macro body to be reported at definition time.

15.3.3 Parsing Invocations

Macro invocations are detected by the occurrence of an identifier naming a
macro. At this point, the parser determines if the result type of the macro is
reachable from the current point in parsing. If not, parsing is aborted. Other-
wise, parsing is guided to this nonterminal and invocation parsing begins. The
result is a parse tree that is inserted in place of the invocation.

Invocation parsing is conducted by interpreting the macro parameter list,
matching required tokens and collecting actual argument parse trees. When
the end of the parameter list is reached, the actual arguments are substituted
into the placeholders in a copy of the macro body. This process is commonly
referred to as macro expansion. The parsing is greedy since an actual argument
is parsed as far as possible in the usual top-down parsing style.

However, this basic mechanism is not powerful enough to handle multiple
definitions of a macro which yields a more flexible invocation syntax and are
crucial for the metamorphisms presented later. For that purpose, we must
interpret a set of parameter lists. We base the definition selection on the concept
of specificity which is independent of the macro definition order. This is done
by gradually challenging each parameter list with the input tokens. There are
three cases for a challenge:

• if a list is empty, then it always survives;

• if a list starts with a token, then it survives if it equals the input token;
and

• if a list starts with an argument <N a>, then it survives if the input token
belongs to first(N) in the host grammar.

Several parameter lists may survive the challenge. Among those, we only keep
the most specific ones. The empty list is always eliminated unless all lists
are empty. Among a set of non-empty lists, the survivors are those whose
first parameter is maximal in the ordering p @ q defined as φ(q) ⊂ φ(p), where
φ(token) is the singleton {token} and φ(<N a>) is first(N) in the host grammar.
The tails of the surviving lists are then challenged with the next input token,
and so on.

The intuition behind our notion of specificity can be summarized in a few
rules of thumb: 1) always prefer longer parameter lists to shorter ones, 2)
always prefer a token to a nonterminal, 3) always prefer a narrow nonterminal
to a wider one. Rule 1) is the reason that the dangling sinon problem for
our Francophile example is solved correctly. This strategy has a far reaching
generality that also works for the metamorph rules introduced in Section 15.5.

The following example illustrates how invocations are parsed. Consider the
macro definitions:

15.3. Designing a Macro Language 189

macro <exp> sync [0 : <id I>] ::= { ... }

macro <exp> sync [0 : <exp E>] ::= { ... }

macro <exp> sync [<exp E>] ::= { ... }

macro <exp> sync ::= { ... }

The invokation that we must parse is: sync[0:x]. In the first challenge round
we have the situation:

sync [0 : <id I>]
sync [0 : <exp E>]
sync [<exp E>]
sync

sync [0 : x]
↑

All macro headers survive, since they all match the sync token. In the next
challenge round:

sync [0 : <id I>]
sync [0 : <exp E>]
sync [<exp E>]
sync

sync [0 : x]
↑

the shortest macro header loses, since the others are prepared to carry on with
the [token. In the next round:

sync [0 : <id I>]
sync [0 : <exp E>]
sync [<exp E>]
sync

sync [0 : x]
↑

only the first two macro headers survive, since they match the token 0 with
tokens rather than the more general exp non-terminal. In the fourth challenge
round they agree and both survive:

sync [0 : <id I>]
sync [0 : <exp E>]
sync [<exp E>]
sync

sync [0 : x]
↑

In the fifth challenge round:

190 Chapter 15. Growing Languages with Metamorphic Syntax Macros

sync [0 : <id I>]
sync [0 : <exp E>]
sync [<exp E>]
sync

sync [0 : x]
↑

the first macro header is declared the winner, since it matches the token x with
the non-terminal id and id @ exp (since first(id) ⊂ first(exp)). This chosen
macro header survives through the remaining] token and its expansion is then
performed.

For the order of expansion we have chosen the inner strategy. Since our
macros are terminating, the expansion order is semantically transparent, apart
from a subtle difference with respect to α-conversion. The inner strategy is
more efficient since arguments are only parsed once.

15.3.4 Well-Formedness

A set of macros with the same name must be well-formed. This means that
they must all have the same result type. Actually, this restriction could be
relaxed to allow different return types for macros with the same name by using
a contravariant specificity ordering to determine which one to invoke. Further-
more, to guarantee that the challenge rounds described above have a unique
final winner, we impose the requirement that for all pairs of parameter lists of
the form πp1π1 and πp2π2, then

φ(p1) \ φ(p2) = ∅ ∨ φ(p2) \ φ(p1) = ∅ ∨ φ(p1) ∩ φ(p2) = ∅

and if φ(p1) equals φ(p2) then p1 must equal p2.

15.3.5 Hygienic Macros

To achieve hygienic macros, we automatically α-convert all identifiers inside
macro bodies during expansion. Unlike Scheme [28,33,52], we also α-convert free
identifiers, since they cannot be guaranteed to bind to anything sensible in the
context of an invocation. As we thus α-convert all identifiers, the macro needs
only recognize all parse tree nodes of nonterminal id ; that is, no symbol table
information is required. To communicate identifiers from the invocation context
we encourage the macro programmer to supply those explicitly as arguments
of type id . If an unsafe free variable is required, it must be backpinged to
avoid α-conversion. It is often necessary to use computed identifiers, as seen
in Figure 15.6. For that purpose, we introduce an injective and associative
binary concatenation operator “~” on identifiers. The inductive predicate α
determines if an identifier will be α-converted:

• α(‘i) = false;

• α(i~j) = α(i) ∧ α(j);

• α(<i>) = false , if <i> is an argument of type id ; and

15.4. Growing Language Concepts 191

• α(i) = true, otherwise.

The following example illustrates the effect of α-conversion during macro ex-
pansion:

first = 0;
repeat {
first++;
repeat {
i++;
f(i);

} until (i>10);
} until (first>7);

⇒

first = 0;
{ bool first~1 = true;
while (first~1 || !(first > 7)) {
{ first++;
{ bool first~2 = true;

while (first~2 || !(i > 10)) {
{ i++;
f(i);

}
first~2 = false;

}
}

}
first~1 = false;

}
}

15.4 Growing Language Concepts

Our macro language allows the host language to grow, not simply with handy
abbreviations but with new concepts and constructs. Our host language, <bigwig>,
is designed for programming interactive Web services and has a very general
mechanism for providing concurrency control between session threads [13, 71].
The programmer may declare labels in the code and use temporal logic to define
the set of legal traces for the entire service. This is a bit harsh on the average
programmer and consequently a good opportunity for using macros.

Figure 15.6 shows a whole stack of increasingly high-level concepts that are
introduced on top of each other, profiting from the possibility to define macros
for all nonterminals of the host language. Details of the <bigwig> syntax need
not be understood. The allow, forbid, and mutex macros abbreviate common
constructs in temporal logic and produce results of type formula. The macro
region of type toplevel is different; it introduces a new concept of regions
that are declared on equal footing with other native concepts. The exclusive
macro of type stm defines a new control structure that secures exclusive ac-
cess to a previously declared region. The resource macro of type toplevel list
declares an instance of another novel concept that together with the macros
reader and writer realizes the reader/writer protocol for specified resources.
Finally, the protected macro seemingly provides a modifier that allows any
declared variable to be subject to that protocol. The macros all build on top
of each other and produce no less than six levels of abstraction as depicted in
Figure 15.3. A similar development could have implemented other primitives,
such as semaphores, monitors, and fifo pipes. This demonstrates how the host
language becomes highly tailorable with very simple means. The <bigwig> lan-
guage employs an extensive collection of predefined macros to enrich the core
language.

192 Chapter 15. Growing Languages with Metamorphic Syntax Macros

allow-when

forbid-when

mutex

region

resource

protected

<bigwig> core language

writer

exclusive

reader

1.

2.

3.

4.

5.

6.

0.

Figure 15.3: A stack of macro abstractions.

An example of a program using the high-level abstractions is:

service {
protected shared int counter;

html Doc = <html>
You are visitor number <[number]>

</html>;

session Access() {
html D;
reader (counter) D = Doc <[number=counter];
writer (counter) counter++;
exit D;

}
}

This program is a Web service that shows a page with the ubiquitous page
counter which is declared using the protected macro. When a client issues
a request to run the session Access, the value of the counter is read inside a
reader region and a document showing this value is assembled. Subsequently,
the counter is incremented in a writer region. Finally, the document is trans-
mitted to the client.

15.5 Metamorphisms

Macro definitions specify two important aspects: the syntax definitions charac-
terizing the syntactic structure of invocations and the syntax transformations
specifying how “new syntax” is morphed into host language syntax.

So far, our macros can only have a finite invocation syntax, taking a fixed
number of arguments each of which is described by a host grammar nonterminal.
In the following we will move beyond this limitation, focusing initially on the
syntax definition aspects.

15.5. Metamorphisms 193

The previously presented notion of multiple definitions allow macros with
varying arity. The following example defines an enum macro as known from C
that takes one, two, or three identifier arguments:

macro <decls> enum { <id X> } ; ::= {
const int <X> = 0;

}

macro <decls> enum { <id X> , <id Y> } ; ::= {
const int <X> = 0;
const int <Y> = 1;

}

macro <decls> enum { <id X> , <id Y> , <id Z> } ; ::= {
const int <X> = 0;
const int <Y> = 1;
const int <Z> = 2;

}

Evidently, it is not possible to define macros with arbitrary arity and the spec-
ifications exhibit a high degree of redundancy. In terms of syntax definition,
the three enum definitions correspond to adding three unrelated right-hand side
productions for the nonterminal decls:

decls : enum { id } ;
| enum { id , id } ;
| enum { id , id , id } ;

Scheme amends this by introducing a special ellipsis construction, “...” to
specify lists of nonterminal s-expressions. MS2 moves one step further by per-
mitting also tuples and optional arguments, corresponding to allowing the use
of regular expressions over the terminals and nonterminals of the host gram-
mar on the right-hand sides of productions. The ubiquitous EBNF syntax is
available for designating options “?”, lists “*” or “+”, and tuples “{...}” (for
grouping). In addition, MS2 provides a convenient variation of the Kleene star
for specifying token-separated lists of nonterminals. Here, we use N⊕ as no-
tation for one-or-more comma separated repetitions of the nonterminal N . An
enum macro defined via this latter construction corresponds to extending the
grammar as follows:

decls : enum { id⊕ } ;

The Dylan language has taken the full step by allowing the programmer to
describe the macro invocation syntactic structure via a user defined grammar,
permitting the introdution of new user defined nonterminals. This context-free
language approach is clearly more general than the regular language approach,
since it can handle balanced tree structures. The enum invocation syntax could
be described by the following grammar fragment that introduces a user defined
nonterminal called enums (underlined for readability):

194 Chapter 15. Growing Languages with Metamorphic Syntax Macros

decls : enum { id enums } ;
enums : , id enums

| ε

In Dylan, the result of parsing a user defined nonterminal also yields a result
that can be substituted into the macro body. However, this result is an unparsed
chunk of tokens with all the associated lexical macro language pitfalls.

We want to combine this great definition flexibility with type safety. Thus,
we need some way of specifying and checking the type of the result of parsing
a user defined nonterminal. Clearly, such nonterminals cannot exist on an
equal footing with those of the host language; a syntax macro must ultimately
produce host syntax and thus cannot return user defined ASTs. To this end,
we associate to every user defined nonterminal a host nonterminal result type
from which the resulting parse tree must be derived. Thus, the syntax defined
by the user defined nonterminals is always morphed directly into host syntax.
The specification of this morphing is inductively given for each production of
the grammar. In contrast, MS2 relies on programming and computation for
specifying and transforming their regular expressions of nonterminals into parse
trees.

To distinguish clearly from the host grammar, we call the user defined
nonterminal productions typed with host nonterminals for metamorphisms. A
metamorphism is a rule specifying how the macro syntax is morphed into host
language syntax. The syntax for macro definitions is generalized as follows to
accommodate the metamorphisms:

macro : macro <nonterm> id 〈param〉∗ ::= { body }
| metamorph <nonterm> id --> 〈param〉∗ ::= { body }

param : token
| <nonterm id>
| <id: nonterm id>

We have introduced two new constructs. A parameter may now also be of the
form <M: N a>, meaning that it is named a, has an invocation syntax that is
described by the metamorph nonterminal M, and that its result has type N .
The metamorph syntax and the inductive translation into the host language is
described by the metamorph rules. To the left of the “-->” token is the result
type and name of the metamorph nonterminal, and to the right is a parameter
list defining the invocation syntax and a body defining the translation into the
host language. The metamorph rules may define an arbitrary grammar. In its
full generality, a metamorph rule may produce multiple results each defined by
a separate body.

We are now ready to define the general enum macro in our macro language.
The three production rules above translates into the following three definitions:

macro <decls> enum { <id I> <enums: decls Ds> } ; ::= {
int e = 0;
const int <I> = e++;
<Ds>

}

15.5. Metamorphisms 195

metamorph <decls> enums --> , <id I> <enums: decls Ds> ::= {
const int <I> = e++;
<Ds>

}

metamorph <decls> enums --> ::= {}

The first rule defines a macro enum with the metamorph argument <enums:
decls Ds> describing a piece of invocation syntax that is generated by the non-
terminal enums in the metamorph grammar. However, enums parse trees are
never materialized, since they are instantly morphed into parse trees of the
nonterminal decls in the host grammar.

The body of our enum macro commences with the declaration of a variable
e used for enumerating all the declared variables at runtime. This declaration
is followed by the morphing of the (first) identifier <I> into a constant inte-
ger declaration with initialization expression e++. Then comes <Ds> which is
the decls result of metamorphing the remaining identifiers to constant integer
declarations.

The next two productions in the enum grammar translates into two meta-
morph definitions. The first will take a comma and an identifier followed by
a metamorph argument and morph the identifier into a constant integer dec-
laration as above and return this along with whatever is matched by another
metamorph invocation. The second metamorph definition offers a termination
condition by parsing nothing and returning the empty declarations.

For simplicity, the constant integer declarations in the bodies of the first
two rules are identical. This redundance can be alleviated either by placing this
constant declaration in the body of another macro or by introducing another
metamorphism returning the declaration at the place of the identifiers.

The next example shows how the invocation syntax of a switch statement
syntax is easily captured and desugared into nested if statements:

macro <stm> switch (<exp E>) { <swbody: stm S> } ::= {
{
typeof(<E>) x = <E>;
<S>

}
}

metamorph <stm> swbody -->
case <exp E>: <stms Ss> break; <swbody: stm S> ::= {

if (x==<E>) { <Ss> } else <S>
}

metamorph <stm> swbody --> case <exp E>: <stms Ss> break; ::= {
if (x==<E>) { <Ss> }

}

196 Chapter 15. Growing Languages with Metamorphic Syntax Macros

15.5.1 Parsing Invocations

The strategy for parsing invocations is unchanged. The @ order is generalized
appropriately by defining φ(<M: N a>) to be first(M) in the metamorph gram-
mar. Note that it is always possible to abbreviate part of the invocation syntax
by introducing a new metamorph nonterminal while preserving the semantics.

15.5.2 Well-Formedness

As for syntax macros, the set of productions for a given metamorph nonterminal
must be well-formed. Furthermore, to ensure termination of our greedy strategy,
we prohibit left-recursion in the metamorph grammar. Finally, we include the
sanity check that each metamorph nonterminal must derive some finite string.

15.5.3 Hygienic Macros

Metamorph productions do not initiate α-conversion. This is only done on the
entire body of a syntax macro, conceptually after its metamorphic arguments
have been substituted. This is seen in the enum example, where the expansion
of “enum {d,e};” is:

int e~42 = 0;
const int d = e~42++;
const int e = e~42++;

In this resulting parse tree, the local occurrence of e is everywhere α-converted
to the same e~42, which is necessary to yield the proper semantics.

15.6 Multiple Results

In its full generality, a metamorph production may morph the invocation syn-
tax into several resulting parse trees in the host grammar. This can be seen as
a generalization of the divert primitive from M4; however, our solution stati-
cally guarantees type safety of the combined result. The metamorph rules and
metamorph formals are extended to cope with multiple returns and arguments:

macro : metamorph <〈nonterm〉⊕> id --> 〈param〉∗ ::= 〈{ body }〉+
param : <id: 〈nonterm id〉⊕>

The following example illustrates in a simple way how multiple metamorph
results add expressive power to our macro language. We define a macro reserve
that takes a variable number of identifiers denoting resources and a statement.
The macro abstraction will acquire the resources in the order listed, execute
the statement, and release the resources in reverse order.

macro <stm> reserve (<id X> <res: stms Ss1, stms Ss2>) <stm S> ::= {
{ acquire(<X>); <Ss1> <S> <Ss2> release(<X>); }

}

metamorph <stms,stms> res --> , <id X> <res: stms Ss1, stms Ss2> ::= {

15.7. Metamorph Arguments 197

acquire(<X>); <Ss1>
}{
<Ss2> release(<X>);

}

metamorph <stms,stms> res --> ::= {}{}

With these definitions, the macro expands as follows:

reserve (db, master, slave) {
...

}
⇒

acquire(db);
acquire(master);
acquire(slave);
...
release(slave);
release(master);
release(db);

Without multiple results, some transformations are impossible or require con-
torted encodings.

15.7 Metamorph Arguments

It is possible to add typed arguments to metamorphisms while retaining safety.
This permits context-sensitive transformations in the sense that parse trees may
be constructed and supplied to inner metamorph invocations.

To this end, we extend the syntax for metamorph definitions as follows:

macro : metamorph <〈nonterm〉⊕> id formals? --> 〈param〉∗ ::= 〈{ body }〉+
param : <id: 〈nonterm id〉⊕> actuals?

formals : (〈 <id id> 〉⊕)
actuals : (〈 { body } 〉⊕)

To motivate a simple example illustrating this extension, we assume that the
base language does not allow side-effects in initialization expressions. Thus,
we can no longer use the e++ expression. Instead, we inductively build an
appropriate constant expression which is passed as an argument:

macro <decls> enum <id I> <enums: decls Ds>({ 1 }) ; ::= {
const int <I> = 0;
<Ds>

}

metamorph <decls> enums(<exp E>) -->
, <id I> <enums: decls Ds>({ <E> + 1 }) ::= {

const int <I> = <E>;
<Ds>

}

metamorph <decls> enums(<exp E>) --> ::= {}

Using this variation of the enum macro, we obtain the following expansion:

198 Chapter 15. Growing Languages with Metamorphic Syntax Macros

enum { a, b, c, d }; ⇒
const int a = 0;
const int b = 1;
const int c = 1+1;
const int d = 1+1+1;

In more involved and ambitious applications, the arguments play the roles of
“syntactic continuations”.

15.8 Growing New Languages

Section 15.4 contains examples that use macros to enrich the host language with
new concepts and constructs. A more radical use of particularly metamorphisms
is to design and implement a completely new language at very little cost.

Our host language <bigwig> is itself a domain-specific language designed to
facilitate the implementation of interactive Web services. To program a family
of highly specialized services it can be advantageous to first define what we
shall call a very domain-specific language, or VDSL.

We consider a concrete example. At the University of Aarhus, undergrad-
uate Computer Science students must complete a Bachelor’s degree in one of
several fields. The requirements that must be satisfied are surprisingly com-
plicated. To guide students towards this goal, they must maintain a so-called
“Bachelor’s contract” that plans their remaining studies and discovers poten-
tial problems. This process is supported by a Web service that for each student
iteratively accepts past and future course activities, checks them against all
requirements, and diagnoses violations until a legal contract is composed. This
service was first written as a straight <bigwig> application, but quickly became
annoying to maintain. Thus it was redesigned in the form of a VDSL, where
study fields and requirements are conceptualized and defined directly in pseudo
natural language style. This makes it possible for a secretary—or even the
responsible faculty member—to maintain and update the service. Figure 15.7
shows an example of the input. There is only a single macro, studies, which
accepts as argument an entire specification in the VDSL syntax, defined using
27 metamorph rules. Its result is a corresponding <bigwig> service. Apart from
the keyword require, none of the syntax shown is native to <bigwig>. The file
bach.wigmac is only 400 lines and yet contains a complete implementation of
the new language, including “parser” and “code generator”. Thus, our macro
mechanism offers a rapid and inexpensive realization of new ad-hoc languages
with almost arbitrary syntax. Error trailing and unexpanded pretty printing
supports the illusion that a genuinely new language is provided.

15.9 Implementation

The work presented is fully implemented in the <bigwig> compiler. The im-
plementation is in C with extensive support from CPP and is available from the
<bigwig> project homepage [74] in an Open Source distribution. In the fol-
lowing we present two important aspects from the implementation that achieve
transparency for all other phases of the compiler. These are the transparent

15.9. Implementation 199

1

3

5

6

4

2

Inv.

Arg. End.

End.

A D

X Y

CB

(a) Ordinary

1

3

5

6

4

2

Inv.

Arg. End.

End.

A D

X Y

CB

(b) Weaved

Figure 15.4: Macro representations.

representation of macros and the generic pretty printer responsible for commu-
nicating macro-conscious information. These aspects support the illusion that
the host language is really extended.

15.9.1 Transparent Representation

Consider the following macro definition:

macro <ids> xIDy (<ids Is>) ::= {
X,<Is>,Y

}

The representation of the parse tree for the identifier list “A,xIDy(B,C),D” is
seen in Figure 15.4(a). All node kinds of the parse tree are capable of holding
three explicit macro nodes: Inv, Arg, and End.

This representation yields a perfectly balanced structure with complete
knowledge of the scope of all macro invocations and arguments. It is, however,
clearly not transparent for subsequent phases in the compiler. Transparency is
achieved through a weaving phase in which new pointers are after parsing short-
circuited around the macro nodes giving two ways of traversing the parse tree.
Macro conscious phases follow the paths in Figure 15.4(a), while macro ignorant
phases only see the new short-circuited paths of Figure 15.4(b). Desugaring is
not fully compatible with preserving macro information [91] and this is the
only sense in which transparency is not completely achieved. However, explicit
desugaring is not really necessary in a compiler that supports metamorphic
syntax macros since it can be handled by the macros.

15.9.2 Generic Pretty Printing

Four indent directives control the pretty printing of macros:

param : \/ | \n | \+ | \-

The macro header is augmented with whitespace supression, newline, indent,
and unindent directives. The pretty printer can be instructed to print the
si-sinon statement without spaces around the conditional expression and with
a newline before the alternate branch:

macro <stm> si (\/<exp E>\/) <stm S> \n sinon <stm S2> ::= { ... }

200 Chapter 15. Growing Languages with Metamorphic Syntax Macros

Figure 15.5: HTML pretty print with an error message.

A more sophisticated indention correctly renders the switch control struc-
ture:

macro <stm> switch (\/<exp E>\/) { \+\n <swbody: stm S> \-\n } ...

These extensions are purely cosmetic; they have no semantics attached and are
ignored in the invocation challenge rounds.

Our implementation supports a generic nonterminal pretty printer that to-
gether with a specific terminal pretty printer will unparse the code with or
without macro expansion. This only depends on the choice of arrows in Fig-
ure 15.4(b).

Our implementation currently has three terminal pretty printers for printing
ascii, LaTeX, and HTML/JavaScript of which the last is by far the most so-
phisticated. It inserts use-def hyperlinks, visualizes expression types, highlights
errors, and expands individual macros at the click of a button.

15.9.3 Error Reporting

With our generic pretty printing strategy, error reporting is a special case of
pretty printing using a special kind of terminal printer that only print nodes
with a non-empty error string. Consequently, error messages can be viewed
with or without macro expansion. Figure 15.5 shows how a simple error is
pinpointed in the unexpanded syntax. The compiler can be instructed to dump
the error trail as follows:

*** symbol errors:

*** bach.wig:175:

Identifier ‘CS501’ not declared

in macro argument ‘I’

in macro invocation ‘course_ids’ (bach.wig:175) defined in [bach.wigmac:60]

in macro argument ‘C’

in macro invocation ‘cons’ (bach.wig:175) defined in [bach.wigmac:112]

in macro argument ‘C’

in macro invocation ‘cons_list’ (bach.wig:175) defined in [bach.wigmac:126]

in macro argument ‘CN’

in macro invocation ‘fields’ (bach.wig:168) defined in [bach.wigmac:134]

in macro argument ‘A’

in macro invocation ‘studies’ (bach.wig:3) defined in [bach.wigmac:158]

which is useful when debugging macro definitions.

15.10. Conclusion and Future Work 201

15.10 Conclusion and Future Work

We have designed and implemented a safe and efficient macro language that
is sufficiently powerful to grow domain-specific extensions of host languages or
even entire new languages.

There are several avenues for future work. First, we will take this approach
even further, by defining a notion of invocation constraints that restrict the
possible uses of macros. Such constraints capture some aspects of the static
semantic analysis of the language extensions that are grown. The constraints
work exclusively on the parse tree, similarly to [30], and thus preserve trans-
parency. Second, we will build implementations for other host languages, in
particular Java. Third, it is possible to create a parser generator that given a
host grammar builds a parser that automatically supports metamorphic syntax
macros. Most of the required techniques are already present in the implemen-
tation of metamorphisms.

Acknowledgments

The authors thank the anonymous referees, Tommy Thorn, Eric Kidd, Peter
Froehlich, Don Batory, Roger Crew, Daniel Weise, and the entire <bigwig>
team for helpful commments and discussions.

tb

macro <formula> allow <id L> when <formula F> ::= {

all now: <L>(now) => restrict <F> by now;

}

macro <formula> forbid <id L> when <formula F> ::= {

allow <L> when !<F>

}

macro <formula> mutex (<id A> , <id B>) ::= {

forbid <A> when (is t: <A>(t) && (all s: t<s => !(s)))

}

macro <toplevel> region <id R> ; ::= {

constraint {

label <R>~A, <R>~B;

mutex(<R>~A, <R>~B);

}

}

macro <stm> exclusive (<id R>) <stm S> ::= {

{ wait <R>~A;

<S>

wait <R>~B;

}

}

macro <toplevels> resource <id R> ; ::= {

region <R>;

constraint { ... }

}

macro <stm> reader (<id R>) <stm S> ::= {

{ wait <R>~enterR;

<S>

wait <R>~exitR;

}

}

macro <stm> writer (<id R>) <stm S> ::= {

{ wait <R>~P;

exclusive (<R>) <S>

}

}

macro <toplevels> protected <type T> <id I> ; ::= {

<T> <I>; resource <I>;

}

Figure 15.6: Concurrency control abstractions

require "bach.wigmac"

studies

course Math101

title "Mathematics 101"

2 points fall term

...

course Phys202

title "Physics 202"

2 points spring term

course Lab304

title "Lab Work 304"

1 point fall term

exclusions

Math101 <> MathA

Math102 <> MathB

prerequisites

Math101,Math102 < Math201,Math202,Math203,Math204

CS101,CS102 < CS201,CS203

Math101,CS101 < CS202

Math101 < Stat101

CS202,CS203 < CS301,CS302,CS303,CS304

Phys101,Phys102 < Phys201,Phys202,Phys203,Phys301

Phys203 < Phys302,Phys303,Lab301,Lab302,Lab303

Lab101,Lab102 < Lab201,Lab202

Lab201,Lab202 < Lab301,Lab302,Lab303,Lab304

field "CS-Math"

field courses

Math101,Math102,Math201,Math202,Stat101,CS101,

CS102,CS201,CS202,CS203,CS204,CS301,CS302,CS303,

CS304,Project

other courses

MathA,MathB,Math203,Math204,Phys101,Phys102,

Phys201,Phys202

constraints

has passed CS101,CS102

at least 2 courses among CS201,CS202,CS203

at least one of Math201,Math202

at least 2 courses among Stat101,Math202,Math203

has 4 points among Project,CS303,CS304

in total between 36 and 40 points

field "CS-Physics"

field courses

MathA,MathB,Stat101,CS101,CS102,CS201,CS202,

CS203,CS204,CS301,CS302,CS303,CS304,Project,

Phys101,Phys102,Phys201,Lab101,Lab102,Lab201,

Lab202

other courses

Phys202,Phys301,Phys302,Phys303,Phys304,Lab301,

Lab302,Lab303,Lab304,Math202,Math203,Math204

constraints

has passed CS101,CS102

at least 2 courses among CS201,CS202,CS203

has passed Phys101,Phys102

has 4 points among MathA,MathB,Math101,Math102

has 6 points among Phys201,Phys202,Lab101,Lab102,

Lab201,Lab202

in total between 38 and 40 points

Figure 15.7: A VDSL for Bachelor’s contracts.

Appendix

Audio/Video recorded presentations given at Microsoft Research and IBM Re-
search:

• <bigwig>–A Language for Developing Interactive Web Services
Available at: http://www.brics.dk/~brabrand/bigwig-ms.asf
Given at Microsoft Research, Redmond, WA
on March 20, 2000
72min

• Flexible, Safe, and Efficient Dynamic Generation of HTML
Available at: http://www.brics.dk/~brabrand/bigwig-ibm.mpg
Given at IBM T. J. Watson Research Center, Hawthorne, NY
on July 13, 2001
62min

205

Bibliography

[1] V. Apparao et al. Document Object Model (DOM) level
1 specification, October 1998. W3C Recommendation.
http://www.w3.org/TR/REC-DOM-Level-1/.

[2] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language.
Addison-Wesley, 3rd edition, June 2000.

[3] D. Atkins, T. Ball, M. Benedikt, G. Bruns, K. Cox, P. Mataga, and
K. Rehor. Experience with a domain specific language for form-based
services. In Proc. Conference on Domain-Specific Languages, DSL ’97.
USENIX, October 1997.

[4] D. Atkins, T. Ball, G. Bruns, and K. Cox. Mawl: a domain-specific
language for form-based services. IEEE Transactions on Software Engi-
neering, 25(3):334–346, May/June 1999.

[5] L. Atkinson. Core PHP Programming. Prentice Hall, 2nd edition, August
2000.

[6] J. Bachrach and K. Playford. The Java Syntactic Extender. In Object-
Oriented Programming, Languages, and Systems (OOPSLA), 2001.

[7] J. Baker and W. C. Hsieh. Maya: Multiple-dispatch syntax extension in
java. In Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’02, pages 270–281, June 2002.

[8] P. Barford, A. Bestavros, A. Bradley, and M. Crovella. Changes in web
client access patterns: Characteristics and caching implications. World
Wide Web Journal, 2(1):15–28, January 1999. Kluwer.

[9] G. Barish and K. Obraczka. World Wide Web caching: Trends and tech-
niques. IEEE Communications Magazine, Internet Technology Series,
38(5):178–184, May 2000.

[10] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for implementing
domain-specific languages. In Fifth International Conference on Software
Reuse, 1998.

[11] T. Berners-Lee, R. Fielding, and H. Frystyk. Hyper-
text transfer protocol – HTTP/1.0, May 1996. RFC1945.
http://www.w3.org/Protocols/rfc1945/rfc1945.

207

208 Bibliography

[12] P. V. Biron and A. Malhotra. XML Schema part 2: Datatypes, May 2001.
W3C Recommendation. http://www.w3.org/TR/xmlschema-2/.

[13] C. Brabrand. Synthesizing safety controllers for interactive
Web services. Master’s thesis, Department of Computer Sci-
ence, University of Aarhus, December 1998. Available from
http://www.brics.dk/∼brabrand/thesis/.

[14] C. Brabrand, A. Møller, S. Olesen, and M. I. Schwartzbach. Language-
based caching of dynamically generated HTML. World Wide Web Jour-
nal, 2002. Kluwer. (See Dissertation Chapter 14).

[15] C. Brabrand, A. Møller, M. Ricky, and M. I. Schwartzbach. PowerForms:
Declarative client-side form field validation. World Wide Web Journal,
3(4):205–314, December 2000. Baltzer Science Publishers. (See Disserta-
tion Chapter 12).

[16] C. Brabrand, A. Møller, A. Sandholm, and M. I. Schwartzbach. A runtime
system for interactive Web services. Computer Networks, 31(11-16):1391–
1401, May 1999. Elsevier. Also in Proc. 8th International World Wide
Web Conference, WWW8. (See Dissertation Chapter 11).

[17] C. Brabrand, A. Møller, and M. I. Schwartzbach. Static validation
of dynamically generated HTML. In Proc. ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering,
PASTE ’01, pages 221–231, June 2001. (See Dissertation Chapter 13).

[18] C. Brabrand, A. Møller, and M. I. Schwartzbach. The <bigwig> project.
ACM Transactions on Internet Technology, 2(2), 2002. (See Dissertation
Chapter 10).

[19] C. Brabrand and M. I. Schwartzbach. Growing languages with metamor-
phic syntax macros. In Proc. ACM SIGPLAN Workshop on Partial Eval-
uation and Semantics-Based Program Manipulation, PEPM ’02, January
2002. (See Dissertation Chapter 15).

[20] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible
Markup Language (XML) 1.0 (second edition), October 2000. W3C Rec-
ommendation. http://www.w3.org/TR/REC-xml.

[21] R. Brooks-Bilson. Programming ColdFusion. O’Reilly & Associates, Au-
gust 2001.

[22] W. R. Campbell. A compiler definition facility based on the syntactic
macro. Computer Journal, 21(1):35–41, 1975.

[23] P. Cao, J. Zhang, and K. Beach. Active cache: Caching dynamic con-
tents on the Web. In Proc. IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing, Middleware ’98.
Springer-Verlag, September 1998.

Bibliography 209

[24] L. Cardelli, F. Matthes, and M. Abadi. Extensible syntax with lexical
scoping. SRC Research Report 121, 1994.

[25] J. Challenger, P. Dantzig, and A. Iyengar. A scalable system for consis-
tently caching dynamic Web data. In Proc. 18th Annual Joint Conference
of the IEEE Computer and Communications Societies, INFOCOM ’99,
March 1999.

[26] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Extending Java for
high-level Web service construction. Technical Report RS-02-11, BRICS,
March 2002.

[27] J. Clark and S. DeRose. XML path language, November 1999. W3C
Recommendation. http://www.w3.org/TR/xpath.

[28] W. Clinger and J. Rees. Macros that work. In Principles of Programming
Languages (POPL), pages 155–162, 1991.

[29] K. Cox, T. Ball, and J. C. Ramming. Lunchbot: A tale of two ways
to program Web services. Technical Report BL0112650-960216-06TM,
AT&T Bell Laboratories, 1996.

[30] N. Damgaard, N. Klarlund, and M. I. Schwartzbach. YakYak: Parsing
with logical side constraints. In G. Rozenberg and W. Thomas, editors,
Developments in Language Theory. Foundations, Applications, and Per-
spectives, pages 286–304. World Scientific, November 2000.

[31] F. Douglis, A. Haro, and M. Rabinovich. HPP: HTML macro-
preprocessing to support dynamic document caching. In Proc. 1st
USENIX Symposium on Internet Technologies and Systems, USITS ’97,
December 1997.

[32] M. Dubinko, S. Schnitzenbaumer, M. Wedel, and D. Raggett.
XForms requirements, April 2001. W3C Working Draft.
http://www.w3.org/TR/xhtml-forms-req.html.

[33] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic abstraction in
scheme. Lisp and Symbolic Computation, 5(4):83–110, 1993.

[34] M. F. Fernandez, D. Suciu, and I. Tatarinov. Declarative specification
of data-intensive Web sites. In Proc. 2nd Conference on Domain-Specific
Languages, DSL ’99. USENIX/ACM, October 1999.

[35] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly & Associates,
June 1998.

[36] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL protocol version 3.0,
November 1996. http://home.netscape.com/eng/ssl3/draft302.txt.

[37] J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext transfer protocol, HTTP/1.1, 1999.
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

210 Bibliography

[38] A. Girgensohn and A. Lee. Seamless integration of interactive forms into
the Web. Computer Networks and ISDN Systems, 29(8-13):1531–1542,
September 1997. Elsevier. Also in Proc. 6th International World Wide
Web Conference, WWW6.

[39] S. Gundavaram. CGI Programming on the World Wide Web. O’Reilly &
Associates, March 1996.

[40] M. Hanus. High-level server side web scripting in curry. In 3rd Int. Sym-
posium on Practical Aspects of Declarative Languages, PADL’01, pages
76–92, 2001.

[41] A. Homer, J. Schenken, M. Gibbs, J. D. Narkiewicz, J. Bell, M. Clark,
A. Elmhorst, B. Lee, M. Milner, and A. Rehan. ASP.NET Programmer’s
Reference. Wrox Press, September 2001.

[42] H. Hosoya and M. Murata. Validation and boolean operations for
attribute-element constraints. In Informal Proceedings of the Workshop
on Programming Language Technologies for XML, PLAN-X 2002, 2002.

[43] H. Hosoya and B. C. Pierce. XDuce: A typed XML processing lan-
guage. In Proc. 3rd International Workshop on the World Wide Web
and Databases, WebDB ’00, volume 1997 of LNCS. Springer-Verlag, May
2000.

[44] H. Hosoya and B. C. Pierce. Regular expression pattern matching for
XML. In Proc. 28th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’01, January 2001.

[45] T. Hune and A. Sandholm. A case study on using automata in con-
trol synthesis. In Proc. 5rd International Conference on Fundamental
Approaches to Software Engineering, FASE ’00, volume 1783 of LNCS.
Springer-Verlag, March/April 2000.

[46] ICONOCAST Inc. ICONOCAST Newsletter, August 17, 2000.
http://www.iconocast.com/issue/20000817.html.

[47] A. Iyengar and J. Challenger. Improving Web server performance by
caching dynamic data. In Proc. 1st USENIX Symposium on Internet
Technologies and Systems, USITS ’97, December 1997.

[48] R. Kelsey, W. Clinger, and J. R. (Eds.). Revised(5) report on the algo-
rithmic language scheme (r5rs), 1998.

[49] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall, Inc., 1978.

[50] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS,
Department of Computer Science, University of Aarhus, January 2001.
Notes Series NS-01-1. Available from http://www.brics.dk/mona/. Revi-
sion of BRICS NS-98-3.

Bibliography 211

[51] N. Klarlund, A. Møller, and M. I. Schwartzbach. The DSD schema lan-
guage. Automated Software Engineering, 9(3):285–319, 2002. Kluwer.
Preliminary version in Proc. 3rd ACM SIGPLAN-SIGSOFT Workshop
on Formal Methods in Software Practice, FMSP ’00.

[52] E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba. Hygienic
macro expansion. In Lisp and Functional Programming, pages 151–161,
1986.

[53] E. E. Kohlbecker and M. Wand. Macro-by-example: Deriving syntactic
transformations from their specifications. In Principles of Programming
Languages (POPL), pages 77–84. ACM, 1987.

[54] J. Korpela. JavaScript and HTML: Possibilities and caveats, 2000.
http://www.hut.fi/u/jkorpela/forms/javascript.html.

[55] D. A. Ladd and J. C. Ramming. Programming the Web: An application-
oriented language for hypermedia services. World Wide Web Journal,
1(1), January 1996. O’Reilly & Associates. Proc. 4th International World
Wide Web Conference, WWW4.

[56] B. M. Leavenworth. Syntax macros and extended translation. CACM,
1966.

[57] M. R. Levy. Web programming in guide. Software: Practice and Experi-
ence, 28(15):1581–1603, 1998.

[58] H. Liefke and D. Suciu. XMill: An efficient compressor for XML data.
ACM SIGMOD Record, 29(2):153–164, June 2000.

[59] W. Maddox. Semantically-sensitive macroprocessing. Technical report,
University of California, Berkeley, 1989. Technical Report UCB/CSD
89/545.

[60] E. Meijer and M. Shields. XMλ: A functional language for con-
structing and manipulating XML documents. Draft. Available from
http://www.cse.ogi.edu/~mbs/pub/xmlambda/, 1999.

[61] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Po-
tential benefits of delta encoding and data compression for HTTP. In
Proc. ACM SIGCOMM Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication, SIGCOMM ’97,
September 1997.

[62] A. Møller. MONA project home page. http://www.brics.dk/mona/.

[63] Netscape Corp. JavaScript form validation sample code, 1999.
http://developer.netscape.com/docs/examples/javascript/formval/

overview.html.

[64] J. Nielsen. Designing Web Usability: The Practice of Simplicity. New
Riders Publishing, December 1999.

212 Bibliography

[65] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, October 1999.

[66] Open Market. FastCGI: A high-performance Web server interface, April
1996. Available from http://www.fastengines.com/whitepapers/.

[67] S. Pemberton et al. XHTML 1.0: The extensible hyper-
text markup language, January 2000. W3C Recommendation.
http://www.w3.org/TR/xhtml1.

[68] D. Raggett, A. L. Hors, and I. Jacobs. HTML 4.01 specification, Decem-
ber 1999. W3C Recommendation. http://www.w3.org/TR/html4/.

[69] K. Rajamani and A. Cox. A simple and effective caching scheme for
dynamic content. Technical report, CS Dept., Rice University, September
2000.

[70] D. Sandberg. Lithe: A language combining a flexible syntax and classes.
In Principles of Programming Languages (POPL), pages 142–145, 1982.

[71] A. Sandholm and M. I. Schwartzbach. Distributed safety controllers for
Web services. In Proc. 3rd International Conference on Fundamental
Approaches to Software Engineering, FASE ’98, volume 1382 of LNCS.
Springer-Verlag, March/April 1998.

[72] A. Sandholm and M. I. Schwartzbach. A type system for dynamic Web
documents. In Proc. 27th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’00, January 2000.

[73] S. Schnitzenbaumer, M. Wedel, and M. Gunatilake. XHTML-
FML 1.0: Forms markup language, 1999. Stack Overflow AG.
http://www.mozquito.org/documentation/spec xhtml-fml.html.

[74] M. I. Schwartzbach et al. <bigwig> project home page.
http://www.brics.dk/bigwig/.

[75] D. Scott and R. Sharp. Abstracting application-level web security. In
Proceedings of 11th ACM International World Wide Web Conference,
2002.

[76] A. Shalit. The Dylan Reference Manual. Addison-Wesley-Longman, 1996.

[77] B. Smith, A. Acharya, T. Yang, and H. Zhu. Exploiting result equivalence
in caching dynamic Web content. In Proc. 2nd USENIX Symposium on
Internet Technologies and Systems, October 1999.

[78] R. M. Stallman. The C preprocessor online documentation.
http://gcc.gnu.org/onlinedocs/cpp toc.html.

[79] G. Steele. Growing a language. Lisp and Symbolic Computation, 1998.

[80] B. Stroustrup. The C++ Programming Language, chapter 13. Addison
Wesley, third edition, 1997.

Bibliography 213

[81] Sun Microsystems. Java Servlet Specification, Version 2.3, 2001. Available
from http://java.sun.com/products/servlet/.

[82] Sun Microsystems. JavaServer Pages Specification, Version 1.2, 2001.
Available from http://java.sun.com/products/jsp/.

[83] R. D. Tennent. Principles of Programming Languages. Prentice Hall,
1981.

[84] P. Thiemann. A typed representation for html and xml documents in
haskell. Journal of Functional Programming, 12(4&5):435–468, July 2002.

[85] P. Thiemann. Wash/cgi: Server-side web scripting with sessions and
typed, compositional forms. In 4th Int. Symposium on Practical Aspects
of Declarative Languages, PADL’02, 2002.

[86] P. Thistlewaite and S. Ball. Active FORMs. Computer Networks and
ISDN Systems, 28(7-11):1355–1364, May 1996. Elsevier. Also in Proc.
5th International World Wide Web Conference, WWW5.

[87] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 133–191.
MIT Press/Elsevier, 1990.

[88] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML
Schema part 1: Structures, May 2001. W3C Recommendation.
http://www.w3.org/TR/xmlschema-1/.

[89] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. ACM SIGPLAN Notices, 35(6):26–36, June 2000.

[90] T. L. Veldhuizen. C++ templates as partial evaluation. In Partial Eval-
uation and Semantics-Based Program Manipulation (PEPM), 1999.

[91] O. Waddell and R. K. Dybvig. Visualizing partial evaluation. In ACM
Computing Surveys Symposium on Partial Evaluation, volume 30(3es):24-
es, September 1998.

[92] O. Waddell and R. K. Dybvig. Extending the scope of syntactic abstrac-
tion. In Principles of Programming Languages (POPL), pages 203–213,
1999.

[93] J. Wang. A survey of Web caching schemes for the Internet. ACM Com-
puter Communication Review, 29(5):36–46, October 1999.

[94] M. Webb and M. Plungjan. JavaScript form FAQ knowledge base, 2000.
http://developer.irt.org/script/form.htm.

[95] D. Weise and R. F. Crew. Programmable syntax macros. In Programming
Language Design and Implementation (PLDI), pages 156–165, 1993.

214 Bibliography

[96] D. Weise and R. F. Crew. Programmable syntax macros. In Proc. ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’93, June 1993.

[97] C. Wills and M. Mikhailov. Studying the impact of more complete server
information on Web caching. Computer Communications, 24(2):184–190,
February 2001. Elsevier. Also in Proc. 5th International Web Caching
and Content Delivery Workshop.

[98] A. Wolman. Characterizing Web workloads to improve perfor-
mance, July 2000. University of Washington. Available from
http://www.cs.washington.edu/homes/wolman/generals/.

[99] K. Yagoub, D. Florescu, V. Issarny, and P. Valduriez. Caching strate-
gies for data-intensive Web sites. In Proc. 26th International Conference
on Very Large Data Bases, VLDB ’2000. Morgan Kaufmann, September
2000.

[100] H. Zhu and T. Yang. Class-based cache management for dynamic Web
contents. In Proc. 20th Annual Joint Conference of the IEEE Computer
and Communications Societies, INFOCOM ’01, pages 1215–1224, April
2001.

Recent BRICS Dissertation Series Publications

DS-03-1 Claus Brabrand. Domain Specific Languages for Interactive
Web Services. January 2003. PhD thesis. xiv+214 pp.

DS-02-5 Rasmus Pagh.Hashing, Randomness and Dictionaries. Octo-
ber 2002. PhD thesis. x+167 pp.

DS-02-4 Anders Møller. Program Verification with Monadic Second-
Order Logic & Languages for Web Service Development.
September 2002. PhD thesis. xvi+337 pp.

DS-02-3 Riko Jacob. Dynamic Planar Convex hull. May 2002. PhD
thesis. xiv+112 pp.

DS-02-2 Stefan Dantchev.On Resolution Complexity of Matching Prin-
ciples. May 2002. PhD thesis. xii+70 pp.

DS-02-1 M. Oliver Möller. Structure and Hierarchy in Real-Time Sys-
tems. April 2002. PhD thesis. xvi+228 pp.

DS-01-10 Mikkel T. Jensen.Robust and Flexible Scheduling with Evolu-
tionary Computation. November 2001. PhD thesis. xii+299 pp.

DS-01-9 Flemming Friche Rodler. Compression with Fast Random Ac-
cess. November 2001. PhD thesis. xiv+124 pp.

DS-01-8 Niels Damgaard.Using Theory to Make Better Tools. October
2001. PhD thesis.

DS-01-7 Lasse R. Nielsen. A Study of Defunctionalization and
Continuation-Passing Style. August 2001. PhD thesis.
iv+280 pp.

DS-01-6 Bernd Grobauer.Topics in Semantics-based Program Manipu-
lation. August 2001. PhD thesis. ii+x+186 pp.

DS-01-5 Daniel Damian. On Static and Dynamic Control-Flow Infor-
mation in Program Analysis and Transformation. August 2001.
PhD thesis. xii+111 pp.

DS-01-4 Morten Rhiger. Higher-Order Program Generation. August
2001. PhD thesis. xiv+144 pp.

DS-01-3 Thomas S. Hune.Analyzing Real-Time Systems: Theory and
Tools. March 2001. PhD thesis. xii+265 pp.

DS-01-2 Jakob Pagter.Time-Space Trade-Offs. March 2001. PhD thesis.
xii+83 pp.

