
B
R

IC
S

D
S

-02-5
R

.P
agh:

H
ashing,R

andom
ness

and
D

ictionaries

BRICS
Basic Research in Computer Science

Hashing, Randomness and Dictionaries

Rasmus Pagh

BRICS Dissertation Series DS-02-5

ISSN 1396-7002 October 2002

Copyright c© 2002, Rasmus Pagh.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/02/5/

Hashing, randomness and dictionaries

Rasmus Pagh

PhD dissertation

Department of Computer Science
University of Aarhus

Denmark

Hashing, randomness and dictionaries

A dissertation
presented to the Faculty of Science

of the University of Aarhus
in partial fulfilment of the requirements for the

PhD degree

by
Rasmus Pagh
June 26, 2002

Abstract

This thesis is centered around one of the most basic information retrieval prob-
lems, namely that of storing and accessing the elements of a set. Each element
in the set has some associated information that is returned along with it. The
problem is referred to as the dictionary problem, due to the similarity to a book-
shelf dictionary, which contains a set of words and has an explanation associated
with each word. In the static version of the problem the set is fixed, whereas
in the dynamic version, insertions and deletions of elements are possible.

The approach taken is that of the theoretical algorithms community. We
work (almost) exclusively with a model, a mathematical object that is meant to
capture essential aspects of a real computer. The main model considered here
(and in most of the literature on dictionaries) is a unit cost RAM with a word
size that allows a set element to be stored in one word.

We consider several variants of the dictionary problem, as well as some
related problems. The problems are studied mainly from an upper bound per-
spective, i.e., we try to come up with algorithms that are as efficient as possible
with respect to various computing resources, mainly computation time and
memory space. To some extent we also consider lower bounds, i.e., we attempt
to show limitations on how efficient algorithms are possible. A central theme
in the thesis is randomness. Randomized algorithms play an important role,
in particular through the key technique of hashing. Additionally, probabilistic
methods are used in several proofs.

The thesis begins with an overview of the main problems, models, and
results within its subject area. Special emphasis is put on the relation to the
contributions in the thesis. It then proceeds with nine chapters describing these
contributions in detail, each chapter being a self-contained paper.

In Chapter 2 we present a simple dynamic linear space dictionary, called
cuckoo hashing, with worst case constant lookup time. An implementation
inspired by our algorithm, but using weaker hash functions, is empirically shown
competitive with the best dictionaries having just an average case guarantee.

In Chapter 3 we describe a simple construction of minimal perfect hash
functions for sets of size n: x 7→ (f(x) + dg(x)) mod n, where functions f and g
are chosen from universal families, and the array d contains O(n) integers. A
function of this form that is 1-1 on a given set can be found in expected time
O(n). The complexity of evaluating these functions turns out to be optimal with
respect to the number of memory accesses and the number of multiplications.

Many algorithms employing hashing have been analyzed under the assump-

v

tion that hash functions behave like truly random functions. In Chapter 4 it
is shown how to implement hash functions that can be evaluated on a RAM in
constant time, and behave like truly random functions on any set of n inputs,
with high probability. The space needed to represent a function is O(n) words,
which is optimal and a polynomial improvement over previous results.

A static dictionary with constant query time, using space very close to the
information theoretical minimum is the main result of Chapter 5. If n denotes
the number of elements in the set, the redundancy of the data structure is o(n)
bits, plus a negligible term depending on the word size of the RAM.

It is known how to construct a linear space static dictionary with constant
lookup time in O(n) expected time. In Chapter 6 we show how to construct
such dictionaries deterministically in O(n log n) time. The running time of the
best deterministic algorithm prior to this work was Ω(n2). Using a standard dy-
namization technique, the first deterministic dynamic dictionary with constant
lookup time and sublinear update time is derived.

Deterministic dynamic dictionaries are also the subject of Chapter 7. We
present a linear space deterministic dictionary accommodating membership
queries in time (log logn)O(1) and updates in time (log n)O(1), where n is the
size of the set stored. Previous solutions either had query time (log n)Ω(1) or
update time 2ω(

√
log n) in the worst case.

A new hashing primitive, dispersing hash functions, is introduced in Chap-
ter 8. Very small dispersing families are shown to exist, which paves the way for
several applications in derandomization (relational join, element distinctness,
and static dictionary initialization). A close relationship between dispersing
families and extractors is exhibited. The chapter also contains a lower bound
on program size for hash functions that are “nearly perfect”.

In Chapter 9 we study the two “components” of the static dictionary prob-
lem, membership and perfect hashing, in Yao’s cell probe model. The first
space and bit probe optimal worst case upper bound is given for the member-
ship problem. We also give a new efficient membership scheme where the query
algorithm makes just one adaptive choice, and probes a total of three words. A
lower bound shows that two word probes generally do not suffice (this then ap-
plies also to the RAM). For minimal perfect hashing we show a tight bit probe
lower bound, and give a simple scheme achieving this performance, making just
one adaptive choice. Linear range perfect hashing is shown to be implementable
with the same number of bit probes, of which just one is adaptive.

Finally, in Chapter 10 we consider dictionaries that perform lookups by
probing a single word of memory, knowing only the size of the data structure.
We describe a Las Vegas randomized dictionary where a lookup returns the
correct answer with probability 1 − ε, and uses far less space than would be
possible using a deterministic lookup procedure. In a certain augmented RAM
model, our data structure supports efficient deterministic updates, exhibiting
new probabilistic guarantees on dictionary running time.

vi

Acknowledgements

I would like to thank the many people that have, in one way or another, been
part of making my time as a student such a wonderful period.

First of all I am grateful to my advisor, Peter Bro Miltersen, for being a
great source of inspiration and knowledge, and for always taking the time to
listen to my ideas, good as well as bad. As I have become more independent
our meetings have become sparser, but you have remained a great person to
come to for feedback on any aspect of my thesis work.

A special thanks of course goes to my co-authors Torben Hagerup, Peter
Bro Miltersen, Anna Östlin, Jakob Pagter, and Flemming Friche Rodler. It
has been a pleasure working with you, and I have benefited greatly from your
insights.

A big thank you goes to the many people whose feedback have influenced
the work in this thesis: Stephen Alstrup, Gerth Stølting Brodal, Andrei Broder,
Andrej Brodnik, Martin Dietzfelbinger, Rolf Fagerberg, Peter Frandsen, Gud-
mund Skovbjerg Frandsen and his RPDA classes of 2001 and 2002, Thore Hus-
feldt, Riko Jacob, Kim Skak Larsen, Johan Kjeldgaard-Pedersen, Moni Naor,
Morten Nyhave Nielsen, Jakob Pagter, Theis Rauhe, Kunihiko Sadakane, Pe-
ter Sanders, Ronen Shaltiel, Mikkel Thorup, Berthold Vöcking, and all those I
forgot.

The department of computer science and BRICS have provided a very nice
working environment and always supported my travel, which has been an im-
portant part of becoming a computer science researcher. I would also like to
thank Rajeev Motwani for inviting me to Stanford, and thank the theory group
there for receiving me so well.

The people nearby are important to the working environment. During the
years I have been lucky to share offices with Jacob Elgaard, Anders Møller, Niels
Damgaard, Daniel Damian, Martin Drozda, Jakob Pagter, Vanessa Teague,
Flemming Friche Rodler, and Pablo Arrighi.

Last, but not least, I would like to thank my friends and family. Without a
life outside of computer science I wouldn’t have made it this far. Special thanks
go to my parents Jørgen and Bodil for giving me a great upbringing, and to
Anna for all her love.

Rasmus Pagh,
Århus, June 26, 2002.

vii

Contents

Abstract v

Acknowledgements vii

1 Overview 1
1.1 Problems . 2
1.2 Models . 4
1.3 Questions . 9
1.4 A brief history of the thesis . 22
1.5 Publications in the thesis . 23

2 Cuckoo hashing 25
2.1 Previous work on linear space dictionaries 26
2.2 Preliminaries . 29
2.3 Cuckoo hashing . 30
2.4 Experiments . 35
2.5 Conclusion . 45

3 Minimal perfect hashing with optimal evaluation complexity 47
3.1 A perfect family of hash functions 50
3.2 Variants . 54
3.3 Optimality . 56
3.4 Conclusion . 57

4 Simulating uniform hashing 59
4.1 Background . 61
4.2 Hash function construction . 63
4.3 Applications . 65

5 Low redundancy in static membership data structures 69
5.1 First solution . 71
5.2 Overview of final construction . 73
5.3 Membership data structures for dense subsets 74
5.4 Membership data structures for sparse subsets 77
5.5 Dictionaries . 80
5.6 Construction . 80
5.7 Conclusion and final remarks . 81

ix

6 Deterministic dictionaries 83
6.1 Technical overview . 86
6.2 Universe reduction . 86
6.3 Universes of polynomial size . 92

7 A trade-off for worst-case efficient dictionaries 97
7.1 Preliminaries . 100
7.2 Universe reduction tools . 100
7.3 Dictionary with amortized bounds 102
7.4 Dictionary with worst-case bounds 105
7.5 Open problems . 107

8 Dispersing hash functions 109
8.1 The family of all functions . 110
8.2 Dispersing families . 111
8.3 Explicit constructions . 113
8.4 Applications . 117
8.5 Existentially dispersing families 120
8.6 Open problems . 122
8.7 Appendix: Universality proof . 122

9 Cell probe complexity of membership and perfect hashing 125
9.1 Background . 126
9.2 This chapter . 128
9.3 Membership . 129
9.4 Perfect hashing . 135
9.5 Open problems . 141

10 One-probe search 143
10.1 Related work . 145
10.2 Preliminaries . 146
10.3 Static data structure . 147
10.4 Dynamic updates . 149
10.5 Conclusion and open problems 153

Bibliography 155

x

Chapter 1

Overview

The demand for rapid access to information has grown tremendously over the
last few decades. During the same period, the amount of information to be
handled has exploded. The end of this trend seems nowhere in sight. Com-
puter scientists and engineers are met with the challenge of designing systems
whose performance keeps up with these ever increasing requirements. A theo-
retical understanding of the inherent possibilities and limitations of computing
equipment is instrumental in this quest.

This thesis is centered around one of the most basic information retrieval
problems, namely that of storing and accessing the elements of a set, where
each element has some associated information. This retrieval problem is mostly
referred to as the dictionary problem, due to the similarity to a bookshelf dic-
tionary, which contains a set of words and has an explanation associated with
each word. Another example of a dictionary is the database of all residents in
Denmark, indexed by the set of so-called CPR numbers. Given such a number,
public institutions need to retrieve information associated with it (name, ad-
dress, tax record, and so on). The importance of dictionaries is not so much due
to direct applications like this, but rather due to the large number of algorithms
and data structures that have a dictionary as a substructure. In many of these
applications, the performance of the dictionary is critical.

We study several variants of the dictionary problem, as well as some related
problems. Section 1.1 states and discusses these problems. The problems are
studied mainly from an upper bound perspective, i.e., we try to come up with
algorithms that are as efficient as possible with respect to various computing
resources, mainly computation time and memory space. To some extent we
also consider lower bounds, i.e., attempt to show limitations on how efficient
algorithms are possible.

The approach taken is that of the theoretical algorithms community. We
work (almost) exclusively with a model that is meant to capture essential as-
pects of a real computer. This should preferably say something about the per-
formance of algorithms on present and future computers. At the same time it
should be reasonably simple, such that it is possible to handle mathematically.
The models relevant to this thesis are presented in Section 1.2. Section 1.3 sur-
veys the known results on dictionaries and related problems in various models,
with special emphasis on their relation to the contributions in the thesis.

1

2 Chapter 1. Overview

1.1 Problems

The algorithmic problems considered in this thesis are all related to sets. We
consider finite subsets of some set U , called the universe. This section first cat-
egorizes abstract data structures for sets according to four orthogonal criteria.
We then state some other problems related to sets.

1.1.1 Abstract data structures for sets

We are interested in data structures storing a set S ⊆ U . Such data structures
can be categorized according to what queries are supported, whether they are
static or dynamic, whether the universe U is finite, and whether associated
information is supported.

Queries supported. Three of the most basic queries on sets are:

• Membership. Does x belong to S?

• Report. What are the elements of S?

• Size. What is the size of S?

If U is an ordered set, several other queries become relevant:

• Range reporting. What are the elements in S in the range [x, y]?

• Predecessor. What is the largest element in S smaller than x (if any)?

• Successor. What is the smallest element in S larger than x (if any)?

We will mainly be interested in data structures supporting membership queries.
However, the more general queries on ordered sets will also show up. The
report and size queries are usually trivial to implement optimally, so we will
not explicitly discuss them.

Static or dynamic. A static data structure is one that does not change over
time. In our case a static data structure represents a fixed set. A dynamic data
structure changes over time as a result of updates. The updates we consider
are:

• Insert. Include the element x in the set.

• Delete. Remove the element x from the set.

Data structures supporting either Insert or Delete, but not both, are called
semi-dynamic.

Many other update operations could be considered, in particular union and
intersection with another set, and set difference. However, in general it is not
known how to perform these operations more efficiently than through insertion
and deletion of single elements, without sacrificing the performance of member-
ship queries. We thus restrict our attention to these basic updates.

1.1. Problems 3

Finite or infinite universe. Some set data structures deal with subsets of
an infinite universe U , e.g., the set of all strings over some alphabet. Others deal
with a finite universe, such as integers in some range, or fixed length strings.
The latter will be the case for all data structures considered in this thesis.

Associated information. In many applications of set data structures, each
element of S has some information associated with it (sometimes called satellite
information). Insertions then specify both an element and some associated
information. The membership query is replaced by the lookup query.

• Lookup. Does x belong to S? If so, what is its associated information?

Set data structures with associated information are called dictionaries. We will
only consider the case where the associated information is an element from some
finite set. However, most dictionaries are easily extended to support associated
information from infinite sets, such as the set of strings.

1.1.2 Set related problems

We now consider some problems that are in one way or another connected with
sets. The first problem, perfect hashing, will play an important role in several
parts of the thesis, whereas the other problems are mainly applications of set
data structures, or of the underlying techniques such as hashing.

Data structures for perfect hashing. An important tool in designing effi-
cient data structures for membership queries is perfect hashing. This technique
consists of associating with any set S a function h : U → {1, . . . , r} that is
1-1 on S. The function h is called a perfect hash function for S. The range
{1, . . . , r} indexes an array where each element x ∈ S is written in entry number
h(x). Deciding membership of x is then a matter of looking up entry number
h(x) in the array.

Except for degenerate cases, a perfect hash function h for a set must depend
on the set. That is, such a function must be found and stored. The representa-
tion can be thought of as a data structure capable of answering function value
queries. Since want to always be able to find a perfect hash function, h must
come from some family H that contains a perfect hash function for any set (of
less than some maximum size). Such a family is called perfect. For a given
perfect family H, the data structure problem is to represent a function h ∈ H
and support function value queries.

• Evaluate. What is the value of h on input x?

Perfect hashing can also be part of a set data structure. In that case the
hash function represented is 1-1 on the set stored. If the set data structure is
dynamic, the perfect hash function must change along with the set.

4 Chapter 1. Overview

Relational operations. A relational join is the operation of computing the
intersection of two sets, having information associated with elements. The
combined information from the two sets must be associated with the elements
of the result. Join is a key operation in relational databases.

Other operations of interest in relational databases are union of sets and set
difference. Clearly, all of these operations can be performed using a dictionary,
in a number of insertion and lookup operations proportional to the size of the
sets.

Element distinctness and set cardinality. The element distinctness prob-
lem is to decide whether a list of elements from some universe U are all distinct.
A more general problem is to determine the cardinality of the set formed by the
elements in a list. These problems can be solved using a set data structure, with
a number of insertion and membership operations proportional to the length of
the list.

1.2 Models

In order to theoretically study problems as those stated in the previous section,
one needs a computational model that describes the setting in which compu-
tation takes place. Theoretical study of a problem in a certain model has the
advantage of being timeless, in the sense that the model does not change over
time. This is in contrast to experimental work, where even small changes in
computer architecture may render previous work obsolete. Of course, we also
want the model to be relevant, i.e., say something about real-world compu-
tation. A good model is one that is highly relevant and will stay so in the
future.

Unfortunately, good modeling is not easy. There are many (sometimes com-
peting) models that try to capture different aspects of computers not to mention
other artifacts of interest in computer science such as circuits and networks.
Some are more realistic than others, but all models used in theoretical com-
puter science are simplified versions of (an exact model of) a real computer, in
which only the “essential” features of a computer are considered. Simplification
serves two main purposes:

• Clarity. Results are more easily understood, and can more easily be
compared.

• Analyzability. Simpler models are often easier to analyze than more
complex ones.

In the following, we describe a number of models relevant to this thesis.

1.2.1 RAM models

Nearly all models considered in this thesis are so-called word RAM models that
reflect the architecture of traditional single processor computers. The memory
of such computers is an array of bit strings called words. (In some related, less

1.2. Models 5

realistic RAM models, memory cells can contain arbitrarily large integers.) All
computation takes place in a central processing unit (CPU) that has a constant
number of words of local memory (registers), on which computation can be
performed. Words from main memory can be loaded into registers, and the
content of registers can be written to main memory. In both cases, a certain
register specifies the address (index in the array) of the main memory word in
question. This capability is called indirect addressing, and distinguishes these
models from, for example, pointer machine models. The capability to access
memory words in arbitrary patterns is the explanation for the name “RAM”,
which stands for random access machine.

A finite sequence of computational operations (called instructions) specifies
an algorithm. An instruction can be described in a fixed number of machine
words. The next instruction to execute is determined by a special register
(called the program counter) that is incremented by 1 after each instruction,
but may also be set (conditionally) to some other value, facilitating jumps in
the instruction sequence.

We now discuss four independent aspects of our RAM models: Computa-
tion, memory, randomization, and (bounded) parallelism.

Computation

A main distinction between various word RAM models lies in what kinds of basic
instructions are available, what their cost is, and in what way instructions are
allowed to depend on the word length.

Instruction sets. In describing various instruction sets, we will consider the
words of a RAM both as bit strings and as integers in the usual binary encoding
(signed or unsigned). Below, some classes of instruction sets are described.

• C-like instruction sets. Perhaps the most common word RAM mod-
els have an instruction set that is a subset of the primitive operations
provided by imperative programming languages such as C. This is often
referred to as a “standard instruction set”. In particular, such instruction
sets include addition, subtraction, comparison with zero, bitwise boolean
operations, and shifts. They may also include multiplication and division.
For historical reasons division is usually left out. Many papers pay spe-
cial attention to avoiding multiplication, as it is the only instruction not
in the circuit class AC0. Historically, it was also an expensive operation
on real computers, but the gap to the cost of other instructions seems to
be diminishing. In this thesis we mainly consider a RAM with a C-like
instruction set including multiplication but not division.

• Extended instruction sets. In some cases, a standard instruction set
does not (easily) allow a certain computation on registers to be performed
efficiently. It may then be of interest to study the effect of extending the
instruction set by this operation. If the benefit is sufficient, processor
designers might then choose to include the operation in the instruction
set.

6 Chapter 1. Overview

In some cases, like the extended instruction sets considered in this thesis,
the computational complexity (or circuit complexity) of performing the
operation is not known. Then, of course, it is not immediate that hard-
ware implementation will ever be an option. However, an efficient algo-
rithm for such a model will provide a conditional result: If the complexity
of the operation is sufficiently low, there is an efficient hardware/software
implementation. When completely disregarding the complexity of the op-
erations, we have an interesting information theoretic model for showing
lower bounds, that seems to have received little attention. One reason
may be that current lower bound techniques apply also to the stronger
“cell probe” model described below.

• Circuit based models. Some models have an unbounded number of
instructions. In the Circuit RAM model [AMRT96], for example, any
function of the registers with a polynomial size circuit is an instruction.
(The cost of executing an instruction is then its unbounded fan-in circuit
depth.) In the more restricted AC0 RAM model, only functions having
polynomial size, constant depth, unbounded fan-in circuits are instruc-
tions.

The cost of performing instructions. There are several ways of assigning
cost to the execution of instructions. Usually the cost is thought of as time,
but it could also model, for example, energy consumption. The most common
cost measure, and the one employed in this thesis, is unit cost, i.e., execution
of any instruction has cost 1. This has been a fairly good approximation to
real computers. However, from a theoretical point of view this does not give
realistic asymptotical results, as the time for computing some functions grows
with the word length. One class of instructions that (theoretically) scales to
arbitrary word length, is that of functions with polynomial size, constant depth,
unbounded fan-in circuits, i.e., the instruction set of the AC0 RAM. This is the
reason for using the AC0 RAM together with the unit cost measure.

One of the most conservative cost measures is to charge a cost proportional
to the number of bits “involved in the operation” (e.g., excluding any initial
zeros in arithmetic operations). This is the log cost measure, which originates
in the study of RAMs where registers can contain arbitrary integers. For the
circuit depth measure (mentioned above), the cost is simply the smallest circuit
depth of a polynomial size, unbounded fan-in circuit for the instruction. Both
of these models seem to have received relatively little attention in the data
structures literature.

Uniformity. Some algorithms employ constants that depend on the word
length. One can think of these constants as computed at “compile time”. In
the terminology of Ben-Amram and Galil [BAG97], an algorithm is uniform if
constants depending on w can be computed in time polynomial in w. If suitable
constants are merely known to exist, the algorithm is called weakly nonuniform.
The algorithms of Chapters 6 and 7 in this thesis are weakly nonuniform.

1.2. Models 7

Memory

There are three figures of interest in connection with the memory of algorithms
on RAMs: The word length, the space usage, and the cost of accessing memory
words.

Word length. The word length is the length of the bit string in a machine
word. It is usually denoted by w. When studying set data structures, the word
length is often linked to the size of the universe U , such that the elements of
U are (or can be described by) bit strings of w bits. The assumption that the
elements considered have a size that matches the word size is sometimes referred
to as the trans-dichotomous assumption [FW94], as it bridges the dichotomy
between the parameters of the problem and the model in a reasonable manner.

Space usage. The space used by an algorithm is simply the largest index of
any memory register accessed during its computation.

Access cost. The most common cost measure for memory accesses, and the
one used in the papers comprising this thesis, is unit cost, where the cost of every
memory access is 1. Again, there are theoretical arguments that this assumption
is not realistic for large memories. Indeed, the development of hardware in the
last few decades has resulted in a memory hierarchy, where different parts of
memory take different time to access. There are small amounts of very fast
memory and large amounts of slower memory.

One model that tries to capture this is the log cost model, which assigns
a cost of log(i) to access memory word number i. However, it has been more
popular to think of memory as divided into several parts with different access
costs. Usually, accesses to slow parts of memory are done in a batched fashion,
where blocks of consecutive words are moved to a faster memory area. This
models the behavior of real computers, which deal with the latency of accessing
slow parts of memory by transferring many words at a time. The most popular
model for this, called the I/O model [AV88], considers only two levels of memory
(internal and external). In the pure model, only block transfers between internal
and external memory (I/Os) are counted, and the cost of internal computation
is ignored. This is to some extent justified by the fact that the time for accessing
a block of memory on a disk (the prototypical external memory) is millions of
times larger than the time for executing a CPU instruction.

The I/O model can be used to derive algorithms that are optimal with
respect to transfers between two memory levels. In many computer systems, the
block transfers between two specific neighboring layers of the memory hierarchy
are the performance bottleneck. Recently, a lot of attention has been devoted to
so-called cache oblivious algorithms [FLPR99], that are simultaneously optimal
with respect to any two neighboring levels of the memory hierarchy.

8 Chapter 1. Overview

Randomization

Randomized algorithms, and how they compare with deterministic ones, is a
key theme in this thesis. For randomized algorithms we use a model where a
special instruction assigns random and independent values to a specified number
of bits in a register.

For many years, randomized algorithms have not been implementable on
most computers, due to the lack of a source of random bits. In practice they
have been used extensively with deterministic “pseudorandom” number gener-
ators. However, in most cases this is merely a heuristic with no proven per-
formance guarantee. This may be about to change, as chipsets with hardware
random number generators are becoming increasingly widespread (probably
mainly thanks to applications in cryptography).

Whether it is physically feasible to generate a truly random and independent
sequence of bits is a matter of debate. Using weaker, more realistic random
sources for various randomized algorithms has received some attention, but we
do not go into this.

An idealized model that is sometimes used when analyzing hashing algo-
rithms is the random oracle model. In this model, algorithms have access to
a truly random function from the set of machine words to the set of machine
words that can be evaluated in constant time. A justification for this model is
the empirical observation that a truly random function can in practice often be
replaced by a pseudo-random function.

Parallelism

While this thesis does not deal with truly parallel computing models, we do
in some cases point out algorithmic possibilities for limited parallelism. For
example, in the external memory of a computer with two parallel disks, one can
make two I/Os simultaneously on the disks. Limited parallelism in accessing
different banks of internal memory, and when performing independent threads
of computation are also clear possibilities. Exploiting such parallelism seems to
be a trend in emerging computer systems. Of course, limited parallelism will not
asymptotically speed up algorithms. Still, it is of interest to explore to what
extent it can be used to speed up basic data structures such as dictionaries,
where a factor of two in speed may mean a lot.

1.2.2 Lower bound models

We now consider some models that are variants of the above, and have been
introduced mainly for the purpose of showing lower bounds.

Comparison-based models. Some models considered when dealing with
sets put restrictions on what can be done with elements of the set. In comparison-
based models, set elements can be moved and copied in memory, and pairs of
elements can be compared (with respect to some ordering of the universe). No
other operations involving set elements are allowed.

1.3. Questions 9

It is often relatively easy to show lower bounds on the number of com-
parisons needed by comparison-based algorithms, and in many cases there are
also matching upper bounds, achieved by algorithms where the time complex-
ity is dominated by the time for comparisons. The lower bound then means
that one needs to explore non-comparison-based algorithms to hope for better
performance.

Implicit models. Other models for set problems put restrictions on what can
be stored in memory. In implicit data structures, only elements of the set itself
can be stored. The most restrictive implicit model allows each element to occur
exactly once. An argument in favor of such implicit data structures is that they
are space efficient. However, in some cases the space usage of nonimplicit data
structures can be considerably lower (see Chapter 5).

The main reason for studying implicit data structures is probably the fact
that lower bounds can be shown. For example, when the size of U is large, a
sorted list is an optimal implicit data structure for the membership problem, by
a result of Yao [Yao81]. Yao’s lower bound technique extends to a more general
class of data structures, which we call semi-explicit. In such data structures
pointers are allowed, elements may be repeated, and it is allowed to use space
that is any function of the size of the set stored.

The cell probe model. In the cell probe model, the complexity measure is
the number of probes to memory cells. The memory layout is like that of word
RAM models. Computation of how to perform the memory probes, etc., is for
free.

The cell probe model was introduced by Yao [Yao81] for the purpose of
showing lower bounds that apply to RAM models. Upper bounds in the cell
probe model show limits on how good lower bounds can be achieved. They can
also be a first step towards upper bounds in more realistic models. One special
case of the cell probe model that has received special attention is the bit probe
model, where each cell contains a single bit. The cell probe model is considered
in Chapter 9.

1.3 Questions

The basic question when considering an algorithmic problem in some model
of computation is: What is the cost of an optimal algorithm for solving the
problem. Often there are several cost measures, which may be considered indi-
vidually or in combination. Of interest is also how the cost in different models
relate.

In this section we survey some of the most interesting questions concerning
the membership and dictionary problems in various models that have been
studied. In a few cases we also consider other problems from Section 1.1.
Special attention is paid to the relation to the contributions of the thesis.

We start by surveying some basic results that form the starting point of a
more detailed investigation. We then proceed to discuss in detail the following

10 Chapter 1. Overview

questions:

• How few memory probes? The number of memory probes is crucial
for the performance of algorithms on modern computers, where memory
access is often a bottleneck. It is thus of interest to know the exact
number of memory probes needed for certain basic tasks, such as lookup
in a dictionary. Also, most lower bounds for data structures have been
stated in terms of the number of memory probes.

• How adaptive? With limited parallelism being a trend in emerging
computers, it is of interest to have algorithms whose operations are to
some extent independent. We consider the adaptivity of query algorithms,
i.e., the way in which memory probes depend on the results of earlier
memory probes.

• How little computation? The amount of computation necessary to
carry out a task is probably the most researched (and one of the least
understood) complexity measures in computer science. In this thesis the
question mainly concerns the cost of instructions in various RAM models.

• How little space? The space usage of a data structure is a parameter
of great practical importance. In recent years there has been considerable
interest in data structures whose memory usage is near the lower bound
provided by information theory. We consider this question for membership
and perfect hashing.

• How little randomness? Randomness is a resource, just as time and
space. It may not be available, or we may wish to use as little as possi-
ble. The question is therefore to what extent, and at what cost in other
complexity measures, algorithms can be derandomized.

• What kind of performance guarantee? Several types of guarantees
can be made on the performance of algorithms. Bounds may hold in the
amortized sense or for every operation, and for randomized algorithms
they may hold in the expected sense or hold with high probability. Also,
bounds may hold only under some assumption on the input.

There are, of course, dependencies among the above questions. For example,
given sufficient space the answers to most of the other questions become trivial.
Also, the presence of some amount of randomness seems important to good
upper bounds for many of the questions. Asking these questions separately
therefore only makes sense if one always keeps the other questions in mind.

1.3.1 Basics

We now describe some basic results on the problems described in Section 1.1,
roughly “what every algorithmicist should know” (and a bit more). We restrict
our attention to a RAM with unit cost instructions and unit cost memory
accesses, and to the case where the universe equals the set of machine words

1.3. Questions 11

(the trans-dichotomous assumption). Unless stated otherwise, these results are
for the C-like instruction set described in Section 1.2.

We start with the most general (and hardest) problems, and move towards
easier problems. In particular, upper bounds have implications downwards, and
lower bounds have implications upwards.

Predecessor queries

Predecessor queries and successor queries are of equivalent algorithmic difficulty
in virtually any conceivable model. It is therefore common to consider just
predecessor queries.

Search trees. The classic data structure for answering predecessor queries is
the balanced binary search tree, that supports predecessor queries as well as dy-
namic updates in worst case O(log n) time. This is optimal among comparison-
based data structures.

One approach to improving the query time compared to binary trees is to
uses trees that have larger degree and thus smaller height. Such trees were
developed for external memory applications in the 1970s [BM72]. However, it
seems that the utility of this approach for internal memory algorithms was not
recognized until Fredman and Willard’s paper on fusion trees [FW93]. The crux
of fusion trees is to have a small data structure residing in each node, such that
the correct search path can be determined in constant time per node. Fredman
and Willard show how to do this for nodes of degree (log n)Ω(1), which means
that the tree has height (and thus search time) O(log n/ log log n). Rebalancing
can be done in amortized time O(log n/ log log n) per update.

The approach of Fredman and Willard generalizes (see, e.g., [Hag98b]) to
trees with nodes of degree wΩ(1), giving height and query time O(logw n) with
linear space usage and linear time deterministic construction. This dynamizes
to allow deterministic updates in the same time bound in at least two situations:
1. For the AC0 instruction set [AMT99,Hag98b], and 2. When the algorithm
has access to a certain auxiliary table, depending only on w and dlog ne, of size
2nΩ(1)

words [FW94,Wil00].

Recursion on smaller universes. Search trees are a way of doing recursion
on the size of the set handled. Another approach is to do recursion on the size
of the universe. This was first explored by van Emde Boas [vEB75], and the
space usage was subsequently improved by Willard’s Y-fast tries [Wil83]. Both
data structures support predecessor queries in time O(logw). Van Emde Boas
trees are deterministic and support insertions and deletions in time O(logw).
However, the space usage is 2Ω(w) words. Using a dynamic dictionary, Y-fast
tries improve the space usage to O(n) words. The time for queries and up-
dates remains the same, assuming that the dictionary uses constant time for
all operations. As will be seen below, this implies that the bounds become
randomized.

In the static case, the query time was improved to O(logw/ log logw) by
Beame and Fich [BF99a]. Their data structure uses space nO(1) and can also be

12 Chapter 1. Overview

deterministically constructed in time nO(1). Using this data structure for word
length w = 2O(

√
log n log log n), and the generalized static fusion tree for larger

word length, one can achieve query time O(
√

log n/ log log n) in all cases.

From static to dynamic. Andersson’s exponential search trees [And96] is a
general deterministic transformation, turning static predecessor data structures
with polynomial space usage and construction time into linear space dynamic
data structures. The query time and amortized update time is O(log log n)
times larger than the query time for the static data structure. For static
structures with (log n)Ω(1) query time, the query time grows only by a con-
stant factor. This means that from the above static data structure we get a
dynamic deterministic predecessor data structure supporting all operations in
time O(

√
log n/ log log n).

In the original formulation of exponential search trees, update bounds are
amortized, but Andersson and Thorup have shown how to make the update
bounds hold in the worst case [AT00]. The transformation itself introduces
only standard AC0 instructions.

Lower bound. The above static upper bounds are met by lower bounds of
Beame and Fich [BF99a] that hold for space nO(1). In particular, the best
possible bound on query time in terms of w is Θ(logw/ log logw), and the best
possible bound in terms of n is Θ(

√
log n/ log log n).

Range queries

Range queries can easily be performed using a predecessor dictionary. By main-
taining an ordered linked list of the set elements, the elements in an interval
can be reported each in constant time, plus the time for an initial predecessor
query. However, as pointed out by in [MNSW98] the lower bounds applying
to predecessor queries do not hold for range queries. In particular, constant
time per element reported was achieved with a static data structure of O(nw)
words. The space usage was improved to the optimal O(n) words by Alstrup
et al. [ABR01]. This data structure has expected construction time O(n

√
w).

It appears that all published dynamic data structures supporting efficient
range queries have also supported predecessor queries. Extending data struc-
tures that support fast membership queries to support fast range queries seems
to be an interesting uncharted territory in data structures.

Membership queries

Membership queries are at the core of this thesis. In some cases the best data
structures for membership actually answer predecessor queries (and this is im-
portant in the underlying recursion). However, in most cases more efficient
solutions are known. When nothing else is mentioned, the membership data
structures discussed below can be extended to dictionaries with the same per-
formance.

1.3. Questions 13

Space inefficient solutions. A word can be regarded as a string of d-bit
“characters”. These characters can be used to guide a search in a 2d-ary tree,
called a trie [Fre60]. The time for a search is O(w/d), but 2d pointers are needed
in each node, so the space usage is Ω(2dn) in the worst case. Thus, saving a
factor d in time compared to a binary trie costs a factor Θ(2d) in space. In
particular, if nO(1) space usage is desired, the query time is Ω(w/ log n).

Choosing d = w we get a bit vector which has constant time queries and up-
dates. Also, initialization to the empty set can be done in constant time, using a
folklore trick often posed as a problem in algorithms classes (see, e.g., [AHU75,
Exercise 2.12]). Bit vectors waste a large amount of space unless w is close to
log n.

The hashing heuristic. Hashing emerged as a heuristic for rapidly con-
ducting searches for elements in a dictionary. Knuth [Knu98] attributes the
original idea of hashing to Hans Peter Luhn, who described it in an internal
IBM memorandum in 1953. Hashing was first described in open literature by
Dumey [Dum56]. The method uses a “hash function” h defined on U to decide
where to store elements. The initial idea is to try to store an element x ∈ S in
entry h(x) of an array (called the hash table). In general, several elements may
have the same hash function value, so one needs some way of resolving colli-
sions. Many such collision resolution schemes have been considered – among
the most prominent are chained hashing, linear probing, and double hashing.
Such algorithms were historically analyzed in the random oracle model, that
is, assuming that the hash function is a truly random function. (Equivalently,
one can assume that the keys inserted are random and independent.) If the
hash table has size n/α, for 0 < α ≤ 1, it is said to have load factor α. When
α = 1− Ω(1), all the mentioned collision resolution schemes result in expected
constant time for updates and queries. The dependence on α varies among the
collision resolution schemes, and has been studied in great detail. Chapter 2
describes some of these results – for more comprehensive overviews we refer to
the books of Gonnet [Gon84] and Knuth [Knu98].

Most hash functions used in practice have been fixed and deterministic.
However, the behavior of hashing algorithms turns out to closely follow the
behavior predicted by the analysis assuming a truly random hash function. Of
course, for worst case inputs every key may have the same hash function value,
so using a fixed hash function is merely a heuristic. Another point of view is
that the analysis of hashing schemes using a fixed hash function is done under
the assumption that the keys inserted are independently random. Though there
may be some randomness in real-life inputs, the assumption of independence is
rarely realistic.

Provably good families of hash functions. One could in principle im-
plement hashing schemes using a truly random hash function, but the space
needed to store a general function is enormous (comparable to that of a bit
vector). Therefore this approach is not feasible. Hash functions that can be
stored in a reasonable amount of space are needed.

14 Chapter 1. Overview

In the late 1970s, Carter and Wegman succeeded in removing distribution
assumptions from the analysis of chained hashing [CW79]. The essential ob-
servation is that less than a totally random hash function suffices. If the the
hash function is chosen from a family of functions such that any pair of distinct
elements in U have a low probability of colliding, it is “universally applica-
ble”. Carter and Wegman gave a construction of such universal families whose
functions can be stored in O(1) machine words and evaluated in constant time.

Since the result of Carter and Wegman, many hash function classes have
been proposed, e.g. [ADfM+97, BCFM00, Chi94, Df96, DfGMP92, DfMadH90,
GW97, IMRV99, LS98, Sie89], and their performance analyzed in various set-
tings. For example, Schmidt and Siegel [SS89, SS90a] analyzed the expected
insertion time of linear probing and double hashing, implemented using the
hash functions of Siegel [Sie89]. However, such analyses have been made only
for particular hashing schemes (or relatively narrow classes of hashing schemes),
and have only dealt with certain performance parameters.

Perfect hashing. Universal hashing placed chained hashing on a solid the-
oretical basis. However, bounds were still only expected constant, and large
deviations from the expectation could very well occur. A tantalizing possibility
is to construct (and possibly maintain) a perfect hash function h, which is 1-1
on the set stored. Lookup of x could then be performed by inspecting entry
h(x) of a hash table (which would need to be updated along with the hash
function). If the perfect hash function can be evaluated in worst case constant
time, the time for lookups is also constant in the worst case.

It is interesting to note that the construction of perfect hash functions with
O(n) space usage (including space for the hash table) eluded researchers in the
late 1970s and early 1980s. Such a perfect hash function construction in the
case |U | = nO(1) had been found by Tarjan and Yao [TY79]. A simple fact,
easily derived from the definition of universality, reduces the general case to
this one: A random function from a universal family with range of size n2 is 1-1
on a set of size n with probability at least 1/2. Thus, composition of a function
from a universal family with a Tarjan-Yao hash function yields a perfect hash
function for any set.

Fredman, Komlós and Szemerédi [FKS84] published the first construction of
a perfect family of hash functions with O(n) word representation. They used the
fact just mentioned, although they did not explicitly refer to universal hashing.
Instead of using Tarjan and Yao’s result, they show that one can get the perfect
hash function by replacing the linked lists in chained hashing by perfect hash
functions from a universal family and corresponding tables. Two algorithms for
construction of a perfect hash function were given: A randomized one running
in expected time O(n), and a deterministic one with a running time of O(n3w).
This static dictionary is often referred to as the FKS scheme. It can be made
dynamic, supporting insertions and deletions in amortized expected constant
time [DfKM+94].

1.3. Questions 15

Other set problems

All the “set related problems” mentioned at the end of Section 1.1 can be
solved in linear expected time using a dictionary with expected constant time
operations. The best deterministic time bounds with reasonable space usage
seem to be those achieved by sorting the elements. The currently fastest deter-
ministic sorting algorithm runs in time O(n log log n) [Han02] and uses linear
space. For small and large word length there are faster sorting algorithms.
For word length w = O(log n) radix-sorting can be done in linear time. With
the AC0 instruction set, deterministic sorting is possible in linear time when
w = nΩ(1) [Hag98b].

We now go on to look at the questions asked at the beginning of the section.

1.3.2 How few memory probes?

The number of memory probes performed by an algorithm is a well-studied
complexity measure, especially from a lower bound perspective.

Cell probe complexity. The model in which memory probe lower bounds
are usually shown is Yao’s cell probe model. These bounds then also apply to
RAM models. Many such lower bounds for dynamic and static data structure
problems are known, e.g., [BF99a,FS89,AHR98].

One nonconstant lower bound for (trans-dichotomous) membership data
structures is known. It appears in an unpublished manuscript by Sundar [Sun93],
and is an amortized lower bound of Ω(log logw n

log log logw n) memory accesses per opera-

tion for any such deterministic data structure using nO(1) words of space, when
the word length is w = Ω(log n log log n).

In Chapter 9 we show that, in general, at least three memory probes are
needed for membership queries in linear space data structures. This matches
the upper bound achieved by the FKS scheme. In particular, this means that
perfect hashing must require at least two memory probes. This is again achieved
by the FKS scheme, but only in the case where the range of the function is
some constant factor larger than n. For range of size n one can instead use
the perfect family of hash functions described in Chapter 3, which matches the
FKS perfect hash function family in all other respects. A more space efficient,
but less practical, solution is given in Chapter 9.

The worst case bit probe complexity of membership, when using within a
constant factor of optimal space, was shown in [BMRV00] to be Ω(w − log n).
This is matched by an upper bound given in Chapter 9. The upper bound is
probably mainly of theoretical interest.

If one considers randomized query procedures, the lower bounds mentioned
above can be broken. Buhrman et al. [BMRV00] prove the existence of an
O(nw) bit Monte Carlo membership data structure where one bit probe suffices
to answer a query. The probability that the answer is correct can be made
arbitrarily close to 1. This data structure does not extend to a dictionary with
the same performance. A stronger Las Vegas data structure, that returns “don’t

16 Chapter 1. Overview

know” rather than wrong answers, is presented in Chapter 10. It looks up one
word rather than one bit, and has a space usage of O(nw) words. This data
structure extends to a dictionary with essentially the same performance. For
both data structures there is no known implementation that is also efficient in
terms of the amount of computation. If one desires the amount of computation
for a query to be wO(1), the presently best space usage is a factor 2(log w)O(1)

higher than above [TS]. Other explicit upper bounds for membership, in the
case where few bit probes are needed, are shown in [RRR01].

I/O complexity. Both upper and lower bounds in the (pure) I/O model are
expressed in terms of the number of accesses to external memory (I/Os). There
are two differences to the cell probe model: 1. B data items, rather than one,
fit in one external memory cell. 2. Computation can only take place on data
in internal memory.

The fact that many data items fit in one external memory block makes the
job of implementing hashing based dictionaries easier. For example, schemes
like linear probing and chained hashing will rarely require more than one I/O (at
least when using sufficiently strong classes of hash functions such as O(log n)-
wise independent families, see [Sie89] for constructions). Predecessor queries
can also be done in fewer memory accesses, namely in O(logB n) I/Os, using
B-trees. Though any algorithm in this thesis could in principle be implemented
on external memory, none of them would take advantage of the fact that a
memory access yields a block of data elements, rather than just one.

1.3.3 How adaptive?

The adaptivity of algorithms is a performance measure that seems to have
received relatively little attention. Of course, algorithms for parallel machines
often exhibit a certain kind of low adaptiveness, namely that the threads of
computation on different processors do not depend much on each other. Here,
we consider a much more restricted kind of parallelism, namely that made
possible when consecutive instructions in a program are independent. Such
parallelism seems to be increasingly exploited in modern processors. The setting
that we consider is one in which independent memory accesses can be done
in parallel. This kind of parallelism does not yet seem to be exploited by
single processor computers, except in the I/O model where memory accesses to
different disks can be done in parallel.

As stated above, the FKS trans-dichotomous membership data structure
uses three memory accesses, which is optimal. The lower bound shown in
Chapter 9 in fact states that, if constant lookup time is desired, then at least
two memory accesses must depend on the results of previous memory accesses.
In the FKS scheme the location of the third memory access depends on the
result of both two previous memory accesses. It is shown in Chapter 9 that
in the cell probe model this can be improved such that the locations of the
two last memory accesses depend only on the result of the first memory access
(which is to a fixed location). This means that these memory accesses can be
done in parallel. On the RAM something slightly weaker can be achieved: O(1)

1.3. Questions 17

memory accesses to a relatively small hash function description of nε words,
where ε > 0 can be any constant, followed by two independent accesses to hash
tables of size O(n). A dynamic version of this hashing scheme is described in
Chapter 2.

The randomized trans-dichotomous membership data structure described
in Chapter 10 that looks up only one word is of course nonadaptive. However,
the space usage is O(nw) words rather than O(n) words. Another efficient non-
adaptive query scheme is possible in the bit probe model, where the optimal
O(w − log n) bit probes and optimal space can be combined with nonadaptiv-
ity [BMRV00]. This data structure is shown to exist, but there is no known
efficient way of computing how to perform the bit probes. If one desires the
amount of computation for a query to be wO(1), the presently best space usage
is n · 2(log w)O(1)

bits [TS].
Whereas there is an efficient nonadaptive membership data structure in the

bit probe model, this is not true for the perfect hashing problem, as shown in
Chapter 9. In particular, for nonadaptive schemes there is a large difference
between the membership and dictionary problems. Chapter 9 also shows that
this difference vanishes if just one adaptive bit probe is allowed.

1.3.4 How little computation?

The issue of how the word RAM instruction set influences the performance of
various algorithms and data structures has received some attention, both from
upper and lower bound perspectives. As mentioned in Section 1.2, the motiva-
tion for studying instruction sets weaker than the standard C-like instruction
set is that the unit cost assumption is (more) questionable for instructions that
do not have small circuit complexity. For the C-like instruction set the multi-
plication and division operations are of special concern, as they are the only
functions not in the constant depth circuit class AC0. (One could argue that
a more serious scalability concern is that small, constant depth circuits for
retrieving bits from memory are not possible, but we do not go into this.)

Andersson et al. [AMRT96] have shown that a unit cost RAM that allows
linear space membership data structures with constant query time must have an
instruction of circuit depth Ω(logw/ log logw). Since this matches the circuit
depth of multiplication, we see that membership queries in constant time are
not possible with weaker instruction sets (in the circuit-depth sense). However,
some work has been done on minimizing the query time in weaker models. For
the AC0 instruction set, there is a tight bound of Θ(

√
log n/ log log n) on the

query time [AMRT96] (a simpler proof of the upper bound, and better bounds
in special cases, appear in [Hag98a]). The algorithm of the upper bound uses
nonstandard AC0 instructions. For a C-like instruction set without multipli-
cation and division, the best upper bound is

√
log n(log log n)1+o(1), due to

Brodnik et al. [BMM97].
A few other instruction sets have been studied from a lower bound per-

spective. Fich and Miltersen [FM95] studied a RAM with standard unit cost
arithmetic operations but without division and bit operations, and showed that
membership query time o(log n) requires Ω(2w/nε) words of memory for any

18 Chapter 1. Overview

constant ε > 0. Miltersen [Mil96] showed that to achieve constant query time
on a RAM with bit operations but without multiplication and division, one
needs 2εw words, for some ε > 0, when n = 2o(w). This matches the perfor-
mance of a trie.

All word RAM algorithms in this thesis use the C-like instruction set, in some
cases extended by a special instruction. In one case, namely Chapter 3 which
describes a construction of perfect hash functions, special attention is paid to
the number of “expensive” operations, i.e., multiplications. The lower bound
of [AMRT96] means that any reasonably space efficient perfect hash function
that can be evaluated in constant time must use multiplication. The FKS
perfect hash function uses two multiplications (and originally also division, but
this can be avoided [Df96]). It is shown in Chapter 3 that a single multiplication
suffices for constant time perfect hashing.

1.3.5 How little space?

Space efficient versions of many data structures have appeared in recent lit-
erature. The goal is to approach the information theoretical minimum space
needed to represent the data that is stored, while supporting efficient queries,
and possibly also efficient dynamic updates. The space complexity is expressed
in terms of certain parameters of the problem, in our case the sizes of the set
and of the universe. For example, the number of sets of size n in a universe of
size m is

(m
n

)
. Hence, in order to have a membership data structure for each

such set, at least B = dlog2

(m
n

)e bits are needed for the data structure. The
information theoretical minimum is, in other words, the smallest number of bits
we could hope to use, if we want to be able to handle every set of a certain
size. Here we survey space efficient data structures for membership and perfect
hashing.

Membership. The information theoretical minimum for membership is rough-
ly m log2(em/n) bits. For n = Ω(m), a bit vector using m bits is within a
constant factor from the minimum. The FKS membership data structure uses
O(n logm) bits, which is not O(B) when n = m1−o(1). Brodnik and Munro
have shown how to construct a static membership data structure with con-
stant lookup time using B + o(B) bits [BM99]. In Chapter 5 we describe
a static dictionary with space usage that comes even closer to B, namely
B + o(n) + O(log logm) bits. The main idea behind the improvement is a
generally applicable technique called quotienting that “compresses” each entry
in a hash table to fewer bits. (After writing the paper in Chapter 5, I found
out that a similar technique is described in [Knu98, Exercise 6.4.13] – however,
its implications for space efficient membership data structures are not treated.)
Quotienting has later been used in dictionaries supporting rank queries [RR99].
In [RRR02] these results are improved without the use of quotienting. Addi-
tionally, it is shown that in the cell probe model there is a membership data
structure of n words of dlogme bits supporting constant time queries. This
follows by the above results only when m is not too large.

1.3. Questions 19

Brodnik and Munro [BM99] also describe a dynamic version of their mem-
bership data structure. It uses O(B) bits and supports updates in amortized
expected constant time.

Perfect hashing. Since perfect hashing is mostly used in conjunction with
a hash table that takes up O(n) words of memory, one could argue that using
the same space for a perfect hash function is quite reasonable. However, there
are situations in which storage for the perfect hash function is more expensive
than that for the hash table (if the hash table is in external memory, say). In
this case we would like the smallest possible representation of the perfect hash
function which allows efficient evaluation.

Mehlhorn has shown that Θ(n + log logm) bits are needed to represent
perfect hash functions with linear range [Meh84]. Fredman and Komlós [FK84]
tightened the bound, and a simple proof of essentially their bound has since
been given [Rad92]. Schmidt and Siegel utilized compact encoding techniques
to compress (essentially) the FKS perfect hash function to the optimal O(n +
log logm) bits [SS90b]. In fact, their perfect hash function is minimal, that is,
the range is {0, . . . , n− 1}. The evaluation time is constant, but large, and the
constant factor in the space usage is large, so the scheme is mainly of theoretical
interest. The space usage was improved to essentially 1 + o(1) times optimal
by Hagerup and Tholey [HT01]. They also describe a construction algorithm
running in expected time O(n+ log logm).

In Chapter 8 we consider a weaker form of perfect hashing, where the re-
quirement is that a large subset of any set can be mapped injectively by some
function in the family. It is shown that in order to perform significantly better
than a random function, a family of functions of size comparable to perfect
families is needed. In other words, storing a “near-perfect” hash function is
nearly as expensive as storing a perfect one.

Another relaxation of perfect hashing has been considered by Schmidt and
Siegel [SS90b]. On input x, an “oblivious t-probe hash function” for the set S
computes a set of t values, one of which (for appropriate arrangement of S in a
table) is the location of x, if x ∈ S. It was shown that n/2O(t) bits are needed
to represent such a function, in the case r = n. However, it is mentioned that
there is a probabilistic argument showing O(log n+log logm) bits to suffice when
r = (1 + Ω(1))n, for some constant t. Prior to the work in this thesis it seems
that it has not been studied how to implement oblivious t-probe hash functions
efficiently. Chapter 2 presents a dynamic oblivious 2-probe hashing scheme with
asymptotic performance equaling that of the dynamic FKS scheme. It builds
on a static data structure contained in Chapter 9. In both data structures the
space used for the hash function is O(nε + log logm) bits, where ε > 0 can be
any constant.

1.3.6 How little randomness?

The success of randomized algorithms has raised some fundamental questions
on the role of randomness in computing. To what extent are randomized algo-
rithms superior to deterministic ones? When is it possible to derandomize an

20 Chapter 1. Overview

algorithm, removing (or reducing) the use of random bits without sacrificing
performance?

Using few random bits. The FKS perfect hash function construction algo-
rithm requires Θ(n log n+logw) random bits. The amortized expected number
of random bits used per operation in the dynamic version is n times smaller. The
presently lowest use of random bits for a dynamic trans-dichotomous member-
ship data structure with expected constant time operations is O(log n+ logw)
bits, by a result of Dietzfelbinger et al. [DfGMP92]. This number of random
bits is the minimum possible if one wants to use a random hash function from
a universal family, as shown by a lower bound of Mehlhorn [Meh84].

In Chapter 8 we study certain hash function families that are considerably
smaller than universal families, and investigate their applicability in hashing
algorithms and data structures. Such dispersing families do not seem to have
been studied directly before, though the dispersion property of universal families
has been used several times. We show a close relationship between dispersing
families and extractors, an important tool in derandomization. Since no explicit
construction of extractors with optimal parameters is known, there is also no
known explicit construction of a dispersing family of (close to) minimum size. If
one assumes dispersing families of hash functions to be built into the instruction
set of a unit cost RAM, randomness efficient algorithms for several problems
are possible. More specifically, using O(log(w/ log n)) random bits, expected,
and space O(n) one can:

• Perform relational join in expected time O(n).

• Solve the element distinctness problem in expected time O(n).

• Construct a static dictionary with constant lookup time and linear space
in time O(n logε n), for any constant ε > 0.

Using no random bits. Efficient deterministic membership data structures
seem harder to come by than randomized ones. Randomness comes into play
in the FKS scheme when we want to choose a “good” universal hash function
for a set. There is an abundance of such good functions, so randomly trying
different functions is an efficient strategy. The strategy in the deterministic
FKS construction algorithm, on the other hand, is a brute force search. Us-
ing the method of conditional probabilities, Raman [Ram96] showed how to
deterministically find a good universal hash function “bit by bit” in total time
O(n2w), which also becomes the total time for constructing the static FKS data
structure. Alon and Naor [AN96] used another derandomization tool, small
bias probability spaces [AGHP92,NN93], to derandomize a variant of the FKS
scheme, achieving construction time O(nw log4 n). However, a query requires
evaluation of a linear function in time Θ(w/ log n), so the query time is only
constant for w = O(log n). In [Mil98], Miltersen showed how error-correcting
codes can be used to construct a linear space membership data structure with
constant query time in O(n1+ε) time, for arbitrary constant ε > 0. His imple-
mentation of error-correcting codes using a standard instruction set is weakly

1.3. Questions 21

nonuniform. Combining Miltersen’s approach with the use of word parallelism,
Hagerup [Hag99] achieved O(log log n) query time and O(n log n) construction
time. The main theorem in Chapter 6 is that constant query time and O(n log n)
construction time can be achieved simultaneously. This was shown in [Pag00a],
building on the results of Hagerup and Miltersen, which are also described in
Chapter 6. The new ingredient is an improved construction algorithm for a
class of perfect hash functions introduced by Tarjan and Yao [TY79].

For the dynamic case, the static result of Chapter 6 implies the following
tradeoff between the time for updates and queries: Queries in time O(t), inser-
tions in time O(n1/t), and deletions in time O(log n), for parameter t smaller
than

√
log n. For query time Θ(

√
log n/ log log n), the search tree data structure

described in Section 1.3.1 [AT00,BF99a] supplies the fastest known determin-
istic update operations: O(

√
log n/ log log n) time per update. When the word

length is small, this data structure supports much faster operations, e.g., for
w = logO(1) n the time per operation is o((log log n)2). This is used in a dynamic
dictionary described in Chapter 7, that uses Miltersen’s error-correcting code
technique to reduce the universe considered to {0, 1}O(log2 n), and then applies
the data structure of [AT00,BF99a]. (Actually, the reduction depends heavily
on the fact that this data structure supports predecessor queries and not just
membership queries.) The result is a deterministic dynamic dictionary using
o((log log n)2) time for queries, and time O(log2 n) for insertions and deletions.
The time bounds hold in the worst case. (In fact, the time for deletions can
be improved to o((log log n)2) by using deletion markers and periodic global
rebuilding.)

An unpublished manuscript by Sundar [Sun93] states an amortized lower
bound of time Ω(log logw n

log log logw n) per operation for polynomial space deterministic
membership data structures in the cell probe model, for w = Ω(log n log log n).
In particular, this implies the same lower bound in RAM models. Note that
for w = (log n)O(1), the data structure of [AT00,BF99a] has time per operation
polynomially related to the lower bound.

1.3.7 What kind of performance guarantee?

There are several types of guarantees that can be made on the performance of
algorithms. First of all, bounds may hold in the amortized sense or for every
operation. Bounds for randomized algorithms may hold in the expected sense
or hold with high probability. Also, bounds may hold only under some assump-
tion on the input. For example, as mentioned in Section 1.3.1, many dynamic
hashing schemes have been analyzed under the assumption that inserted keys
are random and independent. In this section we survey some improvements on
performance guarantees compared to the “basic” algorithms in Section 1.3.1.

Dietzfelbinger and Meyer auf der Heide [DfMadH90] have constructed a
dictionary in which, for any sequence of nO(1) operations, the time for every
operation is constant with high probability (i.e., probability at least 1 − n−c,
where c is any constant of our choice). A simpler dictionary with the same
properties, and using far fewer random bits, was later developed [DfGMP92].
Willard [Wil00] claims to achieve better error probability, but this is probably

22 Chapter 1. Overview

incorrect. He uses a random construction of a hash function family due to
Siegel [Sie89], and seems to have overlooked the probability that it fails to have
large independence. For static dictionaries, Bast and Hagerup [BH91] achieve
O(n) construction time with probability 1 − 2−nε

, for some constant ε > 0.
In Chapter 10 we consider a dynamic dictionary in a special unit cost RAM

model augmented with an instruction that can compute a given edge of an
expander graph. It offers better performance than previous dictionaries when
the number of lookups is w1+Ω(1) times larger than the number of updates. More
specifically, for a sequence of a updates and b lookups in a key set of size at
most n, the time used is O(aw1+o(1) +b+t) with probability 1−2−Ω(a+t/w1+o(1)).
A drawback of the dictionary is its space usage of O(nw) words.

In Chapter 4 we show how to remove the assumption of random inputs
for a very wide class of hashing schemes analyzed under the assumption of
truly random hashing. More precisely we show how to simulate, with high
probability, the behavior of a truly random function on any set S of size n.
Hash functions from our family can be represented in O(n) words and evaluated
in constant time. This means that many hashing schemes can be implemented
to perform, with high probability, exactly as in the random oracle model. To
some extent this justifies analyses done under the assumption of truly random
hash functions. However, the hash function family proposed is not likely to be
of practical value. This is both because of a large constant in the evaluation
time, and because O(n) words of memory (which is necessary to achieve random
behavior on a set of size n) is too much in many applications.

1.4 A brief history of the thesis

When I started my PhD studies in February 1998, my advisor Peter Bro Mil-
tersen pointed me to a number of papers that would be good to read, and whose
results I might try to improve. I was bedazzled by the dictionary of Fredman
et al. [FKS84], so I thought it was interesting when Peter suggested that I took
a look at the paper of Brodnik and Munro [BM94] on a space efficient member-
ship data structure. In the early summer of 1998 I made the first improvement
in redundancy compared to [BM94], and after a number of refinements I ended
up with the contents of Chapter 5.

Meanwhile, I had discovered an old and somewhat overlooked paper of Tar-
jan and Yao on perfect hashing [TY79]. Just before Christmas in 1998 it be-
came clear that the Tarjan-Yao construction could be combined with universal
hashing to achieve an efficient perfect hashing scheme. This was the start of
Chapter 3.

The Tarjan-Yao hash functions also became the basis for a new deterministic
construction of perfect hash functions for small universes in the spring of 1999.
Together with results of Miltersen [Mil98] and Hagerup [Hag99] this led to the
result described in Chapter 6.

In the fall of 1999 the foundations for Chapter 7 were laid, extending ideas
of Chapter 6 to the dynamic case. The realization that this might be possible
was probably due to a new result of Beame and Fich [BF99a] that implied very

1.5. Publications in the thesis 23

efficient dictionaries for small universes. At the same time I became interested
in probabilistic constructions, and began looking at dispersing families of func-
tions, as described in Chapter 8. The motivation was in various applications of
such families in algorithms using few random bits.

These five pieces of work formed my qualifying exam progress report. I
passed the qualifying exam in December 1999.

The spring of 2000 was used for finishing papers, and for finding a good place
for my stay abroad. My inquiry with Rajeev Motwani at Stanford University
led to an invitation to go there for the fall semester.

Back in 1998 Peter had raised the question of whether the three memory
probes used by the FKS dictionary was the minimum possible. Shortly before
going to Stanford I found a proof that this was indeed the case, and this led to a
study of cell probe complexity of membership and perfect hashing, as described
in Chapter 9.

Also at Stanford, cuckoo hashing emerged as a dynamization of one of the
data structures in Chapter 9. When returning to Århus in January 2001, I
joined forces with my officemate Flemming Rodler in investigating the practi-
cality of cuckoo hashing. Our findings are described in Chapter 2.

Between May and November 2001 I was on leave from my PhD studies to
do “civilian military service”.

The formal analysis of cuckoo hashing uses a family of hash functions by
Siegel [Sie89]. An important ingredient in his construction are certain expander
graphs. Similar expander graphs had been used for a new membership data
structure of Buhrman et al. [BMRV00]. Together with Anna Östlin who had
joined BRICS in the summer of 2001, I began looking at expander graphs and
ways of improving Siegel’s construction. This led to two papers in the period
November 2001 to April 2002. The first one, found in Chapter 10, is a follow-up
to the paper of Buhrman et al, showing how to achieve a stronger performance
guarantee using more space. The second one forms Chapter 4 and is, in a
certain sense, an improvement of Siegel’s hash functions to optimal space.

Finally, the thesis was handed in after nearly four years of studies in June
2002.

1.5 Publications in the thesis

The rest of the thesis consists of (revised versions of) the below publications.

Chapter 2. Rasmus Pagh and Flemming Friche Rodler, Cuckoo Hashing, Pro-
ceedings of ESA 2001, Lecture Notes in Computer Science 2161, p. 121-
133.

Chapter 3. Rasmus Pagh, Hash and Displace: Efficient Evaluation of Mini-
mal Perfect Hash Functions, Proceedings of WADS 1999, Lecture Notes
in Computer Science 1663, p. 49-54.

Chapter 4. Anna Östlin and Rasmus Pagh, Simulating Uniform Hashing in
Constant Time and Optimal Space, BRICS technical report RS-02-27,
Aarhus University, 2002.

24 Chapter 1. Overview

Chapter 5. Rasmus Pagh, Low Redundancy in Static Dictionaries with Con-
stant Query Time, SIAM Journal on Computing 31 (2001), p. 353-363.
A preliminary version appeared at ICALP 1999.

Chapter 6. Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh, De-
terministic Dictionaries, Journal of Algorithms 41 (2001), p. 69-85. A
preliminary version of my contribution to this paper appeared at SODA
2000.

Chapter 7. Rasmus Pagh, A Trade-Off for Worst-Case Efficient Dictionaries,
Nordic Journal of Computing 7 (2000), p. 151-163. A preliminary version
of this paper appeared at SWAT 1999.

Chapter 8. Rasmus Pagh, Dispersing Hash Functions, Proceedings of RAN-
DOM 2000, Proceedings in Informatics 8, p. 53-67.

Chapter 9. Rasmus Pagh, On the Cell Probe Complexity of Membership and
Perfect Hashing, Proceedings of STOC 2001, p. 425-432.

Chapter 10. Anna Östlin and Rasmus Pagh, One-Probe Search, To appear in
Proceedings of ICALP 2002, Lecture Notes in Computer Science.

Chapter 2

Cuckoo hashing

The dictionary data structure is ubiquitous in computer science. A dictionary
is used for maintaining a set S under insertion and deletion of elements (referred
to as keys) from a universe U . Membership queries (“x ∈ S?”) provide access
to the data. In case of a positive answer the dictionary also provides a piece of
satellite data that was associated with x when it was inserted.

A large theory, partially surveyed in Section 2.1, is devoted to dictionaries.
It is common to study the case where keys are bit strings in U = {0, 1}w and w is
the word length of the computer (for theoretical purposes modeled as a RAM).
Section 2.2 discusses this restriction. It is usually, though not always, clear how
to return associated information once membership has been determined. E.g.,
in all methods discussed in this chapter, the associated information of x ∈ S can
be stored together with x in a hash table. Therefore we disregard the time and
space used to handle associated information and concentrate on the problem of
maintaining S. In the following we let n denote |S|.

The most efficient dictionaries, in theory and in practice, are based on hash-
ing techniques. The main performance parameters are of course lookup time,
update time, and space. In theory there is no trade-off between these: One
can simultaneously achieve constant lookup time, expected amortized constant
update time, and space within a constant factor of the information theoretical
minimum of B = log

(|U |
n

)
bits [BM99]. In practice, however, the various con-

stant factors are crucial for many applications. In particular, lookup time is
a critical parameter. It is well known that one can achieve performance arbi-
trarily close to optimal if a sufficiently sparse hash table is used. Therefore the
challenge is to combine speed with a reasonable space usage. In particular, we
only consider schemes using O(n) words of space.

The contribution of this chapter is a new, simple hashing scheme called
Cuckoo Hashing. A description and analysis of the scheme is given in Sec-
tion 2.3, showing that it possesses the same theoretical properties as the dy-
namic dictionary of Dietzfelbinger et al. [DfKM+94]. That is, it has worst case
constant lookup time and amortized expected constant time for updates. A
special feature of the lookup procedure is that (disregarding accesses to a small
hash function description) there are just two memory accesses, which are inde-
pendent and can be done in parallel if this is supported by the hardware. Our
scheme works for space similar to that of binary search trees, i.e., three words

25

26 Chapter 2. Cuckoo hashing

per key in S on average.
Using weaker hash functions than those required for our analysis, Cuckoo

Hashing is very simple to implement. Section 2.4 describes such an implemen-
tation, and reports on extensive experiments and comparisons with the most
commonly used methods, having no nontrivial worst case guarantee on lookup
time. It seems that an experiment comparing the most commonly used methods
on a modern multi-level memory architecture has not previously been described
in the literature. Our experiments show Cuckoo Hashing to be quite com-
petitive, especially when the dictionary is small enough to fit in cache. We thus
believe it to be attractive in practice, when a worst case guarantee on lookups is
desired. The software library LEDA [MN99], version 4.3, incorporates Cuckoo

Hashing.

2.1 Previous work on linear space dictionaries

Hashing, first described in public literature by Dumey [Dum56], emerged in the
1950s as a space efficient heuristic for fast retrieval of information in sparse ta-
bles. Knuth surveys the most important classical hashing methods in [Knu98,
Section 6.4]. The most prominent, and the basis for our experiments in Sec-
tion 2.4, are Chained Hashing (with separate chaining), Linear Probing

and Double Hashing. Judging from leading textbooks on algorithms, Knuth’s
selection of algorithms is in agreement with current practice for implementa-
tion of general purpose dictionaries. In particular, the excellent cache usage of
Linear Probing makes it a prime choice on modern architectures. A more
recent scheme called Two-Way Chaining [ABKU99] will also be investigated.
All schemes are briefly described in Section 2.4.

2.1.1 Analysis of early hashing schemes

Early theoretical analysis of hashing schemes was done under the assumption
that hash function values are uniformly random and independent. Precise anal-
yses of the average and expected worst case behaviors of the abovementioned
schemes have been made, see for example [Gon84,Knu98]. We mention just a
few facts, disregarding asymptotically vanishing terms. Note that some figures
depend on implementation details – the below hold for the implementations
described in Section 2.4.

We first consider the expected number of memory probes needed by the two
“open addressing” schemes to insert a key in a hash table where an α fraction of
the table, 0 < α < 1, is occupied by keys. For Linear Probing the expected
number of probes during insertion is 1

2(1 + 1
(1−α)2

). This coincides with the
expected number of probes for unsuccessful lookups, and with the number of
probes needed for looking up the key if there are no subsequent deletions. A
deletion rearranges keys to the configuration that would occur if the deleted
key had never been inserted. In Double Hashing the expected cost of an
insertion is 1

1−α . As keys are never moved, this coincides with the number of
probes needed for looking up the key and for deleting the key. If a key has
not been inserted in the hash table since the last rehash, the expected cost

2.1. Previous work on linear space dictionaries 27

of looking it up (unsuccessfully) is 1
1−β , where β is the fraction of keys and

“deleted” markers in the hash table. If the key still has a “deleted” marker in
the table, the expected cost of the unsuccessful lookup is one probe more.

For Chained Hashing with hash table size n/α, the expected length of the
list traversed during an unsuccessful lookup is α. This means that the expected
number of probes needed to insert a new key is 1 + α, which will also be the
number of probes needed to subsequently look up the key (note that probes to
pointers are not counted). A deletion results in the data structure that would
occur if the key had never been inserted.

In terms of number of probes, the above implies that, for any given α,
Chained Hashing is better than Double Hashing, which is again better
than Linear Probing. It should be noted, however, that the space used by
Chained Hashing is larger than that in the open addressing schemes for the
same α. The difference depends on the relative sizes of keys and pointers.

The longest probe sequence in Linear Probing is of expected length
Ω(log n). For Double Hashing the longest successful probe sequence is ex-
pected to be of length Ω(log n), and there is in general no sublinear bound on
the length of unsuccessful searches. The expected maximum chain length in
Chained Hashing is Θ(log n/ log log n).

Though the above results seem to agree with practice, the randomness as-
sumptions used for the analyses are questionable in applications. Carter and
Wegman [CW79] succeeded in removing such assumptions from the analysis of
Chained Hashing, introducing the concept of universal hash function families.
When implemented with a random function from Carter and Wegman’s univer-
sal family, chained hashing has constant expected time per dictionary operation
(plus an amortized expected constant cost for resizing the table). For a certain
efficient hash function family of Siegel [Sie89], Linear Probing and Dou-

ble Hashing provably satisfy the above performance bounds [SS89, SS90a].
Siegel’s hash functions, summarized in Theorem 2.1, are also used in Cuckoo

Hashing.

2.1.2 Key rearrangement schemes

A number of (open addressing) hashing schemes have been proposed that share
a key feature with the scheme described in this chapter, namely that keys are
moved around during insertions [Bre73,GM79,Mad80,Mal77,Riv78]. The main
focus in these schemes is to reduce the average number of probes needed for
finding a key in a (nearly) full table to a constant, rather than the O(log n)
average exhibited by standard open addressing. This is done by occasionally
moving keys forward in their probe sequences.

In our algorithm we rearrange keys in order to reduce the worst case number
of probes to a constant. A necessary condition for this is reuse of hash function
values, i.e., that keys are moved back in their probe sequence. Backward moves
were not used in any previous rearrangement scheme, presumably due to the
difficulty that moving keys back does not give a fresh, “random” placement.
The thing that allows us to obtain worst case efficient lookups is that we do not
deal with full hash tables, but rather hash tables that are less than half full.

28 Chapter 2. Cuckoo hashing

It is shown in Chapter 9 that in this case there exists, with high probability,
an arrangement that allows any key to be found in two hash table probes. We
show how to efficiently maintain such an arrangement under updates of the key
set.

Arrangements of keys with optimal worst case retrieval cost were in fact
already considered by Rivest in [Riv78], where a polynomial time algorithm for
finding such an arrangement was given. Also, it was shown that if one updates
the key set, the expected number of keys that need to be moved to achieve
a new optimal arrangement is constant. (The analysis requires that the hash
table is sufficiently sparse, and assumes the hash function to be truly random.)
This suggests a dictionary that solves a small assignment problem after each
insertion and deletion. It follows from Chapter 9 and this chapter, that Rivest’s
dictionary achieved worst case constant lookup time and expected amortized
constant update time, 8 years before an algorithm with the same performance
and randomness assumption was published by Aho and Lee [AL86]. Further,
we show that Siegel’s hash functions suffice for the analysis. Last but not least,
the algorithm we use for rearranging keys is much simpler and more efficient
than that suggested by Rivest.

Another key rearrangement scheme with similarities to Cuckoo Hashing is
Last-come-first-served Hashing [PM89], which has low variance on search
time as its key feature. It uses the same greedy strategy for moving keys as is
used in Cuckoo Hashing, but there is no reuse of hash function values.

2.1.3 Hashing schemes with worst case lookup guarantee

Two-Way Chaining is an alternative to Chained Hashing that offers max-
imal lookup time O(log log n) with high probability (assuming truly random
hash functions). The implementation that we consider represents the lists by
fixed size arrays of size O(log log n) (if a longer chain is needed, a rehash is
performed). To achieve linear space usage, one must then use a hash table of
size O(n/ log log n), implying that the average chain length is Ω(log log n).

Another scheme with this worst case guarantee is Multilevel Adaptive Hash-
ing [BK00]. However, lookups can be performed in O(1) worst case time if
O(log log n) hash function evaluations, memory probes and comparisons are
possible in parallel. This is similar to the scheme described in this chapter,
though we use only two hash function evaluations, memory probes and com-
parisons.

A dictionary with worst case constant lookup time was first obtained by
Fredman, Komlós and Szemerédi [FKS84], though it was static, i.e., did not
support updates. It was later augmented with insertions and deletions in amor-
tized expected constant time by Dietzfelbinger et al. [DfKM+94]. Dietzfelbinger
and Meyer auf der Heide [DfMadH90] improved the update performance by ex-
hibiting a dictionary in which operations are done in constant time with high
probability, namely at least 1 − n−c, where c is any constant of our choice. A
simpler dictionary with the same properties was later developed [DfGMP92].
When n = |U |1−o(1) a space usage of O(n) words is not within a constant fac-
tor of the information theoretical minimum. The dictionary of Brodnik and

2.2. Preliminaries 29

Munro [BM99] offers the same performance as [DfKM+94], using O(B) bits in
all cases.

2.2 Preliminaries

We assume that keys from U fit exactly in a single machine word, that is,
U = {0, 1}w . A special value ⊥ ∈ U is reserved to signal an empty cell in hash
tables. For Double Hashing an additional special value is used to indicate a
deleted key.

Our algorithm uses hash functions from a universal family.

Definition 2.1 A family {hi}i∈I , hi : U → R, is (c, k)-universal if, for any
k distinct elements x1, . . . , xk ∈ U , any y1, . . . , yk ∈ R, and uniformly random
i ∈ I, Pr[hi(x1) = y1, . . . , hi(xk) = yk] ≤ c/|R|k.
As an example, the family of all functions is (1, |U |)-universal. However, for
implementation purposes one needs families with much more succinct memory
representations. A standard construction of a (2, k)-universal family for range
R = {0, . . . , r − 1} and prime p > max(2w, r) is

{x 7→ ((
k−1∑
l=0

alx
l) mod p) mod r | 0 ≤ a0, a1, . . . , ak−1 < p} . (2.1)

If U is not too large compared to k, there exists a space-efficient (2, k)-
universal family due to Siegel [Sie89] that has constant evaluation time (how-
ever, the constant is not a small one).

Theorem 2.1 (Siegel) There is a constant c such that, for k = 2Ω(w), there
exists a (2, k)-universal family that uses space and initialization time O(kc),
and which can be evaluated in constant time.

Our restriction that keys are single words is not a serious one. Longer keys
can be mapped to keys of O(1) words by applying a random function from
a (O(1), 2)-universal family. There is such a family whose functions can be
evaluated in time linear in the number of input words [CW79]. It works by
evaluating a function from a (O(1), 2)-universal family on each word, comput-
ing the bitwise exclusive or of the function values. (See [Tho00] for an efficient
implementation). Such a function with range {0, 1}2 log(n)+c will, with probabil-
ity 1−O(2−c), be injective on S. In fact, with constant probability the function
is injective on a given sequence of Ω(2c/2n) consecutive sets in a dictionary of
initial size n (see [DfKM+94]). When a collision between two elements of S
occurs, everything is rehashed. If a rehash can be done in expected O(n) time,
the amortized expected cost of this is O(2−c/2) per insertion. In this way we
can effectively reduce the universe size to O(n2), though the full keys still need
to be stored to decide membership. When c = O(log n) the reduced keys are
of length O(log n). For any ε > 0, Theorem 2.1 then provides a family of con-
stant time evaluable (2, nΩ(1))-universal hash functions, whose functions can be
stored using space O(nε).

30 Chapter 2. Cuckoo hashing

2.3 Cuckoo hashing

Cuckoo Hashing is a dynamization of a static dictionary described in Chap-
ter 9. The dictionary uses two hash tables, T1 and T2, each of length r, and
two hash functions h1, h2 : U → {0, . . . , r − 1}. Every key x ∈ S is stored in
cell h1(x) of T1 or h2(x) of T2, but never in both. Our lookup function is

function lookup(x)
return T1[h1(x)] = x ∨ T2[h2(x)] = x

end

Two table accesses for lookup is in fact optimal among all dictionaries using
linear space, except for special cases, see Chapter 9.

Remark: The idea of storing keys in one out of two places given by hash func-
tions previously appeared in [KLMadH96] in the context of PRAM simulation,
and in [ABKU99] for Two-Way Chaining.

It is shown in Chapter 9 that if r ≥ (1 + ε)n for some constant ε > 0 (i.e.,
the tables are to be a bit less than half full), and h1, h2 are picked uniformly
at random from an (O(1), O(log n))-universal family, the probability that there
is no way of arranging the keys of S according to h1 and h2 is O(1/n). By the
discussion in Section 2.2 we may assume without loss of generality that there
is such a family, with constant evaluation time and negligible space usage. A
suitable arrangement of the keys is shown in Chapter 9 to be computable in
expected linear time, by a reduction to 2-sat.

We now consider a simple dynamization of the above. Deletion is of course
simple to perform in constant time, not counting the possible cost of shrinking
the tables if they are becoming too sparse. As for insertion, it turns out that the
“cuckoo approach”, kicking other keys away until every key has its own “nest”,
works very well. Specifically, if x is to be inserted we first see if cell h1(x) of T1

is occupied. If not, we are done. Otherwise we set T1[h1(x)]← x anyway, thus
making the previous occupant “nestless”. This key is then inserted in T2 in the
same way, and so forth iteratively, see Figure 2.1(a). It may happen that this
process loops, as shown in Figure 2.1(b). Therefore the number of iterations is
bounded by a value “MaxLoop” to be specified in Section 2.3.1. If this number
of iterations is reached, everything is rehashed with new hash functions, and
we try once again to accommodate the nestless key.

Using the notation x ↔ y to express that the values of variables x and y
are swapped, the following code summarizes the insertion procedure.

2.3. Cuckoo hashing 31

y

z

v

x

T2T1

v

z

y

x

T2T1

x

y

zu

v

s t

T1 T2

(a) (b)

Figure 2.1: Examples of Cuckoo Hashing insertion. Arrows show possibilities
for moving keys. (a) Key x is successfully inserted by moving keys y and z from
one table to the other. (b) Key x cannot be accommodated and a rehash is
necessary.

procedure insert(x)
if lookup(x) then return
loop MaxLoop times

if T1[h1(x)] = ⊥ then { T1[h1(x)]← x; return }
x↔ T1[h1(x)]
if T2[h2(x)] = ⊥ then { T2[h2(x)]← x; return }
x↔ T2[h2(x)]

end loop
rehash(); insert(x)

end

The above procedure assumes that each table remains larger than (1 + ε)n
cells. When no such bound is known, a test must be done to find out when a
rehash to larger tables is needed. Resizing of tables can be done in amortized
expected constant time per update by the usual doubling/halving technique
(see, e.g., [DfKM+94]). The hash functions used will be (O(1),MaxLoop)-
universal, which means that they will act almost like truly random functions
on any set of keys processed during the insertion loop.

The lookup call preceding the insertion loop ensures robustness if the key
to be inserted is already in the dictionary. A slightly faster implementation can
be obtained if this is known not to occur.

Note that the insertion procedure is biased towards inserting keys in T1.
As will be seen in Section 2.4 this leads to faster successful lookups, due to
more keys being found in T1. This effect is even more pronounced if one uses
an asymmetric scheme where T1 is larger than T2. In both cases, the insertion
time is only slightly worse than that of a completely symmetric implementation.
Another variant is to use a single table for both hash functions, but this requires
keeping track of the hash function according to which each key is placed. In
the following we consider just the symmetric two table scheme.

32 Chapter 2. Cuckoo hashing

2.3.1 Analysis

Our analysis of the insertion procedure has three main parts:

1. We first exhibit some useful characteristics of the behavior of the insertion
procedure.

2. We then derive a bound on the probability that the insertion procedure
uses at least t iterations.

3. Finally we argue that the procedure uses expected amortized constant
time.

Behavior of the insertion procedure

The simplest behavior of the insertion procedure occurs when it does not visit
any hash table cell more than once. In this case it simply runs through a
sequence x1, x2, . . . , of nestless keys with no repetitions, moving each key from
one table to the other.

If, at some point, the insertion procedure returns to a previously visited cell,
the behavior is more complicated, as shown in Figure 2.2. The key xi in the
first previously visited cell will become nestless for the second time (occurring
at positions i and j > i in the sequence) and be put back in its original cell.
Subsequently all keys xi−1, . . . , x1 will be moved back where they were at the
start of the insertion (assuming that the maximum number of iterations is not
reached). In particular, x1 will end up nestless again, and the procedure will
try placing it in the second table. At some point after this there appears a
nestless key xl that is either moved to a vacant cell or a previously visited cell
(again assuming that the maximum number of iterations is not reached). In
the former case the procedure terminates. In the latter case a rehash must be
performed, since we have a “closed loop” of l− i+ 1 keys hashing to only l− i
cells. This means that the loop will run for the maximum number of iterations,
followed by a rehash.

Lemma 2.1 Suppose that the insertion procedure does not enter a closed loop.
Then for any prefix x1, x2, . . . , xp of the sequence of nestless keys, there must be
a subsequence of at least p/3 consecutive keys without repetitions, starting with
an occurrence of the key x1, i.e., the key being inserted.

Proof. In the case where the insertion procedure never returns to a previously
visited cell, the prefix itself is a sequence of p distinct nestless keys starting
with x1. Otherwise, the sequence of nestless keys is as shown in Figure 2.2. If
p < i+ j, the first j− 1 ≥ i+j−1

2 ≥ p/2 nestless keys form the desired sequence.
For p ≥ i + j, one of the sequences x1, . . . , xj−1 and xj+i−1, . . . , xp must have
length at least p/3. 2

2.3. Cuckoo hashing 33

xj−2

xj−1

xi+2

xi+1

x1 = xi+j−1

xi+j

x2 = xi+j−2

x3 = xi+j−3

xi = xj

xl

xj−3

xj−2

xj−1

xi+1

xi = xj

xi−1 = xj+1

x2 = xi+j−2

x1 = xi+j−1

xi+j xl

xj−3

xj−2

xi+1

xj−1

xi = xj

x3 = xi+j−3

x2 = xi+j−2

x1 = xi+j−1

xj+i xl

Figure 2.2: Stages of an insertion of key x1, involving the movement of keys
x1, . . . , xl. Boxes correspond to cells in either of the two tables, and arcs show
possibilities for moving keys. A bold arc shows where the nestless key is to be
inserted.

34 Chapter 2. Cuckoo hashing

Probability bounds

We now consider the probability that the insertion loop runs for at least t
iterations. For t > MaxLoop the probability is of course 0. Otherwise, by the
above analysis, iteration number t is performed in two (not mutually exclusive)
situations:

1. The insertion procedure has entered a “closed loop”, i.e., xl in Figure 2.2
was moved to a previously visited cell, for l ≤ 2t.

2. The insertion procedure has processed a sequence of at least (2t − 1)/3
consecutive nestless keys starting with the newly inserted key.

In the first situation let v ≤ l denote the number of distinct nestless keys.
The number of ways in which the closed loop can be formed is less than
v2rv−1nv−1 (v2 possible values for i and j, rv−1 possible choices of cells, and
nv−1 possible choices of keys other than x1). Since v ≤ MaxLoop, the hash
functions are (c, v)-universal. This means that each possibility occurs with
probability at most c2r−2v. Summing over all possible values of v, and using
r/n > 1 + ε, we get that the probability of situation 1 is at most:

l∑
v=3

v2rv−1nv−1c2r−2v ≤ c2

rn

∞∑
v=3

v2(n/r)v <
13 c2/ε
n2

= O(1/n2) .

The above derivation follows a suggestion of Sanders and Vöcking [SV01], and
improves the O(1/n) bound in the conference paper corresponding to this chap-
ter [PR01a].

In the second situation there is a sequence of distinct nestless keys b1, . . . , bv ,
v ≥ (2t − 1)/3, such that b1 is the key to be inserted, and such that for either
(β1, β2) = (1, 2) or (β1, β2) = (2, 1):

hβ1(b1) = hβ1(b2), hβ2(b2) = hβ2(b3), hβ1(b3) = hβ1(b4), . . . (2.2)

Given b1 there are at most nv−1 possible sequences of v distinct keys. For any
such sequence and any of the two choices of (β1, β2), the probability that the
b− 1 equations in (2.2) hold is bounded by c r−(v−1), since the hash functions
were chosen from a (c,MaxLoop)-universal family. Hence the probability that
there is any sequence of length v satisfying (2.2), and thus the probability of
situation 2, is bounded by

2c2 (n/r)v−1 ≤ 2c2 (1 + ε)−(2t−1)/3+1 . (2.3)

2.4. Experiments 35

Concluding the analysis

From now on we restrict attention to MaxLoop = O(n). From (2.3) it follows
that the expected number of iterations in the insertion loop is bounded by

1 +
MaxLoop∑

t=2

2c2 (1 + ε)−(2t−1)/3+1 +O(1/n2) (2.4)

≤ 1 +O(MaxLoop
n2) + 2c2

∞∑
t=0

((1 + ε)−2/3)t

= O(1 + 1
1−(1+ε)−2/3)

= O(1 + 1/ε) .

Finally, we consider the cost of rehashing, which occurs if the insertion loop
runs for t = MaxLoop iterations. By the previous section, the probability that
this happens because of entering a closed loop is O(1/n2). Setting MaxLoop =
d3 log1+ε ne, the probability of rehashing without entering a closed loop is, by
(2.3), at most

2c2 (1 + ε)−(2 MaxLoop−1)/3+1 = O(1/n2)

Altogether, the probability that any given insertion causes a rehash is
O(1/n2). In particular, the n insertions performed during a rehash all suc-
ceed (i.e., cause no further rehash) with probability 1−O(1/n). The expected
time used per insertion is O(1), so the total expected time for trying to insert all
keys is O(n). As the probability of having to start over with new hash functions
is bounded away from 1, the total expected time for a rehash is O(n). Thus,
for any insertion the expected time used for rehashing is O(1/n).

Summing up, we have shown that the expected time for insertion is bounded
by a constant. The small probability of rehashing in fact implies that also the
variance of the insertion time is constant.

2.4 Experiments

To examine the practicality of Cuckoo Hashing we experimentally compare
it to three well known hashing methods, as described in [Knu98, Section 6.4]:
Chained Hashing (with separate chaining), Linear Probing and Double

Hashing. We also consider Two-Way Chaining [ABKU99].
The first three methods all attempt to store a key x at position h(x) in a

hash table. They differ in the way collisions are resolved, i.e., in what happens
when two or more keys hash to the same location.

Chained Hashing. A chained list is used to store all keys hashing to a given
location.

Linear Probing. A key is stored in the next empty table entry. Lookup of
key x is done by scanning the table beginning at h(x) and ending when
either x or an empty table entry is found. When deleting, some keys may
have to be moved back in order to fill the hole in the lookup sequence,
see [Knu98, Algoritm R] for details.

36 Chapter 2. Cuckoo hashing

Double Hashing. Insertion and lookup are similar to Linear Probing, but
instead of searching for the next position one step at a time, a second hash
function value is used to determine the step size. Deletions are handled
by putting a “deleted” marker in the cell of the deleted key. Lookups skip
over deleted cells, while insertions overwrite them.

The fourth method, Two-Way Chaining, can be described as two in-
stances of Chained Hashing. A key is inserted in one of the two hash tables,
namely the one where it hashes to the shortest chain. A cache-friendly imple-
mentation, as recently suggested in [BM01], is to simply make each chained list
a short, fixed size array. If a longer list is needed, a rehash must be performed.

2.4.1 Previous experimental results.

Although the dictionaries with worst case constant lookup time surveyed in
Sect. 2.1 leave little to improve from a theoretical point of view, large constant
factors and complicated implementation hinder their direct practical use. For
example, in the “dynamic perfect hashing” scheme of [DfKM+94] the upper
bound on space is 35n words. The authors of [DfKM+94] refer to a more
practical variant due to Wenzel that uses space comparable to that of binary
search trees.

According to [KL96] the implementation of this variant in the LEDA li-
brary [MN99], described in [Wen92], has average insertion time larger than
that of AVL trees for n ≤ 217, and more than four times slower than inser-
tions in chained hashing. (On a Linux PC with an Intel Pentium 120 MHz
processor.) The experimental results listed in [MN99, Table 5.2] show a gap
of more than a factor of 6 between the update performance of chained hashing
and dynamic perfect hashing, and a factor of more than 2 for lookups. (On a
300 MHz SUN ULTRA SPARC.)

Silverstein [Sil98] reports that the space upper bound of the dynamic perfect
hashing scheme of [DfKM+94] is quite pessimistic compared to what can be
observed when run on a subset of the DIMACS dictionary tests [McG]. He
goes on to explore ways of improving space as well as time, improving both
the observed time and space by a factor of roughly three. Still, the improved
scheme needs 2 to 3 times more space than an implementation of linear probing
to achieve similar time per operation. Silverstein also considers versions of the
data structures with packed representations of the hash tables. In this setting
the dynamic perfect hashing scheme was more than 50% slower than linear
probing, using roughly the same amount of space.

Is seems that recent experimental work on “classical” dictionaries (that do
not have worst case constant lookup time) is quite limited. In [KL96] it is
reported that chained hashing is superior to an implementation of dynamic
perfect hashing in terms of both memory usage and speed.

2.4.2 Data structure design and implementation

We consider positive 32 bit signed integer keys and use 0 as ⊥. The data
structures are robust in that they correctly handle attempts to insert an element

2.4. Experiments 37

already in the set, and attempts to delete an element not in the set. During
rehashes this is known not to occur and slightly faster versions of the insertion
procedure are used.

Our focus is on achieving high performance dictionary operations with a
reasonable space usage. By the load factor of a dictionary we will understand
the size of the set relative to the memory used. (For Chained Hashing,
the notion of load factor traditionally disregards the space used for chained
lists, but we desire equal load factors to imply equal memory usage.) As seen
in [Knu98, Figure 44] the speed of Linear Probing and Double Hashing

degrades rapidly for load factors above 1/2. On the other hand, none of the
schemes improve much for load factors below 1/4. As Cuckoo Hashing only
works when the size of each table is larger than the size of the set, we can only
perform a comparison for load factors less than 1/2. To allow for doubling and
halving of the table size, we allow the load factor to vary between 1/5 and 1/2,
focusing especially on the “typical” load factor of 1/3. For Cuckoo Hashing

and Two-Way Chaining there is a chance that an insertion may fail, causing a
“forced rehash”. If the load factor is larger than a certain threshold, somewhat
arbitrarily set to 5/12, we use the opportunity to double the table size. By our
experiments this only slightly decreases the average load factor.

Apart from Chained Hashing, the schemes considered have in common
the fact that they have only been analyzed under randomness assumptions that
are currently impractical to realize. However, experience shows that rather
simple and efficient hash function families yield performance close to that pre-
dicted under stronger randomness assumptions. We use a function family
from [DfHKP97] with range {0, 1}q for positive integer q. For every odd a,
0 < a < 2w, the family contains the function ha(x) = (ax mod 2w) div 2w−q.
Note that evaluation can be done very efficiently by a 32 bit multiplication and
a shift. However, this choice of hash function restricts us to consider hash ta-
bles whose sizes are powers of two. A random function from the family (chosen
using C’s rand function) appears to work fine with all schemes except Cuckoo

Hashing. For Cuckoo Hashing we experimented with various hash functions
and found that Cuckoo Hashing was rather sensitive to the choice of hash
function. It turned out that the exclusive or of three independently chosen
functions from the family of [DfHKP97] was fast and worked well. We have
no good explanation for this phenomenon. For all schemes, various alternative
hash families were tried, with a decrease in performance.

All methods have been implemented in C. We have striven to obtain the
fastest possible implementation of each scheme. Specific choices made and
details differing from the references are:

Chained Hashing. C’s malloc and free functions were found to be a per-
formance bottleneck, so a simple “freelist” memory allocation scheme is
used. Half of the allocated memory is used for the hash table, and half
for list elements. If the data structure runs out of free list elements, its
size is doubled. We store the first element of each linked list directly
in the hash table. This often saves one cache miss. It also slightly im-
proves memory utilization, in the expected sense. This is because every

38 Chapter 2. Cuckoo hashing

non-empty chained list is one element shorter and because we expect more
than half of the hash table cells to contain a linked list for the load factors
considered here.

Double Hashing. To prevent the tables from clogging up with deleted cells,
resulting in poor performance for unsuccessful lookups, all keys are re-
hashed when 2/3 of the hash table is occupied by keys and “deleted”
markers. The fraction 2/3 was found to give a good tradeoff between the
time for insertion and unsuccessful lookups.

Linear Probing. Our first implementation, like that in [Sil98], employed dele-
tion markers. However, we found that using the deletion method described
in [Knu98, Algoritm R] was considerably faster, as far fewer rehashes were
needed.

Two-Way Chaining. We allow four keys in each bucket. This is enough to
keep the probability of a forced rehash low for hundreds of thousands of
keys, by the results in [BM01]. For larger collections of keys one should
allow more keys in each bucket, resulting in general performance degra-
dation.

Cuckoo Hashing. The architecture on which we experimented could not par-
allelize the two memory accesses in lookups. Therefore we only evaluate
the second hash function after the first memory lookup has shown unsuc-
cessful.

Some experiments were done with variants of Cuckoo Hashing. In par-
ticular, we considered Asymmetric Cuckoo, in which the first table is twice
the size of the second one. This results in more keys residing in the first table,
thus giving a slightly better average performance for successful lookups. For
example, after a long sequence of alternate insertions and deletions at load fac-
tor 1/3, we found that about 76% of the elements resided in the first table of
Asymmetric Cuckoo, as opposed to 63% for Cuckoo Hashing. There is
no significant slowdown for other operations. We will describe the results for
Asymmetric Cuckoo when they differ significantly from those of Cuckoo

Hashing.

2.4.3 Setup

Our experiments were performed on a PC running Linux (kernel version 2.2)
with an 800 MHz Intel Pentium III processor, and 256 MB of memory
(PC100 RAM). The processor has a 16 KB level 1 data cache and a 256 KB
level 2 “advanced transfer” cache. As will be seen, our results nicely fit a
simple model parameterized by the cost of a cache miss and the expected num-
ber of probes to “random” locations. They are thus believed to have signifi-
cance for other hardware configurations. An advantage of using the Pentium

processor for timing experiments is its rdtsc instruction which can be used
to measure time in clock cycles. This gives access to very precise data on
the behavior of algorithms. In our case it also supplies a way of discarding

2.4. Experiments 39

measurements significantly disturbed by interrupts from hardware devices or
the process scheduler, as these show up as a small group of timings signifi-
cantly separated from all other timings. Programs were compiled using the gcc
compiler version 2.95.2, using optimization flags -O9 -DCPU=586 -march=i586
-fomit-frame-pointer -finline-functions -fforce-mem -funroll-loops
-fno-rtti. As mentioned earlier, we use a global clock cycle counter to time
operations. If the number of clock cycles spent exceeds 5000, and there was no
rehash, we conclude that the call was interrupted, and disregard the result (it
was empirically observed that no operation ever took between 2000 and 5000
clock cycles). If a rehash is made, we have no way of filtering away time spent in
interrupts. However, all tests were made on a machine with no irrelevant user
processes, so disturbances should be minimal. On our machine it took 32 clock
cycles to call the rdtsc instruction. These clock cycles have been subtracted
from the results.

2.4.4 Results

Dictionaries of stable size

Our first test was designed to model the situation in which the size of the
dictionary is not changing too much. It considers a sequence of mixed operations
generated at random. We constructed the test operation sequences from a
collection of high quality random bits publicly available on the Internet [Mar].
The sequences start by insertion of n distinct random keys, followed by 3n times
four operations: A random unsuccessful lookup, a random successful lookup,
a random deletion, and a random insertion. We timed the operations in the
“equilibrium”, where the number of elements is stable. For load factor 1/3 our
results appear in Figure 2.3, which shows an average over 10 runs. As Linear

Probing was consistently faster than Double Hashing, we chose it as the
sole open addressing scheme in the plots. Time for forced rehashes was added
to the insertion time. The results had a large variance, over the 10 runs, for
sets of size 212 to 216. Outside this range the extreme values deviated from
the average by less than about 7%. The large variance sets in when the data
structure starts to fill the level 2 cache. We believe it is due to other processes
evicting parts of the data structure from cache.

As can be seen, the time for lookups is almost identical for all schemes as
long as the entire data structure fits in level 2 cache, i.e., for n < 216/3. After
this the average number of random memory accesses (with the probability of a
cache miss approaching 1) shows up. This makes linear probing an average case
winner, with Cuckoo Hashing and Two-Way Chaining following about 40
clock cycles behind. For insertion the number of random memory accesses
again dominates the picture for large sets, while the higher number of in-cache
accesses and more computation makes Cuckoo Hashing, and in particular
Two-Way chaining, relatively slow for small sets. The cost of forced rehashes
sets in for Two-Way Chaining for sets of more than a million elements, at
which point better results may have been obtained by a larger bucket size. For
deletion Chained Hashing lags behind for large sets due to random memory

40 Chapter 2. Cuckoo hashing

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

log n

C
lo

ck
 C

yc
le

s

Successful Lookup

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

log n

C
lo

ck
 C

yc
le

s

Unsuccessful Lookup

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

350

400

450

log n

C
lo

ck
 C

yc
le

s

Insert

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

350

log n

C
lo

ck
 C

yc
le

s

Delete

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

Figure 2.3: The average time per operation in equilibrium for load factor 1/3.

accesses when freeing list elements, while the simplicity of Cuckoo Hashing

makes it the fastest scheme. We suspect that the slight rise in time for the
largest sets in the test is due to saturation of the bus, as the machine runs out
of memory and begins swapping.

At this point we should mention that the good cache utilization of Linear

Probing and Two-Way Chaining depends on the cache lines being consid-
erably larger than keys (and any associated information placed together with
keys). If this is not the case, it causes the number of cache misses to rise
significantly. The other schemes discussed here do not deteriorate in this way.

Growing and shrinking dictionaries

The second test concerns the cost of insertions in growing dictionaries and
deletions in shrinking dictionaries. This will be different from the above due to
the cost of rehashes. Together with Figure 2.3 this should give a fairly complete
picture of the performance of the data structures under general sequences of
operations. The first operation sequence inserts n distinct random keys, while
the second one deletes them. The plot is shown in Figure 2.4. For small sets
the time per operation seems unstable, and dominated by memory allocation
overhead (if minimum table size 210 is used, the curves become monotone). For

2.4. Experiments 41

sets of more than 212 elements the largest deviation from the averages over 10
runs was about 6%. Disregarding the constant minimum amount of memory
used by any dictionary, the average load factor during insertions was within 2%
of 1/3 for all schemes except Chained Hashing whose average load factor was
about 0.31. During deletions all schemes had average load factor 0.28. Again
the fastest method is Linear Probing, followed by Chained Hashing and
Cuckoo Hashing. This is largely due to the cost of rehashes.

8 10 12 14 16 18 20 22
0

100

200

300

400

500

600

700

800

900

1000

log n

C
lo

ck
 C

yc
le

s

Insert

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

100

200

300

400

500

600

700

800

log n

C
lo

ck
 C

yc
le

s

Delete

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

Figure 2.4: The average time per insertion/deletion in a growing/shrinking
dictionary for average load factor ≈ 1/3.

DIMACS tests

Access to data in a dictionary is rarely random in practice. In particular,
the cache is more helpful than in the above random tests, for example due to
repeated lookups of the same key, and deletion of short-lived keys. As a rule
of thumb, the time for such operations will be similar to the time when all of
the data structure is in cache. To perform actual tests of the dictionaries on
more realistic data, we chose a representative subset of the dictionary tests of
the 5th DIMACS implementation challenge [McG]. The tests involving string
keys were preprocessed by hashing strings to 32 bit integers, as described in
Section 2.2. This preserves, with high probability, the access pattern to keys.
For each test we recorded the average time per operation, not including the
time used for preprocessing. The minimum and maximum of six runs can be
found in Tables 2.5 and 2.6, which also lists the average load factor. Linear
probing is again the fastest, but mostly just 20-30% faster than the Cuckoo

schemes.

The number of cache misses during insertion

We have seen that the number of random memory accesses (i.e., cache misses) is
critical to the performance of hashing schemes. Whereas there is a very precise
understanding of the probe behavior of the classic schemes (under suitable
randomness assumptions), the analysis of the expected time for insertions in

42 Chapter 2. Cuckoo hashing

Joyce Eddington
Linear 42 - 45 (.35) 26 - 27 (.40)
Double 48 - 53 (.35) 32 - 35 (.40)
Chained 49 - 52 (.31) 36 - 38 (.28)

A.Cuckoo 47 - 50 (.33) 37 - 39 (.32)
Cuckoo 57 - 63 (.35) 41 - 45 (.40)

Two-Way 82 - 84 (.34) 51 - 53 (.40)

Figure 2.5: Average clock cycles per operation and load factors for two DIMACS
string tests.

3.11-Q-1 Smalltalk-2 3.2-Y-1
Linear 99 - 103 (.30) 68 - 72 (.29) 85 - 88 (.32)
Double 116 - 142 (.30) 77 - 79 (.29) 98 - 102 (.32)
Chained 113 - 121 (.30) 78 - 82 (.29) 90 - 93 (.31)

A.Cuckoo 166 - 168 (.29) 87 - 95 (.29) 95 - 96 (.32)
Cuckoo 139 - 143 (.30) 90 - 96 (.29) 104 - 108 (.32)

Two-Way 159 - 199 (.30) 111 - 113 (.29) 133 - 138 (.32)

Figure 2.6: Average clock cycles per operation and load factors for three DI-
MACS integer tests.

Section 2.3.1 is rather crude, establishing just a constant upper bound. One
reason that our calculation does not give a very tight bound is that we use a
pessimistic estimate on the number of key moves needed to accommodate a new
element in the dictionary. Often a free cell will be found even though it could
have been occupied by another key in the dictionary. We also pessimistically
assume that a large fraction of key moves will be spent backtracking from an
unsuccessful attempt to place the new key in the first table.

Figure 2.7 shows experimentally determined values for the average number
of probes during insertion for various schemes and load factors below 1/2. We
disregard reads and writes to locations known to be in cache, and the cost of
rehashes. Measurements were made in “equilibrium” after 105 insertions and
deletions, using tables of size 215 and truly random hash function values. It is
believed that this curve is independent of the table size (up to vanishing terms).
The curve for Linear Probing does not appear, as the number of non-cached
memory accesses depends on cache architecture (length of the cache line), but
it is typically very close to 1. The curve for Cuckoo Hashing seems to be
2 + 1/(4 + 8α) ≈ 2 + 1/(4ε). This is in good correspondence with (2.4) of
the analysis in Section 2.3.1. As noted in Section 2.3, the insertion algorithm
of Cuckoo Hashing is biased towards inserting keys in T1. If we instead of
starting the insertion in T1 choose the start table at random, the number of
cache misses decreases slightly for insertion. This is because the number of
free cells in T1 increases as the load balance becomes even. However, this also
means a slight increase in lookup time. Also note that since insertion checks

2.4. Experiments 43

if the element is already inserted, Cuckoo Hashing uses at least two cache
misses. The initial lookup can be exploited to get a small improvement in
insertion performance, by inserting right away when either cell T1[h1(x)] or
T2[h2(x)] is vacant. It should be remarked that the highest possible load factor
for Two-Way Chaining is O(1/ log logn).

Since lookup is very similar to insertion in Chained Hashing, one could
think that the number of cache misses would be equal for the two operations.
However, in our implementation, obtaining a free cell from the freelist may
result in an extra cache miss. This is the reason why the curve for Chained

Hashing in the figure differs from a similar plot in Knuth [Knu98, Figure 44].

0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

3

3.5

4

Load Factor

C
ac

he
 M

is
se

s

Cuckoo
Two−Way Chaining
Chained Hashing
Double Hashing

Figure 2.7: The average number of random memory accesses for insertion.

2.4.5 Model

In this section we look at a simple model of the time it takes to perform a
dictionary operation, and note that our results can be explained in terms of
this model. On a modern computer, memory speed is often the bottleneck.
Since the operations of the investigated hashing methods mainly perform reads
and writes to memory, we will assume that cache misses constitute the dominant
part of the time needed to execute a dictionary operation. This leads to the
following model of the time per operation.

Time = O +N ·R · (1−C/T) , (2.5)

where the parameters of the model are described by

• O – Constant overhead of the operation.

• R – Average number of memory accesses.

44 Chapter 2. Cuckoo hashing

• C – Cache size.

• T – Size of the hash tables.

• N – Cost of a non-cache read.

The term R · (1 − C/T) is the expected number of cache misses for the
operations with (1−C/T) being the probability that a random probe into the
tables results in a cache miss. Note that the model is not valid when the table
size T is smaller than the cache size C. The size C of the cache and the size
T of the dictionary are well known. From Figure 2.7 we can, for the various
hashing schemes and for a load factor of 1/3, read the average number R of
memory accesses needed for inserting an element. Note that several accesses to
consecutive elements in the hash table are counted as one random access, since
the other accesses are then in cache. The overhead of an operation, O, and the
cost of a cache miss, N , are unknown factors that we will estimate.

Performing experiments, reading and writing to and from memory, we ob-
served that the time for a read or a write to a location known not to be in cache
could vary dramatically depending on the state of the cache. For example, when
a cache line is to be used for a new read, the time used is considerably higher
if the old contents of the cache line has been written to, since the old contents
must then first be moved to memory. For this reason we expect parameter N to
depend slightly on both the particular dictionary methods and the combination
of dictionary operations. This means that R and T are the only parameters not
dependent on the methods used.

Method N O

Cuckoo 71 142
Two-Way 66 157
Chained 79 78
Linear 88 89
Average 76 -

Figure 2.8: Estimated parameters according to the model for insertion.

Using the timings from Figure 2.3 and the average number of cache misses
for insert observed in Figure 2.7, we estimated N and O for the four hashing
schemes. As mentioned, we believe the slight rise in time for the largest sets
in the tests of Figure 2.3 to be caused by other non-cache related factors. So
since the model is only valid for T ≥ 216, the two parameters were estimated
for timings with 216 ≤ T ≤ 223. The results are shown in Table 2.8. As can
be seen from the table, the cost of a cache miss varies slightly from method to
method. The largest deviation from the average is about 15%.

To investigate the accuracy of our model we plotted in Figure 2.9 the esti-
mated curves for insertion together with the observed curves used for estimating
the parameters. As can be seen, the simple model explains the observed values
quite nicely. The situation for the other operations is similar.

2.5. Conclusion 45

8 10 12 14 16 18 20 22 24
50

100

150

200

250

300

350

400

450

log n

C
lo

ck
 C

yc
le

s

Insert

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

Figure 2.9: Model versus observed data.

Having said this, we must admit that the values of N and O estimated for
the schemes cannot be accounted for. In particular, it is clear that the true
behavior of the schemes is more complicated than suggested by the model.

2.5 Conclusion

We have presented a new dictionary with worst case constant lookup time. It
is very simple to implement, and has average case performance comparable
to the best previous dictionaries. Earlier schemes with worst case constant
lookup time were more complicated to implement and had worse average case
performance. Several challenges remain. First of all an explicit practical hash
function family that is provably good for the scheme has yet to be found. For
example, future advances in explicit expander graph construction could make
Siegel’s hash functions practical. Secondly, we lack a precise understanding
of why the scheme exhibits low constant factors. In particular, the curve of
Figure 2.7 needs to be explained. Another point to investigate is whether using
more tables yields practical dictionaries. Experiments in [PR01b] suggest that
space utilization could be improved to more than 80%, but it remains to be
seen how this would affect insertion performance.

Chapter 3

Minimal perfect hashing with optimal

evaluation complexity

This chapter deals with families of hash functions that are perfect for the size
n subsets of the finite universe U = {0, . . . , u − 1}. For any subset S of U of
size n, such a perfect family contains a function that is 1-1 on S (“perfect” for
S). We consider perfect families with range {0, . . . , a− 1}, where a ≥ n.

A perfect hash function h for a set S can be used to associate with each
element x ∈ S some associated information (of fixed size), such that the time
needed for accessing the associated information is essentially that of evaluating
the perfect hash function: Store the information associated with x in entry h(x)
of an a-element array. If one also wants to be able to verify that x ∈ S then
x should be written along with its associated information. This abstract data
structure is called a (static) dictionary.

The attractiveness of using perfect hash functions for the above depends on
several characteristics of the perfect family of hash functions.

1. The efficiency of evaluation, in terms of computation and the number of
probes into the description.

2. The complexity of finding a perfect function for a given set in the family.

3. How close to n the size of the range of the functions can be chosen.

4. The space is needed to store a function.

It turns out that, for suitable perfect families of hash functions, the answers
to all of these questions are satisfactory in the sense that it is possible to do
(more or less) as well as one could hope for. In practice, nevertheless, heuris-
tics that typically work well seem to be used rather than theoretically optimal
schemes. It is thus still of interest to find families with good properties from a
theoretical as well as from a practical point of view.

This chapter presents a perfect family of hash functions that, in a unit-
cost word RAM model with multiplication, matches the best results regarding
items 2 and 3 above, and at the same time improves upon the best known
efficiency of evaluation. The (constant) amount of computation required for

47

48 Chapter 3. Minimal perfect hashing with optimal evaluation complexity

evaluating a hash function is about halved. In particular, only one multipli-
cation is used, which is optimal if constant evaluation time is desired. Also,
the number of adaptive probes into the function description (probes depending
on the argument to the function and/or previous probes) is reduced from two
to one, which is optimal. The latter is particularly important if the perfect
hash function resides on secondary storage where seek time is the dominant
cost. The family is surpassed in space usage (by rigorously analyzed schemes)
only by families that are rather complicated and inefficient with respect to the
evaluation of the function.

Another attractive feature of our family is the simple closed form of its
functions:

x 7→ (f(x) + dg(x)) mod n

where functions f and g are chosen from universal families, and the array d
contains O(n) integers from {0, . . . , n − 1}. (The functions f and g need not
be totally independent, which is why one multiplication suffices to compute
them both.) A function of this form that is 1-1 on a given set can be found in
expected time O(n).

Previous work

Czech, Havas and Majewski provide a comprehensive survey of perfect hash-
ing [CHM97]. We review some of the most important results.

Fredman, Komlós and Szemerédi [FKS84] showed that it is possible to con-
struct space efficient perfect hash functions with range size a = O(n) that can
be evaluated in constant time. Their model of computation is a word RAM with
unit cost arithmetic operations and memory lookups, and where an element of
U fits into one machine word. Dietzfelbinger [Df96] showed that multiplication,
addition and standard bit operations suffice to implement the FKS hash func-
tions (in particular, division is not necessary). Henceforth we will concentrate
on hash functions with range a = O(n) that can be evaluated in constant time
on a RAM with this standard set of operations. The result of a multiplication
is assumed to span two words.

An FKS hash function has a description that occupies O(n) machine words.
At the expense of an extra level of indirect addressing, it can be turned into a
minimal perfect hash function, that is, one with range a = n. The description
size is then 6n words (in a straightforward implementation), and at least two
words are probed adaptively during evaluation. Schmidt and Siegel [SS90b]
utilize compact encoding techniques to compress the hash function description
to O(n+log log u) bits, which is optimal within a constant factor. The scheme is
hard to implement, and the evaluation time is prohibitive (although constant).
The space usage was improved to essentially 1+o(1) times optimal by Hagerup
and Tholey [HT01]. However, both schemes are mainly of theoretical interest.
In the following, we will consider families whose functions can be stored in O(n)
machine words.

The fastest algorithm for deterministically constructing a perfect hash func-
tion with constant evaluation time runs in time O(n log n), see Chapter 6. Ran-
domized construction algorithms offer better expected performance. An FKS

49

perfect hash function can be constructed in optimal expected time O(n) if
the algorithm has access to a source of random bits, e.g., in the form of an
instruction that sets a machine word to a uniformly random value. Among
randomized algorithms a goal is to limit the number of random bits used. The
best result in this respect is due to Dietzfelbinger et al. [DfGMP92], who use
O(log n + log log u) random bits to achieve expected O(n) time construction.
Another goal is to make the construction proceed in linear time with high prob-
ability, rather than just in the expected sense [BH91, DfGMP92, DfMadH90].
We will not pursue these two goals, but settle for O(n) expected construction
time.

Some work on minimal perfect hashing has been done under the assumption
that the algorithm can pick and store truly random functions [CHM92,HM93].
Since the space requirements for truly random functions makes this unsuitable
for implementation, one has to settle for pseudo-random functions in practice.
Empirical studies show that limited randomness properties are often as good as
total randomness. Fox et al. [FCH92,FHCD92] studied some families that share
several features with the one presented here. Their results indicate convincing
practical performance, and suggest that it is possible to bring down the storage
requirements further than proved here. However, it should be warned that
doing well in most cases may be much easier than doing well in the worst
case. In [CHM97, Section 6.7] it is shown that three published algorithms for
constructing minimal perfect hash functions, claiming (experimentally based)
expected polynomial running times, had in fact expected exponential running
times. But bad behavior was so rare that it had not been encountered during
the experiments.

The Tarjan-Yao displacement scheme

The family of hash functions presented here can be seen as a variation of an
early perfect family of hash functions due to Tarjan and Yao [TY79]. Their
family requires a universe of size u = O(n2) (which they improve to u = O(nc)
for constant c > 2). The idea is to split the universe into blocks of size O(n),
each of which is assigned a “displacement” value. The ith element within the
jth block is mapped to i + dj, where dj is the displacement value of block j.
Suitable displacement values can always be found, but in general displacement
values (and thus hash table size) larger than n may be required. A “harmonic
decay” condition on the distribution of elements within the blocks ensures that
suitable displacement values in the range {0, . . . , n} can be found, and that they
can in fact be found “greedily” in decreasing order of the number of elements
within the blocks. To achieve harmonic decay, Tarjan and Yao first perform a
displacement “orthogonal” to the other.

The central observation of this chapter is that a reduction of the universe
to size O(n2), as well as harmonic decay, can be achieved using universal hash
functions. Or equivalently, that buckets in a (universal) hash table can be
resolved using displacements.

50 Chapter 3. Minimal perfect hashing with optimal evaluation complexity

j d

i+d

i

j

j

Figure 3.1: Tarjan-Yao displacement scheme

Overview of chapter

We describe and analyze our perfect hash function construction in Section 3.1.1
and 3.1.2. Several choices of the construction are left open, and Section 3.1.3
gives some concrete instances of perfect families. In Section 3.2 we describe
some variants of the basic construction, in particular arguing that a single
multiplication suffices for the evaluation of functions in (a certain instance of)
our family. Finally, in Section 3.3 it is shown that the evaluation complexity of
our perfect hash functions, with respect to “expensive” instructions and number
of memory probes, is optimal.

3.1 A perfect family of hash functions

3.1.1 Definition of family

The concept of universality [CW79] plays an important role in the analysis of
our family. We use the following notation.

Definition 3.1 A family of functions Hr = {h1, . . . , hk}, hi : U → {0, . . . , r −
1}, is c-universal if for any x, y ∈ U , x 6= y, Pri[hi(x) = hi(y)] ≤ c/r. It is
(c, 2)-universal if for any x, y ∈ U , x 6= y, and p, q ∈ {0, . . . , r− 1}, Pri[hi(x) =
p and hi(y) = q] ≤ c/r2.

Many such families with constant c are known, see, e.g., [Df96]. For our
application the important thing to note is that there are universal families
that allow efficient storage and evaluation of their functions. More specifically,
O(log u) (and even O(log n + log log u)) bits of storage suffice, and a constant
number of simple arithmetic and bit operations are enough to evaluate the
functions. Furthermore, c is typically in the range 1 ≤ c ≤ 2. Henceforth we
will refer to such efficient universal families only.

The second ingredient in the family definition is a displacement function.
Generalizing Tarjan and Yao’s use of integer addition, we allow the use of any
group structure on the blocks. It is assumed that the elements {0, . . . , a− 1} of
a block correspond to (distinct) elements in a group (G,�, e), such that group
operations may be performed on them. We assume the group operation and
element inversion to be computable in constant time.

3.1. A perfect family of hash functions 51

Definition 3.2 A displacement function for a group (G,�, e) is a function of
the form x 7→ x� d for d ∈ G. The element d is called the displacement value
of the function.

In the following it may be helpful to simply think of the displacement func-
tions as addition modulo a. We are ready to define our perfect family of hash
functions.

Definition 3.3 Let (G,�, e) be a group, D ⊆ G a set of displacement values,
and let Ha and Hb be cf - and cg-universal, respectively. We define the following
family of functions from U to G:

H(�,D, a, b) = {x 7→ f(x)�dg(x) | f ∈ Ha, g ∈ Hb, di ∈ D for i = 0, . . . , b−1} .

Evaluation of a function in H(�,D, a, b) consists of using a displacement func-
tion, determined by g(x), on the value f(x). In terms of the Tarjan-Yao scheme,
g assigns a block number to each element of U , and f determines its number
within the block. In the next section we will show that when a > cfn/4 and
b ≥ 2cgn, it is possible for any set S of size n to find f , g and displacement
values such that the resulting function is perfect for S. The family requires stor-
age of b displacement values. Focusing on instances with a reasonable memory
usage, we from now on assume that b = O(n) and that elements of D can be
stored in one machine word.

The range of functions in H(�,D, a, b) is {x�d | x ∈ {0, . . . , a−1}, d ∈ D}.
The size of this set depends on the group in question and the set D. Since our
interest is in functions with range n (or at most O(n)), we assume a ≤ n. In
Section 3.2.2 the issue of families with larger range is briefly discussed.

Choosing group operator addition modulo n and D = {0, . . . , n − 1}, our
family is a special case of a hash function family defined in [DfMadH90, Section
4]. There, several interesting properties of randomly chosen functions from the
family are exhibited, but the issue of finding perfect functions in the family is
not addressed.

3.1.2 Analysis

This section gives a constructive randomized method for finding perfect hash
functions in the family H(�,D, a, b) for suitable D, a and b. The key to the
existence of proper displacement values is a certain “goodness” condition on f
and g. Let B(g, i) = {x ∈ S | g(x) = i} denote the elements in the ith block
given by g.

Definition 3.4 Let r ≥ 1. A pair (f, g) ∈ Ha ×Hb, is r-good (for S) if

1. The function x 7→ (f(x), g(x)) is 1-1 on S, and

2.
∑

i,|B(g,i)|>1 |B(g, i)|2 ≤ n/r .

52 Chapter 3. Minimal perfect hashing with optimal evaluation complexity

The first condition says that f and g successfully reduce the universe to size
ab (clearly, if (f(x1), g(x1)) = (f(x2), g(x2)) then regardless of displacement
values, x1 and x2 collide). The second condition implies the harmonic decay
condition of Tarjan and Yao (however, it is not necessary to know their condi-
tion to understand what follows). We show a technical lemma, estimating the
probability of randomly finding an r-good pair of hash functions. We denote
by
(
U
n

)
the set of all subsets of U of size n.

Lemma 3.1 Assume a ≥ cfn/4r and b ≥ 2cgrn. For any S ∈ (Un), a randomly
chosen pair (f, g) ∈ Ha × Hb is r-good for S with positive probability, namely
more than (1− 2cgrn

b)(1− cf n
4ra).

Proof. By cg-universality, the expected value for the sum

∑
i

(|B(g, i)|
2

)
=

∑
{u,v}∈(S

2)
g(u)=g(v)

1

is bounded by
(n
2

) cg

b <
cgn2

2b , so applying Markov’s inequality, the sum has value
less than n/4r with probability > 1 − 2cgrn

b . Since |B(g, i)|2 ≤ 4
(|B(g,i)|

2

)
for

|B(g, i)| > 1, we then have that
∑

i,|B(g,i)|>1 |B(g, i)|2 ≤ n/r. Given a function
g such that these inequalities hold, we would like to bound the probability that
x 7→ (f(x), g(x)) is 1-1 on S. By reasoning similar to before, we get that for
randomly chosen f , the expected number of collisions among elements of B(g, i)
is at most

(|B(g,i)|
2

)
cf/a. Summing over i we get the expected total number

of collisions to be less than cfn/4ra. Hence, using Markov’s inequality, with
probability more than 1 − cf n

4ra there is no collision. By the law of conditional
probabilities, the probability of fulfilling both r-goodness conditions can be
found by multiplying the probabilities found. 2

We now show that r-goodness is sufficient for displacement values to exist,
by means of a constructive argument in the style of [TY79, Theorem 1].

Theorem 3.1 Let (f, g) ∈ Ha × Hb be r-good for S ∈ (Un), r ≥ 1, and let
|D| ≥ n. Then there exist displacement values d0, . . . , db−1 ∈ D, such that
x 7→ f(x) � dg(x) is 1-1 on S.

Proof. Note that displacement di is used on the elements {f(x) | x ∈ B(g, i)},
and that any h ∈ H(�,D, a, b) is 1-1 on each B(g, i). We will assign the
displacement values one by one, in non-increasing order of |B(g, i)|. At the kth
step, we will have displaced the k− 1 largest sets, {B(g, i) | i ∈ I}, |I| = k− 1,
and want to displace the set B(g, j) such that no collision with previously
displaced elements occurs. If |B(g, j)| ≤ 1 this is trivial since |D| ≥ n, so we
assume |B(g, j)| > 1. The following claim finishes the proof.

Claim 3.1 If |B(g, k)| > 1, then with positive probability, namely more than
1− 1

r , a randomly chosen d ∈ D displaces B(g, k) with no collision.

3.1. A perfect family of hash functions 53

The proof of the claim goes as follows. The displacement values that are not
available are those in the set

{f(x)−1 � f(y) � di | x ∈ B(g, k), y ∈ B(g, i), i ∈ I} .
It has size at most |B(g, k)|∑i∈I |B(g, i)| <∑i,|B(g,i)|>1 |B(g, i)|2 ≤ n/r, using
first non-increasing order, |B(g, k)| > 1, and then r-goodness. Hence there must
be more than (1− 1

r)|D| good displacement values in D. 2

Lemma 3.1 implies that, for constant ε > 0, when a ≥ (cf

4r + ε)n and
b ≥ (2cgr + ε)n, an r-good pair of hash functions can be found (and verified to
be r-good) in expected time O(n). The proof of Theorem 3.1, and in particular
Claim 3.1, shows that for a (1+ε)-good pair (f, g), the strategy of trying random
displacement values in D successfully displaces all blocks with more than one
element in expected 1/ε attempts per block. When O(n) random elements of
D can be picked in O(n) time, this runs in expected time O(n/ε) = O(n).
Finally, if displacing all blocks with only one element is easy (as is the case
in the examples we look at in Section 3.1.3), the whole construction runs in
expected time O(n).

For a 1-good pair (f, g), Theorem 3.1 gives the existence of proper displace-
ment values, but no linear time algorithm for finding them.

3.1.3 Instances of the family

In Section 3.1 we specified at a rather abstract level how to construct a perfect
family. We now proceed to look at some specific instances. In particular, the
choice of group and set of displacement values is discussed. For simplicity, we
use universal families with constant 1. The number of displacement values,
b, must be at least 2n to ensure existence of perfect functions, and at least
(2 + ε)n, for constant ε > 0, to ensure expected linear time construction. For
convenience, self-contained definitions of the families are given.

Addition

The set of integers with addition is a very natural choice of group. For D =
{0, . . . , n− 1}, we get the family:

HZ = {x 7→ f(x) + dg(x) | f ∈ Hdn/4e, g ∈ Hb, 0 ≤ di < n for 0 ≤ i < b} .
The range of hash functions in the family is {0, . . . , d54ne − 2}, so it is not
minimal.

Addition modulo n

The previous family can be made minimal at the expense of a computationally
more expensive group operator, addition modulo n:

HZn = {x 7→ (f(x)+dg(x)) mod n | f ∈ Hn, g ∈ Hb, 0 ≤ di < n for 0 ≤ i < b} .
Note that since the argument to the modulo n operation is less than 2n, it can
be implemented using one comparison and one subtraction.

54 Chapter 3. Minimal perfect hashing with optimal evaluation complexity

Bitwise exclusive or

The set of bit strings of length ` = dlog ne form the group Z
`
2 under the operation

of bitwise exclusive or, denoted by ⊕. We let {0, . . . , n− 1} correspond to `-bit
strings of their binary representation, and get

H
Z

`
2

= {x 7→ f(x)⊕ dg(x) | f ∈ H2`−1, g ∈ Hb, di ∈ {0, 1}` for 0 ≤ i < b} .

The range of functions in this family is (or corresponds to) the numbers {0, . . . ,
2` − 1}. It is thus only minimal when n is a power of two. However, for
b ≥ 4n2/2`, displacement values can be chosen such that elements of the set are
mapped to {0, . . . , n− 1}: All displacement values for sets with more than one
element can be chosen from 0{0, 1}`−1, and single elements can be displaced
to any value desired. Since some elements not in the set might map outside
{0, . . . , n− 1}, a check for values larger than n− 1 must be inserted.

Construction time

The discussion in Section 3.1.2 implies that perfect functions in the above fam-
ilies can be found efficiently. Also note that it is possible to “pack” all displace-
ment values into bdlog ne bits.

Theorem 3.2 Let S ∈ (Un) and let ε > 0 be a constant. A perfect hash function
for S in the families HZ, HZn and H

Z
`
2
, with storage requirement (2+ε)n words

(or (2 + ε)ndlog ne bits), can be found in expected time O(n).

3.2 Variants

This section describes some variants of the basic scheme presented in the pre-
vious section.

3.2.1 Using a single multiplication

In the introduction we promised a family that was not only efficient with respect
to the number of probes into the description, but also with respect to the
amount of computation involved. It would seem that the evaluation of hash
functions f and g makes the computational cost of the scheme presented here
comparable to that of, e.g., the FKS scheme. However, we have one advantage
that can be exploited: The hash functions used are fixed in advance, as opposed
to other schemes where the choice of second hash function depends on the value
of the first. We will show how to “simulate” our two universal hash functions
with a single (c, 2)-universal hash function.

Definition 3.5 Let V = {0, . . . , ab−1}. Functions pf : V → {0, . . . , a−1} and
pg : V → {0, . . . , b− 1} are said to decompose V if the map x 7→ (pf (x), pg(x))
is 1-1 on V .

3.2. Variants 55

Let Hab be a family of (c, 2)-universal hash functions with range {0, . . . , ab−
1}, and let pf and pg decompose {0, . . . , ab − 1}. It is not hard to show that
{pf ◦ h | h ∈ Hab} and {pg ◦ h | h ∈ Hab} are (c, 2)-universal, and hence also
c-universal. However, because of possible dependencies, this will not directly
imply that (pf ◦h, pg◦h) is r-good with positive probability, for random h ∈ Hab.
But we now show that, with a small penalty in the number of displacement
values, this is the case.

Lemma 3.1b Let Hab be a (c, 2)-universal family, and let pf and pg decompose
{0, . . . , ab − 1}. Assume ab ≥ cn(n + 4ra)/2. For any S ∈ (Un), a pair (pf ◦
h, pg◦h) with randomly chosen h ∈ Hab, is r-good for S with positive probability,
namely more than 1− cn(n+4ra)

2ab .
Proof. When choosing h ∈ H uniformly at random, the expected number of
collisions between pairs of elements in S is at most

(n
2

)
c/ab < cn2

2ab . Hence a
collision occurs with probability less than cn2

2ab . Using injectivity of the decom-
position functions, the same holds for x 7→ ((pf ◦ h)(x), (pg ◦ h)(x)). Since
{pg ◦h | h ∈ Hab} is c-universal, the argument in the proof of Lemma 3.1 shows
that

∑
i,|B(pg◦h,i)|>1 |B(pg ◦ h, i)|2 > n/r occurs with probability less than 2crn

b .

Since cn2

2ab + 2crn
b = cn(n+4ra)

2ab , the stated probability of r-goodness follows. 2

For a = n this means that b = d5c
2 ne is enough to ensure the existence

of a 1-good pair (pf ◦ h, pg ◦ h). For constant ε > 0 and b = d(5c
2 + ε)ne a

(1+ ε/4c)-good pair can be found in an expected constant number of attempts.
Decomposition of {0, . . . , ab − 1} can be done efficiently when a or b is a

power of two. Then pf and pg simply pick out appropriate bits. More generally,
pf (u) = u div b, pg(u) = u mod b (or pf (u) = u mod a, pg(u) = u div a) is a
natural choice for decomposing the range of h.

Returning to the claim in the introduction, we use the (1, 2)-universal family
of Dietzfelbinger [Df96], which requires just one multiplication, one addition and
some simple bit operations when the range has size a power of two. Choose
a and b as powers of two satisfying ab ≥ (n(n + 4a) + ε)/2, and it is easy to
compute pf and pg. By Section 3.1.3, a displacement function can be evaluated
using only additions and bit operations, so this means that that (apart from a
few less expensive operations) one multiplication suffices.

3.2.2 Larger range

We have focused on perfect hash functions with range O(n), since these have
the most applications. It is, however, straightforward to generalize the families
we have seen to ones with range a = ω(n). The number of displacement values
necessary is in general b = O(n2/a). (Note that for a >

(n
2

)
a universal family

in itself is perfect.) The differences to the proofs seen so far are:

• r-goodness is generalized so that the second requirement is∑
i,|B(g,i)|>1

|B(g, i)|2 ≤ a/r .

• The set of displacement values must have size at least a.

56 Chapter 3. Minimal perfect hashing with optimal evaluation complexity

3.3 Optimality

3.3.1 One multiplication is necessary

The unbounded fan-in circuit depth of multiplication of two log u bit numbers
is O(log log u/ log log log u) by [BCH86] and [CSV84]. All other instructions of
our RAM model have constant depth circuits. It was shown in [AMRT96] that
any dictionary for subsets of {0, . . . , u− 1} of size n, using space 2(log n)O(1)

and
a constant number of instructions for lookups, must employ an instruction of
circuit depth Ω(log log u/ log log log u). Hence, our use of a single instruction
with this circuit depth is optimal.

3.3.2 An adaptive probe is necessary

We now show that one cannot in general evaluate a perfect hash function with
range size a = O(n) on input x using a constant number of word probes that
depend only on x (and not the results of other probes), in a data structure
of b = O(n) words. That is, an adaptive word probe is necessary in general
to achieve constant evaluation time. A similar lower bound for the bit probe
complexity of perfect hashing is shown in Chapter 9.

Of course, for large word length w, adaptivity is not necessary: If w ≥
dlog ne+ du/be then a bitmap of the whole set, as well as rank information in
each word, can be put into b words, and nonadaptive minimal perfect hashing is
easy. Also, if a perfect hash function can be described in O(w) bits, a constant
number of fixed probes obviously suffice.

The following theorem (with a = O(n) and b = O(n)) shows that if u ≥
nwω(1), nonadaptive schemes need to probe a nonconstant number of words
to evaluate a perfect hash function. We conclude that a single adaptive word
probe, as used by the family presented here, cannot be improved in general.

Theorem 3.3 For positive integers a, b, t, w, n ≥ 2 and u ≥ 4a(4abw
n2)t, let H

be a family of hash functions from {0, . . . , u−1} to {0, . . . , a−1} that is perfect
for sets of size n. If functions from H can be stored in a data structure of b words
of w bits and evaluated using t nonadaptive word probes, then t = Ω(n2/aw).

Proof. Let Cx be the set of t indices probed when evaluating a hash function
on input x. For any set B ⊆ {0, . . . , b− 1} of indices in the data structure, let
UB = {x ∈ U | Cx ⊆ B}.

Let s′ be the minimum number of words needed to represent a perfect
hash function for a set of n elements from a universe of size u′ = d(n2

2abw)tue.
By [Meh84, Theorem III.2.3.6] we have s′ ≥ (n2) log e(1/a − 1/u′) ≥ n2

2aw . We
show that t ≥ s′/2. Suppose for the sake of contradiction that t < s′/2. Each
set Cx is contained in

(b−t
s′−1−t

)
subsets of {0, . . . , b−1} of size s′−1. This means

that there exists some set B ⊆ {0, . . . , b− 1} of s′ − 1 elements such that

|UB | ≥ u
(b−t
s′−1−t

)
/
(b
s′−1

) ≥ (s′−t
b)tu > (n2

4abw)tu .

But the words with indices in B encode a perfect hash function for any size n
subset of UB , contradicting the definition of s′. 2

3.4. Conclusion 57

3.4 Conclusion

We have seen that displacements, together with universal hash functions, form
the basis of very efficient (minimal) perfect hashing schemes. The efficiency of
evaluation is optimal in the sense that only one adaptive probe into the data
structure is needed, and only one “expensive” instruction is used.

The space consumption in bits, although quite competitive with that of
other evaluation-efficient schemes, is a factor of Θ(log n) from the theoretical
lower bound. As mentioned in the introduction, some experiments suggest that
the space consumption for this kind of scheme may be brought close to the
optimum by simply having fewer displacement values. It would be interesting
to extend the results of this chapter in that direction. This might help to further
bring together the theory and practice of perfect hashing.

One result in this direction has been shown by Dietzfelbinger and Hagerup
in [DH01]. They designed an improved algorithm for choosing displacement
values. It allows the number of displacement values to be reduced from (2+ ε)n
to (1+ε)n, at the cost of using slightly stronger hash functions than the universal
ones used here.

Chapter 4

Simulating uniform hashing in constant

time and optimal space

Hashing is an important tool for designing and implementing randomized al-
gorithms and data structures. The basic idea is to use a function h : U → V ,
called a hash function, that “mimics” a random function. In this way a “ran-
dom” value h(x) can be associated with each element from the domain U . This
has been useful in many applications in, for example, information retrieval, data
mining, cryptology, and parallel algorithms.

Many algorithms have been carefully analyzed under the assumption of uni-
form hashing, i.e., assuming that the hash function employed is a truly random
function. As the representation of a random function requires |U | log |V | bits, it
is usually not feasible to actually store a randomly chosen function. For many
years hashing was largely a heuristic, and one used fixed functions that were
empirically found to work well in cases where truly random functions could be
shown to work well.

The gap between hashing algorithms and their analysis narrowed with the
advent of universal hashing [CW79]. The key insight was that it is often possible
to get provable performance guarantees by choosing hash functions at random
from a small family of functions (rather than from the family of all functions).
The importance of the family being small is, of course, that a function from
the family can be stored succinctly. Following universal hashing, many hash
function families have been proposed (e.g., [ADfM+97, BCFM00, Chi94, Df96,
DfGMP92,DfMadH90,GW97,IMRV99,LS98,Sie89]), and their performance an-
alyzed in various settings.

One property of the choice of hash function that often suffices to give per-
formance guarantees is that it maps each set of k elements in U to uniformly
random and independent values, where k is some parameter that depends on
the application. If this holds for a random function from a family H of func-
tions, H is called k-wise independent. The hash functions described by Carter
and Wegman in [CW79], for example, were 2-wise independent. The first con-
structions of k-wise independent families required time Ω(k) for evaluating a
hash function. (Here, and in the rest of the chapter, we will consider complexity
on a RAM with word size Θ(log |U | + log |V |).) A breakthrough was made by
Siegel [Sie89], who showed that high independence is achievable with relatively

59

60 Chapter 4. Simulating uniform hashing

small families of hash functions that can be evaluated in constant time.
The two main performance parameters of a hash function family is the

space needed to represent a function and the time necessary to compute a
given function value from a representation. A lower bound on the number of
bits needed to achieve k-wise independence is Ω(k) words [ABI86, CGH+85],
and there are constructions using O(k) words of space in the case where |U |
and |V | are powers of the same prime. Sometimes there is a trade-off between
the space used to represent a function and its evaluation time. For example,
Siegel’s k-wise independent family requires k1+Ω(1) words of space to achieve
constant evaluation time, for |U | = kO(1).

If one applies Siegel’s family with k = n to a set S of n elements, it will map
these to independent and uniformly random values. We say that it is uniform
on S. However, the superlinear space usage means that, in many possible
applications, the hash function description itself becomes asymptotically larger
than all other parts of the data structure. In this chapter we present a family
of hash functions that has the same performance as Siegel’s family on any
particular set of n elements, and improves space to the optimal bound of O(n)
words.

Theorem 4.1 Let S ⊆ U be a set of n elements. For any constant c > 0 there
is an algorithm constructing a random family of functions from U to V in o(n)
time and space, such that:

• With probability 1−O(n−c) the family is uniform on S.

• There is a data structure of O(n) words words representing its functions
such that function values can be computed in constant time. The data
structure can be initialized to a random function in O(n) time.

Implications

The fact that the space usage is linear in n means that a large class of hashing
schemes can be implemented to perform, with high probability, exactly as if
uniform hashing was used, increasing space by at most a constant factor. This
means that our family makes a large number of analyses performed under the
uniform hashing assumption “come true” with high probability.

Two comprehensive surveys of early data structures analyzed under the uni-
form hashing assumption can be found in the monographs of Gonnet [Gon84]
and Knuth [Knu98]. Gonnet provides more than 100 references to books, sur-
veys and papers dealing with the analysis of classic hashing algorithms. This
large body of work has made the characteristics of these schemes very well
understood, under the uniform hashing assumption. As the classic hashing
algorithms are often very simple to implement, and efficient in practice, they
seem to be more commonly used in practice than newer schemes with provably
good behavior1. While our family is not likely to be of practical importance

1One could argue that hashing will always be a heuristic on real, deterministic machines.
However, cryptographic applications have made it increasingly common to equip computers
with a hardware random number generator, such as in Intel’s 8xx chipsets.

4.1. Background 61

for these hashing schemes, it does provide a theoretical “bridge” justifying the
uniform hashing assumption for a large class of them. Previously, such justifi-
cations have been made for much more narrow classes of hashing schemes, and
have only dealt with certain performance parameters (see, e.g., [SS89,SS90a]).

In addition to the classic hashing schemes, our hash functions provide a
provably efficient implementation of a recent load balancing scheme of Azar et
al. [ABKU99].

Overview of the chapter

The organization of the chapter is as follows. In section 4.1 we provide the
background information necessary to understand our construction. Specifically,
we survey Siegel’s construction, which will play an important role. Section 4.2
presents our construction and its analysis. Finally, section 4.3 gives a number
of applications of our result.

4.1 Background

The main result of this chapter can be seen as an extension of Siegel’s family
of high performance hash functions [Sie89, Sie95]. The motivation for Siegel’s
work was that many algorithms employing hashing can be shown to work well
if the hash functions are chosen at random from a k-wise independent family of
functions, for suitably large k.

Definition 4.1 A family H of functions from U to V is k-wise independent if,
for any set of distinct elements x1, . . . , xk ∈ U , and any y1, . . . , yk ∈ V , when
h ∈ H is chosen uniformly at random,

Pr[h(x1) = y1, . . . , h(xk) = yk] = |V |−k .

In other words, a random function from a k-wise independent family acts like
a truly random function on any set of k elements of U . In this chapter we will
assume that the range V of hash functions is the set of elements in some group
R = (V,⊕), where the group operation ⊕ can be performed in constant time
on a RAM. There are many such examples of groups, for example those with
group operations addition modulo |V | and bitwise exclusive or.

Siegel primarily considered the case in which |U | = kO(1). He showed that
in this case one can, for arbitrary constants c, ε > 0, construct, in o(k) time
and space, a family of functions from U to V such that:

• The family is k-wise independent with probability 1− k−c.

• There is a data structure of k1+ε words words representing its functions
such that function values can be computed in constant time. The data
structure can be initialized to a random function in k1+ε time.

The positive probability that the family is not k-wise independent is due to the
fact that Siegel’s construction relies on a certain type of expander graph that,

62 Chapter 4. Simulating uniform hashing

in lack of an explicit construction, is found by selecting a graph at random
(and storing it). However, there is a small chance that the randomly chosen
graph is not the desired expander, in which case there is no guarantee on the
performance of the family. Also, there seems to be no known efficient way of
generating a graph at random and verifying that it is the desired expander.
(However, a slightly different class of expanders can be efficiently generated in
this way [Alo86].)

It is no coincidence that Siegel achieves constant evaluation time only for
|U | = kO(1). He shows the following trade-off between evaluation time and the
size of the data structure:

Theorem 4.2 (Siegel [Sie89]) For any k-wise independent family H of func-
tions from U to V , any data structure using m words of O(log |V |) bits to
represent a function from H requires worst case time Ω(min(logm/k(|U |/k), k))
to evaluate a function.

Note that when using optimal space, i.e., m = O(k), one must use time
Ω(min(log(|U |/k), k)) to evaluate a function. Siegel’s upper bound extends to
the case where |U | is not bounded in terms of k. However, in this case the lack of
an explicit expander construction results in an exponentially larger evaluation
time than in the first term of the lower bound.

Theorem 4.2 establishes that high independence requires either high eval-
uation time or high space usage when |U | is large. A standard way of getting
around problems with hashing from a large domain is to first perform a domain
reduction, where elements of U are mapped to elements of a smaller domain
U ′ using, say, universal hashing. As this mapping cannot be 1-1, the domain
reduction forces some hash function values to be identical. However, for any
particular set S of n elements, the probability of two elements in S mapping to
the same element of U ′ can be made low by choosing |U ′| = nO(1) sufficiently
large.

Definition 4.2 A family of functions defined on U is uniform on the set S ⊆ U
if its restriction to S is |S|-wise independent.

Using domain reduction with Siegel’s family described above, one gets the
following result. For k = n it is similar to our main theorem, except that the
space usage is superlinear.

Theorem 4.3 (Siegel [Sie89,Sie95]) Let S ⊆ U be a set of n = kO(1) elements.
For any constants ε, c > 0 there is an algorithm constructing a random family
SI(U, V, k, n, c, ε) of functions from U to V in o(k) time and space, such that:

• With probability 1− n−c the family is k-wise independent on S.

• There is a data structure of O(k1+ε) words words representing its functions
such that function values can be computed in constant time. The data
structure can be initialized to a random function in O(k1+ε) time.

4.2. Hash function construction 63

With current expander “technology”, Siegel’s construction exhibits high
constant factors. Other proposals for high performance hash functions, due to
Dietzfelbinger and Meyer auf der Heide [DfMadH90,DMadH92], appear more
practical. However, these families only exhibit O(1)-wise independence and
appear to be difficult to analyze in general.

4.2 Hash function construction

In this section we describe our hash function family and show Theorem 4.1. We
use the notation T [i] to denote the ith entry in an array (or vector) T . By [m]
we denote the set {1, . . . ,m}.

4.2.1 The hash function family

Definition 4.3 Let R = (V,⊕) be a group, let G be a family of functions from
U to V , and let f1, f2 : U → [m]. We define the family of functions

H(f1, f2,G) = {x 7→ T1[f1(x)]⊕ T2[f2(x)]⊕ g(x) | T1, T2 ∈ V m and g ∈ G}.

A similar way of constructing a function family was presented in [DfMadH90].
The novel feature of the above definition is the use of two values looked up in
tables, rather than just one. The hash function family used to prove Theorem
4.1 uses Siegel’s construction of function families to get the functions f1 and f2

and the family G in the above definition.

Definition 4.4 For n ≤ |U | and any constant c > 0 we define the random
family Hn,c = H(f1, f2,G) of functions as follows: Construct the random fami-
lies G = SI(U, V,√n, n, c, 1/2) and F = SI(U, [4n],

√
n, n, c, 1/2) according to

Theorem 4.3, and pick f1 and f2 independently at random from F .

4.2.2 Properties of the family

For a set S ⊆ U and two functions f1, f2 : U → [m], let G(f1, f2, S) = (A,B,E)
be the bipartite graph with vertex sets A = {a1, . . . , am} and B = {b1, . . . , bm},
and edge set E = {ex = (af1(x), bf2(x)) | x ∈ S}, where ex is labeled by x. Note
that there may be parallel edges.

We define a cyclic subgraph E′ ⊆ E of a graph as a subset of the edges such
that there is no vertex incident to exactly one edge in E′. A graph’s cyclic part
C ⊆ E is the maximal cyclic subgraph in the graph, i.e., the edges in cycles
and edges in paths connecting cycles.

Lemma 4.1 Let S ⊆ U be a set of n elements and let G be a family of functions
from U to V that is k-wise independent on S. If the total number of edges in the
cyclic part of G(f1, f2, S) = (A,B,E) is at most k, then H(f1, f2,G) is uniform
on S.

Proof. Let S′ be the set of all elements x ∈ S where the corresponding edge ex
is in the cyclic part C of G(f1, f2, S).

64 Chapter 4. Simulating uniform hashing

The proof is by induction. First, assume that |E \C| = 0. Since g is chosen
from a k-wise independent family, S = S′, and |S′| ≤ k we can conclude that
H(f1, f2,G) is uniform on S.

It remains to show that H(f1, f2,G) is uniform on S when |E \ C| ≥ 1.
Among the edges in E \ C there has to be at least one edge with one unique
endpoint. Let ex∗ = (af1(x∗), bf2(x∗)) be such an edge, x∗ ∈ S \ S′. W.l.o.g. as-
sume that af1(x∗) is the unique endpoint. By induction it holds that H(f1, f2,G)
is uniform on S \ {x∗}. For h ∈ H(f1, f2,G) chosen at random, all values h(x)
for x ∈ S \ {x∗} are independent of the value T1[f1(x∗)]. Additionally, given
g ∈ G and all entries in vectors T1 and T2 except T1[f1(x∗)], h(x∗) is uniformly
distributed when choosing T1[f1(x∗)] at random. Hence H(f1, f2,G) is uniform
on S. 2

Lemma 4.2 For each set S of size n, and for f1, f2 : U → [4n] chosen at
random from a family that is k-wise independent on S, k ≥ 32, the probability
that the cyclic part C of the graph G(f1, f2, S) has size at least k is n/2Ω(k).

Proof. Assume that |C| ≥ k and that k is even (w.l.o.g.). Either there is a
connected cyclic subgraph in G(f1, f2, S) of size at least k/2 or there is a cyclic
subgraph of size k′, where k/2 < k′ ≤ k. In the first case there is a connected
subgraph in G(f1, f2, S) with exactly k/2 edges and at most k/2 + 1 vertices.
In the second case there is a subgraph with k′ edges and at most k′ vertices in
G(f1, f2, S), where k/2 < k′ ≤ k.

In the following we will count the number of different edge labeled subgraphs
with k′ edges and at most k′ + 1 vertices for k/2 ≤ k′ ≤ k to bound the
probability of such a subgraph to appear in G(f1, f2, S). Hence, we also get an
upper bound on the probability that |C| is at least k. Note that since f1 and
f2 are chosen from a k-wise independent family, each subset of at most k edges
will be random and independent. We will only consider subgraphs with at most
k edges.

To count the number of different subgraphs with k′ edges and at most
k′ + 1 vertices, for k/2 ≤ k′ ≤ k, in a bipartite graph G = (A,B,E) with
|A| = |B| = 4n and |E| = n, we count the number of ways to choose the edge
labels, the vertices, and the endpoints of the edges such that they are among
the chosen vertices. The k′ edge labels can be chosen in

(n
k′
) ≤ (en/k′)k′ ways.

Since the number of vertices in the subgraph is at most k′ + 1, and they are
chosen from 8n vertices in G, the total number of ways in which they can be
chosen is bounded by

∑k′+1
i=1

(
8n
i

) ≤ (8en/(k′ + 1))k
′+1. Let ka and kb be the

number of vertices chosen from A and B, respectively. The number of ways to
choose an edge such that it has both its endpoints among the chosen vertices
is kakb ≤ ((k′ + 1)/2)2k′ . In total, the number of different subgraphs with k′

edges and up to k′ + 1 vertices is at most

(en/k′)k
′ · (8en/(k′ + 1))k

′+1 · ((k′ + 1)/2)2k′

= 8en
k′+1 · (2e2 · n2 · k′+1

k′)k
′

≤ 8en
k′+1 · (63

4 · n2)k
′
,

4.3. Applications 65

using k′ ≥ k/2 ≥ 16.
There are in total (4n)2k′ graphs with k′ specific edges. In particular, the

probability that k′ specific edges form a particular graph is (4n)−2k′ , using k′-
wise independence. To get an upper bound on the probability that there is
some subgraph with k′ edges and at most k′ + 1 vertices, where k/2 ≤ k′ ≤ k,
we sum over all possible values of k′:

∑
k/2≤k′≤k

8en
k′+1 · (63

4 · n2)k
′ · (4n)−2k′ =

∑
k/2≤k′≤k

8en
k′+1 · (63

64)k
′

≤ (k/2 + 1) · 8en
k/2+1 · (63

64)k/2

= n/2Ω(k) .

2

Proof of Theorem 4.1. We will show that the random family Hn,c of Defini-
tion 4.4 fulfills the requirements in the theorem. Assume w.l.o.g. that

√
n is inte-

ger. The families G = SI(U, V,√n, n, c, 1/2) and F = SI(U, [4n],
√
n, n, c, 1/2)

are both
√
n-wise independent with probability 1 − n−c for sets of size up to

n according to Theorem 4.3. If F is
√
n-wise independent then by Lemma 4.2

the probability that the cyclic part of graph G(f1, f2, S) has size at most
√
n is

at least 1 − n−Ω(
√

n), if
√
n ≥ 32. We can assume w.l.o.g. that

√
n ≥ 32, since

otherwise the theorem follows directly from Theorem 4.3. When the cyclic part
of graph G(f1, f2, S) has size at most

√
n then, by Lemma 4.1, Hn,c is uniform

on S if G is
√
n-wise independent. The probability that G is

√
n-wise indepen-

dent, F is
√
n-wise independent, and that the cyclic part of graph G(f1, f2, S)

has size at most
√
n is altogether (1− n−c)2(1− n−Ω(

√
n)) = 1−O(n−c).

The construction of Hn.c, i.e., constructing F and G and choosing f1 and
f2, can according to Theorem 4.3 be done in time and space o(n). The space
usage of a data structure representing a function from Hn,c is O(n) words for T1

and T2, and o(n) words for storing g ∈ G. The initialization time is dominated
by the time used for initializing T1 and T2 to random arrays. Function values
can clearly be computed in constant time. 2

4.3 Applications

We now characterize a class of data structures that, when used with our hash
function construction, behave exactly as if uniform hashing was used, in the
sense that at any time it holds (with high probability) that the probability
distribution over possible memory configurations is the same. We give a number
of examples of data structures falling into this class.

Definition 4.5 A data structure with oracle access to a hash function h : U →
V is n-hash-dependent if there is a function f mapping operation sequences
to subsets of U of size at most n, such that after any sequence of operations

66 Chapter 4. Simulating uniform hashing

O1, . . . , Ot, the memory configuration depends only on O1, . . . , Ot, the random
choices made by the data structure, and the function values of h on the set
f(O1, . . . , Ot).

The following is an immediate implication of Theorem 4.1.

Theorem 4.4 Consider a sequence of nO(1) operations on an n-hash-dependent
RAM data structure with a random hash function oracle. For any constant
c > 0, the oracle can be replaced by a random data structure using O(n) words
of space and increasing time by at most a constant factor, such that with proba-
bility 1−O(n−c) the distribution of memory configurations after each operation
remains the same.

At first glance, the theorem concerns only what the data structure will look
like, and does not say anything about the behavior of queries. However, in most
cases O(n)-hash-dependence is maintained if we extend a data structure to write
down in memory, say, the memory locations inspected during a query. Using
the theorem on this data structure one then obtains that also the distribution
of memory accesses during queries is preserved when using our class of hash
functions.

The additional space usage of O(n) words can be reduced if U is much larger
than V by packing several log |V | bit entries of the arrays T1 and T2 in each
Θ(log |U |) bit word. It should be noted that although O(n) words may be of
the same order as the space used by the rest of the data structure, there are
many cases where it is negligible. For example, if more than a constant number
of words of associated information is stored with each key in a hash table, the
space usage for our hash function is a vanishing part of the total space.

4.3.1 Examples

In the following we describe some n-hash-dependent hashing schemes.

Insertion only hash tables. One class of hash tables that are clearly n-hash-
dependent are those that support only insertions of elements, have a bound of n
on the number of elements that can be inserted (before a rehash), and use h only
on inserted elements. This is the primary kind of scheme considered by Gonnet
in [Gon84], and includes linear probing, double hashing, quadratic hashing,
ordered hashing, Brent’s algorithm, chained hashing, coalesced hashing, and
extendible hashing.

Many such schemes are extended to support deletions by employing “dele-
tion markers”. However, as noted by Knuth [Knu98], deleting many elements in
this way tends to lead to very high cost for unsuccessful searches. It thus makes
sense to rebuild such data structures (with a new hash function) when the total
number of insertions and deletions reaches some number n (around the size of
the hash table). If this is done, the hashing scheme remains n-hash-dependent.

4.3. Applications 67

Deletion independent hash tables. Some hash tables have the property
that deleting an element x leaves the data structure in exactly the state it
would have been in if x had never been inserted. In particular, the state depends
exclusively on the current set of elements, the order in which they were inserted,
and their hash function values. If the capacity of the hash table is bounded by
n, such a data structure is n-hash-dependent.

An example of the above is a hash table using linear probing, with the
deletion algorithm in [Knu98]. Also, chained hashing methods have deletion
independent pointer structure. In particular, for those methods we get n-hash-
dependence up to pointer structure equivalence.

Load balancing. A load balancing scheme of Azar et al. [ABKU99], further
developed and analyzed in [BCSV00,Vöc99], can also be thought of as a hashing
data structure. This scheme has been analyzed under the uniform hashing
assumption. It has the property that an element in the hash table never needs
to be moved once it has been placed, while at the same time, the worst case
time for accessing an element remains very low.

Theorem 4.4 implies that, in the insertion only case, this data structure
can be efficiently implemented such that the uniform hashing analysis holds
with high probability. This means, in turn, that this is also true for the load
balancing scheme.

Chapter 5

Low redundancy in static membership data

structures with constant query time

We consider the problem of storing a subset S of a finite set U , such that
membership queries, “u ∈ S?”, can be answered in worst case constant time on
a unit cost RAM. We are interested only in membership queries, so we assume
that U = {0, . . . ,m−1}. Also, we restrict attention to the case where the RAM
has word size Θ(logm). In particular, elements of U can be represented within
a constant number of machine words, and the usual RAM operations (including
multiplication) on numbers of size mO(1) can be done in constant time.

Our goal will be to solve this, the static membership problem, using little
memory, measured in consecutive bits. We express the complexity in terms of
m = |U | and n = |S|, and often consider the asymptotics when n is a function
of m. Since the queries can distinguish any two subsets of U , we need at least(
m
n

)
different memory configurations, that is, at least B = dlog (mn)e bits (log is

base 2 throughout this chapter). We will focus on the case n ≤ m/2 and leave
the symmetry implications to the reader. Using Stirling’s approximation to the
factorial function, one can derive the following (where e = 2.718 . . . denotes the
base of the natural logarithm):

B = n log(em/n)−Θ(n2/m)−O(log n) . (5.1)

It should be noted that using space very close to B is only possible if elements
of S are stored implicitly, since explicitly representing all elements requires
n logm = B + Ω(n log n) bits.

Previous work

The static membership data structure is very fundamental, and has been much
studied. We focus on the development in space consumption for schemes with
worst case constant query time. A bit vector is the simplest possible solution to
the problem, but the space complexity of m bits is poor compared to B unless
n ≈ m/2. By the late 70s, known membership data structures with a space
complexity of O(n) words (i.e., O(n logm) bits) either had non-constant query
time or worked only for restricted universe sizes [CFG+78,TY79,Yao81].

The breakthrough paper of Fredman, Komlós and Szemerédi [FKS84] de-
scribed a general constant time hashing scheme, from now on referred to as

69

70 Chapter 5. Low redundancy in static membership data structures

the FKS scheme, using O(n) words. A refined solution in the paper uses
B + O(n log n + log logm) bits, which is O(B) when n = m1−Ω(1). Brodnik
and Munro [BM94] constructed the first static membership data structure us-
ing O(B) bits with no restrictions on m and n. They later improved the bound
to to B +O(B/ log log logm) bits [BM99].

No non-trivial space lower bound is known in a general model of compu-
tation. However, various restrictions on the data structure and the query al-
gorithm have been successfully studied. Yao [Yao81] showed that if words of
the data structure must contain elements of S, the number of words necessary
for o(log n) time queries cannot be bounded by a function of n. Fich and Mil-
tersen [FM95] studied a RAM with standard unit cost arithmetic operations
but without division and bit operations, and showed that query time o(log n)
requires Ω(m/nε) words of memory for any ε > 0. Miltersen [Mil96] showed
that on a RAM with bit operations but without multiplication, one needs mε

words, for some ε > 0, in order to achieve constant query time when n = mo(1).

This chapter

In this chapter we show that it is possible to achieve space usage very close
to the information theoretical minimum of B bits. The additional term of the
space complexity, which we will call the redundancy, will be o(n)+O(log logm)
bits. More precisely we show:

Theorem 5.1 The static membership problem with worst case constant query
time can be solved using B +O(n (log log n)2/ log n+ log logm) bits of storage.

Theorem 5.1 improves the redundancy of Ω(min(n log logm,m/(log n)o(1)))
obtained by Brodnik and Munro by a factor of Ω(min(n, log logm (log n)1−o(1))).
For example, when n = Ω(m) we obtain space B+B/(logB)1−o(1) as compared
to B + B/(logB)o(1). For n = Θ(logm) our space usage is B + n/(log n)1−o(1)

rather than B + Ω(n log n).
We will also show how to associate satellite data from a finite domain to

each element of S, with nearly the same redundancy as above.

Our main observation is that one can save space by “compressing” the hash
table part of data structures based on (perfect) hashing, storing in each cell
not an element of S, but only a quotient — information that distinguishes the
element from the part of U that hashes to the cell1. This technique, referred
to as quotienting, is presented in section 5.1, where a B +O(n+ log logm) bit
membership data structure is exhibited. Section 5.2 outlines how to improve the
dependency on n to that of theorem 5.1. The construction uses a data structure
supporting rank and predecessor queries, described in section 5.3. Section 5.4
gives the details of the construction and an analysis of the redundancy. The
sizes of the data structures described are not computed explicitly. Rather,
indirect means are employed to determine the number of redundant bits. While

1The term “quotient” is inspired by the use of modulo functions for hashing, in which case
the integer quotient is exactly what we want in the cell.

5.1. First solution 71

direct summation and comparison with (5.1) would be possible, it is believed
that the proofs given here contain more information about the “nature” of the
redundancy.

Without loss of generality, we will assume that n is greater than some suf-
ficiently large constant. This is to avoid worrying about special cases for small
values of n.

5.1 First solution

This section presents a static membership data structure with a space consump-
tion of B+O(n+ log logm) bits. Consider a minimal perfect hash function for
S, i.e., hperfect : U → {0, . . . , n − 1} which is 1-1 on S. Defining an n-cell hash
table T such that T [i] = si for the unique si ∈ S with hperfect(si) = i, the
following program implements membership queries for S:

function member(x)
return (T [hperfect(x)] = x);

end;

A more compact data structure results from the observation that T [i] does
not need to contain si itself (dlogme bits), but only enough information to
identify si within Ui = {u ∈ U | hperfect(u) = i} (dlog |Ui|e bits). We will be
slightly less ambitious, though, and not necessarily go for the minimal number
of bits in each hash table cell. In particular, to allow efficient indexing we want
the number of bits to be the same for each table cell. Note that log(m/n) bits
is a lower bound on the size of a cell, since the average size of the Ui is m/n.

To compute the information needed in the hash table, we define a quotient
function (for hperfect) as a function q : U → {0, . . . , r − 1}, r ∈ N, which is 1-1
on each set Ui. Given such a function, let T ′[i] = q(T [i]), and the following
program is equivalent to the above:

function member’(x)
return (T ′[hperfect(x)] = q(x));

end;

Thus it suffices to use the hash table T ′ of dlog re-bit entries. By the above
discussion, we ideally have that r is close to m/n.

Although the FKS scheme [FKS84] is not precisely of the form “minimal
perfect hash function + hash table”, it is easy to modify it to be of this type.
We will thus speak of the FKS minimal perfect hash function, hFKS. It has a
quotient function which is evaluable in constant time, and costs no extra space
in that its parameters k, p and a are part of the data structure already:

q : u 7→ (u div p) dp/ae+ (k u mod p) div a . (5.2)

Intuitively, this function gives the information that is thrown away by the mod-

72 Chapter 5. Low redundancy in static membership data structures

ulo applications of the scheme’s top-level hash function:

h : u 7→ (k u mod p) mod a (5.3)

where k and a are positive integers and p > a is prime. We will not give a
full proof that q is a quotient function of hFKS, since our final result does not
depend on this. However, the main part of the proof is a lemma that will be
used later, showing that q is a quotient function for h:

Lemma 5.1 For Ui = {u ∈ U | h(u) = i} where i ∈ {0, . . . , a− 1}, q is 1-1 on
Ui. Further, q[U] ⊆ {0, . . . , r − 1}, where r = dm/pe dp/ae.

Proof. Let u1, u2 ∈ Ui. If q(u1) = q(u2) we have that u1 div p = u2 div p
and (k u1 mod p) div a = (k u2 mod p) div a. From the latter equation and
h(u1) = h(u2), it follows that k u1 mod p = k u2 mod p. Since p is prime and
k 6= 0 this implies u1 mod p = u2 mod p. Since also u1 div p = u2 div p it
must be the case that u1 = u2, so q is indeed 1-1 on Ui. The bound on the
range of q is straightforward. 2

In the FKS scheme, p = Θ(m) and a = n, so the range of q has size
O(m/n) and log(m/n)+O(1) bits suffice to store each hash table element. The
space needed to store hFKS, as described in [FKS84], is not good enough to
show the result claimed at the beginning of this section. However, Schmidt
and Siegel [SS90b] have shown how to implement (essentially) hFKS using
O(n + log logm) bits of storage (which is optimal up to a constant factor,
see e.g. [Meh84, Theorem III.2.3.6]). The time needed to evaluate the hash
function remains constant. Their top-level hash function is not of the form
(5.3), but the composition of two functions of this kind, h1 and h2. Call the
corresponding quotient functions q1 and q2. A quotient function for h2 ◦ h1 is
u 7→ (q1(u), q2(h1(u))), which has a range of size O(m/n). One can thus get a
space usage of n log(m/n) +O(n) bits for the hash table, and O(n+ log logm)
bits for the hash function, so by (5.1) we have:

Proposition 5.1 The static membership problem with worst case constant query
time can be solved using B +O(n+ log logm) bits of storage.

As a by-product we get:

Corollary 5.1 When n > c log logm/ log log logm, for a suitable constant c >
0, the static membership problem with worst case constant query time can be
solved using n words of dlogme bits.

Proof. The membership data structure of proposition 5.1 uses n logm−n log n+
O(n+log logm) bits. For suitable constants c and N , the O(n+log logm) term
is less than n log n when n > N . If n ≤ N we can simply list the elements of S.
2

5.2. Overview of final construction 73

The previously best result of this kind needed n ≥ (logm)c for some constant
c > 0 [FN93] (an interesting feature of this non-constructive scheme is that it
is implicit, i.e., the n words contain a permutation of the elements in S). The
question whether n words suffice in all cases was posed in [FM95].

5.2 Overview of final construction

This section describes the ideas which allow us to improve the O(n) term of
proposition 5.1 to o(n). There are two redundancy bottlenecks in the construc-
tion of the previous section:

• The Schmidt-Siegel hash function is Ω(n) bit redundant.

• The hash table is Ω(n) bit redundant.

The first bottleneck seems inherent to the Schmidt-Siegel scheme: it appears
there is no easy way of improving the space usage to 1+o(1) times the minimum,
at least if constant evaluation time is to be preserved. The second bottleneck
is due to the fact that m/n may not be close to a power of two, and hence the
space consumption of n dlog re bits, where r ≥ m/n, may be Ω(n) bits larger
than the ideal of n log(m/n) bits. Our way around these bottlenecks starts with
the following observations:

• We only need to solve the membership problem for some “large” subset
S1 ⊆ S.

• We can look at some universe U1 ⊆ U , where S1 ⊆ U1 and |U1|/|S1| is
“close to” a power of 2.

The first observation helps by allowing “less than perfect” hash functions which
occupy much less memory. The remaining elements, S2 = S\S1, can be put in
a more redundant membership data structure, namely the refined FKS scheme
[FKS84]. The second observation gives a way of minimizing redundancy in the
hash table.

We will use a hash function of the form (5.3). The following result from
[FKS84] shows that (unless a is not much larger than n) it is possible to choose
k such that h is 1-1 on a “large” set S1. (This is further studied in Chapter 8.)

Lemma 5.2 If u 7→ u mod p is 1-1 on S, then for at least half the values of
k ∈ {1, . . . , p− 1}, there exists a set S1 ⊆ S of size |S1| ≥ (1−O(n/a)) |S|, on
which h is 1-1.

Without loss of generality we will assume that |S1| = n1, where n1 only
depends on n and a, and n2 = n − n1 = O(n/a). The hash function h is not
immediately useful, since it has a range of size a � n1. To obtain a minimal
perfect hash function for S1, we compose with a function g : {0, . . . , a − 1} →
{0, . . . , n1−1}∪{⊥} which has g[h[S1]] = {0, . . . , n1−1} (in particular, it is 1-1

74 Chapter 5. Low redundancy in static membership data structures

on h[S1]). The extra value of g allows us to look at U1 = {u ∈ U | g(h(u)) 6=⊥},
which clearly contains S1. We require that g(v) =⊥ when v 6∈ h[S1], since this
makes q a quotient function for g ◦ h (restricted to inputs in U1).

The implementation of the function g has the form of a membership data
structure for h[S1] within {0, . . . , a− 1}, which apart from membership queries
answers rank queries (the result of a rank query on input v is |{w ∈ h[S1] | w <
v}|). So we may take g as the function that returns ⊥ if its input v is not in
the set, and otherwise returns the rank of v. The details on how to implement
the required membership data structure are given in section 5.3.

The data structure of section 5.3 will also be our choice when m ≤ n log3 n
(the “dense” case). Only when m > n log3 n do we use the scheme described in
this section. This allows us to choose suitable values of hash function parameters
p and a (where p = O(n2 logm) and a = Θ(n (log n)2) ≤ m), such that the
range of the quotient function, r = dm/pe dp/ae, is close to m/a. The details
of this, along with an analysis of the redundancy of the resulting membership
data structure, can be found in section 5.4

5.3 Membership data structures for dense subsets

In this section we describe a membership data structure which has the redun-
dancy stated in theorem 5.1 when m = n (log n)O(1). Apart from member-
ship queries, it will support queries on the ranks of elements (the rank of u is
|{v ∈ S|v < u}|), as well as queries on predecessors (the predecessor of u is
max{v ∈ S | v < u}).

A a first step, we describe a data structure which has redundancy dependent
on m, namely O(m log logm/ logm) bits. The final data structure uses the first
one as a substructure.

5.3.1 Block compression

The initial idea is to split the universe into blocks Ui = {b i, . . . , b (i+1)− 1} of
size b = d12 logme, and store each block in a compressed form (this is similar to
the ideas of range reduction and “a table of small ranges” used in [BM99]). To
simplify things we may assume that b divides m (otherwise consider a universe
at most b − 1 elements larger, increasing the space usage by O(b) bits). If a
block contains j elements from S, the compressed representation is the number
j (blog logmc bits) followed by a number in {1, . . . , (bj)} corresponding to the

particular subset with i elements (dlog (bj)e bits). Extraction of information
from a compressed block is easy, since any function of the block representations
can be computed by table lookup (the crucial thing being that, since represen-
tations have size at most 1

2 logm+log logm bits, the number of entries in such a
table makes its space consumption negligible compared to O(m log logm/ logm)
bits).2

Let ni = |S ∩ Ui| and Bi = dlog (b
ni

)e. The overall space consumption of
the above encoding is

∑
iBi +O(m log logm/ logm). Let s denote the number

2Alternatively, assume that the RAM has instructions to extract the desired information.

5.3. Membership data structures for dense subsets 75

of blocks, s = O(m/ logm). A lemma from [BM94] bounds the above sum by
B + s:

Lemma 5.3 (Brodnik-Munro) Let m0, . . . ,ms−1 and n0, . . . , ns−1 be non-nega-
tive integers. The following inequality holds:

s−1∑
i=0

dlog (mi
ni

)e < log
(∑s−1

i=0 mi∑s−1
i=0 ni

)
+ s .

Proof. We have
∑s−1

i=0 dlog
(mi

ni

)e < ∑s−1
i=0 log

(mi
ni

)
+ s ≤ log

(Ps−1
i=0 mi

Ps−1
i=0 ni

)
+ s. The

latter inequality follows from the fact that there are at least
∏s−1

i=0

(mi
ni

)
ways

of picking
∑s−1

i=0 ni elements out of
∑s−1

i=0 mi elements (namely by picking n1

among the m1 first, n2 among the m2 next, etc.). 2

We need an efficient mechanism for extracting rank and predecessor infor-
mation from the compressed representation. In particular we need a way of
finding the start of the compressed representation of the ith block. The follow-
ing result, generalizing a construction in [TY79], is used:

Proposition 5.2 (Tarjan-Yao) A sequence of integers z1, . . . , zk, where for
all 1 < i ≤ k we have |zi| = nO(1) and max(|zi|, |zi − zi−1|) = (log n)O(1),
can be stored in a data structure allowing constant time random access, using
O(k log log n) bits of memory.

Proof. Every dlog neth integer is stored “verbatim”, using a total of O(k) bits.
All other integers are stored as either an offset relative to the previous of these
values, or as an absolute value (one of these has size (log n)O(1)). This uses
O(k log log n) bits in total. 2

Placing the compressed blocks consecutively in numerical order, the se-
quence of pointers to the compressed blocks can be stored by this method.
Also, the rank of the first element in each block can be stored like this. Finally,
we may store the distance to the predecessor of the first element in each block
(from which the predecessor is simple to compute). All of these data structures
use O(m log logm/ logm) bits. Ranks and predecessors of elements within a
block can be found by table lookup, as sketched above. So we have:

Proposition 5.3 A static membership data structure with worst case con-
stant query time, supporting rank and predecessor queries, can be stored in
B +O(m log logm/ logm) bits.

5.3.2 Interval compression

The membership data structure of Section 5.3.1 has the drawback that the num-
ber of compressed blocks, and hence the redundancy, grows almost linearly with

76 Chapter 5. Low redundancy in static membership data structures

m. For m ≤ n (log n)c, where c is any integer constant, the number of “com-
pressed units” can be reduced to O(n log logn/ log n) by instead compressing
intervals of varying length. We make sure that the compressed representa-
tions have length (1 − Ω(1)) log n (so that information can be extracted by
lookup in a table of negligible size) by using intervals of size O((log n)c+1) with
at most log n/(2c log log n) elements. We must be able to retrieve the inter-
val number and position within the interval for any element of U in constant
time. The block compression scheme of Section 5.3.1 is then trivially modified
to work with intervals, and the space for auxiliary data structures becomes
O(n (log log n)2/ log n) bits.

We now proceed to describe the way in which intervals are formed and
represented. Let d = b√log nc, and suppose without loss of generality that d2c

divides m. (Considering a universe at most d2c elements larger costs O(d2c)
bits, which is negligible). Our first step is to partition U into “small blocks” Ui,
satisfying |S ∩ Ui| ≤ log n/(2c log log n). These will later be clustered to form
the intervals. The main tool is the membership data structure of Proposition
5.3, which is used to locate areas with a high concentration of elements from S.
More specifically, split U into at most n blocks of size d2c and store the indices of
blocks that are not small, i.e., contain more than logn/(2c log log n) elements
from S. Since at most 2cn log log n/ log n blocks are not small, the memory
for this data structure is O(n (log log n)2/ log n) bits. The part of the universe
contained in non-small blocks has size at most 2cm log log n/ log n ≤ n d2c−1.
A rank query can be used to map the elements of non-small blocks injectively
and in an order preserving way to a sub-universe of this size. The splitting is
repeated recursively on this sub-universe, now with at most n blocks of size
d2c−1. Again, the auxiliary data structure uses O(n (log log n)2/ log n) bits. At
the bottom of the recursion we arrive at a universe of size at most nd, and
every block of size d is small. This defines our partition of U into O(n) small
blocks, which we number 0, 1, 2, . . . in order of increasing elements. Note that
the small block number of any element in U can be computed by a rank query
and a predecessor query at each level.

As every small block has size at most (log n)c, intervals can be formed by up
to log n consecutive small blocks, together containing at most log n/(2c log log n)
elements of S. The “greedy” way of choosing such compressible intervals from
left to right results in O(n log log n/ log n) intervals, as no two adjacent intervals
can both contain less than logn/(4c log log n) elements and be shorter than
(log n)c+1. To map the O(n) block numbers to interval numbers, we use the
membership data structure of Proposition 5.3 to store the number of the first
small block in each interval, using O(n (log log n)2/ log n) bits. A rank query
on a small block number then determines the interval number. Finally, the
first element of each interval is stored using Proposition 5.2, allowing positions
within intervals to be computed, once again using O(n (log log n)2/ log n) bits.

Theorem 5.2 For m = n (log n)O(1), a static membership data structure with
worst case constant query time, supporting rank and predecessor queries, can
be stored in B +O(n (log log n)2/ log n) bits.

5.4. Membership data structures for sparse subsets 77

5.4 Membership data structures for sparse subsets

In this section we fill out the remaining details of the construction described
in section 5.2, and provide an analysis of the redundancy obtained. By section
5.3 we need only consider the case m > n (log n)c for some constant c (it will
turn out that c = 3 suffices).

5.4.1 Choice of parameters

We need to specify how hash function parameters a and p are chosen (a choice
of k then follows by lemma 5.2). Parameter a will depend on p, but is bounded
from above by A(n) and from below by A(n)/3, where A is a function we
specify later. For now, let us just say that A(n) = n (log n)Θ(1) (our construc-
tion requires A(n) = n (log n)O(1), and we want A(n) large in order to make
S\S1 small). Parameter p will have size O(n2 logm), so it can be stored using
O(log n+ log logm) bits. It is chosen such that u 7→ u mod p is 1-1 on S, and
such that r = dm/pe dp/ae is not much larger than m/a.

Lemma 5.4 For m larger than some constant, there exists a prime p in each
of the following ranges, such that u 7→ u mod p is 1-1 on S:

1. n2 lnm ≤ p ≤ 3n2 lnm .

2. m ≤ p ≤ m+m2/3 .

Proof. The existence of a suitable prime between n2 lnm and 3n2 lnm is guar-
anteed by the prime number theorem (in fact, at least half of the primes in the
interval will work). See [FKS84, Lemma 2] for details. By [HBI79] the number
of primes between m and m + mθ is Ω(mθ/ logm) for any θ > 11/20. Take
θ = 2/3 and let p be such a prime; naturally the map is then 1-1. 2

A prime in the first range will be our choice for p when m > A(n)n2 lnm,
otherwise we choose a prime in the second range. In the first case, r < (m/p+
1)(p/a + 1) = (1 + a/p + p/m + a/m)m/a. In the second case, r = dp/ae <
(m+m2/3)/a+ 1 ≤ (1 + a/m+m−1/3)m/a. Since we can assume m > a log n,
we have in both cases that r = (1 + O(1/ log n))m/a. We make r close to a
power of 2 by suitable choice of parameter a.

Lemma 5.5 For any x, y ∈ R+ and z ∈ N, with x/z ≥ 3, there exists z′ ∈
{z + 1, . . . , 3z}, such that dlogdx/z′e+ ye ≤ log(x/z′) + y +O(z/x+ 1/z).

Proof. Since x/z ≥ 3, it follows that logdx/ze+ y and logdx/3ze+ y, have dif-
ferent integer parts. So there exists z′, z < z′ ≤ 3z, such that dlogdx/z′e+ ye ≤
logdx/(z′ − 1)e+y. A simple calculation gives logdx/(z′ − 1)e+y = log(x/(z′−
1)) + y +O(z/x) = log(x/z′) + log(z′/(z′ − 1)) + y +O(z/x) = log(x/z′) + y +
O(z/x+ 1/z), and the conclusion follows. 2

78 Chapter 5. Low redundancy in static membership data structures

Since log r = logdp/ae + logdm/pe and p/A(n) ≥ 3 (for n large enough), the
lemma gives an a satisfying A(n)/3 ≤ a ≤ A(n), such that dlog re = log r +
O(a/p + 1/a) = log((1 + O(1/ log n))m/a).

To conclude, we can choose p and a such that the number of bit patterns in
each hash table cell, 2dlog re, is (1 +O(1/ log n))m/a.

5.4.2 Storing parameters

A slightly technical point remains, concerning the storage of parameters in the
data structure. If the universe size m is supposed to be implicitly known, there
is no problem storing the parameters using O(log n+ log logm) bits (say, using
O(log logm) bits to specify the number of bits for each parameter). However,
if m is considered a parameter unknown to the query algorithm, it is not clear
how to deal with e.g. queries for numbers larger than m, without actually
using O(logm) extra bits to store m. Our solution is to look at a slightly
larger universe U ′, whose size is specified using O(log n+ log logm) bits. Using
O(log n + log logm) bits we may store dlogme (by assumption we know the
number of bits needed to store this number within an additive constant) and
the dlog ne most significant bits of m. This defines m′ = (1 + O(1/n))m, the
universe size of U ′. We need to estimate the information theoretical minimum
of the new problem, B′ = d(m′

n

)e:
Lemma 5.6 For n < m1 < m2 we have log

(m2

n

)− log
(m1

n

)
< n log(m2−n

m1−n).

Proof. We have
(m2

n

)
/
(m1

n

)
= m2 (m2−1)...(m2−n+1)

m1 (m1−1)...(m1−n+1) < (m2−n
m1−n)n. 2

Thus, since n ≤ m/2, B′ = B + O(n log(m′/m)) = B + O(n/ log n). So our
slight expansion of the universe is done without affecting the redundancy of
theorem 5.1.

5.4.3 Redundancy analysis

First note that we can assume all parts of the data structure to have size
depending only on m and n (that is, not on the particular set stored). Hence,
the entire data structure is a bit pattern of size B+f(n,m), for some function f .
To show the bound f(n,m) = O(n (log log n)2/ log n+ log logm), we construct
a function φ, mapping n-element subsets of U to subsets of {0, 1}B+f(n,m), such
that:

• log |φ(S)| = O(n (log log n)2/ log n+ log logm).

• ⋃S φ(S) = {0, 1}B+f(n,m) .

This implies B + f(n,m) ≤ log(
∑

S |φ(S)|) = B + O(n (log log n)2/ log n +
log logm), as desired. Recall that the data structure consists of:

• Hash function parameters and pointers (b1 = O(log n+ log logm) bits).

5.4. Membership data structures for sparse subsets 79

• A membership data structure supporting rank, representing the function g
via a set of n1 elements in {0, . . . , a−1} (b2 = log

(a
n1

)
+O(n (log log n)2/ log n)

bits).

• A hash table (b3 = n1 dlog re bits).

• A membership data structure representing a set of size n2 in U (b4 =
log
(m
n2

)
+O(n2 log n2 + log logm) bits).

Since the redundancy of the membership data structure supporting rank is
O(n (log log n)2/ log n), there exists a function φ′ from the n1-element subsets
of {0, . . . , a − 1} to {0, 1}b2 , such that ∪S̃1

φ′(S̃1) = {0, 1}b2 and log |φ′(S̃1)| =
O(n (log log n)2/ log n). Similarly, there exists a function φ′′ from the n2-element
subsets of U to {0, 1}b4 , such that ∪S̃2

φ′′(S̃2) = {0, 1}b4 and log |φ′′(S̃2)| =
O(n2 log n2 + log logm). Choosing A(n) = n log2 n we have n2 = O(n/ log2 n),
and hence log |φ′′(S̃2)| = O(n/ log n+ log logm).

Let h1 denote the hash function u 7→ (u mod p) mod a (any hash function
of the form (5.3) would do, we pick this one for simplicity). By lemma 5.6 we
can assume that p divides m, since either: m ≤ p ≤ m +m2/3, in which case
expanding the universe to {0, . . . , p − 1} increases the information theoretical
minimum by O(n/m1/3); or p = O(m/n), in which case the increase by rounding
m to the nearest higher multiple of p is O(1).

When p divides m, the number of elements hashed to a cell by h1 is at least
bm/ac. Hence for any function g, there is a set T (g) of at least (m/a − 1)n1

possible bit patterns in the hash table. The total number of bit patterns is
2dlog ren1 = ((1 + O(1/ log n))m/a)n1 , so the ratio between this and the |T (g)|
patterns used is:(

1+O(1/ log n)
1−a/m

)n1

= (1 +O(1/ log n))n1 = 2O(n/ log n) .

Thus, there exists a function φg from T (g) onto {0, 1}b3 , such that log |φg(z)| =
O(n/ log n). For notational convenience we will from now on denote bit patterns
in the hash table simply by the corresponding set of universe elements.

We will take φ(S) as the union of sets φ(S̃1, S̃2), over all S̃1, S̃2 ⊆ S with
|S̃1| = n1 and |S̃2| = n2. If |h1[S̃1]| 6= n1, we set φ(S̃1, S̃2) = ∅. Otherwise
h1[S̃1] defines the function g, and we set:

φ(S̃1, S̃2) = {s1 s2 s3 s4 | s1 ∈ {0, 1}b1 , s2 ∈ φ′(h1[S̃1]), s3 ∈ φg(S̃1), s4 ∈ φ′′(S̃2)} .
By our bounds on the sizes of φ′(h1[S̃1]), φh1,g(S̃1) and φ′′(S̃2), we conclude that
log |φ(S̃1, S̃2)| = O(n (log log n)2/ log n + log logm). Since φ(S) is the union of
the 2O(n/ log n) sets of the form φ(S̃1, S̃2), it follows that the requirement on
|φ(S)| holds.

To see that
⋃

S φ(S) = {0, 1}B+f(n,m), take any x ∈ {0, 1}B+f(n,m). Let
x = s1 s2 s3 s4, where si ∈ {0, 1}bi . By definition of φ′ and φ′′, there is some
set T ⊆ {0, . . . , a − 1}, |T | = n1, such that s2 ∈ φ′(T), and a set S̃2 ⊆ U ,
|S̃2| = n2, such that s4 ∈ φ′′(S2). The set T corresponds to a function g. From
the way we defined φg, there exists a bit pattern z ∈ T (g), such that s3 ∈ φg(z).
Let S̃1 be the set of size n1 corresponding to h1, g and z. We then have that
x ∈ φ(S̃1, S̃2), so if we take S ⊇ S̃1 ∪ S̃2, we get x ∈ φ(S) as desired.

80 Chapter 5. Low redundancy in static membership data structures

5.5 Dictionaries

We now discuss how to associate information with elements, solving the dictio-
nary problem. More specifically, we consider the setting where each element of S
has an associated piece of satellite information from some set V = {0, . . . , s−1},
where s = mO(1). The information theoretical minimum for this problem is
Bs = dlog (mn)+ n log se.

The quotienting technique generalizes to this setting. We simply extend
the quotient function to take an extra parameter from V as follows: q′(u, v) =
q(u) + r v. Note that from q′(u, v) it is easy to compute q(u) and v, and that
the range of q′ has size r s. With this new quotient function, the remaining
parts of the construction for m > n (log n)3 are unchanged.

In the dense range, the membership data structure supporting rank can be
used to index into a table of V -values, but in general Ω(n) bits will be wasted
in the table since |V | need not be a power of 2. Thus we have:

Theorem 5.3 The static dictionary problem with worst case constant query
time can be solved with storage:

• Bs +O(n (log log n)2/ log n+ log logm) bits, for m > n (log n)3 .

• Bs +O(n) bits, otherwise.

Using the data structure for the sparse case, it is in fact possible to achieve
redundancy o(n) when n = o(m). The dictionary of proposition 5.1 is then
used to store S2, and parameter a is chosen around

√
nm.

5.6 Construction

We now sketch how to construct the static membership data structures and
dictionaries in expected time O(n + (log logm)O(1)). The data structures of
section 5.3 can in fact be constructed in time O(n) when m = nO(1). The
construction algorithm is quite straightforward, so we do not describe it here.
As for the dictionary described in sections 5.2 and 5.4, the hardest part is finding
appropriate parameters for the hash function. Once this is done, the dictionary
for h[S1], the hash table, and the dictionary for S2 can all be constructed in
expected time O(n) (see [FKS84] for the latter construction algorithm).

The prime p is found by randomly choosing numbers from the appropriate
interval of lemma 5.4. Each number chosen is checked for primality (using a
probabilistic check which uses expected time poly-logarithmic in the number
checked [AH87], that is, time (log n+log logm)O(1)). When a prime is found, it
is checked whether u 7→ u mod p is 1-1 on S (the element distinctness problem
on the residues, taking expected O(n) time using universal hashing). The pro-
cess is repeated until this is the case. Inspecting the proof of lemma 5.4 it can
be seen that the expected number of iterations is O(1), so the expected total
time is O(n+ (log logm)O(1)).

5.7. Conclusion and final remarks 81

Parameter a is simple to compute according to lemma 5.5, for example by
binary search on the interval in which it is wanted.

Parameter k is tentatively chosen at random and checked in time O(n) for
the inequality of lemma 5.2, with some constant c in the big-oh. For sufficiently
large c, the expected number of attempts made before finding a suitable k is
constant, and thus the expected time for the choice is O(n).

Theorem 5.4 The data structure of theorem 5.1 can be constructed in expected
time O(n+ (log logm)O(1)).

5.7 Conclusion and final remarks

We have seen that for the static dictionary problem it is possible to come very
close to using storage at the information theoretic minimum, while retaining
constant query time. From a data compression point of view this means that
a sequence of bits can be coded in a number of bits close to the first-order
entropy, in a way that allows efficient random access to the original bits.

The important ingredient in the solution is the concept of quotienting.
Quotienting was recently applied in a space efficient dictionary supporting
rank [RR99]. In general, quotienting can be used to save around n log n bits in
hash tables. Thus, the existence of an efficiently evaluable quotient function is
a desirable property for a hash function. For the quotient function to have a
small range, it is necessary that the hash function used hashes U quite evenly
to the entire range.

Quotienting works equally well in a dynamic setting, where it can be used
directly to obtain an O(B) bit scheme, equaling the result of Brodnik and
Munro [BM94]. However, lower bounds on the time for maintaining ranks under
insertions and deletions (see [FS89]) show that our construction involving the
dictionary supporting rank will not dynamize well.

It would be interesting to determine the exact redundancy necessary to al-
low constant time queries. In particular, it is remarkable that no lower bound
is known in the cell probe model (where only the number of memory cells ac-
cessed is considered). As for upper bounds, a less redundant implementation of
the function g would immediately improve the asymptotic redundancy of our
scheme. There seems to be no hope of getting rid of the O(log logm) term using
our basic approach, since any hash function family ensuring that some function
is 1-1 on a “large” subset of S, has size Ω(logm), see Chapter 8.

Chapter 6

Deterministic dictionaries

Dictionaries are among the most fundamental data structures. A dictionary
stores a subset S of a universe U , offering membership queries of the form “Is
x ∈ S?” for x ∈ U . It also supports the retrieval of satellite data associated
with the elements of S, which are called keys. One distinguishes between the
dynamic case, where the dictionary supports insertion and deletion of keys (with
their satellite data), and the static case, where S does not change over time.

Several performance measures are of interest for dictionaries: the amount
of space occupied by a dictionary, the time needed to construct or update it,
and the time needed to answer a query. In this chapter, our primary interest
lies in obtaining static dictionaries with optimal query time and minimal space
consumption that can be constructed rapidly by deterministic algorithms. By
general dynamization results, this also has implications for deterministic dy-
namic dictionaries.

Our model of computation is the unit-cost word RAM. This natural and
realistic model of computation has been the object of much recent research,
surveyed in [Hag98b], which also offers a detailed definition. For a positive
integer parameter w, called the word length, the memory cells of a word RAM
store w-bit words, variously viewed as integers in {0, . . . , 2w − 1} or as bit vec-
tors in {0, 1}w , and standard operations can be carried out on words in constant
time. We adopt the multiplication model, whose instruction set includes addi-
tion, bitwise boolean operations, shifts, and multiplication and measure the
space requirements of a word-RAM algorithm in units of w-bit words. Word-
RAM algorithms can be weakly nonuniform, that is, access a fixed number of
word-size constants that depend (only) on w. These constants, which we call
native constants, may be thought of as computed at “compile time”.

The keys to be stored in a dictionary are assumed to be representable in
single words, i.e., to come from the universe U = {0, 1}w . For simplicity, we
assume that each piece of satellite data occupies a single word of memory (if
necessary, it can be a pointer to more bulky data).

Denoting the number of keys by n, we see that constant query time and
O(n) space is the best for which one can hope. A seminal result of Fredman
et al. [FKS84] states that in the static case, a dictionary with these prop-
erties, henceforth referred to as efficient, is indeed possible. To achieve fast
construction of the dictionary, Fredman et al. augment their RAM model with

83

84 Chapter 6. Deterministic dictionaries

an additional resource: a source of random bits. In this setting, there is a con-
struction algorithm with expected running time O(n). This efficient dictionary
and its construction algorithm are known as the FKS scheme.

The main result of this chapter is an alternative efficient dictionary that can
be constructed deterministically in O(n log n) time. A standard dynamization
technique yields a range of combinations of lookup time and update time. For
example, we achieve constant lookup time with update time O(nε), for arbitrary
constant ε > 0.

Related work

Efficient dictionaries have been known for a long time for certain combina-
tions of n and w. For n = Ω(2w), e.g., a bit vector does the job. Tarjan
and Yao [TY79] showed how to construct efficient static dictionaries when the
number of keys and the size of the universe are polynomially related, i.e., when
w = O(log n). As already mentioned, Fredman et al. demonstrated how to build
efficient static dictionaries for arbitrary word sizes. Besides the randomized con-
struction running in expected time O(n), they gave a deterministic one with
a running time of O(n3w). A bottleneck in the deterministic algorithm is the
choice of appropriate hash functions. It can be shown that exhaustive search in
any universal class of hash functions [CW79] yields suitable functions. A more
efficient way of conducting the search was devised by Raman [Ram96], who
lowered the deterministic construction time to O(n2w). For w = nΩ(1), a static
dictionary for n keys can be constructed deterministically in O(n) time plus the
time needed to sort the keys. This follows from a straightforward generalization
of the fusion trees of Fredman and Willard [FW93] and was stated explicitly by
Hagerup [Hag98b, Corollary 8]. Alon and Naor [AN96] used small-bias probabil-
ity spaces to derandomize a variant of the FKS scheme, achieving construction
time O(nw(log n)4). However, their lookup operation requires evaluation of
a linear function in time Θ(w/ log n), so the dictionary is not efficient unless
w = O(log n). Another variant of the FKS scheme reduces the number of ran-
dom bits to O(log n+logw), while achieving O(n)-time construction with high
probability [DfGMP92].

Allowing randomization, the FKS scheme can be dynamized to support in-
sertions and deletions in amortized expected constant time [DfKM+94]. With-
out a source of random bits, the task of simultaneously achieving fast up-
dates and constant query time seems considerably harder, and no solution
with nontrivial performance bounds was previously known. Also, it is shown
in [DfKM+94] that approaches similar to the double hashing of the FKS scheme
are destined to perform poorly in a deterministic setting. The best result
when the update and query times are considered equally important is time
O(
√

log n/ log log n) per dictionary operation; it uses the data structure of
Beame and Fich [BF99a] with the dynamization result of Andersson and Thorup
[AT00]. A different trade-off, lookup time O((log log n)2/log log log n) and up-
date time O((log n log log n)2), is obtained in Chapter 7. For w = nΩ(1), a stan-
dard dynamization of the fusion-tree-like data structure mentioned above pro-
vides constant-time lookups with update time O(nε), for arbitrary fixed ε > 0.

85

An unpublished manuscript by Sundar [Sun93] states an amortized lower
bound of Ω(log logw n/ log log logw n) per operation for a dynamic dictionary
in the cell-probe model for w = Ω(log n log log n); this bound, in particular,
implies the same lower bound on the word RAM.

Andersson et al. [AMRT96] have shown that a unit-cost RAM that allows ef-
ficient dictionaries must have an instruction of circuit depth Ω(logw/ log logw).
Since this matches the circuit depth of multiplication, we see that efficient dic-
tionaries are not possible with weaker instruction sets (in the circuit-depth
sense). However, some work has been done on minimizing the query time in
weaker models. In a word-RAM model providing only AC0 instructions, there
is a tight bound of Θ(

√
log n/ log log n) on the query time [AMRT96] (a simpler

proof of the upper bound appears in [Hag98a]). The algorithm of the upper
bound uses nonstandard instructions. In a restricted word-RAM model that
lacks multiplication, the best upper bound is

√
log n(log log n)1+o(1), due to

Brodnik et al. [BMM97].

Our contributions

In this chapter we sum up results contained in three consecutive conference
publications. In [Mil98], Miltersen showed how error-correcting codes can be
used to construct an efficient dictionary in time O(n1+ε), for arbitrary constant
ε > 0. Combining this approach with the use of word parallelism, Hagerup
[Hag99] exhibited a dictionary with O(log log n) lookup time and O(n log n)
construction time. Our main theorem was derived in [Pag00a], which added as
a new ingredient an improved construction algorithm for a class of perfect hash
functions introduced by Tarjan and Yao.

Theorem 6.1 A static dictionary for n w-bit keys and their satellite data with
constant lookup time and a space consumption of O(n) memory words can be
constructed in O(n log n) time on a word RAM with word length w by a weakly
nonuniform deterministic algorithm that uses O(n) words of memory.

The static dictionary can be turned into a dynamic one, supporting inser-
tions and deletions, by a standard dynamization result [OvL81b, Theorem A].

Theorem 6.2 Let t(n) = O(
√

log n) be a nondecreasing function from N to
N such that t(n) is computable in time and space O(n) and t(2n) = O(t(n)).
Then there is a weakly nonuniform deterministic dynamic dictionary that runs
on a word RAM with word length w and, when n elements are stored, uses
O(n) words of memory and supports lookups in time O(t(n)), insertions in
time O(n1/t(n)), and deletions in time O(log n).

The theorem is most interesting when t grows slowly. In particular, no previous
deterministic linear-space dictionary combined lookup time O(log log n) with
update time o(n).

It should be noted that we make heavy use of weak nonuniformity. Whereas
it is common to employ native constants that can be computed in O(w) or even
O(logw) time, our data structures depend on native constants that are not
known to be computable in wO(1) time.

86 Chapter 6. Deterministic dictionaries

6.1 Technical overview

Let S ⊆ U denote the set of keys to be stored and take n = |S|. In order to prove
Theorem 6.1, we show how to construct a function h : U → {0, . . . ,m−1}, where
m = O(n), that is 1-1 on S and can be stored in constant space and evaluated in
constant time. Informally, such a function will be called an efficient perfect hash
function for S. The desired efficient static dictionary consists of the description
of h together with a hash table of size m.

Our approach is to first perform a universe reduction by finding a function
ρ : U → {0, 1}r , with r = O(log n), that is 1-1 on S and can be stored in
constant space and evaluated in constant time. Then an efficient perfect hash
function h′ is found for ρ(S) ⊆ {0, 1}r . The desired function is h = h′ ◦ ρ.

The universe reduction is based on error-correcting codes, whose use in the
context of hashing is introduced in Section 6.2. By applying an error-correcting
code ψ, replacing each element x ∈ U by ψ(x) ∈ {0, 1}O(w), the Hamming dis-
tance (the number of differing bit positions) between any two elements of U can
be made Ω(w). It is then possible to find a set D of O(log n) distinguishing bit
positions such that for every pair {x, y} of distinct keys in S, ψ(x) and ψ(y) dif-
fer on D. Exploiting word parallelism, we show how to find such distinguishing
bit positions in O(n log n) time. Given these, Raman’s deterministic selection
of perfect hash functions [Ram96] can be used to construct a function ρ map-
ping to the desired range {0, 1}r . We further show that a good error-correcting
code can be picked from a universal family of functions from U to {0, 1}O(w).
Since there are such families whose functions can be evaluated in constant time,
we obtain an error-correcting code with the same property. The choice of an
appropriate function is a source of weak nonuniformity.

In Section 6.3 we show how to find an efficient perfect hash function for
ρ(S) ⊆ {0, 1}r . We first develop a randomized variant of the efficient perfect
hash function of Tarjan and Yao. The construction algorithm is then derandom-
ized using conditional expectations, yielding an O(n log n)-time deterministic
algorithm. Our algorithm is quite simple compared with the O(n(log n)5)-time
algorithm described in [AN96].

6.2 Universe reduction

In this section we describe the construction of a universe-reduction function
ρ : U → {0, 1}r , where r = O(log n). The prime feature of ρ is that it is 1-1
on S. Because of this, it may be used to “translate” a search for x ∈ U into a
search for ρ(x) within the smaller universe {0, 1}r . Since we are interested in
constant-time queries, ρ should be evaluable in constant time. Constant space
will suffice to store the description of ρ.

6.2.1 Distinguishing bit positions

Let ψ : U → {0, 1}4w be an error-correcting code of relative minimum distance
δ > 0. This means that for every pair {x, y} of distinct elements of U , the
Hamming distance between ψ(x) and ψ(y) is at least 4δw. We assume that

6.2. Universe reduction 87

δ ≤ 1/2 (in fact, by the Plotkin bound for error-correcting codes [MS77, p. 41],
this is always the case for w > 2). Denote the ith bit of a bit string v (counted
from the right, say) by vi. We have the following:

Lemma 6.1 For every subset S of U of size n, there is a set D ⊆ {1, . . . , 4w}
with |D| ≤ 2 log(n)/ log 1

1−δ such that for every pair {x, y} of distinct elements
of S, ψ(x)d 6= ψ(y)d for some d ∈ D.

Proof. A simple proof of the lemma proceeds by showing that picking the bit
positions independently at random satisfies the condition of the lemma with
positive probability. We provide a slightly different argument that is more
easily turned into an efficient algorithm.

We will construct a sequence of sets D0 = ∅ ⊆ D1 ⊆ · · · ⊆ Dk ⊆ {1, . . . , 4w}
that are increasingly better at distinguishing elements of S. For a set D ⊆
{1, . . . , 4w}, we split S into 2|D| disjoint clusters C(S,D, 0|D|), . . . , C(S,D, 1|D|),
one for each possible vector of bit values at the positions given by D. Define
the badness of D as B(S,D) =

∑
v∈{0,1}|D|

(|C(S,D,v)|
2

)
, which is the number

of pairs within the clusters. We will determine our sets such that |Di| ≤ i
and B(S,Di) < (1 − δ)i n2/2 for i = 0, . . . , k, a condition that clearly holds
for i = 0 with D0 = ∅. Assume that Di has been found for some i with
0 ≤ i < k. A pair of distinct elements in some cluster C(S,Di, v) is also in
C(S,Di ∪ {d}, v′), for some v′, for at most a fraction of 1 − δ of the possible
choices of d ∈ {1, . . . , 4w}. By an averaging argument, it is possible to choose
d such that B(S,Di ∪ {d}) ≤ (1 − δ)B(S,Di), and we let Di+1 = Di ∪ {d} for
such a d. Setting k = b2 log1/(1−δ) nc, we achieve B(S,Dk) < 1, so we can take
Dk as the desired set of distinguishing bits. 2

The lemma shows that a very simple hash function with polynomial-sized
range can be found that it is 1-1 on the error-corrected representations of the
keys: Simply use the projection on O(log n) suitable bit positions.

We next make the proof of the lemma constructive by giving an algorithm
for actually finding a small set D of distinguishing bit positions. When choosing
a position, we need only care about the nontrivial clusters, those of size at least
2, since smaller clusters do not contribute to the badness. Maintaining the
nontrivial clusters under addition of new bit positions is easy: Simply keep a
linked list for each cluster; the lists can be split with respect to the bit value
at a new position in a linear pass. Therefore the task of finding distinguishing
positions boils down to that of finding a single good bit position, one that
decreases the badness by a factor of at least 1− δ.

Lemma 6.2 Let S be a subset of U of size n. Given linked lists of the nontrivial
clusters of S corresponding to distinguishing positions D, a bit position d with

B(S,D ∪ {d}) ≤ (1− δ)B(S,D)

can be found deterministically in time and space O(n).

Proof. We show how to efficiently compute the badness B(S,D ∪ {d}) for each
d ∈ {1, . . . , 4w}. The bit position d with the smallest badness must, by the proof

88 Chapter 6. Deterministic dictionaries

of Lemma 6.1, satisfy B(S,D∪{d}) ≤ (1−δ)B(S,D). For each d ∈ {1, . . . , 4w},
we perform the following steps:

1. For each nontrivial cluster C, compute sC =
∑

x∈C xd, the number of 1s
in position d.

2. For each nontrivial cluster C, compute zC =
(sC

2

)
+
(|C|−sC

2

)
, the combined

badness of the two clusters resulting from C if d is included in D.

3. Compute the total badness
∑

C zC over all (nontrivial) clusters C.

It is an easy matter to execute steps 1–3 in O(n) time for a single value
of d. In order to execute steps 1–3 for all d ∈ {1, . . . , 4w} within the same time
bound, we resort to word-level parallelism, viewing each string of 4w bits as
a bit vector. We first describe the algorithm under the following (unrealistic)
assumptions:

A. Prior to the execution, each bit vector representing an element of S is
“stretched” by a sufficiently large factor f through the introduction of
f − 1 zeros to the left of each original bit. This turns each original bit
position into a field of f consecutive bit positions.

B. The machine instructions applicable to words can also be applied to vec-
tors of 4w fields and still take constant time.

Under these assumptions, it is trivial to execute steps 1 and 3 in O(n)
time for all d ∈ {1, . . . , 4w}: The only operation needed is field-wise addition,
which can be realized through ordinary word-level addition. The field width f
is assumed to be sufficiently large to prevent overflows between fields. Step 2
needs the following additional operations:

• Replication of a value m, stored in the rightmost field, to all other fields
(used with m = |C| and m = 1). This can be done by multiplying m
by the constant 1f that contains 1 in every field. For the time being, we
assume 1f to be a native constant.

• Field-wise subtraction with a nonnegative result, which can be realized
through word-level subtraction.

• Field-wise multiplication. This can be realized through the usual shift-
and-add algorithm that successively tests each bit of one factor and, if it is
1, adds an appropriately shifted copy of the other factor to an accumulated
sum. We refer to [AHNR98, Sect. 3] for a description of the low-level
details needed to carry out such steps as field-wise conditional addition
based on a comparison with zero, noting only that the constant 1f comes
in handy here as well. The time needed is O(f).

• Field-wise division of even integers by 2, which can be realized through a
right shift.

6.2. Universe reduction 89

Since the field values manipulated by the algorithm are polynomial in n, a
field width f of O(log n) clearly suffices. However, assumptions A and B are
not realistic even for this value of f . In particular, vectors of 4w fields of f bits
each occupy Θ(f) w-bit words, and operations such as adding two vectors take
Θ(f) time. We counter this problem by using a variable field width, storing
small numbers in small fields and large numbers, of which there are few, in large
fields. We begin by describing how to double and halve the field width.

In order to double the field width of a vector from f to 2f , we use the
constant 12f to create a mask whose f -bit fields contain alternately only 0s and
only 1s — again, the reader is referred to [AHNR98] for programming details.
Using this mask, it is easy to separate the odd- and the even-numbered fields,
storing each group of fields in a separate vector. This spreads the original vector
over twice as many words and (implicitly) changes the field width from f to
2f . Halving the field width of a vector from 2f to f can be done very easily by
breaking the vector into halves and forming the disjunction of the halves after
shifting one half by f bits. Doubling the field width scrambles the order of the
fields, but halving the field width returns the fields to their original order.

In order to carry out step 1, we sum the vectors of each nontrivial cluster
C according to a minimum-height binary tree, with leaves corresponding to the
vectors of elements in C and internal nodes corresponding to sums of leaves in
subtrees. We use a constant field width at the leaves and larger field widths
at inner nodes of the tree. The time needed at an inner node of field width f ,
including any necessary field doubling for the vectors produced at the children
of the node, is O(f). Since it is easy to see that a field width of O(i) suffices
for an inner node at height i, for all i ≥ 1, while there are only O(|C|/2i) such
nodes, the total time needed is O(|C|∑∞

i=1 i/2
i) = O(|C|). Thus step 1 takes

O(n) time.
For each nontrivial cluster C, since a field width of O(log |C|) suffices, the

computation of step 2 can be carried out in O((log |C|)2) time. Over all non-
trivial clusters, this sums to O(n) time.

For step 3, we divide the nontrivial clusters into size groups: If a cluster
contains between 2j and 2j+1 − 1 elements, for some integer j ≥ 1, it is put in
size group j. Separately for each value of j, we then sum the vectors computed
in step 2 for all clusters in size group j in a minimum-height binary tree. If Wj

is the total size of all clusters in size group j, the number of nodes at height i
in the tree is O(Wj/2i+j), for all i ≥ 1, and a field width of O(i+ j) suffices at
each such node. As in the analysis of step 1, the summation within size group j
therefore takes O(Wj) time, which sums to O(n) over all values of j. What
remains is to add O(log n) vectors, one for each size group. Since the maximum
field width is O(log n), this can be done in O((log n)2) time. Thus step 3 also
takes O(n) time.

The output of steps 1–3 is a vector of 4w fields, each of which specifies
the badness associated with the corresponding bit position. The field width f
is O(log n), for which reason the set of fields containing the minimum badness
can be computed in O((log n)2) time by binary search over the range of possible
minima. Specifically, we can assume the output of the binary search to be a
vector, each field of which contains 1 if the corresponding badness is minimum,

90 Chapter 6. Deterministic dictionaries

and 0 otherwise. We now reduce the field width back to 1 by log f halvings,
which also restores the original order of the fields. The result is a nonzero 4w-
bit vector, each 1 of which indicates a good bit position. To get hold of a single
good position, we compute the position of the most significant bit set to 1.
This can be done in constant time, employing weak nonuniformity [FW93, p.
431–432].

A final issue is the dependence on the constants 12i for i = 1, . . . , log fmax,
where fmax = O(log n). If w < n, we can compute 12i in O(log n) time by
O(logw) shift-and-or steps, each of which doubles the number of fields contain-
ing a 1. Otherwise we use native constants l = Θ(

√
w), chosen as a power of 2,

and 1l together with the number Q, composed of segments of l bits each, the
ith of which is a “piece” of 12i . We can easily pick out the ith segment from
Q. Multiplying the segment with 1l yields the required constant 12i . 2

Theorem 6.3 Let S be a subset of U of size n and suppose that ψ : U →
{0, 1}4w is an error-correcting code with minimum relative distance δ for some
constant δ > 0. Then there is a bit vector D ∈ {0, 1}4w containing O(log n) 1s
for which ρD : x 7→ (ψ(x) and D) is 1-1 on S, and such a bit vector can be
computed deterministically from {ψ(x) | x ∈ S} in O(n log n) time and O(n)
space.

6.2.2 Unit-cost error-correcting codes

In order to evaluate the function ρD of Theorem 6.3 in constant time, we need an
error-correcting code that can be evaluated in constant time. Our construction
is based on universal families of hash functions.

Definition 6.1 [WC81,MV84] For c > 0, a family H of functions from U to
V is (c, 2)-universal if, for all x1, x2 ∈ U and all y1, y2 ∈ V , the probability that
h(x1) = y1 and h(x2) = y2 is at most c/|V |2 when h ∈ H is chosen uniformly
at random.

Proposition 6.1 Let H be a (2, 2)-universal family of functions from {0, 1}w to
{0, 1}4w . For all δ with 0 < δ ≤ 1

2 , a random member of H is an error-correcting
code of relative minimum distance δ with probability at least 1− ((e

δ)4δ/4)w.

Proof. Assume first that δ ≥ 1
4w . The number of vectors in {0, 1}4w within

Hamming distance k ≥ 1 of a fixed vector is

k∑
i=0

(
4w
i

)
≤
(

4w
k

)k k∑
i=0

(
4w
i

)(
k

4w

)i

≤
(

4w
k

)k (
1 +

k

4w

)4w

(by the binomial theorem)

≤
(

4w
k

)k

ek =
(

4ew
k

)k

.

6.2. Universe reduction 91

This means that for all x1, x2 ∈ {0, 1}w with x1 6= x2 and for a random
function h ∈ H, the probability that the Hamming distance between h(x1)
and h(x2) is no larger than k is at most 21−4w (4ew

k)k (where we used (2, 2)-
universality). The probability that this happens for any of the

(2w

2

)
< 22w/2

such pairs is bounded by 2−2w(4ew
k)k. Setting k = b4δwc, we see that h fails to

have minimum relative distance δ with probability at most 2−2w(4ew
b4δwc)

b4δwc ≤
2−2w(4ew

4δw)4δw = ((e
δ)4δ/4)w.

If δ < 1
4w , the desired property of h is simply that it should be injective.

The probability that this is not the case is bounded by 2−2w ≤ 2−2w(4ew
4δw)4δw =

((e
δ)4δ/4)w. 2

The quantity (e
δ)4δ/4 converges to 1/4 as δ approaches 0, so the success

probability of Proposition 6.1 is positive for sufficiently small values of δ for all
w. Thus we can indeed find an error-correcting code with relative minimum
distance δ for some constant δ > 0. As a concrete example, assume that w > 10
and let H be a (2, 2)-universal family of functions from {0, 1}w to {0, 1}4w . The
proposition shows that more than half the functions in H are error-correcting
codes with relative minimum distance 1/10.

Many (2, 2)-universal families are known. Moreover, when the range is
{0, 1}O(w), there are such families whose functions can be stored in constant
space and evaluated in constant time. One example is {x 7→ ((ax + b) mod p)
mod 24w | a, b ∈ {0, . . . , p−1}}, where p is a fixed prime between 24w and 24w+1.
Multiplication of O(w)-bit numbers can be done using a constant number of
single-word multiplications and additions. Also, as noted by Knuth [Knu73,
p. 509], forming the remainder modulo a constant p can be carried out in
constant time with multiplications and shifts, so a division instruction is not
needed to evaluate the functions in constant time. Another, very appealing,
such family is {x 7→ ((ax + b) mod 25w) div 2w | a, b ∈ {0, . . . , 25w − 1}},
which has parameter 1 [Df96, Theorem 3(b)]. This family can be simplified
to {x 7→ ax | a ∈ {0, . . . , 25w − 1}} without decreasing the relative minimum
distance of the corresponding error-correcting code by more than a constant
factor. A direct proof of the error-correction property of this family, along with
some results more general than those needed here, can be found in [Mil98].

6.2.3 Finishing the construction

We still need to address the issue of mapping injectively to O(log n) consecutive
bits. We must “gather” the distinguishing bits in an interval of O(log n) posi-
tions. For every D ⊆ {1, . . . , r}, define ZD = {x ∈ {0, 1}r | xi = 1 ⇒ i ∈ D},
the set of r-bit vectors that have only zeros outside the positions given by D.

Lemma 6.3 Let D be a subset of {1, . . . , 4w} of size O(log n). Then there is
a function ρ′ : {0, 1}4w → {0, 1}r, where r = O(log n), that is 1-1 on ZD and
can be evaluated in constant time, and a constant-size description of such a
function can be computed deterministically in o(n) time and space.

Proof. Without loss of generality we can assume that w = O(4
√
n): If this is not

the case, begin by using a method of Fredman and Willard [FW93, p. 428–429]

92 Chapter 6. Deterministic dictionaries

to gather the bits with positions in D within O((log n)4) consecutive positions
by multiplying with a suitable integer MD. The procedure for finding MD runs
in time (log n)O(1).

Partition D into a constant number of setsD1, . . . ,Dk of size at most 1
4 log n.

Using the algorithm of Raman [Ram96], we can find hash functions ρ1, . . . , ρk

with range {0, 1}d 1
2

log ne, perfect for ZD1, . . . , ZDk
, respectively, in time and

space O((4
√
n)2w) = o(n). Given an argument value, masking out the bit po-

sitions not in Di and evaluating ρi, for i = 1, . . . , k, and concatenating the
resulting values can be done in constant time. This defines the function ρ′. 2

Combining Theorem 6.3 and Lemma 6.3, we have the desired result on
universe reduction:

Lemma 6.4 Let S be a subset of U of size n. Then there is a function from
U to {0, 1}r, with r = O(log n), that is 1-1 on S and can be evaluated in con-
stant time, and a constant-size description of such a function can be computed
deterministically in time O(n log n) and space O(n).

6.3 Universes of polynomial size

In this section we develop a variant of the double-displacement scheme of Tar-
jan and Yao [TY79], which computes an efficient perfect hash function for
w = O(log n). The construction algorithm of Tarjan and Yao is deterministic
and has worst-case complexity Θ(n2). We first show how to achieve expected
construction time O(n) with a randomized algorithm. This algorithm is then
derandomized using the method of conditional expectations, which yields a
deterministic O(n log n)-time algorithm.

6.3.1 Reduction to universes of quadratic size

Following Tarjan and Yao, we observe that bit vectors of length O(log n) can be
regarded as constant-length strings over an alphabet of size n. The trie (with
n-way branching) of such strings permits lookup of elements (and associated
values) in constant time. Although each of the O(n) nodes of the trie uses a
table of size n, only O(n) entries of all tables contain important information
(an element or a pointer). That is, to store all tables in space O(n), it suffices
to construct an efficient perfect hash function for the set of important entries
within the universe of all O(n2) table entries. For this reason Tarjan and Yao
proceed to study the case w ≤ 2 log n+O(1).

6.3.2 Randomized double displacement

Our aim is to find a function h : U → {0, 1}r , with r = log n + O(1), such
that there are no collisions under h, i.e., pairs {x, y} of distinct keys in S with
h(x) = h(y). The displacement method of Tarjan and Yao can be viewed as a
way of taking an “imperfect” function f : U → {0, 1}r and generating a new
function with fewer collisions between the keys. The method needs “advice” in
the form of a function g : U → {0, 1}r such that x 7→ (f(x), g(x)) is 1-1 on S.

6.3. Universes of polynomial size 93

The idea of Tarjan and Yao is to use f(x) as an index into a table of
suitably chosen displacement values av ∈ {0, 1}r , with v ∈ {0, 1}r . Then the
function x 7→ g(x) ⊕ af(x), where ⊕ denotes bitwise exclusive-or, may have
far fewer collisions than f . Also, x 7→ (g(x) ⊕ af(x), f(x)) is 1-1 on S, so the
procedure can be repeated. Two repetitions will suffice; hence the term “double
displacement”. Our contribution is an efficient procedure for finding suitable
displacement values.

Definition 6.2 For q ≥ 0, a pair of functions (f, g), both mapping from U to
{0, 1}r, is q-good if f has at most q collisions and x 7→ (f(x), g(x)) is 1-1 on S.

Lemma 6.5 Suppose that (f, g) is q-good and that r ≥ log n + 1. Then there
exist av ∈ {0, 1}r, for v ∈ {0, 1}r, such that (x 7→ g(x) ⊕ af(x), f) is q′-good,
where q′ = min{n, b23−r qcn}. On input {(f(x), g(x)) | x ∈ S}, such values av

can be computed by a randomized algorithm in expected time O(n) and space
O(n).

Let us first see how to use the lemma to obtain an efficient perfect hash
function for S. We will need r > max{w/2, log n+3}. Since r ≥ w/2, it is trivial
to find a pair (f, g) of constant-time-evaluable functions that is

(n
2

)
-good (e.g.,

let f(x) and g(x) be the first and the last r bits of x, respectively). By Lemma
6.5, we can find av ∈ {0, 1}r , for v ∈ {0, 1}r , such that (x 7→ g(x) ⊕ af(x), f)
is n-good. Applying Lemma 6.5 to the pair (x 7→ g(x) ⊕ af(x), f), we obtain
values bv ∈ {0, 1}r , for v ∈ {0, 1}r , such that (x 7→ f(x) ⊕ bg(x)⊕af(x)

, x 7→
g(x) ⊕ af(x)) is (b23−rncn)-good. By the choice of r, b23−rnc = 0, so the
function x 7→ f(x) ⊕ bg(x)⊕af(x)

is 1-1 on S. When w ≤ 2 log n + O(1) we can
choose r = log n + O(1), so the hash-function parameters use space O(n), and
the range {0, 1}r has size O(n). Thus x 7→ f(x) ⊕ bg(x)⊕af(x)

is the desired
efficient perfect hash function.

Summing up Sections 6.3.1 and 6.3.2, we have, for w = O(log n), a random-
ized algorithm constructing an efficient perfect hash function in expected time
O(n) and space O(n).

Proof of lemma 6.5. For v ∈ {0, 1}r , let Sv = {x ∈ S | f(x) = v}. Our
algorithm starts by bucket-sorting the (f(x), g(x))-pairs, for x ∈ S, by their
first coordinates. It is then easy to compute a permutation v1, . . . , v2r of {0, 1}r
with |Sv1 | ≥ |Sv2 | ≥ · · · ≥ |Sv2r |. We now successively compute av1 , . . . , av2r ;
i.e., the sets Sv are processed in some order of nonincreasing size.

Before the jth step of the computation, for 1 ≤ j ≤ 2r, the algorithm
will have determined av1 , . . . , avj−1 , and thus also the value of g(x) ⊕ af(x)

for all x ∈ Sv<j , where Sv<j =
⋃j−1

i=1 Svi . We maintain counts of the values
determined so far, mv = |{x ∈ Sv<j | g(x) ⊕ af(x) = v}|, for v ∈ {0, 1}r . If
avj is picked at random from {0, 1}r , the expected number of new collisions,
i.e., pairs (x, y) ∈ Sv<j × Svj with g(x) ⊕ af(x) = g(y) ⊕ af(y) = g(y) ⊕ avj , is
|Svj | |Sv<j |/2r . The algorithm aims to introduce at most twice this number of
collisions, i.e., to find avj such that

∑
y∈Svj

mg(y)⊕avj
≤ b2 |Svj | |Sv<j |/2rc (we

can round down since the left-hand side is an integer). By Markov’s inequality,

94 Chapter 6. Deterministic dictionaries

the expected number of random attempts required to find such an avj is no
more than 2. Each attempt takes time O(|Svj |), so the expected running time
for all steps is O(n).

It remains to be seen that the number of collisions of x 7→ g(x)⊕ af(x) is no
larger than q′. Note that the number of collisions of f is

∑
v∈{0,1}r

(|Sv|
2

)
and,

by assumption, is at most q. Let j∗ = |{v ∈ {0, 1}r | |Sv| > 1}|. The number of
collisions of x 7→ g(x)⊕ af(x) is at most

2r∑
j=1

b2 |Svj | |Sv<j |/2rc

≤
j∗∑

j=1

b21−r |Svj |
j−1∑
i=1

|Svi |c (as 2n/2r < 1)

≤
j∗∑

j=1

b21−r min{|Svj |n,
j−1∑
i=1

|Svi |2}c (as |Svj | ≤ |Svi | for i < j)

≤
j∗∑

j=1

min{21−r|Svj |n, b23−r
j−1∑
i=1

(|Svi |
2

)c} (as |Svi | ≥ 2 for i ≤ j∗)

≤ min{n, b23−r qcn} .

6.3.3 Derandomizing double displacement

In this section we employ the method of conditional expectations to obtain a
deterministic O(n log n)-time version of the algorithm of Section 6.3.2. Recall
the problem solved in the randomized part of the algorithm: Given a table of
values mv, for v ∈ {0, 1}r , and a set X ⊆ {0, 1}r , find a ∈ {0, 1}r such that∑

x∈X mx⊕a ≤ b21−r |X|∑v∈{0,1}r mvc.
We show how to find a deterministically in O(|X| r) = O(|X| log n) time.

That is, the time for finding a displacement value is O(log n) times that expected
for the randomized algorithm. To do this we maintain an extension of the table,
storing values mu for all bit strings u of length at most r. For k = 0, . . . , r,
let πk(v) denote the k-bit prefix of v ∈ {0, 1}r , and for u ∈ {0, 1}k define
Zu = {v ∈ {0, 1}r | πk(v) = u} as the set of bit strings of length r with u as a
prefix. Then the extended table is defined by mu =

∑
v∈Zu

mv.
We can think of the extended table as a binary trie whose leaves (indexed

by strings of length r) contain the original table entries and each of whose
internal nodes contains the sum over all leaves in its sub-trie. The extension
can be initialized and maintained during n updates of leaves in time O(nr) =
O(n log n).

Starting with u0, the empty string, we show how to find a sequence of
bit strings u0, . . . , ur, where uk ∈ {0, 1}k , such that the expected value of∑

x∈X mx⊕a, when a ∈ Zuk
is chosen uniformly at random, is at most

2−r|X|
∑

v∈{0,1}r

mv

6.3. Universes of polynomial size 95

for k = 0, . . . , r. Since Zur = {ur}, we must have∑
x∈X

mx⊕ur ≤ b2−r|X|
∑

v∈{0,1}r

mvc

(rounding down being justified by the integrality of the left-hand side), and we
can take a = ur.

For u0 the requirement is clearly met, so for 1 ≤ k < r the task is to extend
uk−1 to uk without increasing the expected value. By linearity of expectation,
we can always achieve this by extending uk−1 by either 0 or 1. An appropriate
extension can be found by computing the expectations in time O(|X|):

Lemma 6.6 For every u ∈ {0, 1}k, where 0 ≤ k ≤ r, the expectation of∑
x∈X mx⊕a, when a ∈ Zu is chosen uniformly at random, is 2k−r

∑
x∈X mπk(x)⊕u.

Proof. For every x ∈ X we have
∑

a∈Zu
mx⊕a = mπk(x)⊕u by definition, so

the expected value of mx⊕a, when a ∈ Zu is chosen uniformly at random, is
2k−rmπk(x)⊕u. The lemma follows by linearity of expectation. 2

Chapter 7

A trade-off for worst-case efficient

dictionaries

The dictionary is among the most fundamental data structures. It supports
maintenance of a set S under insertion and deletion of elements, called keys,
from a universe U . Data is accessed through membership queries, “x ∈ S?”.
In case of a positive answer, the dictionary also returns a piece of satellite data
that was associated with x when it was inserted.

Dictionaries have innumerable applications in algorithms and data struc-
tures. They are also interesting from a foundational point of view, as they
formalize the basic concept of information retrieval from a “corpus of knowl-
edge” (an associative memory). The main question of interest is: What are the
computational resources, primarily time and space, needed by a dictionary?
Our interest lies in how good worst-case bounds can be achieved. For the sake
of simplicity one usually assumes that keys are bit strings in U = {0, 1}w , for
a positive integer parameter w, and restricts attention to the case where keys
of U fit a single memory location. Memory locations are referred to as words,
and w is called the word length. Each piece of satellite data is assumed to be a
single word, which could be a pointer to more bulky data. This means that the
best space complexity one can hope for is O(n) words, where n is the size of S.
We will only consider data structures using O(n) space. Motivated by applica-
tions in which queries are somewhat more frequent than updates, our focus is
on providing very fast membership queries, while maintaining fast updates.

In comparison-based models the complexity of dictionary operations is well
understood. In particular, queries require Ω(log n) comparisons in the worst
case, and we can implement all dictionary operations in O(log n) time on a
pointer machine using only comparisons [AVL62]. However, for a model of com-
putation more resembling real-world computers, a unit cost RAM with words
of size w, the last decade has seen the development of algorithms “blasting
through” comparison-based lower bounds [FW93,And96,BF99a,AT00], result-
ing in a dictionary with time O(

√
log n/ log log n) for all operations. Other

authors have found ways of combining very fast queries with nontrivial update
performance. Most notably, [Mil98] achieves constant query time together with
update time O(nε) for any constant ε > 0. It is important to note that all
bounds in this chapter are independent of w, unless explicitly stated otherwise.

97

98 Chapter 7. A trade-off for worst-case efficient dictionaries

All previous schemes have had either query time (log n)Ω(1) or update time
2ω(

√
log n). In this chapter we obtain the following trade-off between query time

and update time:

Theorem 7.1 There is a deterministic dictionary running on a unit cost RAM
with word length w that, when storing n keys of w bits, uses O(n) words of stor-
age, supports insertions and deletions in O((log n log log n)2) time, and answers
membership queries in O((log log n)2/ log log log n) time.

Ignoring polynomial differences, our dictionary has exponentially faster queries
or exponentially faster updates than any previous scheme.

Model of computation

The word RAM model used is the same as in the earlier work mentioned above.
We only briefly describe the model, and refer to the “multiplication model”
in [Hag98b] for details.

The RAM operates on words of size w, alternately looked upon as bit strings
and integers in {0, . . . , 2w − 1}. It has the following computational operations:
bitwise boolean operations, shifts, addition and multiplication. Note that all
operations can also be carried out in constant time on arguments spanning a
constant number of words.

Word RAM algorithms are allowed to be weakly nonuniform, i.e., use a con-
stant number of word-size constants depending only on w. These constants can
be thought of as computed at “compile time”. In this chapter, weak nonuni-
formity could be replaced by an extended instruction set, with certain natural
but nonstandard instructions from uniform NC1.

Related work

As mentioned, the best known worst-case bound holding simultaneously for all
dictionary operations is O(

√
log n/ log log n). It is achieved by a dynamiza-

tion of the static data structure of [BF99a] using the exponential search trees
of [AT00]. This data structure, from now on referred to as the BFAT data
structure, in fact supports predecessor queries of the form “What is the largest
key of S not greater than x?”. Its time bound improves significantly if the
word length is not too large compared to log n. In particular, if w = (log n)O(1)

the bound is O((log log n)2/ log log log n). These properties of the BFAT data
structure will play a key role in our construction.

An unpublished manuscript by [Sun93] states an amortized lower bound
of time Ω(log logw n

log log logw n) per operation in the cell probe model of [Yao81], for
w = Ω(log n log log n). In particular, this implies the same lower bound on the
word RAM. Note that for w = (log n)O(1), the BFAT data structure has time
per operation polynomially related to the lower bound.

A seminal result of [FKS84] is that in the static case (with no updates to
the data structure), one can achieve constant query time. Chapter 6 describes a
dictionary with constant query time, that can be constructed in time O(n log n).

99

A standard dynamization then gives, for any “nice” function q(n) = O(
√

log n),
query time O(q(n)) and update time O(n1/q(n)).

An overview of known trade-offs for linear space dictionaries is given in
Fig. 7.1.

1

log log n

log n

n

update time

[Mil98]

This paper

Chapter 6

[BF99a] +

log nlog log n
query time

[AT00]

Figure 7.1: Overview of trade-offs for linear space dictionaries.

If one abandons the requirement of good worst-case performance, new pos-
sibilities arise. Most notably, one can consider amortized and randomized (ex-
pected) time bounds. Using the universal hash functions of [CW79] for chained
hashing, one obtains expected constant time for all operations. The query
time can be made worst-case constant by dynamizing the static dictionary
of [FKS84] to allow updates in amortized expected constant time [DfKM+94].
Subsequent works have described dictionaries in which every operation is done
in constant time with high probability [DfMadH90,DfGMP92,Wil00]. The best
result with no dependence on w is, for any constant c, a success probability of
1− n−c [DfGMP92,DfMadH90].

For a general introduction to dynamic data structures, covering both amor-
tized and worst-case bounds, we refer to the book of Overmars [Ove83].

Overview

As mentioned, the BFAT data structure is very fast when the word length is
(log n)O(1). Our strategy is to reduce the dictionary problem to a predecessor
problem on words of length (log n)O(1), solved by the BFAT data structure. A
query for x translates into a query for h(x) in the predecessor data structure,
where h is an efficiently evaluable universe reduction function, mapping U to
a (smaller) universe {0, 1}r . This approach is similar to universe reduction
schemes previously employed in the static setting (see Chapter 6). One differ-
ence is that we use r = Θ(log2 n) rather than r = Θ(log n). Moreover, in the
dynamic setting we need to dynamically update h when new keys are inserted,
which means that h(x) may change for keys x ∈ S. This can be handled, how-
ever, as a predecessor query for h(x) may still find the BFAT key for x if it is
smaller than h(x). In general there may be other keys between the BFAT key
of x and h(x). However, we maintain the invariant that if x ∈ S then x can be
found in a sorted list of O(log n) keys associated with the predecessor of h(x).

After some preliminary observations and definitions, Section 7.2 introduces

100 Chapter 7. A trade-off for worst-case efficient dictionaries

the tools needed for the universe reduction. In Section 7.3 we show how to
construct a dictionary with the desired properties, except that the time bound
for updates is amortized. Finally, Section 7.4 describes how to extend the
technique of the amortized data structure to make the bound worst-case.

7.1 Preliminaries

7.1.1 Simplifications

Without loss of generality, we may disregard deletions and consider only in-
sertions and membership queries. Deletions can be accommodated within the
same time bound as insertions, by the standard technique of marking deleted
keys and periodically rebuilding the dictionary. To be able to mark a key, we
let the satellite information point to a marker bit and the “real” satellite infor-
mation. For the rebuilding one maintains two insertion-only dictionaries: An
active one catering insertions and membership queries, and an inactive one to
which two new unmarked keys from the active dictionary are transferred each
time a key is marked (in both dictionaries). When all unmarked keys have been
transferred, the inactive dictionary is made active, and we start over with an
empty inactive dictionary. This assures that no more than a constant fraction
of the keys are marked at any time. So if the insertion-only dictionary uses
linear space, the space usage of the above scheme is O(n).

We may also assume that w ≥ log5 n. Word size O(log5 n) can be handled
using the BFAT data structure directly, and standard rebuilding techniques can
be used to change from one data structure to the other. Similarly, we assume
that n is larger than some fixed, sufficiently large constant, since constant size
dictionaries are trivial to handle.

7.1.2 Notation and definitions

Throughout this chapter S refers to a set of n keys from U . When we need
to distinguish between values before and after a change of the data structure,
we used primed variables to denote the new values. We will look at bit strings
also as binary numbers with the most significant bits first. The ith last bit of a
string x is denoted by xi; in particular, x = xlxl−1 . . . x1, where l is the length of
x. We say that x is the incidence string of D ⊆ {1, . . . , l} if i ∈ D ⇔ xi = 1, for
1 ≤ i ≤ l. The Hamming weight of x is the number of positions i where xi = 1.
The Hamming distance between strings x and y is the number of positions i
where xi 6= yi. For clarity, we will distinguish between keys of our dictionary
and keys in predecessor data structures, by referring to the latter as p-keys.
The set of positive integers is denoted by N.

7.2 Universe reduction tools

Miltersen [Mil98] has shown the utility of error-correcting codes to deterministic
universe reduction. This approach plays a key role in our construction, so we
review it here. For further details we refer to Chapter 6, which sums up all

7.2. Universe reduction tools 101

the results and techniques needed here. The basic idea is to employ an error-
correcting code ψ : {0, 1}w → {0, 1}4w (which is fixed and independent of S)
and look at the transformed set {ψ(x) | x ∈ S}. For this set it is possible to
find a very simple function that is 1-1 and has small range, namely a projection
onto O(log n) bit positions.

The code must have relative minimum distance bounded from 0 by a fixed
positive constant, that is, there must exist a constant δ > 0 such that any two
distinct codewords ψ(x) and ψ(y) have Hamming distance at least 4wδ. The
infimum of such constants is called the relative minimum distance of the code.
We can look at the transformed set without loss of generality, since Miltersen
showed that such an error-correcting code can be computed in constant time
using multiplication: ψ(x) = cw ·x, for suitable cw ∈ {0, 1}3w . The choice of cw
is a source of weak nonuniformity. The relative minimum distance of this code
is greater than δ = 1/25.

Definition 7.1 For an equivalence relation ≡ over T ⊆ U , a position d ∈
{1, . . . , 4w} is discriminating if, for K = {{x, y} ⊆ T | x 6= y ∧ x ≡ y},
|{{x, y} ∈ K | ψ(x)d = ψ(y)d}| ≤ (1− δ) |K|.

For T ⊆ U , a set D ⊆ {1, . . . , 4w} is distinguishing if, for all pairs of
distinct keys x, y ∈ T , there exists d ∈ D where ψ(x)d 6= ψ(y)d.

Miltersen’s universe reduction function (for a set T) is x 7→ ψ(x) and v,
where and denotes bitwise conjunction and v is the incidence string of a distin-
guishing set for T . A small distinguishing set can be found efficiently by finding
discriminating bits for certain equivalence relations:

Lemma 7.1 (Miltersen) Let T ⊆ U be a set of m keys, and suppose there is
an algorithm that, given the equivalence classes of an equivalence relation over
T , computes a discriminating position in time O(m). Then a distinguishing set
for T of size less than 2

δ logm can be constructed in time O(m logm).

Proof sketch. Elements of the distinguishing set may be found one by one, as
discriminating positions of the equivalence relation where x, y ∈ T are equal if
and only if ψ(x) and ψ(y) do not differ on the positions already chosen. The
number of pairs not distinguished by the first k discriminating positions is at
most (1− δ)k(m2). 2

Hagerup [Hag99] showed how to find a discriminating position in time O(m).
We will need a slight extension of his result.

Lemma 7.2 (Hagerup) Given a set T ⊆ U of m keys, divided into equivalence
classes of a relation ≡, a discriminating position d can be computed in time
O(m). Further, for an auxiliary input string b ∈ {0, 1}4w of Hamming weight
o(w) and w larger than some constant, we can assure that bd = 0.

Proof sketch. In [Hag99] it is shown how to employ word-level parallelism to
compute |{{x, y} ⊆ T | x 6= y, x ≡ y, ψ(x)d = ψ(y)d}| for all d ∈ {1, . . . , 4w}
in time O(m). The algorithm computes a vector of O(logm)-bit numbers com-
pressed into O(logm) words.

102 Chapter 7. A trade-off for worst-case efficient dictionaries

Word-parallel binary search can be used to find the index of the smallest
entry, which will be discriminating. To avoid positions where bd = 1, we replace
the corresponding entries of the vector with the largest possible integer, before
finding the minimum. This corresponds to changing the error-correcting code to
be constant (i.e. non-discriminating) on the bit positions indicated by b. Since
b has Hamming weight o(w), the relative minimum distance of this modified
code is still greater than α, for n large enough. Hence, this procedure will find
a discriminating bit position. 2

Definition 7.2 A set of positions {d1, . . . , dp} ⊆ {1, . . . , 4w} is well separated
if |di − dj | ≥ 2 p for all i, j where 1 ≤ i < j ≤ p.

We will keep the distinguishing positions used for the universe reduction
well separated. This is done by forming a vector b with 1s in positions within
some distance of previously chosen positions, and using this in the algorithm
of Lemma 7.2. Good separation allows us to “collect” distinguishing bits into
consecutive positions (in arbitrary order):

Lemma 7.3 For a list d1, . . . , dp of well separated positions, there is a function
fd̄ : {0, 1}4w → {0, 1}p that can be stored in a constant number of words and
evaluated in constant time, such that for any x ∈ {0, 1}4w and i ∈ {1, . . . , p},
we have fd̄(x)i = xdi

. The function description can be updated in constant time
when the list is extended (with position dp+1) and under changes of positions,
given that the resulting list is well separated.

Proof. We will show how to “move” bit di of x ∈ {0, 1}4w to bit 4w + i of a
(4w + p)-bit string. The desired value can then be obtained by shifting the
string by 4w bits. We first set all bits outside {d1, . . . , dp} to 0 using a bit
mask. Then simply multiply x by Md̄ =

∑p
i=1 24w+i−di (a method adopted

from [FW93, p. 428-429]). One can think of the multiplication as p shifted
versions of x being added. Note that if there are no carries in this addition, we
do indeed get the right bits moved to positions 4w + 1, . . . , 4w + p. However,
since the positions are well separated, all carries occur either left of the 4w+pth
position (and this has no impact on the values at positions 4w+ 1, . . . , 4w+ p)
or right of position 4w− p (and this can never influence the values at positions
greater than 4w, since there are more than enough zeros in between to swallow
all carries). Note that Md̄ can be updated in constant time when a position is
added or changed. 2

7.3 Dictionary with amortized bounds

This section presents the main ideas allowing the universe reduction techniques
of Section 7.2 and a predecessor data structure to be combined in an efficient
dynamic (insertion-only) dictionary with amortized bounds. Section 7.4 will
extend the ideas to achieve nearly the same bounds in the worst case.

7.3. Dictionary with amortized bounds 103

We will start by outlining how the query algorithm is going to work. A
membership query for x proceeds by first computing the value h(x) of the uni-
verse reduction function h, described in Section 7.3.1. Then we search for the
p-key q that is predecessor of h(x) (if it does not exist, the search is unsuccess-
ful). Finally, we search for x in a list Aq associated with q. The invariant is
kept that if x ∈ S, then x is found in this way.

7.3.1 The universe reduction function

We will not maintain a distinguishing set for S itself, but rather maintain
k = dlog(n+ 1)e distinguishing sets D1, . . . ,Dk for a partition of S into subsets
S1, . . . , Sk. Let hDi : U → {0, 1}|Di| denote a function “collecting” the bits in
positions of Di from its error-corrected input, i.e., such that for each d ∈ Di

there is j ∈ {1, . . . , |Di|} where hDi(x)j = ψ(x)d. The universe reduction
function is:

h : x 7→ hDk
(x) ◦ 1 ◦ hDk−1

(x) ◦ 1 ◦ · · · ◦ hD1(x) ◦ 1 (7.1)

where ◦ denotes concatenation. The basic idea is that set Si and distinguishing
set Di changes only once every 2i insertions. This means that during most
insertions, function values change only in the least significant bits. Hence, for
many keys x ∈ S, a query for the predecessor of h(x) will return the same p-key
before and after a change of h. In cases where a new p-key becomes predecessor
of h(x), we explicitly put x in the list of keys associated with the p-key. Details
follow below.

The following invariants are kept:

(1) |Si| ∈ {0, 2i}, for 1 ≤ i ≤ k.
(2) |Di| = 2i/δ, for 1 ≤ i ≤ k.
(3) |d1 − d2| ≥ 4k2/δ, for all distinct d1, d2 ∈ D1 ∪ · · · ∪Dk.

The first invariant implies that |S| must be even, but this is no loss of generality
since insertions may be processed two at a time. Invariant (7.3.1) is feasible
because of the lower bound on w. By invariant (7.3.1) the size of D1 ∪ · · · ∪
Dk is at most 2k2/δ, so invariant (7.3.1) implies that D1 ∪ · · · ∪ Dk is well
separated. Lemma 7.3 then gives that h can be evaluated in constant time and
updated in time O(

∑k
i=1 2i/δ) = O(log2 n) when D1, . . . ,Dk changes. Within

this time bound we can also compute a string b ∈ {0, 1}4w of Hamming weight
O(log4 n) = o(w), such that all bits of b with distance less than 4 (k+1)2/δ to a
position in D1, . . . ,Dk are 1s: Multiply the incidence string of D1 ∪ · · · ∪Dk by
24 (k+1)2/δ − 1 (whose binary expansion is the string 14 (k+1)2/δ) to get a string
v, and compute the bitwise or of v and v right-shifted 4 (k + 1)2/δ positions.

We now describe how to update S1, . . . , Sk and D1, . . . ,Dk when new keys
are inserted. Let m denote the smallest index such that Sm = ∅, or let m = k+1
if no subset is empty. When new keys x and y are inserted, we compute a
distinguishing set D for Sm−1 ∪ · · · ∪ S1 ∪ {x, y}. By Section 7.2 this can

104 Chapter 7. A trade-off for worst-case efficient dictionaries

be done such that |D| = 2m/δ, adding extra positions if necessary. Also,
using the string b we can assure that positions in D have distance at least
4 (k + 1)2/δ from positions in D1, . . . ,Dk as well as from each other. We then
perform the following updates: S′m = Sm−1 ∪ · · · ∪ S1 ∪ {x, y}, D′

m = D, and
S′m−1 = · · · = S′1 = ∅. The invariants are easily seen to remain satisfied.

To see that the amortized time per insertion is O(log2 n), note that no key
at any time has been part of more than k distinguishing set computations, and
that each such computation took time O(log n) per key.

7.3.2 Using the predecessor data structure

The predecessor data structure has one p-key for each key in S. For x ∈ Si the
key is

qx = hDk
(x) ◦ 1 ◦ hDk−1

(x) ◦ 1 ◦ · · · ◦ hDi(x) ◦ 1 ◦ 0zi (7.2)

where zi is the number of bits in hDi−1(x) ◦ 1 ◦ · · · ◦ hD1(x) ◦ 1. Note that
qx ≤ h(x) < µx, where µx = qx + 2zi . We also observe that, since hDi is 1-1
on Si, p-keys belong to unique keys of S, and that qx and µx are fixed during
the time where x ∈ Si. Associated with qx is a sorted list of the following keys,
each represented by a pointer to a unique instance:

Aqx = {y ∈ S | qy ≤ qx < µy} . (7.3)

For y ∈ Sj, the condition qy ≤ qx < µy holds if and only if qx has prefix
hDk

(y) ◦ 1 ◦ · · · ◦ hDj (y) ◦ 1. Since hDj is 1-1 on Sj, it follows that for x ∈ Si,
the set Aqx consists of at most one key from each of Sk, . . . , Si. Also, Aqx is
constant during the time where x ∈ Si. To see that our query algorithm is
sound, note that for x ∈ S the search for a predecessor of h(x) returns a p-key
q with qx ≤ q ≤ h(x) < µx.

When S1, . . . , Sk and D1, . . . ,Dk have changed, we must update the pre-
decessor data structure accordingly. We first delete the old p-keys of keys in
S′m = S1∪ · · · ∪Sm−1. For each key x ∈ S′m we then compute the new p-key q′x,
and its predecessor is searched for. If q′x has no predecessor, then its associated
list must contain only x. If there is a predecessor q′y, the associated list consists
of x plus a subset of Aq′y . To see this, recall that no key from S′m\{x} can be in
Aq′x , and that by invariant Aq′y = {v ∈ S′ | q′v ≤ q′y < µ′v}. Specifically, we have
Aq′x = {v ∈ Aq′y | q′x < µ′v} ∪ {x}. Thus, in time O(log n) per key we can create
and insert p-keys and associated lists for all x ∈ S′m. Again, this means that
the amortized cost of updating the predecessor data structure is O(log2 n).

Apart from the predecessor query, the time used by the query algorithm is
O(log k) = O(log log n). Hence, if we use the BFAT predecessor data structure,
the time to perform a query is O((log log n)2/ log log log n). The only part of our
data structure not immediately seen to be in linear space is the set of associated
lists. For x ∈ Si, the set Aqx contains at most k+1− i keys, so the total length
of all associated lists is O(

∑k
i=1(k+1−i) 2i) = O(n (1+

∑k
i=1(k−i) 2−(k−i))) =

O(n).

Proposition 7.1 There is a deterministic dictionary that, when storing a set
of n keys, uses O(n) words of storage, answers membership queries in time

7.4. Dictionary with worst-case bounds 105

O((log log n)2/ log log log n), and supports insertions and deletions in amortized
time O(log2 n).

7.4 Dictionary with worst-case bounds

Whereas the dictionary described in the previous section efficiently performs
any sequence of operations, the worst-case time for a single insertion is Ω(n log n)
(this happens when we compute a distinguishing set for Sk, which has size Ω(n)).
We now describe a similar dictionary that has the worst-case time bounds stated
in Theorem 7.1. Focus is on the aspects different from the amortized case. In
particular, the description must be read together with Section 7.3 to get the
full picture.

The worst-case dynamization technique used is essentially that of [OvL81a].
By maintaining the partition of S slightly differently than in Section 7.3, it
becomes possible to start computation of distinguishing sets for future partitions
early, such that a little processing before each insertion suffices to have the
distinguishing sets ready when the partition changes. Similarly, predecessor
data structure updates can be done “in advance”, leaving little work to be done
regardless of whether an insertion triggered a small or a large change in the
partition.

The partition of S now involves 2k sets, S1, . . . , Sk and T1, . . . , Tk, where
|Si|, |Ti| ∈ {0, 2i}. When two nonempty sets with the same index i arise, com-
putation of a distinguishing set for Si ∪ Ti is initiated, proceeding at a pace of
O(log n) steps per insertion (this is the first part of what will be referred to as
the “processing at level i”). At a designated time after this computation has
finished, either Si+1 or Ti+1 is replaced by Si ∪ Ti.

We use two predecessor data structures containing the p-keys of S1, . . . , Sk

and T1, . . . , Tk, respectively. The tricky part is to update the p-keys in these
data structures such that the properties of the amortized scheme are preserved.
For example, we have to make sure that old p-keys do not interfere with searches
during the time it takes to delete them. In the following we describe only
the universe reduction function and predecessor data structure for p-keys of
S1, . . . , Sk, as everything is completely symmetric with respect to switching the
roles of S1, . . . , Sk and T1, . . . , Tk.

7.4.1 The universe reduction function

The universe reduction function is again (7.1), and invariants (7.3.1), (7.3.1)
and (7.3.1) are still kept. However, updates are performed in a different man-
ner. We describe the way in which S1, . . . , Sk and T1, . . . , Tk are updated; the
corresponding distinguishing sets are implicitly updated accordingly. Keys are
inserted in pairs. Just before the pth pair is inserted, from now on referred to
as “time step p”, we spend O(log n (log log n)2) time on processing at each level
i for which Si and Ti are both nonempty. The processing has two parts: com-
putation of a distinguishing set for Si∪Ti, followed by insertions and updates of
p-keys in one of the predecessor data structures (the latter part is described in
Section 7.4.2). Processing at level i starts at time step 2iz+2i−1, for z ∈ N, and

106 Chapter 7. A trade-off for worst-case efficient dictionaries

proceeds for 2i−2 time steps (we make sense of half a time step by considering
each time step to have two subparts).

At time step 2i(z+1)− 1, for z ∈ N, we then perform an update by moving
the keys of Si ∪ Ti to level i+ 1, i.e., either Si+1 or Ti+1 is set to Si ∪ Ti. Note
that the distinguishing set for Si ∪ Ti has been computed at this point (in fact,
already at time step 2i(z+ 1)− 2i−2). If z is even, processing is about to begin
at level i + 1, and Si ∪ Ti replaces the empty set at level i + 1. Otherwise
Ti+1 ∪ Si+1 is either empty or about to move to level i+ 2, and we arbitrarily
replace one of Si+1 and Ti+1 by Si ∪ Ti and the other by ∅ (this is done at all
levels simultaneously). At even time steps, the new pair replaces the empty set
at level 1. At odd time steps, we arbitrarily replace one of T1 and S1 by the
newly inserted pair and the other by ∅.

An important property of the scheme described above is, that even though
processing occurs at k levels simultaneously, distinguishing sets that are going
to appear together in the universe reduction function are computed one at a
time. Specifically, consider the update at time step 2iz− 1, where z > 1 is odd.
Here, new distinguishing sets for S1 ∪ T1, . . . , Si ∪ Ti are about to become part
of the universe reduction function. The distinguishing set for Sj∪Tj, j ≤ i, was
computed from time step 2iz − 2j−1 to time step 2iz − 2j−2 − 1, for 1 ≤ j ≤ i.
Distinguishing sets at level i+1 and above were computed well before time step
2iz−2i−1. We may thus use the method of Section 7.3 to keep invariant (7.3.1)
satisfied.

7.4.2 Using the predecessor data structure

The predecessor data structure (for S1, . . . , Sk) still contains the p-key qx of
equation (7.2) for each x ∈ S1 ∪ · · · ∪ Sk. Such p-keys are called active. Ad-
ditionally, there will be previous p-keys (that used to be active but whose
corresponding key is no longer in S1 ∪ · · · ∪ Sk) and future p-keys (that will
become active after an upcoming change of the partition). As a consequence,
there may be up to two keys corresponding to each p-key. We consider p-keys
with two corresponding keys as two p-keys; in particular, a p-key can be both
future and active, or both active and previous.

What follows is explained more easily if we switch to the language of strings.
Specifically, we will look at a p-key of the form qk ◦ 1 ◦ qk−1 ◦ 1 ◦ · · · ◦ qi ◦ 1 ◦ 0zi ,
where qj ∈ {0, 1}2j/δ , as a string consisting of the characters qkqk−1 . . . qi. We
refer to i as the level of the p-key. In particular, for x ∈ Si the level of qx is i.
Similarly, the range of the universe reduction function is looked upon as a set
of strings.

At any level we maintain the invariant that there cannot be both previous
p-keys and future p-keys in the predecessor data structure. Also, future p-keys
are distinct and so are previous p-keys. This means that each p-key can have
at most two corresponding elements: one for which it is the current p-key, and
one for which it is a previous or future p-key.

The list associated with a p-key q now contains up to 2k keys, including:

Aq = {y ∈ S1 ∪ · · · ∪ Sk | qy is a prefix of q} . (7.4)

7.5. Open problems 107

Membership queries are performed by searching the associated list of the pre-
decessor of h(x) (in both predecessor data structures). The predecessor q of
h(x) will be one of the p-keys having the longest common prefix with h(x).
Thus, Aq contains all keys whose p-keys are prefixes of h(x). In particular, if
x ∈ S1 ∪ · · · ∪Sk the p-key qx is a prefix of h(x), so x is found in the associated
list.

Now consider the processing initiated at level i at time step 2iz+2i−1, z ∈ N.
As described earlier, the processing spans 2i−2 time steps, so the computation
of a distinguishing set for Si ∪Ti is completed before time step 2i(z+ 1)− 2i−2.
At time step 2i(z + 1)− 1 an update will replace a set at level i+ 1 by Si ∪ Ti,
and hence (active) p-keys at level i + 1 must be present for Si ∪ Ti (in the
predecessor data structure for S1, . . . , Sk if Si ∪Ti replaces Si+1, which we may
assume by symmetry). A crucial point is that the future p-keys are known as
soon as the distinguishing set for Si ∪ Ti has been computed. This is because
any changes to distinguishing sets at level i+ 2 and above that will take effect
at time step 2i(z + 1)− 1 were determined before time step 2iz + 2i−1.

Part of the processing is to insert the future p-keys at level i + 1. Future
p-keys that will become active at time step 2i(z + 1) − 1 and are above level
i + 1, were inserted before time step 2i(z + 1) − 2i−1. For each new p-key
q = qkqk−1 . . . qi+1 we look up any keys corresponding to prefixes qk, qkqk−1, . . . ,
qkqk−1 . . . qi+1, thus finding the up to 2(k − i + 1) keys that are in Aq before
and after time step 2i(z + 1) − 1. The keys are sorted and put into the list
associated with q, and q is inserted in the predecessor data structure. In the
same way we compute new associated lists for the active p-keys at level i + 1.
The dominant part of the processing time is used for the O(2i log n) lookups in
the predecessor data structure. Hence, the total time is O(2i log n (log log n)2),
which amounts to O(log n (log log n)2) time per insertion.

At time step 2i(z + 1) − 1 the active p-keys at level i change status to
previous, and the future p-keys at level i + 1 change status to active. During
the following 2i−1 time steps the previous p-keys at level i are deleted. This
means that there are no previous p-keys at time step 2i(z + 1) + 2i−1 when
processing begins again at level i. The time per insertion for the deletions at
level i is negligible.

7.5 Open problems

An interesting open question is whether both queries and updates in a linear
space deterministic dictionary can be accommodated in time (log n)o(1). For
example, a bound of (log log n)O(1) would mean that Sundar’s lower bound is
tight up to a polynomial (not considering upper bounds dependent on w). For
w = (log n)O(1) the bound is achieved by the BFAT data structure. Thus, large
word length seems to be the main enemy, and new dynamic universe reduction
schemes with faster updates appear a promising approach.

Chapter 8

Dispersing hash functions

Universal families of hash functions [CW79] are widely used in various areas of
computer science (data structures, derandomization, cryptology). They have
the property, among others, that any set S is dispersed by a random function
from the family. More precisely, for a universal family F and any subset S of
the domain of its functions, if we pick a function h uniformly at random from
F , the expected value of |S| − |h[S]| is not much larger than the expectation
if h had been a truly random function with the same range. Another way of
putting this property is that a dispersing family is good at distinguishing the
elements of any set: the average function maps the elements to many different
values. For comparison, a universal family is good at distinguishing any pair of
elements (few functions map them to the same value).

In Section 8.2 we will see that hash function families much smaller than
any universal family can be dispersing. In other words, dispersion is a property
strictly weaker than universality. While our first upper bound is nonconstruc-
tive, Section 8.3 explores explicit construction of small dispersing families. In
particular, we exhibit a strong connection to the construction of extractors.

Small families of functions with random properties are important for deran-
domization (removing or reducing the use of random bits in algorithms). It is
hard to characterize the situations in which a dispersing family could be used
instead of a universal one. Indeed, the derandomization examples given in Sec-
tion 8.4 use dispersing families in somewhat different ways than one would use
universal families. We also give an example from the literature where replacing
a universal family with a dispersing one immediately gives an improved result.

We will also consider a weaker form of dispersing families, where we only
care about the existence of a single function h in the family for which |S| −
|h[S]| is small. One special case of this has previously been intensely studied,
namely perfect hash function families, where a function with |h[S]| = |S| always
exists. In Section 8.5 we will see that the size of existentially dispersing families
explodes once we require |S| − |h[S]| to be smaller than that expected for a
random function h. In other words, storing a “near-perfect” hash function is
nearly as expensive as storing a perfect one.

109

110 Chapter 8. Dispersing hash functions

Related work

The dispersion property of universal families was shown and first used in [FKS84].
It has since found application in several papers [FNSS92,LS98], and is used in
Chapter 5.

Another way of stating the dispersion property of a hash function family
{hi} is that that Ei|hi[S]| should be “large”. The definition of a disperser is
similar to this in that one requires | ∪i hi[S]| to be “large”. However, in the
usual treatment of dispersers, the range R has size |S| or smaller (whereas we
will be interested in |R| ≥ |S|), and “large” means greater than (1− ε) |R|, for
some choice of parameter ε (while we can only hope for some fraction of |S|).
Nisan’s survey [Nis96] gives a good introduction to dispersers. It also covers the
stronger notion of extractors, where the requirement is near-uniformity of the
random variable hi(x), for uniformly and independently chosen hi and x ∈ S.
As we will see in Section 8.3, extractors are closely related to dispersing hash
function families. Construction of extractors and dispersers has been intensely
researched in recent years. We refer to [TSUZ01] for an overview of the results
as of 2001.

Mehlhorn [Meh84] has given tight bounds (up to a constant factor) on the
number of bits needed to represent perfect and universal hash functions, i.e.,
determined the size of such families up to a polynomial (see also [FK84,Rad92]).

Notation

In the following, S denotes a subset of U = {1, . . . , u}, |S| = n, and we consider
functions from U to R = {1, . . . , r} where r ≥ n > 1 and u ≥ 2r. The set of all
functions from U to R is denoted by (U → R), and

(U
n

)
denotes the subsets of

U of size n. The number of collisions for S under h is C(S, h) = n− |h[S]|. A
uniform random choice is denoted by ∈R, and is always independent of other
events. The base of “log” is 2, the base of “ln” is e = 2.718 . . .

8.1 The family of all functions

As preparation for the results on dispersing families, this section contains some
results on the distribution of C(S, h) for h ∈R (U → R). The probability that
i 6∈ h[S] is (1 − 1

r)n for i ∈ {0, . . . , r − 1}. Thus the expected size of R\h[S] is
(1− 1

r)n r, and the expected size of h[S] is

µ := r (1− (1− 1
r)n) = r (

(n
1

)
/r − (n2)/r2 + . . .) = n−Θ(n2

r) . (8.1)

Hence the expected value of C(S, h) is:

λ := n− µ =
n−1∑
i=1

(
n

i+1

)
(−1/r)i ∈ [n

2

4r ; n2

2r] . (8.2)

We now turn to giving tail bounds. Let S = {s1, . . . , sn} and let Xi be the
0-1 random variable that assumes the value 1 iff h(si) ∈ {h(s1), . . . , h(si−1)}.
Clearly C(S, h) =

∑
iXi. The random variables X1, . . . ,Xn are not indepen-

dent; however, they are negatively related:

8.2. Dispersing families 111

Definition 8.1 (Janson [Jan93]) Indicator random variables (Ii)ni=0 are nega-
tively related if for each j there exist random variables (Jij)ni=0 with distribution
equal to the conditional distribution of (Ii)ni=0 given Ij = 1, and so that Jij ≤ Ii
for every i.

The random variables Yij corresponding to the condition Xj = 1, j > 1, are
defined in the same way as the Xi, except that we pick h from the set of
functions satisfying h(sj) ∈ {h(s1), . . . , h(sj−1)}. The negative relation means
that we can employ the Chernoff-style tail bounds of [Jan93, Theorem 4]. In
particular, tail bound (1.9) states that, for c ≤ 1,

Pr[C(S, h) ≤ cλ] ≤ exp(−(1− c)2λ/2) . (8.3)

And tail bound (1.5) gives that, for c ≥ 1,

Pr[C(S, h) ≥ cλ] ≤
(
ec−1

cc

)λ

. (8.4)

Analogously, for a sequence h1, . . . , hb ∈R (U → R), one can derive the following
estimate, for c ≥ 1:

Pr

[
1
b

b∑
i=1

C(S, hi) ≥ cλ
]
≤
(
ec−1

cc

)λb

. (8.5)

8.2 Dispersing families

Definition 8.2 A family of functions F ⊆ (U → R), where |U | = u and
|R| = r, is (c, n, r, u)-dispersing if for any S ⊆ U , |S| = n, the expected value of
C(S, h) for h ∈R F is at most cλ, where λ is given by (8.2). When parameters
n, r and u follow from the context, we shall use the term c-dispersing.

By definition of λ, the family (U → R) is 1-dispersing. Thus, parameter c
is a measure of how well a random function from a family disperses compared
to a truly random function.

We now give a simple nonconstructive argument (using the probabilistic
method) that a small family of c-dispersing functions exists for c ≥ 1+ ε, where
ε > 0 is a constant. (The requirement on c ensures that the constant factor
of the bound does not depend on c.) Let k(c) = ln(cc/ec−1) = Θ(c log c).
The family can be constructed by picking h1, . . . , hb ∈R (U → R), where
b > n ln(ue/n)

k(c)λ = O(r log(u/n)
n c log c). With nonzero probability this gives a family

with the desired property, namely 1
b

∑b
i=1 C(S, hi) ≤ c λ for any S ∈ (Un). By

inequality (8.5),

Pr

[
1
b

b∑
i=1

C(S, hi) ≥ cλ
]
≤
(
ec−1

cc

)λb

< (ue/n)−n .

Since there are less than (ue/n)n sets in U of size n (see, e.g., [Juk00, Sec-
tion 1.1]), the probability of failure for at least one set is less than 1, as desired.

112 Chapter 8. Dispersing hash functions

We now show a lower bound on the size of a c-dispersing family. Take any
such family F = {h1, . . . , hb}. We construct U1, . . . , Uk, with Uk ⊆ Uk−1 ⊆
· · · ⊆ U1 ⊆ U0 = U such that |Ui| ≥ u (n/2r)i and |hi[Uk]| ≤ n/2 for
i ≤ k. The set Ui is constructed from Ui−1 using the pigeonhole principle
to pick a subset with |hi[Ui]| ≤ n/2 of size at least |Ui−1|/(2r/n). Setting
k = blog(u/n)/ log(2r/n)c we have |Uk| ≥ n and can take S ⊆ Uk of size n.
Since F is c-dispersing we must have

∑
i C(S, hi) ≤ b c λ. On the other hand,

by construction
∑

i C(S, hi) ≥ k n/2, so we must have:

b ≥ k n

2 c λ
≥ r log(u/n)

2n c log(2r/n)
.

We summarize the bounds as follows:

Theorem 8.1 For r ≥ n > 1, u ≥ 2r and c > 1 + ε, for constant ε > 0, a
minimal size (c, n, r, u)-dispersing family F satisfies:

r log(u/n)
2n c log(2r/n)

≤ |F | = O

(
r log(u/n)
n c log c

)
.

The gap between the bounds is O(log(2r/n)
log c). In a certain sense we have a

tight bound in most cases: Parameter c ranges from 1 + ε to O(r/n), and for
c = (r/n)Ω(1) the bounds differ by a constant factor.

A random function h from a (δn
λ , n, r, u)-dispersing family has expected size

of h[S] at least (1 − δ)n. This makes the following version of Theorem 8.1
convenient.

Corollary 8.1 For r ≥ n > 1, u ≥ 2r and δ > (1 + ε)λ/n, for constant ε > 0,
a minimal size (δn

λ , n, r, u)-dispersing family F satisfies:

log(u/n)
2δ log(2r/n)

≤ |F | = O

(
log(u/n)

δ log(4δr/n)

)
.

8.2.1 An impossibility result

We have seen examples of c-dispersing families for c ≥ 1. A natural question
is whether such families exist for c < 1. This section supplies a generally
negative answer for any constant c < 1. However, it is possible to disperse
slightly more than a totally random function by using the family of all “evenly
distributing” functions. This is analogous to universal hash functions, where it
is also possible to improve marginally upon the performance of a truly random
function [Sar80,Woe99].

Example 8.1 Consider the case n = r = 3, u = 6, where λ = 8/9. If we pick
a function at random from those mapping two elements of U to each element
in the range, the expected number of collisions is 3/5. That is, this family is
27/40-dispersing.

We need the following special case of a more general result shown in Sec-
tion 8.5.

8.3. Explicit constructions 113

Lemma 8.1 For c < 1 let k(c) = (1−c)2

100 log(4/(1−c)) . Assume r ≤ k(c)n2 and u ≥
100 r
1−c , and let h : U → R be any function. For S ∈R

(U
n

)
we have Pr[C(S, h) ≤

1+c
2 λ] < 1− 2c

1+c .

Corollary 8.2 For 0 < c < 1, r ≤ k(c)n2 and u ≥ 100 r
1−c , no (c, n, r, u)-

dispersing family exists.

Proof. Suppose F is a (c, n, r, u)-dispersing family with parameters satisfying
the above. By an averaging argument, there must exist a function h ∈ F such
that for S ∈R

(U
n

)
the expected value of C(S, h) is at most cλ. In particular,

Markov’s inequality gives that the probability of C(S, h) ≤ 1+c
2 λ must be at

least 1− 2c
1+c , contradicting Lemma 8.1. 2

8.3 Explicit constructions

This section concerns the explicit construction of dispersing families, concen-
trating on O(1)-dispersing families. By explicit families Fc,n,r,u we mean that
there is a Turing machine that, given parameters c, n, r and u, the number
of some function f in (an arbitrary ordering of) Fc,n,r,u, and x ∈ U , computes
f(x) in time (log |Fc,n,r,u|+log(u+ c))O(1). The general goal, only reached here
for some parameters, would be explicit families of sizes polynomially related to
the bounds of Theorem 8.1. Picking a random function from such a family uses
a number of random bits that is within a constant factor of optimal, i.e., the
sample complexity is optimal.

8.3.1 Universal families

Definition 8.3 A family F ⊆ (U → R) is c-universal if for any x, y ∈ U ,
x 6= y and h ∈R F , Pr[h(x) = h(y)] ≤ c/r. It is strongly c-universal if for any
a, b ∈ R, Pr[h(x) = a, h(y) = b] ≤ c/r2.

One strongly (1 + ε)-universal (and thus (1 + ε)-universal) family for 0 < ε ≤ 1
is:

Fsu = {x 7→ ((t x+ s) mod p) mod r | m/2 ≤ p ≤ m, p prime, 0 ≤ s, t < p}

where m = 24 r2 log(u)/ε. The universality proof is given in appendix 8.7. Note
that the family has size (r log(u)/ε)O(1), and that, given parameters s, t and p,
we can compute a function value in polynomial time. As for universal families
with parameter c ≥ 2, we note that taking any 2/c fraction of a 2-universal
family yields a c-universal family.

We now establish that universal families are dispersing, slightly generalizing
an observation in [FKS84]:

Proposition 8.1 A c-universal family is 2c-dispersing.

114 Chapter 8. Dispersing hash functions

Proof. Let F be a c-universal family, and take S ∈ (Un). For h ∈R F consider
K(S, h) = |{{x, y} ∈ (S2) | h(x) = h(y)}|. Since C(S, h) ≤ K(S, h) we just
need to bound the expected value of K(S, h). By c-universality this is at most(n
2

)
c/r, and by (8.2) we have the bound

(n
2

)
c/r < cn2/2r ≤ 2 c λ. 2

Mehlhorn [Meh84, Theorem D] has shown that a c-universal family can have
size no smaller than r (dlog u/ log re−1)/c. This is Ω(n log c/ log r) times larger
than the upper bound of Theorem 8.1. Hence, dispersion is a property strictly
weaker than universality. The minimum sizes of c-universal and O(c)-dispersing
families are polynomially related when r/n ≥ nΩ(1) + c1+Ω(1). Under the same
condition, the family Fsu, as well as a c-universal subfamily constructed as
stated above, has size polynomially related to the minimum. In particular,
we have explicit O(1)-dispersing families of optimal sample complexity for r =
n1+Ω(1).

8.3.2 Extractor based construction

This section addresses the construction of O(1)-dispersing families for r =
n1+o(1), where universal families do not have optimal sample complexity (ex-
cept for very large universes). We give an explicit construction of an O(1)-
dispersing family from an an extractor (see definition below). Plugging in an
explicit optimal extractor would yield an explicit O(1)-dispersing family with
optimal sample complexity (except perhaps for very small universes). We need
only consider the case where r is a power of two, since such families are also
O(1)-dispersing for ranges up to two times larger.

Definition 8.4 A random variable X with values in a finite set T is ε-close to
uniform if ∑

i∈T

|Pr[X = i]− 1/|T || ≤ 2 ε.

Definition 8.5 A function E : U × {0, 1}s → {0, 1}t is an (n, ε)-extractor if
for any S ∈ (Un), the distribution of E(x, y) for x ∈R S, y ∈R {0, 1}s is ε-close
to uniform over {0, 1}t.

Nonconstructive arguments show that for t ≤ log n and ε > 0 there exist (n, ε)-
extractors with s = O(log(log(u)/ε)). As mentioned in the introduction, much
research effort is currently directed towards explicit construction of such func-
tions.

Theorem 8.2 Suppose that r is a power of 2, E : U × {0, 1}s → {0, 1}t is
an (bn/2c, ε)-extractor, where ε = O(n/r), F ′ ⊆ (U → {0, 1}s) is strongly
(1+ ε)-universal, and F ′′ ⊆ (U → {0, 1}log(r)−t) is 2-universal. Then the family

F1 = {x 7→ E(x, f ′(x)) ◦ f ′′(x) | f ′ ∈ F ′, f ′′ ∈ F ′′} ⊆ (U → R)

where ◦ denotes bit string concatenation, is O(1)-dispersing.

8.3. Explicit constructions 115

Proof. Let S ∈ (Un). By the extractor property, the distribution of E(x, z) for
x ∈R S and z ∈R {0, 1}s is ε-close to uniform. We can therefore identify a set
B ⊆ {0, 1}t of “bad” points, such that |B| ≤ ε 2t and for i ∈ {0, 1}t\B and
x ∈R S we have:

Pr
z∈R{0,1}s

[E(x, z) = i] ≤ 2−t+1 . (8.6)

Also note that the distribution of E(x, f ′(x)) for x ∈R S and f ′ ∈R F ′ must
be γ-close to uniform for γ = O(ε). We choose f ′ ∈R F ′, f ′′ ∈R F ′′, set
h(x) = E(x, f ′(x)) ◦ f ′′(x), and bound the expected value of C(S, h):

E[C(S, h)] ≤ E[|{x ∈ S | E(x, f ′(x)) ∈ B}|]+
E[|{{x1, x2} ∈

(
S
2

) | h(x1) = h(x2) ∧ E(x1, f
′(x1)) 6∈ B ∧ E(x2, f

′(x2)) 6∈ B}|] .
(8.7)

For x ∈R S the first term is:

n Pr[E(x, f ′(x)) ∈ B] ≤ (γ + ε)n = O(n2/r) . (8.8)

For {x1, x2} ∈R

(
S
2

)
, the second term is:(

n
2

)
Pr[h(x1) = h(x2) ∧ E(x1, f

′(x1)) 6∈ B ∧ E(x2, f
′(x2)) 6∈ B]

=
(n
2

) ∑
i∈{0,1}t\B

Pr[E(x1, f
′(x1)) = E(x2, f

′(x2)) = i ∧ f ′′(x1) = f ′′(x2)]

≤ (n2) 2− log(r)+t+1
∑

i∈{0,1}t\B
Pr[E(x1, f

′(x1)) = E(x2, f
′(x2)) = i] .

(8.9)

To bound Pr[E(x1, f
′(x1)) = E(x2, f

′(x2)) = i] for i ∈ {0, 1}t\B we note that
the random choice {x1, x2} ∈R

(S
2

)
can be thought of in the following way: First

choose S1 ∈R

(S
bn/2c

)
and then choose x1 ∈R S1, x2 ∈R S\S1. By symmetry,

this procedure yields the same distribution. Since for any S1, we choose x1 and
x2 independently from disjoint sets of size at least bn/2c, we have:

Pr
f ′∈RF ′[E(x1, f

′(x1)) = E(x2, f
′(x2)) = i]

≤ (1 + ε) Pr
z1,z2∈R{0,1}s

[E(x1, z1) = E(x2, z2) = i]

= (1 + ε) Pr
z1∈R{0,1}s

[E(x1, z1) = i] Pr
z2∈R{0,1}s

[E(x2, z2) = i]

≤ (1 + ε) (n
bn/2c 2−t+1)2 .

(8.10)

The factor of n
bn/2c relative to (8.6) is due to the fact that x1 and x2 are sampled

from a fraction ≥ bn/2c
n of S. Plugging this into (8.9) we obtain:(

n
2

)
Pr[h(x1) = h(x2) ∧ E(x1, f

′(x1)) 6∈ B ∧ E(x2, f
′(x2)) 6∈ B]

≤ n2 2− log(r)+t 2t (1 + ε) (n
bn/2c 2−t+1)2

≤ 36 (1 + ε)n2/r = O(n2/r) .

(8.11)

Hence, the expected value of C(S, h) is O(n2/r), as desired. 2

116 Chapter 8. Dispersing hash functions

Corollary 8.3 Given an explicit (bn/2c, ε)-extractor E : U × {0, 1}s → {0, 1}t
with ε = O(n/r) and t = log n−O(1), there is an explicit O(1)-dispersing family
with sample complexity O(log(r log(u)/n) + s).

Proof. We use the construction of Section 8.3.1 for the universal families of
the above construction. The number of bits needed to sample f ′ ∈R F ′ is
O(log(2s log(u)/ε)) = O(s + log(r log(u)/n)). The number of bits needed to
sample f ′′ ∈ F ′′ is O(log(2log(r)−t log u)) = O(log(r log(u)/n)). 2

Of course, Theorem 8.2 and Corollary 8.3 are trivial in cases where the
O(1)-parameter of the dispersing family is bigger than n/λ = O(r/n). In these
cases we can get a nontrivial family by using Corollary 8.3 to obtain an O(1)-
dispersing family with range {1, . . . , r′}, where r′/r is a suitably large constant
power of 2. To get the family F with range R, simply cut away log(r′/r) bits
of the output. This only decreases sizes of images of sets by a constant factor,
which means that for h ∈R F and S ∈ (Un) the expected size of h[S] is still
Ω(n).

Explicit extractors

The best explicit extractor in current literature with the parameters required
by Corollary 8.3 has seed length s = O((log log(ur/n))3) [RRV99b]. For con-
stant ε (applicable when r = O(n)), the best known seed length is O(log log u+
(log log n)2+o(1)) [TSUZ01]. In particular, when log log u ≥ (log log n)2+Ω(1) this
gives a O(1)-dispersing family of hash functions with r = O(n) that has size
(log u)O(1), which is polynomial in the lower bound of Theorem 8.1.

8.3.3 Extractors from dispersing families

This section points out that nontrivial O(1)-dispersing families with range
{0, 1}log n are also (n, ε)-extractors for a constant ε < 1.

Proposition 8.2 Let {hz}z∈{0,1}s ⊆ (U → {0, 1}t), t = log n − O(1), be such
that for z ∈R {0, 1}s the minimum expected size of hz[S], for S ∈ (Un), is Ω(n).
Then E(x, z) = hz(x) is an (n, 1− Ω(1))-extractor.

Proof. Let S ∈ (Un). For x ∈R S and z ∈R {0, 1}s, let B ⊆ {0, 1}t consist of the
values i ∈ {0, 1}t for which Pr[hz(x) = i] < 2−t. We have:∑

i∈B

(2−t − Pr[hz(x) = i]) = 1−
∑

i∈{0,1}t

min{Pr[hz(x) = i], 2−t}

≤ 1−E[|hz [S]|]/2t = 1− Ω(1) .

This implies that the distribution of E(x, z) is (1− Ω(1))-close to uniform. 2

It should be noted that there is an efficient explicit way of converting an ex-
tractor with nontrivial constant error into an extractor with almost any smaller
error [RRV99a]. Unfortunately, this conversion slightly weakens other parame-
ters, so the problem of constructing optimal extractors with small error cannot
be said to be quite the same as that of constructing optimal dispersing families.

8.4. Applications 117

8.4 Applications

The model of computation used for our applications is a unit cost RAM with
word size w. We assume that the RAM supports dispersing families, i.e., given
the parameters of a dispersing family, a “function number” i and an input x,
it can compute fi(x) in constant time, where fi is the ith function from a
dispersing family with the given parameters and optimal sample complexity.
The RAM also has an instruction to generate random numbers.

8.4.1 Relational joins

Suppose we have two lists of at most nmachine words in total, each of which has
no duplicate elements. We consider the problem of identifying all elements that
occur in both lists. This task is known as a relational join, and is a fundamental
task in databases. Using a relational join one can also determine whether two
sets are identical, and whether one is a subset of the other.

Comparison-based algorithms for these problems require Ω(n log n) time,
and performing a relational join is easily reduced to sorting. The currently best
deterministic linear space sorting algorithm runs in time O(n log logn) [Han02].
Using randomization and universal hashing the time for relational joins can be
improved to O(n), expected, using linear space. The number of random bits
used for this is Ω(log n+ logw). We now show how to decrease the number of
random bits to O(logw), and still solve the problem in expected O(n) time and
linear space, using dispersing hash functions.

Pick a function h at random from a (n/ log n, n, n2, 2w)-dispersing family.
According to Theorem 8.1 there is such a family of size O(w), which means
that the sample complexity is O(logw) bits. The algorithm goes as follows.
First compute the function values under h for all elements in the two lists, and
sort the elements into buckets according to their hash function values. This
can be done in time O(n) using radix sort. All duplicates in buckets with at
most two elements can be identified by a linear time scan. We then list the
elements in buckets of size more than two, and sort them using an O(n log n)
time sorting algorithm. As a last step, we go through the sorted list and report
all duplicates.

The correctness of the algorithm is straightforward. It remains to be argued
that the expected running time is O(n). Let S1 and S2 be the two sets of
elements. For the sake of analysis let S′ be a set of n − |S1 ∪ S2| elements,
disjoint from S1 and S2. By definition of dispersing families, the expected size
of h[S1 ∪ S2 ∪ S′] is n − O(n/ log n). In particular, the number of elements in
the set S1 ∪ S2 that share their function value with another element in S1 ∪ S2

is O(n/ log n), expected. Since the elements in the two lists are distinct, this
means that the expected number of elements in buckets of size more than two
is O(n/ log n), meaning that the sorting step takes O(n) expected time.

118 Chapter 8. Dispersing hash functions

8.4.2 Element distinctness

We now consider the element distinctness problem for a list of n machine words.
Again, in a comparison-based model this problem requires time Ω(n log n), and
the problem can be reduced to sorting. As before, with universal hashing the
problem can be solved in expected linear time, and linear space. We show
how to decrease the number of random bits to O(logw), using dispersing hash
functions.

Again, pick h at random from a (n/ log n, n, n2, 2w)-dispersing family of size
O(w). Arguing as above, the expected size of h[S] is |S| − O(n/ log n), where
S is the set of machine words considered. Words involved in a collision are put
into a balanced binary search tree, each in time O(log n). Since no more than
2(|S|− |h[S]|) elements can be inserted before a duplicate (if any) is found, this
takes time O((|S| − |h[S]|) log n), which is expected O(n).

Remark. It would be interesting if the more general problem of determining
the number of distinct elements in a list of machine words (the set cardinality
problem), could be solved in a similar way. Possibly, a slightly stronger property
than dispersion is needed.

8.4.3 Static dictionary construction

The next problem considered is that of constructing a static dictionary, i.e., a
data structure for storing a set S ⊆ U = {0, 1}w , |S| = n, allowing constant
time lookup of elements (plus any associated information) and using O(n) words
of memory. The set is supposed to be given as an array of n distinct elements.
The best known deterministic algorithm runs in time O(n log n), see Chapter 6.
Randomized algorithms running in time O(n), can be made to use as few as
O(log n + logw) random bits [DfGMP92]. Here we will show how to achieve
another trade-off, namely expected time O(n logε n), for any constant ε > 0,
using O(logw) random bits.

Randomized universe reduction

Picking random functions from a (n/ log n, n, n2, 2w)-dispersing family of size
O(w), we can first reduce our problem to two subproblems: one within a
universe of size n2 and one with O(n/ log n) colliding elements. The set of
O(n/ log n) elements can be handled using the deterministic O(n log n) algo-
rithm. The set within a universe of size n2 is handled by an algorithm de-
scribed below. Note that when randomly picking the above hash functions,
there is a positive constant probability of finding one reducing the problem to
two subproblems with the desired parameters. Thus, the expected number of
attempts before suitable functions are found is constant. The expected number
of random bits needed to find a suitable reduction function is O(logw), and the
reduction takes linear expected time.

8.4. Applications 119

(2logk n

n

) −−−−→ (2logk−ε n

n

) −−−−→ . . . −−−−→ (2log1+ε n

n

) split−−−−→ (2logε n

·
)

y y(2logk n

n/ logε n

) −−−−→ (2logk−ε n

n/ logε n

) −−−−→ . . .y y
...(2logk n

n/ log n

)

Figure 8.1: Overview of subproblems for the deterministic dictionary construc-
tion algorithm.

A deterministic algorithm for “small” universes

By the above, we only need to deal with the case w ≤ 2 log n. However, we will
make the weaker assumption that w = logk n for some constant k. Let ε > 0

be arbitrary. We start with a (2logk−ε n

n logε n , n, 2
logk−ε n, 2w)-dispersing family of size

O(logO(ε) n). Running through the functions we find in time O(n logO(ε) n) a
function h such that |h[S]| ≥ n − n/ logε n. The size of h[S] can be found by
sorting in time O(n log log n) [Han02]. Now choose S1 ⊆ S maximally such that
h is 1-1 on S. We have reduced our problem to two subproblems: A dictionary
for S\S1 (which has size at most n/ logε n) and a dictionary for h[S1] (which is
contained in a universe of size 2logk−ε n). For the S1 dictionary, we need to store
the original elements as associated information, since h is not 1-1 on U . The
subproblems are split in a similar way, recursively. After a constant number
of steps (taking O(n logO(ε) n) time), each subproblem either has O(n/ log n)
elements or a universe of size at most 2log1+ε n. All the dictionaries for small
sets can be constructed in O(n) time using the O(n log n) algorithm. The small
universes can be split into n parts of size 2logε n. Using the O(n log n) algorithm
on each part takes total time O(n logε n). The “translations” using dispersing
functions are sketched in Figure 8.1.

We sum up our derandomization results as follows:

Theorem 8.3 On a unit cost RAM supporting dispersing families we can, us-
ing O(logw) random bits, expected, and space O(n):

• Perform relational join in expected time O(n).

• Solve the element distinctness problem in expected time O(n).

• Construct a static dictionary in time O(n logε n), for any constant ε > 0.

120 Chapter 8. Dispersing hash functions

8.4.4 An implicit dictionary

As a final application, we consider the implicit dictionary scheme of Fiat et
al. [FNSS92]. In an implicit dictionary, the elements of S are placed in an
array of n words. A result of Yao states that without extra memory, a lookup
requires log n table lookups in the worst case [Yao81]. The question considered
in [FNSS92] is how little extra memory is needed to enable constant worst case
lookup time. The information stored outside the table in their construction is
the description of (essentially) a universal hash function, occupying O(log n +
logw) bits. However, the only requirement on the function is that it is, say,
(2, n,O(n), 2w)-dispersing, so we can reduce the extra memory to O(logw) bits.
(This result was also shown in a follow-up paper [FN93], using an entirely
different construction.)

8.5 Existentially dispersing families

By the result of Section 8.2.1, we cannot expect C(S, h) ≤ λ/2 (or better) when
picking h at random from some family. But there are situations in which such
functions are of interest, e.g., in perfect hashing. This motivates the following
weaker notion of dispersion.

Definition 8.6 A family F ⊆ (U → R) is existentially (c, n, r, u)-dispersing
if, for any S ⊆ U , |S| = n, there exists h ∈ F with C(S, h) ≤ c λ, where λ is
given by (8.2). When parameters n, r and u follow from the context, we shall
use the term existentially c-dispersing.

Existentially 0-dispersing families are of course better known as perfect families.
It is well known that perfect hash function families have program size Θ(n2/r+
log n+log logr u) [Meh84] (i.e., the description of a perfect hash function requires
this number of bits). In this section we investigate the “nearly perfect” families
between existentially 0-dispersing and existentially 1-dispersing.

8.5.1 A dual tail bound

We will need a tail bound “dual” to the one in (8.3). Specifically, h is fixed to
some function, and we consider C(S, h) for S ∈R

(U
n

)
. We want to upper bound

the probability that C(S, h) ≤ cλ, for c < 1. First a technical lemma:

Lemma 8.2 Take 0 < c < 1 and k ∈ N with k < (1 − c)n2/4r. For any
h ∈ (U → R), when picking S ∈R

(U
n

)
we have

Pr[C(S, h) ≤ cλ] ≤ (5
2 n

2/ku)k + exp(−(1− c− 4 k r/n2)2 n2/8r) .

Proof. In this proof we will use the inequalities of Section 8.1 with various
values substituted for r, n and c (λ is a function of these). We use primed
variables to denote the substitution values.

We consider the random experiment in which n+k elements Y1, . . . , Yn+k are
picked randomly and independently from U . It suffices to bound the probability

8.5. Existentially dispersing families 121

of the event “|{Y1, . . . , Yn+k}| < n or |h({Y1, . . . , Yn+k})| ≥ n− c λ”, which oc-
curs with greater probability than C(S, h) ≤ c λ. (Given that |{Y1, . . . , Yn+k}| ≥
n, the sets of

(U
n

)
are contained in {Y1, . . . , Yn+k} with the same positive proba-

bility.) The probability that |{Y1, . . . , Yn+k}| < n is at most e−n2/4u(e (n+k)2

2 k u)k,
by use of (8.4) with parameters r′ = u, n′ = n+k and c′ = k/λ′. Since k < n/4,
we have the bound (5

2 n
2/ku)k.

To bound the probability that |h({Y1, . . . , Yn+k})| ≥ n − c λ, first notice
that without loss of generality we can assume the function values h(Yi) to be
uniformly distributed over R — this can only increase the probability. Now
(8.3) can be used with r′ = r, n′ = n + k and c′ = (cλ + k)/λ′ ≤ c + 4 k r/n2:
The probability of |h({Y1, . . . , Yn+k})| ≥ n−c λ is at most exp(−(1−c′)2λ′/2) ≤
exp(−(1− c− 4 k r/n2)2 n2/8r). 2

We can now show the dual tail bound, which also implies Lemma 8.1.

Lemma 8.3 Suppose 0 < c < 1, r ≤ (1−c)2

25 n2 and u ≥ 100
1−c r. For any h ∈

(U → R), when picking S ∈R

(U
n

)
we have

Pr[C(S, h) ≤ cλ] ≤ 2−
(1−c) n2

20 r + e−
(1−c)2n2

25 r < 1 .

In particular,
Pr[C(S, h) ≤ cλ] = 2−Ω((1−c)2n2/r) .

Proof. We choose a positive integer k ∈ ((1−c) n2

20 r ; (1−c) n2

10 r] and apply Lemma 8.2.

Since u ≥ 100
1−c r, we have (5

2 n
2/ku)k ≤ 2−k < 2−

(1−c) n2

20 r . By choice of k,

(1 − c − 4k r/n2)2/8 ≥ (1−c)2

25 . Finally, (1−c)2

25 n2/r ≥ 1, so the sum is at most
2−1 + e−1 < 1. The second inequality follows directly. 2

Proof of Lemma 8.1. Applying Lemma 8.3, we see that

Pr[C(S, h) ≤ 1+c
2 λ] < 2−

(1−c) n2

40 r + e−
(1−c)2 n2

100 r ≤ 21− (1−c)2 n2

100 r .

For this to be less than 1− 2c
1+c > (1− c)/2, it suffices that (1−c)2n2

100 r ≥ log(4
1−c).

The lemma follows by isolating r.

8.5.2 Program size of existentially dispersing hash functions

Given Lemma 8.3, a lower bound on the program size of existentially c-dispersing
families, for c < 1, follows.

Theorem 8.4 For any constant c, 0 < c < 1, there exist further constants
k1, k2, k3 > 0 such that for u ≥ k1 r and r ≤ k2 n

2, elements of an existentially
(c, n, r, u)-dispersing family F cannot be stored using less than

max(k3 n
2/r, logblog(u/n)/ log(2 r/n)c) bits.

122 Chapter 8. Dispersing hash functions

Proof. Take k1 = 100/(1 − c), k2 = (1 − c)2/25. Then by Lemma 8.3 there
exists k3 > 0 such that any function h ∈ (U → R), less than a fraction 2−k3 n2/r

of S ∈ (Un) has C(S, h) ≤ n cλ. Since for each S ∈ (Un) there must be a function
h ∈ F with C(S, h) ≤ cλ, we must have |F | ≥ 2k3 n2/r.

The lower bound of logblog(u/n)/ log(2 r/n)c stems from the observation
that S in the lower bound proof of Section 8.2 is constructed to have an image
of size at most n/2 for blog(u/n)/ log(2 r/n)c arbitrary functions. 2

The bound of the theorem is within a constant factor of the upper bound
on the size of perfect families when r = O(n2/ log n). On the other hand, for
r >

(n
2

)
and c < 1, a c-dispersing family must be perfect, so the two notions

coincide. So, except possibly for the range n2/ log n < r <
(n
2

)
, being “nearly

perfect” is nearly as hard as being perfect.

8.6 Open problems

The most obvious open problem is to find explicit dispersing families of close
to minimal size for a wider range of parameters. As shown in Section 8.3.2,
explicit O(1)-dispersing families with optimal sample complexity will follow if
optimal extractors are constructed, and such families are themselves extractors
with nontrivial error. The issue of constructing explicit c-dispersing families
with parameter c close to r/n is interesting in view of the derandomization
applications given in Section 8.4.

Another issue is that only quite weak lower bounds are known on the size
of existentially c-dispersing families for c > 1. The best upper bounds are
the same as for c-dispersing families, but can existentially dispersing families
be even smaller? If so, complete derandomizations such as the dictionary con-
struction algorithm in Section 8.4.3 could be made faster by employing a smaller
existentially dispersing family.

8.7 Appendix: Universality proof

This appendix gives a proof of strong (1 + ε)-universality, for arbitrarily small
ε > 0, of a small explicit family of functions. To the knowledge of the author,
such a proof never appeared explicitly in the literature. However, the proof is
along the lines of the universality proof in [FKS84].

Theorem 8.5 For 0 < ε ≤ 1 and m ≥ 24 r2 log(u)/ε the family

Fsu = {x 7→ ((t x+ s) mod p) mod r | m/2 ≤ p ≤ m, p prime, 0 ≤ s, t < p}
is strongly (1 + ε)-universal.

Proof. (Sketch) For any a, b ∈ R and x, y ∈ U , where x 6= y, and h ∈R Fsu

we must show that we have Pr[h(x) = a ∧ h(y) = b] ≤ (1 + ε)/r2. So pick a
random prime p in the range m/2 to m and s, t ∈R {0, . . . , p − 1}. According
to the prime number theorem, p divides x y |x− y| with probability at most

ln(u3)/ ln(m/2)/(m/ ln(m)/3) < 12 log(u)/m ≤ 1/2r2

8.7. Appendix: Universality proof 123

using m > 4. With probability at most 2/m ≤ 1/4r2, parameter t is zero.
Hence, with probability at least 1 − 3ε/4r2 we have that p does not divide
x y |x− y| and t 6= 0.

Conditioned on this, x and y are distinct nonzero numbers in Zp, and hence
the values t x + s and t y + s are independent and uniformly distributed in
Zp. This means that the probability that h(x) = a and h(y) = b is at most
dp/re2/p2 ≤ 1/r2+2/pr+1/p2 ≤ (1+r/p+(r/p)2)/r2 < (1+ε/4)/r2. Summing
up, the chances of h(x) = a and h(y) = b are at most (1 + ε)/r2, as desired. 2

Chapter 9

On the cell probe complexity of

membership and perfect hashing

In this chapter we consider two fundamental static data structure problems,
Membership and Perfect Hashing, in Yao’s cell probe model [Yao81]. In
this model, a data structure is a numbered sequence of s “cells”, each contain-
ing an element of {0, 1}b, for a positive integer parameter b. The worst case
complexity of a query is the number of cells that a deterministic algorithm needs
to probe to answer it, in the worst case over all possible data, for the optimal
choice of data structure, in the worst case over all queries. In this chapter we
mainly consider worst case cell probe complexity, but we will mention some
results on average and expected case complexity. For positive integer x define
[x] = {1, 2, . . . , x}. We state the problems as follows.

Membership(u, n, s, b):

Given a set S ⊆ [u], |S| = n ≤ u/2, use a data structure with s cells of b bits
to accommodate membership queries for x ∈ [u] (“Is x in S?”).

Perfect HashingH(u, n, r, s, b):

Suppose H is a family of functions from [u] to [r]. Given a set S ⊆ [u], |S| =
n ≤ r ≤ u/2, store a perfect hash function for S, i.e., a function f ∈ H that is
1-1 on S, in a data structure with s cells of b bits, and accommodate function
value queries for x ∈ [u] (“What is the value of f on x?”).

Informally, a membership query determines whether an element is present
in a certain subset of [u], and a perfect hashing query can provide a pointer
to where associated information is located (by 1-1ness the location of this in-
formation is unique to the element). Frequently, one considers the “combined”
problem, that is, to design a data structure that on query x answers whether
x ∈ S, and if so, returns the value of a perfect hash function pointing to some
“satellite information” unique to x. This problem will be referred to as Dic-

tionaryH(u, n, r, s, b).
We are particularly interested in the cases b = 1, where cell probes are

referred to as bit probes, and b = log u, where cells are referred to as words.
(For simplicity we assume that u is a power of 2.) We pay special attention to
Perfect Hashing in the case r = n, referred to as “minimal perfect hashing”.

125

126 Chapter 9. Cell probe complexity of membership and perfect hashing

Very efficient data structures exist for most instances of the two problems.
Our interest lies in an exact understanding of how efficient the query algorithms
can be. The cell probe model ignores the cost of computation, but as random
memory accesses in real hardware are becoming orders of magnitude slower
than computational instructions, it focuses on a main practical bottleneck. The
precise space usage is of secondary concern, though our data structures use
within a constant factor of minimum space for most parameters.

9.1 Background

Membership

The minimum number of bits with which it is possible encode a Membership

data structure is sm(u, n) = log
(
u
n

)
= Θ(n log(u/n)). (When the parameters

are understood we will simply write sm.) We do not consider data structures
of size less than one cell, so a space optimal data structure is one that occupies
O(sm/b+ 1) cells.

The average case bit probe complexity of Membership was studied by
Minsky and Papert in the book Perceptrons [MP69, Sect. 12.6], where it is
shown that a constant number of bit probes suffice on average over all queries.
The study of randomized (Monte Carlo) bit probe complexity, where the query
algorithm makes coin flips and is allowed some error probability, was initiated
recently by Buhrman et al. [BMRV00]. Notably, one can get two-sided error
probability ε using one bit probe and O(n

ε2
log u) bits of space (which is O(sm)

for constant ε > 0 and u = n1+Ω(1)). The scheme is nonexplicit, that is, it is not
shown that there are efficient (polynomial time) procedures for constructing the
data structure and carrying out queries. Ta-Shma [TS] has given an explicit
version of the construction using space n · 2O((log log u)3).

Buhrman et al. were also the first to study directly the worst case bit probe
complexity of Membership. They showed a lower bound of Ω(log(u/n)) bit
probes for space O(sm), matching the O(log u) upper bound of Fredman et
al. [FKS84] for u = n1+Ω(1). More generally, the space required when using t
bit probes was shown to be between (u/n)Ω(1/t)nt and uO(1/t)n log u. The upper
bound is nonexplicit; explicit schemes using few bitprobes have been considered
by Radhakrishnan et al. in [RRR01], resulting in a scheme using O(log log n)
bit probes and O(u log n/2logn u) bits of space.

In addition, Buhrman et al. considered the adaptivity of (deterministic)
membership query algorithms, that is, the way in which probe locations de-
pend on the results of previous probes. Surprisingly, adaptivity does not help
in general, as space O(n log u) and O(log u) bit probes can be achieved by a
nonadaptive scheme, i.e., where all probe locations are determined by the query
element. Again, this scheme is not explicit; Ta-Shma’s explicit construction [TS]
uses space n ·2O((log log u)3) and 2O((log log u)3) bit probes for nonadaptive queries.

Motivated by applications of storing a set of machine words on real world
computers, upper bounds on the RAM (and hence the word probe) complexity
of Membership are of considerable interest. Two seminal papers dealing with
this subject are among the most cited in the data structures literature: Carter

9.1. Background 127

and Wegman [CW79] gave a randomized data structure of O(n) words, that uses
O(1) word probes per operation, expected, even permitting dynamic changes
to the set stored. Fredman, Komlós and Szemerédi [FKS84] showed that O(1)
word probes suffice in the worst case for data structures of O(n) words. If u
is sufficiently larger than n, three word probes suffice, the first one to a fixed
location. The space usage has since been lowered to sm+o(sm) bits (see [BM99]
and Chapter 5) at the cost of a large constant number of word probes.

Perfect hashing

A space optimal data structure for Perfect Hashing uses sph(u, n, r) =
Θ(n2/r + log n + log logr u) bits. (When the parameters are understood we
will simply write sph.) Apart from the trivial log n lower bound, a proof of
this can be found in e.g. [Meh84, III.2.3]. In this chapter we will be concerned
mainly with the case r = O(n), for which sph = Θ(n+ log log u). It is optimal
to use O(sph/b+ 1) cells of memory.

The data structure of Fredman et al. [FKS84] is in fact a hash table along
with a solution to Perfect HashingH(u, n,O(n), O(n), log u) requiring (for u
large enough) two cell probes, one of which is to a fixed location. An efficient
scheme for Perfect HashingH(u, n, n,O(n), O(log n+log log u)) (i.e., minimal
perfect hashing) using two cell probes is presented in Chapter 3, where it
was also shown that one cell probe schemes are impossible for b = o(n

1+n2/u
).

Schmidt and Siegel [SS90b] presented a coding scheme for essentially the perfect
hash function in [FKS84], using space O(sph) for r = n. The construction can
be extended to give space O(sph) for r = O(n2/ log2 n). A space bound of
sph + o(sph), still with constant evaluation time, was obtained for minimal
perfect hashing by Hagerup and Tholey in [HT01]. The number of cell probes,
as well as the constant hidden in the order notation, is quite high for these
space optimal schemes, so they are mainly of theoretical interest.

The bit probe complexity of perfect hashing does not seem to have been
studied directly before. An upper bound of O(log n + log log u) bit probes
follows directly from the Schmidt-Siegel construction [SS90b].

In a relaxation of perfect hashing considered by Schmidt and Siegel [SS90b],
an “oblivious t-probe hash function” computes a set of t values, one of which
(for appropriate arrangement of the set in a table) is the location of the input
if it is in the set. It was shown that n/2O(t) bits are needed to represent
such a function, in the case r = n. However, it is mentioned that there is
a probabilistic argument showing O(log n + log log u) bits to suffice when r =
(1+Ω(1))n, for some constant t. Such probabilistic arguments appear explicitly
in [ABKU99,CS97], in the context of “balanced allocations”. In our context,
a result of [CS97] implies that there exists a family of oblivious 4-probe hash
functions for hash tables of size 2n, whose functions can be stored in O(log n+
log log u) bits.

128 Chapter 9. Cell probe complexity of membership and perfect hashing

9.2 This chapter

This chapter contains a collection of results on the cell probe complexity of
membership and perfect hashing, as summarized in the remainder of this sec-
tion.

Membership

We prove in Section 9.3.1 that the bit probe lower bound of Buhrman et
al. [BMRV00] is tight, by giving an explicit Membership scheme that uses
O(log(u/n)) bit probes and space O(sm). The construction makes use of a
bounded concentrator, which is a weak expander graph.

As for word probe complexity, we show in Section 9.3.2 that if one wants
to use O(n) words of space, and if u is not too small in terms of n, schemes
probing two words essentially require a perfect hash function with linear range
to be storable in one word. In particular, such schemes are only possible when
u = 2Ω(n). Thus, there is no hope of improving the word probe count of three
achieved by the scheme of Fredman et al. [FKS84].

In Section 9.3.3 we investigate the previously mentioned comment of Schmidt
and Siegel [SS90b] in the case k = 2, for which the results in [ABKU99,CS97]
do not say anything. The result is a scheme that is an improvement of [FKS84]
in that it allows for parallelism in the word probes: After the first (fixed) probe,
the two last probes can be determined and carried out in parallel. Additionally,
our scheme works also in the case where u is not much larger than n, and uses
space O(sm), unless u is close to n. The improved parallelism seems interesting
from a practical point of view, as CPU pipelining could potentially decrease
the time relative to the case of adaptive probes by a factor of nearly two. In
case the data structure resides in external memory, split to multiple disks, any
item can be retrieved in one parallel I/O, using minimal internal memory. Our
scheme is explicit when u ≥ nβ log n, for a constant β, in which case the first
probe can be used to read a function from a (nearly) O(log n)-wise independent
family. By increasing the number of fixed word probes to O(log n), which can
be argued to be practical, for example in the case of external memory, we get
an explicit scheme in all cases.

Perfect hashing

We show in Section 9.4.1 that the bit probe complexity of the Schmidt–Siegel
scheme is optimal for Perfect HashingH(u, n, r = n,O(sph), 1), i.e., the bit
probe complexity of minimal perfect hashing, using optimal space, is Θ(log n+
log log u).

In Section 9.4.2 we give an alternative space optimal scheme, conceptually
much simpler than that of Schmidt and Siegel, that can be implemented with
just one adaptive cell probe reading less than log n bits. The scheme is non-
explicit, but can be made explicit using (nearly) O(log n)-wise independence,
increasing the number of bits read in fixed cell probes from O(log n+ log log u)
to O(log2 n+ log log u).

9.3. Membership 129

In Section 9.4.3 we turn the attention to range size r > n, showing that one
adaptive bit probe suffices for r = O(n), using minimal space and O(log n +
log log u) fixed bit probes. Again, this scheme is nonexplicit, but can be made
explicit at the cost of increasing the number of fixed bit probes by O(log2 n).
The explicit scheme is much simpler than previous perfect hash functions using
minimal memory. We also show that such a scheme is not possible for r <
(log e− Ω(1))n, no matter how much space is used. If one wants range r = n,
Ω(log log n) adaptive bit probes are required in general.

Finally, in Section 9.4.4, we consider query schemes with no adaptivity, and
show that for u = 2Θ(n), a constant fraction of any space minimal Θ(n)-bit data
structure must be read to determine the function value. Recall that O(log n+
log log u) = O(log n) bit probes, of which just one is adaptive, is enough. This
appears to be the first problem for which an exponential separation between
adaptive and nonadaptive query schemes has been shown. Note that no super-
exponential separation can exist, as any adaptive t bit probe scheme can be
converted to a nonadaptive 2t−1 bit probe scheme. It is interesting to compare
this to the fact that Membership has efficient nonadaptive query schemes.

Notation

For convenience, we introduce a notation for expressing the adaptivity of a
query algorithm. An (a0, a1, . . . , am)-probe query scheme is one that:

1. Starts by performing a0 fixed cell probes, not depending on the input
(this is the 0th round).

2. In the ith round, for i = 1, . . . ,m, makes ai probes to cells determined by
the input and by the outcomes of probes in previous rounds.

9.3 Membership

9.3.1 Tight bit probe bound

In this section we present an explicit Membership scheme that has optimal
space and bit probe complexity. It can be thought of as a “generalization” of
bit vectors that is space efficient even for sparse sets. In fact we give a trade-off
between the number of bitprobes and the space usage. The data structure also
allows Perfect HashingH(u, n, r,O(sm), 1) queries in O(log(u/r)) cell probes,
for r/n larger than some constant, i.e., it solves the Dictionary problem.

Theorem 9.1 There exists a constant β such that for r > βn there is a
function family H with an explicit DictionaryH(u, n, r,O(n log(u/r) + r), 1)
scheme having cell probe complexity O(log(u/r)).

Proof. Our scheme is recursive. It uses a data structure of O(n) bits that
specifies a superset of S and a 1-1 mapping from this superset to [u′], where
u′ is a constant factor smaller than u. A constant number of bit probes suffice
to determine if the query element is not in the superset, in which case we can

130 Chapter 9. Cell probe complexity of membership and perfect hashing

immediately return a valid answer. If the query element is in the superset, its
mapping can be computed by probing O(1) bits. We thus either terminate or
get a new Dictionary problem for a set S′ ⊆ [u′] (using that each element of
[u′] corresponds to exactly one element in [u]).

The recursion ends after O(log(u/r)) steps when the set is contained in [r],
and a perfect hash function value is simply the identity function. A bit vector
of length r can be used to determine membership in S.

The essential ingredient in our solution is a family of bounded concentrators,
which are constant degree bipartite graphs with x vertices on the left, at most
θx vertices on the right, for constant θ < 1, having the property that any set P
of up to x/2 left hand vertices can be matched to |P | vertices on the right hand
side. Simple, explicit constructions of bounded concentrators exist [GG81]. We
denote left hand vertices by p1, . . . , px and right hand vertices by q1, . . . , qy,
where y ≤ θv, and assume some fixed ordering of the neighbors of each vertex.

If u ≤ 4n
1−θ the recursion is stopped. Otherwise we construct a data structure

as follows: Split [u] into x = 2n parts U1, . . . , Ux of size at most du/2ne, and
consider the set P = {pi | S ∩ Ui 6= ∅} which has size at most n = x/2. By
definition of a bounded concentrator, the vertices of P can be matched to a set
Q ⊆ {q1, . . . , qy}. Suppose that pi ∈ P is matched to its kth neighbor. Then we
write the O(1) bit number k as entry i of a 2n-element table T . Table entries
of vertices not in P are set to a special value.

An element µ ∈ Ui is in the abovementioned superset if and only if pi ∈ P .
In this case we map µ to an element in [u′], where u′ = ydu/2ne, as follows: If pi

is matched to qj, map µ to f(x) = jdu/2ne− rankUi(x), where rankUi(x) is the
number of x in some fixed numbering 0, . . . , du/2ne− 1 of Ui. By the matching
property, no other element of [u] maps to f(x). Note that u′/u ≤ 1+θ

2 = 1−Ω(1),
as desired. 2

Corollary 9.1 The cell probe complexity of Membership(u, n,O(sm), 1) is
Θ(log(u/n)).

Proof. The upper bound follows by Theorem 9.1 by setting r = O(n). The
lower bound was shown in [BMRV00]. 2

It can be noted that a constant fraction of all possible queries are resolved at
each step. Thus, O(1) probes suffice on average over all queries, so our scheme
is optimal also with respect to average case complexity. If we consider just
queries for elements in S, the lower bound of [BMRV00] extends to show that
Ω(log(u/n)) bit probes are needed on average.

9.3.2 Two word probes do not suffice

Yao [Yao81] studied Membership in a model where the query algorithm first
looks up b = log u fixed bits, and then, in a table of length s, probes a single
word containing some element of S, answering “yes” if it is equal to the input.
He observed that for this problem to be solvable there has to be a size u perfect
family of hash functions with range [s]. Hence, such two-probe schemes are

9.3. Membership 131

possible only if u ≥ 2sph(u,n,s). In the cell probe model there is no restriction on
the contents of the second word probed, or on how it is interpreted. However,
for the case where u is not too close to n or s, we show that again, such a
scheme is not possible unless u = 2Ω(sph(u,n,s)). The lower bound carries over to
the case where the first word probe is not necessarily fixed, meaning that the
Membership scheme of Fredman et al. [FKS84], that probes three words, is in
general word probe optimal among schemes using O(n) words.

Theorem 9.2 For any constants ε > 0 and k ∈ N, if u > s1+ε2εb, s ≥ n, and
Membership(u, n, s, b) has a (k, 1)-probe query scheme, then b = Ω(sph(u, n, s)).

Proof. We employ a “volume bound” similar to the lower bound for the program
size of perfect hash functions in [Meh84]. More specifically, we bound the
number of sets that be accommodated for each of the 2kb possible bit patterns
read in the k fixed probes. This turns out to be a very small fraction of all
n-subsets, giving a lower bound on kb.

Without loss of generality we assume that s ≥ 2n. Fix a kb-bit pattern,
and let S1, . . . , Sl ⊆ [u] be the n-subsets for which this bit pattern is used. For
each i ∈ [s], let Ui ⊆ [u] be the set of elements for which the query algorithm
uses the adaptive probe to probe cell i. Since a cell can contain 2b different bit
patterns, the set {Ui ∩ Sj | j ∈ [l]} can have size at most 2b. We will use this
to get an upper bound on l.

For a positive integer m to be determined later, let F be the family of
functions f : [s] → {0, . . . ,m} for which σf

def=
∑s

i=1 f(i) ≤ n. The following
fact is easily shown by induction on m.

Fact 9.1 There are at most
(s
n

)
nm functions in F .

For any Sj, j ∈ [l], there is a function in F for which f(i) = |Sj ∩ Ui|
if |Sj ∩ Ui| ≤ m and f(i) = 0 otherwise. We bound the number of sets by
summing over all functions in F , and the number x of indices i ∈ [s] for which
|Sj ∩ Ui| > m. Given x and f ∈ F there are

(
s
x

)
possible ways of choosing

these indices. At most 2bx possible sets can be specified by the contents of
the corresponding cells, and no more than

∏s
i=1 |Ui|f(i) different sets can be

specified by the remaining cells. Thus we have

l <
∑

0≤x< n
m

∑
f∈F

σf≤n−mx

(
s

x

)
2bx

s∏
i=1

|Ui|f(i)

<
∑

0≤x< n
m

sx

(
s

n

)
nm 2bx

(u
s

)n−mx

< nm

(
s

n

)(u
s

)n∑
x≥0

(
sm+12b

um

)x

.

The second inequality uses convexity, i.e., that the sum is maximized when
the |Ui| are equal. For suitable m = O(1/ε) the last sum is bounded by 2. In
conclusion, we must have kb > log

(u
n

)− log
(
2nm

(s
n

) (
u
s

)n) = Ω(n2/s−m log n),

132 Chapter 9. Cell probe complexity of membership and perfect hashing

where the last bound is derived as in [Meh84]. By the bit probe lower bound
of [BMRV00], and since u > n1+ε, we must have kb = Ω(log u). Together, these
bounds give the desired bound b = Ω(n2/s+ log logs u). 2

Corollary 9.2 For any constant δ > 0, if u > s2+δ, s ≥ n, and Member-

ship(u, n, s, log u) has a (0, 1, 1)-probe query scheme, then u = 2Ω(sph(u,n,s)).

Proof. For some set of queries U ⊂ [u] of size at least u/2s > s1+δ/2, and
size a power of two, the query algorithm probes the same first word. We can
apply Theorem 9.2 with ε = Ω(δ) to this set. Finally note that sph(|U |, n, s) =
Θ(sph(u, n, s)). 2

9.3.3 Two parallel adaptive word probes suffice

In this section we show the existence of a Membership scheme whose query
algorithm on input x probes one fixed word, containing a description of two
functions f0 and f1, and then probes indices f0(x) and f1(x) independently in
two linear size tables. The set contains x if and only if it is found in one of the
two adaptively probed words. The locations of elements also define a perfect
hash function, so we have a scheme for Dictionary. Our result is summarized
in the below theorem.

Theorem 9.3 There is a function family H such that DictionaryH(u, n, r =
O(n), O((sm + n log logn)/ log u), log u) has a (1, 2)-probe query scheme. The
scheme can be made explicit for u ≥ nβ log n, where β is a constant.

Note that the n log log n term is only significant for u ≤ n(log n)o(1). Our
hash functions will be taken from families that are “nearly k-wise independent”
in the sense of (c, k)-universality.

Definition 9.1 A family {φi}i∈I of functions φi : [u] → [r] is (c, k)-universal
if, for any k distinct elements x1, . . . , xk ∈ [u], any y1, . . . , yk ∈ [r], and i ∈ I
chosen uniformly at random, Pr[φi(x1) = y1, . . . , φi(xk) = yk] ≤ c/rk.

Analysis

Let c be any constant, and let f0, f1 : [u] → [r] be functions chosen indepen-
dently at random from a (c, k)-universal family. (Constructions of such families
can be found, for example, in [Sie89].) We claim that for any ε, 0 < ε < 1,
range r ≥ (1 + ε)n and k > 2 log(r)/ε suffice to make it possible, with high
probability, to arrange the elements of S in two tables such that for all x ∈ S,
x resides in either cell f0(x) of table number one, or cell f1(x) of table number
two.

Suppose that no arrangement is possible. By Hall’s theorem [Hal35] this
means that there is a subset S′ ⊆ S such that |f0[S′]|+ |f1[S′]| < |S′|. Assume
S′ to be a set of minimum size for which the inequality is satisfied, and consider
the bipartite graph with left vertices labelled by [r], right vertices labelled by [r],

9.3. Membership 133

and edge multiset {(f0(x), f1(x)) | x ∈ S′}. As the number of edges is greater
than the number of non-isolated vertices, |f0[S]|+ |f1[S]|, there are at least two
vertices of degree 3 or one of degree at least 4, and by minimality of S′ there
can be no vertex of degree one. Thus, starting and ending in a vertex of degree
more than two, we can form a path of w ≥ 3 edges through at most w − 1
vertices. We call such a path a w-witness.

Even in the graph with edge multiset {(f0(x), f1(x)) | x ∈ S}, a w-witness
is unlikely to exist for any w. We first consider the case w ≤ k. There at at
most w2rw−1 possible w-witnesses. By (c, k)-universality, any configuration of
w ≤ k edges has probability at most c2/r2w. Thus, the expected number of
such w-witnesses is at most

k∑
w=3

w2rw−1nwc2r−2w =
c2

r

k∑
w=3

w2(n/r)w <
13 c2

εr
.

For w > k > 2 log(r)/ε we consider a subgraph of a w-witness, namely a path
of k edges through at most k+1 vertices. Again, such a graph is not very likely
to occur in {(f0(x), f1(x)) | x ∈ S}. The expected number of such paths is
bounded by

rk+1nkc2r−2k = c2r(n/r)k < c2r(1 + ε)−2 log(r)/ε < c2/r .

The above shows that for r larger than some constant (dependent on c and ε),
the probability that a randomly chosen pair of functions from a (c, k)-universal
family does not work for a particular set is smaller than 1/3.

To get a family of pairs of functions where a pair can be described in one
word, we use a probabilistic construction. Consider a family of u independently
and randomly chosen function pairs from a (c, k)-universal family. For any set,
the probability that none of these pairs works is less than 3−u. Hence, with
overwhelming probability there is a good pair for any set. Enumerating the
pairs of any good family, the appropriate pair can be described in one word.
(In fact, a family of size log

(u
n

) ≤ n log u, and hence log n+ log log u fixed bits,
would suffice.) For constant n, one can easily get a (1, 1)-probe query scheme,
using universal hashing [CW79] to a table of size O(n2).

An explicit construction where the function pair can be described using
O(log2 n + log log u) bits is arrived at as follows. First use a function from a
(O(1), 2)-universal family the map S injectively to a set S′ ⊆ [u′], where u′ =
O(n2). A function from such a family can be described in O(log n + log log u)
bits. Then use a (c, k)-universal family from [u′] to [r] as described above. Two
functions from such a family can be described in O(k log u′) = O(log2 n) bits.
When u ≥ nβ log n for a suitable constant β, all function descriptions fit in one
word of log u bits.

If one increases space to n1+ε words, the analysis can be performed using
(O(1), O(1))-universal hash functions, giving explicit constant time schemes on
the RAM.

Bibliographical remark: The above argument shares some features with an
analysis of Karp et al. [KLMadH96] that looks at the same random graph,

134 Chapter 9. Cell probe complexity of membership and perfect hashing

with slightly different parameters, in connection with PRAM simulation. It is
different from those in [ABKU99,CS97], which do not seem to go through with
less than n-wise independence.

Reducing space

As stated, the scheme uses O(n log u) rather than O(sm +O(n log log n)) bits of
space. This means that we have to asymptotically reduce the space usage when
u ≤ n(log n)o(1). The tool used for this is called quotienting (see Chapter 5
and [Knu98, Exercise 6.4.13]): Rather than explicitly storing elements of [u]
in the hash tables, the element in cell i is represented relative to the subset of
[u] hashing to i. If the hash functions used have the property of mapping [u]
evenly to [r], this saves an optimal log r − O(1) bits per hash table entry. To
benefit from the decrease in the number of bits needed, one packs the largest
possible number of table elements into each cell.

Known constructions of (c, k)-universal families map O(ku/r) elements to
each value in [r], giving a savings of log(r/k)−O(1) bits per cell. In particular,
for k = O(log n) this yields a space usage of O(n log log n) bits more than the
information theoretical minimum.

Construction algorithm

We have not described how to compute the positions of set elements in the
tables. As it is a matching problem, it can clearly be done in polynomial time.
However, there are only two possibilities for each element, so the problem can
be solved in expected linear time by a simple reduction to 2-sat.

We create one variable vx for each element x ∈ S, and clauses stating that
there is no collision for each pair of elements with the same value under f0 or g:

vx ∨ vy for all x, y ∈ S where x 6= y and f0(x) = f0(y)

v̄x ∨ v̄y for all x, y ∈ S where x 6= y and f1(x) = f1(y)

If a (O(1), 2)-universal family is used (as above), the expected number of clauses
is O(n). A linear time 2-sat algorithm is outlined in [EIS76].

Related hashing schemes

It is interesting to compare our scheme to open addressing hashing schemes.
Such schemes evaluate a fixed sequence of hash functions to determine which
cells to probe. Dynamic insertions are done greedily, i.e., by inserting the
element in the first available cell probed. It was shown by Yao [Yao85] that
for such schemes, under the assumption of truly random hash functions, the
expected average number of probes to perform a lookup of an element in the
table is at least 1

α ln 1
1−α − o(1), where α denotes the ratio between the number

of elements and the table size. In our scheme α ≈
1
2 , so for large enough n

and small ε, the expected number of probes is at least 2/ ln(2) − ε ≥ 1.38. By
randomly deciding which table to look in first, we can get an expected probe

9.4. Perfect hashing 135

count of 1.5, and at the same time guarantee that no more than two probes are
needed, as opposed to the Ω(log n) expected worst case for open addressing.

Our scheme is related to a dynamic hashing strategy called 2-way chain-
ing [ABKU99]. It is a variant of chained hashing in which two hash functions
are used, call them f0 and f1. Insertion of an element x is performed in the
shortest of chain number f0(x) and chain number f1(x). Under the assumption
of totally random hash functions it was shown in [ABKU99] that the expected
maximal chain length for this scheme is O(log log n), with a low constant. This
can also be shown to be true for O(log n)-wise independent families.

9.4 Perfect hashing

9.4.1 Tight bit probe bound for minimal range

A natural question is whether Theorem 9.1 can be extended to DictionaryH(u,
n, r = n,O(sm), 1), i.e., to supply a minimal perfect hash function. We answer
this question negatively by showing that, no matter how much space is used,
blog nc bits must be probed. In fact, we show that the bit probe complexity
achieved in [SS90b] is optimal.

Theorem 9.4 There exists a function family H such that the cell probe com-
plexity of Perfect HashingH(u, n, r = n, s = O(sph), 1) is O(log n+log log u).
Conversely, for n ≥ 2 and every function family H the cell probe complexity of
Perfect HashingH(u, n, r = n, s = O(sph), 1) is Ω(log n+ log log u).

Proof. As mentioned, the upper bound was shown in [SS90b]. As for the lower
bound, we first show that the cell probe complexity is at least blog nc. Suppose
to the contrary that for some function family H, Perfect HashingH(u, n, r,
s, 1) has cell probe complexity t ≤ log(n)− 1. Each element x ∈ [u] can map to
at most 2t different values in [r], in total for all functions in H. Furthermore,
there can be no set of n elements that map only to a set of n− 1 values in [r].
As each set of 2t values lies within

(r−2t

n−1−2t

)
sets of size n − 1, the size of the

universe must be less than n
(r
n−1

)
/
(r−2t

n−1−2t

)
= n r/(n− 2t) ≤ 2r. But this can

not be the case by the problem definition.
Now we turn to a lower bound in terms of u. For each x ∈ [u] there is

a decision tree specifying how to perform the sequence of probes and which
hash value to return in every case. The number of possible decision trees is
bounded by (sn)2

t
, and there cannot be two elements with the same decision

tree, as these would hash to the same value for every function in H. Hence,
u ≤ (sn)2

t
= n2t+1

and thus t ≥ log logn(u) − 1. As we need consider only the
case u > 2n, this yields the desired bound. 2

9.4.2 Minimal range using one adaptive cell probe

A simple nonexplicit scheme, seemingly not described in the literature, achieves
optimal space and bit probe performance, looking only at bits from one fixed
and one adaptively determined word. First note that sets of constant size can

136 Chapter 9. Cell probe complexity of membership and perfect hashing

be handled using universal hashing to a quadratic size table containing function
values. For n larger than a suitable constant we can use the following properties
of random functions:

• A random function ρ : [u] → [2n2] is 1 − 1 on S with probability more
than 3/4.

• For some r = O(n/ log n), the following holds for a random function
h : [2n2]→ [r].

– h maps no more than 1
6 log n elements of ρ[S] to each value in [r],

with probability at least 7/8.

– The number of elements of ρ[S] mapping to [i] is within n2/3 of the
expectation in/r for all i ∈ [r] with probability at least 7/8.

Picking ρ from an (O(1), 2)-universal family, and h from an (O(1), O(log n))-
universal family in fact also achieves the above, by results in [FKS84] and [SSS93,
Theorem 2.5].

In summary, a randomly chosen pair of functions (h, ρ) has all the above
properties for fixed S with probability more that 1/2, As in Section 9.3.3 we
can now argue that there exists a family of log

(u
n

)
pairs of functions so that

for any set S of size n there is a pair with the properties. Our query algorithm
can thus read the description of such a pair (h, ρ) using one word probe. For
i ∈ [r], let Bi = {ρ(x) | x ∈ S, h(ρ(s)) = i}. In the second probe, the query
algorithm reads cell j = h(ρ(x)) of a table that contains:

• The deviation of
∑

i<j |Bi| from bin/rc, using d23 log ne bits.

• A minimal perfect hash function hj : [2n2] → [|Bj |] for Bj, using at
most b13 log nc bits. (This can be done for large enough n by Mehlhorn’s
bound [Meh84, III.2.3], see [HT01] for an explicit function.)

Clearly this information fits one word and suffices to compute a minimal perfect
hash function values.

If log u is much larger than log n, the space usage of the scheme as described
is not very good. Again, by packing the largest possible number of table entries
into each word, we can make sure that at least half of the bits in each cell are
utilized. With this modification a space optimal scheme is obtained.

We can get an explicit construction in the case u ≥ nβ log n, where β is a suit-
able constant, using exactly the same technique as for the explicit construction
in Section 9.3.3.

Theorem 9.5 There is a function family H such that Perfect HashingH(u,
n, r = n,O(sph/ log u+ 1), log u) has a (1, 1)-probe query scheme. The scheme
can be made explicit for u ≥ nβ log n, where β is a constant.

As is easily seen, only O(log n+ log log u) bits of the two words probed by the
nonexplicit scheme are looked at. In this sense the nonexplicit scheme is also
bit probe optimal.

9.4. Perfect hashing 137

9.4.3 Linear range using one adaptive bit probe

Theorem 9.3 shows that it is possible to probe just O(log n + log log u) fixed
bits and get a choice of two cells in one of which the query element must be,
if present in S. We now describe a strengthening of this result, namely that it
is possible to look up a single bit in a table of size O(n) telling which of the
two choices is the right one. This defines a perfect hash function. The range of
the perfect hash function we achieve is linear, but the constant needed in the
present analysis is large.

Again, we choose two functions f0, f1 : [u] → [r] independently at random
from a (c, k)-universal family, where c ≥ 1 is any constant, and k is specified
later. Additionally we choose a random function g : [u] → [s] from a (c, k)-
universal family, where parameter s is essentially the space to be used. For a
bit string a = a1 . . . as we consider the function

ha : x 7→ fag(x)
(x) . (9.1)

We will show that, for r ≥ 28c3 n, s = n, and k = O(log n), with probability
Ω(1) there exists a string a for which ha is 1-1 on S. Our proof is similar to
that of Theorem 9.3, but is more complicated. It uses a characterization of
satisfiable 2-sat instances rather than Hall’s theorem.

The requirements on a for ha to be 1-1 on S can be expressed as an instance
of 2-sat. Let a0

i denote the negation of ai, and let a1
i be synonymous with ai.

The 2-sat instance can be expressed by the following set of implications:

{az
g(x) → az′

g(y) | z, z′ ∈ {0, 1}, x, y ∈ S, x 6= y, fz(x) = f1−z′(y)} (9.2)

A well known characterization of satisfiable 2-sat instances states that all im-
plications can be satisfied if and only if there is no sequence of implications of
the form a1

i → · · · → a0
i → · · · → a1

i . So if all implications cannot be satisfied,
there is some shortest sequence of implications witnessing this:

az1
i1
→ az2

i2
→ · · · → azw

iw
→ az1

i1
where zj ∈ {0, 1} (9.3)

where for some l, 1 < l ≤ w, il = i1 and zl = 1− z1. By minimality, variables
can occur only twice in the sequence, once negated and once unnegated, except
ai1 which occurs three times.

If the sequence (9.3) exists, there are pairs of distinct elements

(x1, y2), (x2, y3), . . . , (xw, y1) ∈ S × S

such that the following set of equations hold. (Here and in the following, indices
of variables are to be interpreted “modulo w”, e.g., yw+1 is the same as y1.)

g(xj) = g(yj) for j = 1, . . . , w (9.4)
fzj(xj) = f1−zj+1(yj+1) for j = 1, . . . , w . (9.5)

An element x ∈ S occurs only in equations of (9.5) corresponding to implications
involving ag(x). For each occurrence of ag(x) in (9.3) there is one equation

138 Chapter 9. Cell probe complexity of membership and perfect hashing

involving f0(x) and one equation involving f1(x). Thus, there are at most two
occurrences of each of f0(x) and f1(x) in (9.5). Also, an element x ∈ S can
occur at most twice in each of the sequences x1, . . . , xw and y1, . . . , yw.

We now proceed to show that there is a good probability that the equa-
tions (9.4) and (9.5) cannot hold. We will refer to a numbering of the equations
in (9.4) and (9.5), namely the one given by j.

The case w ≤ k. Consider particular sequences of elements x1, . . . , xw ∈ S
and y1, . . . , yw ∈ S, and a particular sequence z1, . . . , zw ∈ {0, 1}. There is a set
D ⊆ [w] of the equations (9.5) that necessarily hold if all previous equations in
the numbering hold, no matter how f0 and f1 are chosen. Equations in D must
necessarily involve two function values that occurred in an earlier equation. Let
d = |D|. Recall that the function values f0(x) and f1(x), x ∈ S, can each occur
in the equations at most twice, so we must have d ≤ w/2. By (c, k)-universality
the probability of f0 and f1 satisfying the equations (9.5) is at most c2r−w+d.

Let D′ be the set of equations in (9.4) that necessarily hold if all previous
equations hold, and let d′ = |D′|. The probability that equations (9.4) hold is,
by (c, k)-universality, at most cs−w+d′ .

The next step is to bound the number of possible ways of choosing the
sequences x1, . . . , xw and y1, . . . , yw, for given z1, . . . , zw, D and D′. The main
observation is that two certain subsequences of x1, . . . , xw and y1, . . . , yw, with
w− d and w− d′ elements, respectively, suffice to determine all elements in the
sequences. We argue by induction on j that there are subsequences of j−|D∩[j]|
and j−|D′∩[j]| elements from x1, . . . , xj and y1, . . . , yj that suffice to determine
all elements in these prefixes. This is trivial for j = 0. Otherwise, by the
induction hypothesis the prefixes x1, . . . , xj−1 and y1, . . . , yj−1 are determined
by subsequences of j − 1 − |D ∩ [j − 1]| and j − 1 − |D′ ∩ [j − 1]| elements.
If j ∈ D the element yj is the unique element in {x1, . . . , xj−1, y1, . . . , yj−1}
that necessarily has the value fzj−1(xj−1) under f1−zj (using the fact that each
function value occurs in the equations at most twice). Similarly, if j ∈ D′ yj

is the unique element in {x1, . . . , xj−1, y1, . . . , yj−1} that must have the value
g(xj) under g (using that each element occurs at most twice in the sequences
x1, . . . , xj and y1, . . . , yj). This completes the induction step.

In summary, for any choice of z1, . . . , zw, D and D′ there are at most
n2w−d−d′ possible sequences of elements. This means that the total probability
that one of these sequences occurs is at most

n2w−d−d′ c2r−w+d cs−w+d′ = c3(n2/rs)w(r/n)d(s/n)d
′ ≤ c3(28c3)−w/2 (9.6)

using that s = n, r ≥ 28c3 n and d ≤ w/2.
There are no more than 23w ways of choosing z1, . . . , zw, D and D′. Thus,

the probability that equations (9.4) and (9.5) hold for some choice of w ≤ k,
x1, . . . , xw, y1, . . . , yw, z1, . . . , zw, D and D′ is bounded by

∑
w≥2

23wc3(28c3)−w/2 ≤
∑
w≥2

2−w = 1/2 .

9.4. Perfect hashing 139

The case w > k. For large w we bound the probability that k successive
implications in (9.3) exist. This would imply that equations 2, . . . , k in (9.4) and
equations 1, . . . , k in (9.5) hold for some sequences x1, . . . , xk ∈ S, y2, . . . , yk+1 ∈
S, and z1, . . . , zk+1 ∈ {0, 1}.

As above, let d ≤ k/2 be the number of equations D in (9.5) that hold if
the previous ones do, and let d′ be the number of equations D′ in (9.4) that
hold if the previous ones do. Similar to before, the probability of satisfying
the equations (9.5) is bounded by c2r−k+d, and the equations (9.4) hold with
probability at most cs−k+1+d′ .

Given z1, . . . , zk+1, D, and D′, there are n2k−d−d′ possible sequences of
elements x1, . . . , xk and y2, . . . , yk+1, by arguments like those above. The sets
D and D′, and the sequence z1, . . . , zk+1 can be chosen in at most 23k ways.
Hence, the probability of k ≥ log(c3n) + 2 successive implications is bounded
by

23k c2r−k+d cs−k+1+d′n2k−d−d′ = c3n (8n/r)k(r/n)d ≤ c3n (8
√
n/r)k ≤ 1/4,

using s = n, d ≤ k/2, and r ≥ 28n.
To sum up, randomly chosen hash functions yield a perfect hash function

with probability at least 1/4. The theorem now follows by arguments like those
concluding the proof of Theorem 9.3.

Theorem 9.6 There is a function family H such that Perfect HashingH(u,
n, r = O(n), O(sph), 1) has a (O(log n + log log u), 1)-probe query scheme. The
scheme can be made explicit for u ≥ nβ log n, where β is a constant.

Lower bounds

We conclude this section by showing that there is no hope of improving the
range of the above perfect hash function to (nearly) minimum: One needs
either r > (log(e) − o(1))n or Ω(sph) fixed bit probes, regardless of the size of
the data structure.

Lemma 9.1 For any function family H, if there is a (k, 1)-probe query scheme
for Perfect HashingH(u, n, r, s, 1) then k ≥ sph−(n+log n+log log u+O(1)).

Proof. For every set S ⊆ [u] of size n, there must be at least one data structure
that encodes a perfect hash function for S. The set of cells probed by the query
algorithm on inputs in S has size at most k + n. Since bits outside these cells
can be set arbitrarily, a fraction 2−(k+n) of {0, 1}s can encode a perfect hash
function for S. Hence, there is a function f that is perfect for a fraction 2−(k+n)

of all n-subsets of [u]. Let σ be a random permutation on [u]. Then for every
set S ⊆ [u] of size n, the function σ ◦f is perfect for S with probability 2−(k+n).
The probabilistic method now yields that there exists a perfect hash function
family with O(2k+nn log u) functions. Therefore log(2k+nn log u) +O(1) ≥ sph,
implying the lemma. 2

140 Chapter 9. Cell probe complexity of membership and perfect hashing

Corollary 9.3 For any function family H, if u = n2+Ω(1), log log u = o(n),
r ≤ (log(e) − Ω(1))n and Perfect HashingH(u, n, r, s, 1) has a (k, 1)-probe
query scheme then k = Ω(n).

Proof. For u = n2+Ω(1) we have that sph ≥ log(e)n2/r−O(log r), see for exam-
ple [FK84]. Then by Lemma 9.1, k ≥ log(e)n2/r − (n + log log u+O(log r)) =
Ω(n). 2

While the above lower bound depends heavily on the fact that only one bit
is probed adaptively, slightly increasing the number of adaptive probes does
not help with respect to implementing minimal perfect hashing.

Theorem 9.7 For any function family H, if Perfect HashingH(u, n, r = n,

s, 1) has a (k, t)-probe query scheme then k ≥ n/22O(t)
.

Proof. Any adaptive (k, t)-probe query scheme can be transformed to a non-
adaptive (k, 2t − 1)-probe query scheme. A lower bound due to Schmidt and
Siegel [SS90b, Theorem 1] then says that k ≥ n/2O(2t). 2

9.4.4 Adaptivity yields exponential speedup

All good upper bounds for Perfect Hashing have used adaptive cell probes.
We show that this is no coincidence, by exhibiting the largest possible gap
between adaptive and nonadaptive schemes.

Proposition 9.1 There is a constant β such that for s = O(sph) and u > βs,
there is no function family H such that Perfect HashingH(u, n, r, s, 1) has a
(0, o(s))-probe scheme.

Proof. Suppose there is a nonadaptive scheme using, without loss of generality,
exactly t probes. On input x ∈ [u] the scheme probes cells Cx ⊆ [s] where
|Cx| = t. Let s′ def= sph(b

√
uc, n, r). Note that s′ = Ω(sph) for β large enough.

It is sufficient to show that we must have t > s′/2; so assume to the contrary
that t ≤ s′/2. Each set Cx is contained in

(s−t
s′−1−t

)
sets of size s′ − 1. Since(s

s′−1

)
=
(s−t
s′−1−t

)(s
t

)
/
(s′−1

t

)
and u ≥ b√uc (st)/(s′−1

t

)
when c is sufficiently large,

there must be a set U ′ ⊆ [u] of b√uc elements such that | ∪x∈U ′ Bx| < s′. But
the cells ∪x∈U ′Bx can encode a perfect hash function for any n elements of U ′,
contradicting the definition of s′. 2

Thus, a constant fraction of the data structure must be probed if O(sph)
space is to be used. This should be compared to the upper bound of Theorem 9.6
that uses O(log n + log log u) = O(log sph) bit probes, of which just one is
adaptive.

Using more space does not help much, e.g., for space s = O(n log u) we
still have a lower bound of Ω(s) when u = 2Θ(n log n). This particular case is
interesting, as a Membership data structure of O(n log u) bits allows queries
using O(log u) = O(

√
s/ log s) nonadaptive bit probes [BMRV00]. So for these

parameters, Membership is strictly easier than Perfect Hashing among
nonadaptive schemes.

9.5. Open problems 141

9.5 Open problems

An apparent open problem is whether our nonexplicit data structures can be
efficiently implemented on a RAM with a standard instruction set. In partic-
ular, explicit versions of Theorems 9.3 and 9.5 for small u could be interesting
from a practical point of view.

From a theoretical perspective we lack a tight bit probe bound for perfect
hashing. The lower bound technique in the first part of the proof of Theorem 9.4
breaks down for range just slightly larger than n. On the other hand, the upper
bound of Theorem 9.1 shows that very few bit probes suffice when the universe
is small compared to the set, and the size of the range is not too close to n.

Chapter 10

One-probe search

The dictionary is one of the most well-studied data structures. A dictionary
represents a set S of elements (called keys) from some universe U , along with
information associated with each key in the set. Any x ∈ U can be looked up,
i.e., it can be reported whether x ∈ S, and if so, what information is associated
with x. We consider this problem on a unit cost word RAM in the case where
keys and associated information have fixed size and are not too big (see below).
The most straightforward implementation, an array indexed by the keys, has
the disadvantage that the space usage is proportional to the size of U rather
than to the size of S. On the other hand, arrays are extremely time efficient:
A single memory probe suffices to retrieve or update an entry.

It is easy to see that there exists no better deterministic one-probe dictionary
than an array. In this chapter we investigate randomized one-probe search
strategies, and show that it is possible, using much less space than an array
implementation, to look up a given key with probability arbitrarily close to 1.
The probability is over coin tosses performed by the lookup procedure. In case
the memory probe did not supply enough information to answer the query, this
is realized by the lookup procedure, and it produces the answer “don’t know”.
In particular, by iterating until an answer is found, we get a Las Vegas lookup
procedure that can have an expected number of probes arbitrarily close to 1.

It should be noted that one-probe search is impossible if one has no idea
how much data is stored. We assume that the query algorithm knows the size
of the data structure – a number that only changes when the size of the key
set changes by a constant factor. The fact that the size, which may rarely
or never change, is the only kind of global information needed to query the
data structure means that it is well suited to support concurrent lookups (in
parallel or distributed settings). In contrast, all known hash function based
lookup schemes have some kind of global hash function that must be changed
regularly. Even concurrent lookup of the same key, without accessing the same
memory location, is supported to some extent by our dictionary. This is due to
the fact that two lookups of the same key are not very likely to probe the same
memory location.

A curious feature of our lookup procedure is that it makes its decision
based on a constant number of equality tests – in this sense it is comparison-
based. However, the data structure is not implicit in the sense of Munro and

143

144 Chapter 10. One-probe search

Suwanda [MS80], as it stores keys not in S.
Our studies were inspired by recent work of Buhrman et al. [BMRV00]

on randomized analogs of bit vectors. They presented a Monte Carlo data
structure where one bit probe suffices to retrieve a given bit with probability
arbitrarily close to 1. When storing a sparse bit vector (few 1s) the space
usage is much smaller than that of a bit vector. When storing no associated
information, a dictionary solves the membership problem, which can also be
seen as the problem of storing a bit vector. Our Las Vegas lookup procedure
is stronger than the Monte Carlo lookup procedure in [BMRV00], as a wrong
answer is never returned. The price paid for this is an expected bound on the
number of probes, a slightly higher space usage, and, of course, that we look
up one word rather than one bit. The connection to [BMRV00] is also found
in the underlying technique: We employ the same kind of unbalanced bipartite
expander graph as is used there. Recently, explicit constructions1 of such graphs
with near-optimal parameters have been found [TS,TSUZ01].

Let u = |U | and n = |S|. We assume that one word is large enough to
hold one of 2u+1 different symbols plus the information associated with a key.
(Note that if this is not the case, it can be simulated by accessing a number
of consecutive words rather than one word – an efficient operation in many
memory models.) Our main theorem is the following:

Theorem 10.1 For any constant ε > 0 there exists a nonexplicit one-probe
dictionary with success probability 1 − ε, using O(n log 2u

n) words of memory.
Also, there is an explicit construction using n · 2O((log log u)3) words of memory.

Note that the space overhead for the nonexplicit scheme, a factor of log 2u
n , is

exponentially smaller than that of an array implementation.

In the second part of the chapter we consider dynamic updates to the dic-
tionary (insertions and deletions of keys). The fastest known dynamic dic-
tionaries use hashing, i.e., they select at random a number of functions from
suitable families, which are stored and subsequently used deterministically to
direct searches.

A main point in this work is that a fixed structure with random properties
(the expander graph) can be used to move random choices from the data struc-
ture itself to the lookup procedure. The absence of hash functions in our data
structure has the consequence that updates can be performed in a very local
manner. We show how to deterministically perform updates by probing and
changing a number of words that is nearly linear in the degree of the expander
graph (which, for optimal expanders, is at most logarithmic in the size of the
universe). Current explicit expanders are not fast enough for our dynamic data
structure to improve known results in a standard RAM model. However, if we
augment the RAM with an instruction for computing neighbors in an optimal
expander graph with given numbers of vertices, an efficient dynamic dictionary
can be implemented.

1Where a given neighbor of a vertex can be computed in time polylogarithmic in the
number of vertices.

10.1. Related work 145

Theorem 10.2 In the expander-augmented RAM model, there is a dictionary
where a sequence of a insertions/deletions and b lookups in a key set of size at
most n takes time O(a(log 2u

n)1+o(1)+b+t) with probability 1−2−Ω(a+t/(log 2u
n

)1+o(1)).
The space usage is O(n log 2u

n) words.

When the ratio between the number of updates and lookups is small, the ex-
pected average time per dictionary operation is constant. Indeed, if the fraction
of updates is between (log 2u

n)−1−Ω(1) and n−ω(1), and if u = 2n1−Ω(1)
, the above

yields the best known probability, using space polynomial in n, that a sequence
of dictionary operations take average constant time. The intuitive reason why
the probability bound is so good, is that time consuming behavior requires
bad random choices in many invocations of the lookup procedure, and that the
random bits used in different invocations are independent.

10.1 Related work

As described above, this chapter is related to [BMRV00], in scope as well as in
tools. The use of expander graphs in connection with the membership problem
was earlier suggested by Fiat and Naor [FN93], as a tool for constructing an
efficient implicit dictionary.

Yao [Yao81] showed an Ω(logn) worst case lower bound on the time for
dictionary lookups on a restricted RAM model allowing words to contain only
keys of S or special symbols from a fixed set whose size is a function of n (e.g.,
pointers). The lower bound holds when space is bounded by a function of n,
and u is sufficiently large. It extends to give an Ω(log n) lower bound for the
expected time of randomized Las Vegas lookups.

Our data structure violates Yao’s lower bound model in two ways: 1. We
allow words to contain certain keys not in S (accessed only through equality
tests); 2. We allow space depending on u. The second violation is the important
one, as Yao’s lower bound can be extended to allow 1. Yao also considered
deterministic one-probe schemes in his model, showing that, for n ≤ u/2, a
space usage of u/2 +O(1) words is necessary and sufficient for them to exist.

The worst case optimal number of word probes for membership is studied
in Chapter 9 in the case where U equals the set of machine words. It was
shown that three word probes are necessary when using m words of space,
unless u = 2Ω(n2/m) or u ≤ n2+o(1). Sufficiency of three probes was shown for
all parameters (in most cases it followed by the classic dictionary of Fredman
et al. [FKS84]). In the expected sense, most hashing based dictionaries can be
made to use arbitrarily close to 2 probes per lookup by expanding the size of
the hash table by a constant factor.

Dictionaries with sublogarithmic lookup time that also allow efficient de-
terministic updates have been developed in a number of papers [AT00,BF99a,
FW93], see also Chapters 6 and 7. Let n denote an upper bound on the num-
ber of keys in a dynamic dictionary. For lookup time t = o(log log n), the
best known update time is nO(1/t), achieved in Chapter 6. The currently best
probabilistic guarantee on dynamic dictionary performance, first achieved by
Dietzfelbinger and Meyer auf der Heide in [DfMadH90], is that each operation

146 Chapter 10. One-probe search

takes constant time with probability 1−O(m−c), where c is any constant and m
is the space usage in words (which must be some constant factor larger than n).
This implies that a sequence of a insertions/deletions and b lookups takes time
O(a+ b+ t) with probability 1−O(m−t/n).

10.2 Preliminaries

In this section we define (n, d, ε)-expander graphs and state some results con-
cerning these graphs. For the rest of this chapter we will assume ε to be a mul-
tiple of 1/d, as this makes statements and proofs simpler. This will be without
loss of generality, as the statements we show do not change when rounding ε
down to the nearest multiple of 1/d.

Let G = (U, V,E) be a bipartite graph with left vertex set U , right vertex
set V , and edge set E. We denote the set of neighbors of a set S ⊆ U by
Γ(S) =

⋃
s∈S{v | (s, v) ∈ E}. We use Γ(x) as a shorthand for Γ({x}), x ∈ U .

Definition 10.1 A bipartite graph G = (U, V,E) is d-regular if the degree of
all nodes in U is d. A bipartite d-regular graph G = (U, V,E) is an (n, d, ε)-
expander if for each S ⊆ U with |S| ≤ n it holds that |Γ(S)| ≥ (1− ε)d|S|.

Lemma 10.1 For 0 < ε < 1 and d ≥ 1, if |V | ≥ (1 − ε)dn(2u/n)1/εde1/ε then
there exists an (n, d, ε)-expander graph G = (U, V,E), where |U | = u.

Proof. Our proof is a standard application of the probabilistic method. Let G =
(U, V,E) be a randomly generated graph created by the following procedure.
For each u ∈ U choose d neighbors with replacement, i.e., an edge can be chosen
more than once, but then the double edges are removed. We will argue that the
probability that this graph fails to be a (n, d, ε)-expander graph is less than 1
for the choices of |V | and d as stated in the lemma. The degrees of the nodes in
U in this graph may be less than d, but if there exists a graph that is expanding
with degree at most d for all nodes, then there clearly exists a graph that is
expanding with exactly degree d as well.

We must bound the probability that some subset of i ≤ n vertices from U
has fewer than (1 − ε)di neighbors. A subset S ⊆ U of size i can be chosen
in
(
u
i

)
ways and a set V ′ ⊆ V of size (1− ε)di can be chosen in

(|V |
(1−ε)di

)
ways.

(Note that |V | ≥ (1 − ε)di.) The probability that such a set V ′ contains all of
the neighbors for S is ((1−ε)di

|V |)di. Thus, the probability that some subset of U
of size i ≤ n has fewer than (1 − ε)di neighbors is at most

n∑
i=1

(
u

i

)(|V |
(1− ε)di

)(
(1− ε)di
|V |

)di

<
n∑

i=1

(ue
i

)i
(|V |e

(1− ε)di
)(1−ε)di((1− ε)di

|V |
)di

≤
n∑

i=1

((
(1− ε)di
|V |

)εd

edu/i

)i

.

10.3. Static data structure 147

If the term in the outermost parentheses is bounded by 1/2, the sum is less
than 1. This is the case when |V | fulfills the requirement stated in the lemma.
2

Corollary 10.1 For any constants α, ε > 0 there exist an (n, d, ε)-expander
G = (U, V,E) for the following parameters:

• |U | = u, d = O(log(2u/n)) and |V | = O(n log(2u/n)).

• |U | = u, d = O(1) and |V | = O(n (2u/n)α).

Theorem 10.3 (Ta-Shma [TS]) For any constant ε > 0 and d = 2O((log log u)3),
there exists an explicit (n, d, ε)-expander G = (U, V,E) with |U | = u and |V | =
n · 2O((log log u)3).

10.3 Static data structure

Let S ⊆ U denote the key set we wish to store. Our data structure is an array
denoted by T . Its entries may contain the symbol x for keys x ∈ S, the symbol
¬x for keys x ∈ U\S, or the special symbol ⊥ 6∈ U . (Recall our assumption
that one of these symbols plus associated information fits into one word.) For
simplicity we will consider the case where there is no information associated
with keys, i.e., we solve just the membership problem. Extending this to allow
associated information is straightforward. We make use of a (2n + 1, d, ε/2)-
expander with neighbor function Γ. Given that a random element in the set
Γ(x) can be computed quickly for x ∈ U , the one-probe lookup procedure is
very efficient.

procedure lookupε(x)
choose v ∈ Γ(x) at random;
if T [v] = x then return ’yes’
else if T [v] ∈ {¬x,⊥} then return ’no’
else return ’don’t know’ ;

end;

The corresponding Las Vegas lookup algorithm is the following:

procedure lookup(x)
repeat

choose v ∈ Γ(x) at random;
until T [v] ∈ {x,¬x,⊥};
if T [v] = x then return ’yes’ else return ’no’ ;

end;

10.3.1 Requirements to the data structure

The success probability of lookupε(x) and the expected time of lookup(x) de-
pends on the content of the entries indexed by Γ(x) in T . To guarantee correct-

148 Chapter 10. One-probe search

ness and success probability 1 − ε in each probe for x, the following conditions
should hold:

1. If x ∈ S, at least a fraction 1 − ε of the entries T [v], v ∈ Γ(x), contain x,
and none contain ¬x or ⊥.

2. If x /∈ S, at least a fraction 1 − ε of the entries T [v], v ∈ Γ(x), contain
either ¬x or ⊥, and none contain x.

By inserting ⊥ in all entries of T except the entries in Γ(S), condition 2
will be satisfied for all x /∈ S with |Γ(x) ∩ Γ(S)| ≤ εd. A key notion in this
chapter is the set of ε-ghosts for a set S, which are the keys of U that have many
neighbors in common with S. For each ε-ghost x we will need some entries in
T with content ¬x.

Definition 10.2 Given a bipartite graph G = (U, V,E), a key x ∈ U is an
ε-ghost for the set S ⊆ U if |Γ(x) ∩ Γ(S)| > ε|Γ(x)| and x /∈ S.

Lemma 10.2 (Buhrman et al. [BMRV00]) There are at most n ε-ghosts for a
set S of size n in a (2n + 1, d, ε/2)-expander graph.

In order to fulfill conditions 1 and 2, we need to assign entries in T to the
keys in S and to the ε-ghosts for S.

Definition 10.3 Let G = (U, V,E) be a bipartite d-regular graph and let 0 <
ε < 1. An assignment for a set S ⊆ U , is a subset A ⊆ E∩ (S×Γ(S)) such that
for v ∈ Γ(S), |A ∩ (S × {v})| = 1. A (1 − ε)-balanced assignment for S is an
assignment A, where for each s ∈ S it holds that |A ∩ ({s} × Γ(s))| ≥ (1− ε)d.

Lemma 10.3 If a graph G = (U, V,E) is an (n, d, ε)-expander then there exists
a (1− ε)-balanced assignment for every set S ⊆ U of size at most n.

To show the lemma we will use Hall’s theorem [Hal35]. A perfect matching
in a bipartite graph (U, V,E) is a set of |U | edges such that for each x ∈ U there
is an edge (x, v) ∈ E, and for each v ∈ V there is at most one edge (x, v) ∈ E.

Theorem 10.4 (Hall’s theorem) In any bipartite graph G = (U, V,E), where
for each subset U ′ ⊆ U it holds that |U ′| ≤ |Γ(U ′)|, there exists a perfect
matching.

Proof of Lemma 10.3. Let S be an arbitrary subset of U of size n. Let G′ =
(S,Γ(S), E′) be the subgraph of G induced by the nodes S and Γ(S), i.e.,
E′ = {(s, v) ∈ E | s ∈ S}. To prove the lemma we want to show that there
exists an assignment A such that for each s ∈ S, |A ∩ ({s} × Γ(s))| ≥ (1− ε)d.
The idea is to use Hall’s theorem (1− ε)d times by repeatedly finding a perfect
matching and removing the nodes from Γ(S) in the matching.

Since G is an (n, d, ε)-expander we know that for each subset S′ ⊆ S it holds
that |Γ(S′)| ≥ (1− ε)d|S′|. Assume that we have i perfect matchings from S to
non-overlapping subsets of Γ(S) and denote by M the nodes from Γ(S) in the

10.4. Dynamic updates 149

matchings. For each subset S′ ⊆ S it holds that |Γ(S′)\M | ≥ ((1− ε)d− i)|S′|.
If (1 − ε)d − i ≥ 1 then the condition in Hall’s theorem holds for the graph
Gi = (S, (Γ(S)\M), E′\Ei), where Ei is the set of edges incident to nodes in
M , and there exists a perfect matching in Gi. From this it follows that at least
(1 − ε)d non-overlapping (in Γ(S)) perfect matchings can be found in G′. The
edges in the matchings define a (1− ε)-balanced assignment. 2

10.3.2 Construction

We store the set S as follows:

1. Write ⊥ in all entries not in Γ(S).

2. Find the set S̄ of ε-ghosts for S.

3. Find a (1− ε)-balanced assignment for the set S ∪ S̄.

4. For x ∈ S write x in entries assigned to x.
For x ∈ S̄ write ¬x in entries assigned to x in Γ(S).

By Lemma 10.2 the set S̄ found in step 2 contains at most n keys, and by
Lemma 10.3 it is possible to carry out step 3. Together with the results on
expanders in Section 10.2, this concludes the proof of Theorem 10.1.

We note that step 2 takes time Ω(|U\S|) if we have only oracle access to Γ.
When the graph has some structure it is sometimes possible to do much better.
Ta-Shma shows in [TS] that this step can be performed for his class of graphs
in time polynomial in the size of the right vertex set, i.e., polynomial in the
space usage. All other steps are clearly also polynomial time in the size of the
array.

In the dynamic setting, covered in Section 10.4, we will take an entirely
different approach to ghosts, namely, we care about them only if we see them.
We then argue that the time spent looking for a particular ghost before it is
detected is not too large, and that there will not be too many different ghosts.

10.4 Dynamic updates

In this section we show how to implement efficient dynamic insertions and dele-
tions of keys in our dictionary. We will use a slightly stronger expander graph
than in the static case, namely a (4n′, d, ε/3)-expander where n′ is an upper
bound on the size of the set that can be handled. The parameter n′ is assumed
to be known to the query algorithm. Note that n′ can be kept in the range, say,
n to 2n at no asymptotic cost, using standard global rebuilding techniques. Our
dynamic dictionary essentially maintains the static data structure described in
the previous section. Additionally, we maintain the following auxiliary data
structures:

• A priority queue with all keys in S plus some set S̄ of keys that appear
negated in T . Each key has as priority the size of its assignment, which
is always at least (1− ε)d.

150 Chapter 10. One-probe search

• Each entry T [v] in T is augmented with

– A pointer Tp[v] which, if entry v is assigned to a key, points to that
key in the priority queue.

– A counter Tc[v] that at any time stores the number of keys in S that
have v as a neighbor.

Since all keys in the priority queue are assigned (1 − ε)d entries in T , the
performance of the lookup procedure is the desired one, except when searching
for ε-ghosts not in S̄. We will discuss this in more detail later.

10.4.1 Performing updates

We first note that it is easy to maintain the data structure during deletions. All
that is needed when deleting x ∈ S is decreasing the counters Tc[v], v ∈ Γ(x),
and replacing x with ¬x or ⊥ (the latter if the counter reaches 0). Finally, x
should be removed from the priority queue. We use a simple priority queue
that requires space O(d+n), supports insert in O(d) time, and increasekey,
decreasekey, findmin and delete in O(1) time. The total time for a deletion
in our dictionary is O(d).

When doing insertions we have to worry about maintaining a (1−ε)-balanced
assignment. The idea of our insertion algorithm is to assign all neighbors to the
key being inserted. In case this makes the assignment of other keys too small
(easily seen using the priority queue), we repeat assigning all neighbors to them,
and so forth. Every time an entry in T is reassigned to a new key, the priority of
the old and new key are adjusted in the priority queue. The time for an insertion
is O(d), if one does not count the associated cost of maintaining assignments
of other keys. The analysis in Section 10.4.2 will bound this cost. Note that a
priori it is not even clear whether the insertion procedure terminates.

A final aspect that we have to deal with is ghosts. Ideally we would like S̄
to be at all times the current set of ε-ghosts for S, such that a (1− ε)-balanced
assignment was maintained for all ghosts. However, this leaves us with the hard
problem of finding new ghosts as they appear. We circumvent this problem by
only including keys in S̄ if they are selected for examination and found to be
ε-ghosts. A key is selected for examination if a lookup of that key takes more
than log1/ε d iterations. The time spent on examinations and on lookups of a
ghost before it is found, is bounded in the next section.

The sequence of operations is divided up into stages, where each stage (ex-
cept possibly the last) contains n′ insert operations. After the last insertion in
a stage, all keys in S̄ that are no longer ε-ghosts are deleted. This is done by
going through all keys in the priority queue. Keys of S̄ with at least (1 − ε)d
neighbors containing ⊥ are removed from the priority queue. Hence, when a
new stage starts, S̄ will only contain ε-ghosts.

10.4.2 Analysis

We now sketch the analysis of our dynamic dictionary. First, the total work
spent doing assignments and reassignments is analyzed. Recall that the algo-

10.4. Dynamic updates 151

rithm maintains a (1− ε)-balanced assignment for the set S ∪ S̄ of keys in the
priority queue. Keys enter the priority queue when they are inserted in S, and
they may enter it when they are ε-ghosts for the current set. It clearly suffices
to bound the total work in connection with insertions in the priority queue, as
the total work for deletions cannot be larger than this. We will first show a
bound on the number of keys in S̄.

Lemma 10.4 The number of keys in the set S̄ never exceeds 2n′.

Proof. Let S be the set stored at the beginning of a stage. S̄ only contains ε-
ghosts for S at this point. Let S′ denote the keys inserted during the stage. New
keys inserted into S̄ have to be ε-ghosts for S ∪ S′. According to Lemma 10.2,
the fact that |S∪S′| ≤ 2n′ implies that there are at most 2n′ ε-ghosts for S∪S′
(including the ε-ghosts for S). Thus, the number of keys in S̄ during any stage
is at most 2n′. 2

It follows from the lemma that the number of insertions in the priority queue
is bounded by 3 times the number of insertions performed in the dictionary. The
remainder of our analysis of the number of reassignments has two parts: We first
show that our algorithm performs a number of reassignments (in connection
with insertions) that is within a constant factor of any scheme maintaining
a (1 − ε/3)-balanced assignment. The scheme we compare ourselves to may
be off-line, i.e., know the sequence of operations in advance. Secondly, we
give an off-line strategy for maintaining a (1− ε/3)-balanced assignment using
O(d) reassignments per update. This proof strategy was previously used for an
assignment problem by Brodal and Fagerberg [BF99b].

In the following lemmas, the setM is the set for which a balanced assignment
is maintained, and the insert and delete operations are insertions and deletions
in this set. In our data structure M corresponds to S ∪ S̄.

Lemma 10.5 Let G = (U, V,E) be a d-regular bipartite graph. Suppose O is
a sequence of insert and delete operations on a dynamic set M ⊆ U . Let B be
an algorithm that maintains a (1− ε

3)-balanced assignment for M , and let C be
our “assign all” scheme for maintaining a (1 − ε)-balanced assignment for M .
If B makes at most k reassignments during O, then C assigns all neighbors to
a key at most 3

ε (k/d + |M |start) times, where |M |start is the initial size of M .

Proof. To show the lemma we will argue that the assignment of C, denoted
AC , will become significantly “less different” from the assignment of B, denoted
AB , each time C assigns all neighbors of a key to that key. At the beginning
|AB\AC | ≤ d|M |start, since |AB | ≤ d|M |start. Each of the k reassignments B
performs causes |AB\AC | to increase by at most one. This means that the
reassignments made by C during O can decrease |AB\AC | by at most k +
d|M |start in total.

Each time C assigns all entries in Γ(x) to a key x, at least εd reassignments
are done, since the assignment for x had size less than (1 − ε)d before the
reassignment. At this point at least (1 − ε

3)d pairs (x, e) are included in AB ,
i.e., at most ε

3d of the neighbors of x are not assigned to x in AB . This means

152 Chapter 10. One-probe search

that at least 2ε
3 d of the reassignments made by C decrease |AB\AC |, while at

most ε
3d reassignments may increase |AB\AC |. In total, |AB\AC | is decreased

by at least ε
3d when C assigns all neighbors to a key. The lemma now follows,

as |AB\AC | can decrease by ε
3d at most (k + d|M |start)/(ε

3d) times. 2

Lemma 10.6 Let G = (U, V,E) be a (4n′, d, ε/3)-expander. There exists an
off-line algorithm maintaining a (1− ε

3)-balanced assignment for a dynamic set
M ⊆ U , during a stage of 3n′ insertions, by performing at most 4dn′ reassign-
ments, where |M | ≤ n′ at the beginning of the stage.

Proof. Let M ′ be the set of 3n′ keys to insert. Define M̃ = M ∪M ′; we have
|M̃ | ≤ 4n′. Let AM̃ be a (1− ε

3)-balanced assignment for M̃ (shown to exist in
Lemma 10.3).

The off-line algorithm knows the set M ′ of keys to insert from the start,
and does the following. First, it assigns neighbors to the keys in M according
to the assignment AM̃ , which requires at most dn′ reassignments. Secondly,
for each insertion of a key x ∈ M ′, it assigns neighbors to x according to AM̃ ,
which requires at most d reassignments. This will not cause any key already in
the set to lose an assigned neighbor, hence no further reassignments are needed
to keep the assignment (1 − ε

3)-balanced. It follows that he total number of
reassignments during the 3n′ insertions is at most 4dn′, proving the lemma. 2

The above two lemmas show that in a sequence of a updates to the dictionary
there are O(a) insertions in the priority queue, each of which gives rise to O(d)
reassignments in a certain off-line algorithm, meaning that our algorithm uses
O(ad) time for maintaining a (1 − ε)-balanced assignment for the set S ∪ S̄ in
the priority queue.

We now turn to analyzing the work done in the lookup procedure. First
we will bound the number of iterations in all searches for keys that are not
undetected ε-ghosts. Each iteration has probability at least 1− ε of succeeding,
independently of all other events, so we can bound the probability of many
iterations using Chernoff bounds. In particular, the probability that the total
number of iterations used in the b searches exceeds 2

1−εb+ t is less than e−
1−ε
4

t.
When searching for a key that is not an undetected ε-ghost, the probability

of selecting it for examination is bounded from above by 1/d. In particular,
by Chernoff bounds we get that, for k > 0, the total number of examinations
during all b lookups is at most b/d+ k with probability 1− (e

1+kd/b)
b/d+k. For

k = (2e − 1)b/d + t/d we get that the probability of more than 2eb/d + t/d
examinations is bounded by 2−t/d. Each examination costs time O(d), so the
probability of spending O(b+ t) time on such examinations is at least 1−2−t/d.

We now bound the work spent on finding ε-ghosts. Recall that an ε-ghost
is detected if it is looked up, and the number of iterations used by the lookup
procedure exceeds log1/ε d. Since we have an ε-ghost, the probability that a
single lookup selects the ghost for examination is at least εlog1/ε d−1 = Ω(1/d).
We define d′ = O(d) by 1/d′ = εlog1/ε d−1. Recall that there are at most 2n′

ε-ghosts in a stage, and hence at most 2a in total. We bound the probability

10.5. Conclusion and open problems 153

that more than 4ad′+k lookups are made on undetected ε-ghosts, for k > 0. By
Chernoff bounds the probability is at most e−k/4d′ . Each lookup costs O(log d)
time, so the probability of using time O(ad log d+ t) is at least 1− e−t/4d′ log d.

In summary, we have bounded the time spent on four different tasks in our
dictionary:

• The time spent looking up keys that are not undetected ε-ghosts is O(b+t)
with probability 1− 2−Ω(t).

• The time spent examining keys that are not undetected ε-ghosts is O(b+t)
with probability 1− 2−Ω(t/d).

• The time spent looking up ε-ghosts before they are detected is O(ad log d+
t) with probability 1− 2−Ω(t/d log d).

• The time spent assigning, reassigning and doing bookkeeping is O(ad).

Using the above with the first expander of Corollary 10.1, having degree d =
O(log 2u

n′), we get the performance bound stated in Theorem 10.2. Using the
constant degree expander of Corollary 10.1 we get a data structure with constant
time updates. This can also be achieved in this space with a trie, but a trie
would use around 1/α word probes for lookups of keys in the set, rather than
close to 1 word probe, expected.

10.5 Conclusion and open problems

In this chapter we studied dictionaries for which a single word probe with good
probability suffices to retrieve any given key with associated information. The
main open problem we leave is whether the space usage of our dictionary is the
best possible for one-probe search.

It is known that three word probes are necessary and sufficient in the worst
case for lookups in dictionaries, even when using superlinear space. An obvious
open question is how well one can do using two word probes and a randomized
lookup procedure. Can the space utilization be substantially improved? An-
other point is that we bypass Yao’s lower bound by using space dependent on
u. An interesting question is: How large a dependence on u is necessary to get
around Yao’s lower bound. Will space n log∗ u do, for example?

Bibliography

[ABI86] Noga Alon, László Babai, and Alon Itai. A fast and simple ran-
domized parallel algorithm for the maximal independent set prob-
lem. J. Algorithms, 7(4):567–583, 1986.

[ABKU99] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal.
Balanced allocations. SIAM J. Comput., 29(1):180–200, 1999.

[ABR01] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Op-
timal static range reporting in one dimension. In Proceedings
of the 33rd Annual ACM Symposium on Theory of Computing
(STOC ’01), pages 476–482, 2001.

[ADfM+97] Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez Pe-
trank, and Gábor Tardos. Is linear hashing good? In Proceedings
of the 29th Annual ACM Symposium on Theory of Computing
(STOC ’97), pages 465–474. ACM Press, 1997.

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta.
Simple constructions of almost k-wise independent random vari-
ables. Random Structures & Algorithms, 3(3):289–304, 1992.

[AH87] Leonard M. Adleman and Ming-Deh Huang. Recognizing primes
in random polynomial time. In Proceedings of the 19th Annual
ACM Symposium on Theory of Computing (STOC ’87), pages
462–469. ACM Press, 1987.

[AHNR98] Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev
Raman. Sorting in linear time? J. Comput. System Sci.,
57(1):74–93, 1998.

[AHR98] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked an-
cestor problems. In Proceedings of the 39th Annual Symposium
on Foundations of Computer Science (FOCS ’98), pages 534–543.
IEEE Comput. Soc. Press, 1998.

[AHU75] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The de-
sign and analysis of computer algorithms. Addison-Wesley Pub-
lishing Co., Reading, Mass.-London-Amsterdam, 1975. Second
printing, Addison-Wesley Series in Computer Science and Infor-
mation Processing.

155

156 Bibliography

[AL86] Alfred V. Aho and David Lee. Storing a dynamic sparse table.
In Proceedings of the 23rd Annual Symposium on Foundations of
Computer Science (FOCS ’82), pages 55–60. IEEE Comput. Soc.
Press, 1986.

[Alo86] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–
96, 1986.

[AMRT96] Arne Andersson, Peter Bro Miltersen, Søren Riis, and Mikkel
Thorup. Static dictionaries on AC0 RAMs: Query time
Θ(
√

log n/ log log n) is necessary and sufficient. In Proceedings of
the 37th Annual Symposium on Foundations of Computer Science
(FOCS ’96), pages 441–450. IEEE Comput. Soc. Press, 1996.

[AMT99] Arne Andersson, Peter Bro Miltersen, and Mikkel Thorup. Fusion
trees can be implemented with AC0 instructions only. Theoret.
Comput. Sci., 215(1-2):337–344, 1999.

[AN96] Noga Alon and Moni Naor. Derandomization, witnesses for
Boolean matrix multiplication and construction of perfect hash
functions. Algorithmica, 16(4-5):434–449, 1996.

[And96] Arne Andersson. Faster deterministic sorting and searching in
linear space. In Proceedings of the 37th Annual Symposium on
Foundations of Computer Science (FOCS ’96), pages 135–141.
IEEE Comput. Soc. Press, 1996.

[AT00] Arne Andersson and Mikkel Thorup. Tight(er) worst-case bounds
on dynamic searching and priority queues. In Proceedings of
the 32nd Annual ACM Symposium on Theory of Computing
(STOC ’00), pages 335–342. ACM Press, 2000.

[AV88] Alok Aggarwal and Jeffrey S. Vitter. The Input/Output Com-
plexity of Sorting and Related Problems. Communications of the
ACM, 31(9):1116–1127, 1988.

[AVL62] Georgii Maksimovich Adel’son-Vel’skii and Evgenii Mikhailovich
Landis. An algorithm for organization of information. Dokl.
Akad. Nauk SSSR, 146:263–266, 1962.

[BAG97] Amir M. Ben-Amram and Zvi Galil. When can we sort in
o(n log n) time? J. Comput. System Sci., 54(2, part 2):345–370,
1997.

[BCFM00] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael
Mitzenmacher. Min-wise independent permutations. J. Comput.
System Sci., 60(3):630–659, 2000.

[BCH86] Paul W. Beame, Stephen A. Cook, and H. James Hoover. Log
depth circuits for division and related problems. SIAM J. Com-
put., 15(4):994–1003, 1986.

Bibliography 157

[BCSV00] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold
Vöcking. Balanced allocations: the heavily loaded case. In Pro-
ceedings of the 32nd Annual ACM Symposium on Theory of Com-
puting (STOC ’00), pages 745–754. ACM Press, 2000.

[BF99a] Paul Beame and Faith Fich. Optimal bounds for the predecessor
problem. In Proceedings of the 31st Annual ACM Symposium on
Theory of Computing (STOC ’99), pages 295–304. ACM Press,
1999.

[BF99b] Gerth Stølting Brodal and Rolf Fagerberg. Dynamic represen-
tations of sparse graphs. In Proceedings of the 6th International
Workshop on Algorithms and Data Structures (WADS ’99), vol-
ume 1663 of Lecture Notes in Computer Science, pages 342–351.
Springer-Verlag, 1999.

[BH91] Holger Bast and Torben Hagerup. Fast and reliable parallel hash-
ing. In 3rd Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA ’91), pages 50–61. ACM Press, 1991.

[BK00] Andrei Z. Broder and Anna R. Karlin. Multilevel adaptive hash-
ing. In Proceedings of the 1st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’90), pages 43–53. ACM Press, 2000.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and main-
tenance of large ordered indices. Acta Informatica, 1:173–189,
1972.

[BM94] Andrej Brodnik and J. Ian Munro. Membership in constant time
and minimum space. In Proceedings of the 2nd European Sympo-
sium on Algorithms (ESA ’94), volume 855 of Lecture Notes in
Computer Science, pages 72–81. Springer-Verlag, 1994.

[BM99] Andrej Brodnik and J. Ian Munro. Membership in constant time
and almost-minimum space. SIAM J. Comput., 28(5):1627–1640,
1999.

[BM01] Andrei Broder and Michael Mitzenmacher. Using multiple hash
functions to improve IP lookups. Proceedings of INFOCOM 2001,
2001.

[BMM97] Andrej Brodnik, Peter Bro Miltersen, and J. Ian Munro. Trans-
dichotomous algorithms without multiplication — some upper
and lower bounds. In Proceedings of the 5th Workshop on Al-
gorithms and Data Structures (WADS ’97), volume 1272 of Lec-
ture Notes in Computer Science, pages 426–439. Springer-Verlag,
1997.

[BMRV00] Harry Buhrman, Peter Bro Miltersen, Jaikumar Radhakrishnan,
and S. Venkatesh. Are bitvectors optimal? In Proceedings

158 Bibliography

of the 32nd Annual ACM Symposium on Theory of Computing
(STOC ’00), pages 449–458. ACM Press, 2000.

[Bre73] Richard P. Brent. Reducing the retrieval time of scatter storage
techniques. Communications of the ACM, 16(2):105–109, 1973.

[CFG+78] Larry Carter, Robert Floyd, John Gill, George Markowsky, and
Mark Wegman. Exact and approximate membership testers. In
Proceedings of the 10th Annual ACM Symposium on Theory of
Computing (STOC ’78), pages 59–65. ACM Press, 1978.

[CGH+85] Benny Chor, Oded Goldreich, Johan Hastad, Joel Friedman,
Steven Rudich, and Roman Smolensky. The bit extraction prob-
lem of t-resilient functions (preliminary version). In Proceed-
ings of the 26th Annual Symposium on Foundations of Computer
Science (FOCS ’85), pages 396–407. IEEE Comput. Soc. Press,
1985.

[Chi94] Andrew Chin. Locality-preserving hash functions for general pur-
pose parallel computation. Algorithmica, 12(2-3):170–181, 1994.

[CHM92] Zbigniew J. Czech, George Havas, and Bohdan S. Majewski. An
optimal algorithm for generating minimal perfect hash functions.
Information Processing Letters, 43(5):257–264, 1992.

[CHM97] Zbigniew J. Czech, George Havas, and Bohdan S. Majewski.
Perfect hashing. Theoretical Computer Science, 182(1–2):1–143,
1997.

[CS97] Arthur Czumaj and Volker Stemann. Randomized allocation pro-
cesses. In Proceedings of the 38th Annual Symposium on Foun-
dations of Computer Science (FOCS ’97), pages 194–203. IEEE
Comput. Soc. Press, 1997.

[CSV84] Ashok K. Chandra, Larry Stockmeyer, and Uzi Vishkin. Constant
depth reducibility. SIAM J. Comput., 13(2):423–439, 1984.

[CW79] J. Lawrence Carter and Mark N. Wegman. Universal classes of
hash functions. J. Comput. System Sci., 18(2):143–154, 1979.

[Df96] Martin Dietzfelbinger. Universal hashing and k-wise indepen-
dent random variables via integer arithmetic without primes.
In Proceedings of the 13th Symposium on Theoretical Aspects of
Computer Science (STACS ’96), pages 569–580. Springer-Verlag,
1996.

[DfGMP92] Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas
Pippenger. Polynomial hash functions are reliable (extended
abstract). In Proceedings of the 19th International Colloquium
on Automata, Languages and Programming (ICALP ’92), vol-
ume 623 of Lecture Notes in Computer Science, pages 235–246.
Springer-Verlag, 1992.

Bibliography 159

[DfHKP97] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and
Martti Penttonen. A reliable randomized algorithm for the
closest-pair problem. Journal of Algorithms, 25(1):19–51, 1997.

[DfKM+94] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm
Meyer auf der Heide, Hans Rohnert, and Robert E. Tarjan. Dy-
namic perfect hashing: Upper and lower bounds. SIAM J. Com-
put., 23(4):738–761, 1994.

[DfMadH90] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A
new universal class of hash functions and dynamic hashing in
real time. In Proceedings of the 17th International Colloquium
on Automata, Languages and Programming (ICALP ’90), volume
443 of Lecture Notes in Computer Science, pages 6–19. Springer-
Verlag, 1990.

[DH01] Martin Dietzfelbinger and Torben Hagerup. Simple minimal
perfect hashing in less space. In Proceedings of the 9th Euro-
pean Symposium on Algorithms (ESA ’01), volume 2161 of Lec-
ture Notes in Computer Science, pages 109–120. Springer-Verlag,
2001.

[DMadH92] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. High
performance universal hashing, with applications to shared mem-
ory simulations. In Data structures and efficient algorithms, vol-
ume 594 of Lecture Notes in Computer Science, pages 250–269.
Springer, 1992.

[Dum56] Arnold I. Dumey. Indexing for rapid random access memory
systems. Computers and Automation, 5(12):6–9, 1956.

[EIS76] Shimon Even, Alon Itai, and Adi Shamir. On the complexity of
timetable and multicommodity flow problems. SIAM J. Comput.,
5(4):691–703, 1976.

[FCH92] Edward A. Fox, Qi Fan Chen, and Lenwood S. Heath. A faster
algorithm for constructing minimal perfect hash functions. In
Proceedings of the 15th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval,
Data Structures, pages 266–273. ACM Press, 1992.

[FHCD92] Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Am-
jad M. Daoud. Practical minimal perfect hash functions for large
databases. Communications of the ACM, 35(1):105–121, 1992.

[FK84] Michael L. Fredman and János Komlós. On the size of separating
systems and families of perfect hash functions. SIAM Journal on
Algebraic and Discrete Methods, 5(1):61–68, 1984.

160 Bibliography

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Stor-
ing a sparse table with O(1) worst case access time. J. Assoc.
Comput. Mach., 31(3):538–544, 1984.

[FLPR99] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar
Ramachandran. Cache-oblivious algorithms. In Proceedings of
the 40th Annual Symposium on Foundations of Computer Science
(FOCS ’99), pages 285–297. IEEE Comput. Soc. Press, 1999.

[FM95] Faith Fich and Peter Bro Miltersen. Tables should be sorted (on
random access machines). In Proceedings of the the 4th Workshop
on Algorithms and Data Structures (WADS ’95), volume 955
of Lecture Notes in Computer Science, pages 482–493. Springer-
Verlag, 1995.

[FN93] Amos Fiat and Moni Naor. Implicit O(1) probe search. SIAM J.
Comput., 22(1):1–10, 1993.

[FNSS92] Amos Fiat, Moni Naor, Jeanette P. Schmidt, and Alan Siegel.
Nonoblivious hashing. Journal of the ACM, 39(4):764–782, 1992.

[Fre60] Edward Fredkin. Trie memory. Comm. A.C.M., 3(9):490–499,
1960.

[FS89] Michael L. Fredman and Michael E. Saks. The cell probe com-
plexity of dynamic data structures. In Proceedings of the 21st
Annual ACM Symposium on Theory of Computing (STOC ’89),
pages 345–354. ACM Press, 1989.

[FW93] Michael L. Fredman and Dan E. Willard. Surpassing the infor-
mation theoretic bound with fusion trees. J. Comput. System
Sci., 47:424–436, 1993.

[FW94] Michael L. Fredman and Dan E. Willard. Trans-dichotomous
algorithms for minimum spanning trees and shortest paths. J.
Comput. System Sci., 48(3):533–551, 1994.

[GG81] Ofer Gabber and Zvi Galil. Explicit constructions of linear-
sized superconcentrators. J. Comput. System Sci., 22(3):407–420,
1981.

[GM79] Gaston H. Gonnet and J. Ian Munro. Efficient ordering of hash
tables. SIAM J. Comput., 8(3):463–478, 1979.

[Gon84] Gaston Gonnet. Handbook of Algorithms and Data Structures.
Addison-Wesley Publishing Co., 1984.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of functions
with random properties: A quality-size trade-off for hashing.
Random Structures & Algorithms, 11(4):315–343, 1997.

Bibliography 161

[Hag98a] Torben Hagerup. Simpler and faster dictionaries on the AC0

RAM. In Proceedings of the 25th International Colloquium
on Automata, Languages and Programming (ICALP ’98), vol-
ume 1443 of Lecture Notes in Computer Science, pages 79–90.
Springer-Verlag, 1998.

[Hag98b] Torben Hagerup. Sorting and searching on the word RAM. In
Proceedings of the 15th Symposium on Theoretical Aspects of
Computer Science (STACS ’98), volume 1373 of Lecture Notes
in Computer Science, pages 366–398. Springer-Verlag, 1998.

[Hag99] Torben Hagerup. Fast deterministic construction of static dictio-
naries. In Proceedings of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’99), pages 414–418. ACM Press,
1999.

[Hal35] Philip Hall. On representatives of subsets. J. London Math. Soc.,
10:26–30, 1935.

[Han02] Yijie Han. Deterministic sorting in O(n log log n) time and linear
space. In Proceedings of the 34th Annual ACM Symposium on
Theory of Computing (STOC ’02). ACM Press, 2002.

[HBI79] David R. Heath-Brown and Henryk Iwaniec. On the difference
between consecutive primes. Invent. Math., 55(1):49–69, 1979.

[HM93] George Havas and Bohdan S. Majewski. Graph-theoretic obsta-
cles to perfect hashing. In Proceedings of the 24th Southeastern
International Conference on Combinatorics, Graph Theory, and
Computing, volume 98, pages 81–93. Utilitas Mathematica, 1993.

[HMP01] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deter-
ministic dictionaries. J. Algorithms, 41(1):69–85, 2001.

[HT01] Torben Hagerup and Torsten Tholey. Efficient minimal perfect
hashing in nearly minimal space. In Proceedings of the 18th Sym-
posium on Theoretical Aspects of Computer Science (STACS ’01),
volume 2010 of Lecture Notes in Computer Science, pages 317–
326. Springer-Verlag, 2001.

[IMRV99] Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and San-
tosh Vempala. Locality-preserving hashing in multidimensional
spaces. In Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (STOC ’97), pages 618–625. ACM Press,
1999.

[Jan93] Svante Janson. Large deviation inequalities for sums of indica-
tor variables. Technical Report 34, Department of Mathematics,
Uppsala University, 1993.

162 Bibliography

[Juk00] Stasys Jukna. Extremal Combinatorics with Applications in Com-
puter Science. Springer-Verlag, 2000.

[KL96] Jyrki Katajainen and Michael Lykke. Experiments with universal
hashing. Technical Report DIKU Technical Report 96/8, Univer-
sity of Copenhagen, 1996.

[KLMadH96] Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der
Heide. Efficient PRAM simulation on a distributed memory ma-
chine. Algorithmica, 16(4-5):517–542, 1996.

[Knu73] Donald E. Knuth. The Art of Computer Programming. Addison-
Wesley Publishing Co., Reading, Mass., 1973. Volume 3. Sorting
and searching.

[Knu98] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of
Computer Programming. Addison-Wesley Publishing Co., Read-
ing, Mass., second edition, 1998.

[LS98] Nathan Linial and Ori Sasson. Non-expansive hashing. Combi-
natorica, 18(1):121–132, 1998.

[Mad80] J. A. T. Maddison. Fast lookup in hash tables with direct re-
hashing. The Computer Journal, 23(2):188–189, May 1980.

[Mal77] Efrem G. Mallach. Scatter storage techniques: A uniform view-
point and a method for reducing retrieval times. The Computer
Journal, 20(2):137–140, May 1977.

[Mar] George Marsaglia. The Marsaglia random number CDROM
including the diehard battery of tests of randomness.
http://stat.fsu.edu/pub/diehard/.

[McG] Catherine C. McGeoch. The fifth DIMACS challenge dictionaries.
http://cs.amherst.edu/∼ccm/challenge5/dicto/.

[Meh84] Kurt Mehlhorn. Data structures and algorithms. 1, Sorting and
searching. Springer-Verlag, 1984.

[Mil96] Peter Bro Miltersen. Lower bounds for static dictionaries on
RAMs with bit operations but no multiplication. In Proceedings
of the 23rd International Colloquium on Automata, Languages
and Programming (ICALP ’96), volume 1099 of Lecture Notes in
Computer Science, pages 442–453. Springer-Verlag, 1996.

[Mil98] Peter Bro Miltersen. Error correcting codes, perfect hashing cir-
cuits, and deterministic dynamic dictionaries. In Proceedings of
the 9th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’98), pages 556–563. ACM Press, 1998.

Bibliography 163

[MN99] Kurt Mehlhorn and Stefan Näher. LEDA. A platform for combi-
natorial and geometric computing. Cambridge University Press,
1999.

[MNSW98] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigder-
son. On data structures and asymmetric communication com-
plexity. J. Comput. System Sci., 57(1):37–49, 1998. Proceedings
of the 27th Annual ACM Symposium on Theory of Computing
(STOC ’95).

[MP69] Marvin Minsky and Seymour Papert. Perceptrons: An Introduc-
tion to Computational Geometry. MIT Press, 1969.

[MS77] F. Jessie MacWilliams and Neil J. A. Sloane. The Theory of
Error-Correcting Codes. I. North-Holland Publishing Co., 1977.
North-Holland Mathematical Library, Vol. 16.

[MS80] J. Ian Munro and Hendra Suwanda. Implicit data structures for
fast search and update. J. Comput. System Sci., 21(2):236–250,
1980.

[MV84] Kurt Mehlhorn and Uzi Vishkin. Randomized and determinis-
tic simulations of PRAMs by parallel machines with restricted
granularity of parallel memories. Acta Inform., 21(4):339–374,
1984.

[Nis96] Noam Nisan. Extracting randomness: How and why: A survey.
In Proceedings of the 11th Annual IEEE Conference on Compu-
tational Complexity (CCC ’96), pages 44–58. IEEE Comput. Soc.
Press, 1996.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces:
Efficient constructions and applications. SIAM J. Comput.,
22(4):838–856, 1993.

[ÖP02a] Anna Östlin and Rasmus Pagh. One-probe search. To appear in
proceedings of ICALP 2002, 2002.

[ÖP02b] Anna Östlin and Rasmus Pagh. Simulating uniform hashing
in constant time and optimal space. Research Series RS-02-27,
BRICS, 2002.

[Ove83] Mark H. Overmars. The Design of Dynamic Data Structures,
volume 156 of Lecture Notes in Computer Science. Springer-
Verlag, 1983.

[OvL81a] Mark H. Overmars and Jan van Leeuwen. Dynamization of de-
composable searching problems yielding good worst-case bounds.
In Proceedings of the 5th GI-Conference, volume 104 of Lec-
ture Notes in Computer Science, pages 224–233. Springer-Verlag,
1981.

164 Bibliography

[OvL81b] Mark H. Overmars and Jan van Leeuwen. Worst-case optimal
insertion and deletion methods for decomposable searching prob-
lems. Inform. Process. Lett., 12(4):168–173, 1981.

[Pag99] Rasmus Pagh. Hash and Displace: Efficient Evaluation of
Minimal Perfect Hash Functions. In Proceedings of the 6th
international Workshop on Algorithms and Data Structures
(WADS ’99), volume 1663 of Lecture Notes in Computer Science,
pages 49–54. Springer-Verlag, 1999.

[Pag00a] Rasmus Pagh. Faster Deterministic Dictionaries. In Proceedings
of the 11th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA ’00), pages 487–493. ACM Press, 2000.

[Pag00b] Rasmus Pagh. Dispersing Hash Functions. In Proceedings of the
4th International Workshop on Randomization and Approxima-
tion Techniques in Computer Science (RANDOM ’00), volume 8
of Proceedings in Informatics, pages 53–67. Carleton Scientific,
2000.

[Pag00c] Rasmus Pagh. A trade-off for worst-case efficient dictionaries.
Nordic J. Comput., 7(3):151–163, 2000.

[Pag01a] Rasmus Pagh. On the Cell Probe Complexity of Membership
and Perfect Hashing. In Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing (STOC ’01), pages 425–432.
ACM Press, 2001.

[Pag01b] Rasmus Pagh. Low redundancy in static dictionaries with con-
stant query time. SIAM J. Comput., 31(2):353–363, 2001.

[PM89] Patricio V. Poblete and J. Ian Munro. Last-come-first-served
hashing. J. Algorithms, 10(2):228–248, 1989.

[PR01a] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing.
In Proceedings of the 9th European Symposium on Algorithms
(ESA ’01), volume 2161 of Lecture Notes in Computer Science,
pages 121–133. Springer-Verlag, 2001.

[PR01b] Rasmus Pagh and Flemming Friche Rodler. Lossy dictionaries.
In Proceedings of the 9th European Symposium on Algorithms
(ESA ’01), volume 2161 of Lecture Notes in Computer Science,
pages 300–311. Springer-Verlag, 2001.

[Rad92] Jaikumar Radhakrishnan. Improved bounds for covering com-
plete uniform hypergraphs. Inform. Process. Lett., 41(4):203–207,
1992.

[Ram96] Rajeev Raman. Priority queues: Small, monotone and trans-
dichotomous. In Proceedings of the 4th European Symposium on
Algorithms (ESA ’96), volume 1136 of Lecture Notes in Computer
Science, pages 121–137. Springer-Verlag, 1996.

Bibliography 165

[Riv78] Ronald L. Rivest. Optimal arrangement of keys in a hash table.
J. Assoc. Comput. Mach., 25(2):200–209, 1978.

[RR99] Venkatesh Raman and S. Srivinasa Rao. Static dictionaries sup-
porting rank. In Proceedings of the 10th International Sympo-
sium on Algorithms And Computation (ISAAC ’99), volume 1741
of Lecture Notes in Computer Science, pages 18–26. Springer-
Verlag, 1999.

[RRR01] Jaikumar Radhakrishnan, Venkatesh Raman, and S. Srinivasa
Rao. Explicit deterministic constructions for membership in the
bitprobe model. Lecture Notes in Computer Science, 2161:290–
299, 2001.

[RRR02] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Suc-
cinct indexable dictionaries with applications to encoding k-ary
trees and multisets. In Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA ’02), pages
233–242. ACM Press, 2002.

[RRV99a] Ran Raz, Omer Reingold, and Salil Vadhan. Error reduction
for extractors. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science (FOCS ’99), pages 191–201.
IEEE Comput. Soc. Press, 1999.

[RRV99b] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the
randomness and reducing the error in Trevisan’s extractors. In
Proceedings of the 31st Annual ACM Symposium on Theory of
Computing (STOC ’99), pages 149–158. ACM Press, 1999.

[Sar80] Dilip V. Sarwate. A note on: “Universal classes of hash func-
tions” [J. Comput. System Sci. 18 (1979), no. 2, 143–154; MR
80f:68110a] by J. L. Carter and M. N. Wegman. Inform. Process.
Lett., 10(1):41–45, 1980.

[Sie89] Alan Siegel. On universal classes of fast high performance hash
functions, their time-space tradeoff, and their applications. In
Proceedings of the 30th Annual Symposium on Foundations of
Computer Science (FOCS ’89), pages 20–25. IEEE Comput. Soc.
Press, 1989.

[Sie95] Alan Siegel. On universal classes of extremely random constant
time hash functions and their time-space tradeoff. Technical Re-
port TR1995-684, New York University, 1995.

[Sil98] Craig Silverstein. A practical perfect hashing algorithm.
Manuscript, 1998.

[SS89] Jeanette P. Schmidt and Alan Siegel. On aspects of universal-
ity and performance for closed hashing (extended abstract). In

166 Bibliography

Proceedings of the 21st Annual ACM Symposium on Theory of
Computing (STOC ’89), pages 355–366. ACM Press, 1989.

[SS90a] Jeanette P. Schmidt and Alan Siegel. The analysis of closed hash-
ing under limited randomness (extended abstract). In Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing
(STOC ’90), pages 224–234. ACM Press, 1990.

[SS90b] Jeanette P. Schmidt and Alan Siegel. The spatial complexity of
oblivious k-probe hash functions. SIAM J. Comput., 19(5):775–
786, 1990.

[SSS93] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan.
Chernoff-Hoeffding bounds for applications with limited indepen-
dence. In Proceedings of the 4th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’93), pages 331–340. ACM Press,
1993.

[Sun93] Rajamani Sundar. A lower bound on the cell probe complexity
of the dictionary problem. Manuscript, 1993.

[SV01] Peter Sanders and Berthold Vöcking, 2001. Personal communi-
cation.

[Tho00] Mikkel Thorup. Even strongly universal hashing is pretty fast.
In Proceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’00), pages 496–497. ACM Press,
2000.

[TS] Amnon Ta-Shma. Storing information with extractors. To appear
in Information Processing Letters.

[TSUZ01] Amnon Ta-Shma, Christopher Umans, and David Zuckerman.
Loss-less condensers, unbalanced expanders, and extractors. In
Proceedings of the 33rd Annual ACM Symposium on Theory of
Computing (STOC ’01), pages 143–152. ACM Press, 2001.

[TY79] Robert E. Tarjan and Andrew C.-C. Yao. Storing a sparse table.
Communications of the ACM, 22(11):606–611, 1979.

[vEB75] Peter van Emde Boas. Preserving order in a forest in less than
logarithmic time. In Proceedings of the 16th Annual Symposium
on Foundations of Computer Science (FOCS ’75), pages 75–84.
IEEE Comput. Soc. Press, 1975.

[Vöc99] Berthold Vöcking. How asymmetry helps load balancing. In
Proceedings of the 40th Annual Symposium on Foundations of
Computer Science (FOCS ’99), pages 131–141. IEEE Comput.
Soc. Press, 1999.

Bibliography 167

[WC81] Mark N. Wegman and J. Lawrence Carter. New hash functions
and their use in authentication and set equality. J. Comput.
System Sci., 22(3):265–279, 1981.

[Wen92] Michael Wenzel. Wörterbücher für ein beschränktes Universum.
Diplomarbeit, Fachbereich Informatik, Universität des Saarlan-
des, 1992.

[Wil83] Dan E. Willard. Log-logarithmic worst-case range queries are
possible in space Θ(N). Inform. Process. Lett., 17(2):81–84, 1983.

[Wil00] Dan E. Willard. Examining computational geometry, van Emde
Boas trees, and hashing from the perspective of the fusion tree.
SIAM J. Comput., 29(3):1030–1049, 2000.

[Woe99] Philipp Woelfel. Efficient strongly universal and optimally uni-
versal hashing. In Proceedings of the 24th Mathematical Foun-
dations of Computer Sciences, volume 1672 of Lecture Notes in
Computer Science, pages 262–272. Springer, 1999.

[Yao81] Andrew C.-C. Yao. Should tables be sorted? J. Assoc. Comput.
Mach., 28(3):615–628, 1981.

[Yao85] Andrew C.-C. Yao. Uniform hashing is optimal. J. Assoc. Com-
put. Mach., 32(3):687–693, 1985.

Recent BRICS Dissertation Series Publications

DS-02-5 Rasmus Pagh.Hashing, Randomness and Dictionaries. Octo-
ber 2002. PhD thesis. x+167 pp.

DS-02-4 Anders Møller. Program Verification with Monadic Second-
Order Logic & Languages for Web Service Development.
September 2002. PhD thesis. xvi+337 pp.

DS-02-3 Riko Jacob. Dynamic Planar Convex hull. May 2002. PhD
thesis. xiv+110 pp.

DS-02-2 Stefan Dantchev.On Resolution Complexity of Matching Prin-
ciples. May 2002. PhD thesis. xii+70 pp.

DS-02-1 M. Oliver Möller. Structure and Hierarchy in Real-Time Sys-
tems. April 2002. PhD thesis. xvi+228 pp.

DS-01-10 Mikkel T. Jensen.Robust and Flexible Scheduling with Evolu-
tionary Computation. November 2001. PhD thesis. xii+299 pp.

DS-01-9 Flemming Friche Rodler. Compression with Fast Random Ac-
cess. November 2001. PhD thesis. xiv+124 pp.

DS-01-8 Niels Damgaard.Using Theory to Make Better Tools. October
2001. PhD thesis.

DS-01-7 Lasse R. Nielsen. A Study of Defunctionalization and
Continuation-Passing Style. August 2001. PhD thesis.
iv+280 pp.

DS-01-6 Bernd Grobauer.Topics in Semantics-based Program Manipu-
lation. August 2001. PhD thesis. ii+x+186 pp.

DS-01-5 Daniel Damian. On Static and Dynamic Control-Flow Infor-
mation in Program Analysis and Transformation. August 2001.
PhD thesis. xii+111 pp.

DS-01-4 Morten Rhiger. Higher-Order Program Generation. August
2001. PhD thesis. xiv+144 pp.

DS-01-3 Thomas S. Hune.Analyzing Real-Time Systems: Theory and
Tools. March 2001. PhD thesis. xii+265 pp.

DS-01-2 Jakob Pagter.Time-Space Trade-Offs. March 2001. PhD thesis.
xii+83 pp.

DS-01-1 Stefan Dziembowski.Multiparty Computations — Information-
Theoretically Secure Against an Adaptive Adversary. January
2001. PhD thesis. 109 pp.

