
B
R

IC
S

D
S

-02-4
A

.M
ø

ller:
P

rogram
Verification

w
ith

M
2L

&
Languages

for
W

eb
S

ervice
D

evelopm
ent

BRICS
Basic Research in Computer Science

Program Verification with
Monadic Second-Order Logic
&
Languages for
Web Service Development

Anders Møller

BRICS Dissertation Series DS-02-4

ISSN 1396-7002 September 2002

Copyright c© 2002, Anders Møller.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/02/4/

Program Verification with
Monadic Second-Order Logic

&

Languages for

Web Service Development

Anders Møller

Ph.D. Dissertation

Department of Computer Science
University of Aarhus

Denmark

Program Verification with
Monadic Second-Order Logic

&

Languages for

Web Service Development

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfillment of the Requirements for the

Ph.D. Degree

by
Anders Møller
June 12, 2002

Abstract

Domain-specific formal languages are an essential part of computer science, combin-
ing theory and practice. Such languages are characterized by being tailor-made for
specific application domains and thereby providing expressiveness on high abstraction
levels and allowing specialized analysis and verification techniques. This disserta-
tion describes two projects, each exploring one particular instance of such languages:
monadic second-order logic and its application to program verification, and program-
ming languages for construction of interactive Web services. Both program verifica-
tion and Web service development are areas of programming language research that
have received increased attention during the last years.

We first show how the logic Weak monadic Second-order Logic on Strings and
Trees can be implemented efficiently despite an intractable theoretical worst-case com-
plexity. Among several other applications, this implementation forms the basis of
a verification technique for imperative programs that perform data-type operations
using pointers. To achieve this, the basic logic is extended with layers of language
abstractions. Also, a language for expressing data structures and operations along
with correctness specifications is designed. Using Hoare logic, programs are split into
loop-free fragments which can be encoded in the logic. The technique is described for
recursive data types and later extended to the whole class of graph types. As an ex-
ample application, we verify correctness properties of an implementation of the insert
procedure for red-black search trees.

We then show how Web service development can benefit from high-level language
support. Existing programming languages for Web services are typically general-
purpose languages that provide only low-level primitives for common problems, such
as maintaining session state and dynamically producing HTML or XML documents.
By introducing explicit language-based mechanisms for those issues, we liberate the
Web service programmer from the tedious and error-prone alternatives. Specialized
program analyses aid the programmer by verifying at compile time that only valid
HTML documents are ever shown to the clients at runtime and that the documents are
constructed consistently. In addition, the language design provides support for declar-
ative form-field validation, caching of dynamic documents, concurrency control based
on temporal-logic specifications, and syntax-level macros for making additional lan-
guage extensions. In its newest version, the programming language is designed as an
extension of Java. To describe classes of XML documents, we introduce a novel XML
schema language aiming to both simplify and generalize existing proposals. All parts
are implemented and tested in practice.

Both projects involve design of high-level languages and specialized analysis and
verification techniques, supporting the thesis that the domain-specific paradigm can
provide a versatile and productive approach to development of formal languages.

v

Acknowledgments

I sincerely thank Claus Brabrand, Rasmus Pagh, AnnaÖstlin, Jacob and Louise El-
gaard, Anders Sandholm, and Aske Simon Christensen for good friendship and for
making DAIMI a great place to be.

I am grateful to Michael Schwartzbach for being a wise and witty mentor. He has
been the ideal supervisor during my studies.

I have learned much from Nils Klarlund. I thank him for valuable cooperation and
guidance, and for his hospitality the times I visited New Jersey.

I am also indebted to Alex Aiken for allowing me to have an inspiring and exciting
stay at UC Berkeley. Also thanks to Jeff Foster, Zhendong Su, and David Gay for their
friendliness and insightful discussions.

Special thanks go to my wife Hanne and to my parents for encouragement and
giving me the possibility to pursue my goals. My daughter Sara Louise arrived just in
time for this section to be written. I appreciate her effort in reminding me that there
are much more important things in life than programming languages.

Anders Møller,
Aarhus, June 12, 2002.

vii

Contents

Abstract v

Acknowledgments vii

I Overview 1

1 Introduction 3
1.1 Structure of the Dissertation . 3
1.2 About Domain-Specific Formal Languages 5

2 Program Verification with Monadic Second-Order Logic 7
2.1 The MONA Tool . 7

2.1.1 The Automaton–Logic Connection. 8
2.1.2 Core WS1S . 9
2.1.3 Complexity . 10
2.1.4 BDD Representation of Automata. 11
2.1.5 Tree Logics and Tree Automata 12
2.1.6 Finite vs. Infinite Structures 12
2.1.7 Restrictions and Three-Valued Logic 13
2.1.8 Other Implementation Tricks 13
2.1.9 Applications . 17

2.2 Program Verification . 19
2.2.1 Overview . 19
2.2.2 Related Work . 20
2.2.3 Pointer Assertion Logic and Graph Types. 21
2.2.4 Encoding Programs and Properties in MONA Logic 23

3 Languages for Web Service Development 27
3.1 Interactive Web Services . 28
3.2 The Session-Centered Approach. 31

3.2.1 Script-Centered Languages 31
3.2.2 Page-Centered Languages 32
3.2.3 Session-Centered Languages 33
3.2.4 A Runtime Model with Support for Sessions. 35

3.3 Dynamic Construction of Web Pages 36
3.4 Program Analyses . 39

ix

3.4.1 Flow Graphs for JWIG Programs 40
3.4.2 Summary Graphs for XML Expressions 40
3.4.3 Analyzing Plug Operations 42
3.4.4 Analyzing Receive Operations 42
3.4.5 Analyzing Show Operations 43

3.5 Declarative Form Field Validation 43
3.5.1 The PowerForms Language 44
3.5.2 PowerForms in JWIG . 46

3.6 Other Aspects of Web Service Languages. 46
3.6.1 Concurrency Control . 46
3.6.2 Security Issues 48
3.6.3 Language Abstractions with Syntax Macros. 49

3.7 Schema Languages for XML. 49
3.7.1 The Document Structure Description Language 51
3.7.2 Validating Summary Graphs with DSD2 54

4 Conclusion 57

II Publications 59

5 MONA 1.x: New Techniques for WS1S and WS2S 61
5.1 Introduction . 61
5.2 M2L(Str) and WS1S . 62
5.3 DAGs for Compilation . 64
5.4 Experimental Results . 64
5.5 Related and Future Work . 65

6 MONA Implementation Secrets 67
6.1 Introduction . 67
6.2 The Automaton–Logic Connection 68
6.3 Benchmark Formulas . 70
6.4 Implementation Secrets . 72

6.4.1 BDD-based Automata Representation 72
6.4.2 Cache-Conscious Data Structures 73
6.4.3 Eager Minimization . 74
6.4.4 Guided Tree Automata . 75
6.4.5 DAGification . 75
6.4.6 Three-Valued Logic and Automata 76
6.4.7 Formula Reductions . 77

6.5 Future Developments . 79
6.6 Conclusion . 80

7 Compile-Time Debugging of C Programs Working on Trees 81
7.1 Introduction . 81
7.2 The Language 85

7.2.1 The C Subset . 85

x

7.2.2 Modeling the Store . 86
7.2.3 Store Logic . 87
7.2.4 Program Annotations and Hoare Triples 88

7.3 Deciding Hoare Triples . 90
7.3.1 Weak Monadic Second-Order Logic with Recursive Types . . 90
7.3.2 Encoding Stores and Formulas in WSRT 91
7.3.3 Predicate Transformation . 92

7.4 Deciding WSRT . 93
7.4.1 The Naive Decision Procedure 93
7.4.2 A Decision Procedure using Guided Tree Automata 94

7.5 Conclusion . 95

8 The Pointer Assertion Logic Engine 97
8.1 Introduction . 97

8.1.1 A Tiny Example . 99
8.1.2 Related Work . 100

8.2 Pointer Assertion Logic 101
8.2.1 Store Model . 101
8.2.2 Graph Types . 101
8.2.3 The Programming Language 103
8.2.4 Program Annotations. 104
8.2.5 Semantics of Annotations 106

8.3 Example: Threaded Trees . 106
8.4 Hoare Logic Revisited . 108
8.5 Deciding Hoare Triples in MONA 109
8.6 Data Abstractions . 112
8.7 Implementation and Evaluation . 113
8.8 Conclusion . 116

9 The<bigwig> Project 117
9.1 Introduction . 117

9.1.1 Motivation . 118
9.1.2 The<bigwig> Language. 120
9.1.3 Overview . 122

9.2 Session-Centered Web Services. 122
9.2.1 The Script-Centered Approach 122
9.2.2 The Page-Centered Approach 124
9.2.3 The Session-Centered Approach. 125
9.2.4 Structure of<bigwig> Services 126
9.2.5 A Session-Based Runtime Model. 127

9.3 Dynamic Construction of HTML Pages 129
9.3.1 Analysis of Template Construction and Form Input 131
9.3.2 HTML Validity Analysis . 132
9.3.3 Caching of Dynamically Generated HTML 134
9.3.4 Code Gaps and Document Clusters 134

9.4 Form Field Validation . 135
9.5 Concurrency Control . 138

xi

9.6 Syntax Macros . 140
9.7 Other Web Service Aspects . 143

9.7.1 HTML Deconstruction . 143
9.7.2 Seslets . 144
9.7.3 Databases .. 144
9.7.4 Security . .. 145

9.8 Evaluation . 146
9.8.1 Experience with<bigwig> 146
9.8.2 Performance . 147

9.9 Conclusion . 147
9.9.1 Acknowledgments . 148

10 A Runtime System for Interactive Web Services 149
10.1 Introduction. 149
10.2 Motivation . 150

10.2.1 The Session Concept. 150
10.2.2 CGI Scripts and Sequential Session Threads. 151
10.2.3 Other CGI Shortcomings . 151
10.2.4 Handling Safety Requirements Consistently 152

10.3 Components in the Runtime System 153
10.4 Dynamics of the Runtime System 154

10.4.1 Execution of a Thread . 155
10.4.2 Starting up a Session Thread 155
10.4.3 Interaction with the Client 156
10.4.4 Interaction with the Controller 157

10.5 Extending the Runtime System . 160
10.6 Related Work . 161
10.7 Conclusions and Future Work . 162

11 PowerForms: Declarative Client-Side Form Field Validation 165
11.1 Introduction. 166

11.1.1 Input Validation 166
11.1.2 Field Interdependencies . 167
11.1.3 JavaScript Programming . 167
11.1.4 Our Solution: PowerForms 168
11.1.5 Related Work . 168

11.2 Validation of Input Formats .. 169
11.2.1 Syntax . 169
11.2.2 Semantics of Regular Expressions. 170
11.2.3 Semantics of Format Declarations 171
11.2.4 Examples . 172

11.3 Interdependencies of Form Fields 174
11.3.1 Syntax . 175
11.3.2 Semantics of Boolean Expressions. 175
11.3.3 Semantics of Interdependencies 175
11.3.4 Examples . 176

11.4 Applet Results . 181

xii

11.5 Translation to JavaScript . 181
11.6 Availability . 182
11.7 Conclusion . 182

12 Language-Based Caching of Dynamically Generated HTML 183
12.1 Introduction. 183
12.2 Related Work . 185
12.3 Dynamic Documents in<bigwig> 188

12.3.1 Dynamic Document Representation 190
12.4 Client-Side Caching . 192

12.4.1 Caching . 193
12.4.2 Compact Representation. 194
12.4.3 Clustering . 195

12.5 Experiments . 196
12.6 Future Work . 199
12.7 Conclusion . 199

13 Static Validation of Dynamically Generated HTML 201
13.1 Introduction. 201

13.1.1 Outline . .. 202
13.2 XHTML Documents in<bigwig> 202

13.2.1 XML Templates . 204
13.2.2 Programs . 205

13.3 Summary Graphs . 205
13.4 Gap Track Analysis . 207

13.4.1 Lattices . 207
13.4.2 Transfer Functions . 207
13.4.3 The Analysis . 208

13.5 Summary Graph Analysis . 208
13.5.1 Lattices . 208
13.5.2 Transfer Functions . 208
13.5.3 The Analysis . 209
13.5.4 The Example Revisited . 210

13.6 An Abstract DTD for XHTML . 211
13.6.1 Examples for XHTML . 213
13.6.2 Exceptions in<bigwig> . 214

13.7 Validating Summary Graphs . 214
13.8 Experiments . 216

13.8.1 Error Diagnostics . .. 217
13.9 Related Work . 218
13.10Extensions and Future Work . 218
13.11Conclusion . 219

14 The DSD Schema Language 221
14.1 Introduction. 222

14.1.1 Outline . .. 226
14.2 XML Concepts . 226

xiii

14.3 The DSD Language. 226
14.3.1 Element Constraints . 227
14.3.2 Attribute Declarations. 228
14.3.3 String Types . 229
14.3.4 Content Expressions. 230
14.3.5 Context Patterns . 232
14.3.6 Default Insertion . .. 234
14.3.7 ID Attributes and Points-To Requirements. 235
14.3.8 Redefinitions and Evolving DSDs 236
14.3.9 Self-documentation . 237
14.3.10 The Meta-DSD . 237

14.4 The Book Example . 237
14.5 The DSD 1.0 Tool . 240
14.6 Industrial Case Study: IVR Systems 241

14.6.1 The IVR Scenario . 242
14.6.2 DSDs for Syntax Explanations 242
14.6.3 DSDs for Debugging. 243
14.6.4 DSDs for Myriads of Defaults 244
14.6.5 DSDs for Simplifying XPML Processing. 246
14.6.6 Summary of DSD Advantages 247

14.7 Related Work . 247
14.7.1 XML Schema . 248
14.7.2 RELAX NG . 251
14.7.3 Other Proposals . 252

14.8 Conclusion . 253

15 Extending Java for High-Level Web Service Construction 255
15.1 Introduction. 255

15.1.1 Sessions and Web Pages. 256
15.1.2 Contributions. 257
15.1.3 Problems with Existing Approaches 257
15.1.4 Outline . .. 260

15.2 The JWIG Language. 260
15.2.1 Program Structure . 260
15.2.2 Client Interaction . 262
15.2.3 Dynamic Document Construction 263
15.2.4 The JWIG Program Translation Process 267
15.2.5 An Example JWIG Program 268

15.3 Flow Graph Construction . 269
15.3.1 Structure of Flow Graphs . 269
15.3.2 Semantics of Flow Graphs 270
15.3.3 From JWIG Programs to Flow Graphs 272
15.3.4 Complexity . 277
15.3.5 Flow Graph for the Example 278

15.4 Summary Graph Analysis . 278
15.4.1 String Analysis 279
15.4.2 Summary Graphs . 280

xiv

15.4.3 Constructing Summary Graphs 283
15.4.4 Summary Graphs for the Example 285

15.5 Providing Static Guarantees . 286
15.5.1 Plug Analysis . 286
15.5.2 Receive Analysis . .. 287
15.5.3 Show Analysis . 290
15.5.4 The Document Structure Description 2.0 Language 291
15.5.5 Validity Analysis . 294

15.6 Implementation and Evaluation . 297
15.6.1 Example: The Memory Game 298
15.6.2 Performance . 302

15.7 Plans and Ideas for Future Development 305
15.7.1 Language Design . .. 305
15.7.2 Program Analysis . 306
15.7.3 Implementation . 306

15.8 Conclusion . 307

16 Static Analysis for Dynamic XML 309
16.1 Introduction. 309
16.2 XML Templates . 310
16.3 Summary Graphs . 311
16.4 Static Guarantees in JWIG . 314
16.5 Analyzing Deconstruction . 314
16.6 Regular Expression Types .. 318
16.7 Conclusion . 320

Bibliography 321

xv

Part I

Overview

Chapter 1

Introduction

1.1 Structure of the Dissertation

This dissertation documents the author’s scientific work during his PhD studies at
BRICS, Department of Computer Science, University of Aarhus. Part I contains a
general overview of the research areas and the author’s contributions; Part II contains
a collection of co-authored papers. The work has resulted in the following papers, here
listed in chronological order of publication or submission:

MONA 1.x: New Techniques for WS1S and WS2S
with Jacob Elgaard and Nils Klarlund, published inProc. 10th International
Conference on Computer Aided Verification, CAV ’98, LNCS vol. 1427, pp.
516–520, Springer-Verlag, June/July 1998.

A Runtime System for Interactive Web Services
with Claus Brabrand, Anders Sandholm, and Michael I. Schwartzbach, pub-
lished inProc. 8th International World Wide Web Conference, WWW8, pp. 313–
324, Elsevier, May 1999; also in Computer Networks Vol. 31 No. 11–16, pp.
1391–1401, Elsevier, May 1999.

Compile-Time Debugging of C Programs Working on Trees
with Jacob Elgaard and Michael I. Schwartzbach, published inProgramming
Languages and Systems, Proc. 9th European Symposium on Programming,
ESOP ’00, LNCS vol. 1782, pp. 182–194, Springer-Verlag, March/April 2000.

PowerForms: Declarative Client-Side Form Field Validation
with Claus Brabrand, Mikkel Ricky, and Michael I. Schwartzbach, published in
World Wide Web Journal, Vol. 3, No. 4, pp. 205–214, Kluwer, December 2000.

Document Structure Description 1.0
with Nils Klarlund and Michael I. Schwartzbach, published inBRICS Notes
Series, NS-00-7, Department of Computer Science, University of Aarhus, De-
cember 2000, 40 pp.

MONA 1.4 User Manual
with Nils Klarlund, published inBRICS Notes Series, NS-01-1, Department of
Computer Science, University of Aarhus, January 2001, 81 pp.

4 Introduction

Static Validation of Dynamically Generated HTML
with Claus Brabrand and Michael I. Schwartzbach, published inProc. ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and En-
gineering, PASTE ’01, pp. 38–45, June 2001.

The Pointer Assertion Logic Engine
with Michael I. Schwartzbach, published inProc. ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’01, pp. 221–
231, June 2001; also inSIGPLAN NoticesVol. 36, No. 5, May 2001.

The XML Revolution — Technologies for the future Web
with Michael I. Schwartzbach, on-line tutorial, published inBRICS Notes Series,
NS-01-8, Department of Computer Science, University of Aarhus, December
2001, 186 pp.; revision of BRICS NS-00-8. (This tutorial has since its first
edition from February 2000 been visited by more than 90,000 people, counted
as different IP numbers.)

The<bigwig> Project
with Claus Brabrand and Michael I. Schwartzbach, to appear inTransactions on
Internet Technology, Vol. 2, No. 2, ACM, May 2002, 33 pp.

MONA Implementation Secrets
with Nils Klarlund and Michael I. Schwartzbach, to appear inInternational
Journal of Foundations of Computer Science, World Scientific, 2002; prelim-
inary version published inProc. 5th International Conference on Implementa-
tion and Application of Automata, CIAA ’00, LNCS vol. 2088, pp. 182–194,
Springer-Verlag, July 2000.

The DSD Schema Language
with Nils Klarlund and Michael I. Schwartzbach, inAutomated Software Engi-
neering, Vol. 9, No. 3, pp. 285–319, Kluwer, 2002; preliminary version pub-
lished inProc. 3rd ACM SIGPLAN-SIGSOFT Workshop on Formal Methods in
Software Practice, FMSP ’00, pp. 101–111, August 2000.

Language-Based Caching of Dynamically Generated HTML
with Claus Brabrand, Steffan Olesen, and Michael I. Schwartzbach, to appear in
World Wide Web Journal, Kluwer, 2002, 19 pp.

Extending Java for High-Level Web Service Construction
with Aske Simon Christensen and Michael I. Schwartzbach, submitted for jour-
nal publication; preliminary version published inBRICS Report Series, RS-02-
11, Department of Computer Science, University of Aarhus, March 2002, 54 pp.

Interactive Web Services with Java
with Michael I. Schwartzbach, on-line tutorial, published inBRICS Notes Series,
NS-02-1, Department of Computer Science, University of Aarhus, April 2002,
99 pp.

Static Analysis for Dynamic XML
with Aske Simon Christensen and Michael I. Schwartzbach, submitted for work-

1.2 About Domain-Specific Formal Languages 5

shop presentation; published inBRICS Report Series, RS-02-24, Department of
Computer Science, University of Aarhus, May 2002, 13 pp.

The papers that have been refereed and presented at workshops or conferences or pub-
lished in journals and the two currently in submission can be found in Part II. The
remaining publications are available from the author’s WWW home page at:

http://www.brics.dk/~amoeller/

The papers included in Part II appear as published, with the following exceptions:
The typography is modified to make the presentation more coherent and the notation
consistent; a few errors have been corrected as explained in footnotes; and finally,
because the projects have evolved since the first papers were published, additional
footnotes are added to clarify the changes.

In connection to the publications listed above, the work has resulted in the follow-
ing software tools:

M ONA – a WS1S/WS2S decision procedure (see Section 2.1)

PALE – an extension of MONA for program verification with Pointer Assertion Logic
(see Section 2.2);

<bigwig> – a compiler, program analyzer, and runtime system for the<bigwig>
programming language (see Section 3.1)

JWIG - a program analyzer and runtime system for theJWIG programming language,
which is a successor to the<bigwig> language (see Section 3.1)

runwig – a module for the Apache Web server, used for both the<bigwig> and the
JWIG runtime systems (see Section 3.2)

dk.brics.automaton – a Java package for performing DFA/NFA and regular
expression operations with Unicode alphabet, used in particular for the DSD2
validator in theJWIG program analyzer (see Section 3.4) and in the Java version
of the PowerForms compiler (see Section 3.5)

DSD/DSD2 – validators for DSD and DSD2 XML schemas (see Section 3.7)

The tools are developed by the author of this dissertation—for the MONA, <bigwig>,
andJWIG tools, in cooperation with the research group. All the tools are freely avail-
able under Open Source licences, also from the author’s home page.

The reader of the overview chapters in Part I is assumed to be familiar with regular
languages, finite-state automata, mathematical logic, pointers in programming lan-
guages, and data-flow-based program analysis, as taught in undergraduate computer
science courses and to have a basic understanding of HTML, XML, and the World
Wide Web.

1.2 About Domain-Specific Formal Languages

Formal languages are ubiquitous in computer science. Programmers typically use a va-
riety of languages in their work, and even though most programming languages from
a theoretical point of view have the same expressive power by being Turing complete,

http://www.brics.dk/~{}amoeller/

6 Introduction

new languages frequently appear. The justification of this myriad of languages lies in
their different designs and intended application domains. A recent trend in program-
ming language development is a shift of focus from general-purpose towards domain-
specific languages (DSLs) [75, 63], also called very-high-level languages. Instead of
aiming for general software development, such a language is designed to address a
narrow class of problems, while in return offering compelling advantages:

• it can provide a high level of abstraction with language constructs and cus-
tomized syntax that closely match the concepts in the problem domain; and

• highly specialized static analyses, verification techniques, and code optimiza-
tions are often possible, since not only the programmer but also the compiler
has a better chance of understanding what the programs do.

Learning a single general-purpose programming language, such as C or Java, of course
may be easier than building a large toolbox of domain-specific languages. However,
by mastering a suitable range of such specialized languages, the general benefits can
be improved productivity by easier development and maintenance of applications, and
often also increased runtime performance.

The remaining chapters of Part I present an overview of monadic second-order
logic and its application to program verification and of high-level languages for de-
velopment of interactive Web services. Throughout this presentation we will see a
number of formal languages that are highly specialized to particular domains: the
MONA language is a concise notation for regular sets of strings or trees; Pointer As-
sertion Logic is a language tailor-made for expressing properties of pointer-intensive
programs;<bigwig> andJWIG are programming languages that are designed for the
domain of Web services; DynDoc is a sublanguage of both<bigwig> andJWIG for
dynamic construction of Web pages; PowerForms, another sublanguage, is designed
for expressing form input requirements; and DSD and DSD2 are languages for speci-
fying the syntax of XML languages, used in particular inJWIG. The various projects
constituting this dissertation have many differences, but a common theme is the use of
the DSL paradigm. Thus, the dissertation can be viewed as a case study of languages
and tools for the specific domains of regular languages, Web services, and various
sub-domains of these.

The most essential part of this DSL paradigm is to analyze the application domain
in order to identify the central concepts that should appear directly as high-level lan-
guage constructs. We deliberately apply the paradigm in a broader sense than e.g. in
[75] since our languages are not necessarily declarative and we do not rely on auto-
mated compiler generators. Instead we focus on the design and implementation of the
languages and on specialized analysis and verification techniques.

Chapter 2

Program Verification with
Monadic Second-Order Logic

The MONA project is an example of theoretical results in basic research evolving into
practical tools. It was initiated at BRICS by Klarlund (now at AT&T Labs Research)
in 1994, based on B¨uchi, Elgot, and Trakhtenbrot’s classical decidability results for
Weak monadic Second-order theory of 1 Successor, WS1S, andMonadic Second-order
Logic on finite Strings, M2L(Str), from the early 1960’s [49, 83, 211, 208]. Since
1994, a large number of improvements have been made in the implementation, many
people have contributed, and a long range of applications have been published. In
this chapter, we describe the theoretical foundation of the MONA tool together with its
implementation, and provide an in-depth description of a particular application in the
area of program verification.

2.1 The MONA Tool

The MONA tool is a decision procedure for WS1S and a number of related logics.
These logics are formal languages for the specific domains of regular sets of finite
strings and trees. As input, the tool takes a formula expressed in one of these logics
and translates it into a finite-state automaton. By analyzing the automaton, the tool
produces as output either the result “valid”, in case the original formula is valid, or the
result “invalid” together with a counter-example valuation, in case the formula is not
valid:

formula automaton

"valid"

TRANSLATOR ANALYZER

counter−example
"invalid",

There are two important practical aspects of this process: 1) Which interesting prob-
lems can be expressed in the logics? 2) Can the process be made sufficiently efficient
to be practically useful?

Regarding the first aspect, there will obviously be clear theoretical limitations to

8 Program Verification with Monadic Second-Order Logic

expressibility since the involved logics are decidable. Still, the logics are among the
most expressive decidable logics that are known, and it is important to investigate the
practical usefulness of logics near the edge to undecidability. Also, there is obviously
a need for extending the basic languages with convenient “syntactic sugar” to make
it more manageable to express problems using the logics. This aspect therefore also
involves language design for these highly specialized problem domains.

Regarding the second aspect, one really must be an optimist in order to implement
these decision procedures: As explained below, the theoretical worst-case complexity
is non-elementary, that is, the time and space requirements are not bounded by any
constant-size stack of exponentials in the size of the formulas. This perhaps explains
the many years that passed between the discovery of the automaton–logic connection
in the 1960’s and the first implementations in the 1990’s. However, it turns out that for
many applications, the theoretical bound is not encountered in practice. Experience
from the MONA project shows that even for non-elementary decision procedures, it
can pay off to develop new representations of formulas and automata, even if they
only decrease the resource requirements by perhaps constant factors in average cases.

The WWW home page of the MONA project is located at:

http://www.brics.dk/mona/

The tool can be downloaded freely, including the full source code and the MONA User
Manual [131]. Since June 1998, there have been around 600 registered downloads and
250 people currently subscribe to the “MONA News” mailing list.

2.1.1 The Automaton–Logic Connection

It has been known for more than forty years that the class of regular languages is
linked to decidability questions in formal logics. In particular, the logic WS1S is
decidable through theautomaton–logicconnection: the set of satisfying interpretations
of a subformula can be represented by a finite-state automaton. This is one of B¨uchi,
Elgot, and Trakhtenbrot’s classical results. The automaton for a formula is calculated
inductively: logical connectives correspond to simple automata-theoretic operations
such as product and subset construction, and atomic formulas correspond to small
basic automata. From the resulting automaton, interesting properties of the original
formula, such as validity or counter-examples, can easily be deduced. The MONA

tool is an implementation of this decision procedure, where automata are represented
using BDDs [47]. In addition, MONA also implements the decision procedure for the
logic WS2S (Weak monadic Second-order theory of 2 Successors), a generalization of
WS1S.

There are a number of tools closely resembling MONA. Independently of the
MONA project, the first implementation of automata represented with BDDs was that
of Gupta and Fischer from 1993 [102]. However, their application was representa-
tion of linearly inductive boolean functionsinstead of the automaton–logic connec-
tion. MOSEL (seehttp://sunshine.cs.uni-dortmund.de/projects/mosel/) im-
plements the automata-based decision procedure for the logic M2L(Str), using BDDs
as MONA. In [123], MOSEL is described and compared with MONA 0.2, which pro-
vided inspiration for the MOSEL project. Apparently, there have been only few appli-
cations of MOSEL. AM ORE [153] (seehttp://www.informatik.uni-kiel.de/inf/

2.1 The MONA Tool 9

Thomas/amore.html) is a library of automata-theoretic algorithms, resembling those
used in MONA. AM ORE also provides functionality for regular expressions and
monoids, but is not tied to the automaton–logic connection. Glenn and Gasarch [98]
have in 1997—apparently independently of MONA and MOSEL—implemented a de-
cision procedure for WS1S, basically as the one in MONA, but without using BDDs or
other sophisticated techniques. The SHASTA tool from 1998 is based upon the same
ideas as MONA. It is used as an engine for Presburger Arithmetic [198]. The Tim-
buk [94] and RX [215] tools both implement tree automata operations and are used for
analyzing term rewriting systems, without the direct relation to logics.

2.1.2 Core WS1S

Being a variation of first-order logic, WS1S is a formalism with quantifiers and boolean
connectives. First-order terms denote natural numbers, which can be compared and
subjected to addition with constants. In addition, WS1S also allows second-order
terms, which are interpreted as finite sets of numbers. The actual MONA syntax is
a rich notation with constructs such as set constants, predicates and macros, modulo
operations, and let-bindings. If all such syntactic sugar is peeled off, the formulas are
“flattened” (so that there are no nested terms), and first-order terms are encoded as
second-order terms, the logic reduces to a simple core language:

ϕ ::= ~ϕ′ | ϕ′ & ϕ′′ | ex2 Xi : ϕ′
| Xi sub Xj | Xi =Xj \ Xk | Xi =Xj +1

whereX ranges over a set of second-order variables.
Given a fixed main formulaϕ0, we define its semantics inductively relative to a

finite stringw over the alphabetBk, whereB = {0,1} andk is the number of variables
in ϕ0. We assume every variable ofϕ0 is assigned a unique index in the range 1,2, ..,k,
and thatXi denotes the variable with indexi. The projection of a stringw onto thei’th
component is called theXi track ofw. The stringw determines an interpretationw(Xi)
of Xi defined as the finite set{ j | the jth bit in theXi track is 1}.

The semantics of a formulaϕ in the core language can now be defined inductively
relative to an interpretationw. We use the notationw� ϕ (which is read:w satisfiesϕ)
if the interpretation defined byw makesϕ true:

w� ~ϕ′ iff w 2 ϕ′
w� ϕ′ & ϕ′′ iff w� ϕ′ andw� ϕ′′
w� ex2 Xi : ϕ′ iff ∃ finite M ⊆N : w[Xi 7→M] � ϕ′
w� Xi sub Xj iff w(Xi)⊆ w(Xj)
w� Xi = Xj\Xk iff w(Xi) = w(Xj)\w(Xk)
w� Xi = Xj +1 iff w(Xi) = { j +1 | j ∈ w(Xj)}

The notationw[Xi 7→ M] is used for the shortest string that interprets all variablesXj

where j 6= i asw does, but interpretsXi asM.
The languageL(ϕ) of a formulaϕ can be defined as the set of satisfying strings:

L(ϕ) = {w | w � ϕ}. By induction in the formula, we can now construct a minimal
deterministic finite-state automaton (DFA)A such thatL(A) = L(ϕ), whereL(A) is
the language recognized byA.

10 Program Verification with Monadic Second-Order Logic

For the atomic formulas, we show just one example: the automaton for the formula
ϕ = Xi sub Xj in the case wherei = 1 and j = 2. The automaton must recognize the
language

L(X1 sub X2) = {w∈ (Bk)∗ | for all letters inw: if the first component
is 1, then so is the second}

Such an automaton is (where * denotes “either 0 or 1”):

0
1

, 0
0

1
* *

*

The other atomic formulas are treated similarly. The composite formulas are translated
as follows:

ϕ = ~ϕ′ Negation of a formula corresponds to automaton complementation. In
MONA, this is implemented trivially by flipping accepting and rejecting states.

ϕ = ϕ′ & ϕ′′ Conjunction corresponds to language intersection. In MONA, this is
implemented with a standard automaton product construction generating only
the reachable product states. The resulting automaton is minimized.

ϕ = ex2 Xi : ϕ′ Existential quantification corresponds to a simple quotient opera-
tion followed by a projection operation. The quotient operation takes care of the
problem that the only strings satisfyingϕ′ may be longer than those satisfying
ex2 Xi : ϕ′. The projection operation removes the track belonging toXi, result-
ing in a nondeterministic automaton, which is subsequently determinized using
the subset construction operation, and finally minimized.

This presentation is a simplified version of the procedure actually used in MONA. For
more details, see the MONA User Manual [131].

When the minimal automatonA0 corresponding toϕ0 has been constructed, valid-
ity of ϕ0 can be checked simply by observing whetherA0 is the one-state automaton
accepting everything. Ifϕ0 is not valid, a (minimal) counter-example can be con-
structed by finding a (minimal) path inA0 from the initial state to a non-accepting
state.

2.1.3 Complexity

Notice that the most significant source of complexity in this decision procedure is
the quantifiers, or more precisely, the automaton determinization. Each quantifier can
cause an exponential blow-up in the number of automaton states. In worst case, ifn is
the length ofϕ, then the number of states inA is

22..
.2

c·n }
c·n

2.1 The MONA Tool 11

for some constantc, although constructing such an example is not trivial. In other
words, this decision procedure has a non-elementary complexity. Furthermore, we
cannot hope for a fundamentally better decision procedure; in 1972, Meyer showed
that this is in fact the lower bound for the WS1S decision problem [156].

To make matters even worse (and the challenge the more interesting), the imple-
mentation also has to deal with automata with huge alphabets. As mentioned, ifϕ0

hask free variables, the alphabet isB
k. Standard automaton packages cannot handle

alphabets of that size for typical values ofk.
Nevertheless, the non-elementary succinctness of the logic and the exponential al-

phabet representation can also be seen from an optimistic point of view. If one wants to
describe a particular regular set, then a WS1S formula may be non-elementarily more
succinct that a regular expression or a transition table. The MONA project has indeed
shown that there is a productive niche between the automata that are simple enough to
be manually constructed and those that are so complex that no known decision proce-
dure can manage them.

2.1.4 BDD Representation of Automata

The very first attempt to implement the decision procedure used a representation based
on conjunctive normal forms. That was indeed not a success. The first version of the
MONA tool that was actually useful, was the experimental ML-version from 1995,
programmed by Sandholm and Gulmann [105]. The reason for the success was the
novel representation of automata based on (reduced and ordered) BDDs (Binary Deci-
sion Diagrams) [47, 48]. This representation made it possible to perform verification
of parameterized distributed systems using MONA.

A BDD is a graph representing a boolean function. The BDD representation has
some extremely convenient properties, such as compactness and canonicity, and it al-
lows efficient manipulation. BDDs have successfully been used in a long range of
verification techniques, originally in [51]. In MONA, a special form of BDDs, called
shared multi-terminalBDDs, or SMBDDs are used. As an example, the transition
function of the tiny automaton shown in Section 2.1.2 is represented in MONA as the
following SMBDD:

2

1

0 1

0 1

The roots and the leaves represent the states. Each root has an edge to the node repre-
senting its alphabet part of the transition function. For the other edges, dashed repre-
sents 0 and solid represents 1. As an example, from state 0, the transition labeled

(1
0

)
leads to state 1. In this way, states are still represented explicitly, but the transitions
are represented symbolically.

For many applications, this representation solves the problem of the large alpha-

12 Program Verification with Monadic Second-Order Logic

bets. In addition, the (SM)BDD-based technique allows some specialized algorithms
to be applied (see [137, 127]). The resulting effect has been investigated in [134].

Although the problem with the worst-case complexity still exists, removing the
bottleneck of the huge alphabets turned out to be the breakthrough needed to make
many interesting applications run. It was a surprising result that decision procedures
with non-elementary complexity could be of any use at all [18]. Formulas of hundreds
of kilobytes have successfully been processed by the MONA tool [134, 136].

2.1.5 Tree Logics and Tree Automata

WS2S, Weak monadic Second-order theory of 2 Successors, is the generalization of
WS1S from linear to binary-tree shaped structures [205, 76, 208]. Seen at the “core
language” level, WS2S is obtained from WS1S by replacing the single successor pred-
icate by two successor predicates, forleft andright successor respectively. This logic
is also decidable by the automaton–logic connection, but using tree automata instead
of string automata. The MONA tool also implements this decision procedure.

Moving from string to tree automata introduces an extra source of complexity: the
transition tables are now three dimensional as opposed to two dimensional. MONA

uses a technique calledGuided Tree Automata(GTA), which factorizes state spaces to
split big tree automata into smaller ones. The basic idea, which may result in expo-
nential savings, is explained in [23] and in [131]. To exploit this feature, the MONA

programmer must manually specify aguide, which is a top-down tree automaton that
assigns state spaces to the tree nodes.

2.1.6 Finite vs. Infinite Structures

There is a subtle difference between WS1S, the logic now used in MONA, and M2L(Str),
the logic used until 1996 in the early experimental versions [208, 24, 81]. In WS1S,
formulas are interpreted overinfinite stringmodels (but quantification is restricted to
finite sets only). In M2L(Str), formulas are instead interpreted overfinite stringmod-
els. That is, the universe is not the whole set of naturalsN, but a bounded subset
{0, . . . ,n−1}, wheren is defined by the length of the string. The difference between
WS2S and M2L(Tree) is similar. The decision procedure for M2L(Str) is almost the
same as for WS1S, only slightly simpler: the quotient operation (before the projection)
is just omitted. From the language point of view, M2L(Str) corresponds exactly to the
regular languages (all formulas correspond to automataand vice versa), and WS1S
corresponds to those regular languages that are closed under concatenation by 0’s. A
DFA can be encoded as a M2L(Str) formula by a simple linear-time algorithm.

These properties make M2L(Str) preferable for some applications, for example
[18, 194]. However, the fact that not all positions have a successor often makes
M2L(Str) rather unnatural to use. Being closer tied to arithmetic, the WS1S semantics
is easier to understand. Also, for instance Presburger Arithmetic can easily be encoded
in WS1S whereas there is no obvious encoding in M2L(Str).

The logics WS1S and WS2S are closely related to the logics S1S and S2S which
are obtained by interpreting with respect to infinite strings and trees instead of finite
ones, and equivalently correspond to the regular languages over infinite structures.
These logics are also theoretically decidable by generalizing to automata on infinite

2.1 The MONA Tool 13

strings [50] or trees [183]. However, the MyHill-Nerode theorem does not extend to
theseω-automata [125]. This means that such automata do not have effective normal-
forms providing a minimization property. As we show in [134], minimization of inter-
mediate automata is crucial in practice.

In a wider perspective, the well-studied temporal logics LTL and CTL∗ are straight-
forwardly expressible in S1S and S2S, respectively. WS2S is strictly less expressive
than S2S, while, surprisingly, WS1S and S1S are expressively equivalent [208]. How-
ever, the latter property is only theoretically useful since no tractable translation is
known.

2.1.7 Restrictions and Three-Valued Logic

Using a theory of restrictions and three-valued logic, it is in [128] shown that M2L(Str)
efficiently can be emulated in WS1S—provided that an extra constructallpos(X) is
added to the logic, breaking the closure property mentioned in the previous section.

The basic idea is to add a special second-order variable$ always having the value
{0, . . . ,n− 1} for somen, and thenrestrict all values to be subsets of$ using the
allpos construct. This can in practice be done by associating arestriction formula,
restr(X) to each variableX, and conjoiningrestr(X) to formulas usingX. Doing
this naively can however cause exponential state-space explosions on intermediate au-
tomata. To make the emulation efficient, a third truth-value,don’t-care, is added to the
logic and the notion of automata is generalized accordingly. Don’t-care states act as
reject states, except that they are invariant to negation. The idea is now to only con-
join restriction formulas toatomic formulas and convert reject states in the automata
that correspond to restriction formulas into don’t-care states, such that non-acceptance
of restrictions is preserved properly. Although being invented for the emulation of
M2L(Str), this restriction technique can presumably be applied in other situations to
combat the state-space explosion problem.

By the arguments above, WS1S is preferable to M2L(Str). However, in [10], it
is shown that thebounded model constructionproblem has non-elementary complex-
ity for WS1S but exponential complexity for M2L(Str). If one wants a single model
instead of a description of all models of a given formula, M2L(Str) may be preferable.

2.1.8 Other Implementation Tricks

There has been no single silver bullet during the development of MONA. Rather, sev-
eral separate techniques have been discovered, each contributing with some improve-
ment. The BDD, GTA, and restriction techniques have been mentioned in the previous
sections. In this section, three other of the most significant techniques are described:
DAG representation, formula reduction, and BDD ordering heuristics. We also men-
tion a number of other features for making the MONA tool more practically useful.
While the BDD and GTA techniques compared to more naive approaches often pro-
vide indispensable exponential savings, the DAG representation and formula reduction
typically each yields a factor 2–4 speed-up, in some cases much more. These results
together with other implementation choices are described in [134].

14 Program Verification with Monadic Second-Order Logic

DAG Representation of Formulas

Internally, MONA is divided into a front-end and a back-end. The front-end parses the
input and builds a data structure representing the automata-theoretic operations that
will calculate the resulting automaton. The back-end then inductively carries out these
operations.

The generated data structure is often seen to contain many common subformulas.
This is particularly true when they are compared relative tosignature equivalence,
which holds for two formulasϕ andϕ′ if there is an order-preserving renaming of the
variables inϕ (increasing with respect to the indices of the variables) such that the
representations ofϕ andϕ′ become identical.

A property of the BDD representation is that the automata corresponding to signa-
ture-equivalent trees are isomorphic in the sense that only the node indices differ. This
means that intermediate results can be reused by simple exchanges of node indices. For
this reason, MONA represents the formulas in a DAG (Directed Acyclic Graph), not a
tree. The DAG is conceptually constructed from the tree using a bottom-up collapsing
process, based on the signature equivalence relation, as described in [81].

As an example, consider the formulaex1 q: p<q & q<r where the variablesp,
q, andr have the indices 1, 2, and 3, respectively. The automata for the subformulas
p<q andq<r are isomorphic, so their tree nodes are collapsed. The edges of the result-
ing DAG are labeled with the renaming information:

&

p<q q<r

DAGification
signature

&

[q/p, r/q][]

p<q

As shown in [134], this DAGification trick provides a substantial gain in efficiency.

Formula Reductions

Formula reduction is a means of “optimizing” the formulas in the DAG before translat-
ing them into automata. The reductions are based on a syntactic analysis that attempts
to identify valid subformulas and equivalences among subformulas.

MONA performs three kinds of formula reductions: 1) simple equality and boolean
reductions, 2) special quantifier reductions, and 3) special conjunction reductions. The
first kind can be described by simple rewrite rules (only some typical ones are shown):

Xi = Xi true

true & ϕ ϕ
false & ϕ false

ϕ & ϕ ϕ
~~ϕ ϕ

~false true

These rewrite steps are guaranteed to reduce complexity, but will not cause significant
improvements in running time, since they all either deal with constant size automata

2.1 The MONA Tool 15

or rarely apply in realistic situations. Nevertheless, they are extremely cheap, and they
may yield small improvements, in particular on machine-generated MONA code.

The second kind of reduction can potentially cause tremendous improvements.
The non-elementary complexity of the decision procedure is caused by the automaton
projection operations, which stem from quantifiers. The accompanying determiniza-
tion construction may cause an exponential blow-up in automaton size. The basic idea
is to apply a rewrite step resemblinglet reduction, which removes quantifiers:

ex2 Xi : ϕ ϕ[T/Xi] provided thatϕ => Xi = T is valid, andT is
some term satisfyingFV(T)⊆ FV(ϕ)

whereFV(·) denotes the set of free variables. For several reasons, this is not the
way to proceed in practice. First of all, finding termsT satisfying the side condition
can be an expensive task, in worst case non-elementary. Second, the translation into
automata requires the formulas to be “flattened” by introduction of quantifiers such that
there are no nested terms. So, if the substitutionϕ[T/Xi] generates nested terms, then
the removed quantifier is recreated by the translation. Third, when the rewrite rule
applies in practice,ϕ usually has a particular structure as reflected in the following
more restrictive rewrite rule chosen in MONA:

ex2 Xi : ϕ ϕ[Xj/Xi] provided thatϕ ≡ ·· · & Xi = Xj & · · ·
andXj is some variable other thanXi

In contrast to equality and boolean reductions, this rule is not guaranteed to improve
performance since substitutions may cause the DAG reuse degree to decrease, but this
is rarely a problem in practice.

The third kind of reductions applies to conjunctions, of which there are two spe-
cial sources. One is the formula flattening just mentioned; the other is the formula
restriction technique mentioned in Section 2.1.6. Both typically introduce many new
conjunctions. Studies of a graphical representation of the formula DAGs (see Sec-
tion 2.1.8) revealed that many of these new conjunctions are redundant. A typical
rewrite rule addressing such redundant conjunctions is the following:

ϕ1 & ϕ2 ϕ1 provided thatunrestr(ϕ2)⊆ unrestr(ϕ1)∪ restr(ϕ1) and
restr(ϕ2)⊆ restr(ϕ1)

Here unrestr(ϕ) is the set of unrestricted conjuncts inϕ, and restr(ϕ) is the set of
restricted conjuncts inϕ. This reduction states that it is sufficient to assertϕ1 when
ϕ1 & ϕ2 was originally asserted in situations where the unrestricted conjuncts ofϕ2 are
already conjuncts ofϕ1—whether restricted or not—and the restricted conjuncts ofϕ2

are unrestricted conjuncts ofϕ1. It is not sufficient that they be restricted conjuncts of
ϕ1, since the restrictions may not be the same inϕ1.

A general benefit from formula reductions is that tools generating MONA formulas
from other formalisms may generate more naive and voluminous output while leaving
optimizations to MONA. In particular, tools may use existential quantifiers to bind
terms to fresh variables, knowing that MONA will take care of the required optimiza-
tion.

16 Program Verification with Monadic Second-Order Logic

BDD Ordering Heuristics

It is well known for other applications that BDDs often provide compact represen-
tations of boolean functions, but in some cases converge towards naive table-based
representations yielding exponential blow-ups [48]. The representation depends on
the ordering of variables. The optimal ordering can give an exponential improvement
in space requirements, but the problem of finding such orderings is NP complete [204].
Numerous publications suggest heuristic approaches for finding close to optimal order-
ings for various applications, typically based on circuit layouts.

By default, MONA chooses a variable ordering by the order of declaration of the
variables in the formula. This is often sufficient, but in some cases far from optimal.
Previous versions of MONA allowed the user to manually specify the variable order-
ings. However, that just pushed the problem to the user who rarely has the required de-
tailed knowledge of the intricate connections between the formulas being constructed
and the effect of the BDD variable orderings.

Recently, we have experimented with heuristic techniques based on the formula
structure. Preliminary results show promising improvements in memory requirements
and running times.

Other Tool Features

In order for a tool such as MONA to be useful in practice, many smaller features have
been implemented, often by request by the actual users:

Graphical representations Using the AT&Tgraphviz tool, MONA can generate il-
lustrations of the formula DAG and the automata. The latter are shown either
traditionally (as on page 10), or as (SM)BDDs (as on page 11). This is particu-
larly useful when MONA is used for teaching about automata and logic.

Separate compilation MONA allows its input to be split into several files. Automata
can be cached and reused between executions, provided that the files they origi-
nate from are not modified. This can speed up the execution for formulas defined
using “predicate libraries” located in separate files.

Import and export Some applications, such as [194, 113], do not use MONA as a
decision procedure, but rather as an automaton-construction tool. To support
this, MONA can import and export automata in a format readable by a small C
library, usable for instance as concurrency controllers in Web services or LEGO
robots.

Support for easy encoding of other logicsMONA has been used as a foundation for
deciding other logics, such as Presburger Arithmetic [198], Duration Calculus
[180], and WSRT (see Section 2.1.9). This has been supported by adding special
constructs. A simple example ispconst(n) that creates an automaton recogniz-
ing the binary encoding of a numbern, used for deciding Presburger Arithmetic.

Prefix closing When WS1S or M2L(Str) is used as a temporal logic, it is usually
required that languages are prefix-closed. An automaton prefix-closing opera-
tion has been made available for applications synthesizing reactive-system con-
trollers [194, 113].

2.1 The MONA Tool 17

Inherited acceptance analysisPrimarily for use by the YakYak tool [69], an opera-
tion analyzinginherited acceptancehas been implemented. In GTAs, only the
root state space has a notion of acceptance, but in YakYak, it is crucial to know
whether the property of being in some particular state in some state space is
guaranteed to imply acceptance of the whole tree.

These features are all documented in more detail in [131].

2.1.9 Applications

A substantial number of techniques and applications of MONA have been published.
Also, MONA has successfully been integrated into or used as foundation of a number
of other tools.

In an application perspective, arithmetic and logic is useful because interesting
systems and properties can be encoded. A common observation is that WS1S and
M2L(Str) can be viewed as a generalization of quantified propositional logic, adding
a single “unbounded dimension” orthogonal to the dimension bounded by the number
of variables. This unboundedness can generally be used in two ways:

• to modelparameterized systemsand verify a whole family of finite systems at
once; or

• to modeldiscrete timeand verify safety properties or synthesize controllers.

Similarly, the tree logics WS2S and M2L(Tree) can be used to model tree-shaped
systems or branching time instead of linear time. Another kind of application is to
reduce other logics to the MONA logics to obtain other decision procedures via the
MONA tool.

Hardware verification One of the first MONA applications was hardware verifi-
cation. In [18], the ideas of modeling parameterized systems or discrete time were
introduced. In [11] this verification technique is further described and generalized to
trees. Many of the applications mentioned below also build on these ideas. In [152],
MONA is used for verification of a class of hardware circuits calledsystolic arrays.
In [17], it is described how WS1S and MONA can be used to reason about hardware
circuits specified in the BLIF description language.

Controller synthesis As mentioned, M2L(Str) can be viewed as a temporal logic,
that is, as a logic modeling the occurrence of events over time. To synthesize run-
time controllers, MONA turns safety requirements of Web services [194] and LEGO
robots [113] into automata, which may act as programs. Whenever a process (a Web
session or a LEGO robot) wishes to pass certain “checkpoints”, it is checked that do-
ing so is allowed by the automata, in the sense that reject states are not entered. To
keep the automata small, the safety constraints are translated into separate automata,
executed as in an implicit product construction.

18 Program Verification with Monadic Second-Order Logic

FIDO FIDO [140] is high-level language built on top of MONA. Its intention is
to automatically take care of all the low-level bit-encoding usually required when-
ever something is encoded directly in MONA logic. The FIDO language is based on
recursive data types over finite domains, but also adds other programming language
concepts, such as subtyping, unification, and coercion. Not exploiting the Guided Tree
Automata in MONA, FIDO has to some extent been obsoleted by the WSRT logic,
which is described in Section 2.2.

LISA The LISA language [12] was developed in parallel with FIDO. It contains
many of the same features as FIDO, but instead of recursive data types, it is based on
the more generalfeature logics.

Trace abstractions In [136, 135], FIDO is used to perform behavioral reasoning
about distributed reactive systems based ontrace abstractions. M2L(Str) is used as
a temporal logic to address the “Broy-Lamport challenge” about modeling and veri-
fication of a memory server specification. This work provided the motivation for the
development of FIDO.

Computational linguistics An application of MONA for linguistic processing and
theory verificationusing WS2S is described in [164].

Protocol verification MONA has been used for various kinds of protocol verifica-
tion. In [105], a variant of the Dining Philosophers protocol is verified, and in [200],
the Sliding Window communication protocol is modeled using I/O automata and then
translated to WS1S and verified. In [179], MONA is used for verification of telephone
services.

DCVALID DCVALID [180, 181] is a tool for checking validity of Quantified Dis-
crete-time Duration Calculus formulas based on MONA. It has been used to check
properties of SMV, ESTEREL, and SPIN systems.

YakYak YakYak [69] is an extension of the Yacc parser generator. Side constraints
expressed in a first-order parse tree logic are translated into Guided Tree Automata us-
ing MONA. During the bottom-up Yacc parsing, the parse tree is run on these automata
yielding evaluation of the side constraints.

Software engineering In [130], it is shown that many software design architecture
descriptions are expressible in M2L(Tree). Using FIDO, parse-tree constraints are
expressed and compiled to automata. This project was a precursor of YakYak and did
not combine constraint checking with parsing or use Guided Tree Automata.

FMona FMona [29, 28] is a high-level extension of MONA adding e.g.enumeration
types, record types, andhigher-order macrosto the MONA syntax. It has been used
to express parameterized transition systems, abstraction relations, synthesis of finite
abstractions, and validation of safety properties.

2.2 Program Verification 19

STTools MONA has been used for M2L(Str)-based model checking of programs in
the Synchronized Transitions language [187].

PEN PEN [175] is a tool for verifying distributed programs parameterized by the
number of processes. The systems are modeled by transducer automata, and proper-
ties of configurations are represented by normal automata. By performing transitive
closure of the transducer (see [121]) and using an acceleration technique, reachability
properties can be verified. The implementation is based on the DFA part of MONA.

PAX PAX [19] is yet another tool for verifying parameterized systems using MONA.
The main contribution of PAX is a heuristic-based technique for abstracting parame-
terized systems in WS1S into finite-state systems for model checking.

PVS MONA has been integrated into the PVS theorem prover [178]. Properties ex-
pressible within WS1S can then be verified by PVS without user interaction.

ISABELLE The combination of WS1S and higher-order logic has been investigated
using MONA as a WS1S oracle in the ISABELLE system [16].

CACHET MONA has been used to reason about arithmetic and boolean operations
in the CACHET system for incremental computation [150].

Program verification The applications [120, 82, 80, 161] are described in more de-
tail in the following section.

Furthermore, the GTA part of MONA is currently being used as basis for an implemen-
tation of a decision procedure for an extension of WS1S [124].

2.2 Program Verification

It is notoriously difficult to reason about programs that use pointers, for instance data-
type implementations. Many intricate errors can arise, both in the form of memory
errors, such as null pointer dereferences, memory leaks, or dangling references, and of
programs failing to satisfy more specialized correctness properties, such as maintain-
ing a data-type invariant.

Our verification technique, based on MONA, aims for safety-critical data-type im-
plementations. It requires user guidance in the form of invariants, but, in return, it
allows complex properties to be expressed and verified.

2.2.1 Overview

In [120], the MONA logic was used to encode the effect of executing loop-free code
with pointer operations on linear heap-based data structures. The approach is based
on [139], which introduced a variation of predicate transformation calledtransduc-
tion, and is generalized to code containing loops using invariants as in classical Hoare
logic [106].

20 Program Verification with Monadic Second-Order Logic

The idea in the transduction technique is to let a family of monadic second-order
logic predicates encode a set of heaps. Each primitive step in the loop-free code is
simulated by updating the predicates accordingly. As a result, for each program point,
there is a predicate family describing how the heap may look at that point. Properties
of the heap, such as pre- and post-conditions, can then be encoded using the predicate
families and verified using the MONA tool.

We generalize this technique to tree-shaped data structures, or more precisely,re-
cursive data types, in [82, 80]. The generalization is conceptually straightforward but
nontrivial in practice. As shown in [82], a naive approach cannot exploit the guide
in the Guided Tree Automata and hence state-space explosions are inevitable. To
overcome this problem, a new logic WSRT,Weak monadic Second-order logic with
Recursive Types, is introduced. This logic is reminiscent of FIDO and LISA, but is
simpler. WSRT permits a more efficient decision procedure: using a technique called
shape encoding, introduced in [69], a clever guide can automatically be deduced from
the recursive types. The transduction method is then performed using WSRT instead
of WS2S or M2L(Tree), making the encoding both simpler and faster.

The decision procedure for WSRT is implemented directly in the MONA tool. This
means that as a byproduct of the development of this program verification technique,
WSRT is now available for other purposes, for instance where WS2S so far has been
used. The newest version of the YakYak tool thus uses the WSRT part of MONA.

In [161] we take one step further by showing how the verification approach can be
extended to the whole class of data types known asgraph types[138]. We define a
formal language,Pointer Assertion Logic(PAL), for expressing properties of the heap
structure. This language is essentially a monadic second-order logic in which the uni-
verse of discourse contains records, pointers, and booleans. To express data structures
and operations we define a specialized programming language for maximizing the po-
tential of the transduction technique. In this language, data structures are declared by
graph types, and the only possible values are pointers and booleans. We implement
the approach in a tool called PALE, the Pointer Assertion Logic Engine, and experi-
mentally show that the technique works in practice on realistic examples, in spite of
the worst case complexity of the logic.

The remainder of this chapter focuses on the approach based on Pointer Assertion
Logic. This approach does not apply shape encoding or use the WSRT logic; for
further description of those topics, see [82].

2.2.2 Related Work

There are numerous other approaches for modeling data structure operations and ver-
ifying correctness properties. These approaches range from approximative code sim-
ulators through program analyses to theorem proving. In the light-weight end of the
spectrum, only simple properties can be expressed and checked, but often entirely au-
tomatically and on large programs. There, the focus is on finding as many bugs as
possible, not necessarily all of them. The heavy-weight techniques may require user
guidance and generally only work for relatively small programs, but in return, they
allow complex properties to be verified. With these techniques, the focus is on guar-
anteeing correctness, and no bugs should be missed.

General theorem provers, such as HOL [26], may consider the full behavior of

2.2 Program Verification 21

programs but are often slow and not fully automated. Tools such as ESC [74] and
LCLint [85] consider memory errors among other undesirable behaviors but usually
ignore data structure invariants or only support a few predefined properties. Also, they
trade soundness or completeness for efficiency and hence may flag false errors or miss
actual errors.

Model checkers such as Bebop [13] and Bandera [65] abstract away the heap and
only verify properties of control flow. The JPF [103] model checker verifies simple
assertions for a subset of Java, but does not consider structural invariants.

The constraint solver Alloy has been used to verify properties about bounded ini-
tial segments of computation sequences [118]. While this is not a complete decision
procedure, even for straight-line code, it finds many errors and can produce counterex-
amples. With this technique, data structure invariants are expressed in first-order logic
with transitive closure. However, since it assumes computation bounds, absence of
error reports does not imply a guarantee of correctness, and the technique does not
appear to scale well.

The symbolic executor PREfix [52] simulates unannotated code through possible
executions paths and detects a large class of errors. Again, this is not a complete or
sound decision procedure, and data structure invariants are not considered. However,
PREfix is known to give useful results on huge source programs.

Verification based on static analysis has culminated with shape analysis. The goals
of the shape analyzer TVLA [148, 193, 147] are closest to ours but its approach is rad-
ically different. Rather than encoding programs in logic, TVLA performs fixed-point
iterations on abstract descriptions of the store. Regarding precision and speed, PALE
and TVLA seem to be at the same level. TVLA can handle some data abstractions
and hence reason about sorting algorithms; we show in [161] that we can do the same.
TVLA analyzes programs with only pre- and post-conditions, where PALE often uses
loop invariants and assertions. This seems like an undisputed advantage for TVLA;
however, not having invariants can cause a loss in precision making TVLA falsely
reject a program. Regarding the specification of new data structures we claim an ad-
vantage. Once a graph type has been abstractly described with PAL, the PALE tool is
ready to analyze programs. In TVLA it is necessary to specify in three-valued logic
an operational semantics for a collection of primitive actions specific to the data struc-
ture in question. Furthermore, to guarantee soundness of the analysis, this semantics
should be proven correct by hand. TVLA is applicable also to data structures that are
not graph types, but so far all their examples have been in that class. Unlike PALE,
TVLA cannot produce explicit counterexamples when programs fail to verify.

There exists a variety of assertion languages designed to express properties of data
structures, such as ADDS [104],Lr [21], and Shape Types [91]. We rely on PAL since
it provides a high degree of expressiveness while still having a decision procedure that
works in practice.

2.2.3 Pointer Assertion Logic and Graph Types

The notion of graph types was introduced in [138] for formalizing the shapes of heap
structures that go beyond being classical tree-shaped recursive data structures. Graph
types allow many common heap shapes, such as doubly-linked lists or threaded trees,
to be expressed concisely. A graph type is a recursive data type augmented withaux-

22 Program Verification with Monadic Second-Order Logic

iliary pointers. The recursive data type defines a tree-shaped backbone. The auxiliary
pointers are specified byrouting expressionsand are required to be functionally deter-
mined by the backbone. Routing expressions are regular expressions over a language
of primitive directives that navigate around the backbone.

The decidability results in [138] are shown by an encoding of routing expressions
into M2L(Tree). To express data structures in our programming language, we use
an extension of graph types where the full M2L(Tree) logic is available as routing
expression language. The regular expressions from [138] are included as syntactic
sugar.

Our programming language is a simple imperative language with procedures. Its
values consist of pointers and booleans. There are two kinds of pointers: regular
pointers anddatapointers. The former may point freely into the heap, while the latter
at certain program places, calledcut-points, must point to unique and disjoint graphs
that match the declared graph types and span the entire heap. The latter property can
be used to express leaking memory.

As an example, the following graph type declaration written in PALE syntax de-
fines linked lists with tail pointers:

type Head = {
data first: Node;
pointer last: Node[this.first<next*.[pos.next=null]>last]

}
type Node = {
data next: Node;

}

We abstract away the actual data contained in the lists and only consider the graph
structure. Thelast field defines auxiliary pointers with an associated routing expres-
sion. This expression states that there is a path from the current record to the one
pointed to bylast. This path starts by thefirst pointer and then follows an arbitrary
number ofnext pointers until a null pointer is encountered.

PALE programs can be annotated with formulas written in Pointer Assertion Logic
which is a monadic second-order logic over graph types. In addition to the usual
boolean connectives, it allows quantification over heap records, both of individual ele-
ments and of sets of elements. Also, it contains basic relations for reasoning about the
pointer and boolean variables and fields that occur in the program.

Annotations occur as pre- and post-conditions for procedures, as loop invariants
and procedure call invariants, and in specialassertandsplit statements, expressing
desired properties of the program store. The task of the verification procedure is to
check that these properties are satisfied, that the graph types are maintained throughout
execution, and that null pointer dereferences and memory leaks cannot occur.

The following example program implements the reverse operation for linked lists
and is annotated with some correctness requirements:

type List = {data next:List;}

pred roots(pointer x,y:List, set R:List) =
allpos p of List: p in R <=> x<next*>p | y<next*>p;

2.2 Program Verification 23

proc reverse(data list:List):List
set R:List;

[roots(list,null,R)]
{
data res:List;
pointer temp:List;
res = null;
while [roots(list,res,R)] (list!=null) {

temp = list.next;
list.next = res;
res = list;
list = temp;

}
return res;

}
[roots(return,null,R)]

In the first line, the graph typeList is defined. This particularly simple example
does not use any auxiliary pointers. Then, a predicateroots is defined. Given two
list pointers and a set of heap records, it evaluates totrue if all records in the set are
reachable from one of the pointers through a sequence ofnext fields. Thereverse
procedure essentially consists of awhile loop that iteratively reverses the given list
namedlist. Annotations are written in square brackets. The precondition of the
procedure binds the logical variableR to be the set of reachable nodes fromlist, and
the postcondition says that those nodes are reachable from the returned pointer when
the procedure exits.

We cannot express that the resulting list is precisely the reverse of the original list,
but since we have expressed the requirements that there are no null pointer derefer-
ences or memory leaks, that no records are lost by the procedure and that the resulting
structure is a proper list without loops, we have a fine-grained mask for errors.

2.2.4 Encoding Programs and Properties in MONA Logic

As mentioned, the transduction technique for encoding programs into MONA logic
only works for loop-free code. Therefore, we resort to Hoare logic [106] for splitting
the program into loop-free fragments connected by pre- and post-conditions and in-
variants. The resulting Hoare triples have a non-standard form: a PALE triple consists
of declarations of logical variables, a precondition PAL formula, and a statement se-
quence. The statements are either assignments, conditionals, or assertions containing
PAL formulas. In contrast to standard Hoare triples, these ones also allow assertions
within the code and not only as postconditions.

In the PALE tool, the first phase splits the input program into suchtransduction
instructions, a form of intermediate language corresponding to the Hoare triples. Con-
tinuing thereverse example from above, the body of thewhile loop is transformed
into the following transduction instructions:

transduce
set R:List;
[roots(list, res, R) & list!=null]

temp = list.next;

24 Program Verification with Monadic Second-Order Logic

list.next = res;
res = list;
list = temp;
assert [roots(list, res, R)]

This directly corresponds to the premise of the proof rule forwhile loops in Hoare
logic:

{ϕ∧B} S {ϕ}
{ϕ} while (B) {S} {ϕ∧¬B}

Once the program has been split intotransduce constructs, each of them is verified
independently by a linear encoding into MONA tree logic. Even for large programs,
the loop-free fragments are typically relatively small. In this sense, our technique is
highly modular, even though the resulting formulas may require heavy computations to
verify. This is in contrast to program analysis approaches, which may require iteration
over large program fragments.

The basic idea of the transduction technique is to represent the tree structured back-
bones of the heap structures by the tree models of M2L(Tree). Each data pointer in
the program is allocated one tree structure. It is straightforward to represent multi-
ple trees of non-binary fanout by a single WS2S or M2L(Tree) tree. As in [138] the
auxiliary pointers of the graph types can be reduced to M2L(Tree) formulas on the
backbone structures. We use the recursive-type parts of the declared graph types to au-
tomatically derive a GTA guide, which is crucial for the performance as explained in
Section 2.1.5. The program variables are modeled as free variables, which are univer-
sally quantified in the final validity formula that is given to MONA. The transduction
works by defining a family ofstore predicatesfor each program point:

• bool T b(v) gives the value of thebool field b in a recordv of typeT;

• succ T d(v,w) holds if the recordw is reachable from the recordv of type T
along a data field namedd;

• null T d(v) holds if the data fieldd in the recordv of typeT is null;

• succ T p(v,w) holds if the recordw is reachable from the recordv of type T
along a pointer field namedp;

• null T p(v) holds if the pointer fieldp in the recordv of typeT is null;

• ptr d(v) holds if the recordv is the value of the data variabled;

• null d() holds if the data variabled is null;

• ptr p(v) holds if the recordv is the destination of the pointer variablep;

• null p() holds if the pointer variablep is null;

• bool b() gives the value of the boolean variableb;

• memfailed() holds if a null-pointer dereference has occurred.

For the entry point of the program fragment, these predicates essentially coincide with
the basic predicates of the M2L(Tree) logic. As an example, thesucc T d(v,w)
predicate is initially defined by the basic successor predicate associated to thed field
in theT type.

2.2 Program Verification 25

The effect of each individual statement is modeled by updating the store predicates
accordingly. Assume that the statement

temp = list.next;

from the example above is enclosed by program pointsi and j. The predicates are
transformed as follows:

memfailed j () = memfailed i () | null list i()
ptr temp j (v) = ex2 w: ptr list i (w) & succ Node next i (w,v)
null temp j () = ex2 w: ptr list i (w) & null Node next(w)

while the other store predicates remain unchanged. These transformations encode the
behavior that there has been a memory error atj if there was one ati or list was null;
at j, a pointerv refers to the same record astemp if the record referred to bylist has
a next field pointing to thev record; and similarly,temp is null at j if that next field
was null.

Once the entire code fragment has been encoded as a formula, the correctness
properties are verified by model checking

M � ϕ

whereM is the encoding of the program statements in the fragment andϕ is an en-
coding of the precondition and the assertion formulas combined with the implicit re-
quirements that there are no memory errors and the graph types are maintained, all
expressed in MONA logic.

In [161], we make a number of experiments to investigate whether the technique
works in practice. Our largest example is the insert procedure for red-black search
search trees, including the auxiliary procedures for performing rotations and non-
balanced insertion. In total, this example consists of 150 lines packed with pointer
operations. Reasoning about correctness of such a program is traditionally done by a
manual or semi-automated proof. With PALE, we can encode the red-black tree struc-
ture as a simple graph type and its data type invariant by a Pointer Assertion Logic
formula. Writing the loop invariants naturally requires knowledge about red-black
search trees and can be hard to get right. However, we believe that the programs that
require the most complicated invariants are also those that have the most complicated
pointer operations and hence are the ones in most need of verification. The red-black
invariant consists of three properties: 1) the tree root is black, 2) red nodes have only
black children, and 3) for any two direct paths from the root to some leaf, the num-
ber of black nodes is the same. The first two can directly be expressed in PAL. The
third is not expressible, but verifying that the other properties are satisfied, including
the implicitly stated ones about null pointer dereferences, etc., we have a fine-grained
filter for programming errors. PALE and MONA verify the correctness properties of
the program in around one minute using 44 MB memory.

From this and the other experiments we conclude in [161] that in spite of the
drawback that explicit invariants must be provided, quite detailed properties of pointer
programs can be expressed in Pointer Assertion Logic and program verification with
monadic second-order logic is feasible.

Chapter 3

Languages for
Web Service Development

Since the invention of the Web around ten years ago, an increasing amount of Web
services are becoming interactive. Generating Web pages dynamically in dialog with
the client has the advantages of providing up-to-date and tailor-made information, and
allowing two-way communication such that interactions can have side-effects on the
server. The development of systems for constructing such dynamic Web services has
emerged as a whole new research area.

The <bigwig>, JWIG, and DSD projects were initiated at BRICS (for DSD, in
cooperation with AT&T Labs Research) to address some of the many different is-
sues involved in Web service development. WWW home pages for these projects
can be found athttp://www.brics.dk/bigwig/,http://www.brics.dk/JWIG/,
andhttp://www.brics.dk/DSD/, respectively. There, all relevant tools, examples,
manuals, and articles are available.

The<bigwig> programming language has been designed by analyzing its appli-
cation domain and identifying fundamental aspects of Web services, inspired by prob-
lems and solutions in existing Web service development languages. The core of the
design consists of a session-centered service model together with a flexible template-
based mechanism for dynamic Web page construction. Using specialized program
analyses, certain Web specific properties are verified at compile time, for instance that
only valid HTML 4.01 is ever shown to the clients. In addition, the design provides
high-level solutions to form field validation, caching of dynamic pages, and temporal-
logic based concurrency control, and it proposes syntax macros for making highly
domain-specific languages. From the experience with<bigwig>, our language design
has culminated withJWIG—a Java-based variant inheriting and improving the most
successful features of<bigwig>.

A different aspect of Web services is the use of XML and the many surround-
ing technologies for representing and manipulating information in general. XML is
relevant to Web services for several reasons: Web pages are written using the XML
notation (or the preceding SGML notation); increasingly, XML is also being used for
representing data on the servers and for data exchange between Web agents; and fur-
thermore, most XML-based languages and tools are designed to operate on the Web.
A central technology in the XML world is schema languages. The XML notation is by

28 Languages for Web Service Development

itself essentially just a syntax for labeled trees. Schemas allow classes of XML docu-
ments to be defined, much in the same way as BNF grammars are being used to define
the syntax of programming languages. Since the introduction of XML 1.0 in 1998
there have been numerous proposals for schema languages. However, most of these
have been criticized, either for having too little expressive power or for being too com-
plicated to learn and use. To accommodate this, we have developed yet another XML
schema language, Document Structure Description (DSD), and a successor, DSD2.
The latter is used in theJWIG program analysis to describe the syntax of XHTML 1.0,
the XML variant of HTML 4.01. In fact, this analysis works for any XML language
that can be described by DSD2.

In this chapter, we present the highlights of the contributions of the<bigwig>,
JWIG, and DSD projects to the area of Web service development, and relate our solu-
tions to existing technologies.

3.1 Interactive Web Services

The HTTP protocol, which is the foundation of the Web, is based on a client–server
architecture where the client uses a browser to request a Web page or some other
resource from the server. An interactive Web service is characterized by involving
multiple interactions with each client, mediated by HTML forms in Web pages, and
controlled by the service program running on the server.

Existing Web service programming languages in various ways provide only low-
level solutions to problems specific to the domain of Web services. The overall am-
bitions of the<bigwig> andJWIG projects have been to identify the key areas of the
Web service domain, analyze the problems with the existing approaches, and provide
high-level solutions that will support development of complex services.

CGI [101] was the first platform for development of interactive Web services,
based on the simple idea of letting a script generate the reply to incoming HTTP re-
quests dynamically on the server, rather than returning a static HTML page from a
file. Typically, the script is written in the general-purpose scripting language Perl, but
any language supported by the server can be used. Being based on general-purpose
programming languages, there is no special support for Web specific tasks, such as
generation of HTML pages, and knowledge of the low-level details of the HTTP pro-
tocol are required. Also, HTTP/CGI is a stateless protocol that by itself provides no
help in tracking and guiding users through series of individual interactions. This can to
some degree be alleviated by libraries. In any case, there are no compile-time guaran-
tees of correct runtime behavior when it comes to Web-specific properties, for instance
ensuring that invalid HTML is never sent to the clients.

Servlets [201] is a popular higher-level Java-specific approach. Servlets, which are
special Java programs, offer the common Java advantages of network support, strong
security guarantees, and concurrency control. However, some significant problems still
exist. Services programmed with servlets consist of collections of request handlers for
individual interactions. Sessions consisting of several interactions with the same client
must be carefully encoded with cookies, URL rewriting, or hidden input fields, which
is tedious and error-prone even with library support, and it becomes hard to maintain
an overview of large services with complex interaction flows. A second, although less

3.1 Interactive Web Services 29

significant problem is that state shared between multiple client sessions, even for sim-
ple services, must be explicitly stored in a name–value map called the “servlet context”
instead of using Java’s standard variable declaration scoping mechanism. Third, the
dynamic construction of Web pages is not improved compared to CGI. Web pages are
built by printing string fragments to an output stream. There is no guarantee that the
result will always become valid HTML. This situation is slightly improved by using
HTML constructor libraries, but they preclude the possibility of dividing the work of
the programmers and the HTML designers. Furthermore, since client sessions are split
into individual interactions that are only combined implicitly, for instance by storing
session IDs in cookies, it is not possible to statically analyze that a given page sent
to a client always contains exactly the input fields that the next servlet in the session
expects.

JSP [202], ASP [107], PHP [9], and the countless homegrown variants were de-
signed from a different starting point. Instead of aiming for complex services where
all parts of the pages are dynamically generated, they fit into the niche where pages
have mostly static contents and only small fragments are dynamically generated. A
service written in one of these languages typically consists of a collection of “server
pages” which are HTML pages with program code embedded in special tags. When
such a page is requested by the client, the code is evaluated and replaced by the re-
sulting string. This gives better control over the HTML construction, but it only gives
an advantage for simple services where most of every page is static. JSP and Servlets
are often used conjointly with Servlets taking care of the service logic and JSP pages
producing the reply HTML pages.

The MAWL research language [8, 7, 144] was designed especially for the domain
of interactive Web services. One innovation of MAWL is to make client sessions
explicit in the program logic. Another is the idea of building HTML pages from tem-
plates. A MAWL service contains a number of sessions, shared data, and HTML tem-
plates. Sessions serve as entry points of client-initiated session threads. Rather than
producing a single HTML page and then terminating as CGI scripts or Servlets, each
session thread may involve multiple client interactions while maintaining data that is
local to that thread. An HTML template in MAWL is an HTML document containing
named gaps where either text strings or special lists may be inserted. Each client inter-
action is performed by inserting appropriate data into the gaps in an HTML template
and then sending it to the client, who fills in form fields and submits the reply back to
the server.

The notions of sessions and document templates are inherent in the MAWL lan-
guage, and, being compilation-based, it allows important properties to be verified stat-
ically without actually running the service. Since HTML documents are always con-
structed from the templates, HTML validity can be verified statically. Also, since it is
clear from the service code where execution resumes when a client submits form input,
it can be statically checked that the input fields match what the program expects. One
practical limitation of the MAWL approach is that the HTML template mechanism is
quite restrictive, as markup cannot be inserted into the template gaps.

By studying services written in any of these preexisting languages, some other
common problems show up. First of all, often surprisingly large portions of the service
code tend to deal with form input validation. Client-server interaction takes place
mainly through input forms, and usually some fields must be filled with a certain kind

30 Languages for Web Service Development

of data, perhaps depending on what has been entered in other fields. If invalid data
is submitted, an appropriate error message must be returned so that the client can try
again. All this can be handled either on the client-side typically with JavaScript [87],
in the server code or with a combination. In any case, it is tedious to encode.

Second, one drawback of dynamically generated Web pages compared to static
ones is that traditional caching techniques do not work well. Browser caches and
proxy servers can cause major improvements in saving network bandwidth, load time,
and clock cycles, but when moving towards interactive Web services, these benefits
disappear.

Third, most Web services act as interfaces to underlying databases that for instance
contain information about customers, products, and orders. Accessing databases from
general-purpose programming languages where database queries are not integrated
requires the queries to be built as text strings that are sent to a database engine. This
means that there is no static type checking of the queries. As known from modern
programming languages, type systems allow many programming bugs to be caught
at compile time rather than at runtime, and thereby improve reliability and reduce
development cost.

Fourth, since running Web services contain many concurrently executing threads
and they access shared information, for instance in databases on the server, there is a
fundamental need for concurrency control. Threads may require exclusive access to
critical regions, be blocked until certain events occur, or be required to satisfy more
high-level behavioral constraints. All this while the service should run smoothly with-
out deadlocks and other abrupt obstacles. Existing solutions typically provide no or
only little support for this, for instance via low-level semaphores as Perl or synchro-
nized methods in Servlets. This can make it difficult to guarantee correct concurrent
execution of entire services.

Finally, since Web services usually operate on the Internet rather than on secure
local networks, it is important to protect sensitive information, both from hostile at-
tacks and from programming leaks. A big step forward is the Secure Sockets Layer
(SSL) protocol [93] combined with HTTP Authentication [22]. These techniques can
ensure communication authenticity and confidentiality, but using them properly re-
quires insight into technical protocol and implementation details. Furthermore, they
do not protect against programming bugs that unintentionally leak secret information.
The “taint mode” in Perl offers some solution to this. However, it is runtime based,
so no compile-time guarantees are given. Also, it only checks for certain predefined
properties, and more specialized properties cannot be added.

Motivated by the languages and problems described above we have identified the
following areas as key aspects of Web service development:

• sessions: the underlying paradigm of interactive Web services;

• dynamic documents: HTML pages must be constructed in a flexible, efficient,
and safe fashion;

• concurrency control: Web services consist of collections of processes running
concurrently and sharing resources;

• form field validation: validating user input requires too much attention from
Web programmers so a higher-level solution is desirable;

3.2 The Session-Centered Approach 31

• database integration: the core of a Web service is often a database with a number
of sessions providing Web access; and

• security: to ensure authenticity and confidentiality, regarding both malicious
clients and programming bugs.

To attack the problems, we have designed from scratch the<bigwig> language as
a descendant of the MAWL language, and later theJWIG language as descendant of
<bigwig>. Both<bigwig> andJWIG are high-level domain-specific languages [214],
meaning that they employ special syntax and constructs that are tailored to fit their
particular application domain and allow specialized program analyses, in contrast to
library-based solutions.

The following sections give an overview of our results. In [40], we present the
motivation and the design of<bigwig> in further detail; the paper [38] focuses on the
session-based runtime system; and [37] explains our PowerForms language for mak-
ing declarative form input validation. In another paper, [195], the DynDoc language
for dynamic construction of Web pages is presented. We describe in [36] a caching
technique for such dynamically constructed pages, and in [39] we show a program
analysis which can statically check that only valid HTML 4.01 or XHTML 1.0 pages
are constructed. In [57], we explain how the features of<bigwig> are integrated into
Java, resulting in theJWIG language. In [58] we go into more detail of the notion
of summary graphs used in theJWIG program analyses, relates it to the regular ex-
pression types from the XDuce language, and proposes some extensions toJWIG for
deconstructing XML values. In [132, 133] we introduce the Document Structure De-
scription language for making schemas for XML documents. A more recent variant
of this language, DSD2, is in [57] used in the static analysis ofJWIG programs. For
a general introduction to Web service programming and to XML and the related tech-
nologies, see our online tutorials [163, 162].

3.2 The Session-Centered Approach

There is a variety of techniques for implementing interactive Web services, but they
can be divided into three main paradigms: thescript-centered, thepage-centered, and
thesession-centered. Each is supported by various tools and suggests a particular set
of concepts inherent in Web services.

3.2.1 Script-Centered Languages

The script-centered approach builds directly on top of the plain, stateless HTTP/CGI
protocol. A Web service is defined by a collection of loosely related scripts. A script
is executed upon request from a client, receiving form data as input and producing
HTML as output before terminating. Individual requests are tied together by explicitly
inserting appropriate links to other scripts in the reply pages.

A prototypical scripting language is Perl, but almost any programming language
has been suggested for this role. CGI scripting is often supported by a large collection
of library functions for decoding form data, validating input, accessing databases, and
realizing semaphores. Even though such libraries are targeted at the domain of Web

32 Languages for Web Service Development

services, the language itself is not. A major problem is that the overall behavior is dis-
tributed over numerous individual scripts and depends on the implicit manner in which
they pass control to each other. This design complicates maintenance and precludes
any sort of automated global analysis, leaving all errors to be detected in the running
service [86, 7].

HTML documents are created on the fly by the scripts, typically usingprint-
like statements. This again means that no static guarantees can be issued about their
correctness. Furthermore, the control and presentation of a service are mixed together
in the script code, and it is difficult to factor out the work of programmers and HTML
designers [68].

The Java Servlets language also fits this category. The overall structure of a service
written with servlets is the same as for Perl. Every possible interaction is essentially
defined by a separate script, and one must use cookies, hidden input fields, or URL
rewriting techniques to connect sequences of interactions with the clients—however,
Servlets provide a session tracking API that hides many of the details. Many servlet
servers use cookies if the browser supports them, but automatically revert to URL
rewriting when cookies are unsupported or explicitly disabled.

3.2.2 Page-Centered Languages

The page-centered approach is covered by languages such as ASP, PHP, and JSP, where
the dynamic code is embedded in the HTML pages. In a sense, this is the inverse of
the script-centered languages where HTML fragments are embedded in the program
code. When a client requests a page, a specialized Web server interprets the embedded
code, which typically produces additional HTML snippets while accessing a shared
database. This approach is often beautifully motivated by simple examples, where
pages are mainly static and only sporadically contain computed contents. For example,
a page that displays the time of day or the number of accesses clearly fits this mold.

As long as the code parts only generate strings without markup it is easy to stati-
cally guarantee that all pages shown are valid HTML and other relevant properties. But
as the services become more complex, the page-centered approach tends to converge
towards the script-centered one. Instead of a mainly static HTML page with some code
inserted, the typical picture is a single large code tag that dynamically computes the
entire contents.

The JSP language is based on Java and is closely related to Servlets. Implementa-
tions work by compiling each JSP page into a servlet using a simple transformation.
The ASP and PHP languages are very reminiscent of JSP. ASP is tied to Microsoft’s
Internet Information Server, although other implementations exist. Instead of being
based on Java, it defines a language-independent connection between HTML pages
and scripting languages, typically either VisualBasic Script or Microsoft’s version of
JavaScript. PHP is a popular Open Source variant whose scripting language is a mix-
ture of C, Java, and Perl.

These languages generally provide only low-level support for tracking client ses-
sions and maintaining session state. Cookies, hidden input fields, and some library
support is the common solution. Also for other Web service aspects, such as databases
and security, there is often a wide range of libraries available but no direct language
support.

3.2 The Session-Centered Approach 33

3.2.3 Session-Centered Languages

The pure session-centered approach was pioneered by the MAWL project. Here a
service is viewed as a collection of distinctsessionsthat access some shared data. A
client may initiate a sessionthread, which is conceptually a process running on the
server. Interactions with the client are viewed as remote procedure calls from the
server, as known from classical construction of distributed systems but with the roles
reversed.

The flow of an entire session is programmed as a single sequential program, which
is closer to ordinary programming practice and offers the compiler a chance to obtain
a global view of the service. This flow can be illustrated as follows:

SESSION
THREAD

PAGE
HTML

On the left is the client’s browser, and on the right is a session thread running on
the server. The thread is initiated by a client request and controls the sequence of
interactions.

Important issues such as concurrency control and the connection between HTML
forms being shown and field values being received become simpler to understand in
this context and standard programming solutions, such as data-flow analysis, are more
likely to be applicable.

The overall structure of<bigwig> and JWIG programs is directly inspired by
MAWL. A program in these languages contains a complete specification of a Web ser-
vice. Such a service contains a collection of namedsessions, each of which essentially
is an ordinary sequential program. A client has the initiative to invoke a thread of a
given session, which is a process on the server that executes the corresponding sequen-
tial code and exclusively communicates with the originating client. Communication is
performed byshowingthe client an HTML page, which implicitly is made into a form
with an appropriate URL return address. While the client views the given document,
the session thread is suspended on the server. Eventually the client submits the form,
which causes the session thread to be resumed and any form data entered by the client
to bereceivedinto program variables. A simple<bigwig> service is the following:

service {

html hello = <html>Enter your name: <input name= handle ></html>;
html greeting =

<html>Hello <[who]>, you are user number <[count]> </html>;

html goodbye = <html>Goodbye <[who]> </html>;

shared int users = 0;

34 Languages for Web Service Development

session Hello() {

string name;

show hello receive[name=handle];

users++;

show greeting<[who =name,count =users];

show goodbye<[who =name];

}

}

This service defines the code forHello sessions. Such a session starts by showing the
hello page to the client, who fills in and submits his name. That value is on the server
received into the variablename. Then the number of users is incremented, a greeting
is produced, and finally, thegoodbye page is shown. Variables that are declared with
the modifiershared are shared between all the running session threads. For other
variables, each thread has a local instance. The access to the sharedusers variable
actually needs concurrency control to avoid race conditions; this topic is described in
Section 3.6.1.

The program structure is basically as in MAWL. However,<bigwig> provides
a number of new features. Most importantly, HTML templates are nowfirst-class
values. That is, HTML is a built-in data type, writtenhtml, and its values can be passed
around and stored in variables as any other data type. Also, the HTML templates are
higher-order, meaning that instead of only allowing text strings to be inserted into the
template gaps, we also allow insertion of other templates. This is done with the special
plug operator,x<[g=y], which inserts a string or templatey into theg gaps of thex
template, as explained in Section 3.3.

For comparison, we show a similar program written in theJWIG language:

import dk.brics.jwig.runtime.*;

public class MyService extends Service {

int users = 0;

synchronized int next() { return ++users; }

public class ExampleSession extends Session {

XML wrapper =

[[<html><head><title>JWIG</title></head>
<body><[body]></body></html>]];

XML hello =

[[<form>Enter your name: <input name=" handle ">
<input type="submit"></form>]];

XML greeting =

[[Hello <[who]>, you are user number <[count]>]];

XML goodbye =

[[Goodbye <[who]>]];

public void main() throws IOException {

show wrapper<[body =hello];

String name = receive handle ;

show wrapper<[body =greeting<[who =name,count =next()]];

exit wrapper<[body =goodbye<[who =name]];

}

}

}

3.2 The Session-Centered Approach 35

JWIG is a variant of Java with special constructs for producing and showing Web
pages and receiving form input. A service is defined as a subclass ofService from
the packagedk.brics.jwig.runtime and a session is an inner class being a subclass
of Session. Fields that are declared in the outer service class are shared between
all session threads of the service.JWIG uses the XML variant of HTML, XHTML,
but construction of documents is essentially the same as in<bigwig> as there are
only minor notational differences between HTML and XHTML. The Java language is
a natural choice for developing modern Web services. As previously mentioned, its
built-in network support, strong security guarantees, concurrency control, and wide-
spread deployment in both browsers and servers, together with popular development
tools make it relatively easy to create Web services. An advantage ofJWIG com-
pared to<bigwig> is the vast amount of Java packages that are immediately available.
Specifically, they make it easier to write the many parts of typical Web services that
manipulate data without having anything to do with the Web in particular, such as us-
ing data containers, text operations, etc. The lack of such packages for<bigwig> was
increasingly becoming an impediment when writing larger applications. Another ad-
vantage is that the program analyses inJWIG have been improved notably in various
ways compared to<bigwig>, as described in [57].

The session-centered approach that we use in<bigwig> andJWIG has two essen-
tial benefits compared to other approaches: First of all, we believe that the control-flow
of a service written in a language with inherent session support becomes clearer to the
programmer and hence simplifies development and maintenance of the Web services.
Second, the compiler also has a better chance of understanding this flow. Specifically,
<bigwig> andJWIG services are verified at compile time to ensure that 1) a plug op-
eration always finds a gap with the specified name in the given fragment, 2) the code
that receives form input is presented with the expected fields, and 3) only valid HTML
4.01 or XHTML 1.0 is ever sent to the clients.

3.2.4 A Runtime Model with Support for Sessions

The session-based model can be implemented on top of the CGI protocol. One naive
approach is to create session threads as CGI scripts where all local state is stored on
disk. At every session interaction, the thread must be started again and restore its local
state, including the call stack, in order to continue execution. A better approach is
to implement each session thread as a process that runs for the whole duration of the
session. For every interaction, a tiny transient CGI script called aconnector process
is executed, acting as a pipe between the Web server and the session process. This
approach is described in detail in [38]. Our newest implementation is instead based on
a specialized module for the Apache Web server. Naturally, this is much faster than
the CGI solutions since it does not create a new process for every single interaction:
In <bigwig>, each session thread is associated with one system process, and inJWIG,
each service runs as one JVM with a Java thread for each session.

Two common sources of problems with standard implementations of sessions are
history buffers and bookmarking features found in most browsers. With history buffers
and the “back” button, the users can step back to a previous interaction, and either
intentionally or unintentionally resubmit an old input form. Sometimes this can be
a useful feature, but more often it causes confusion and annoyance to the users who

36 Languages for Web Service Development

may, for instance, order something twice in online shopping systems. It is a general
problem that the information shown to the user in this way can be obsolete, because it
is tailor-made only for the exact time of the initial request. Since the information was
generated from a shared database that may have changed entirely, it does generally not
make sense to “step back in time” using the history buffer. It also becomes hazardous
to try to use bookmarks to temporarily suspend a session. Invoking the bookmark will
typically cause a CGI script to be executed a second time instead of just displaying its
results again.

Our runtime system for<bigwig> andJWIG provides a simple but unique solution
to these problems: Each session thread is associated with a URL which points to a file
on the server containing the latest HTML page shown to the client. Instead of sending
the contents directly to the client at everyshow statement, we redirect the browser to
this URL:

WWW
SESSION

PROCESS

WEB SERVER

HTML
FILE

Since the URL serves as the identification of the session thread, this solves the prob-
lems mentioned above: The history list of the browser now only contains a single
entry for the duration of the session, the sessions can now be bookmarked for later use,
and in addition, the session identity URL can be passed around manually—to another
browser, for instance—without problems. When using URLs instead of cookies to rep-
resent the session identity, it also becomes possible for a single user to simultaneously
run multiple sessions in different windows but with the same browser.

Furthermore, with this simple solution we can automatically provide the client
with feedback while the server is processing a request. This is done by, after a few
seconds, writing a temporary response to the HTML file, which informs the client
about the status of the request. This temporary file reloads itself frequently, allowing
for updated status reports. When the final response is ready, it simply overwrites the
temporary reply file, causing the reloading to stop and the response to be shown. This
simple technique may prevent the client from becoming impatient and abandoning the
session.

3.3 Dynamic Construction of Web Pages

Constructing the Web pages that are shown to the users is obviously among the most
central activities in Web services. With the script-centered approach, for instance using
CGI or Servlets, the pages are usually constructed by printing HTML fragments to an
output stream, as explained above. This is a highly flexible mechanism, except that
the pages must be constructed in a linear fashion from top to bottom instead of being

3.3 Dynamic Construction of Web Pages 37

composed in a more logical manner. However, these languages permit essentially no
static guarantees, for instance about validity of the generated HTML pages.

In MAWL, all HTML templates are placed in separate files and viewed as pro-
cedures of a kind, with the arguments being strings that are plugged into gaps in the
template and the results being the values of the form fields that the template contains.
This allows a complete separation of the service code and the HTML code. Thereby
certain static guarantees are possible and the work of programmers and HTML design-
ers can be separated to increase their productivity. A disadvantage is that this template
mechanism becomes too rigid compared to the flexibility of the script-centered lan-
guages.

The page-centered approach known from JSP and the related languages can con-
ceptually be placed between the script-centered and the session-centered. If JSP pages
are mostly static HTML, then they are reminiscent of the page templates in MAWL,
except that there is no restriction on what may be inserted into the gaps. With such
pages, it is, for instance, relatively easy to argue that only valid HTML is produced.
However, in the other extreme, a JSP page consisting entirely of code is essentially
the same as a Servlet program. A more detailed comparison of how Web pages are
constructed in the various languages can be found in [40, 57].

In the following, we focus on dynamic construction of Web pages in theJWIG
language. The language constructs in<bigwig> only vary slightly compared toJWIG,
but the program analyses are structured differently.

Web pages are constructed from XMLtemplates. A template is a well-formed
XML fragment which may contain namedgaps. A specialplug operation is used to
construct new templates by inserting existing templates or strings into gaps in other
templates. Templates are identified by a special data type,XML, and may be stored in
variables and passed around as any other type. Once a complete XHTML document
has been built, it can be used in ashow statement.

Syntactically, theJWIG language introduces the following new expressions into
Java for dynamic XML document construction:

[[xml]] (template constant)
exp1 <[g = exp2] (the plug operator)
([[xml]]) exp (XML cast)
get url (runtime template inclusion)

These expressions are used to define template constants, plug templates together, cast
values to theXML type, and to include template constants at runtime, respectively. The
url denotes a URL of a template constant located in a separate file, andxml is a XML
template according to the following grammar:

xml : str (character data)
| <name atts> xml </ name> (element)
| <[g]> (template gap)
| <{ stm}> (code gap)
| xml xml (sequence)

atts : ε (empty)
| name=" str" (attribute constant)

38 Languages for Web Service Development

| name=[g] (attribute gap)
| atts atts (sequence)

Herestr denotes an arbitrary Unicode string,namean arbitrary identifier,g a gap name,
andstma statement block that returns a value of typeString or XML.

XML templates can be composed using the plug operationexp1 <[g = exp2] . The
result of this expression is a copy ofexp1 with all occurrences of the gap namedg
replaced by copies ofexp2.

Code gaps are special gaps that directly contain code. When a template containing
code gaps is shown, the code blocks in the code gaps are executed in document order.
The resulting strings or templates are then inserted in place of the code. With code
gaps, it is easy to emulate the page-centered approach of constructing Web pages.

Communication with the client is performed through theshow statement which
takes as argument an XML template to be transmitted to the client. The responses
from the client are subsequently obtained using thereceive expression, which takes
as argument the name of an input field in the XHTML document that was last shown to
the client and returns the corresponding value provided by the client as aString. There
may be several occurrences of a given input field. In this case, all the corresponding
values may be received in order of occurrence in the document into aString array
using the variantreceive[].

We defineDynDocas this sublanguage ofJWIG that deals with document con-
struction. DynDoc combines the best of each of the alternatives: Web pages can be
composed in a logical order and all HTML tags are automatically balanced, in contrast
to using a script-centered language; with code gaps, the page-centered approach of em-
bedding code in Web pages can be emulated directly; the templates can be separated
from the main code, as in MAWL; by allowing templates to be plugged into templates
to construct new templates it is substantially more flexible than MAWL; and finally,
DynDoc allows a number of compile-time guarantees that are otherwise only seen in
the simpler MAWL language. The domain-specific program analyses that are used to
provide these guarantees are the topic of the next section.

As an extra benefit, DynDoc also proposes a solution to another problem: caching
of dynamically constructed Web pages. Traditional Web caching based on HTTP
works by associating an expiration time to all files sent by the servers to the clients
and caching the files within the browsers. This has helped in decreasing both network
and server load and response times. However, the technique was designed primarily
for files whose contents rarely or never changes, not for documents dynamically gen-
erated by interactive Web services. The gradual change from statically to dynamically
generated documents has therefore caused the impact of Web caching to degrade. With
DynDoc we have a unique opportunity to automatically separate the template constants
from the dynamic parts of the generated Web pages and thereby store the templates in-
dividually and effectively revive the browser caches. In the context of<bigwig> we
describe such a technique in [36].

The original version of the DynDoc language was introduced in [195]. More de-
tails about the newest versions used in<bigwig> andJWIG can be found in [40] and
[57].

3.4 Program Analyses 39

3.4 Program Analyses

The high-level approach of dynamically constructing Web documents from well-formed
fragments in<bigwig> andJWIG makes it possible to perform some highly special-
ized program analyses for the particular application domain of dynamic document
construction. The overall goal of these analyses is to allow as liberal use of dynamic
documents as possible while guaranteeing that no errors occur. More precisely, our
analyses inJWIG provide the following guarantees for a given program:

• plug consistency:that gaps are always present when subjected to the plug oper-
ation and XML templates are never plugged into attribute gaps;

• receive consistency:that input fields occur the right number of times in the
shown documents soreceive andreceive[] operations always succeed; and

• show validity:that all documents being shown are valid XHTML 1.0 [182].

If any of these correctness properties is not satisfied at runtime, an exception will be
thrown. The analyses try to verify at compile time that these exceptions cannot occur,
and if they can occur, an explanatory warning message is automatically produced.

As for all useful program analyses, ours are incomplete, meaning that correct pro-
grams may occasionally be falsely rejected. According to Rice’s well-known theorem,
the problem of obtaining precise answers to interesting questions about the behavior
of programs written in a Turing complete formalism is always undecidable. Thus, ap-
proximations are inevitable. However, our analyses are designed to be conservative,
meaning that they err only on the safe side: a program that can fail is never accepted as
correct. The difficulty in designing such analyses is to make them sufficiently precise
and at the same time sufficiently fast to be practically useful.

OurJWIG analyses work as follows. First, the special syntactic constructs ofJWIG
are translated into appropriate Java constructs by a simple source-to-source desugaring
transformation, and then the resulting Java source files are compiled into Java class
files by a standard Java compiler. The analysis works on the class file level. From the
class files, we first generateflow graphs. From these, we generatesummary graphs,
which we analyze in three different ways corresponding to the properties mentioned
above. In order to produce the summary graphs, we first need a preliminarystring
analysisof the flow graphs. The structure of the whole analysis on the class files is
illustrated in the following figure:

class
files

flow graph
constructor

string
analysis

regular
languages

flow
graph analysis

summary graph summary
graphs

analysis
plug

analysis
resultsanalysis

receive

analysis
show

Although the theoretical worst-case complexity of the analyses isO(n6) wheren is the
size of the givenJWIG program, we are able to show by a number of benchmark tests

40 Languages for Web Service Development

in [57] that the technique works well in practice. The precision of the analyses seems
adequate since no false errors were encountered.

For programs where verification fails, useful warnings are provided, for example:
“field howmany may not be available for the receive operation on line 87”, or “ invalid
XHTML may be shown on line 117; the following schema requirements are not sat-
isfied: [. . .]”. Clearly, such detailed feedback aids the programmer in debugging the
program.

The structure of the analysis of<bigwig> programs is slightly different from the
one presented here forJWIG. Instead of basing all the analyses on summary graphs,
we there perform a data-flow analysis on the flow-graph level to check for plug and
receive consistency, as explained in [195]. In [57] we describe the benefits of using
summary graphs for all the analyses.

3.4.1 Flow Graphs for JWIG Programs

Given aJWIG program, we first construct an abstract flow graph as a basis for the
subsequent data-flow analyses. The flow graph captures the flow of string and XML
template values through the program and their uses in show, plug, and receive opera-
tions, while abstracting away other aspects of the program behavior.

The nodes in a flow graph correspond to abstract statements, such as assignments,
or show or receive operations. These statements contain expressions, for instance plug
operations, constant XML templates, and variable reads. There are two kinds of edges:
a flow edgemodels the data flow between the program points and is labeled with a set
of program variables indicating which values are allowed to flow along that edge; a
receive edgegoes from areceive node to ashow node, indicating that the control-
flow of the program may lead from the correspondingshow statement to thereceive
statement without reaching anothershow first. In [57] we formally define the semantics
of flow graphs as solutions to constraint systems.

Constructing the flow graph of a givenJWIG program is quite technical due to the
many features of the Java language that need to be considered. The approach described
in [57] proceeds in eight phases. First, each method body is translated individually.
Then code gaps, method invocations, exceptions, show and receive operations, arrays,
and field variables are handled specially. Finally, some graph simplifications are made
where all flow edges that have been constructed in the previous phases are replaced
by definition–use edges, each labeled with only a single variable. The resulting flow
graph contains all the information we need from the original program to provide the
desired guarantees of the program behavior.

3.4.2 Summary Graphs for XML Expressions

We now perform asummary graph analysison the flow graph generated for the given
JWIG program. Summary graphs model how templates are constructed and used at
runtime. This analysis depends on a preliminarystring analysisthat for each string
expression finds a regular language that approximates the set of strings it may evalu-
ate to. For each of these two analyses we define a lattice expressing an abstraction of
the data values along with a corresponding abstract semantics of the expressions and
statements, and then apply standard data-flow analysis techniques to find the least so-

3.4 Program Analyses 41

lutions. The result is that each XML expression occurring in the program is associated
with a summary graph describing its possible values.

The string analysis which is currently applied is rather simple. It merely tracks the
propagation of string constants throughout the program, using the set of all possible
strings to model the results ofreceive and other string operations.

The lattice and transfer functions for the summary graph analysis are more in-
volved. LetG be the set of gap names that occur in the program andN be a set of
template indicesdenoting the instances of XML template constants. Asummary graph
SGis a finite representation of a set of XML documents and is defined as follows:

SG= (R,T,S,P)

where

R⊆ N is a set ofroot nodes,
T ⊆ N×G×N is a set oftemplate edges,
S: N×G→ REGis astring edgemap, and
P : G→ 2N×Γ×Γ is agap presencemap

using the following definitions:

REGis the set of regular languages over the Unicode alphabet, and
Γ = 2{OPEN,CLOSED} is thegap presence latticewhose ordering is set inclusion.

This notion of summary graphs is the cornerstone of our program analyses. The nodes
correspond to the constant XML templates that appear in the program, and the edges
result from the plug operations. Intuitively, the language of a summary graph is the
set of XML documents that can be obtained by unfolding its templates, starting from
a root node and plugging templates and strings into gaps according to the edges. The
presence of a template edge(n1,g,n2) ∈ T informally means that then2 template may
be plugged into theg gaps in then1 template, and a string edgeS(n,g) = L means
that every string in the regular languageL may be plugged into theg gaps in then
template. The gap presence map,P, specifies for each gap namedg which template
constants may contain openg gaps reachable from a root and whetherg gaps may or
must appear somewhere in the unfolding of the graph, either as template gaps or as
attribute gaps. The first component ofP(g) denotes the set of template constants with
openg gaps, and the second and third components describe the presence of template
gaps and attribute gaps, respectively. The valueOPEN means that the gaps may be
open, andCLOSED means that they may be closed or never have occurred. We need
this gap presence information to 1) determine where edges should be added when
modeling plug operations, 2) model the removal of gaps that remain open when a
document is shown, and 3) detect that plug operations may fail because the specified
gaps are not present.

This unfolding of summary graphs into sets of concrete XML documents is for-
mally defined in [57] where the transfer functions for the analysis are also shown. The
following illustration shows an example summary graph:

42 Languages for Web Service Development

{large}

kind

L

text

<ul class=[]>
 <[]>

items
kind <[]>

<[]>items
text

items
items

1 2

Gap presence: kind
items
text

({1,2},{OPEN}, {CLOSED})

(Ø,{CLOSED},{CLOSED})

{Ø,{CLOSED},{CLOSED})

The language of this summary graph is the set of XML documents that consist oful

elements with aclass="large" attribute and zero or moreli items containing some
text from the languageL. In general, the summary graphs that are constructed are
conservative, since they they may denote languages that are too large. This means that
the subsequent analyses can be sound but not complete.

A variant of the summary graphs shown here was introduced in [39] for verifying
HTML validity of documents in<bigwig>. We show in the paper [58] that the notion
of summary graphs is expressively equivalent to the regular expression types from
XDuce, if disregarding attributes and string edges. That paper also suggests how the
DynDoc language can be extended with operations for deconstructing XML values
while still being able to provide static guarantees based on summary graphs.

The remaining analyses described in the following sections are independent of both
the originalJWIG program and the flow graphs. All the relevant information is at this
stage contained in the inferred summary graphs.

3.4.3 Analyzing Plug Operations

For each plug operation,x<[g=y], occurring at some program point` in the given
JWIG program, we have constructed a summary graph. From this graph it is possible
to verify whetherg gaps are always present in the value ofx at `, and, in casey is
an XML expression and not a string expression, that none of the presentg gaps are
attribute gaps. The desired information is directly available in the gap presence map
component of the summary graph, so a trivial inspection of this map suffices to check
plug consistency.

3.4.4 Analyzing Receive Operations

We now validate thereceive andreceive[] operations. For the single-string variant,
receive, it must be the case that for all program executions, the last document be-
ing shown before the receive operation contained exactly one field of the given name.
Also, there must have been at least one show operation between the initiation of the
session thread and the receive operation. The array variant,receive[], always suc-
ceeds, so technically, we do not have to analyze those operations. However, we choose
to consider it as an error if we are able to detect that for a givenreceive[] operation,
there are no possibility of ever receiving other than the empty array.

Given a specific receive operation, we need to count the number of occurrences of
input fields of the given name that may appear in every document sent to the client in
an associatedshow operation. We use a lattice structure with the following elements:

3.5 Declarative Form Field Validation 43

“0” means that there are always zero occurrences of the field, “1” means that there is
always exactly one occurrence, “∗” means that the number varies depending on the
summary graph unfolding or that it is greater than one, “�” represents one or more
radio buttons, and “⊥” represents an unknown number. We need to count radio but-
tons specially, because only one value is submitted for a whole list of such buttons
having the same name. A conservative approximation of the desired information can
be extracted from the receive edges in the flow graph and the summary graphs of the
associatedshow operations. For each of these summary graphs, we define a constraint
system and solve it using fixed-point iteration. The details can be found in [57].

3.4.5 Analyzing Show Operations

For everyshow statement in theJWIG program, we have computed a summary graph
that describes how the XML templates are combined in the program and which XML
documents may be shown to the client at that point. This gives us an opportunity to
verify that all documents being shown arevalid relative to a desired document type,
meaning that certain syntactic requirements are satisfied. In particular, we ensure that
the documents are valid XHTML 1.0. Currently, no other Web service programming
language than<bigwig> andJWIG allows such compile-time guarantees to be given
while at the same time providing a flexible mechanism for dynamically constructing
documents.

As described in Section 3.7, there exist many formalisms, called schema lan-
guages, for describing the syntax of XML-based languages. Traditionally, DTD has
been used, but its limited expressiveness has motivated the development of more ad-
vanced formalisms. For the analysis of show operations inJWIG, we use DSD2, a
successor to the Document Structure Description (DSD) language. For instance, the
DSD2 schema for XHTML 1.0 describes several syntactic requirements that cannot be
expressed in the DTD language.

The semantics of most schema languages are defined in terms of a top-down traver-
sal of a given XML document, where satisfaction of the syntactic requirements spec-
ified in the schema is verified for each element in turn. Recall that a summary graph
is a symbolic representation of a set of XML documents. The basic idea for validating
all the documents represented by a summary graph is to generalize the top-down al-
gorithm for validating individual documents, intuitively by unfolding the graph while
performing memoization to ensure fast termination. Section 3.7 gives an overview of
the DSD and DSD2 languages and of the algorithm for validating a summary graph
with respect to a DSD2 schema.

3.5 Declarative Form Field Validation

With traditional Web service languages, a considerable amount of code is expended on
checking whether the data supplied by users in the form input fields is of the right form,
and when it is not, producing error messages and requesting the fields to be filled in
again. For example, some fields must contain only digits, and others are required to be
valid email addresses or dates. Often, validation requirements for one field depend on
what the user has selected in other fields. The main problem is to program solutions

44 Languages for Web Service Development

that are robust to modifications in the service logic and in the client environment,
efficient on both the client and the server, and at the same time user friendly.

Using theserver-sideapproach, where the validation is done entirely on the server,
raises two kinds of problems: 1) every program part that sends a page to a client must
be wrapped into a loop that repeats until the input is valid, so the main service code
tends to be cluttered with code handling input validation; and 2) the types of user
interactions in case of invalid input are limited, since errors are not detected until the
client attempts to submit, and similarly, menu options cannot be made to appear or
disappear dynamically depending on the input.

The alternative approach is to perform the validation on theclient-side, typically
using JavaScript [87]. This separates the validation code from the main service code
and also has the benefit that validation can be performed incrementally as the user
enters the data using the many graphical features available through JavaScript. There
still are problems though: Finding the subset of JavaScript that works properly on all
browsers can be quite challenging. Often, this makes programmers give up or stop at
very simple solutions. Furthermore, a more fundamental problem is that JavaScript is
a general-purpose and imperative language, exposing the programmer to many unnec-
essary details and choices. Even though most of the JavaScript code that exists is code
dealing with input validation, this is not precisely what the language was designed for.

An additional source of complexity is that client-side validation should not be used
alone. The reason is that the client is perfectly capable of bypassing the JavaScript
code, so an additional server side validation must always be performed. Thus, the same
code must essentially be written both in JavaScript and in the server scripting language.
All in all, programming form field validation is not as simple as it may appear, and
traditional Web service programming languages provide no particular support, except
perhaps for regular expression matching.

3.5.1 The PowerForms Language

Our solution is to include a small high-level domain-specific declarative sublanguage,
called PowerForms, tailored to specification of form input validation requirements.
From this language, a compiler automatically generates the JavaScript code, in the
right subset that most browsers agree on, together with server-side code for performing
the double-check.

In the following we briefly describe the PowerForms language. More details and
examples can be found in [37, 190]. The implementation, made by M. Ricky, is avail-
able both as a stand-alone C package and as an integral part of the<bigwig> system.
Lately, we have integrated a Java version of PowerForms with theJWIG system. This
version is based on thedk.brics.automaton Java package for automata and regular
expression operations [171].

Being a domain-specific language, PowerForms only provides constructs that di-
rectly correspond to central concepts in the problem domain, namely the domain of
field input validation. The PowerForms language is based on the idea of associat-
ing regular expressions to the input fields for defining the valid values. We have
chosen regular expressions since this formalism in numerous other applications has
proven suitable for concise and declarative specification of such sets of strings. Typi-
cal formats, such as email addresses, URLs, dates, and ISBN numbers are all regular

3.5 Declarative Form Field Validation 45

languages.
The regular expressions are translated into minimal deterministic finite-state au-

tomata which are embedded into some JavaScript code running on the client-side.
This code incrementally runs the field input strings on the automata. The effect is that
each input field is associated with a regular language and at any point of time is dec-
orated with one of four annotations:green light if the current value is a member of
the language, meaning that it may be submitted;yellow light if the current value is a
prefix of a member of the language, meaning that “the user is on the right way”;n/a,
if the language is empty, which is used to denote that the field is not to be filled in at
all; or red light if none of the above conditions apply, that is, the value is invalid and
does not lead to something valid. The default behavior is that tiny icons inspired by
traffic lights are placed beside the fields, denoting the annotations. Other icons can be
chosen, such as checkmark symbols, arrows, etc. A form cannot be submitted if there
is a yellow or red light; in that case, an error message specified by the programmer is
shown instead.

The regular expressions, calledformats, are defined in an XML syntax. Lots of
syntactic sugar is offered, including standard UNIX regexp notation. Furthermore, ex-
pressions can be labeled for reference and reuse, and there is an import mechanism
for modularization. The form field is associated with a format using a declaration as
shown in the following example:

<form action="...">
ISBN number:
<input name="isbn">
<input type="submit">

</form>
An HTML form

<format name="isbn"
help="Enter an ISBN number"
error="Illegal value entered">

expression defining ISBN numbers
</format>

A PowerForms format declaration

Here the input field namedisbn is associated with a help message, an error message,
and a regular language. The example illustrates that the validation expressions can
be completely separated from the HTML code—thereby the HTML code can be con-
structed independently of PowerForms and validation formats added later. Formats
can be associated to all kinds of form fields, not just those of typetext. For select
fields, the format is used to filter the available options. Forradio andcheckbox fields,
only the permitted buttons can be selected.

As noted in [79], many forms contain fields whose values may be constrained by
the values entered in other fields. A typical example is fields that are not applicable
if some other field has a certain value. Such interdependencies are almost always
handled on the server, even if the rest of the validation is performed on the client-side.
Presumably, the reason is that interdependencies require even more delicate JavaScript
programming.

In PowerForms, interdependencies can be specified using an extension of the reg-
ular expressions: theformat tags generally describe boolean decision trees, whose
conditions probe the values of other form fields and whose leaves are simple formats.
The interdependence is resolved by an iterative fixed-point process computed on the
client by automatically generated JavaScript code.

As an extra feature, validating forms with field interdependencies can have side-

46 Languages for Web Service Development

effects: if editing one field changes the format of another field, that field is “filtered”.
For select fields, options that are no longer allowed are removed, andradio and
checkbox buttons are released if their statuses become illegal. Since the side-effects
only “remove” user data, they are monotonic and cyclic dependencies are resolved by
the fixed-point process.

3.5.2 PowerForms in JWIG

PowerForms are available in theJWIG language through a variant of theshow state-
ment:

show h powerforms p;

whereh is the XHTML document to be shown andp is a PowerForms document defin-
ing the input field validity requirements. Bothh andp are values of typeXML. Also the
PowerForms document can be constructed dynamically using plug operations, which
is often convenient. In fact, a variant of the XHTML 1.0 validity analysis described
in Section 3.4.5 is applied here to check that thep document is always a valid Power-
Forms document according to a DSD2 description of the PowerForms language. This
is achieved quite easily since the analysis algorithm is parameterized by the DSD2
description, and the syntax of PowerForms is easily expressed in DSD2.

The PowerForms formats can be coupled with the string analysis described in Sec-
tion 3.4.2. Currently, we assume the worst case at eachreceive construct by modeling
it as the total language. However, if a certain regular expression has been bound to a
given input field using PowerForms, then PowerForms will guarantee that only such
values can be received. This allows us to use that regular expression when analyz-
ing the correspondingreceive constructs to inexpensively but efficiently improve the
analysis precision.

3.6 Other Aspects of Web Service Languages

There are many more sub-domains of the domain of interactive Web services. These
include management of simultaneously executing session threads and a wide range of
security issues. We describe these in the following, together with a notion of syntax
macros, which is not tied to Web services in particular but primarily serves to connect
the sublanguages of<bigwig>. More ideas and special features of<bigwig> and
JWIG can be found in [40, 57].

3.6.1 Concurrency Control

With a number of session or interaction processes running concurrently, each inter-
acting with a client and perhaps accessing shared data, there is an obvious need for
concurrency control. A typical concurrency constraint will ensure exclusive access to
a shared resource, for instance using the reader–writer protocol. A more complex con-
currency constraint could informally sound like: “don’t allow a session to doA if B
has occurred andC hasn’t occurred since that—unlessD at some point has occurred,

3.6 Other Aspects of Web Service Languages 47

or ...”. Large Web services quickly require quite complicated control which is hard to
implement and maintain if using semaphores or other low-level primitives.

The <bigwig> approach is to use a high-level declarative logic-based language
for specification of behavioral constraints, thereby increasing both succinctness and
flexibility. The compiler translates these constraints into an operational specification,
which at runtime is used to enforce a conforming global service behavior by a central-
ized controller component running on the server.

As mentioned in Chapter 2.1, M2L(Str), Monadic Second-order Logic on Finite
Strings, can be used as a powerful temporal logic for specification of safety properties
of distributed systems. The<bigwig> language contains a sublanguage where concur-
rency constraints can be specified essentially as M2L(Str) formulas. Using the MONA

tool, these formulas are translated into minimal deterministic prefix-closed finite-state
automata. These automata then act together as acontroller at runtime, ensuring that all
constraints are obeyed by delaying the sessions appropriately. An event is defined to
beenabledif taking the corresponding step in the controller automata will stay within
the accepting states.

As an example, the following constraint formula is used to implement an asyn-
chronous event handler:

all t1: handle(t1) => is t2: t2<t1 && cause(t2) &&

(all t3: t2<t3 && t3<t1 => !handle(t3));

If handle occurs at timet1, then at some earlier timet2 the eventcause has occurred,
and betweent2 and t1 there has been no otherhandle event. In other words, this
formula allows the handler to proceed, without blocking the application, whenever the
associated event has been caused at least once since the last invocation of the handler.

Theeventson which the logic operates are in<bigwig> defined by “checkpoints”,
each having the form of await statement:

wait {
case A: . . .
case B: . . .
. . .
timeout t: . . .

}

Executing such await statement causes the session to wait until the controller has
determined that one of the eventsA, B, etc., is enabled. When permission to continue
has been granted, the event is considered occurred and execution of the session is
resumed at the corresponding location in the code. If atimeout t has been specified,
the session waits at mostt seconds. If the controller has not granted permission to
continue within that time, the waiting is canceled and the session resumes execution at
the code following the timeout specification.

Naturally, we do not expect common programmers to be willing to learn monadic
second-order logic. Here the macro mechanism described in Section 3.6.3 comes
in handy. It allows complex concurrency constraints to be wrapped into more user-
friendly syntax.

More details of the<bigwig> concurrency control mechanism, including exam-
ples and a more detailed description of the implementation, can be found in [194, 40,

48 Languages for Web Service Development

38]. There, it is also described how the technique is extended to constraints beyond
those defining regular languages.

In the JWIG language, we do currently not apply temporal-logic based concur-
rency control. Instead, we rely entirely on the simpler standard Java features, such as
synchronized blocks and monitor notification. This has so far appeared sufficient, and
although the approach in<bigwig> has functioned as a successful proof of concept,
we doubt that the benefits of introducing temporal logic to theJWIG programmers is
worth the extra complexity of the language.

3.6.2 Security Issues

Typically operating on the global Internet, there are many aspects of Web service se-
curity. Communication can be eavesdropped, clients or servers are not always who
they claim to be, services may be flooded with phony requests denying access for the
real users, and seemingly indifferent programming errors may unintentionally open for
sensitive data to be revealed from the server. In general, it may be of importance to
ensure integrity of the service, authenticity of the server and client, and confidentiality
of the communication.

The runtime system of<bigwig> andJWIG provides some generally applicable
security arrangements. Integrity of the session thread state is achieved by keeping it
exclusively on the server. Integrity of shared data can be provided by an underlying
database. An interaction key is generated and embedded in every document shown to
the client and serves to prevent submission of old forms. Clients and session threads
are associated through a random key, which is created by the server upon the first
request and carried across interactions in a hidden input field. InJWIG, a security
manager is installed such that all installed services run in a secure sandbox on the
server where they can only harm themselves. These basic mechanisms may optionally
be combined with other protocols: SSL, the Secure Sockets Layer, for ensuring pri-
vacy of the communication and authentication of the server, and HTTP Authentication
for ensuring authenticity of the client. Furthermore, the service can be configured to
restrict access to certain IP addresses. This is useful for services that operate on the
Internet but are intended for local use only. All security mechanisms mentioned here
can be controlled via the high-level service API. In comparison, most other Web ser-
vice languages provide similar control over SSL and HTTP Authentication, and we do
not claim that<bigwig> or JWIG has any significant advantages here.

In addition to these mechanisms, we envision performing some simple static ana-
lyses relating to the behavioral security of particular services. Values are classified
assecretor trusted, and, in contrast to tainting in Perl, the compiler keeps track of
the propagation of these properties. Form data is always assumed to be untrusted,
and secret values are never allowed to be plugged into gaps. Thesystem function in
<bigwig>, or equivalently, theexec method inJWIG, can only be called with a trusted
string value. Variables can be declared with the modifierssecret or trusted and may
then only contain the corresponding values. To change the classification of a value,
there are two functions,trust anddisclose. The programmer must make the explicit
choice of using these coercions. The resulting mechanism is essentially an application
of type qualifiers [89]. Such security systems have in other settings proven useful in
preventing disclosure of sensitive information.

3.7 Schema Languages for XML 49

3.6.3 Language Abstractions with Syntax Macros

A central aspect of the<bigwig> language is itsmacro mechanism. This aspect does
not have anything directly to do with Web service development; its purpose is to tie
together the various sublanguages in<bigwig>, allowing convenient layers of lan-
guage abstractions to be built on top. An alternative approach for making abstractions
would be an object-oriented mechanism. However, due to the many different domain-
specific sublanguages with highly different syntax, that would presumably become too
restrictive.

It is often argued that macro mechanisms are low-level. A well-known example is
C macros. They operate on the lexical level, meaning that they are unaware of the full
language syntax. The macro mechanism employed in<bigwig> is a variant which
operates on thesyntax level. Our experience is that this approach is strong enough
to support the construction of macros defined in terms of other macros, such that the
macros form safe layers of abstractions, thereby increasing the stability of the resulting
code, supporting code reuse, and decreasing development time.

Syntax-level macros operate on parse trees instead of token sequences. A macro
has a “return type”, a nonterminal from the language grammar which the macro body
must comply to. This allows syntactic discrepancies to be detected and reported prop-
erly. The syntax of macros may be chosen almost arbitrarily, making the mechanism
flexible and transparent. Defining macros then feels like dynamically extending the
language grammar with new productions.

In [40], a number of macro examples are given. They make it evident that syntax-
level macros can raise the level of abstraction in the sublanguages for concurrency
control, database support, form input validation, cryptographic security, etc. Also, it
is shown how syntax macros can be taken to an extreme where they define whole new
verydomain-specific languages.

A macro mechanism resembling that of<bigwig> is described in [219]. The
<bigwig> macros were first described in [34] and more recently in [41]. Work in
progress by Brabrand and Schwartzbach aims for generalizing the mechanism, for in-
stance, to make it possible to describe static and dynamic requirements on the use
of macros and define more advanced syntactic transformations. This new edition is
based on Java and will be used inJWIG, both for handling the specialJWIG language
constructs and for allowing also theJWIG application programmers to create and use
syntax macros.

3.7 Schema Languages for XML

As explained in Section 3.3, XML plays an important role in theJWIG language and
also in many other aspects of Web services. XML (Extensible Markup Language) [45]
is a syntax derived from SGML for markup of text. XML is particularly interesting to
computer scientists because the markup notation is really nothing but a way of spec-
ifying labeled trees. The tree view and the convenient SGML syntax of HTML have
been important to the development of the World Wide Web, and, since its introduction,
XML syntax has been hyped as a universal solution to the pervasive problem of format
incompatibility for data exchange. We here consider one facet of XML: formal spec-
ification of the syntax of languages that use the XML notation. Other essential facets

50 Languages for Web Service Development

include tree transformations, database-like querying, hyperlinking and addressing, and
programming language APIs.

A schemais a description of the formal syntax of an XML language, in other
words, it defines a set of XML trees. As for other formal languages, precise syntax
descriptions provide an essential basis both for the tool builders and the application
users. Aschema languageis a formal language for expressing schemas.

An XML document consists of namedelementsrepresenting tree nodes. Elements
haveattributes, representing name/value pairs, andcontent, which is Unicode text
calledchardata, interspersed with subelements. We here ignore comments and DTD
information, and we assume that entity references have been expanded. For example,
consider the following XHTML document fragment:

<body class="mystuff">

Hello there

</body>

This fragment contains an element namedbody that corresponds to a tree node labeled
body. The node has an attribute namedclass and two children corresponding to its
content, that is, the part between the start tag<body...> and the end tag</body>. The
first child is a text node with valueHello, and the other is an element node labeled
em. The em node in turn has one child node, which is a text node. XML markup
is required to bewell-formed, meaning that the begin and end tags are balanced and
nested properly, which allows us to view XML documents as tree structures. More
details about the XML data model and a general overview of other aspects of XML
can be found in [162].

A schema for XHTML would for example state thatclass attributes in fact are
allowed inbody elements, that chardata is allowed in the content, but also that, for
instance,body elements cannot appear within theem tags. A schema language should
make it possible to easily express such constraints.

Numerous schema language proposals have already emerged. Among these are
DTD [45], DDML [32], DCD [43], XML-Data [145], XDR [92], SOX [70], TREX [60],
Schematron [119], Assertion Grammars [184], and RELAX [169]. W3C has issued
their XML Schema proposal [209] in an attempt to reconcile the efforts. However,
it has been met with intense debate, primarily due to its unprecedented complexity
viewed by many as being unnecessary and harmful [191, 2]. Concurrently, RELAX
NG [62] has been developed as a descendant of RELAX and TREX and is now be-
ing standardized by OASIS and ISO. The many proposals, and the outcome of the
XML Schema effort, indicate that it is far from obvious how the right schema lan-
guage should be designed. In general, the XML notation turns out to be so versatile
that it is hard to satisfy all design requirements and capture the various usage patterns,
and at the same time keep the schema notation simple.

Our Document Structure Description(DSD) proposal has the ambition of provid-
ing an expressive power comparable to that of the most significant alternatives—XML
Schema and RELAX NG—while at the same time remaining simple to learn and use.
In [133], we thoroughly compare DSD with DTD, XML Schema, and RELAX NG.

We have tried to identify the most central aspects of XML language syntax and turn
these into a clean set of schema constructs, based on well-known computer science
concepts, such as boolean logic and regular expressions. A DSD schema defines a

3.7 Schema Languages for XML 51

grammar for a class of XML documents, including documentation for that class, and
additionally a method for specifying default parts of documents. As most other schema
language proposals, the DSD language itself uses the XML notation. This opens up
for the possibility of being self-describing, that is, having a DSD description of the
DSD language.

In the following sections, we present a brief overview of DSD and its succes-
sor, DSD2, and present the algorithm for checking whether all XML documents rep-
resented by a given summary graph are within the language specified by a given
DSD2 schema, which we use in the analysis ofJWIG programs, as mentioned in Sec-
tion 3.4.5.

3.7.1 The Document Structure Description Language

A DSD, that is, a document written in the DSD language, defines the syntax of a fam-
ily of conforming XML documents. Anapplication document, also called aninstance
document, is an XML document intended to conform to a given DSD. It is the job of
a DSD processorto determine whether or not an application document is conform-
ing. This section describes the main aspects of the DSD language. A more thorough
description can be found in [133]; for the rigorous definition, see the language specifi-
cation [132].

To give an impression of the DSD language, we first show a fragment of a small
example DSD for “business cards”:

<DSD IDRef="card " DSDVersion="1.0">

<Title> This is a DSD for XML business cards </Title>

<ElementDef ID="card ">

<AttributeDecl Name="type " Optional="yes">

<Union><String Value="simple "/><String Value="complex "/></Union>

</AttributeDecl>

<Element Name="name"><StringType/></Element>
<If><Attribute Name="type " Value="simple "/>

<Then><Element Name="title "><StringType/></Element>

...

</Then>

</If>

...

</ElementDef>

...

</DSD>

and a conforming application document:

<card type="simple">

<name>John Doe</name>

<title>CEO, Widget Inc.</title>

<email>john.doe@widget.com</email>

<phone>(202) 456-1414</phone>

</card>

The DSD specifies the format of a business card as acard root element, which contains
an optionaltype attribute with valuesimple or complex, representing two variants of

52 Languages for Web Service Development

cards. Both variants have aname subelement containing pure chardata, whereas, in the
fragment shown here, only “simple” cards have atitle subelement.

One advantage of XML is that anybody can create new XML-based languages like
this and freely benefit from the huge supporting framework of tools and technologies
that surround the basic notation of XML, for instance schema processors. In particular,
having a schema description of the language syntax provides a formal but human read-
able reference, and specialized tools using the language can apply preexisting schema
processors to validate their input, which simplifies implementation.

A DSD processor basically performs one top-down traversal of the application
document tree in order to check conformance. During this traversal, constraints and
other requirements from the DSD areevaluatedrelative to acurrent elementof the ap-
plication document. The DSD processor consults the DSD to determine the constraints
that areassignedto each node for later evaluation. Initially, a constraint is assigned to
the root node. Evaluation of a constraint may entail the insertion of default attribute
values and default content in the current element. Also, it may assign constraints to
the subelements of the current element. If no constraints are violated during the entire
tree traversal, the original document conforms to the DSD. The document augmented
with inserted defaults constitutes the result of the DSD processing.

A DSD consists of a number of definitions, each associated with an ID for cross-
referencing. In the following, the various kinds of DSD definitions and other features
are briefly described:

Element constraints The central definition in DSD is theelement definition. An ele-
ment definition specifies an element name and aconstraint. During conformance
checking, each element node in the application document is assigned an ID re-
ferring an element definition from the DSD. In order for the element node to
match the element definition, they must have the same name, and the element
node must satisfy the constraint.

A constraint is defined by a number of constraint expressions, which can con-
tain declarations of attributes and element content, boolean expressions about
attributes and context, and conditional subconstraints. The constraint is satis-
fied if the evaluation of each constituent succeeds. Boolean expressions are
built from the usual boolean operators and are used for several purposes: they
express dependencies between attributes, and they are used as guards in condi-
tional constraints and default declarations, as explained later.

Attribute declarations During evaluation of a constraint, attributes aredeclaredgrad-
ually. Only attributes that have been declared are allowed in an element. Since
constraints can be conditional and attributes are declared inside constraints, this
evaluation scheme allows hierarchical structures of attributes to be defined. Such
structures cannot be described by other schema proposals, although they com-
monly appear in XML languages. Schemas written in other languages are there-
fore often too loose, meaning that they allow more documents as being valid
than intended. Concrete examples of this are given in [162, 133].

An attribute declarationconsists of a name and a string type. The name specifies
the name of the attribute, and the string type specifies the set of its allowed
values. Unless it is declared as optional, an attribute must be present if it is

3.7 Schema Languages for XML 53

declared. The presence and values of declared attributes can be tested in boolean
expressions and in context patterns, which are described below.

String types A string typeis a set of strings defined by a regular expression. String
types are used for two purposes: to define valid attribute values and to define
valid chardata. Regular expressions provide a simple, well-known, and expres-
sive formalism for specification of sets of strings—as we have seen previously,
for instance in the PowerForms language in Section 3.5. As in PowerForms,
we here include a number of nonstandard operators, such as, intersection and
complement.

Content expressionsRecall that the content of the current element is a sequence of
element nodes and chardata nodes.Content expressionsare used to specify
sets of such sequences using a kind of regular expressions. The atomic ex-
pressions are either element description or string types, which match elements
and chardata nodes, respectively. Checking that content sequences satisfy the
given constraints has the side-effect that element definition IDs are assigned to
the subelements for continuing the top-down processing. Also, as explained
below, insertion of default content occurs while checking content expressions.
Because of these side-effects, we use a non-standard operational interpretation
of the regular expression constructs occurring in content expressions, in order to
get a well-defined behavior.

If more than one content expression is specified, each of them must match some
of the content of the current element, just like each attribute declaration must
match an attribute. More precisely, each content expression is matched against
a subsequence of the content that consists of elements mentioned in the content
expression itself. This method makes it easy to combine requirements of both
ordered and unordered content, and additionally, unordered content is declared
just like attributes.

Context patterns A context patterncan be used with defaults, constraints and content
descriptions to make them context dependent. As the conditional declarations
mentioned above, context dependency is a phenomenon that other schema lan-
guages cannot express directly, although it is common in XML languages. For
instance, in XHTML,a elements cannot be nested, but this requirement is not
expressible in either DTD or XML Schema, and in RELAX NG only by effec-
tively doubling the schema size for each such constraint. A context pattern is a
restricted form of regular expression that looks at the list of ancestor elements
of the current element.

Default insertion It is convenient to application document authors to be able to omit
implied attributes and other document parts. Since schemas describe the docu-
ment structure, they are a suitable place to specify default values for such parts.
Validating a document then has the side-effect of inserting the defaults, which is
often useful to subsequent document processing.

In DSD, default attributes and contents are defined by an association to a boolean
expression. Such attributes or contents are applicable for insertion at a given
place in the application document if the boolean expression evaluates to true at

54 Languages for Web Service Development

that place. An attribute default can be inserted when an attribute declaration
is encountered and the declared attribute is not present in the current element.
Similarly, during evaluation of a content expression, if an element description
or a string type is encountered and the next content node does not match the
description, an applicable default can be inserted.

In addition to the main features mentioned above, DSD also contains notions of
ID attributes and points-to requirements for describing intra-document references, it
allows structured self-documentation to be embedded within schemas, and it supports
modularity and reuse of descriptions by document inclusion and selective redefini-
tions. Furthermore, the DSD language is self-describable: There is ameta-DSD—a
DSD description of DSD, which is complete, in the sense that an XML document is
syntactically a DSD schema if and only if it is valid relative to this meta-DSD. This
property of being entirely self-describable is not only aesthetically pleasing, it is also
practically useful for application development, as noted in [133].

By the many proposals for XML schema languages, it appears that there is no ideal
solution to the problem of designing the right schema language that fits all purposes.
Still, we believe that the DSD language has succeeded in identifying the most central
aspects of defining sets of XML document, and that it provides a simple but expressive
alternative to other proposals. Specifically, we believe that in particular the following
ideas have proven successful: the application of context expressions, boolean logic,
and conditional constraints to describe dependencies, the flexible content model, the
declarative default mechanism, and the explicit top-down traversal method.

3.7.2 Validating Summary Graphs with DSD2

Based on experience with DSD and other recent schema languages, a successor, DSD2,
has been developed, as described in [57]. A normative specification document for
DSD2 is currently under development [160]. The goal for the design of DSD2 has
been to create a schema language that is even simpler than DSD and at the same time
also more expressive.

Conceptually, a DSD2 schema consists of a list ofconstraints. A constraint is ei-
ther adeclaration, a requirement, a conditional constraint, or adefault specification.
Furthermore, there are notions ofstring normalization, keysand references, andop-
tions which we ignore here. The main differences from DSD are: 1) the notion of
conditional constraints has been strengthened, since a schema is now essentially de-
fined by a collection of such constructs; 2) the idea of assigning element definition IDs
to the application document elements has been replaced by more directly referenc-
ing to elements using their names; and 3) content expressions are now normal regular
expressions with a standard semantics, as opposed to the operational variant used in
DSD.

During a top-down traversal of the application document, the processor checks
each element in turn, as in DSD. This check of an individual element is performed in
five steps:

1. all applicable constraints are found;

2. default attributes and contents are inserted;

3.7 Schema Languages for XML 55

3. the requirements are checked;

4. it is checked that all attributes of the current element are declared; and

5. it is checked that the contents matches all content declarations and that the whole
content is declared.

The following description of the various types of constraints explains these steps in
more detail:

Declarations A declaration constraint contains a list ofattribute declarationsand
content declarations. An attribute declaration specifies that an attribute with
a given name is allowed in the current element provided that the value matches
a given regular expression. A content declaration is a regular expression over
characters and element names that specifies a requirement for the presence, or-
dering, and number of occurrences of subelements and character data. As in
DSD, a content declaration only looks at elements that are mentioned in the
regular expression. All attributes and contents that have been matched by a dec-
laration are considered to bedeclared.

Requirements A requirement constraint contains boolean expressions that must eval-
uate to true for the current element. Boolean expressions are built of the usual
boolean operators, together with attribute expressions probing the presence and
values of attributes, and element expressions probing the name of the current el-
ement. The context expressions from DSD have been replaced by simplerparent
andancestoroperators which probe whether certain properties are satisfied for
the elements above the current element in the instance document tree.

Conditional constraints A conditional constraint contains a list of subconstraints
whose applicability is guarded by a boolean expression. Only when the boolean
expression evaluates to true for the current element, the subconstraints are pro-
cessed.

Defaults A default constraint specifies a default value for an attribute or a default con-
tents sequence for an empty element. This restriction of only allowing default
contents for empty elements, instead of being able to insert individual elements
within existing contents as in DSD, together with the fact that there is no longer
any notion of assigning element definition IDs to subelements allows us to use a
standard regular expression semantics for the content expressions.

Additionally, specifications can be grouped and named for modularity and reuse, and,
in contrast to DSD, Namespaces [44] are now fully supported.

An Algorithm for Summary Graphs Validation

The DSD2 processing algorithm explained above generalizes from concrete XML doc-
uments to the concept of summary graphs described in Section 3.4.2. The overall ben-
efit of using DSD2 instead of, for instance, DTD or XML Schema is that it allows us
to precisely and efficiently capture more programming errors, yet with a reasonably
straightforward validation algorithm.

56 Languages for Web Service Development

Given a DSD2 schema and a summary graph associated to someshow statement,
we must check that every XML document in the language of the summary graph is
valid according to the schema. For validation inJWIG, we use a DSD2 schema for
XHTML 1.0, specifically. Our algorithm for validating a summary graph with respect
to a DSD2 schema proceeds in a top-down manner mimicking the definition of the
unfolding relation described in Section 3.4.2, starting from the root elements in the
templates of the summary graph root nodes. The constraints are then evaluated sym-
bolically on all graph unfoldings. For each element, essentially the same five steps
mentioned above are performed, but now taking the gaps and edges into consideration.
Using a standard memoization technique, we ensure termination, even in case of loops
in the summary graph.

In this symbolic evaluation, especially content expressions and boolean expres-
sions require special attention. Evaluation of content expressions is complicated by
the presence of gaps in the content sequences. The template edges from the gaps may
lead to templates which at the top-level themselves contain gaps. In turn, this may
cause loops of template edges. Therefore, in general, the set of possible contents se-
quences of a given element forms a context-free language, which we can represent
by a context-free grammar. The problem of deciding inclusion of a context-free lan-
guage in a regular language is decidable [108], but computationally expensive. For
that reason, we approximate the context-free language by a regular one and apply a
simpler regular language inclusion algorithm. Although loops in summary graph often
occur, our experiments show that it is rare that this approximation actually causes any
imprecision.

Also for boolean expressions in conditional constraints and requirement constraints,
evaluation is nontrivial because we simultaneously consider all the possible unfoldings
of the summary graph. We apply afour-valuedlogic for that purpose. Evaluating a
boolean expression results in one of the following values:

true – if evaluating the expression on every possible unfolding would result intrue;

false– if they all would result infalse;

some– if some unfolding would result intrue and others infalse;

don’t-know – if the processor is unable to detect whether all, no, or some unfoldings
would result intrue.

All boolean operators extend naturally to these values. The valuedon’t-know is for
instance produced by the conjunction ofsomeandsome. If the guard of a conditional
constraint evaluates todon’t-know, we terminate with a “don’t know” message. How-
ever, for our concrete XHTML schema, this can in fact never happen.

The validation algorithm is described in more detail in [57]. The algorithm is
sound, that is, if it validates a given summary graph, it is certain that all unfoldings
into concrete XML documents are also valid. It is generally not complete, but no false
errors have been encountered for ourJWIG benchmark programs. Furthermore, for a
fixed schema, for instance the one for XHTML used inJWIG, the algorithm runs in
linear time in the size of the templates appearing in the given summary graph, which
can be considered optimal.

Chapter 4

Conclusion

We have in Chapter 2 presented an overview of MONA—an efficient implementation
of an automata-based decision procedure for the logic WS1S and a number of related
logics. (Chapters 5–8 contain papers that go into more detail.) This implementation
has provided the foundation of or been integrated into a number of other tools. More
than 25 publications describe tools or techniques that use MONA. We have focused
on PALE, which is a program verifier for pointer-intensive programs. As part of this
verification technique, we have introduced a formal language, Pointer Assertion Logic
(PAL), for specifying properties of data structures. This language is designed to max-
imize the potential of the verification technique with respect to the underlying MONA

decision procedure. The WS1S logic and the PAL language essentially correspond
to the class of regular languages over finite strings or trees. In that perspective, both
MONA and PALE are extraordinary examples of the expressive power and versatile
nature of the regular languages.

In Chapter 3, we have shown a number of languages together with implementation
and analysis methods that are designed to improve development of Web services. (The
papers in Chapters 9–16 contain more details of this topic.) The<bigwig> andJWIG
languages are high-level programming languages especially designed for development
of interactive Web services. While<bigwig> is designed from scratch with inspiration
from existing languages,JWIG is a variant of Java extended with special syntactic
constructs and program analyses. Common to these languages is a session-centered
runtime model, the DynDoc sublanguage for flexible construction of Web pages, and
PowerForms for declarative specification of form input validation. Additionally, the
<bigwig> language contains a sublanguage for concurrency control based on a variant
of WS1S and a macro mechanism working on the syntactic language level.

The DSD and DSD2 languages are developed to be able to concisely describe
common syntactic requirements in XML-based languages. The XML notation is be-
ing used extensively for data representation in many different application domains,
whereof one is Web services. In particular, the syntax of Web pages can be defined
precisely in DSD and DSD2. We use this property to construct program analyses for
<bigwig> and JWIG to statically ensure that only syntactically correct Web pages
can be shown, without limiting the flexibility in DynDoc. Related to this, we intro-
duce specialized program analyses to check consistency of the dynamic construction
of Web pages and of the use of input forms in the pages. A fundamental aspect of the

58 Conclusion

program analyses inJWIG is the notion of summary graphs for abstractly describing
how the Web pages are being constructed in a given program.

In these chapters we have seen a diverse collection of domain-specific formal lan-
guages. First, we studied the domain of regular sets of finite strings or trees and its use
in program verification in the MONA and PALE projects; in the second part, we looked
into aspects of the domain of Web services in the<bigwig>, JWIG, and DSD projects.
We have applied the domain-specific language (DSL) paradigm in various ways in all
projects, either during the language design or implementation phases or when devising
analysis or verification techniques. In this sense, the projects have overall commonal-
ities in spite of the diversity.

In the MONA project, our focus has been on creating an efficient implementation.
WS1S and the related logics have long been known as exceptionally concise nota-
tions for regular languages, but it was not known before the MONA tool was built that
their decision procedures could be implemented effectively. The goal of the PALE
project has been to design a language for expressing properties of data-type imple-
mentations, such that efficient verification with the MONA tool is feasible, while at
the same time providing as much expressive power as possible. Thus, this project has
involved a combination of language design, implementation considerations, and veri-
fication technique development. The underlying DSL paradigm has helped in creating
solutions that are both simple and powerful.

In the <bigwig> project, the domain of Web services was initially analyzed to
identify the most essential aspects that could benefit from high-level language support.
Based on this analysis, we focus on a few key ideas, such as, the session-centered
model, Web page construction using higher-order templates, and regular languages for
validating form input. The explicit language-based mechanisms make it possible to
perform domain-specific program analyses. Due to the DSL approach,<bigwig> and
the successorJWIG are, for example, the only existing programming languages for
Web service development that provide static guarantees for syntactic correctness of
the constructed Web pages without sacrificing flexibility of the Web page construction
mechanism.

The development of DSD was initially motivated by the lack of schema languages
for XML that are simple to learn and use and also powerful enough to allow most
common syntactic requirements to be expressed. In parallel with the development of
the DSD and DSD2 schema languages, other alternatives have emerged with the same
motivation, but we argue that DSD and DSD2 still provide significant benefits. Again,
using the DSL approach has resulted in domain-specific languages whose constructs
closely match what the user wants to express at high levels of abstraction.

We conclude that in each of these projects where a formal language has been
created, the ideas in the domain-specific language paradigm have contributed to the
achievements of the projects.

Part II

Publications

Chapter 5

MONA 1.x: New Techniques for
WS1S and WS2S

with Jacob Elgaard and Nils Klarlund

Abstract

In this note, we present the first version of the MONA tool to be released in its entirety.
The tool now offers decision procedures for both WS1S and WS2S and a completely
rewritten front-end. Here, we present some of our techniques, which make calculations
couched in WS1S run up to five times faster than with our pre-release tool based on
M2L(Str). This suggests that WS1S—with its better semantic properties—is prefer-
able to M2L(Str).

5.1 Introduction

It has been known for a couple of years that Monadic Second-order Logic interpreted
relative to finite strings, M2L(Str), is an attractive formal and practical vehicle for
a variety of verification problems. The formalism is generally easy to use, since it
provides boolean connectives, first and second-order quantifiers and no syntactic re-
strictions, say, to clausal forms. However, the semantics of the formalism is the source
of definitional and practical problems. For example, the concept of a first-order term
doesn’t even make sense for the empty string since such terms denote positions.

So, it is natural to investigate whether the related logic WS1S (Weak Second-order
theory of 1 Successor) can be used instead. This logic is stronger in that it captures a
fragment of arithmetic, and its decision procedure is very similar to that of M2L(Str).
Similarly, we would like to explore the practical feasibility of WS2S (Weak Second-
order theory of 2 Successors).

In this note, we present some new techniques that we have incorporated into the
first full release of the MONA tool. The MONA tool consists of a front-end and two
back-ends, one for WS1S and one for WS2S. The front-end parses the MONA program,
which consists of predicates (subroutines that are compiled separately), macros, and a
main formula. Each back-end implements the automata-theoretic operations that are
carried out to decide the formula corresponding to the program.

62 MONA 1.x: New Techniques for WS1S and WS2S

Since our earlier presentation of the MONA tool [24], we have completely rewrit-
ten the front-end, this time in C++ (the earlier version was written in ML). In the old
version, the front-end produces acode tree, whose internal nodes each describe an
automata-theoretic operation—such as a product or subset construction—and whose
leaves describe automata corresponding to basic formulas. We implemented optimiza-
tion techniques (unpublished) based on rewriting of formulas according to logical laws.
In this note, we report on an alternative optimization technique, based on building a
code DAG instead of a code tree. (A DAG is a directed, acyclic graph.) Experiments
show that this technique together with a more efficient handling of predicates yields
up to five-fold improvements in compilation time over the old tool.

We also briefly discuss how a M2L(Str) formula can be translated into an essen-
tially equivalent WS1S formula, and we discuss important problems to be addressed.

5.2 M2L(Str) and WS1S

M2L(Str)

A formula of the logic M2L(Str) is interpreted relative to a numbern≥ 0, which is best
thought of as defining the set of positions{0, . . . ,n− 1} in a string of lengthn. The
core logic consists of first-order terms, second-order terms, and formulas. Afirst-order
term t is a variablep, a constant 0 (denoting the position 0, which is the first position
in w) or $ (denotingn−1, which is the last position in the string), or of the formt ′ ⊕1
(denotingi + 1 modn whent ′ is a first-order term denotingi). A second-order term
is either a variableP or of the formT ′ ∪T ′′. A formula ϕ is either a basic formula of
the formt ∈ T or T ⊂ T ′, or of the formψ∧χ, ¬ψ, ∃p : ψ (first-order quantification),
or ∃P : ψ (second-order quantification). In addition, we allow formulas involving=
(between first-order or second-order terms);<,≤,>,≥ (between first-order terms);
boolean connectives⇒,⇔ and∨; set operations∩, \, and{; ∀ quantifiers; etc.

The automaton-logic connection (see [126]) allows us to associate a regular lan-
guage overBk, for somek≥ 0, to each formulaϕ as follows. We assume that there
arek variables that are ordered and that include the free variables inϕ. Now, a string
w of lengthn over the alphabetBk can be viewed as consisting ofk tracks(or rows),
each of lengthn. Thekth track is a bit-pattern that defines the interpretation of thekth
variable, assumed to be second-order, as the set of positionsi for which theith bit is 1.
Note that a first-order variable can be regarded as a second-order variable restricted to
singleton values, so the assumption just made that variables are second-order is not a
serious one. Thelanguageassociated with formulaϕ is now the set of all strings that
correspond to a satisfying interpretation of the formula. As an example, the formula
P⊆Q is associated with the regular language

(
(0

0

)
+
(0

1

)
+
(1

1

)
)∗

where the upper track of a string denotes the value ofP and the lower track denotes
the value ofQ. Any language corresponding to a formula is regular, since the lan-
guages corresponding to basic formula can be represented by automata, and∧, ¬, and
∃ correspond to the automata-theoretic operations of product, complementation, and
projection. In the case of a closed formula with no free variables, the regular language

5.2 M2L(Str) and WS1S 63

degenerates to a set of strings over a unit alphabet. Thus a closed formula essentially
denotes a set of numbers.

The proof of regularity just hinted at forms the basis for the decision procedure:
each subformula is compiled into a minimum deterministic automaton, see [126]. An
automaton representation based on BDDs is at the core of the MONA implementation
as discussed in [126]. For each statep in the state spaceS, a multi-terminal BDD
whose leaves are states represents the transition functiona 7→ δ(p,a) : B

k → Sout of
p. Each BDD variable corresponds to a first or second-order WS1S variable, and the
BDDs are shared among the states. Thus the resulting data structure is a DAG with
multiple sources.

The automaton-logic connection (see [126]) allows us to associate a regular lan-
guage overBk to each formulaϕ that hask variables.

WS1S

WS1S has the same syntax as M2L(Str) except that there is no{ operator and⊕1
is replaced with+1. This logic is interpreted in a simpler manner: first-order terms
denote natural numbers, and second-order terms denote finite sets of numbers. The
automata-theoretic calculations are similar to that of M2L(Str) except for the existen-
tial quantifier (see [126]).

From M2L(Str) to WS1S

In principle, it is easy to translate a quantifier free M2L(Str) formulaϕ to a formula
ϕ′ in WS1S with essentially the same meaning:ϕ′ is gotten fromϕ by the following
steps.

• A conjunct p≤ $, where $ now is a variable, must be added to any subformula
of ϕ containing a first-order variablep.

• Each second-order variableP is left untouched, so that the translated formula
will not depend on whetherP has any elements greater than $. However, oc-
currences of/0 must be taken into account; for example, the formulaP = /0 is
translated into∀p≤ $:¬(p∈ P) so that the translated formula does not depend
on the membership status of numbers inP that are greater than $. Any use of set
complement operator{must also be carefully replaced.

• Any occurrence of a subformula involving⊕ such asp= q⊕1 must be replaced
by something that captures the modulo semantics (here:q< $⇒ p= q+1∧ p=
$⇒ p = 0).

With such a scheme it can be shown thatI for length n > 0 satisfiesϕ if and only
if I , augmented by interpreting $ asn− 1, satisfiesϕ′. Unfortunately, in order to
preserve this property for all subformulas, we need to conjoin extraneous conditions
onto every original subformula. A simpler solution is to conjoin them only for certain
strategic places, such as for all basic formulas and all formulas that are directly under

64 MONA 1.x: New Techniques for WS1S and WS2S

a quantifier. We have implemented such heuristics in a tool,S2N, that automatically
translates M2L(Str) formulas to WS1S formulas.1

5.3 DAGs for Compilation

Code trees can be of the form (among others)mk-basic-less(i, j), mk-product
(C,C′,op), or mk-project(i,C), wherei and j are BDD variable indices,op is a
boolean function of two variables, andC andC′ are code trees. For example, consider
the formula∃q : p < q∧ q < r. If variable p has index 1, i.e., if it is the 1st vari-
able in the variable ordering, variableq has index 2, and variabler has index 3, then
this formula is parsed into a code treemk-project(2,mk-product(mk-less(1,2),
mk-less(2,3), ∧)). This tree contains a situation that we would like to avoid: es-
sentially isomorphic subtrees are processed more than once. In fact, the automaton
A for mk-less(1,2) is identical to the automatonA′ for mk-less(2,3) modulo a
renaming of variables. In general, we would like to rename the indices inA whenever
we needA′, since this is a linear operation (whereas buildingA or A′ from the code
tree is often not a linear operation).

So, we say that a code treeC is equivalentto C′ if there is an order-preserving
(i.e., increasing), renaming of variables inC′ such thatC′ becomesC. Our goal is
to produce the DAG that arises naturally from the code tree by collapsing equivalent
subtrees. Unfortunately, it takes linear time to calculate the equivalence class of any
subtree, and so the total running time becomes quadratic. Therefore, the collapsing
process is limited to subtrees for which the number of variable occurrences is less than
a user definable parameter`.2

MONA offers both pre-compiled subroutines, calledpredicates, and typed macros.
A usename(~X) of a predicate, where~X is a sequence of actual parameters, is trans-
lated to a special node of the formmk-call(name, ~X). The predicate is then com-
piled separately given the signature of the call node. The actual parameters are bound
to the resulting automaton using a standard binding mechanism: introduction of tem-
porary variables and projection. Additional call nodes with the same signature can
then reuse the separately compiled automaton. Call nodes act as leaves with respect to
DAGification.

5.4 Experimental Results

We have run a MONA formula, reverse, of size 50KB (an automatically generated
formula from [120]) through our old MONA (using optimizations) and our new WS1S
version with and without DAGification (` = 200). We also did the experiment on
reverse2, a version of the formula where all defined predicates were replaced by

1This approach has been made obsolete by the notions of restrictions with three-valued logic and
automata that are described in Section 2.1.7 and in [128]. Experiments with theS2N tool provided the
motivation for those ideas.

2Since MONA version 1.3, this limitation has been removed due to a more efficient formula represen-
tation. In all non-artificial examples, the time requirements for performing DAGification have since been
negligible. The benefits of performing DAGification on the subsequent automata operations are measured
in [134].

5.5 Related and Future Work 65

macros. And, we have run a comparison on a formula representing a parameterized
hardware verification problem. The results are (in seconds):

Program Old MONA MONA 1.1 w. DAGs DAG Hits DAG Misses
reverse 17 8.5 3.0 20513 2725
reverse2 51 90 45 327328 14320
hardware 6.6 5.4 4.7 3284 633

In some cases (like inreverse2), the old MONA tool is faster than the new one run
without DAGification, since the figures reported for the old apply to the version that
carries out formula simplification. The experiments support our claim that WS1S can
be as efficient a formalism as M2L(Str). (The underlying BDD-package in the two
tools is the same.) Moreover, our DAGs and predicate uses offer substantial benefits,
up to a factor five. Thehardware example runs only slightly faster, and the improve-
ment is due to the new front-end being quicker.

5.5 Related and Future Work

There are at least three similar tools reported in the literature: [98] reports on an im-
plementation of WS1S that is not based on BDDs and that therefore is likely not to be
as efficient as our tool. The tool in [123] implements M2L(Str) using a different BDD
representation, and the tool in [165] implements a decision procedure for WS2S (in
Prolog and without BDDs).

There are still several problems and challenges not addressed in the current MONA

tool: 1) the semantics of formulas with first-order terms is not appealing, for example,
the MONA formula x1 < x2∧ . . .∧ xn−1 < xn is translated in linear time whereas its
negation,x1≥ x2∨ . . .∨xn−1≥ xn, is translated in exponential time; 2) there is no reuse
of intermediate results from one automaton operation to the next (a general solution
to this problem seems to require identification of isomorphic subgraphs, a problem
that appears computationally expensive); 3) the automatic translation from M2L(Str)
to WS1S byS2N sometimes makes formulas unrunnable for reasons similar to 1),
namely that the restrictions a formula is translated under are wrapped into subformulas
in unfortunate ways unless the restrictions are reapplied for each intermediate result;
4) the use of formula rewriting (as we did in the earlier MONA version) should be
combined with our DAG techniques.3

The MONA tool, currently4 in version 1.2, can be retrieved fromhttp://www.
brics.dk/mona, along with further information.

3Much of this has changed in later versions of MONA. The first and the third problem have been
solved by the use of three-valued logic and automata. The fourth issue has been addressed as explained
in Section 2.1.8 and in [134, 131].

4as of June 1998

Chapter 6

MONA Implementation Secrets

with Nils Klarlund and Michael I. Schwartzbach

Abstract

The MONA tool provides an implementation of automaton-based decision procedures
for the logics WS1S and WS2S. It has been used for numerous applications, and it is
remarkably efficient in practice, even though it faces a theoretically non-elementary
worst-case complexity. The implementation has matured over a period of six years.
Compared to the first naive version, the present tool is faster by several orders of
magnitude. This speedup is obtained from many different contributions working on all
levels of the compilation and execution of formulas. We present an overview of MONA

and a selection of implementation “secrets” that have been discovered and tested over
the years, including formula reductions, DAGification, guided tree automata, three-
valued logic, eager minimization, BDD-based automata representations, and cache-
conscious data structures. We describe these techniques and quantify their respective
effects by experimenting with separate versions of the MONA tool that in turn omit
each of them.

6.1 Introduction

MONA [105, 131, 158, 126] is an implementation of decision procedures for the logics
WS1S and WS2S (Weak monadic Second-order theory of 1 or 2 Successors) [208].
They have long been known to be decidable [49, 83], but with a non-elementary lower
bound [156]. For many years it was assumed that this discouraging complexity pre-
cluded any useful implementations.

MONA has been developed at BRICS since 1994, when our initial attempt at auto-
matic pointer analysis through automata calculations took four hours to complete. To-
day MONA has matured into an efficient and popular tool on which the same analysis
is performed in a couple of seconds. Through those years, many different approaches
have been tried out, and a good number of implementation “secrets” have been dis-
covered. This paper describes the most important tricks we have learned, and it tries
to quantify their relative merits on a number of benchmark formulas.

68 MONA Implementation Secrets

Of course, the resulting tool still has a non-elementary worst-case complexity. Per-
haps surprisingly, this complexity also contributes to successful applications, since it
is provably linked to the succinctness of the logics. If we want to describe a partic-
ular regular set, then a WS1S formula may be non-elementarily more succinct than a
regular expression or a transition table.

The niche for MONA applications contains those structures that are too large and
complicated to describe by other means, yet not so large as to require infeasible compu-
tations. Happily, many interesting projects fit into this niche, including hardware veri-
fication [18, 11], pointer analysis [120, 82, 161], controller synthesis [194, 113], natu-
ral languages [164], parsing tools [69], software design descriptions [130], Presburger
arithmetic [198], and verification of concurrent systems [136, 135, 121, 180, 200].

There are a number of tools resembling MONA. Independent of the MONA project,
the first implementation of automata represented with BDDs was that of Gupta and Fis-
cher from 1993 [102]. However, they used “linear inductive functions” instead of the
automaton–logic connection. MOSEL (seehttp://sunshine.cs.uni-dortmund.de/
projects/mosel/) implements the automaton based decision procedure for M2L(Str)
using BDDs like MONA. In [123], MOSEL is described and compared with MONA

0.2, which provided inspiration for the MOSEL project. Apparently, there have been
only few applications of MOSEL. AM ORE [153] (seehttp://www.informatik.uni-
kiel.de/inf/Thomas/amore.html) is a library of automata theoretic algorithms, re-
sembling those used in MONA. AM ORE also provides functionality for regular ex-
pressions and monoids, but is not tied to the automaton–logic connection. Glenn
and Gasarch [98] have in 1997—apparently independently of MONA and MOSEL—
implemented a decision procedure for WS1S, basically as the one in MONA, but with-
out using BDDs or other sophisticated techniques. The SHASTA tool from 1998 is
based upon the same ideas as MONA. It is used as an engine for Presburger Arith-
metic [198].

Furthermore, MONA has provided the foundation of or been integrated into a
range of other tools: FIDO [140], LISA [12], DCVALID [180], FMONA [29], ST-
TOOLS [187], PEN [175], PAX [19], PVS [178], and ISABELLE [16].

6.2 The Automaton–Logic Connection

Being a variation of first-order logic, WS1S is a formalism with quantifiers and boolean
connectives. First-order terms denote natural numbers, which can be compared and
subjected to addition with constants. Also, WS1S allows second-order terms, which
are interpreted as finite sets of numbers. The actual MONA syntax is a rich notation
with constructs such as set constants, predicates and macros, modulo operations, and
let-bindings. If all such syntactic sugar is peeled off, the formulas are “flattened”
(so that there are no nested terms), and first-order terms are encoded as second-order
terms, the logic reduces to a simple “core” language:

ϕ ::= ~ϕ′ | ϕ′ & ϕ′′ | ex2 Xi : ϕ′
| Xi sub Xj | Xi =Xj \ Xk | Xi =Xj +1

whereX ranges over a set of second-order variables.

6.2 The Automaton–Logic Connection 69

Given a fixed main formulaϕ0, we define its semantics inductively relative to a
string w over the alphabetBk, whereB = {0,1} andk is the number of variables in
ϕ0. We assume every variable ofϕ0 is assigned a unique index in the range 1,2, ..,k,
and thatXi denotes the variable with indexi. The projection of a stringw onto thei’th
component is called theXi-track ofw. A string w determines an interpretationw(Xi)
of Xi defined as the finite set{ j | the jth bit in theXi-track is 1}.

The semantics of a formulaϕ in the core language can now be defined inductively
relative to an interpretationw. We use the notationw� ϕ (which is read:w satisfiesϕ)
if the interpretation defined byw makesϕ true:

w� ~ϕ′ iff w 2 ϕ′
w� ϕ′ & ϕ′′ iff w� ϕ′ andw� ϕ′′
w� ex2 Xi : ϕ′ iff ∃ finite M ⊆N : w[Xi 7→M] � ϕ′
w� Xi sub Xj iff w(Xi)⊆ w(Xj)
w� Xi = Xj\Xk iff w(Xi) = w(Xj)\w(Xk)
w� Xi = Xj +1 iff w(Xi) = { j +1 | j ∈ w(Xj)}

The notationw[Xi 7→ M] is used for the shortest string that interprets all variablesXj

where j 6= i asw does, but interpretsXi asM.
The languageL(ϕ) of a formulaϕ can be defined as the set of satisfying strings:

L(ϕ) = {w | w � ϕ}. By induction in the formula, we can now construct a minimal
deterministic finite-state automaton (DFA)A such thatL(A) = L(ϕ), whereL(A) is
the language recognized byA.

For the atomic formulas, we show just one example: the automaton for the formula
ϕ = Xi sub Xj in the case wherei = 1 and j = 2. The automaton must recognize the
language

L(X1 sub X2) = {w∈ (Bk)∗ | for all letters inw: if the first compo-
nent is 1, then so is the second}

Such an automaton is:
X

1
0

X
1
X 0

0,

The other atomic formulas are treated similarly. The composite formulas are translated
as follows:

ϕ = ~ϕ′ Negation of a formula corresponds to automaton complementation. In
MONA, this is implemented trivially by flipping accepting and rejecting states.

ϕ = ϕ′ & ϕ′′ Conjunction corresponds to language intersection. In MONA, this is
implemented with a standard automaton product construction generating only
the reachable product states. The resulting automaton is minimized.

ϕ = ex2 Xi : ϕ′ Existential quantification corresponds to a simple quotient opera-
tion followed by a projection operation. The quotient operation takes care of
the problem that the only strings satisfyingϕ′ may be longer than those satisfy-
ing ex2 Xi : ϕ′. The projection operation removes the “track” belonging toXi,
resulting in a nondeterministic automaton, which is subsequently determinized
using the subset construction operation, and finally minimized.

70 MONA Implementation Secrets

This presentation is a simplified version of the procedure actually used in MONA. For
more detail, see the MONA User Manual [131].

When the minimal automatonA0 corresponding toϕ0 has been constructed, valid-
ity of ϕ0 can be checked simply by observing whetherA0 is the one-state automaton
accepting everything. Ifϕ0 is not valid, a (minimal) counter-example can be con-
structed by finding a (minimal) path inA0 from the initial state to a non-accepting
state.

WS2S is the generalization of WS1S from linear- to binary-tree-shaped struc-
tures [205, 76, 208]. Seen at the “core language” level, WS2S is obtained from WS1S
by replacing the single successor predicate by two successor predicates, forleft and
right successor respectively. This logic is also decidable by the automaton–logic con-
nection, but using tree automata instead of string automata. The MONA tool also
implements this decision procedure.

There is a subtle difference between WS1S, the logic now used in MONA, and
M2L(Str), the logic used in early experimental versions [208, 24, 81]. (The difference
between WS2S and M2L(Tree) is similar.) In WS1S, formulas are interpreted over
infinite stringmodels (but quantification is restricted to finite sets only). In M2L(Str),
formulas are instead interpreted overfinite stringmodels. That is, the universe is not
the whole set of naturalsN, but a bounded subset{0, . . . ,n−1}, wheren is defined by
the length of the string. The decision procedure for M2L(Str) is almost the same as for
WS1S, only slightly simpler: the quotient operation (before projection) is just omit-
ted. From the language point of view, M2L(Str) corresponds exactly to the regular lan-
guages (all formulas correspond to automataand vice versa), and WS1S corresponds
to those regular languages that are closed under concatenation by 0’s. These properties
make M2L(Str) preferable for some applications [18, 194]. However, the fact that not
all positions have a successor often makes M2L(Str) rather unnatural to use. Being
more closely tied to arithmetic, the WS1S semantics is easier to understand. Also, for
instance Presburger Arithmetic can easily be encoded in WS1S whereas there is no
obvious encoding in M2L(Str).

Notice that the most significant source of complexity in this decision procedure is
the quantifiers, or more precisely, the automaton determinization. Each quantifier can
cause an exponential blow-up in the number of automaton states, so in the worst case,
this decision procedure has a non-elementary complexity. Furthermore, we cannot
hope for a fundamentally better decision procedure since this is also the lower bound
for the WS1S decision problem [156]. However, as we will show, even constant factors
of improvement can make significant differences in practice.

To make matters even worse (and the challenge the more interesting), the imple-
mentation also has to deal with automata with huge alphabets. As mentioned, ifϕ0

hask free variables, the alphabet isB
k. Standard automaton packages cannot handle

alphabets of that size, for typical values ofk.

6.3 Benchmark Formulas

The experiments presented in the following section are based on twelve benchmark
formulas, here shown with their sizes, the logics they are using, and their time and
space consumptions when processed by MONA 1.4 (on a 296MHz UltraSPARC with

6.3 Benchmark Formulas 71

1GB RAM):

Benchmark Name Size Logic Time Space

A dflipflop.mona 2 KB WS1S (M2L(Str)) 0.4 sec 3 MB
B euclid.mona 6 KB WS1S (Presburger) 33.1 sec 217 MB
C fischer mutex.mona 43 KB WS1S 15.1 sec 13 MB
D html3 grammar.mona 39 KB WS2S (WSRT) 137.1 sec 208 MB
E lift controller.mona 36 KB WS1S 8.0 sec 15 MB
F mcnc91 bbsse.mona 9 KB WS1S 13.2 sec 17 MB
G reverse linear.mona 11 KB WS1S (M2L(Str)) 3.2 sec 4 MB
H search tree.mona 19 KB WS2S (WSRT) 30.4 sec 5 MB
I sliding window.mona 64 KB WS1S 40.3 sec 59 MB
J szymanski acc.mona 144 KB WS1S 20.6 sec 9 MB
K von neumann adder.mona 5 KB WS1S 139.9 sec 116 MB
L xbar theory.mona 14 KB WS2S 136.4 sec 518 MB

The benchmarks have been picked from a large variety of MONA applications ranging
from hardware verification to encoding of natural languages.

dflipflop.mona – a verification of a D-type flip-flop circuit [18]. Provided by Abdel
Ayari.

euclid.mona – an encoding in Presburger arithmetic of six steps of reachability on
a machine that implements Euclid’s GCD algorithm [198]. Provided by Tom
Shiple.

fischer mutex.mona andlift controller.mona – duration calculus encodings of Fis-
cher’s mutual exclusion algorithm and a mine pump controller, translated to
MONA code [180]. Provided by Paritosh Pandya.

html3 grammar.mona – a tree-logic encoding of the HTML 3.0 grammar annotated
with 10 parse-tree formulas [69]. Provided by Niels Damgaard.

reverse linear.mona – verifies correctness of a C program reversing a pointer-linked
list [120].

search tree.mona – verifies correctness of a C program deleting a node from a search
tree [82].

sliding window.mona – verifies correctness of a sliding window network protocol [200].
Provided by Mark Smith.

szymanski acc.mona – validation of the parameterized Szymanski problem using an
accelerated iterative analysis [29]. Provided by Mamoun Filali-Amine.

von neumann adder.mona andmcnc91 bbsse.mona – verification of sequential hard-
ware circuits; the first verifies that an 8-bit von Neumann adder is equivalent to
a standard carry-chain adder, the second is a benchmark from MCNC91 [223].
Provided by Sebastian M¨odersheim.

xbar theory.mona – encodes a part of a theory of natural languages in the Chomsky
tradition. It was used to verify the theory and led to the discovery of mistakes in
the original formalization [164]. Provided by Frank Morawietz.

We will use these benchmarks to illustrate the effects of the various implementation
“secrets” by comparing the efficiency of MONA shown in the table above with that
obtained by handicapping the MONA implementation by not using the techniques.

72 MONA Implementation Secrets

6.4 Implementation Secrets

The MONA implementation has been developed and tuned over a period of six years.
Many large and small ideas have contributed to a combined speedup of several orders
of magnitude. Improvements have taken place at all levels, which we illustrate with
the following seven examples from different phases of the compilation and execution
of formulas.

To enable comparisons, we summarize the effect of each implementation “secret”
by a single dimensionless number for each benchmark formula. Usually, this is simply
the speedup factor, but in some cases where the numerator is not available, we argue
for a more synthetic measure. If a benchmark cannot run on our machine with 1GB of
memory, it is assigned time∞.

6.4.1 BDD-based Automata Representation

The very first attempt to implement the decision procedure used a representation based
on conjunctive normal forms—however this quickly showed to be very inefficient.
The first actually useful version of the MONA tool was the 1995 experimental ML-
version [105]. The reason for the success was the novel representation of automata
based on (reduced and ordered) BDDs (Binary Decision Diagrams) [47, 48] for ad-
dressing the problem of large alphabets. In addition, the representation allows some
specialized algorithms to be applied [137, 127].

A BDD is a graph representing a boolean function. The BDD representation has
some extremely convenient properties, such as compactness and canonicity, and it al-
lows efficient manipulation. BDDs have successfully been used in a long range of
verification techniques (a popular one is [154]). In MONA, a special form of BDDs,
calledshared multi-terminalBDDs, or SMBDDs are used. As an example, the tran-
sition function of the tiny automaton shown in Section 6.2 is represented in MONA as
the following SMBDD:

2

1

0 1

0 1

The roots and the leaves represent the states. Each root has an edge to the node repre-
senting its alphabet part of the transition function. For the other edges, dashed repre-
sents 0 and solid represents 1. As an example, from state 0, the transition labeled

(1
0

)
leads to state 1. In this way, states are still represented explicitly, but the transitions
are represented symbolically, in a compact way.

It’s reasonable to ask: “What would happen if we had simply represented the tran-
sition tables in a standard fashion, that is, a row for each state and a column for each
letter?”. Under this point of view, it makes sense to define a letter for each bit-pattern
assignment to the free variables of a subformula (as opposed to the larger set of all
variables bound by an outer quantifier). We have instrumented MONA to measure the
sum of the number of entries of all such automata transition tables constructed during
a run of a version of MONA without BDDs:

6.4 Implementation Secrets 73

Misses Table entries Effect

A 397,472 237,006 0.6
B 48,347,395 2,973,118 0.1
C 46,080,139 1,376,499,745,600 29,871.9
E 19,208,299 290,999,305,488 15,149.7
F 39,942,638 2,844,513,432,416,357,974,01671,214,961,626,128.9
G 561,202 912,194 1.6
I 95,730,831 116,387,431,997,281,136 1,215,777,934.7
J 24,619,563 15,424,761,908 626.5
K 250,971,828 2,544,758,557,238,438 10,139,618.4

In Section 6.4.2, we describe the importance of cache awareness, which motivates the
number of cache misses as a reasonable efficiency measure. “Misses” is the number
of cache misses in our BDD-based implementation, and “Table entries” is the total
number of table entries in the naive implementation. To roughly estimate the effect
of the BDD-representation, we conservatively assume that each table entry results in
just a single cache miss; thus, “Effect” compares “Table entries” to “Misses”. The few
instances where the effect is less than one correctly identify benchmark formulas where
the BDDs are less necessary, but are also artifacts of our conservative assumption.
Conversely, the extremely high effects are associated with formulas that could not
possibly be decided without BDDs. Of course, the use of BDD-structures completely
dominates all other optimizations, since no implementation could realistically be based
on the naive table representation.

The BDD-representation was the first breakthrough of the MONA implementation,
and the other “secrets” should really be viewed with this as baseline.

6.4.2 Cache-Conscious Data Structures

The data structure used to represent the BDDs for transition functions has been care-
fully tuned to minimize the number of cache misses that occur. This effort is motivated
in earlier work [137], where it is determined that the number of cache misses during
unary and binary BDD apply steps totally dominates the running time.

In fact, we argued that if A1 is the number of unary apply steps and A2 is the
number of binary apply steps, then there exist constantm, c1, andc2 such that the total
running time is approximatelym(c1 ·A1+c2 ·A2). Here,m is the machine dependent
delay incurred by an L2 cache miss, andc1 andc2 are the average number of cache
misses for unary and binary apply steps. This estimate is based the assumption that
time incurred for manipulating auxiliary data structures, such as those used for de-
scribing subsets in the determinization construction, is insignificant. For the machine
we have used for experiments, it is by a small C utility determined thatm= 0.43µs.
In our BDD implementation, explained in [137], we have estimated from algorithmic
considerations thatc1 = 1.7 andc2 = 3 (the binary apply may entail the use of unary
apply steps for doubling tables that were too small—these steps are not counted to-
wards the time for binary apply steps, and that is why we can use the figurec2 = 3);
we also estimated that for an earlier conventional implementation, the numbers were
c1 = 6.7 andc2 = 7.3. The main reason for this difference is that our specialized pack-
age stores nodes directly under their hash address to minimize cache misses; traditional
BDD packages store BDD nodes individually with the hash table containing pointers to
them—roughly doubling the time it takes to process a node. We no longer support the
conventional BDD implementation, so to measure the effect of cache-consciousness,

74 MONA Implementation Secrets

we must use the above formula to estimate the running times that would have been
obtained today.

In the following experiment, we have instrumented MONA to obtain the exact num-
bers of apply steps:

Apply1 Apply2 Misses Auto Predicted Conventional Effect

A 183,949 28,253 397,472 0.2 sec 0.2 sec 0.6 sec 3.0
B 21,908,722 3,700,856 48,347,395 32.8 sec 20.8 sec 74.7 sec 3.6
C 24,585,292 1,428,381 46,080,139 14.2 sec 19.8 sec 75.2 sec 3.8
E 9,847007 822,796 19,208,299 7.7 sec 8.2 sec 30.9 sec 3.8
F 13,406,047 5,717,453 39,942,638 12.8 sec 17.2 sec 56.6 sec 3.3
G 233,566 54,814 561,504 0.5 sec 0.3 sec 0.8 sec 2.7
I 36,629,195 11,153,733 95,730,831 37.0 sec 41.2 sec 140.5 sec 3.4
J 10,497,759 2,257,791 24,619,563 11.6 sec 10.6 sec 37.3 sec 3.5
K 129,126,447 10,485,623 250,971,828 137.4 sec 107.9 sec 404.7 sec 3.8

“Apply1” is the number of unary apply steps; “Apply2” is the number of binary ap-
ply steps; “Misses” is the number of cache misses predicted by the formula above;
“Auto” is the part of the actual running time involved in automata constructions; “Pre-
dicted” is the running time predicted from the cache misses alone; “Conventional” is
the predicted running time for a conventional BDD implementation that was not cache-
conscious; and “Effect” is “Conventional” compared to “Predicted”. In most cases, the
actual running time is close to the predicted one (within 25%). Note that there are in-
stances where the actual time is about 50% larger than the estimated time: benchmark
B involves a lengthy subset construction on an automaton with small BDDs—thus it
violates the assumption that the time handling accessory data structures is insignifi-
cant; similarly, benchmark G also consists of many automata with few BDD nodes
prone to violating the assumption.

In an independent comparison [198] it was noted that MONA was consistently
twice as fast as a specially designed automaton package based on a BDD package
considered efficient. In [137], the comparison to a traditional BDD package yielded a
factor 5 speedup.

6.4.3 Eager Minimization

When MONA inductively translates formulas to automata, a Myhill-Nerode minimiza-
tion is performed after every product and projection operation. Naturally, it is prefer-
able to operate with as small automata as possible, but our strategy may seem exces-
sive since minimization often exceeds 50% of the total running time. This suspicion is
strengthened by the fact that MONA automata by construction contain only reachable
states; thus, minimization only collapses redundant states.

Three alternative strategies to the eager one currently used by MONA would be
to perform only the very final minimization, only the ones occurring after projection
operations, or only the ones occurring after product operations. Many other heuristics
could of course also be considered. The following table results from such an investi-
gation:

6.4 Implementation Secrets 75

Time
EffectOnly final After project After product Always

A ∞ ∞ 0.6 sec 0.4 sec 1.5
B ∞ ∞ ∞ 33.1 sec ∞
C ∞ ∞ 32.3 sec 15.1 sec 2.1
D ∞ ∞ 290.6 sec 137.1 sec 2.1
E ∞ ∞ 19.4 sec 8.0 sec 2.4
F ∞ ∞ 36.7 sec 13.2 sec 2.8
G ∞ ∞ 5.8 sec 3.2 sec 1.8
H ∞ ∞ 59.6 sec 30.4 sec 2.0
I ∞ ∞ 74.4 sec 40.3 sec 1.8
J ∞ ∞ 36.3 sec 20.6 sec 1.8
K ∞ ∞ 142.3 sec 139.9 sec 1.0
L ∞ ∞ ∞ 136.4 sec ∞

“Only final” is the running time when minimization is only performed as the final
step of the translation; “After project” is the running time when minimization is also
performed after every projection operation; “After product” is the running time when
minimization is instead performed after every product operation; “Always” is the time
when minimization is performed eagerly; and “Effect” is the “After product” time
compared to the “Always” time (since the other two strategies are clearly hopeless).
Eager minimization is seen to be always beneficial and in some cases essential for the
benchmark formulas.

6.4.4 Guided Tree Automata

Tree automata are inherently computationally more expensive because of their three-
dimensional transition tables. We have used a technique of factorization of state spaces
to split big tree automata into smaller ones. The basic idea, which may result in expo-
nential savings, is explained in [23, 131]. To exploit this feature, the MONA program-
mer must manually specify aguide, which is a top-down tree automaton that assigns
state spaces to the nodes of a tree. However, when using the WSRT logic, a canonical
guide is automatically generated. For our two WSRT benchmarks, we measure the
effect of this canonical guide:

Without guide With guide Effect

D 584.0 sec 137.1 sec 4.3
H ∞ 30.4 sec ∞

“Without guide” shows the running time without any guide, while “With guide” shows
the running time with the canonical WSRT guide; “Effect” shows the “Without guide”
time compared to the “With guide” time. We have only a small sample space here,
but clearly guides are very useful. This is hardly surprising, since they may yield an
asymptotic improvement in running time.

6.4.5 DAGification

Internally, MONA is divided into a front-end and a back-end. The front-end parses the
input and builds a data structure representing the automata-theoretic operations that
will calculate the resulting automaton. The back-end then inductively carries out these
operations.

76 MONA Implementation Secrets

The generated data structure is often seen to contain many common subformulas.
This is particularly true when they are compared relative tosignature equivalence,
which holds for two formulasϕ andϕ′ if there is an order-preserving renaming of the
variables inϕ (increasing with respect to the indices of the variables) such that the
representations ofϕ andϕ′ become identical.

A property of the BDD representation is that the automata corresponding to signature-
equivalent trees are isomorphic in the sense that only the node indices differ. This
means that intermediate results can be reused by simple exchanges of node indices.
For this reason, MONA represents the formulas in a DAG (Directed Acyclic Graph),
not a tree. The DAG is conceptually constructed from the tree using a bottom-up col-
lapsing process, based on the signature equivalence relation as described in [81].

Clearly, constructing the DAG instead of the tree incurs some overhead, but the
following experiments show that the benefits are significantly larger:

Nodes Time
EffectTree DAG Tree DAG

A 2,532 296 1.7 sec 0.4 sec 4.3
B 873 259 79.2 sec 33.1 sec 2.4
C 5,432 461 40.1 sec 15.1 sec 2.7
D 3,038 270 ∞ 137.1 sec ∞
E 4,560 505 20.5 sec 8.0 sec 2.6
F 1,997 505 49.1 sec 13.2 sec 3.7
G 56,932 1,199 ∞ 3.2 sec ∞
H 8,180 743 ∞ 30.4 sec ∞
I 14,058 1,396 107.1 sec 40.3 sec 2.7
J 278,116 6,314 ∞ 20.6 sec ∞
K 777 273 284.0 sec 139.9 sec 2.0
L 1,504 388 ∞ 136.4 sec ∞

“Nodes” shows the number of nodes in the representation of the formula. “Tree” is
the number of nodes using an explicit tree representation, while “DAG” is the number
of nodes after DAGification. “Time” shows the running times for the same two cases.
“Effect” shows the “Tree” running time compared to the “DAG” running time. From
the differences in the number of nodes, one might expect the total effect to be larger,
however DAGification is mainly effective on small formulas where the corresponding
automata typically are also smaller. Nevertheless, the DAGification process is seen to
provide a substantial and often essential gain in efficiency.

The effects reported sometimes benefit from the fact that the restriction technique
presented in the following subsection knowingly generates redundant formulas. This
explains some of the failures observed.

6.4.6 Three-Valued Logic and Automata

The standard technique for dealing with first-order variables in monadic second-order
logics is to encode them as second-order variables, typically as singletons. However,
that raises the issue ofrestrictions: the common phenomenon that a formulaϕ makes
sense, relative to some exterior conditions, only when an associated restriction holds.
The restriction is also a formula, and the main issue is thatϕ is now essentially un-
defined outside the restriction. In the case of first-order variables encoded as second-
order variables, the restriction is that these variables are singletons. We experienced

6.4 Implementation Secrets 77

the same situation trying to emulate M2L(Str) in WS1S, causing state-space explo-
sions.

The nature of these problems is technical, but fortunately they can be solved
through a theory of restriction couched in a three-valued logic [128]. Under this view,
a restricted subformulaϕ is associated with a restrictionϕR. If, for some valuation,
ϕR does not hold, then formulas containingϕ are assigned a new third truth value
“don’t-care”. This three-valued logic carries over to the MONA notion of automata—
in addition to accept and reject states, they also have “don’t-care” states. A special
restrict(ϕR) operation is used for converting reject states to “don’t-care” states for
the restriction formulas, and the other automaton operations are modified to ensure
that non-acceptance of restrictions is propagated properly.

This gives a cleaner semantics to the restriction phenomenon, and furthermore
avoids the state-space explosions mentioned above. According to [128], we can guar-
antee that the WS1S framework handles all formulas written in M2L(Str), even with
intermediate automata that are no bigger than when using the traditional M2L(Str)
decision procedure. MONA uses the same technique for the tree logics, WS2S and
M2L(Tree).

We refer to [128] for the full theory of three-valued logic and automata. Unfortu-
nately, there is no way of disabling this feature to provide a quantitative comparison.

6.4.7 Formula Reductions

Formula reduction is a means of “optimizing” the formulas in the DAG before translat-
ing them into automata. The reductions are based on a syntactic analysis that attempts
to identify valid subformulas and equivalences among subformulas.

There are some non-obvious choices here. How should computation resources
be apportioned to the reduction phase and to the automata calculation phase? Must
reductions guarantee that automata calculations become faster? Should the two phases
interact? Our answers are based on some trial and error along with some provisions to
cope with subtle interactions with other of our optimization secrets.

MONA 1.4 performs three kinds of formula reductions: 1) simple equality and
boolean reductions, 2) special quantifier reductions, and 3) special conjunction reduc-
tions. The first kind can be described by simple rewrite rules (only some typical ones
are shown):

Xi = Xi true

true & ϕ ϕ
false & ϕ false

ϕ & ϕ ϕ
~~ϕ ϕ

~false true

These rewrite steps are guaranteed to reduce complexity, but will not cause significant
improvements in running time, since they all either deal with constant size automata
or rarely apply in realistic situations. Nevertheless, they are extremely cheap, and they
may yield small improvements, in particular on machine generated MONA code.

The second kind of reduction can potentially cause tremendous improvements. As
mentioned, the non-elementary complexity of the decision procedure is caused by the
automaton projection operations, which stem from quantifiers. The accompanying de-
terminization construction may cause an exponential blow-up in automaton size. Our

78 MONA Implementation Secrets

basic idea is to apply a rewrite step resemblinglet-reduction, which removes quanti-
fiers:

ex2 Xi : ϕ ϕ[T/Xi] provided thatϕ => Xi = T is valid, andT is
some term satisfyingFV(T)⊆ FV(ϕ)

whereFV(·) denotes the set of free variables. For several reasons, this is not the way
to proceed in practice. First of all, finding termsT satisfying the side condition can
be an expensive task, in the worst case non-elementary. Secondly, the translation into
automata requires the formulas to be “flattened” by introduction of quantifiers such
that there are no nested terms. So, if the substitutionϕ[T/X] generates nested terms,
then the removed quantifier is recreated by the translation. Thirdly, when the rewrite
rule applies in practice,ϕ usually has a particular structure as reflected in the following
more restrictive rewrite rule chosen in MONA:

ex2 Xi : ϕ ϕ[Xj/Xi] provided thatϕ ≡ ·· · & Xi = Xj & · · ·
andXj is some variable other thanXi

In contrast to equality and boolean reductions, this rule is not guaranteed to improve
performance, since substitutions may cause the DAG reuse degree to decrease.

The third kind of reduction applies to conjunctions, of which there are two spe-
cial sources. One is the formula flattening just mentioned; the other is the formula
restriction technique mentioned in Section 6.4.6. Both typically introduce many new
conjunctions. Studies of a graphical representation of the formula DAGs (MONA can
create such graphs automatically) led us to believe that many of these new conjunc-
tions are redundant. A typical rewrite rule addressing such redundant conjunctions is
the following:

ϕ1 & ϕ2 ϕ1 provided thatnonrestr(ϕ2) ⊆ nonrestr(ϕ1)∪ restr(ϕ1)
andrestr(ϕ2)⊆ restr(ϕ1)

Here,restr(ϕ) is the set ofrestrict(·) conjuncts inϕ, andnonrestr(ϕ) is the set of
non-restrict(·) conjuncts inϕ. This reduction states that it is sufficient to assertϕ1

whenϕ1& ϕ2 was originally asserted in situations where the non-restricted conjuncts of
ϕ2 are already conjuncts ofϕ1—whether restricted or not—and the restricted conjuncts
of ϕ2 are also restricted conjuncts ofϕ1.

All rewrite rules mentioned here have the property that they cannot “do any harm”,
that is, have a negative impact on the automaton sizes. (They can however damage the
reuse factor obtained by the DAGification, but this is rarely a problem in practice.) A
different kind of rewrite rules could be obtained using heuristics—this will be investi-
gated in the future.

With the DAG representation of formulas, the reductions just described can be im-
plemented relatively easily in MONA. The table below shows the effects of performing
the reductions on the benchmark formulas:

6.5 Future Developments 79

Hits Time
EffectSimple Quant. Conj. None Simple Quant. Conj. All

A 12 8 22 0.8 sec 0.7 sec 0.7 sec 0.7 sec 0.4 sec 2.0
B 10 45 0 58.2 sec 58.8 sec 56.2 sec 56.8 sec 33.1 sec 1.8
C 9 13 8 43.7 sec 41.9 sec 37.1 sec 42.9 sec 15.1 sec 2.9
D 4 28 27 542.7 sec 536.1 sec 296.0 sec 404.7 sec 137.1 sec 4.0
E 5 6 19 22.6 sec 23.4 sec 16.6 sec 22.7 sec 8.0 sec 2.8
F 3 1 1 28.3 sec 29.9 sec 27.0 sec 27.2 sec 13.2 sec 2.1
G 65 318 191 6.1 sec 5.9 sec 6.1 sec 5.9 sec 3.2 sec 1.9
H 35 32 81 104.1 sec 102.6 sec 71.0 sec 98.5 sec 30.4 sec 3.4
I 102 218 7 76.2 sec 76.5 sec 75.0 sec 76.0 sec 40.3 sec 1.9
J 91 0 1 37.3 sec 37.9 sec 37.6 sec 37.0 sec 20.6 sec 1.9
K 9 4 1 313.7 sec 267.9 sec 240.3 sec 302.6 sec 139.9 sec 2.3
L 4 4 18 ∞ ∞ ∞ ∞ 136.4 sec ∞

“Hits” shows the number of times each of the three kinds of reduction is performed;
“Time” shows the total running time in the cases where no reductions are performed,
only the first kind of reductions are performed, only the second, only the third, and all
of them together. “Effect” shows the “None” times compared to the “All” times. All
benchmarks gain from formula reductions, and in a single example this technique is
even necessary. Note that most often all three kinds of reductions must act in unison
to obtain significant effects.

A general benefit from formula reductions is that tools generating MONA formulas
from other formalisms may generate naive and voluminous output while leaving opti-
mizations to MONA. In particular, tools may use existential quantifiers to bind terms
to fresh variables, knowing that MONA will take care of the required optimization.

6.5 Future Developments

Several of the techniques described in the previous section can be further refined of
course. The most promising ideas seem however to concentrate on the BDD represen-
tation. In the following, we describe three such ideas.

It is a well-known fact [47] that the ordering of variables in the BDD automata
representation has a strong influence on the number of BDD nodes required. The im-
pact of choosing a good ordering can be an exponential improvement in running times.
Finding the optimal ordering is an NP-complete problem, but we plan to experiment
with the heuristics that have been suggested [53].

We have sometimes been asked: “Why don’t you encode the states of the automata
in BDDs, since that is a central technique in model checking?”. The reason is that there
is no obvious structure to the state space in most cases that would lend itself towards
an efficient BDD representation. For example, consider the consequences of a subset
construction or a minimization construction, where similar states are collapsed; in
either case, it is not obvious how to represent the new state. However, the ideas are
worth investigating.

For our tree automata, we have experimentally observed that the use of guides
produce a large number of component automata many of which are almost identical.
We will study how to compress this representation using a BDD-like global structure.

80 MONA Implementation Secrets

6.6 Conclusion

The presented techniques reflect a lengthy Darwinian development process of the
MONA tool in which only robust and useful ideas have survived. We have not men-
tioned here the many ideas that failed or were surpassed by other techniques. Our
experiences confirm the maxim that optimizations must be carried out at all levels and
that no single silver bullet is sufficient. We are confident that further improvements are
still possible and that other interesting applications will be made.

Acknowledgments

Many people have contributed to the development of MONA, in particular we are
grateful to David Basin, Morten Biehl, Jacob Elgaard, Jesper Gulmann, Jacob Jensen,
Michael Jørgensen, Bob Paige, Theis Rauhe, and Anders Sandholm. We also thank
the MONA users who kindly provided the benchmark formulas.

Chapter 7

Compile-Time Debugging of
C Programs Working on Trees

with Jacob Elgaard and Michael I. Schwartzbach

Abstract

We exhibit a technique for automatically verifying the safety of simple C programs
working on tree-shaped data structures. We do not consider the complete behavior of
programs, but only attempt to verify that they respect the shape and integrity of the
store. A verified program is guaranteed to preserve the tree-shapes of data structures,
to avoid pointer errors such as NULL dereferences, leaking memory, and dangling
references, and furthermore to satisfy assertions specified in a specialized store logic.

A program is transformed into a single formula in WSRT, an extension of WS2S
that is decided by the MONA tool. This technique is complete for loop-free code, but
for loops and recursive functions we rely on Hoare-style invariants. A default well-
formedness invariant is supplied and can be strengthened as needed by programmer
annotations. If a program fails to verify, a counterexample in the form of an initial
store that leads to an error is automatically generated.

This extends previous work that uses a similar technique to verify a simpler syn-
tax manipulating only list structures. In that case, programs are translated into WS1S
formulas. A naive generalization to recursive data-types determines an encoding in
WS2S that leads to infeasible computations. To obtain a working tool, we have ex-
tended MONA to directly support recursive structures using an encoding that provides
a necessary state-space factorization. This extension of MONA defines the new WSRT
logic together with its decision procedure.

7.1 Introduction

Catching pointer errors in programs is a difficult task that has inspired many assisting
tools. Traditionally, these come in three flavors. First, tools such a Purify [188] and
Insure++ [142] instrument the generated code to monitor the runtime behavior thus
indicating errors and their sources. Second, traditional compiler technologies such
as program slicing [210], pointer analysis [96], and shape analysis [192] are used in

82 Compile-Time Debugging of C Programs Working on Trees

tools like CodeSurfer [99] and Aspect [117] that conservatively detect known causes
of errors. Third, full-scale program verification is attempted by tools like LCLint [84]
and ESC [74], which capture runtime behavior as formulas and then appeal to general
theorem provers.

All three approaches lead to tools that are either incomplete or unsound (or both),
even for straight-line code. In practice, this may be perfectly acceptable if a significant
number of real errors are caught.

In previous work [120], we suggest a different balance point by using a less ex-
pressive program logic for which Hoare triples on loop-free code is decidable when in-
teger arithmetic is ignored. That work is restricted by allowing only awhile-language
working on linear lists. In the present paper we extend our approach by allowing re-
cursive functions working on recursive data-types. This generalization is conceptually
simple but technically challenging, since programs must now be encoded in WS2S
rather than the simpler WS1S. Decision procedures for both logics are provided by the
MONA tool [131, 158] on which we rely, but a naive generalization of the previous
encoding leads to infeasible computations. We have responded by extending MONA

to directly support a logic of recursive data-types, which we call WSRT. This logic
is encoded in WS2S in a manner that exploits the internal representation of MONA

automata to obtain a much needed state-space factorization.
Our resulting tool catches all pointer errors, including NULL dereferences, leak-

ing memory, and dangling references. It can also verify assertions provided by the
programmer in a special store logic. The tool is sound and complete for loop-free code
includingif-statements with restricted conditions: it will reject exactly the code that
may cause errors or violate assertions when executed in some initial store. Forwhile-
loops or functions, the tool relies on annotations in the form of invariants and pre- and
post-conditions. In this general case, our tool is sound but incomplete: safe programs
exist that cannot be verified regardless of the annotations provided. In practical terms,
we provide default annotations that in many cases enable verification.

Our implementation is reasonably efficient, but can only handle programs of mod-
erate sizes, such as individual operations of data-types. If a program fails to verify, a
counterexample is provided in the form of an initial store leading to an error. A special
simulator is supplied that can trace the execution of a program and provide graphical
snapshots of the store. Thus, a reasonable form of compile-time debugging is made
available. While we do not detect all program errors, the verification provided serves
as a finely masked filter for most bugs.

As an example, consider the following recursive data-type of binary trees with red,
green, or blue nodes:

struct RGB {
enum {red,green,blue} color;
struct RGB *left;
struct RGB *right;

};

The following non-trivial application collects all green leaves into a right-linear tree
and changes all the blue nodes to become red:

/**data**/ struct RGB *tree;

7.1 Introduction 83

/**data**/ struct RGB *greens;

enum bool {false,true};

enum bool greenleaf(struct RGB *t) {
if (t==0) return false;
if (t->color!=green) return false;
if (t->left!=0 || t->right!=0) return false;
return true;

}

void traverse(struct RGB *t) {
struct RGB *x;
if (t!=0) {

if (t->color==blue) t->color = red;
if (greenleaf(t->left)==true /**keep: t!=0 **/) {
t->left->right = greens;
greens = t->left;
t->left=0;

}
if (greenleaf(t->right)==true /**keep: t!=0 **/) {
t->right->right = greens;
greens = t->right;
t->right=0;

}
traverse(t->left); /**keep: t!=0 **/
traverse(t->right); /**keep: t!=0 **/

}
}

/**pre: greens==0 **/
main() { traverse(tree); }

The special comments are assertions that the programmer must insert to specify the in-
tended model (/**data**/), restrict the set of stores under consideration (/**pre**/),
or aid the verifier (/**keep**/). They are explained further in Section 7.2.4.

Without additional annotations, our tool can verify this program (in 33 seconds
on a 266MHz Pentium II PC with 128 MB RAM). This means that no pointer errors
occur during execution from any initial store. Furthermore, bothtree andgreens are
known to remain well-formed trees. Using the assertion:

all p: greens(->left + ->right)*==p => (p!=0 => p->color==green)

we can verify (in 74 seconds) thatgreens after execution contains only green nodes.
Thatgreens is right-linear is expressed through the assertion:

all p: greens(->left + ->right)*==p => (p!=0 => p->left==0)

In contrast, if we assert thatgreens ends up empty, the tool responds with a minimal
counterexample in the form of an initial store in whichtree contains a green leaf.

An example of the simulator used in conjunction with counterexamples comes
from the following fragment of an implementation of red-black search trees. Consider

84 Compile-Time Debugging of C Programs Working on Trees

the following program, which performs a left rotation of a noden with parentp in such
a tree:

struct Node {
enum {red, black} color;
struct Node *left;
struct Node *right;

};

/**data**/ struct Node *root;

/**pre: n!=0 & n->right!=0 &
(p!=0 => (p->left==n | p->right==n)) &
(p==0 => n==root) **/

void left_rotate(struct Node *n, struct Node *p) {
struct Node *t;
t = n->right;
n->right = t->left;
if (n==root) root = t;
else if (p->left==n) p->left = t;
else p->right = t;
t->left = n;

}

In our assertion language, we cannot express the part of the red-black data-type invari-
ant that each path from the root to a leaf must contain the same number of black nodes;
however we can capture the part that the root is black and that a red node cannot have
red children:

root->color==black &
all p: p->color==red =>

(p->left->color!=red & p->right->color!=red)

If we add the above assertion as a data-type invariant, we are (in 18 seconds) given a
counterexample. If we apply the simulator, we see the following example run, which
shows that we have forgotten to consider that the root may become red (in which case
we should add a line of code coloring it black):

black

red red

np troot

black

red red

np troot

black

red

red

np troot

red

black

red

np troot

black

red
red

np troot

Such detailed feedback at compile-time is clearly a useful debugging tool.

7.2 The Language 85

7.2 The Language

The language in consideration is a simple yet non-trivial subset of C. It allows declara-
tion of tree-shaped recursively typed data structures and recursive imperative functions
operating on the trees. The subset is chosen such that the verification we intend to per-
form becomes decidable. Thus, for instance, integer arithmetic is omitted from the
language; only finite enumeration types can be expressed. Also, to smoothen presen-
tation, many other C constructs have been omitted although some of them easily could
be included directly, and other by approximating their behavior.

We begin by defining the core language. After that, we describe how programs can
be annotated with formulas expressing additional requirements for correctness.

7.2.1 The C Subset

The abstract syntax of the C subset is defined using EBNF notation, where furthermore
~ is used to denote comma-separated lists with zero or more elements. The semantics
of the language is as known from C.

A program consists of declarations of structures, enumerations, variables, and
functions:

program → (struct | enum | var | f unction)∗

A structure contains an enumeration denoting its value and a union of structures con-
taining pointers to its child structures. An enumeration is a list of identifiers:

struct → struct id {
enum id id;
union }

(struct {
(struct id * id;)∗
} id;)∗

} id;
};

enum → enum id { id+ };

The enumeration values denote thekindof the structure, and the kind determines which
is theactiveunion member. The association between enumeration values and union
members is based on their indices in the two lists. Such data structures are typical
in real-world C programs and exactly define recursive data-types. One goal of our
verification is to ensure that only active union members are accessed.

For abbreviation we allow declarations of structures and enumerations to be in-
lined. Also, we allow(struct id * id;)∗ in place ofunion {. . .}, implicitly mean-
ing that all union members are identical. A variable is either a pointer to a structure or
an enumeration:

var → type id;

type → struct id * | enum id

A function can contain variable declarations and statements:

86 Compile-Time Debugging of C Programs Working on Trees

function → (void | type) id((type id)~) {
var∗ stm?

(return rvalue;)?

}

A statement is a sequence, an assignment, a function call, a conditional statement, a
while-loop, or a memory deallocation:

stm → stm stm|
lvalue= rvalue; |
id((rvalue)~); |
if (cond) stm(else stm)? |
while (cond) stm |
free(lvalue);

A condition is a boolean expression evaluating to either true or false; the expression
? represents non-deterministic choice and can be used in place of those C expressions
that are omitted from our subset language:

cond → cond& cond | cond| cond | ! cond | rvalue== rvalue | ?

An lvalue is an expression designating an enumeration variable or a pointer variable.
An rvalue is an expression evaluating to an enumeration value or to a pointer to a
structure. The constant0 is the NULL pointer,malloc allocates memory on the heap,
andid(. . .) is a function call:

lvalue → id (-> id (. id)?)∗

rvalue → lvalue | 0 | malloc(sizeof(id)) | id(rvalue~)

The nonterminalid represents identifiers.
The presentation of our verification technique is based on C for familiarity reasons

only—no intrinsic C constructs are utilized.

7.2.2 Modeling the Store

During execution of a program, structures located in the heap are allocated and freed,
and field variables and local variables are assigned values. The state of an execution
can be described by a model of the heap and the local variables, called thestore.

A store is modeled as a finite graph, consisting of a set ofcells representing struc-
tures, a distinguishedNULL cell, a set ofprogram variables, andpointersfrom cells
or program variables to cells. Each cell is labeled with avaluetaken from the enumer-
ations occurring in the program. Furthermore, each cell can have afreemark, meaning
that it is currently not allocated.

Program variables are those that are declared in the program either globally or
inside functions. To enable the verification, we need to classify these variables as
eitherdataor pointervariables. A variable is classified as a data variable by prefixing
its declaration in the program with the special comment/**data**/; otherwise, it is
considered a pointer variable.

A store iswell-formedif it satisfies the following properties:

7.2 The Language 87

• the cells and pointers form disjoint tree structures (the NULL cell may be shared,
though);

• each data variable points either to the root of a tree or to the NULL cell;

• each pointer variable points to any cell (including the NULL cell);

• a cell is marked as free if and only if it is not reachable from a program variable;
and

• the type declarations are respected—this includes the requirement that a cell rep-
resenting a structure has an outgoing pointer for each structure pointer declared
in its active union member.

With the techniques described in the remainder of this paper, it is possible to automati-
cally verify whether well-formedness is preserved by all functions in a given program.
Furthermore, additional user defined properties expressed in the logic presented in
Section 7.2.3 can be verified.

The following illustrates an example of a well-formed store containing someRGB-
trees as described in Section 7.1. Tree edges are solid lines whereas the values of
pointer variables are dashed lines; free cells are solid black:

green

green

red

blue green

blue red

blue red green

tree

greens

t

green

7.2.3 Store Logic

Properties of stores can conveniently be stated using logic. The declarative and suc-
cinct nature of logic often allows simple specifications of complex requirements. The
logic presented here is essentially a first-order logic on finite tree structures [208].
It has the important characteristic of being decidable, which we will exploit for the
program verification.

A formulaϕ in the store logic is built from boolean connectives, first-order quanti-
fiers, and basic propositions. A termt denotes either an enumeration value or a pointer
to a cell in the store. A path setP represents a set of paths, where a path is a sequence
of pointer dereferences and union member selections ending in either a pointer or an
enumeration field. The signature of the logic consists of dereference functions, path
relations, and the relationsfree androot:

ϕ → ! ϕ | ϕ & ϕ | ϕ | ϕ | ϕ => ϕ | ϕ <=> ϕ |
ex id : ϕ | all id : ϕ | true | false |
id (P)? == t | free(t) | root(t)

88 Compile-Time Debugging of C Programs Working on Trees

A path relation,id P == t, compares either enumeration values or cell pointers. The
identifier id may be either a bound quantified variable, a program variable, or an enu-
meration value, andt is a term.

If both id andt denote cell pointers, a path relation is true for a given store if there
is a path inP from the cell denoted byid to the cell denoted byt in the store. IfP is
omitted, the relation is true ifid andt denote the same cell.

If id denotes a cell pointer andt is an enumeration value, a path relation is true for a
given store if there is a path satisfyingP from the cell denoted byid to an enumeration
field with the valuet in the store.

The relationfree(t) is true in a given store if the cell denoted byt is marked as
not allocated in the store. The relationroot(t) is true if t denotes the root of some
tree.

A term is a sequence of applications of the dereference function and union member
selections or the constant0 representing the special NULL cell:

t → id (-> id (. id)?)∗ | 0

A path set is a regular expression:

P → -> id (. id)? | P + P | P P | P *

The path set defined by->id1.id2 consists of a single dereference ofid1 and subsequent
selection of the memberid2. The expressionsP + P, P P, andP * respectively denote
union, concatenation, and Kleene star.

7.2.4 Program Annotations and Hoare Triples

The verification technique is based on Hoare triples [106], that is, constructs of the
form {ϕ1}stm{ϕ2}. The meaning of this triple is that executing the statementstm in
a store satisfying the pre-conditionϕ1 always results in a store satisfying the post-
conditionϕ2, provided that the statement terminates. Well-formedness is always im-
plicitly included in bothϕ1 andϕ2. We can only directly decide such triples for loop-
free code. Programs containing loops—either aswhile-loops or as function calls—
must be split into loop-free fragments.

A program can be annotated with formulas expressing requirements for correctness
using a family of designated comments. These annotations are also used to split the
program into a set of Hoare triples that subsequently can be verified separately.

/**pre: ϕ **/ and/**post: ϕ **/ may be placed between the signature and the
body of a function. Thepre formula expresses a property that the verifier may
assume initially holds when the function is executed. Thepost formula ex-
presses a property intended to hold after execution of the function. The states
before and after execution may be related using otherwise unused variables.

/**inv: ϕ **/ may be placed between the condition and the body of awhile-loop.
It expresses an invariant property that must hold before execution of the loop and
after each iteration. It splits the code into three parts: the statements preceding
thewhile-loop, its body, and the statements following it.

7.2 The Language 89

/**keep: ϕ **/ may be placed immediately after a function call. It expresses a
property that must hold both before and after the call. It splits the code into two
parts: the statements before and after the call. Thekeep formulas can specify
invariants for recursive function calls just asinv formulas can specify invariants
for while-loops.

/**assert: ϕ **/ may be placed between statements. It splits the statement se-
quence, such that a Hoare triple is divided into two smaller triples, where the
post-condition of the first and the pre-condition of the second both areϕ. This al-
lows modular analysis to be performed. The variant/**assert: ϕ assume:
ϕ **/ allows the post-condition and the pre-condition to be different, and thereby
to weaken the verification requirements. This is needed whenever a sufficiently
strong property either cannot be expressed or requires infeasible computations.

/**check: ϕ **/ stm informally corresponds to “if (!ϕ) fail; else stm”,
wherefail is some statement that fails to verify. This can be used to check
that a certain property holds without creating two Hoare triples incurring a po-
tential loss of information.

Whenever a pre- or post-condition, an invariant, or a keep-formula is omitted, the
default formulatrue is implicitly inserted. Actually, many interesting properties can
be verified with just these defaults. As an example, the program:

/**data**/ struct RGB *x;
struct RGB *p;
struct RGB *q;

p = x;
q = 0;
while (p!=0 & q==0) /**inv: q!=0 => q->color==red **/ {
if (p->color==red) q = p;
else if (p->color==green) p = p->left;
else /**assert: p->color==blue **/ p = p->right;

}

yields the following set of Hoare triples and logical implications to be checked:

{ true } p = x; q = 0; { I }
(I & !B) => true
{ I & B & B1 } q = p; { I }
{ I & B & !B1 & B2 } p = p->left; { I }
(I & B & !B1 & !B2) => (p->color==blue)
{ I & B & !B1 & !B2 & p->color==blue } p = p->right; { I }

whereB is the condition of thewhile-loop, I is the invariant,B1 is the condition of
the outerif-statement andB2 that of the innerif-statement. Note that the generated
Hoare triples are completely independent of each other—when a triple is divided into
two smaller triples, no information obtained from analyzing the first triple is used when
analyzing the second.

90 Compile-Time Debugging of C Programs Working on Trees

7.3 Deciding Hoare Triples

The generated Hoare triples and logical implications—both the formula parts and the
program parts—can be encoded in the logic WS2S which is known to be decidable.
This encoding method follows directly from [120] by generalizing from list structures
to tree structures in the style of [140]. The MONA tool provides an implementation of
a decision procedure for WS2S, so in principle making a decision procedure for the
present language requires no new ideas.

As we show in the following, this method will however lead to infeasible com-
putations making it useless in practice. The solution is to exploit the full power of
the MONA tool: usually, WS2S is decided using a correspondence with ordinary tree
automata—MONA uses a representation calledGuided Tree Automata, which when
used properly can be exponentially more efficient than ordinary tree automata. How-
ever, such a gain requires a non-obvious encoding.

We will not describe how plain MONA code directly can be generated from the
Hoare triples and logical implications. Instead we introduce a logic calledWSRT,
weak monadic second-order logic with recursive types, which separates the encoding
into two parts: the Hoare triples and logical implications are first encoded in WSRT,
and then WSRT is translated into basic MONA code. This has two benefits: WSRT
provides a higher level of abstraction for the encoding task, and, as a by-product, we
get an efficient implementation of a general tree logic which can be applied in many
other situations where WS2S and ordinary tree automata have so far been used.

7.3.1 Weak Monadic Second-Order Logic with Recursive Types

A recursive typeis a set of recursive equations of the form:

Ti = v1(c1,1 : Tj1,1, . . . ,c1,m1 : Tj1,m1
), . . . ,vn(cn,1 : Tjn,1, . . . ,cn,mn : Tjn,mn

)

EachT denotes the name of a type, eachv is called avariant, and eachc is called a
component. A tree conforms to a recursive typeT if its root is labeled with a variantv
from T and it has a successor for each component inv such that the successor conforms
to the type of that component. Note that types defined bystructs in the language in
Section 7.2.1 exactly correspond to such recursive types.

The logic WSRT is a weak monadic second-order logic. Formulas are interpreted
relative to a set of trees conforming to recursive types. Each node is labeled with a
variant from a recursive type. A tree variable denotes a tree conforming to a fixed
recursive type. A first-order variable denotes a single node. A second-order variable
denotes a finite set of nodes.

A formula is built from the usual boolean connectives, first-order and weak monadic
second-order quantifiers, and the special WSRT basic formulas:

type(t,T) which is true iff the the first-order termt denotes a node which is labeled
with some variant from the typeT; and

variant(t,x,T,v) which is true iff the tree denoted by the tree variablex at the position
denoted byt is labeled with theT variantv.

7.3 Deciding Hoare Triples 91

Second-order terms are built from second-order variables and the set operations union,
intersection and difference. First-order terms are built from first-order variables and
the special WSRT functions:

tree root(x) which evaluates to the root of the tree denoted byx; and

succ(t,T,v,c) which, provided that the first-order termt denotes a node of theT vari-
antv, evaluates to itsc component.

This logic corresponds to the core of the FIDO language [140] and is also reminiscent
of the LISA language [12]. It can be reduced to WS2S and thus provides no more ex-
pressive power, but we will show that a significantly more efficient decision procedure
exists if we bypass WS2S.

7.3.2 Encoding Stores and Formulas in WSRT

The idea behind the decision procedure for Hoare triples is to encode well-formed
stores as trees. The effect of executing a loop-free program fragment is then in a finite
number of steps to transform one tree into another. WSRT can conveniently be used to
express regular sets of finite trees conforming to recursive types, which turns out to be
exactly what we need to encode pre- and post-conditions and effects of execution.

We begin by making some observations that simplify the encoding task. First, note
that NULL pointers can be represented by adding a “NULL kind” with no successors
to all structures. Second, note that memory allocation issues can be represented by
having a “free list” for eachstruct, just as in [120]. We can now represent a well-
formed store by a set of WSRT variables:

• each data variable is represented by a WSRT tree variable with the same re-
cursive type, where we use the fact that the types defined bystructs exactly
correspond to the WSRT notion of recursive types; and

• each pointer variable in the program is represented by a WSRT first-order vari-
able.

For each program point, a set of WSRT predicates calledstore predicatesis used to
express the possible stores:

• for each data variabled in the program, the predicaterootd(t) is true whenever
the first-order termt denotes the root ofd;

• for each pointer variablep, the predicateposp(t) is true whenevert andp denote
the same position;

• for each pointer fieldf occurring in a unionu in some structures, the predicate
succf ,u,s(t1, t2) is true whenever the first-order termt1 points to a cell of types
having the valueu, and thef component of this cell points to the same node as
the first-order termt2;

• for each possible enumeration valuee, the predicatekinde(t) is true whenevert
denotes a cell with valuee; and

92 Compile-Time Debugging of C Programs Working on Trees

• to encode allocation status, the predicatef rees(t) is true whenevert denotes a
non-allocated cell.

A set of store predicates called theinitial store predicatesdefining a mapping of the
heap into WSRT trees can easily be expressed in the WSRT logic. For instance, the
initial store predicatesroot, succ, andkind simply coincide with the corresponding
basic WSRT constructs.

Based on a set of store predicates, the well-formedness property and all store-logic
formulas can be encoded as other predicates. For well-formedness, the requirements
of the recursive types are expressed using theroot, kind, andsuccpredicates, and the
requirement that all data structures are disjoint trees is a simple reachability property.
For store-logic formulas, the construction is inductive: boolean connectives and quan-
tifiers are directly translated into WSRT; terms are expressed using the store predicates
root, kind, andsucc; and the basic formulasfree(t) androot(t) can be expressed
using the store predicatesf ree and root. Only the regular path sets are non-trivial;
they are expressed in WSRT using the method from [138] (where path sets are called
“routing expressions”). Note that even though the logic in Section 7.2.3 is a first-order
logic, we also need the weak monadic second-order fragment of WSRT to express
well-formedness and path sets.

7.3.3 Predicate Transformation

When the program has been broken into loop-free fragments, the Hoare triples are de-
cided using the transduction technique introduced in [139]. In this technique, the effect
of executing a loop-free program fragment is simulated, step by step, by transforming
store predicates accordingly, as described in the following.

Since the pre-condition of a Hoare triple always implicitly includes the well-formed-
ness criteria, we encode the set ofpre-storesas the conjunction of well-formedness and
the pre-condition, both encoded using the initial store predicates, and we initiate the
transduction with the initial store predicates. For each step, a new set of store predi-
cates is defined representing the possible stores after executing that step. This predicate
transformation is performed using the same ideas as in [120], so we omit the details.

When all steps in this way have been simulated, we have a set offinal store pred-
icates which exactly represents the changes made by the program fragment. We now
encode the set ofpost-storesas the conjunction of well-formedness and the post-
condition, both encoded using the final store predicates. It can be shown that the
resulting predicate representing the post-stores coincides with the weakest precondi-
tion of the code and the post-condition. The Hoare triple is satisfied if and only if the
encoding of the pre-stores implies the encoding of the post-stores.

Our technique is sound: if verification succeeds, the program is guaranteed to con-
tain no errors. For loop-free Hoare triples, it is also complete. That is, every effect on
the store can be expressed in the store logic, and this logic is decidable. In general, no
approximation takes place—all effects of execution are simulated precisely. Neverthe-
less, since not all true properties of a program containing loops can be expressed in the
logic, the technique is, in general, not complete for whole programs.

7.4 Deciding WSRT 93

7.4 Deciding WSRT

As mentioned, there is a simple reduction from WSRT to WS2S, and WS2S can be
decided using a well-known correspondence between WS2S formulas and ordinary
tree automata. The resulting so-callednaivedecision procedure for WSRT is essen-
tially the same as the ones used in FIDO and LISA and as the “conventional encoding
of parse trees” in [69]. The naive decision procedure along with its deficiencies is
described in Section 7.4.1. In Section 7.4.2 we show an efficient decision procedure
based on the more sophisticated notion of guided tree automata.

7.4.1 The Naive Decision Procedure

WS2S, the weak monadic second-order theory of two successors, is a logic that is
interpreted relative to a binary tree. A first-order variable denotes a single node in the
tree, and a second-order variable denotes a finite set of nodes. For a full definition of
WS2S, see [208] or [131].

The decision procedure implemented in MONA inductively constructs a tree au-
tomaton for each sub-formula, such that the set of trees accepted by the automaton
is the set of interpretations that satisfy the sub-formula. This decision procedure not
only determines validity of formulas; it also allows construction of counterexamples
whenever a formula is not valid.

Note that the logic WSnS, where each node hasn successors instead of just two,
easily can be encoded in WS2S by replacing each node with a small tree withn leaves.
The idea in the encoding is to have a one-to-one mapping from nodes in a WSRT tree
to nodes in a WSnS tree, where we choosen as the maximal fanout of all recursive
types.

Each WSRT tree variablex is now represented bybsecond-order variablesv1, . . . ,vb

whereb is the number of bits needed to encode the possible type variants. For each
node in then-ary tree, membership inv1 . . .vb represents some binary encoding of the
label of the corresponding node in thex tree.

Using this representation, all the basic WSRT formulas and functions can now
easily be expressed in WSnS. We omit the details. For practical applications, this
method leads to intractable computations requiring prohibitive amounts of time and
space. Even a basic concept such astype well-formednessyields immense automata.
Type well-formedness is the property that the values of a given set of WS2S variables
do represent a tree of a particular recursive type.

This problem can be explained as follows. The WS2S encoding is essentially the
same as the “conventional encoding of parse trees” in [69], and type well-formedness
corresponds to grammar well-formedness. In that paper, it is shown that the number
of states in the automaton corresponding to the grammar well-formedness predicate is
linear in the size of the grammar, which in our case corresponds to the recursive types.
As argued e.g. in [126], tree automata are at least quadratically more difficult to work
with than string automata, since the transition tables are two-dimensional as opposed
to one-dimensional. This inevitably causes a blowup in time and space requirements
for the whole decision procedure.

By this argument, it would be pointless making an implementation based on the
described encoding. This claim is supported by experiments with some very simple

94 Compile-Time Debugging of C Programs Working on Trees

examples; in each case, we experienced prohibitive time and space requirements.

7.4.2 A Decision Procedure using Guided Tree Automata

The MONA implementation of WS2S provides an opportunity to factorize the state-
space and hence make implementation feasible. To exploit this we must, however,
change the encoding of WSRT trees, as described in the following.

The notion of guided tree automata (GTA) was introduced in [23] to combat state-
space explosions and is now fully implemented in MONA [131]. A GTA is a tree
automaton equipped with separate state spaces that—independently of the labeling of
the tree—are assigned to the tree nodes by a top-down automaton, called theguide.
The secret behind a good factorization is to create the right guide.

A recursive type is essentially also a top-down automaton, so the idea is to derive a
guide from the recursive types. This is however not possible with the naive encoding,
since the type of a WSnS node depends on the actual value of its parent node.

Instead of using the one-to-one mapping from WSRT tree nodes to WSnS tree
nodes labeled with type variants, we represent a WSRT tree entirely by theshapeof a
WSnS tree, similarly to the “shape encoding” in [69]. Each node in the WSRT tree is
represented by a WSnS node with a successor node for each variant, and each of these
nodes have themselves a successor for each component in the variant. A WSRT tree
is then represented by asinglesecond-order WSnS variable whose value indicates the
active variants.

The following illustrates an example of a tree conforming to the recursive type
Tree=A(left:Tree,right:Tree),B(next:Tree),NULL and its encodings:

10

10

00

01

A

NULL B

NULL
1

1

1

0

1

0

1

10 00

0

1

10 0

(a) a tree (b) its naive encoding (c) its shape encoding

This encoding has the desired property that a WSnS tree position always is assigned
the same type, independently of the tree values, so a GTA guide can directly be de-
rived from the types. This guide factorizes the state space such that all variants and
components in the recursive types have their own separate state spaces. Furthermore,
the intermediate nodes caused by the WSnS to WS2S transformation can now also be
given separate state spaces, causing yet a degree of factorization.

One consequence is that type well-formedness now can be represented by a GTA
with a constant number of states in each state space. The size of this automaton is
thus reduced from quadratic to linear in the size of the type. Similar improvements are
observed for other predicates.

With these obstacles removed, implementation becomes feasible with typical data-
type operations verified in seconds. In fact, for the linear sub-language, our new de-
cision procedure is almost as fast as the previous WS1S implementation; for example,
the programsreverse andzip from [120] are now verified in 2.3 and 29 seconds
instead of the previous times of 2.7 and 10 seconds (all using the newest version of

7.5 Conclusion 95

MONA). This is remarkable, since our decision procedure suffers a quadratic penalty
from using tree automata rather than string automata.

7.5 Conclusion

By introducing the WSRT logic and exploiting novel features of the MONA implemen-
tation, we have built a tool that catches pointer errors in programs working on recur-
sive data structures. Together with assisting tools for extracting counterexamples and
graphical program simulations, this forms the basis for a compile-time debugger that
is sound and furthermore complete for loop-free code. The inherent non-elementary
lower bound of WSnS will always limit its applicability, but we have shown that it
handles some realistic examples.

Among the possible extensions or variations of the technique are allowing parent
and root pointers in all structures, following the ideas from [138], and switching to
a finer store granularity to permit casts and pointer arithmetic. A future implemen-
tation will test these ideas. Also, it would be interesting to perform a more detailed
comparison of the technique presented here with pointer analysis and shape analysis
techniques.

Chapter 8

The Pointer Assertion
Logic Engine

with Michael I. Schwartzbach

Abstract

We present a new framework for verifying partial specifications of programs in order
to catch type and memory errors and check data structure invariants. Our technique
can verify a large class of data structures, namely all those that can be expressed as
graph types. Earlier versions were restricted to simple special cases such as lists or
trees. Even so, our current implementation is as fast as the previous specialized tools.

Programs are annotated with partial specifications expressed in Pointer Assertion
Logic, a new notation for expressing properties of the program store. We work in the
logical tradition by encoding the programs and partial specifications as formulas in
monadic second-order logic. Validity of these formulas is checked by the MONA tool,
which also can provide explicit counterexamples to invalid formulas.

To make verification decidable, the technique requires explicit loop and function
call invariants. In return, the technique is highly modular: every statement of a given
program is analyzed only once.

The main target applications are safety-critical data-type algorithms, where the
cost of annotating a program with invariants is justified by the value of being able to
automatically verify complex properties of the program.

8.1 Introduction

We present a new contribution to the area ofpointer verification, which is concerned
with verifying partial specifications of programs that make explicit use of pointers. In
practice, there is an emphasis on catching type and memory errors and checking data
structure invariants.

For data-type implementations, standard type-checking systems, as in C or Java,
are not sufficiently expressive. For example, the type of binary trees is identical to the
one for doubly-linked lists. Both are just records with pairs of pointers, which makes
the type checker fail to catch many common bugs. In contrast, pointer verification can

98 The Pointer Assertion Logic Engine

validate the underlying data structure invariants, for instance, to guarantee that doubly-
linked lists maintain their shapes after pointer manipulations. Memory errors, such as
dereference ofnull pointers or dangling references, and creation of memory leaks are
also beyond the scope of standard type checking.

There have been several different approaches to pointer verification, but not many
that are as expressive as the one we propose in this paper. Clearly there is a trade-off
between expressiveness and complexity, since less detailed analyses will be able to
handle larger programs. Our approach is designed to verify a single abstract data type
at a time. Since such implementations often contain intricate pointer manipulations
and are trusted implicitly by programmers, they are a fair target for detailed scrutiny.

We work in the logical tradition by encoding programs and partial specifications
as formulas in monadic second-order logic. Formulas are processed by the MONA

tool [131, 158] which reduces them to equivalent tree automata from which it is sim-
ple to conclude validity or to extract concrete counterexamples. Translated back into
the underlying programming language, a counterexample is an initial store that causes
the given program to fail. Program annotations, in the form of assertions and invari-
ants, are allowed and may prove necessary to obtain the desired degree of precision.
This approach can be viewed both as lightweight program verification, since the full
behavior of the program is not considered, and as heavyweight type checking, since
properties well beyond the expressiveness of standard type systems can be checked.

We have reported on our approach in two earlier works. In the first we introduce
the basic technique applied to linear lists [120]. In the second we provide a generaliza-
tion to tree-shaped data structures and introduce a new encoding to make the analysis
feasible [82]. The current paper takes a leap forward in generalizing the class of data
structures that can be considered, without sacrificing precision or efficiency. Our new
framework can handle all data structures that can be described asgraph types[138].
These include data structures that are well-known from folklore or literature, such as
doubly-linked lists, trees with parent pointers, threaded trees, two-dimensional range
trees, and endless customized versions such as trees in which all leaves are linked in
a cyclic list. Our framework is also designed to handle the common situation where a
data structure invariant must be temporarily violated at some program points.

Our contributions are:

• An extension of the results in [120, 82] to the whole class of graph types;

• a language for expressing data structures and operations along with correctness
specifications;

• a full implementation exploiting intricate parts of the MONA tool to obtain an
efficient decision procedure, together with a range of non-trivial examples.

To verify a data type implementation, the desired data structure is specified in an ab-
stract notation, and the program is annotated with assumptions and assertions. It is not
necessary to customize or optimize the implementation, and no proof obligations are
left to be dealt with manually.

We rely on a new formal notation,Pointer Assertion Logic (PAL)to specify the
structural invariants of graph types, to state pre- and post-conditions for procedures,
and to formulate invariants and assertions that are given as hints to the system. The

8.1 Introduction 99

PAL notation is essentially a monadic second-order logic in which the universe of
discourse contains records, pointers, and booleans. Programs with PAL annotations
are verified with the tool PALE, thePointer Assertion Logic Engine. The “secret”
behind the PALE implementation is using the MONA tool to decide validity of Hoare
triples based on PAL over loop-free code. Code with loops or recursion is handled by
splitting it into loop-free fragments using invariants, as in classical Hoare logic. While
the MONA logic has an inherent non-elementary complexity [156], we demonstrate
that it can efficiently handle many real programs. Furthermore, the ability to insert
assertions to break larger triples into smaller ones suggests that the overall approach is
modular and thus can scale reasonably.

A framework for pointer verification, such as ours, should be evaluated on four
different criteria. First, how precise is the analysis? Second, it is fast and scalable?
Third, does it allow or require programs to be annotated? Fourth, which data structures
can be considered and how are they described? In the following sections, we will
describe a programming language that uses Pointer Assertion Logic for expression of
store properties, describe the decision procedure based on Hoare logic and MONA,
and through a number of experiments argue that the Pointer Assertion Logic approach
provides a productive compromise between expressibility and efficiency.

8.1.1 A Tiny Example

Consider the type of linked lists with tail pointers, which as a graph type is expressed
as:

type Head = {
data first: Node;
pointer last:

Node[this.first<next*.[pos.next=null]>last];
}
type Node = {
data next: Node;

}

The notation is explained in the following section, but intuitively thelast pointer is
annotated with a formula that constrains its destination to be the lastNode in the list.
A candidate for verification is the following procedure which concatenates two such
structures:

proc concat(data l1,l2: Head): Head
{
if (l1.last!=null) { l1.last.next = l2.first; }
else { l1.first = l2.first; }
if (l2.first!=null) { l1.last = l2.last; }
l2.first = null;
l2.last = null;
return l1;

}

These are tedious pointer manipulations that are easy to get wrong. However, if we
annotate the procedure with the pre-condition thatl1 andl2 are notnull and run

100 The Pointer Assertion Logic Engine

PALE, it will in half a second report that no memory errors occur and, importantly,
that the data structure invariant is maintained.

8.1.2 Related Work

General theorem provers, such as HOL [26], may consider the full behavior of pro-
grams but are often slow and not fully automated. Tools such as ESC [74] and LCLint
[85] consider memory errors among other undesirable behaviors but usually ignore
data structure invariants or only support a few predefined properties. Also, they trade
soundness or completeness for efficiency and hence may flag false errors or miss actual
errors.

Model checkers such as Bebop [13] and Bandera [65] abstract away the heap and
only verify properties of control flow. The JPF [103] model checker verifies simple
assertions for a subset of Java, but does not consider structural invariants.

The constraint solver Alloy has been used to verify properties about bounded ini-
tial segments of computation sequences [118]. While this is not a complete decision
procedure even for straight-line code, it finds many errors and can produce counterex-
amples. With this technique, data structure invariants can be expressed in first-order
logic with transitive closure. However, since it assumes computation bounds, absence
of error reports does not imply a guarantee of correctness, and the technique does not
appear to scale.

The symbolic executor PREfix [52] simulates unannotated code through possible
executions paths and detects a large class of errors. Again, this is not a complete or
sound decision procedure, and data structure invariants are not considered. However,
PREfix gives useful results on huge source programs.

Verification based on static analysis has culminated with shape analysis. The goals
of the shape analyzer TVLA [148, 193, 147] are closest to ours but its approach is rad-
ically different. Rather than encoding programs in logic, TVLA performs fixed-point
iterations on abstract descriptions of the store. Regarding precision and speed, PALE
and TVLA seem to be at the same level. TVLA can handle some data abstractions
and hence reason about sorting algorithms; we show in Section 8.6 that we can do
the same. TVLA analyzes programs with only pre- and post-conditions, where PALE
often uses loop invariants and assertions. This seems like an undisputed advantage for
TVLA; however, not having invariants can cause a loss in precision making TVLA
falsely reject a program. Regarding the specification of new data structures we claim
an advantage. Once a graph type has been abstractly described with PAL, the PALE
tool is ready to analyze programs. In TVLA it is necessary to specify in three-valued
logic an operational semantics for a collection of primitive actions specific to the data
structure in question. Furthermore, to guarantee soundness of the analysis, this seman-
tics should be proven correct by hand. TVLA is applicable also to data structures that
are not graph types, but so far all their examples have been in that class. Unlike PALE,
TVLA cannot produce explicit counterexamples when programs fail to verify.

There exists a variety of assertion languages designed to express properties of data
structures, such as ADDS [104],Lr [21], and Shape Types [91]. We rely on PAL since
it provides a high degree of expressiveness while still having a decision procedure that
works in practice.

8.2 Pointer Assertion Logic 101

A drawback of our approach is that detailed, explicitly stated loop invariants of-
ten are required. The overhead of adding such annotations can be significant, so the
approach is not applicable for verifying large programs. However, the most complex
pointer operations often occur indata-type implementations, which usually have a
manageable size and appear in central libraries. Thus, we primarily aim for the niche
of safety-critical data-type implementations. For such programs, it is well known that
the effort of constructing loop invariants is comparable to the effort of designing the
data-type [100]. Once the program annotations have been added, the PALE tool can
automatically decide validity. PALE works by splitting the program into disjoint frag-
ments that are verified separately by analyzing every statement exactly once. That is,
verification depends only on locally specified properties and there is no fixed-point it-
eration involved. In this sense, the approach is highly scalable. On the other hand, the
approach relies on a decision procedure with a non-elementary complexity, so there are
programs that cannot be verified in practice. The experiments described in Section 8.7
indicate that the annotation overhead is manageable, that the theoretical complexity
is not necessarily a problem in practice, and that quite intricate properties can be ex-
pressed and verified.

8.2 Pointer Assertion Logic

In this section, we informally present the components of our framework. First, we
describe the underlyingstore model. Second, we use the notion ofgraph typesto
describe data structures. Third, we employ a simpleprogramming languageto express
data structure operations. And, finally, we useprogram annotationsin the form of
Pointer Assertion Logic formulas, for expressing properties of the program store.

The programming language and the annotations have been designed to be simple
but at the same time as expressive as the verification technique allows. In the following,
we present the framework informally and refer the reader to [159] for formal defini-
tions. To make the expressive power of the framework lucid, we show the complete
syntax instead of only describing the main ideas.

8.2.1 Store Model

In our model, the store consists of aheapand someprogram variables. The heap
containsrecordswhosefieldsare eitherpointersor booleanvalues. A pointer either
has the valuenull or points to a record. Program variables are eitherdata variables
or pointer variables. A data variable is the root of a data structure, whereas a pointer
variable may point to any record in the heap.

This is a very concrete representation. We only abstract away arithmetic values and
the actual addresses of records. Memory management is not automatically represented,
but as in [120, 82], allocation and deallocation primitives could easily be added along
with automatic checks for memory leaks and dangling references.

8.2.2 Graph Types

Collections of records and pointers can form any number of interesting data structures,
which are generally expressed through an invariant on the allowed shapes. We wish

102 The Pointer Assertion Logic Engine

to explicitly declare such data structures so that their invariants can be verified by our
system. For this purpose, we usegraph types[138] which is an intuitive notation that
makes it feasible to describe complex structures. Invariants of graph type structures
can be expressed in monadic second-order logic on finite trees, which allows us to use
the MONA tool to verify correctness.

A graph type is a tree-shaped data structure with extra pointers. The underlying
tree is called thebackbone. The constituent records have two kinds of fields:data
fieldswhich define the backbone, andpointer fieldswhich may point anywhere in the
backbone. To describe a structural invariant, a pointer field is annotated with arouting
expressionwhich restricts its destination. In the current work, we have generalized
the annotations to be arbitrary formulas that may contain routing expressions as basic
predicates. Another difference to [138] is that instead of building types from unions
and records, we only use records and nullable pointers. Clearly, the two variations
can encode each other; we choose the more primitive version, since it turns out to
lead to a more efficient decision procedure. Our syntax and semantics of graph type
declarations is described in the next section.

Surprisingly many data structures can be described as graph types. As a simple
example, consider the type of binary trees where all nodes contain pointers to the root.
In our notation, it looks like:

type Tree = {
data left,right:Tree;
pointer root:Tree[root<(left+right)*>this &

empty(root^Tree.left union
root^Tree.right)];

}

The syntax for formulas is presented below, but the restriction on the source,this, and
destination,root, of the pointer is read as follows:this must be reachable fromroot
by following a sequence ofleft orright pointers, and the set ofTree records having
left or right pointers to theroot must be empty. Another example is doubly-linked
lists with boolean values:

type Node = {
bool value;
data next:Node;
pointer prev:Node[this^Node.next={prev}];

}

Here, the set of of nodes that can reach thethis node through anext pointer must
only contain theprev node. The convention that{null} is interpreted as the empty
set handles the first node in the list.

Our benchmark programs cover a variety of data structures expressed as graph
types, including singly-linked lists, doubly-linked lists with tail pointers, red-black
search trees, and post-order threaded trees with parent pointers. Additional examples
are presented in [138].

8.2 Pointer Assertion Logic 103

8.2.3 The Programming Language

A programconsists of a set of declarations of types, variables, and procedures, speci-
fied by the following grammar:

typedecl → type T = { (field ;)∗ }
field → data p⊕ : T

| pointer p⊕ : T [form]
| bool b⊕

progvar → data p⊕ : T
| pointer p⊕ : T
| bool b⊕

procedure → proc n (progvar~) : (T | void)
(logicvar;)∗
property
({ (progvar;)∗ stm })?

property

We use the notation⊕ and~ for comma-separated lists with one-or-more elements and
zero-or-more elements, respectively.T, p, b, andn range over names of types, pointer
variables or fields, boolean variables or fields, and procedures, respectively. Ignore
for now all occurrences oflogicvar andproperty; they are introduced later. Atype
consists of a number of fields of kinddata, pointer, or bool. The data fields
span the tree value and thepointer fields define extra pointers whose destinations are
constrained by a formula. Thebool fields are used to model finite values. A procedure
has a name, formal parameters, a return type, and a body consisting of local variable
declarations and statements. If the body is omitted, the declaration is considered a
prototype.

A statement is one of the following constructs; theassert andsplit statements
are described later:

stm → stm stm
| asn⊕ ;
| proccall;
| if (condexp) { stm } (else { stm })?

| while property(condexp) { stm }
| return progexp;
| assert property;
| split property property;

asn → lbexp= (condexp | proccall)
| lptrexp= (ptrexp | proccall)

The language permits multiple-assignment statements where all right-hand sides are
evaluated before assigning—these are useful for certain program transformations. Ex-
pressions have the following form:

condexp → bexp | ? | [form]

bexp → (bexp) | ! bexp
| bexp& bexp | bexp| bexp
| bexp=> bexp | bexp<=> bexp

104 The Pointer Assertion Logic Engine

| bexp= bexp | ptrexp= ptrexp
| bexp!= bexp | ptrexp!= ptrexp
| true | false | lbexp

lbexp → b | ptrexp. b

ptrexp → null | lptrexp

lptrexp → p | ptrexp. p

proccall → n ((condexp | ptrexp)~) [formula]

The “?” operator stands for nondeterministic boolean choice, which is used to model
arithmetic conditions that we cannot capture precisely. The operator “.” dereferences
a pointer, and the other constructs have the expected meanings.

The language does not contain arithmetic, since our approach focuses on the struc-
tural aspects of data types. However, as described in a later section, the technique does
permit abstractions of arithmetic properties, for instance for specifying certain ordered
data structures.

8.2.4 Program Annotations

Pointer Assertion Logic is amonadic second-order logic on graph types. It allows
quantification over heap records, both of individual elements and of sets of elements,
and uses generalized routing expressions [138] for convenient navigation in the heap.
Formulas are used in pointer fields to constrain their destinations, inwhile loops and
procedure calls as invariants, in procedure declarations as pre- and post-conditions,
and inassert andsplit statements. The syntax of formulas is as follows:

form → (existpos | allpos) p⊕ of T : form
| (existset | allset) s⊕ of T : form
| (existptr | allptr) p⊕ of T : form
| (existbool | allbool) s⊕ : form
| (form) | ! form
| form & form | form | form
| form => form | form <=> form
| ptrexpin setexp | setexpsub setexp
| setexp= setexp | setexp!= setexp
| empty (setexp) | bexp
| return | n . b
| m ((form | ptrexp | setexp)~)
| ptrexp< routingexp> ptrexp

predicate → pred m (logicvar~) = form

The identifiersm ands denote predicates and set variables, respectively. Thepos and
ptr quantifiers differ in that the former range over heap records while the latter also
includes thenull value. A routing expression formulap1<r>p2 is satisfied by a given
model if there is a path fromp1 to p2 satisfying r, as defined below. For reuse of
formulas, predicates can be defined as top-level declarations.

Logical variables can be associated to procedures to allow the pre- and post-
conditions to be related, as commonly seen in the literature [100, 67]. A logical vari-
able is a universally quantified variable that may occur in the pre- and post-conditions
of a procedure but not in the procedure body:

8.2 Pointer Assertion Logic 105

logicvar → pointer p⊕ : T
| bool b⊕
| set s⊕ : T

In formulas,ptrexphas two additional forms allowing access in procedure post-condition
to the returned value and in procedure call formulas to the logical variables of the called
procedure:

ptrexp → . . . | return | n . p

Set expressions can contain the usual set operators, along with theupoperationx^T.p
which denotes the set of records of typeT having ap successor tox:

setexp → s
| ptrexp^ T . p
| { ptrexp⊕ }
| setexpunion setexp
| setexpinter setexp
| setexpminus setexp

The syntax of routing expressions is a slightly generalized version of that in [138].
A routing expression is a regular expression over routing directives, each being a step
downor upa pointer or data field, or a formula with the extra free variablepos filtering
away those records that cause the formula to evaluate to false whenpos denotes one
of them:

routingexp → p | ^ T . p | [form]
| routingexp. routingexp
| routingexp+ routingexp
| (routingexp) | routingexp*

By default, a pointer field must satisfy the formula given in its type declaration. This
can be overridden withpointer directivesof the form:

ptrdirs → { (T . p [form])~ }

They allows pointer fields to be constrained differently at different program points.
This is important because temporary but intentional invalidation of data structure in-
variants often occurs in imperative programs, as noted for instance in [104]. Pointer
directives, both default and overriding, are required to bewell-formed. This means
that in any store and for any record, the directives associated to the pointer fields must
denoteexactly onerecord. Fortunately, as proved in [138] this is decidable.

A pair consisting of a formula and a set of pointer directives:

property → [form ptrdirs]

is called apropertyand denotes the set of stores where

• the formulaform is satisfied;

• thedata variables denote disjoint acyclic backbones spanning the heap; and

106 The Pointer Assertion Logic Engine

• eachpointer field satisfies its pointer directive (which is either the default from
the type declaration or the overriding from theptrdirs).

Properties occur as procedurepre- andpost-conditions, aswhile loop invariants, as
split assertionsandassumptions(split contains two properties), and asassert
assertions.

8.2.5 Semantics of Annotations

The program annotations are invariants of the program that must be interpreted as
follows:

• The pre-condition of a procedure may be assumed to hold when evaluating the
procedure body;

• the post-condition must hold upon termination of the procedure body;

• everywhile loop invariant must hold upon entry and after each iteration, and
may be assumed to hold when the loop terminates;

• assertions specified withassert must hold at those program points;

• for split statements, the assertion properties must hold, and the assumption
properties may be assumed to hold (the reason for introducing these statements
is explained in Section 8.4); and

• at every procedure call, the invariant conjoined with the pre-condition of the
called procedure must hold for some valuation of its logical variables, and the
invariant conjoined with the post-condition may be assumed upon return, also
for some valuation of the logical variables.

In later sections, we show that the requirements imposed by the annotations can be
verified automatically, provided that valid and sufficiently detailed invariants are given.

8.3 Example: Threaded Trees

Before describing our decision procedure, we show a larger example of using PAL. A
threaded treeis a binary tree in which all nodes contain a pointer to its cyclic successor
in a post-order traversal. As a further complication, we equip all nodes with a parent
pointer as well. This corresponds to the following graph type:

type Node = {
data left,right:Node;
pointer post:Node[POST(this,post)];
pointer parent:Node[PARENT(this,parent)];

}

wherePOST andPARENT are predicates that spell out these relationships. For example,
PARENT(a,b) abbreviates the formula:

8.3 Example: Threaded Trees 107

a^Node.left union a^Node.right={b}

The POST predicate is more involved and makes use of auxiliary predicatesLEAF,
ROOT, andLESSEQ.

We consider a procedurefix(x) that assigns the correct value tox.post assum-
ing that this field initially contains the valuenull and thatx is non-null. This is a
non-trivial operation that looks like:

proc fix(pointer x: Node): void
{
if (x.left=null & x.right=null) {

if (x.parent=null) { x.post = x; }
else {
if (x.parent.right=null | x.parent.right=x) {
x.post = x.parent;

}
else {
x.post = findsmallest(x.parent.right);

}
}

}
else { x.post = findsmallest(x); }

}

where the auxiliary procedurefindsmallest is:

proc findsmallest(pointer t: Node): Node
pointer T: Node;

{
while (t.left!=null | t.right!=null) {

if (t.left!=null) { t = t.left; }
else { t = t.right; }

}
return t;

}

The question is: Does this code verify? Does the resulting tree always satisfy the
data structure invariant? Can type or memory errors ever occur? PALE can provide
the answers with some help from us. First, since the argument tofix is not a proper
threaded tree, we must state a suitable pre-condition as the property:

[x!=null {Node.post[ALMOSTPOST(this,post,x)]}]

Here we require that the argument is notnull and that the data structure invariant can
be temporarily violated. TheALMOSTPOST predicate is:

(this!=x => POST(this,post)) & (this=x => post=null)

which simply states the exception that we allow. Second, thewhile loop infindsmallest
needs an invariant, which is the property:

[INV {Node.post[ALMOSTPOST(this,post,x)]}]

108 The Pointer Assertion Logic Engine

where the pointer directive states that the threaded tree is still messed up, and the
proper invariantINV equals:

T<(left+right)*>t &
allpos c of Node: LESSEQ(c,t,T) => t<(left+right)*>c

which states thatt is a descendant ofT and all its post-order successors are further de-
scendants. See [159] for the full code with all post-conditions. In total, six annotations
are required. In less that 4 seconds PALE verifies that the code contains no errors.

8.4 Hoare Logic Revisited

Given an annotated program, we wish to decide whether the program is correct with
respect to the annotations. The first step in our decision procedure is to split the given
program into Hoare triples [106, 5, 67]. The idea of modeling transformations of the
heap with Hoare logic has been studied before [189, 90]. The main novelty of our
approach is the choice of PAL as assertion language. Our Hoare “triples” have a non-
standard form:

triple → property stm

The statementstm is not allowed to containwhile loops,split statements, or proce-
dure calls. A triple isvalid if

• executingstm in a store wherepropertyis satisfied cannot violate any assertions
specified byassert statements occurring instm; and

• the execution always terminates in a store consisting of disjoint, acyclic back-
bones spanning the heap in which all pointer directives hold.

As opposed to normal Hoare triples, these have no explicit post-condition, but the
stm part may containassert sub-statements. This simple generalization allows many
assertions to be made without always breaking triples into smaller parts, as was often
the case in [120] and [82]. For instance, anif statement where both branches end
in assert statements does not necessarily need to be broken into two parts. Also,
using this form of Hoare triples simplifies the encoding in monadic second-order logic
described in Section 8.5.

We define thecut-pointsof a program (according to [88]) as the following set
of program points: the beginning and end of procedure bodies andwhile bodies,
thesplit statements (these do not affect the computation and are considered single
program points), and before each procedure call.

For each cut-point in the given program, we generate a Hoare triple from the prop-
erty associated with that point and the code that follows until reaching other cut-points.
Extraassert statements are automatically inserted for these other cut-points, reflect-
ing the assertions they define. In case ofsplit statements, we here use the assertion
property. For procedure calls, we use the pre-condition property of the called proce-
dure conjoined with the call invariant formula. Recall that we do allowif statements

8.5 Deciding Hoare Triples in MONA 109

in the Hoare triples. However, if one branch contains a cut-point, we require syn-
tactically that the other branch also contains a cut-point or that theif statement is
immediately followed by one. Typically,split statements are used to fulfill this re-
quirement. As a result, the statement part of a Hoare triple in general has a tree shape
with one cut-point in the root and one in each leaf. See [159] for more details.

We claim without proof that this reduction is semantically sound, with two excep-
tions:

• Forsplit statements, the assertion property may not be implied by the assump-
tion property, thereby causing a “gap” between the Hoare triples. This is inten-
tional, because it allows to recover from situations where the required properties
are beyond what is expressible in Pointer Assertion Logic, such as arithmeti-
cal properties. Usingsplit statements at a few selected places, one can then
still verify properties of the remaining parts of the code. However, none of the
examples shown in Section 8.7 require this feature.

• Procedure calls are known to cause complications for Hoare logic [67]. In our
case, there is in general no guarantee that the call invariant is actually a valid
invariant. However, in most situations, simple syntactic requirements suffice,
since recursive calls in data type operations typically follow the recursive struc-
ture of the graph type backbones. A sufficient condition is that the call invariant
only accesses variables and record fields that are not assigned to in the proce-
dure. Such requirements ensure that the invariant and the procedure’s pre- and
post-conditions express properties of disjoint parts of the store, reminiscent of
the “independent conjunctions” in [189]. All the examples shown in Section 8.7
can be handled by simple rules, which we plan to build into PALE.

In PALE, this phase is implemented as a desugaring process reducing all procedures,
while loops,split statements, and procedure calls totransductiondeclarations hav-
ing the form “transduce triple”. In the following section we describe how validity
of these simplertransduce constructs can be decided.

In contrast to techniques based on generating the weakest preconditions for all pro-
cedures, each program or procedure is not turned into one single verification condition;
instead we use the annotations to split the program into Hoare triples that are verified
independently. Also, as opposed to [90], we will not rely on fixed-point iterations.
This means that detailed invariants may be required; however, it has the advantage that
the technique becomes highly modular and hence scalable.

8.5 Deciding Hoare Triples in MONA

We need to decide validity of a Hoare triple of the form

property stm

where the statementstm is without loops and procedure calls. The question is whether
every execution ofstm starting from a store satisfyingproperty is guaranteed to sat-
isfy the assertions given byassert statements and to result in stores with disjoint,
acyclic backbones spanning the heap in which all relevant pointer directives hold. A

110 The Pointer Assertion Logic Engine

result in [139] shows in a very general setting that this is a decidable question. In
essence, we encode each Hoare triple in the logicweak monadic second-order theory
of 2 successors, which is decidable using the MONA tool [131, 126, 158].

Similarly to the previous implementations [120, 82] we use a particulartransduc-
tion technique. This idea allows us to avoid an explicit construction of weakest pre-
conditions working backwards through the statement sequence. Instead, we directly
simulate (transduce) the statements and mirror their effect by updating a fixed collec-
tion of store predicateswhich abstractly describes a set of stores. It is shown in [139]
that any question about the resulting set of stores can be answered by phrasing it in
terms of the transduced store predicates and checking for validity of the resulting for-
mula.

The store predicates describe a set of stores in MONA logic. They can be thought
of as an interface for asking questions about a store. There are 11 kinds of predicates:

• bool T b(v) gives the value of thebool field b in a recordv of typeT;

• succ T d(v,w) holds if the recordw is reachable from the recordv of typeT
along a data field namedd;

• null T d(v) holds if the data fieldd in the recordv of typeT is null;

• succ T p(v,w) holds if the recordw is reachable from the recordv of typeT
along a pointer field namedp;

• null T p(v) holds if the pointer fieldp in the recordv of typeT is null;

• ptr d(v) holds if the recordv is the value of the data variabled;

• null d() holds if the data variabled is null;

• ptr p(v) holds if the recordv is the destination of the pointer variablep;

• null p() holds if the pointer variablep is null;

• bool b() gives the value of the boolean variableb;

• memfailed() holds if a null-pointer dereference has occurred.

All properties of a store can be expressed using these predicates in MONA logic. The
transduction process generates a collection of such store predicates for each program
point. For convenience, we describe this by indexing the predicates with program
points; for example, for each program pointi there is a version of thebool T b(v)
predicate calledbool T b i (v).

An initial collection of store predicates is defined to reflect the formula and pointer
directives that constitute the pre-condition of the Hoare triple. In the encoding into
MONA code, the program variables are modeled as free variables, which are univer-
sally quantified in the final validity formula that is given to MONA. For example,
a bool variable is modeled as a boolean variablebool b in MONA and the corre-
sponding initial store predicate is:

bool b 0() = bool b

8.5 Deciding Hoare Triples in MONA 111

Similarly, a pointer variablep is modeled as a first-order MONA variable ptr p and
the corresponding initial store predicate is:

ptr p 0(v) = v = ptr p

A bool field b in a record of typeT is modeled as a second-order variablebool T b
containing the set of records in whichb is true. Consequently, the corresponding initial
store predicate is:

bool T b 0(v) = v in bool T b

As a final example, we consider pointer fields whose initial store predicate is:

succ T p 0(this,p) = f

wheref is the encoding of the formula associated with thep field of T. If the pre-
condition of the Hoare triple contains the pointer directiveT.p[form], then that for-
mula isform, otherwise the default formula from the type definition is used.

Across a simple statement, two collections of store predicates are related in a man-
ner that reflects the semantics of that statement. Consider for example a type of linked
lists:

type Node = { data next: Node; }

and a simple statement involving two pointer variables of typeNode:

p = q.next;

If this statement is enclosed by program pointsi andj, then the store predicates are
updated as follows in MONA code:

memfailed j () = memfailed i () | null q i()
ptr p j (v) = ex2 w: ptr q i (w) & succ Node next i (w,v)
null p j () = ex2 w: ptr q i (w) & null Node next(w)

while the other store predicates remain unchanged. The PALE tool generates such
store predicate updates for all Hoare triples and subsequently generates formulas to
check the required properties. Between conditionals, routing expressions, and various
primitive statements this is a complex translation reminiscent of generating machine
code in a compiler. The details can be studied in [159]. The way assignments are
handled without losing aliasing information, as in the example above, is essentially
the same as in [166].

Checking that an assertion property at a given program point cannot be violated
can be expressed by encoding the property using the store predicates associated with
the program point together with the pre-condition property encoded with the initial
store predicates. There is a strong connection between this transduction technique and
the more traditional weakest-precondition technique: if the predicate invocations in the
MONA formulas are “unfolded”, one essentially gets the weakest pre-condition. The
main advantage of using the “forward” transduction technique instead of a “backward”
weakest-precondition technique is an implicit reuse of intermediate results.

112 The Pointer Assertion Logic Engine

Checking that the resulting backbones are disjoint, acyclic, and span the heap is
based on formulas for expressing transitive closure. Checking that a pointer directive
holds is in [138] shown to be decidable in monadic second-order logic. This result
generalizes easily to our extension of graph types, where arbitrary formulas rather
than only routing expressions can be used as pointer directives.

The MONA tool transforms the resulting formulas, which can be quite large, into
equivalent minimal Guided Tree Automata [23] represented as BDD structures [47],
and from that either deduces validity or generates counterexample models. In the latter
case, the PALE tool decompiles that model into a program store which causes the
program to fail. The use of Guided Tree Automata rather than ordinary tree automata
yields an exponential saving by factorizing the state space according to the recursive
structure of the graph type backbones. Compared to the WSRT technique used in [82],
our choice of describing the backbones as records with pointers rather than as recursive
types allow a simpler and more efficient automaton guide to be constructed. Also for
efficiency reasons, we compile directly into MONA logic rather than use a more high-
level logic, such as FIDO [140].

Note that a collection of store predicates is vaguely similar to the abstract store
descriptions employed by TVLA. Consequently, it might seem that we could follow
their approach and use a fixed-point process to transduce awhile loop. However, this
is in general not possible, since such fixed-points may require transfinite induction.
Hence, we resort to using invariants to break up loops.

This transduction approach introduces no imprecision; it is both sound and com-
plete for individual Hoare triples.

8.6 Data Abstractions

In [193, 147], abstractions of the data contained in the heap records can be tracked by
specifying suitableinstrumentation predicates. As an example, a predicatedle(x,y) is
used to represent “the data inx is less than or equal to the data iny”. To illustrate the
power of PAL, we show that a similar approach works for our technique.

As an example, we instrument the ubiquitous linked-listreverse example to ver-
ify that reversal of a list ordered in increasing order results in a list ordered in decreas-
ing order:

• We associate two boolean fields,next dle andnext dge, to thenext field
in the linked-list type, with the intended meaning:next dle is true in a given
record if the data in the record denoted by thenext pointer is certain to beless
than or equalto the data in the given record – and likewise fornext dge with
greater than or equal.

• Similarly, for each pair of program pointer variables, two boolean variables are
added to keep track of the relative order of the records being pointed to. With a
subsequent dead-code elimination, a total of three boolean variables suffice.

• For each pointer assignment, the new boolean fields and variables are updated
accordingly. For instance,

list.next = res;

8.7 Implementation and Evaluation 113

is replaced by the multiple-assignment statement:

list.next = res, list.next_dle = res_dle_list;

reflecting the change of thenext field.

If arbitrary PAL formulas are allowed as right-hand sides of the new assignments,
even complex reachability properties can be captured. For this example, simple as-
signments suffice, though. As in [147], this is also sufficient to verify for instance that
bubblesort actually sorts the elements.

The intellectual effort needed to update the data abstraction bits seems to be the
same as to define the required operational semantics in TVLA. As hinted in the exam-
ple, some degree of automation is possible for our technique; however, we leave that
for future work.

Note that many data structures, in particular variations of search trees, can be ab-
stractly described by associating to every node a few of bits of information summariz-
ing properties of the tree. Those data structures can also be verified using techniques
like these.

8.7 Implementation and Evaluation

Our verification technique is implemented in a tool called PALE, the Pointer Assertion
Logic Engine. Given an annotated program, PALE checks that:

• the pointer directives are well-formed;

• null pointer dereferences cannot occur;

• at each cut-point that thedata variables contain disjoint, acyclic backbones
spanning the heap and that the assertions and pointer directives are satisfied;

• all assert assertions are valid; and

• all cut-point properties are satisfiable.

There is not necessarily an error in the program if a cut-point property is unsatisfiable,
but it usually indicates an error in the specification. As previously mentioned, memory
allocation can easily be expressed such that the tool would also check for memory
leaks and dangling references.

Using PALE, we have evaluated the technique on a number of examples dealing
with a variety of data structures. In all cases, we check for memory errors and possible
violations of the data structure invariants:

• Singly-linked listswith the operationsreverse, search, zip, delete, insert,
androtate. These examples have been scrutinized before [64, 120, 148]. We
also include theconcat operation on lists with tail pointers from Section 8.1.
We have triedbubblesort as in [147] but with various degrees of abstraction
of the data: Inbubblesort simple, the record values are abstracted away so
only null pointer dereferences are checked for; inbubblesort boolean, the

114 The Pointer Assertion Logic Engine

Example Lines of Invariants GTA Largest GTA Time Memory
name code (formulas) operations States BDD nodes (seconds) (MB)

reverse 16 1 1,109 35 142 0.52 2
search 12 1 853 27 85 0.25 2
zip 33 1 1,753 174 730 4.58 11
delete 22 0 973 73 349 1.36 5
insert 33 0 1,005 103 443 2.66 7
rotate 11 0 590 44 213 0.22 1
concat 24 0 1,056 48 177 0.47 3
bubblesort simple 43 1 1,477 373 3,289 2.86 18
bubblesort boolean 43 2 1,737 357 3,922 3.37 12
bubblesort full 43 2 2,069 373 3,291 4.13 19
orderedreverse 24 1 1,091 29 100 0.46 3
recreverse 15 2 1,019 42 176 0.34 2
doublylinked 72 1 4,163 230 796 9.43 13
leftrotate 30 0 1,489 165 1,550 4.62 7
rightrotate 30 0 1,489 165 1,550 4.68 7
treeinsert 36 1 1,989 137 844 8.27 31
redblackinsert 57 7 4,279 297 2,419 35.04 44
threaded 54 4 3,505 50 248 3.38 7

Figure 8.1: Statistics from PALE experiments.

values are abstracted to booleans which in the post-condition are checked to be
properly sorted; and inbubblesort full, the data abstraction technique from
Section 8.6 is used as in [147] to conclude that the resulting lists are sorted. We
also use data abstractions inorderedreverse to show thatreverse switches
the order of a sorted list. Finally, we tryrecreverse, which is a recursive
version ofreverse.

• Doubly-linked lists with tail pointers[138] with the operationsdelete, search,
insert, andconcat.

• Red-black search trees[66] with the standard operationsleftrotate, right-
rotate, treeinsert, andredblackinsert. We include the non-arithmetic
part of the red-black search tree invariant, that is, that the root is black and red
nodes have black children:

BLACK(root) &
allpos q of Node: ROOT<(left+right)*>q =>
(RED(q) => BLACK(q.left) & BLACK(q.right));

• Threaded trees[138], as shown in Section 8.3, where every node has a pointer to
its post-order cyclic successor and a pointer to its parent, with afix operation
for reestablishing the correctpost pointer for a given node.

The resources for translation into MONA code and for the automaton analysis are neg-
ligible. Figure 8.1 shows the time and space consumptions of the MONA automa-
ton operations (on a 466MHz Celeron PC) for the examples, along with the number

8.7 Implementation and Evaluation 115

of GTA operations (here we count only the essential operations: minimization, pro-
jection, and product), the size of the largest intermediate minimized automaton (in
number of states and in number of BDD nodes). Note that some examples implement
individual operations while others implement whole data types. The lines of code mea-
sure the underlying program only, thus disregarding the PAL annotations. “Invariants”
is the total number ofsplit statements,while statements, and procedure calls that
require explicitly stated invariants. This number is an indication of the effort required
by the programmer to make PALE work, in addition to writing the program and its
specification. The invariants forredblackinsert were admittedly hard to get right.
However, the programs that require the most complicated invariants are also those that
have the most complicated pointer operations and hence are the ones in most need
of verification. The table shows that the examples typically run in seconds despite
requiring a quite large number of automaton operations. Since the complexity is non-
elementary in the size of the program, intractable examples do exist but they do not
seem to occur often in practice. The verification time seems insignificant compared to
the time required to design a given data type and specify the invariants, however, it is
useful in the design cycle that verification is efficient.

The code for thebubblesort examples (excluding annotations) is taken from
[147]. Interestingly, PALE discovered a minor bug (a null-pointer dereference) even
though the code had allegedly been verified by TVLA, which spent 245 seconds com-
pared to 4 seconds for PALE. This huge speedup shows an instance where using invari-
ants is much faster than performing a fixed-point iteration. This suggests that PALE
may be quite scalable. Another noteworthy point discovered by PALE is that in [66],
the authors forget to require the root to be initially black inredblackinsert. (More
precisely, they mention the requirement in the proof of correctness, but not in the spec-
ification.)

Versions with plausible bugs planted typically take roughly the same time to pro-
cess as the correct programs. For such buggy versions, counterexamples are generated,
which is crucial for determining whether the error is in the program, the assumptions,
or the assertions. As an example, if a conditional inredblackinsert erroneously
tests for a specific node to be black rather than red, PALE produces the following
counterexample store for the Hoare triple containing the conditional:

root

x

Here, the root node is black and the others are red, and we omit field names and all
pointer fields. Such a counterexample is clearly useful for locating the bug. Notice
that for this bug, the approach in [118] would not find the bug for heap bounds of less
than four records.

The experiments show that our approach does work in practice for non-trivial data
structures, and with time and space requirements which are as good as or better than
those for the previous more specialized versions [120, 82] and related approaches with
similar goals [147, 118, 77, 90].

116 The Pointer Assertion Logic Engine

8.8 Conclusion

It is well known that developing formal program specifications is expensive, but for
some safety critical applications a guarantee of partial correctness of data type imple-
mentations can be worth the effort. A tool such as PALE can be used to verify speci-
fications expressible in Pointer Assertion Logic, and also to guide the programmer by
the generation of counterexamples. With verification techniques based on undecidable
logics, either the programmer may have to guide a theorem prover to the proofs, not
even being certain that they exist, or accept that the reply may be “don’t-know”. With
less expressive techniques, important aspects of the data types may not be expressible
and hence not verifiable. In contrast to traditional program analyses, our technique is
highly modular: each statement in the given program is analyzed only once. To ver-
ify complex properties, the technique often requires detailed invariants to be provided.
However, since we primarily aim for data-type implementations, we believe that this
annotation overhead is reasonable compared to the effort of creating the program. In
conclusion, Pointer Assertion Logic may provide a fruitful compromise between ex-
pressibility and usability.

Although facing a non-elementary theoretical complexity, the examples we pro-
vide show that logic and automaton based program verification is feasible. Further-
more, we believe that the efficiency of the implementation can be improved by at least
an order of magnitude by tuning the MONA tool using heuristics as proposed in [134].
As also suggested in [118, 103] we may benefit from an initial simplification phase
that performs program slicing or partial evaluation of the source programs.

Future work will also examine the possibility of incorporating simple arithmetic
into the language. The MONA tool can also be used as an efficient decision procedure
for Presburger arithmetic [198, 131], which is sufficient for many properties. In [104],
abstract data structure descriptions are used to improve program analyses in optimiz-
ing compilers. Pointer aliasing, for instance, can be expressed in PAL, so the detailed
knowledge of the heap structure provided by PALE might also be useful for optimiza-
tion. Another idea is to build a translator from C, C++, or Java to PALE to make the
tool more practically useful. Finally, it might be interesting to integrate the “indepen-
dent conjunctions” from [189] into PAL to support local reasoning and make the tool
easier to use.

The full source code for the PALE tool, the examples, and a detailed description
of the desugaring and code generation to MONA are available from the PALE site at
http://www.brics.dk/PALE/.

Acknowledgments

This work was done while the first author was visiting UC Berkeley. Thanks to Alex
Aiken, Jeff Foster, and Zhendong Zu for valuable discussions and comments.

Chapter 9

The <bigwig> Project

with Claus Brabrand and Michael I. Schwartzbach

Abstract

We present the results of the<bigwig> project, which aims to design and implement
a high-level domain-specific language for programming interactive Web services.

A fundamental aspect of the development of the World Wide Web during the last
decade is the gradual change from static to dynamic generation of Web pages. Gener-
ating Web pages dynamically in dialog with the client has the advantage of providing
up-to-date and tailor-made information. The development of systems for constructing
such dynamic Web services has emerged as a whole new research area.

The<bigwig> language is designed by analyzing its application domain and iden-
tifying fundamental aspects of Web services inspired by problems and solutions in
existing Web service development languages. The core of the design consists of a
session-centered service model together with a flexible template-based mechanism for
dynamic Web page construction. Using specialized program analyses, certain Web-
specific properties are verified at compile time, for instance that only valid HTML
4.01 is ever shown to the clients. In addition, the design provides high-level solutions
to form field validation, caching of dynamic pages, and temporal-logic based con-
currency control, and it proposes syntax macros for making highly domain-specific
languages.

The language is implemented via widely available Web technologies, such as
Apache on the server-side and JavaScript and Java Applets on the client-side. We
conclude with experience and evaluation of the project.

9.1 Introduction

The<bigwig> project was founded in 1998 at the BRICS Research Center at the Uni-
versity of Aarhus to design and implement a high-level domain-specific language for
programming interactive Web services. Such services are characterized by involving
multiple interactions with each client, mediated by HTML forms in browsers. In the
following we argue that existing Web service programming languages in various ways
provide only low-level solutions to problems specific to the domain of Web services.

118 The <bigwig> Project

Our overall ambitions for the project are to identify the key areas of the Web service
domain, analyze the problems with the existing approaches, and provide high-level
solutions that will support development of complex services.

9.1.1 Motivation

Specifically, we will look at the following Web service technologies: the HTTP/
CGI Web protocol [101], Sun’s Java Servlets [201] and their JavaServer Pages (JSP)
[202], Microsoft’s Active Server Pages (ASP) [107], the related Open Source language
PHP [9], and the research language MAWL [8, 7, 144].

CGI was the first platform for development of Web services, based on the sim-
ple idea of letting a script generate the reply to incoming HTTP requests dynamically
on the server, rather than returning a static HTML page from a file. Typically, the
script is written in the general-purpose scripting language Perl, but any language sup-
ported by the server can be used. Being based on general-purpose programming lan-
guages, there is no special support for Web specific tasks, such as generation of HTML
pages, and knowledge of the low-level details of the HTTP protocol are required. Also,
HTTP/CGI is a stateless protocol that by itself provides no help in tracking and guiding
users through a series of individual interactions. This can to some degree be alleviated
by libraries. In any case, there are no compile-time guarantees of correct runtime
behavior when it comes to Web-specific properties, for instance ensuring that invalid
HTML is never sent to the clients.

Servlets are a popular higher-level Java-specific approach. Servlets, which are
special Java programs, offer the common Java advantages of network support, strong
security guarantees, and concurrency control. However, some significant problems still
exist. Services programmed with servlets consist of collections of request handlers for
individual interactions. Sessions consisting of several interactions with the same client
must be carefully encoded with cookies, URL rewriting, or hidden input fields, which
is tedious and error-prone even with library support, and it becomes hard to maintain
an overview of large services with complex interaction flows. A second, although
smaller, problem is that state shared between multiple client sessions, even for simple
services, must be explicitly stored in a name–value map called the “servlet context”,
instead of using Java’s standard variable declaration scoping mechanism. Thirdly, the
dynamic construction of Web pages is not improved compared to CGI. Web pages are
built by printing string fragments to an output stream. There is no guarantee that the
result will always become valid HTML. This situation is slightly improved by using
HTML constructor libraries, but they preclude the possibility of dividing the work of
the programmers and the HTML designers. Furthermore, since client sessions are split
into individual interactions that are only combined implicitly, for instance by storing
session IDs in cookies, it is not possible to statically analyze that a given page sent
to a client always contains exactly the input fields that the next servlet in the session
expects.

JSP, ASP, PHP, and the countless homegrown variants were designed from a differ-
ent starting point. Instead of aiming for complex services where all parts of the pages
are dynamically generated, they fit into the niche where pages have mostly static con-
tents and only small fragments are dynamically generated. A service written in one of
these languages typically consists of a collection of “server pages” which are HTML

9.1 Introduction 119

pages with program code embedded in special tags. When such a page is requested by
the client, the code is evaluated and replaced by the resulting string. This gives better
control over the HTML construction, but it only gives an advantage for simple services
where most of every page is static.

The MAWL language was designed especially for the domain of interactive Web
services. One innovation of MAWL is to make client sessions explicit in the program
logic. Another is the idea of building HTML pages from templates. A MAWL service
contains a number of sessions, shared data, and HTML templates. Sessions serve as
entry points of client-initiated session threads. Rather than producing a single HTML
page and then terminating as CGI scripts or Servlets, each session thread may involve
multiple client interactions while maintaining data that is local to that thread. An
HTML template in MAWL is an HTML document containing named gaps where either
text strings or special lists may be inserted. Each client interaction is performed by
inserting appropriate data into the gaps in an HTML template and then sending it to
the client, who fills in form fields and submits the reply back to the server.

The notions of sessions and document templates are inherent in the language and,
being compilation-based, allow important properties to be verified statically, without
actually running the service. Since HTML documents are always constructed from
the templates, HTML validity can be verified statically. Also, since it is clear from
the service code where execution resumes when a client submits form input, it can be
statically checked that the input fields match what the program expects. One practical
limitation of the MAWL approach is that the HTML template mechanism is quite
restrictive, as we cannot insert markup into the template gaps.

We describe more details about the existing languages in the following sections.
By studying services written in any of these languages, some other common problems
show up. First of all, often surprisingly large portions of the service code tend to
deal with form input validation. Client-server interaction takes place mainly through
input forms, and usually some fields must be filled with a certain kind of data, perhaps
depending on what has been entered in other fields. If invalid data is submitted, an
appropriate error message must be returned so that the client can try again. All this
can be handled either on the client-side—typically with JavaScript [87], in the server
code or with a combination. In any case, it is tedious to encode.

Second, one drawback of dynamically generated Web pages compared to static
ones is that traditional caching techniques do not work well. Browser caches and
proxy servers can cause major improvements in saving network bandwidth, load time,
and clock cycles, but when moving towards interactive Web services, these benefits
disappear.

Third, most Web services act as interfaces to underlying databases that, for in-
stance, contain information about customers, products, and orders. Accessing databases
from general-purpose programming languages where database queries are not inte-
grated requires the queries to be built as text strings that are sent to a database engine.
This means that there is no static type checking of the queries. As known from modern
programming languages, type systems allow many programming bugs to be caught at
compile time rather than at runtime, and thereby improve reliability and reduce devel-
opment cost.

Fourth, since running Web services contain many concurrently executing threads
and they access shared information, for instance in databases on the server, there is a

120 The <bigwig> Project

fundamental need for concurrency control. Threads may require exclusive access to
critical regions, be blocked until certain events occur, or be required to satisfy more
high-level behavioral constraints. All this while the service should run smoothly with-
out deadlocks and other abrupt obstacles. Existing solutions typically provide no or
only little support for this, for instance via low-level semaphores as Perl or synchro-
nized methods in Servlets. This can make it difficult to guarantee correct concurrent
execution of entire services.

Finally, since Web services usually operate on the Internet rather than on secure
local networks, it is important to protect sensitive information both from hostile at-
tacks and from programming leaks. A big step forward is the Secure Sockets Layer
(SSL) protocol [93] combined with HTTP Authentication [22]. These techniques can
ensure communication authenticity and confidentiality, but using them properly re-
quires insight into technical protocol and implementation details. Furthermore, they
do not protect against programming bugs that unintentionally leak secret information.
The “taint mode” in Perl offers some solution to this. However, it is runtime based
so no compile-time guarantees are given. Also, it only checks for certain predefined
properties, and more specialized properties cannot be added.

9.1.2 The <bigwig> Language

Motivated by the languages and problems described above, we have identified the
following areas as key aspects of Web service development:

• sessions: the underlying paradigm of interactive Web services;

• dynamic documents: HTML pages must be constructed in a flexible, efficient,
and safe fashion;

• concurrency control: Web services consist of collections of processes running
concurrently and sharing resources;

• form field validation: validating user input requires too much attention from
Web programmers so a higher-level solution is desirable;

• database integration: the core of a Web service is often a database with a number
of sessions providing Web access; and

• security: to ensure authenticity and confidentiality, regarding both malicious
clients and programming bugs.

To attack the problems, we have designed from scratch a new language called<bigwig>,
as a descendant of the MAWL language. This language is a high-level, domain-specific
language [214], meaning that it employs special syntax and constructs that are tai-
lored to fit its particular application domain and allow specialized program analyses,
in contrast to library-based solutions. Its core is a C or Java-like skeleton, which is
surrounded by domain-specific sub-languages covering the above key aspects. A no-
tion of syntax macrostie the sub-languages together and provide additional layers of
abstraction. This macro language, which operates on the parse tree level, rather than
the token sequence level as conventional macro languages, has proved successful in
providing extensions of the core language. This has helped each of the sub-languages

9.1 Introduction 121

remain minimal, since desired syntactic sugar is given by the macros. Syntax macros
can be taken to the extreme, where they, with little effort, can define a completely new
syntax forvery-domain-specific languages tailored to highly specialized application
domains.

It is important that<bigwig> is based on compilation rather than on interpretation
of a scripting language. Unlike many other approaches, we can then apply type sys-
tems and static analysis to catch many classes of errors before the service is actually
installed.

The<bigwig> compiler uses common Web technologies as target languages. This
includes HTML [185], HTTP [22], JavaScript [87], and Java Applets [6]. Our current
implementation additionally relies on the Apache Web server. It is important to ap-
ply only standard technologies on the client-side in order not to place restrictions on
the clients. In particular, we do not use browser plug-ins, and we only use the sub-
set of JavaScript that works on all common browsers. As new technologies become
standard, the compiler will merely obtain corresponding opportunities for generating
better code. To the degree possible, we attempt to hide the low-level technical details
of the underlying technologies.

We have made no effort to contribute to the graphical design of Web services.
Rather, we provide a clean separation between the physical layout of the HTML pages
and the logical structure of the service semantics. Thus, we expect that standard HTML
authoring tools are used, conceivably by others than the Web programmer. Also, we do
not focus on efficiency, but on providing higher levels of abstraction for the developers.
For now, we regard it as less important to generate solutions that seamlessly scale to
thousands of interactions per second, although, of course, scalability is an issue for the
design.

The main contributions of the<bigwig> project are the following results:

• The notion of client sessions can and should be made explicit in Web service
programming languages;

• dynamic construction of Web pages can at the same time be made flexible and
fast, while still permitting powerful compile-time analyses;

• form field validation can be made easier with a domain-specific language based
on regular expressions and boolean logic;

• temporal logic is a useful formalisms for expressing concurrency constraints and
synthesizing safety controllers; and

• syntax macros can be used to create very-domain-specific high-level languages
for extremely narrow application domains.

We focus on these key contributions in the remainder of this article, but also describe
less central contributions, such as a technique for performing client-side caching of
dynamically generated pages, a built-in relational database, and simple security mech-
anisms. The individual results have been published in previous more specialized arti-
cles [194, 195, 38, 37, 39, 36, 41]. Together, these results show that there is a need for
high-level programming languages that are tailor-made to the domain of Web service
development.

122 The <bigwig> Project

9.1.3 Overview

We begin in Section 9.2 by classifying the existing Web service languages as script-,
page-, or session-centered, arguing for the latter as the best choice for complex ser-
vices. In Section 9.3, we show how the HTML template mechanism from MAWL can
be extended to become more flexible using a notion of higher-order templates. Us-
ing novel type systems and static analyses, the safety benefits of MAWL templates
remain in spite of the increased expressibility. Also, we show how our solution can be
used to cache considerable parts of the dynamically generated pages in the browser.
In Section 9.4, we address the problem of validating form input more easily. Sec-
tion 9.5 describes a technique for generating concurrency controllers from temporal
logic specifications. Section 9.6 gives an introduction to the syntax macro mechanism
that ties together the sub-languages of<bigwig>. In Section 9.7, we mention various
less central aspects of the<bigwig> language. Finally, in Section 9.8 we describe our
implementation and a number of applications, and evaluate various practical aspects
of <bigwig>.

9.2 Session-Centered Web Services

Web programming covers a wide spectrum of activities, from composing static HTML
documents to implementing autonomous agents that roam the Web. We focus in our
work on interactive Web services, which are Web servers where clients can initiate
sessions that involve several exchanges of information mediated by HTML forms. This
definition includes large classes of well-known services, such as news services, search
engines, software repositories, and bulletin boards, but also covers services with more
complex and specialized behavior.

There are a variety of techniques for implementing interactive Web services, but
they can be divided into three main paradigms: thescript-centered, thepage-centered,
and thesession-centered. Each is supported by various tools and suggests a particular
set of concepts inherent in Web services.

9.2.1 The Script-Centered Approach

The script-centered approach builds directly on top of the plain, stateless HTTP/
CGI protocol. A Web service is defined by a collection of loosely related scripts.
A script is executed upon request from a client, receiving form data as input and pro-
ducing HTML as output before terminating. Individual requests are tied together by
explicitly inserting appropriate links to other scripts in the reply pages.

Perl is a prototypical scripting language, but almost any programming language
has been suggested for this role. CGI scripting is often supported by a large collection
of library functions for decoding form data, validating input, accessing databases, and
realizing semaphores. Even though such libraries are targeted at the domain of Web
services, the language itself is not. A major problem is that the overall behavior is dis-
tributed over numerous individual scripts and depends on the implicit manner in which
they pass control to each other. This design complicates maintenance and precludes
any sort of automated global analysis, leaving all errors to be detected in the running
service [86, 7].

9.2 Session-Centered Web Services 123

HTML documents are created on the fly by the scripts, typically usingprint-
like statements. This again means that no static guarantees can be issued about their
correctness. Furthermore, the control and presentation of a service are mixed together
in the script code, and it is difficult to factor out the work of programmers and HTML
designers [68].

The Java Servlets language also fits this category. The overall structure of a service
written with servlets is the same as for Perl. Every possible interaction is essentially
defined by a separate script, and one must use cookies, hidden input fields, or simi-
lar techniques to connect sequences of interactions with the clients. Servlets provide
a session tracking API that hides many of the details of cookies, hidden input fields,
and URL rewriting. Many servlet servers use cookies if the browser supports them,
but automatically revert to URL rewriting when cookies are unsupported or explic-
itly disabled. This API is exemplified by the following code inspired by two Servlet
tutorials:1

public class SessionServlet extends HttpServlet {

public void doGet(HttpServletRequest request ,

HttpServletResponse response)

throws ServletException, IOException {

ServletContext context = getServletContext();

HttpSession session = request.getSession(true);

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML><HEAD><TITLE>Servlet Demo</TITLE></HEAD><BODY>");

if (session.isNew()) {

out.println("<FORM ACTION=SessionServlet>" +

"Enter your name: <INPUT NAME=handle>" +

"<INPUT TYPE=SUBMIT></FORM>");

session.putValue("state", "1");

} else {

String state = (String) session.getValue("state");

if (state.equals("1")) {

String name = (String) request.getParameter("handle");

int users =

((Integer) context.getAttribute("users")).intValue() + 1;

context.setAttribute("users", new Integer(users));

session.putValue("name", name);

out.println("Hello " + name + ", you are user number " + users);

session.putValue("state", "2");

} else /* state.equals("2") */ {

String name = (String) session.getValue("name");

out.println("Goodbye " + name);

session.invalidate();

}

}

out.println("</BODY></HTML>");

}

}

Clients running this service are guided through a series of interactions: first, the ser-
vice prompts for the client’s name, then the name and the total number of invocations

1http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/and
http://java.sun.com/docs/books/tutorial/servlets/

124 The <bigwig> Project

is shown, and finally a “goodbye” page is shown. TheServletContext object con-
tains information shared among all sessions, while theHttpSession object is local to
each session. The code is essentially aswitch statement that branches according to
the current interaction. An alternative approach is to make a servlet for each kind of
interaction. In spite of the API, we still need to explicitly maintain both the state and
the identity of the session.

The model of sessions that is supported by Servlets and other script-centered
approaches tends to fit better with “shopping basket applications” where the client
browses freely among dynamically generated pages than with complex services that
need to impose more strict control on the interactions.

9.2.2 The Page-Centered Approach

The page-centered approach is covered by languages such as ASP, PHP, and JSP, where
the dynamic code is embedded in the HTML pages. In a sense, this is the inverse of
the script-centered languages where HTML fragments are embedded in the program
code. When a client requests a page, a specialized Web server interprets the embedded
code, which typically produces additional HTML snippets while accessing a shared
database. In the case of JSP, implementations work by compiling each JSP page into a
servlet using a simple transformation.

This approach is often beautifully motivated by simple examples, where pages are
mainly static and only sporadically contain computed contents. For example, a page
that displays the time of day or the number of accesses clearly fits this mold. The
following JSP page dynamically inserts the current time together with a title and a
user name based on the CGI input parameters:

<HTML><HEAD><TITLE>JSP Demo</TITLE></HEAD><BODY>
Hello <%

String name = request.getParameter("who");

if (name ==null) name = "stranger";

out. print(name);

%>!

<P>
This page was last updated: <%= new Date() %>

</BODY></HTML>

The special<%. . .%> tags contain Java code that is evaluated at the time of the request.
As long as the code parts only generate strings without markup, it is easy to statically
guarantee that all pages shown are valid HTML and other relevant properties. But
as the services become more complex, the page-centered approach tends to converge
towards the script-centered one. Instead of a mainly static HTML page with some code
inserted, the typical picture is a single large code tag that dynamically computes the
entire contents. Thus, the two approaches are closely related, and the page-centered
technologies are superior only to the degree in which their scripting languages are
better designed.

The ASP and PHP languages are very reminiscent of JSP. ASP is closely tied to
Microsoft’s Internet Information Server, although other implementations exist. Instead
of being based on Java, it defines a language-independent connection between HTML

9.2 Session-Centered Web Services 125

SESSION
THREAD

PAGE
HTML

Figure 9.1: Client-server sessions in Web services. On the left is the client’s browser, on
the right a session thread running on the server. The tread is initiated by a client request and
controls the sequence of interactions.

pages and scripting languages, typically either Visual Basic Script or Microsoft’s ver-
sion of JavaScript. PHP is a popular Open Source variant whose scripting language is
a mixture of C, Java, and Perl.

These languages generally provide only low-level support for tracking client ses-
sions and maintaining session state. Cookies, hidden input fields, and some library
support is the common solution. For other Web service aspects also, such as databases
and security, there is often a wide range of libraries available but no direct language
support.

9.2.3 The Session-Centered Approach

The pure session-centered approach was pioneered by the MAWL project. Here a
service is viewed as a collection of distinctsessionsthat access some shared data. A
client may initiate a sessionthread, which is conceptually a process running on the
server. Interaction with the client is viewed as remote procedure calls from the server,
as known from classical construction of distributed systems but with the roles reversed.

The flow of an entire session is programmed as a single sequential program, which
is closer to ordinary programming practice and offers the compiler a chance to obtain
a global view of the service. Figure 9.1 illustrates the flow of control in this approach.
Important issues such as concurrency control become simpler to understand in this
context and standard programming solutions are more likely to be applicable.

The following MAWL program is equivalent to the previous Servlet example:

static int users = 0;

session GreetingSession {

auto form {} -> {handle } hello;

auto string name = hello.put().handle ;

auto form {string who , int count } -> {} greeting;

users++;

greeting.put({name, users});

auto form {string who } -> {} goodbye;

126 The <bigwig> Project

goodbye.put({name});

}

The HTML templateshello , greeting , andgoodbye are placed in separate files.
Here ishello.mhtml:

<HTML><HEAD><TITLE>MAWL Demo</TITLE></HEAD><BODY>

Enter your name: <INPUT NAME=handle >

</BODY></HTML>

andgreeting.mhtml:

<HTML><HEAD><TITLE>MAWL Demo</TITLE></HEAD><BODY>

Hello <MVAR NAME=who >, you are user number <MVAR NAME=count >

</BODY></HTML>

The template forgoodbye is similar. A form tag and a continue button are implicitly
inserted. Variables declaredstatic contain persistent data, while those declaredauto

contain per-session data, also calledlocal data. Theform variables are declared with
two record types. The former defines the set of gaps that occur in the template, and
the latter defines the input fields. In the templates, gaps are written withMVAR tags.
Template variables all have aput method. When this is executed, the arguments are
inserted in the gaps, the resulting page is sent to the client who fills in the fields and
submits the reply, which is turned into a record value in the program. Note how the
notion of sessions is explicit in the program, that private and shared state is simply a
matter of variable declaration modifiers, and that the templates are cleanly separated
from the service logic. Obviously, the session flow is clearer, both to the programmer
and to the compiler, than with the non-session based approaches. One concrete benefit
is that it is easy to statically check both validity and correct use of input fields.

The main force of the session-centered approach is for services where the control
flow is complex. Many simple Web services are in actuality more loosely structured. If
all sessions are tiny and simply do the work of a server module from the page-centered
approach, then the overhead associated with sessions may seem too large. Script-
centered services can be seen as a subset of the session-centered where every session
contains only one client interaction. Clearly, the restriction in the script-centered and
the page-centered languages allows significant performance improvements. For in-
stance, J2EE Servlet/JSP servers employ pools of short-lived threads that store only
little local state. For more involved services, however, the session-centered approach
makes programming easier, since session management comes for free.

9.2.4 Structure of <bigwig> Services

The overall structure of<bigwig> programs is directly inspired by MAWL. A<bigwig>
program contains a complete specification of a Webservice. A service contains a col-
lection of namedsessions, each of which essentially is an ordinary sequential program.
A client has the initiative to invoke a thread of a given session, which is a process on
the server that executes the corresponding sequential code and exclusively communi-
cates with the originating client. Communication is performed byshowingthe client
an HTML page, which implicitly is made into a form with an appropriate URL return

9.2 Session-Centered Web Services 127

address. While the client views the given document, the session thread is suspended
on the server. Eventually the client submits the form, which causes the session thread
to be resumed and any form data entered by the client to bereceivedinto program vari-
ables. A simple<bigwig> service that communicates with a client, as in the Servlet
and MAWL examples, is the following:

service {

html hello = <html >Enter your name: <input name=handle ></html >;

html greeting =

<html >Hello <[who]>, you are user number <[count]></html >;

html goodbye = <html >Goodbye <[who]></html >;

shared int users = 0;

session Hello() {

string name;

show hello receive [name=handle];

users++;

show greeting<[who =name,count =users];

show goodbye<[who =name];

}

}

The program structure is obviously as in MAWL, except that the session code and
the templates are wrapped into aservice block. For instance, theshow-receive state-
ments produce the client interactions similarly to theputmethods in MAWL. However,
<bigwig> provides a number of new features. Most importantly, HTML templates are
nowfirst-class values. That is,html is a built-in data type, and its values can be passed
around and stored in variables as any other data type. Also, the HTML templates are
higher-order, meaning that instead of only allowing text strings to be inserted into the
template gaps, we also allow insertion of other templates. This is done with the special
plugoperator,x<[y=z] which inserts a string or templatez into they gaps of thex tem-
plate. Clearly, this constitutes a more flexible document construction mechanism, but
it also calls for new ideas for statically verifying HTML validity, for instance. This is
the topic of Section 9.3. Other new features include the techniques for improving form
field validation and concurrency control, together with the syntax macro mechanism,
all of which are described in the following sections.

9.2.5 A Session-Based Runtime Model

The session-based model can be implemented on top of the CGI protocol. One naive
approach is to create session threads as CGI scripts where all local state is stored on
disk. At every session interaction, the thread must be started again and restore its local
state, including the call stack, in order to continue execution. A better approach is
to implement each session thread as a process that runs for the whole duration of the
session. For every interaction, a tiny transient CGI script, called aconnector process,
is executed, acting as a pipe between the Web server and the session process. This
approach resembles FastCGI [176], and is described in detail in [38]. Our newest

128 The <bigwig> Project

WWW
SESSION

PROCESS

WEB SERVER

HTML
FILE

Figure 9.2:Session-based runtime model with reply indirection. Each session thread is im-
plemented as a separate process that writes its HTML reply to a designated file.

implementation is instead based on a specialized Apache server module.2 Naturally,
this is much faster than the CGI solutions since it does not create a new process for
every single interaction, but only for the session processes.

Two common sources of problems with standard implementations of sessions are
history buffers and bookmarking features found in most browsers. With history buffers
and the “back” button, the users can step back to a previous interaction, and either
intentionally or unintentionally resubmit an old input form. Sometimes this can be a
useful feature, but more often this causes confusion and annoyance to the users who
may, for instance, order something twice. It is a general problem that the information
shown to the user in this way can be obsolete since it is tailor-made only for the exact
time of the initial request. Since the information was generated from a shared database
that may have changed entirely, it does generally not make sense to “step back in
time” using the history buffer. This is no different from ordinary programs. Even if the
programmer was aware of this and added serial number checks, the history buffer will
be full of URLs to obsolete requests. If the service really needs a “back” feature, it
can be programmed explicitly into the flow of the sessions. It also becomes hazardous
to try to use bookmarks to temporarily suspend a session. Invoking the bookmark will
typically cause a CGI script to be executed a second time instead of just displaying its
results again.

<bigwig> provides a simple but unique solution to these problems: Each session
thread is associated with a URL which points to a file on the server containing the
latest HTML page shown to the client. Instead of sending the contents directly to the
client at everyshow statement, we redirect the browser to this URL, as illustrated in
Figure 9.2. Since the URL serves as the identification of the session thread, this solves
the problems mentioned above: The history list of the browser now only contains a
single entry for the duration of the session, the sessions can now be bookmarked for
later use, and in addition, the session identity URL can be passed around manually—
to another browser, for instance—without problems. When using URLs instead of
cookies to represent the session identity, it also becomes possible for a single user to
simultaneously run multiple sessions in different windows but with the same browser.

Furthermore, with this simple solution we can automatically provide the client
with feedback while the server is processing a request. This is done by, after a few
seconds, writing a temporary response to the HTML file, which informs the client

2Seehttp://httpd.apache.org/.

9.3 Dynamic Construction of HTML Pages 129

about the status of the request. This temporary file reloads itself frequently, allowing
for updated status reports. When the final response is ready, it simply overwrites the
temporary reply file, causing the reloading to stop and the response to be shown. This
simple technique may prevent the client from becoming impatient and abandoning the
session.

Additionally, the<bigwig> runtime system contains a garbage collector process
that monitors the service and shuts down session processes abandoned by the clients.
By default, this occurs if the client has not responded within 24 hours. The sessions
are allowed to execute some clean-up actions before terminating.

9.3 Dynamic Construction of HTML Pages

In MAWL, all HTML templates are placed in separate files and viewed as procedures
of a kind, with the arguments being strings that are plugged into gaps in the template
and the results being the values of the form fields that the template contains. This al-
lows a complete separation of the service code and the HTML code. Two benefits are
that static guarantees are possible and that the work of programmers and HTML de-
signers can be separated, as previously mentioned. A disadvantage is that the template
mechanism becomes too rigid compared to the flexibility of theprint-like statements
available in the script-centered languages. However, those languages permit essen-
tially no static guarantees or work separation. Furthermore, with the script-centered
solutions the HTML must often be constructed in a linear fashion from top to bottom,
instead of being composed from components in a more logical manner. The<bigwig>
solution provides the best of the two worlds. Higher-order HTML templates as first-
class values are in practice as flexible asprint statements, and the MAWL benefits are
still preserved.

We defineDynDoc as the sub-language of<bigwig> that deals with document
construction, that is, the control structures, HTML template constants, variables and
assignments, plug operations, andshow-receive statements. Template constants are
delimited by<html>. . .</html>. Gaps are written with special<[. . .]> tags. Special
attribute gapscan be used in place of attribute values, as shown in the example below.
Of course, only strings should be plugged into such gaps, not templates with markup.
The plug operationx<[y=z] creates a new template by inserting a copy ofz in the y
gaps of a copy ofx. When used in ashow-receive statement, a template is converted
to a complete document by implicitly plugging empty strings into all remaining gaps.
Also, it is automatically wrapped into aform element whose action is to continue the
session, unless the session terminates immediately after. And finally, it is inserted into
an outermost template like

<html><head><title>service</title></head><body>. . .</body></html>

unless already inside abody element. The following example illustrates that documents
can be built gradually using higher-order templates:

service {

html brics = <html >

<head><title>Hi!</title></head>

<body bgcolor=[color]><[contents]></body>

130 The <bigwig> Project

<body bgcolor="#9966ff">

</body>

</body>

<body bgcolor= >

<head><title>Hi!</title></head>

<body bgcolor= >

<head><title>Hi!</title></head>

<head><title>Hi!</title></head>

</body>

,

.

Hello

welcome to

Hello

,

.welcome to

color

contents

.

color

cont
ents

,

welcome to

Hello who

what

greeting:

who

what

brics:

BRICS

Stranger

what

who

BRICS

h:

#9966ff

Stranger

color

Figure 9.3:Building a document by plugging into template gaps. The construction starts with
the five constants on the left and ends with the complete document on the right.

</html >;

html greeting = <html >Hello <[who]>, welcome to <[what]>.</html >;

session Welcome() {

html h = brics<[contents =greeting];

show h<[color ="#9966ff",who ="Stranger",what ="BRICS"];

}

}

The construction process is shown in Figure 9.3. Note that gaps may be plugged in
any order, not necessarily “bottom up”. MAWL provides little functionality beyond
plugging text strings into gaps. The specialMITER tag allows list structures to be built
iteratively, but still precludes general tree-like structures. The following<bigwig>
example uses a recursive function to construct an HTML document representing a
binary tree:

service {

html list = <html ><[gap]><[gap]></html >;

html tree(int i) {

if (i==0) return <html >foo</html >;

return list<[gap =tree(i-1)];

}

session ShowTree() {

show tree(10);

}

}

Something similar could not be done with MAWL’s first-order templates. In a script-
centered or a page-centered language it is of course possible, but not with such a simple
program structure reflecting the logical composition of the document, since it must be
generated linearly by printing to the output stream. An alternative is to use an HTML
tree constructor library, but that forces documents to be built bottom-up, which is often
inconvenient.

The use of higher-order templates generally leads to programs with a large number
of relatively small template constants. For that reason it is convenient to be able to

9.3 Dynamic Construction of HTML Pages 131

inline the constants in the program code, as in these examples, rather than always
placing them in separate files. However, we do offer explicit support for factoring out
the work of graphical designers using a#include construct as in C. Alternatively, each
HTML constant in a<bigwig> program may have an associated URL, pointing to an
alternate, presumably more elaborate, version:

service {

session Hello {

show <html >Hello World</html > @ "fancy/hello.html";

}

}

The compiler retrieves the indicated file and uses its contents in place of the constant,
provided it exists and contains well-formed HTML. In this manner, the programmer
can use plain versions of the templates while a graphical designer simultaneously pro-
duces fancy versions. The compiler checks that the two versions have the same gaps
and fields. In order to accommodate the use of HTML authoring tools, we permit gaps
to be specified in an alternative syntax using special tags.

The DynDoc sub-language was introduced in [195] where it is also shown how this
template model can be implemented efficiently with a compact runtime representation.
The plug operation takes only constant time, and showing a document takes time linear
in the size of the output. Also, the size of the runtime representation of a document
may be only a fraction of its printed size. For example, a binary tree of heightn shown
earlier has a representation of sizeO(n) rather thanO(2n).

9.3.1 Analysis of Template Construction and Form Input

We wish to devise a type checker that allows as liberal a use of dynamic documents
as possible, while guaranteeing that no errors occur. More precisely, we would like to
verify the following properties at compile time:

• at every plug operation,x<[y=z], there always exists ay gap inx;

• the gap types are compatible with the values being plugged in, in particular,
HTML with markup tags is never inserted into attribute gaps;

• for everyshow-receive statement, the fields in thereceive part always exist in
the document being shown;

• the field types are compatible with thereceive parts, for instance, a select menu
allowing multiple items to be selected yields a vector value; and

• only valid HTML 4.01 [185] is ever sent to the clients.

The first four properties are addressed in [195] as summarized below. The last property
is covered in the following section.

It is infeasible to explicitly declare the exact types of higher-order templates for
two reasons. First, all gaps and all fields and their individual capabilities would have
to be described, which may become rather voluminous. Second, this would also imply
that an HTML variable has the same type at every program point, which is too restric-
tive to allow templates to be composed in an intuitive manner. Consequently, we rely

132 The <bigwig> Project

large

����

ε

kind text

textitems

items

 <[]>

kind
items

<[]>

 <[]><ul class=[]> text

items

Figure 9.4:A summary graph representing a set of HTML fragments.

instead on a flow analysis to infer the types of template variables and expressions at
every program point. In our experience, this results in a liberal and useful mechanism.

We employ a monovariant interprocedural flow analysis, which guarantees that
the form fields in a shown document correspond to those that are received, and that
gaps are always present when they are being plugged. This analysis fits into standard
data-flow frameworks [174], however it applies a highly specialized lattice structure
representing the template types. For every template variable and expression that occurs
in the given program, we associate a lattice element that abstractly captures the relevant
template properties. The lattice consists of two components: agap mapand afield
map. The gap map records for every occurring gap name whether or not the gap occurs
at that point, and in case it does occur, whether it is an HTML gap or an attribute gap.
Similarly, the field map records for every occurring input field name information about
the input fields, which can be of type text, radio, select, or checkbox, representing the
different interaction methods.

Given a<bigwig> program we construct a flow graph. This is quite easy since
there are no higher-order functions or virtual methods. All language constructs that
are not included in DynDoc are abstracted away. It is now possible to define transfer
functions that abstractly describe the effect of the program statements. This produces
a constraint system which we solve using a classical fixed point iteration technique.
From this solution, we can see that the first three properties mentioned above are sat-
isfied, and, if not, generate error messages indicating the cause.

With this approach, the programmer is only restricted by the requirement that at
every program point the template type of an expression must be fixed. In practice,
this does not limit the expressibility, rather, it tends to enforce a more comprehensible
structure of the programs. Also, the compiler silently resolves conflicts at flow join
points by implicitly plugging superfluous gaps with empty content.

9.3.2 HTML Validity Analysis

The fifth property, HTML validity, is addressed with a similar but more complicated
approach, as described in [39].

The main idea is the following: We define a finite structure called asummary graph
that approximates the set of templates that a given HTML expression may evaluate to.
This structure contains the plug operations and the constant templates and strings that
are involved.

As an example, consider the summary graph in Figure 9.4. The nodes correspond
to program constants and the edges correspond to plug operations. For instance, the
li template may be plugged into theitems gaps in theul template here. The node

9.3 Dynamic Construction of HTML Pages 133

labeled• represents arbitrary text strings andε is the empty string. The root of the
graph corresponds to the outermost template. By “unfolding” this graph according to
the plug edges, this summary graph defines a possibly infinite set of HTML fragments
without gaps (in this case the set of allul lists of classlargewith one or more character
data items). This structure turns out to provide an ideal abstraction level for verifying
HTML validity.

Again, we apply a data-flow analysis to approximate the flow of template values
in the program. This time we use a lattice consisting of summary graphs. It is possible
to model plug operations with good precision using transfer functions; however, two
preliminary analyses are required: one for tracking string constants, and one, called a
gap track analysis, for tracking the origins of gaps. The latter tells us, for each template
variable and gap name, which constant templates containing such a gap can flow into
that variable at any given program point. Clearly, these analyses are highly specialized
for the domain of dynamic document construction and for<bigwig>’s higher-order
template mechanism, but they all fit into the standard data-flow analysis frameworks.
For more details see [39].

Once we have the summary graphs for all theshow statements, we need to ver-
ify that the sets of document fragments they define are all valid HTML according to
W3C’s official definition. To simplify the process we reformulate the notion of Doc-
ument Type Definition (DTD) as a simpler and more convenient formalism which we
call abstract DTD. An abstract DTD consists of a number ofelement declarations,
whereof one is designated as the root. An element declaration defines the require-
ments for a particular type of element. Each declaration consists of an element name,
a set of names of attributes and subelements that may occur, and a boolean expres-
sion constraining the element type instances with respect to their attribute values and
contents. The official DTD for HTML is easily rewritten into our abstract DTD nota-
tion. In fact, the abstract DTD version captures more validity requirements than those
expressible by standard DTDs and merely appear as comments in the HTML DTD.
As a technicality, we actually work with XHTML 1.0 which is an XML reformulation
of HTML 4.01. There are no conceptual differences, except that the XML version
provides a cleaner tree view of documents for the analysis.

Given a summary graph and an abstract DTD description of HTML, validity can
be checked by a recursive traversal of the summary graph starting at the roots. We
memoize intermediate results to ensure termination, since the summary graphs may
contain loops. If no violations are encountered, the summary graph is valid. Since
all validity properties are local to single elements and their contents, we are able to
produce precise error messages in case of violations. Analysis soundness is ensured
by the following property: if all summary graphs corresponding toshow expressions
are verified to be valid with respect to the abstract DTD, then all concrete documents
are guaranteed to be valid HTML.

The program analyses described here all have high worst-case complexities due
to complex lattices. Nevertheless, our implementations and experiments show that
they work well in practice, even for large intricate programs. These experiments are
mentioned in Section 9.8.

134 The <bigwig> Project

9.3.3 Caching of Dynamically Generated HTML

Traditional Web caching based on HTTP works by associating an expiration time to
all documents sent by the servers to the clients. This has helped in decreasing both
network and server load and response times. By default, no expiration is set, and, by
using “now”, caching is effectively disabled. This technique was designed primarily
for documents whose contents rarely or never change, not for documents dynamically
generated by interactive Web services. The gradual change from statically to dynami-
cally generated documents has therefore caused the impact of Web caching to degrade.

Existing proposals addressing this include Active Cache, HPP, and various server-
based techniques, as explained in the survey in [36]. Server-based techniques aim
to relieve the server of redundant computations, not to decrease network load. They
typically work by simplifying assumptions, for instance that many interactions can
be handled without side-effects on the global service state, that interactions are often
identical for many clients, or that the dynamics of the pages is limited to, e.g., banner
ad rotation. None of this applies to complex interactive services. Active Cache is
a proxy-based solution that employs programmable cache applets. This can be very
effective, but it requires both specialized proxy servers and careful programming to
ensure consistency between the proxies and the main server.

HPP tries to separate the constant parts from the dynamic parts of the generated
documents. We apply a similar technique. In contrast to HPP, our solution is entirely
automatic, while HPP requires extra programming. The idea is to exploit the clear
division between the service code and the HTML templates in<bigwig>. In our
normal implementation of DynDoc, the internal template representation is converted
to an HTML document on the server when theshow statement is executed. Instead, we
now store each template constant in a fixed file on the server, and defer the conversion
to the client using a JavaScript representation of the dynamic parts. The template files
can now be cached by the ordinary browser caches. More details of the technique can
be found in [36]. We summarize our evaluation results in Section 9.8.

9.3.4 Code Gaps and Document Clusters

In the following, we describe two extensions to the DynDoc language. Occasionally,
the page-centered approach is admittedly more appropriate than the session-centered
one. Consider the following example, which gives the current time of day:

service {

session Time() {

html h = <html >Right now, the time is <[t]></html >;

show h<[t =now()];
}

}

An equivalent but less clumsy version can be written usingcode gaps, which implicitly
represent expressions whose values are computed and plugged into gaps when the
document is being shown:

service {

session Time() {

html h = <html >Right now, the time is <[(now())]></html >;

9.4 Form Field Validation 135

show h;

}

}

Documents with code gaps remain first-class values, since the code can only access
the global scope. Note that code gaps in<bigwig> are more powerful than the usual
page-centered approach, since the code exists in the full context of sessions, shared
variables, and concurrency control. In fact, with the idea ofpublisheddocuments
described in Section 9.6, the page-centered approach is now included as a special case
of <bigwig>.

Some services may want to offer the client more than a single document to browse,
for example, the response could be a tiny customized Web site. In<bigwig> we have
experimented with support for showing suchdocument clusters. The difficulty is to
provide a simple notation for specifying an arbitrary graph of documents connected
by links. For an HTML variablex, we introduce thedocument referencenotation&x,
which can be used as the right-hand side of a plug operation. It will eventually expand
into a URL, but not until the document is finally shown. Until then, the flow analysis
just records the connection between the gap and the variable. When a document is
shown, the transitive closure of document references is computed, and the resulting
cluster of documents is produced with references replaced by corresponding URLs.
The following example shows a cluster of two documents that are cyclically connected.
Notice that the cluster can be browsed freely without cluttering the control-flow:

service {

session Cluster() {

html greeting = <html >

Hi! Click here for a kind word.

</html >;

html kind = <html >How nice to see you! Back</html >;

kind = kind<[there = &Greeting];

show greeting<[where =&kind];

}

}

The compiler checks that all cluster documents with submit buttons contain the same
form fields. It is also necessary to perform an escape analysis to ensure that document
variables are not exported out of their scope.

9.4 Form Field Validation

A considerable effort in Web programming is expended on form field validation, that
is, on checking whether the data supplied by the client in the form fields is valid, and
when it is not, producing error messages and requesting the fields to be filled in again.
Apart from details about regular expression matching, the main problem is to program
a solution that is robust, efficient, and user friendly.

One approach isserver-sidevalidation, where the form fields are validated on the
server when the page has been submitted. None of the languages mentioned in Sec-
tion 9.1 provide any help for this, except for the regular expression matching in Perl.
Therefore, the main logic of the service often becomes cluttered with validation code.

136 The <bigwig> Project

In a sense, every program part that sends a page to a client must be wrapped into a
while-loop that repeats until the input is valid. Other disadvantages include wasting
bandwidth and causing delays to the users.

The alternative isclient-sidevalidation, which usually requires the programmer
to use JavaScript in the pages being generated. This permits more sophisticated user
interactions and reduces the communication overhead. However, client-side validation
should not be used alone. The reason is that the client is perfectly capable of bypassing
the JavaScript code, so an additional server side validation must always be performed.
Thus, the same code must essentially be written both in JavaScript and in the server
scripting language. In practice, writing JavaScript input validators that capture all
validity requirements and at the same time are also user friendly can be very difficult,
since, unfortunately, most browsers differ in their JavaScript support. Whole Web sites
are dedicated to explaining how the various subsets of JavaScript work in different
browsers.3

In <bigwig> we have introduced a domain-specific sub-language, called Power-
Forms, for form field validation [37]. It handles complex interdependencies between
form fields, and the compiler generates the required code for both client and server.
By compiling into JavaScript, only the PowerForms implementors need to know the
details of how browsers support JavaScript, rather than all Web service programmers.
Also, the programmer does not need to write essentially the same code in a server-side
version and a client-side version anymore.

PowerForms is a declarative language. Informally, this means that the programmer
specifies what the input requirements are, not how to check them. In its simplest form,
PowerForms allows regular-expressionformatsto be associated to form fields:

service {

format Digit = range (’0’,’9’);

format Alpha = union (range (’a’,’z’),range (’A’,’Z’));

format Word = concat (Alpha,star (union (Digit,Alpha)));

format Email = concat (Word,"@",Word,star (concat (".",Word)));

session Validate() {

html form = <html >

Please enter your email address:

<input name=email type=text size=20>

<format name =Email field =email >

</html >;

string s;

show form receive [s=email];

}

}

This example shows how to constrain input in theemail field to a certain regular ex-
pression. The<bigwig> compiler generates the JavaScript code that checks the user
input on the client-side and provides help and error messages, and also the code that
performs the server-side double-check. “Traffic-light” icons next to the input fields
provide the user with continuous feedback about the string entered so far. “Green”
means valid, “yellow” means invalid but a prefix of something valid, and “red” means
not a prefix of something valid. Other alternatives can be chosen, such as checkmark

3See e.g.http://www.webdevelopersjournal.com/articles/javascript
limitations.html or http://www.xs4all.nl/~ppk/js/version5.html.

9.4 Form Field Validation 137

symbols, arrows, etc. We also allow the usual UNIX-style syntax for regular expres-
sions in the subset of our notation that excludes the intersection and complement op-
erators.

Formats can be associated to all kinds of form fields, not just those of typetext.
For select fields, the format is used to filter the available options. Forradio and
checkbox fields, only the permitted buttons can be depressed.

As noted in [79], many forms contain fields whose values may be constrained by
those entered in other fields. A typical example is a field that is not applicable if some
other field has a certain value. Such interdependencies are almost always handled on
the server, even if the rest of the validation is performed on the client. Presumably, the
reason is that interdependencies require even more delicate JavaScript programming.
The<bigwig> solution is to allow such field interdependencies to be specified using an
extension of the regular expressions: theformat tags are extended to describe boolean
decision trees, whose conditions probe the values of other form fields and whose leaves
are simple formats. The interdependence is resolved by a fixed-point process computed
on the client by JavaScript code automatically generated by the<bigwig> compiler.
A simple example is the following, where the client chooses a letter group and the
select menu is then dynamically restricted to those letters:

service {

format Vowel = charset ("aeiouy");

format Consonant = charset ("bcdfghjklmnpqrstvwxz");

html form = <html >

Favorite letter group:

<input type=radio name=group value=vowel checked>vowels

<input type=radio name=group value=consonant>consonants

Favorite letter:

<select name=letter >

<option value="a">a

<option value="b">b

<option value="c">c

...

<option value="z">z

</select>

<format field =letter >

<if ><equal field =group value =vowel>

<then ><format name =Vowel></then >

<else ><format name =Consonant></else >

</if >

</format >

</html >;

session Letter() {

string s;

show form receive [s=letter];

}

}

ColdFusion [46] provides a mechanism reminiscent of PowerForms. However, it does
not support field interdependencies or validation of non-text fields. PowerForms is
shown to be a simple language with a clean semantics that appears to handle most
realistic situations. We have implemented it both as part of the<bigwig> compiler

138 The <bigwig> Project

and as a stand-alone tool that can be used to add input validation to general HTML
pages.

9.5 Concurrency Control

As services have several session threads, there is a need for synchronization and other
concurrency controls to discipline the concurrent behavior of the active threads. A
simple case is to control access to the shared variables using mutex regions or the
readers/writers protocol. Another issue is enforcement of priorities between different
session kinds, such that a management session may block other sessions from running.
Another example is event handling, where a session thread may wait for certain events
to be caused by other threads.

We deal with all of these scenarios in a uniform manner, based on a central con-
troller process in the runtime system, which is general enough to enforce a wide range
of safety properties [194]. The support for concurrency control in the previously men-
tioned Web languages is limited to more traditional solutions, such as file locking,
monitor regions, or synchronized methods.

A <bigwig> service has an associated set ofevent labels. During execution, a
session thread may request permission from the controller to pass a specific event
checkpoint. Until such permission is granted, the session thread is suspended. The
policy of the controller must be programmed to maintain the appropriate global invari-
ants for the entire service. Clearly, this calls for a domain-specific sub-language. We
have chosen a well-known and very general formalism, temporal logic. In particular,
we use a variation of monadic second-order logic [208]. A formula describes a set
of strings of event labels, and the associated semantics is that the trace of all event
labels being passed by all threads must belong to that set. To guide the controller, the
<bigwig> compiler uses the MONA tool [131] to translate the given formula into a
minimal deterministic finite-state automaton that is used by the controller process to
grant permissions to individual threads. When a thread asks to pass a given event label,
it is placed in a corresponding queue. The controller continually looks for nonempty
queues whose event labels correspond to enabled transitions from the current DFA
state. When a match is found, the corresponding transition is performed and the cho-
sen thread is resumed. Of course, the controller must be implemented to satisfy some
fairness requirements. All regular trace languages can be expressed in the logic.

Applying temporal logics is a very abstract approach that can be harsh on the aver-
age programmer. However, using syntax macros, which are described in Section 9.6,
it is possible to capture common concurrency primitives, such as semaphores, mutex
regions, the readers/writers protocol, monitors, and so on, and provide high-level lan-
guage constructs hiding the actual formulas. The advantage is that<bigwig> can be
extended with any such constructs, even some that are highly customized to particular
applications, while maintaining a simple core language for concurrency control.

The following example illustrates a simple service that implements a critical region
using the event labelsenter andleave:

service {

shared int i;

session Critical() {

9.5 Concurrency Control 139

constraint {

label leave,enter;

all t1,t3: (t1<t3 && enter(t1) && enter(t3)) =>

is t2: t1<t2 && t2<t3 && leave(t2);

}

wait enter;

i = i+1;

wait leave;

}

}

The formula states that for any twoenter events there is aleave event in between,
which implies that at any time at most one thread is allowed in the critical region.
Using syntax macros, programmers are allowed to build higher-level abstractions such
that the following can be written instead:

service {

shared int i;

session Critical() {

region {

i = i+1;

}

}

}

We omit the macro definitions here. In its full generality, thewait statement is more
like a switch statement that allows a thread to simultaneously attempt to pass several
event labels and request a timeout after waiting a specified time.

A different example implements an asynchronous event handler. Without the
macros, this could be programmed as

service {

shared int i;

constraint {

label handle,cause;

all t1: handle(t1) => is t2: t2<t1 && cause(t2) &&

(all t3: t2<t3 && t3<t1 => !handle(t3));

}

session Handler() {

while (true) {

wait handle;

i++;

}

}

session Application() {

wait cause;

}

}

This nontrivial formula allows the handler to proceed, without blocking the applica-
tion, whenever the associated event has been caused at least once since the last invoca-
tion of the handler. Fortunately, the macros again permit high-level abstractions to be
introduced with more palatable syntax:

140 The <bigwig> Project

service {

shared int i;

event Increment {

i++;

}

session Application() {

cause Increment;

}

}

The runtime model with a centralized controller process that ensures satisfaction of
safety constraints is described in [38]. The use of monadic second-order logic for
controller synthesis was introduced in [194] where additionally the notions oftriggers
andcountersare introduced to gain expressive power beyond regular sets of traces,
and conditions for distributing the controller for better performance are defined.

The session model provides an opportunity to get a global view of the concurrent
behavior of a service. Our current approach does not exploit this knowledge of the
control flow. However, we plan to investigate how it can be used in specialized program
analyses that check whether liveness and other concurrency requirements are complied
with.

9.6 Syntax Macros

As previously mentioned,<bigwig> contains a notion of macros. Although not spe-
cific to Web services, this abstraction mechanism is an essential part of<bigwig> that
serves to keep the sub-languages minimal and to tie them together.

A macro language can be characterized by its level of operation which is either
lexical or syntactic. Lexical macro languages operate on sequences of tokens and
conceptually precede parsing. Due to the independence of syntax, macros often have
unintended effects, and parse errors are only discovered at invocation time. Conse-
quently, programmers are required to consider how individual macro invocations are
being expanded and parsed. Syntactic macros amend this by operating on parse trees
instead of token sequences [219]. Types are added to the macro arguments and bodies
in the form of nonterminals of the host language grammar. Macro definitions can now
be syntax-checked at definition time, guaranteeing that parse errors no longer occur as
a consequence of macro expansion. Using syntax macros, the syntax of the program-
ming language simply appears to be extended with new productions.

Our macros are syntactic and based entirely on simple declarative concepts such
as grammars and substitution, making them easy and safe to use by ordinary Web
service programmers. Other macro languages, such as MS2, Scheme macros, and
Maya, instead apply full Turing complete programming languages for manipulating
parse trees at compile time, making them more difficult to use.

As an initial example, we extend the core language of<bigwig>with arepeat-until
control structure that is easily defined in terms of awhile loop.

macro <stm> repeat <stm S> until (<exp E>) ; ::= {

{

bool first = true ;

while (first || !<E>) {

9.6 Syntax Macros 141

<S>

first = false ;

}

}

}

The first line is the header of the macro definition. It specifies the nonterminal type
of the macro abstraction and the invocation syntax, including the typed arguments.
As expected, the type of therepeat-until macro is<stm>, representing statements.
This causes the body of the macro to be parsed as a statement and announces that
invocations are only allowed in places where an ordinary statement would be. We
allow the programmer to design the invocation syntax of the macro. This is used to
guide parsing and adds to the transparency of the macro abstractions. This particular
macro is designed to parse two appropriately delimited arguments, a statementS and
an expressionE. The body of the macro implements the abstraction using a boolean
variable and awhile loop. When the macro is invoked, the identifiers occurring in the
body areα-converted to avoid name clashes with the invocation context.

With a concept ofpackages, macros can be bundled up in collections. Our experi-
ence with<bigwig> programming has led us to develop a “standard macro package”,
std.wigmac, that extends the sub-languages of<bigwig> in various ways and has
helped keep the language minimal. For instance, the form field validation language
is extended with anoptional regular expression construct, and database language
macros transform SQL-like queries into our own iterativefactor construction. Also,
various composite security modifiers are defined, and concurrency control macros,
such as theregion from Section 9.5, gradually build on top of each other to imple-
ment increasingly sophisticated abstractions.

Macros are also used to tie together different sub-languages, making them collabo-
rate to provide tailor-made extensions of the language. For instance, the sub-languages
dealing with sessions, dynamic documents, and concurrency control can be combined
into apublish macro. This macro is useful when a service wishes to publish a page
that is mostly static, yet needs to be recomputed once in a while, when the underlying
data changes. The following macros efficiently implements such an abstraction:

macro <toplevels> publish <id D> { <exp E> } ::= {

shared html <D>~cache;

shared bool <D>~cached;

session <D>() {

exclusive if (!<D>~cached) {

<D>~cache = <E>;

<D>~cached = true ;

}

show <D>~cache;

}

}

macro <stm> touch <id d> ; ::= {

<d>~cached = false ;

}

Thepublish macro recomputes the document if the cache has expired and then shows
the document, while thetouch macro causes the cache to expire. The~ operator is

142 The <bigwig> Project

used to create new identifiers by concatenating others. Using this extended syntax, a
service maintaining a high-score list, for example, can look like this:

require "publish.wigmac"

service {

shared int record;

shared string holder;

publish HiScore {

computeWinnerDoc(record, holder)

}

session Play() {

int score = play();

if (score>=record) {

show EnterName receive [holder=name];

record = score;

touch HiScore;

} else {

show <html >Sorry, no record.</html >;

}

}

}

Here the high-score document is only regenerated when a player beats the record. This
code is clearly easier to understand and maintain than the corresponding expanded
code.

The expressive power of syntax macros is extended with a concept ofmetamor-
phisms, as explained in [41]. This declaratively permits tree structures to be trans-
formed into host language syntax without compromising syntactic safety, something
not possible with other macro languages. Using this mechanism in an extreme way, it
is possible to define whole new languages. We call this concept averydomain-specific
language, or VDSL.

At the University of Aarhus, undergraduate computer science students must com-
plete a bachelor’s degree in one of several fields. The requirements that must be satis-
fied are surprisingly complicated. To guide them towards this goal, the students must
maintain a so-called “bachelor’s contract” that plans their remaining studies and dis-
covers potential problems. This process is supported by a Web service, which, for each
student, iteratively accepts past and future course activities, checks them against all re-
quirements, and diagnoses violations until a legal contract is composed. This service
was first written as a straight<bigwig> application, but quickly became annoying to
maintain due to constant changes in the curriculum. It was redesigned in the form of a
VDSL, where study fields and requirements are conceptualized and defined directly in
a more natural language style. This makes it possible for non-programmers to maintain
and update the service. An small example input is

require "bachelor.wigmac"

studies
course Math101

title "Mathematics 101"

2 points fall term
...

course Phys202

title "Physics 202"

9.7 Other Web Service Aspects 143

2 points spring term
course Lab304

title "Lab Work 304"

1 point fall term
exclusions
Math101 <> MathA

Math102 <> MathB

prerequisites
Math101,Math102 < Math201,Math202,Math203,Math204

CS101,CS102 < CS201,CS203

Math101,CS101 < CS202

Math101 < Stat101

CS202,CS203 < CS301,CS302,CS303,CS304

Phys101,Phys102 < Phys201,Phys202,Phys203,Phys301

Phys203 < Phys302,Phys303,Lab301,Lab302,Lab303

Lab101,Lab102 < Lab201,Lab202

Lab201,Lab202 < Lab301,Lab302,Lab303,Lab304

field "CS-Mathematics"

field courses
Math101,Math102,Math201,Math202,Stat101,CS101,CS102,CS201,CS202,CS203,

CS204,CS301,CS302,CS303, CS304,Project

other courses
MathA,MathB,Math203,Math204,Phys101,Phys102,Phys201,Phys202

constraints
has passed CS101,CS102

at least 2 courses among CS201,CS202,CS203

at least one of Math201,Math202

at least 2 courses among Stat101,Math202,Math203

has 4 points among Project,CS303,CS304

in total between 36 and 40 points

None of the syntax displayed is plain<bigwig>, except the macro packagerequire
instruction. The entire program is the argument to a single macro,studies, that
expands into the complete code for a corresponding Web service. The filebache-

lor.wigmac is only 400 lines and yet defines a complete implementation of the new
language. Thus, the<bigwig> macro mechanism offers a rapid and inexpensive real-
ization of new ad-hoc languages with almost any syntax desired. Similar features do
not occur in any of the Web service languages mentioned in the previous sections.

9.7 Other Web Service Aspects

There are of course other features in<bigwig> that are necessary to support Web
service development, but for which we have no major innovations. These are briefly
presented in this section.

9.7.1 HTML Deconstruction

The template mechanism is used to construct HTML documents, but when “run in
reverse” it also allows for deconstruction. This is realized by using the templates as
patterns in which the gaps play the role of variables, as illustrated in this example:

service {

html Template = <html >

144 The <bigwig> Project

<[]><[]>

</html >;

session Dilbert() {

string data = get ("http://www.dilbert.com/");
string s;

match (data,Template)[s =source];

exit Template<[source ="http://www.dilbert.com"+s];

}

}

which grabs the daily strip from the Dilbert home page. Gaps without names serve as
wildcards.

9.7.2 Seslets

For some interaction patterns a strict session model can be inappropriate, since the
client and server must alternate between being active and suspended. Furthermore,
information cannot be pushed on the server’s initiative while the client is viewing a
page. A simple example is a chat room where new messages should appear automat-
ically, without the client having to reload the page being viewed, and where only the
new message and not the entire new page is transmitted. The essence of this concept
is client-side computations, which are able to contact the server on their own accord.

The <bigwig> solution is a notion ofseslets. A seslet is a kind of lightweight
session that is allowed to do anything an ordinary session can do, except performshow

operations. It is invoked by the client with some arguments and eventually returns a
reply of any<bigwig> type. Typically, it performs database operations or waits for
certain events to occur, and then reports back to the client.

Since we are limited by the existing technologies on the client-side, our current im-
plementation is restricted to using Java applets or JavaScript. To facilitate the writing
of applets, the<bigwig> compiler generates the Java code for an abstract class ex-
tendingApplet, which must be inherited from in order to access the available seslets.
Alternatively, we have experimented with a JavaScript interface. However, this ap-
proach is limited by the lack of client-server communication support from JavaScript,
so we currently apply cookies for the communication.

An important use of seslets is to allow client-side code to synchronize with other
active threads on the server. For example, the chat room solution could employ a
seslet that uses the concurrency control mechanisms of<bigwig> to wait until the
next message is available, which is then returned to the applet. In this way, no client
pulling or busy waiting is required.

9.7.3 Databases

Most Web services are centered around a database. In the general case, this is an
existing, external database which the service must connect to. The<bigwig> system
supports the ODBC interface for this purpose. In most other Web service languages,
database queries are built dynamically as strings that must be parsed by the database
engine. In<bigwig>, queries are not built as strings but are written in a query language
that is part of the<bigwig> syntax. This allows for compile-time checking of the
syntax and types of queries, eliminating another source of errors. Since many smaller

9.7 Other Web Service Aspects 145

services use only simple data, we also offer an internal database that is implemented
on top of the file system.

9.7.4 Security

There are many aspects of Web service security.4 The security in<bigwig> can be
divided into two categories, depending on whether it is generically applicable to all
services or specific to the behavior of a particular service.

The former category mostly relates to the runtime environment and communica-
tion, dealing with concepts such as integrity, authenticity, and confidentiality. Integrity
of a session thread’s local state is achieved by keeping it exclusively on the server.
Integrity of shared data is provided by the database. An interaction key is generated
and embedded in every document shown to the client and serves to prevent submission
of old documents. Clients and session threads are associated through a random key
which is created by the server upon the first request and carried across interactions in
a hidden input field. This mechanism may optionally be combined with other secu-
rity measures, such as SSL, to provide the necessary level of security. Authenticity
and confidentiality are addressed through general declarative security modifiers that
the programmer can attach on aservice, session, or show basis. The modifiersssl
andhtaccess enforce that the SSL and HTTP Authentication protocols are used for
communication. Theselective modifier restricts access to a session to those clients
whose IP numbers match a given set of prefixes. Finally, thesingular modifier en-
sures that the client has the same IP address throughout the execution of a session.

We envision performing some simple static analyses relating to the behavioral se-
curity of particular services. Values are classified assecretor trusted, and, in contrast
to tainting in Perl, the compiler keeps track of the propagation of these properties. Fur-
thermore, there are restrictions on how each kind of data can be used. Form data is
always assumed to be untrusted and gaps are never allowed to be plugged with secret
values. Variables can be declared with the modifierssecret or trusted and may then
only contain the corresponding values. Thesystem function can only be called with
a trusted string value. To change the classification of a value, there are two functions,
trust anddisclose. The programmer must make the explicit choice of using these
coercions. An example involving trust is the following service:

service {

session Lookup() {

html Error = <html >Invalid URL!</html >;

html EnterURL = <html >Enter a URL: <input type =text name=URL></html >;

string u,domain;

show EnterURL receive [u = URL];

if (|u|<7 || u[0..7]!="http://") show Error;

for (i=7; i<|u| && u[i]!=’/’; i++);

domain = u[7..i];

if (system ("/usr/sbin/nslookup ’" + domain + "’").stderr!="") {

show Error;

}

}

}

4Seehttp://www.w3.org/Security/faq/.

146 The <bigwig> Project

This code performs annslookupon the URL supplied by the user to check whether its
domain exists. Since the value ofdomain is derived from the form fieldURL it should
not be trusted, and its use in the call ofsystem will be flagged by the compiler. And,
indeed, it would be unfortunate if the client enters"http://foo’;rm -rf /’" in the
form. A similar analysis is performed forsecret. Consider the example:

service {

shared secret string password;

bool odd(int n) { return n%2==1; }

session Reveal() {

if (odd(|password|)) show <html >foo</html >;

}

}

The compiler is sufficiently paranoid to reject this program, since the branching of
the if-statement depends on a function applied to information derived from a secret
value. These analyses are not particularly original, but are not seen in other Web
service programming languages.

There is still much work to be done in this area. So far, we have not considered
using cryptological techniques to ensure service integrity, the role of certificates, or
more sophisticated static analyses.

9.8 Evaluation

The<bigwig> language should be evaluated according to two different criteria. First,
the quality of our language design as seen from concrete programming experiences.
This is necessarily a somewhat intangible and subjective criterion. Second, the perfor-
mance of our language implementation as seen from observed benchmarks.

9.8.1 Experience with <bigwig>

<bigwig> is still mainly an experimental research tool, but we have gained experi-
ences from numerous minor services that we have written for our own edification, a
good number of services that are used for administrative purposes at the University of
Aarhus, and a couple of production services on which we have collaborated. Apart
from these applications, we estimate that<bigwig> has been downloaded roughly
2500 times from our Web site, and we have mainly received positive feedback from
the users.

One production service is the Web site of the European Association for Theoreti-
cal Computer Science (www.eatcs.org), handling newsletters, webboards, and several
membership services. It is written in 5,345 lines of<bigwig>, using 133 HTML
templates and 114show statements. Another is the Web site of the JAOO 2001 con-
ference (www.jaoo.dk), handling all aspects of advertisement, schedules, registration,
and attendance services. It is written is 7,943 lines of<bigwig>, using 248 HTML
templates, and 39show statements.

These experiences have shown that<bigwig> has two very strong points. First, the
session concept greatly simplifies the programming of complicated control flow with
multiple client interactions. Second, the HTML templates are very easy and intuitive

9.9 Conclusion 147

to use and the static guarantees catching numerous errors, many of which are difficult
to find by any other means. It is particularly helpful that the HTML analyzers provide
precise and intuitive error messages.

The JAOO application has been particularly interesting, since it involves collabo-
ration with an external HTML designer. This experience confirmed that our templates
are successful in defining an interface between programmers and designers and that
gaps and fields define a useful contract between the two.

The main weak point that we identified is the core language, which is often found
to lack minor features. We plan to address this in future work, as mentioned in Sec-
tion 9.9.

The stand-alone version of the PowerForms sub-language has been surprisingly
popular in its own right. It has many active users, and has been integrated into a
proprietary Web deployment system.

9.8.2 Performance

When evaluating the performance of the<bigwig> implementation, we want to focus
on the areas where we tried to provide improvements. We are not aiming for simple
high-load services, but are focusing on services with intricate control-flow. Still, in-
formal tests show that the throughput of our services is certainly comparable with that
of straight CGI-based services or Servlet applications running on J2SE.

The automatic caching scheme based on our HTML templates is designed to ex-
ploit their intricate structure to cache static fragments on the client side. We have
obtained real benefits from this approach. The experiments reported in [36] show that
the size of the transmitted data may shrink by a factor of 3 to 30, which on a dial-up
connection translates into a reduction in download time by a factor of 2 to 10.

It is also relevant to evaluate the performance of the<bigwig> compiler, since we
employ a series of theoretically quite expensive static analyses. However, in practice
they perform very well, as documented in [195, 39]. The EATCS service is analyzed
for HTML validity in 6.7 seconds and the JAOO service in 2.4 seconds.

9.9 Conclusion

The <bigwig> project has identified central aspects of interactive Web services and
provided solutions in a coherent framework based on programming language theory.
At the same time, the<bigwig> project is a case study in applications of the domain-
specific language design paradigm.

We argue that the notion of sessions is essential to Web services and should con-
stitute the basic structure of a Web service programming language. Together with
higher-order document templates, such as in the DynDoc sub-language, the dynamic
construction of Web pages becomes flexible at the same time, making it easy to use,
and safe by compile-time guarantees regarding document validity and the use of input
forms. We have shown that form field validation, compared to traditional approaches,
can be made easier with a domain-specific sub-language, such as PowerForms, which
automatically translates high-level specifications into a combination of more low-level
server-side and client-side code. We have examined how temporal logics can be used to

148 The <bigwig> Project

synthesize concurrency controllers. Finally, we have demonstrated how macro mech-
anisms can be made effective for extending and combining languages, in the context
of the sub-languages of<bigwig>.

Version 2.0 of the<bigwig> compiler and runtime system is freely available from
the project home page atwww.brics.dk/bigwig/ where documentation and examples
can also be found.

Regarding the future development of<bigwig> we now move towards Java. We
are developingJWIG [57] as an extension of Java, where we add the most successful
features of<bigwig>, such as the session model, dynamic documents, form field val-
idation, and syntax macros. Since the design of<bigwig> has focused on the Web
specific areas, we hope that the many standard programming issues of Web services
become easier to develop withJWIG. However, a number of new challenges arise.
For instance, the program analyses described in Section 9.3 all assume that we have
access to precise control-flow graphs of the programs. This is trivial for<bigwig>,
but certainly not for Java. Other future plans include type-safe support for XML docu-
ment transformation, WML and VoiceXML support, and broadening the view towards
development and management of whole Web sites comprising many services.

9.9.1 Acknowledgments

Tom Ball provided us with extensive and very helpful information about experiences
with the MAWL language. Anders Sandholm was a key participant during his Ph.D.
studies at BRICS. Mikkel Ricky Christensen and Steffan Olesen worked tirelessly as
student programmers during the entire project. Niels Damgaard, Uffe Engberg, Mads
Johan Jurik, Lone Haudrum Olesen, Christian Stenz, and Tommy Thorn provided valu-
able feedback and suggestions. We also appreciate the efforts made by the participants
of the WIG Projects course in Spring 1998. Finally, we are grateful for the insightful
comments we received from the anonymous reviewers.

Chapter 10

A Runtime System for
Interactive Web Services

with Claus Brabrand, Anders Sandholm, and Michael I. Schwartzbach

Abstract

Interactive Web services are increasingly replacing traditional static Web pages. Pro-
ducing Web services seems to require a tremendous amount of laborious low-level
coding due to the primitive nature of CGI programming. We present ideas for an
improved runtime system for interactive Web services built on top of CGI running on
virtually every combination of browser and HTTP/CGI server. The runtime system has
been implemented and used extensively in<bigwig>, a tool for producing interactive
Web services.

10.1 Introduction

An interactive Web service consists of a global shared state (typically a database) and a
number of distinct sessions that each contain some local private state and a sequential,
imperative action. A Web client may invoke an individual thread of one of the given
session kinds. The execution of this thread may interact with the client and inspect or
modify the global state.

One way of providing a runtime system for interactive Web services would be
to simply use plain CGI scripts [101]. However, being designed for much simpler
tasks, the HTTP/CGI protocol by itself is inadequate for implementing the session
concept. It neither supports long sessions involving many user interactions nor any
kind of concurrency control. Being the only widespread standard for running Web
services, this has become a serious stumbling stone in the development of complex
modern Web services.

We present in this paper a runtime system built on top of the HTTP/CGI protocol
that among other features has support for sessions and concurrency control. First, we
motivate the need for a runtime system such as the one presented here. This is done
by presenting its advantages over a simple CGI script based solution. Afterwards, a
description of the runtime system, its different parts, and its dynamic behavior is given.

150 A Runtime System for Interactive Web Services

browse

reply
compute

show page

start session

forms etc.
fill out

submit

CLIENT SERVER

Figure 10.1: An interactive Web session

We round off with a discussion of related work, a conclusion, and directions for future
work.

In the appendices, we briefly describe an implementation of the suggested runtime
system. Also, we give a short presentation of<bigwig> [197], which is a tool for pro-
ducing interactive Web services that makes extensive use of the self-contained runtime
system package.

10.2 Motivation

The technology of plain CGI scripts lacks several of the properties one would ex-
pect from a modern programming environment. In the following we discuss various
shortcomings of traditional CGI programming and motivate our solution to these prob-
lems, namely the design of an improved runtime system built on top of the standard
HTTP/CGI protocol.

10.2.1 The Session Concept

First, we will describe and motivate the concept of an interactive Web service.
The HTTP protocol was originally designed for browsingstatic documents con-

nected with hyperlinks. CGI together with forms allowsdynamiccreation of docu-
ments, that is, the contents of a document are constructed on the server at the time the
document is requested. Dynamic documents have many advantages over static doc-
uments. For instance, the contents of the documents can betailor-madeandalways
up-to-date.

A natural extension of the dynamic-document model is the concept ofinteractive
services, which is illustrated in Figure 10.1. Here the client does not browse a number
of more or less independent statically or dynamically generated pages but is guided
through asessioncontrolled by a session thread on the server. This session can involve
a number of user interactions. The session is initiated by the client submitting a “start
session” request. The server then starts a thread controlling the new session. This

10.2 Motivation 151

thread generates a reply page which is sent back to the client. The page typically
contains some input fields that are filled in by the client. That information is sent to
the server, which then generates the next reply, and so on, until the session terminates.

This session concept allows a large class of services to be defined. However, a
number of practical problems needs to be solved in order to implement this model on
top of the CGI model.

10.2.2 CGI Scripts and Sequential Session Threads

As explained above, a Web service session consists of a sequential computation that
along the way presents information to the client and waits for replies. However,
HTTP/CGI is a state-less protocol, meaning that execution of a CGI script only lasts
until a page is shown to the Web client. This fact makes it rather tedious to program
larger Web services involving many client interactions. The sequential computation
has to be split up into the small bits of computation that happen between client inter-
actions. Each of these small bits will then constitute a CGI script or an instance of a
CGI call.
Furthermore, to achieve persistency of the local state, one has to store and restore it
explicitly between CGI calls, for instance “hidden” in the Web page sent to the client.
For simple services where the full session approach is not needed this stateless-server
approach might be preferable, but it is clearly inadequate in general.

Thus, the problem of forced termination of the CGI script at each client interaction
is two-fold:

• Having to deal with many small scripts makes thewriting andmaintenanceof
a Web service rather difficult because the control-flow of the service tends to
become less clear from the program code.

• Starting up a whole new process every time a client interaction is performed is
expensive in itself. On top of this a complete image of the local state has to
be stored and restored each time a client interaction is required. The local state
can potentially hold a lot of data, such as database contents. Thus one gets a
substantial overheadin the execution of a Web service.

We provide a simple solution which splits CGI scripts into two components, namely
connectorsandsession threads. A connector is a tiny transient CGI script that redirects
input to a session thread, receives the response from that thread, and redirects it back
to the Web client. The session threads are persistent processes running residently on
the Web server. They survive CGI calls and can therefore implement a long sequential
computation involving several client interactions. The use of transient connectors and
persistent session threads decreases the difficulty of writing and maintaining Web ser-
vices. Furthermore, it improves substantially on the overhead of the Web server during
execution of a service.

10.2.3 Other CGI Shortcomings

Traditionally, reply pages from session threads are sent directly to the client. That is,
the session thread (or the connector if using the system described above) writes the

152 A Runtime System for Interactive Web Services

page to standard-output and the Web server sends it on to the client browser. This
basic approach imposes some annoying problems on the client:

• The client is not able to use “bookmarks” to identify the session, since selecting
a bookmark might imply resending an old query to the server while the server
expects a reply to a more recent interaction. It would be natural to the client
if selecting a bookmarked session would continue the session from its current
state. Obviously, this requires the server to always keep some kind of backup of
the latest page sent to the client.

• In the session concept described in the previous section, it does not make sense
to roll back execution of a session thread to a previous state. A thread can only
be continued from its current point of execution. As a result of sending pages
directly using the standard-output method, every new page shown to the client
gets stacked up in the client’s browser. This means that the stack of visited
pages becomes filled up with references to outdated pages. One result is that the
“back” button in the browser becomes rather useless.

We suggest a simple solution where—instead of sending the reply itself—the session
thread writes its reply to a file visible to the client and then sends to the client arefer-
enceto the reply file. By choosing the same URL for the duration of the session, this
reference can then function as an identification of that particular session. This solves
both the problem with bookmarks and with the “back” button. Pressing “back” will
now bring the client back to the Web page where he started the session, which seems
like a natural effect.

This method also opens up for an easy solution to another problem. Sometimes the
server requires a long time to compute the information for the next page to be shown to
the client. Naturally, the client may becomeimpatientand lose interest in the service
or assume that the server or the connection is down if no response is received within
a certain amount of time. If confirmation in the form of a temporary response page is
sent, the client will know that something is happening and that waiting will not be in
vain.

This extra feature is implemented in the runtime system as follows. If a response
is not ready within for instance 8 seconds, the connector responds with a reference to
a temporary page (for instance saying “please wait”) and terminates. This page will
then automatically be loaded by the clients Web browser and reload itself, say every 5
seconds. Once the session thread finishes its computation and the real response page
is ready, the thread just replaces the temporary page with the real response page. This
will have the effect that next time the page is reloaded, the real response page will be
shown to the client.

This reloading can be done with standard HTML functionality. Of course the
reloading causes some extra network traffic, but using this method is probably as close
as one gets to server pushing in the world of CGI programming.

10.2.4 Handling Safety Requirements Consistently

Another serious problem with traditional CGI programming is that concurrency con-
trol, such as synchronization of sessions and locking of shared variables, gets handled

10.3 Components in the Runtime System 153

session thread

reply

controller

internet

client

HTTP/CGI server

connector

Figure 10.2: The runtime system

in an ad-hoc fashion. Typically, this is done using low-level semaphores supplied by
the operating system.

As a result, Web services often implement these aspects incorrectly resulting in
unstable execution and sometimes even damaging behavior.

Our solution allows one to put safety requirements, such as mutual exclusion or
much more complex requirements, separately in a centralized supervising process
called the controller. This approach significantly simplifies the job of handling safety
requirements. Also, since each of the requirements can be formulated separately, the
solution is much more robust towards changes in various parts of the code.

It is generally considered inefficient and unsafe to have centralized components
in distributed systems. However, in this case the bottleneck is more likely to be the
HTTP/CGI server and the network than the safety controller. In spite of that, we do try
to distribute the functionality of our safety controller as discussed in Section 10.5.

10.3 Components in the Runtime System

At any time there will be a number ofWeb clientsaccessing theHTTP/CGI server
through the HTTP/CGI protocol. On the server side we will have acontroller and a
number ofsession threadsrunning. The session threads access the global data and
produce response pages for the Web clients. From time to time aconnectorwill be
started as the result of a request from a Web client. The connector will make contact
with the running session thread. A connector is shut down again after having delegated
the answer from a session thread back to the Web client.

In the following we give a more detailed description of these components. For an
overview of the components in the runtime system, see Figure 10.2.

Web clients Web clients are the users of the provided Web service. They make use
of the service essentially by filling in forms and submitting HTTP/CGI requests using
a browser.

154 A Runtime System for Interactive Web Services

The HTTP/CGI server The HTTP/CGI server handles the incoming HTTP/CGI
requests by retrieving Web pages and starting up appropriate CGI scripts, in our case
connectors. It also directs response pages back to the Web clients.

Session threads Session threads are the resident processes running on the Web server
surviving several CGI calls. They represent the actual service code that implements
the provided Web service. They do calculations, search databases, produce response
Web pages, etc.

Connectors When a Web client makes a request through the server, a connector is
started up. If this request is the first one made, the controller starts up a new session
thread corresponding to the request made by the Web client. Otherwise—that is, if
the Web client wants to continue execution of a running session thread—the connector
notifies the relevant session thread that a request has been made and forwards the input
to that thread.1

Reply pages Each session thread has a designated file which contains the current
Web page visible to the client of the session. When writing to this file, the whole
contents is through a buffer updated atomically since the client may read the file at any
time.

The controller The controller is a central component. It supervises session threads
and has the possibility of suspending their execution at various points. This way it is
ensured that the stated safety requirements are satisfied.2

Furthermore, the runtime system also contains aglobal-state database(could be
the file-system or a full-fledged database), and aservice manager, which takes care of
garbage-collecting abandoned session threads and other administrative issues.

10.4 Dynamics of the Runtime System

In this section we describe the dynamic behavior of the runtime system. We start by
explaining the overall structure of the execution of a session thread. Starting from this,
we present each of the possible thread transitions.

First, it is described how a session thread is started. Then, transitions involving
interaction with a Web client, that is, showing Web pages and getting replies, are dealt
with. Finally, the transitions involving interaction with the controller are presented.

For each transition we give a description of the components involved and their
interaction.

1In the newest version of the runtime system implementation, we bypass the notions of CGI scripts and
connector processes entirely. Instead, we use a specialized module for the Apache Web server, effectively
moving the tasks of the connectors into the server itself. This improves performance substantially, since
we do not create a new system process for every single interaction. For more information see [170].

2The controller process only appears in early versions of the implementation. As described in Sec-
tion 3.6.1 we now rely on more standard techniques for performing concurrency control.

10.4 Dynamics of the Runtime System 155

start

��

showing

vv
active

77

��ww
end waiting

^^

Figure 10.3: Possible states and transitions for a session thread

10.4.1 Execution of a Thread

The lifetime of a session thread is depicted in the diagram in Figure 10.3. When a
thread is first started, it enters the stateactive. Here it can do all sorts of computations.

Eventually it reaches a point where it has composed a response HTML page. This
page is shown to the Web client and the thread enters the stateshowing. Here it waits
for the Web client to respond via yet another HTTP/CGI request. Upon re-submission
the thread reenters the stateactiveand resumes execution.

Note that in the world of naive CGI programming when moving fromactive to
showingand back one would have to store a complete image of the local state before
terminating the script. Then, when started again a new process would be started and
the local state would have to be reconstructed from the image that was saved. This
substantial overhead of saving and restoring local state is avoided completely by the
use of transient connectors and resident threads.

While in stateactivea thread can get to a point in execution where safety critical
computation, such as accessing a shared resource, needs to be carried out. When
reaching such a point the thread asks the controller for permission to continue and
enters the statewaiting. When permission is granted from the controller the thread
reenters theactivestate and continues execution.

With a traditional approach one would have to merge the code implementing the
intricate details dealing with concurrency control with the service code. This inter-
mixing would in addition to substantially reducing the readability of the code also
increase the risk of introducing errors. Our solution separates the code dealing with
concurrency control from the service code.

When the session is complete, the thread will leave the stateactive and end its
execution.

10.4.2 Starting up a Session Thread

This section describes the transition fromstart to active.
When a new Web client makes an HTTP/CGI request, the server will start up a

new connector as a CGI script. Since this request is the first one made by the Web
client, a new thread is started according to the session name given in the request. As
will be described later, a response page will be sent back to the client when the thread
reaches a show call or a certain amount of time, for instance 8 seconds, has passed.

156 A Runtime System for Interactive Web Services

When a session thread is initiated or when it moves fromshowingto active, the
contents of the reply file is immediately overwritten by a Web page containing a “reply
not ready—please wait” message and a “refresh” HTML command. The “refresh”
command makes the browser reload the page every few seconds until the temporary
reply file is overwritten by the real reply as described in the following section. The
default contents of the “please wait” page can be overridden by the service programmer
by simply overwriting the reply file with a message more appropriate for the specific
situation.

10.4.3 Interaction with the Client

During execution of a running thread the service can show a page to the Web client
and continue execution when receiving response from the client. In the following we
describe these two actions.

Showing a page

This section describes the transition fromactiveto showing.
During execution of a session thread one can do computations, inspect the input

from the client, produce response documents, etc. When a response document has
been constructed and the execution reaches a point where the page is to be shown to
the client, the following actions will be taken:

1. First, the document to be shown is written to the reply file as indicated in Fig-
ure 10.2. This file always contains a “no cache” pragma-command, so that the
client browser always fetches a new page even though the same URL is used for
the duration of the whole session. Unfortunately we thereby lose the possibility
of browser caching, but being restricted to building on top of existing standards
we cannot get it all.3

2. If the connector, that is, the CGI script started by the Web client, has not already
terminated due to the 8 second timeout, the session thread tells it that the reply
page is ready. After this, the thread goes to sleep.

3. When the connector either has been waiting the 8 seconds or it receives the
“reply ready” signal from the session thread, the connector writes a location-
reference containing the URL for the reply page onto standard-output (using the
HTTP “location” feature), and then dies.

4. Finally, the HTTP/CGI server will transmit the URL back to the Web clients
browser which then will fetch the reply page through the HTTP/CGI server and
show it to the client.

In Figure 10.2, these actions describe a flow of data starting at the session thread and
ending at the client.

3However, we have later discovered that the template-based mechanism for constructing Web pages
used in<bigwig> makes it possible to cache the constant fragments that the pages are built from and
thereby obtain the benefits of caching even for dynamically generated pages. This is described in [36].

10.4 Dynamics of the Runtime System 157

3S

3S

S3

QUEUE

E

CHECKPOINT EVENT QUEUES

CONTROL LOGIC

1

2E

TIMEOUTE3

Figure 10.4: Components of the controller

Receiving client response

This section describes the transition fromshowingto active.
While the session thread is sleeping in the showing state, the Web client will read

the page, fill out appropriate form fields, and resubmit. This will result in the following
flow of data from the client to the session thread (see Figure 10.2):

1. First, a request is made by the client via the HTTP/CGI protocol. This request
can be initiated either by clicking on a link or by pressing a submit button.

2. As a result, the HTTP/CGI server starts up a CGI script, that is, a connector.

3. The connector will then see that the client is already associated with a running
thread and thus wake up that sleeping session thread and supply its new argu-
ments.

10.4.4 Interaction with the Controller

The controller allows the programmer to restrict the execution of a Web service in such
a way that stated safety requirements are satisfied.

Threads have built-in checkpoints at places where safety critical code is to be exe-
cuted. At these checkpoints the thread must ask the controller for permission to con-
tinue. The controller, in turn, is constructed in such a way that it restricts execution
according to the safety requirements and only allow threads that are not about to violate
the requirements to continue.

In the following we describe in further detail the controller itself, what happens
when session threads ask for permission, and how permission is granted by the con-
troller.

The controller

The controller consists of three parts: some control logic, a number of checkpoint-
event queues, and a timeout queue. Figure 10.4 gives an overview of the controller.

158 A Runtime System for Interactive Web Services

The control logic The control logic is the actual component representing the safety
requirements. It controls whether events are enabled, and hence when the various
session threads may continue execution at checkpoints. One could imagine various
approaches, such as, the use of finite state machines or petri-nets. For that reason, the
internals of the control logic are not specified here. The only requirement is that the
interface must contain the following two functions available to the runtime system:

• check enabled— takes a checkpoint-event ID as argument and replies whether
that event is currently enabled.

• event occurred — takes the ID of an enabled checkpoint-event as argument
and updates the internal state of control logic with the information that the event
has occurred.

We explain in the following how these functions are used in the controller.

Checkpoint-event queues The checkpoint-event queuesform the interface to the
running threads of the service. There is a queue for each possible checkpoint event.
When a thread reaches a checkpoint it asks the controller for permission to continue
by adding its process-ID onto the queues corresponding to the events it wants to wait
for at the checkpoint.

Timeout queue As an extra feature one can specify atimeoutwhen asking the con-
troller for permission to continue. For this purpose the controller has a timeout queue.
If permission is not granted within the specified time bound, the controller wakes up
the thread with the information that permission has not been granted yet, but a timeout
event has occurred. The specified timeouts are put in the special timeout queue (which
is implemented as a priority queue).

Asking for permission at checkpoints

This section describes the transition fromactiveto waiting.
As mentioned earlier, one has the possibility of adding checkpoints to session code

where critical code is to be executed. The runtime system interface makes some func-
tions available to the service programmer for specifying checkpoints. Conceptually,
the programmer uses them to specify a “checkpoint statement” as illustrated with an
example in Figure 10.5. This example would have the effect that whenever a thread
instance of this session reaches this point it will do the following:

1. First, it will tell the controller that it waits for either anE1 event, anE3 event, or
a timeout of 20 seconds.

2. Having sent this request to the controller, the thread goes to sleep waiting for a
response.

Controller actions

When the controller is up and running, it loops doing the following:

10.4 Dynamics of the Runtime System 159

wait {
case E1:

...
case E3:

...
timeout 20:

...
}

Figure 10.5: A checkpoint example

• If it receives a request to pass a checkpoint from a client, the controller pushes
the ID of the client onto the appropriate queues. These entries are chained so that
later, when permission is granted, they can all be removed at once. Figure 10.4
illustrates the effect of the example from Figure 10.5 where entries belonging to
a session,S3, are in theE1, E3 andTIMEOUT queues.

• If a timeout has occurred, the controller deletes the affected entries in the queues
and informs the involved thread.

• Otherwise, it will look for an enabled event using thecheck enabled function
from the control logic. If the queue corresponding to an enabled event is non-
empty then the controller makes the event occur by doing the following:

1. It removes the linked entries with the thread-ID of the enabled event from
the respective queues,

2. tells the control logic that the event has occurred using theevent occurred
function, and

3. wakes up the involved thread with a “permission granted” signal contain-
ing the name of the event.

If several events become enabled, a token-ring scheduling policy is used. This
ensures fairness in the sense that if a thread waits for an enabled event, it will at
some point be granted permission to continue.

Permission granted

This section describes the transition fromwaiting to active.
Having sent a request for permission to continue the thread is sleeping, waiting for

the controller to make a response. If a “permission granted” signal is sent to the thread,
it wakes up and continues, branching according to the event signaled by the controller.
In the example checkpoint in Figure 10.5, if the controller grants permission for anE1

event, execution is continued at the code followingcase E1. If the controller sends a
“timeout” signal, execution continues aftertimeout.

160 A Runtime System for Interactive Web Services

10.5 Extending the Runtime System

The runtime system described in the previous sections can be extended in several ways.
The following extensions either have been implemented in an experimental version of
the runtime system package or will be in near future. With these extensions, we believe
that we begin reaching the limits of what is possible with the standard HTTP/CGI
protocol and the current functionality of standard browsers.

Distributed safety controller

To smoothen presentation, we have so far described the controller as one centralized
component. In most cases it is possible to divide the control logic into independent
parts controlling disjoint sets of checkpoint events. The controller can then be divided
into a number of distributed control processes [194]. This way the problem of the
controller being a bottleneck in the system is successfully avoided.

Service monitors

Using the idea of connectors and controllers, one can construct a “remote service mon-
itor”, that is, a program run by a super-client, which is able to access logs and statistics
information generated by the connectors and controllers, and to inspect and change
the global state and the state of the control logic in the controllers. This can be imple-
mented by having a dedicatedmonitor processfor each service.

Secure communication

The system presented here is quite vulnerable to hostile attacks. It is easy to hijack a
session, since the URL of the reply file is enough to identify a session. A simple so-
lution is to use random keys in the URLs, making it practically impossible to guess a
session ID. Of course, all information sent between the clients browser and the server,
such as the session ID and all data written in forms, can still be eavesdropped. To
avoid this, we have been doing experiments with cryptography, making all commu-
nication completely secure in practice. This requires use of browser plug-ins, which
unfortunately has not been standardized. The protocols being used in the experiments
are RSA, DES3, and RIPE-MD160. They prevent hijacking, provide secure channels,
and verify user ID—all transparently to the client.4

Document clusters

In the session concept illustrated in Figure 10.1, only one page is generated and shown
to the client at a time. However, often the service wants to generate a whole “cluster”
of linked documents to the client and let the client browse these documents without
involving the session thread. With the current implementation, a solution would be
to program the possibility of browsing the cluster into the service code—inevitably a
tedious and complicated task.

4Instead of using plug-ins we now apply the security techniques described in Section 3.6.2, in partic-
ular SSL and HTTP Authentication.

10.6 Related Work 161

Document clusters can be implemented by simply having a reply file for each
document in the cluster. Recall, however, that in the presented setup, the name of the
reply file was fixed for the duration of a session. That way, the history buffer of the
browser got a reasonable functionality. Therefore, to get that functionality we need
a somewhat different approach: the reply files are not retrieved directly by the HTTP
server but via a connector process. This connector receives the ID of the session thread
in the CGI query string and the document number in a hidden variable.

Single process model

If all server processes (the session threads, safety controllers, etc.) are running on
the same machine, that is, the possibility of distributing the processes is not being
exploited, they might as well be combined into a single process using light-weight
threads. This decreases the memory use (unless the operating system provides trans-
parent sharing of code memory) and removes the overhead of process communication.
The resulting system becomes something very close to being a dedicated Web server.
The important difference being that it still builds upon the HTTP/CGI protocol.

10.6 Related Work

The idea of having persistent processes running residently on the server is central in the
FastCGI [176] system. One difference is that FastCGI requires platform- and server-
dependent support, while our approach works for all servers that support CGI. Also,
our runtime system is tailored to support more specific needs.

A more detailed and formal description of how one can make use of safety require-
ments written separately in a suitable logic can be found in [194, 34]. A language for
writing safety requirements is presented, the compilation process into a safety con-
troller is described, and optimizations for memory usage and flow capacity of the
controller are developed. A recent paper [113] generalizes these ideas resulting in
a standard scheme for generating controllers for discrete event systems with both con-
trollable and uncontrollable events.

The MAWL language [7, 68, 144] has been suggested as a domain-specific lan-
guage for describing sequential transaction-oriented Web applications. Its high-level
notation is also compiled into low-level CGI scripts. MAWL directly provides pro-
gramming constructs corresponding to global state, dynamic document, sessions, local
state, imperative actions, and client interactions. This system shows great promise to
facilitate the efficient production of reliable Web services. While MAWL thus offers
automatic synthesis of many advanced concepts, it still relies on standard low-level
semaphore programming for concurrency control. Also, it does not have a FastCGI-
like solution but in instead it is possible to compile a service into a dedicated server for
that particular service. Though being faster than using simple CGI scripts this solution
is, as opposed to using a FastCGI-like solution, not easily ported between different
machine architectures.

162 A Runtime System for Interactive Web Services

10.7 Conclusions and Future Work

The implementation as briefly described in the Appendix constitutes the core of the
<bigwig> tool which currently is being developed at BRICS. In the<bigwig> tool,
the runtime system we propose here has shown to provide simple and efficient solu-
tions to problems occurring more and more often due to the increased use of interac-
tive Web services. Furthermore, the session concept seems to constitute a framework
which is very natural to use for designing complex services. By basing the design
of the runtime system on very widely used protocols, the system is easy to incorpo-
rate. The further development of the runtime system can be followed on the<bigwig>
homepage [197].

Appendix: Implementation

A UNIX version of the runtime system has been implemented (in C) as a package
“runwig” containing the following components (corresponding to Figure 10.2):5

• The connector. It provides connection between the other components and the
clients through the HTTP/CGI server.

• Thesafety controller, which handles synchronization and concurrency control.
For the reasons described in Section 10.4.4, the control-logic is not included in
the package but needs to be supplied separately.

• Theruntime library, which is linked into the service code. It provides functions
for easy interaction with the other components.

An experimental version of the runtime package implements the extensions described
in Section 10.5. Therunwig package—including all source code, detailed documen-
tation, and examples—is available athttp://www.brics.dk/bigwig/runwig/.

Appendix: <bigwig>

<bigwig> is a high-level programming language for developing interactive Web ser-
vices. Complete specifications are compiled into a conglomerate of lower-level tech-
nologies such as CGI-scripts, HTML, JavaScript, Java applets, and plug-ins running
on top the runtime system presented in this paper.<bigwig> is an intellectual descen-
dant of the MAWL project but is a completely new design and implementation with
vastly expanded ambitions.

The <bigwig> language is really a collection of tiny domain-specific languages
focusing on different aspects of interactive Web services. To minimize the syntactic
burdens, these contributing languages are held together by a C-like skeleton language.
Thus,<bigwig> has the look and feel of C-programs with special data- and control-
structures.

5As mentioned, in the latest version ofrunwig the notion of connectors has been integrated into the
Web server and the safety controller has been replaced by other concurrency control mechanisms.

10.7 Conclusions and Future Work 163

A <bigwig> service executes a dynamically varying number of threads. To pro-
vide a means of controlling the concurrent behavior, a thread may synchronize with a
central controller that enforces the global behavior to conform to a regular language
accepted by a finite-state automaton. That is, the “control logic” in<bigwig> consists
of finite-state automata. The controlling automaton is not given directly, but is com-
puted (by the MONA [131, 158] system) from a collection of individual concurrency
constraints phrased in first-order logic. Extensions with counters and negated alphabet
symbols add expressiveness beyond regular languages.

HTML documents are first-class values that may be computed and stored in vari-
ables. A document may contain named gaps that are placeholders for either HTML
fragments or attributes in tags. Such gaps may at runtime be plugged with concrete
values. Since those values may themselves contain further gaps, this is a highly dy-
namic mechanism for building documents. The documents are represented in a very
compressed format, and the plug operations takes constant time only. A flow-sensitive
type checker ensures that documents are used in a consistent manner.

A standard service executes with hardly any security. Higher levels of security
may be requested, such that all communications are digitally signed or encrypted us-
ing using 512 bit RSA and DES3. The required protocols are implemented using a
combination of Java, JavaScript, and native plug-ins.6

The familiar struct and array data-structures are replaced with tuples and relations
which allow for a simple construction of small relational databases. These are effi-
ciently implemented and should be sufficient for databases no bigger than a few MBs
(of which there are quite a lot). A relation may be declared to be external, which will
automatically handle the connection to some external server. An external relation is
accessed with (a subset of) the syntax for internal relations, which is then translated
into SQL.

An important mechanism for gluing these components together is a fully general
hygienic macro mechanism that allows<bigwig> programmers to extend the language
by adding arbitrary new productions to its grammar. All nonterminals are potential
arguments and result types for such macros that, unlike C-front macros, are soundly
implemented with full alpha-conversions. Also, error messages remain sensible, since
they are threaded back through macro expansion. This allows the definition of Very
Domain-Specific Languages that contain specialized constructions for building chat
rooms, shopping centers, and much more. Macros are also used to wrap concurrency
constraints and other primitives in layers of user-friendly syntax.

Version 0.9 of<bigwig> is currently undergoing internal evaluation at BRICS.7

If you want to try it out, then contact us for more information. The documentation is
very rough as yet, but this has a high priority in the next few months. The project is
scheduled to deliver a version 1.0 of the<bigwig> tool in June 1999. This will be
freely available in an open source distribution for UNIX.

6This has changed since the time of publication, as noted on p. 160.
7The latest release is version 2.0 and is available from therunwig home page [170]. A detailed list

of changes can also be found there.

Chapter 11

PowerForms:
Declarative Client-Side
Form Field Validation

with Claus Brabrand, Mikkel Ricky, and Michael I. Schwartzbach

Abstract

All uses of HTML forms may benefit from validation of the specified input field val-
ues. Simple validation matches individual values against specified formats, while more
advanced validation may involve interdependencies of form fields.

There is currently no standard for specifying or implementing such validation.
Today, CGI programmers often use Perl libraries for simple server-side validation or
program customized JavaScript solutions for client-side validation.

We present PowerForms, which is an add-on to HTML forms that allows a purely
declarative specification of input formats and sophisticated interdependencies of form
fields. While our work may be seen as inspiration for a future extension of HTML,
it is also available for CGI programmers today through a preprocessor that translates
a PowerForms document into a combination of standard HTML and JavaScript that
works on all combinations of platforms and browsers.

The definitions of PowerForms formats are syntactically disjoint from the form
itself, which allows a modular development where the form is perhaps automatically
generated by other tools and the formats and interdependencies are added separately.

PowerForms has a clean semantics defined through a fixed-point process that re-
solves the interdependencies between all field values. Text fields are equipped with
status icons that continuously reflect the validity of the text that has been entered so
far, thus providing immediate feed-back for the user. For other GUI components the
available options are dynamically filtered to present only the allowed values.

PowerForms are integrated into the<bigwig> system for generating interactive
Web services, but is also freely available in an Open Source distribution as a stand-
alone package.

166 PowerForms: Declarative Client-Side Form Field Validation

11.1 Introduction

We briefly review some relevant aspects of HTML forms. The CGI protocol enables
Web services to receive input from clients through forms embedded in HTML pages.
An HTML form is comprised of a number of input fields each prompting the client for
information.

The visual rendering of an input field and how to enter the information it requests
is determined by its type. The most widely used fields range from expecting lines
of textual input to providing choices between a number of fixed options that were
determined at the time the page was constructed. Many of the fields only differ in ap-
pearance and are indistinguishable to the server in the sense that they return the same
kind of information. Fields of typetext andpassword, although rendered differently,
each expect one line of textual input from the client. Multiple lines of textual input can
be handled through thetextarea field. The fields of typesradio andselect both
require exactly one choice between a number of static options, whereas an arbitrary
number of choices are permitted by thecheckbox andselect (multiple) fields. In-
dividualradio andcheckbox fields with common name may be distributed about the
form and constitute a group for which the selection requirements apply. The options
of a select field, on the other hand, are grouped together in one place in the form.
In addition, there are the more specialized fields,image, file, button, andhidden,
which we shall not treat in detail. Finally, two fields control the behavior of the entire
form, namelyreset andsubmit, which respectively resets the form to its initial state
and submits its contents to the server.

11.1.1 Input Validation

Textual input fields could possibly hold anything. Usually, the client is expected to
enter data of a particular form, for instance a number, a name, a ZIP-code, or an e-
mail address. The most frequent solution is to determine on the server whether the
submitted data has the required form, which is known asserver-side input validation.
If some data are invalid, then those parts are presented once again along with suitable
error messages, allowing the client to make the necessary corrections. This process
is repeated until all fields contain appropriate data. This solution is simple, but it has
three well-known drawbacks:

• it takes time;

• it causes excess network traffic; and

• it requires explicit server-side programming.

Note that these drawbacks affect all parties involved. The client is clearly annoyed
by the extra time incurred by the round-trip to the server for validation, the server
by the extra network traffic and “wasted” cycles, and the programmer by the explicit
programming necessary for implementing the actual validation and re-showing of the
pages. An obvious solution to the first two drawbacks is to move the validation from
the server to the client, yieldingclient-side input validation. The third drawback, how-
ever, is only partially alleviated. All the details of re-showing pages are no longer
required, but the actual validation still needs to be programmed.

11.1 Introduction 167

Figure 11.1: Conference questionnaire.

The move from server-side to client-side also opens for another important benefit,
namely the possibility of performing the validationincrementally. The client no longer
needs to click the submit button before getting the validation report. This allows errors
to be be signalled as they occur, which clearly eases the task of correctly filling out the
form.

11.1.2 Field Interdependencies

Another aspect of validation involves interdependent fields. Many forms contain fields
whose values may be constrained by values entered in other fields. Figure 11.1 exhibits
a simple questionnaire from a conference, in which participants were invited to state
whether they have attended past conferences and if so, how this one compared. The
second question clearly depends on the first, since it may only be answered if the first
answer was positive. Conversely, an answer to the second question may be required if
the first answer was “Yes”.

Such interdependencies are almost always handled on the server, even if the rest of
the validation is addressed on the client-side. The reason is presumably that interde-
pendencies require some tedious and delicate JavaScript code. This kind of validation
is explicitly requested in the W3C working draft on extending forms [79]. One could
easily imagine more advanced dependencies. Also, it would be useful if illegal selec-
tions could somehow automatically be deselected.

11.1.3 JavaScript Programming

Traditionally, client-side input validation is implemented in JavaScript. We will argue
that this may not be the best choice for most Web authors.

First of all, using a general-purpose programming language for a relatively spe-
cific purpose exposes the programmer to many unnecessary details and choices. A
small high-level domain-specific language dedicated to input validation would involve
only relevant concepts and thus be potentially easier to learn and use. Many assist-
ing libraries exist [172], but must still be used in the context of a full programming
language.

Secondly, JavaScript code has an operational form, forcing the programmer to
think about the order in which the fields and their contents are validated. However, the
simplicity of the input validation task permits the use of a purelydeclarativeapproach.
A declarative specification abstracts away operational details, making programs easier
to read, write, and maintain. Also, such an approach is closer to composing HTML

168 PowerForms: Declarative Client-Side Form Field Validation

than writing JavaScript, making input validation available to more people. As stated
in the W3C working draft on design requirements for extending forms [79]:

“It will be possible to define a rich form, including validations, depen-
dencies, and basic calculations without the use of a scripting language.”

Our solution will precisely include such mechanisms for validations and dependencies.
Finally, the traditional implementation task is further complicated by diverging

JavaScript implementations in various browsers. This forces the programmer to stay
within the subset of JavaScript that is supported by all browsers—a subset that may be
hard to identify. In fact, a number of sites and FAQs are dedicated to identifying this
subset [218, 143]. A domain-specific language could be compiled into this common
subset of JavaScript, implying that only the compiler writer will be concerned with
this issue.

11.1.4 Our Solution: PowerForms

As argued above, our solution is to introduce a high-leveldeclarativeand domain-
specificlanguage, called PowerForms, designed for incremental input validation.

Section 11.2 presents our solution for simple validation; Section 11.3 extends this
to handle field interdependencies; Section 11.4 exhibits how other common uses of
JavaScript also can be handled through declarative specification; Section 11.5 presents
the overall strategy of the translation to JavaScript; and Section 11.6 describes the
availability of the PowerForms packages.

11.1.5 Related Work

Authoring systems like ColdFusion [46] can automate server-side verification of some
simple formats, but even so the result is unsatisfactory. A typical response to invalid
data is shown in Figure 11.2. It refers to the internal names of input fields which are
unknown to the client, and the required corrections must be remembered when the
form is displayed again.

Active Forms [207] is based on a special browser supporting Form Applets pro-
grammed as Tcl scripts. It does not offer high-level abstractions or integration with
HTML.

Web Dynamic Forms [97] offer an ambitious and complex solution. They propose
a completely new form model that is technically unrelated to HTML and exists entirely
within a Java applet. Inside this applet, they allow complicated interaction patterns
controlled through an event-based programming model in which common actions are
provided directly and others may be programmed in Java. When a form is submitted,
the data are extracted from the applet and treated as ordinary HTML form data. The
intervening years have shown that Web authors prefer to use standard HTML forms
instead and then program advanced behavior in JavaScript. Thus, our simpler approach
of automatically generating this JavaScript code remains relevant. An important reason
to stay exclusively with HTML input fields is that they can be integrated into HTML
tables to control their layout.

The XHTML-FML language [196] also provides a means for client-side input val-
idation by adding an attribute calledctype to textual input fields. However, this at-

11.2 Validation of Input Formats 169

Figure 11.2: Typical server-side validation.

tribute is restricted to a (large) set of predefined input validation types and there is no
support for field interdependency.

Our PowerForms notation is totally declarative and requires no programming skills.
Furthermore, it is modular in the sense that validation can be added to an input field
in an existing HTML form without knowing anything but its name. The validation
markup being completely separate from the form markup allows the layout of a form
to be redesigned at any time in any HTML editor.

11.2 Validation of Input Formats

The language is based on regular expressions embedded in HTML that is subsequently
translated into a combination of standard HTML and JavaScript. This approach ben-
efits from an efficient implementation through the use of finite-state automata which
are interpreted by JavaScript code.

Named formats may be associated to fields whose values are then required to be-
long to the corresponding regular sets. The client is continuously receiving feedback,
and the form can only be submitted when all formats are satisfied. The server should
of course perform a double-check, since the JavaScript code is open to tampering.

Regular expressions denoting sets of strings are a simple and familiar formalism
for specifying the allowed values of form fields. As we will demonstrate, all reasonable
input formats can be captured in this manner. Also, the underlying technology of finite-
state automata gives a simple and efficient implementation strategy.

11.2.1 Syntax

We define a rich XML syntax [45] for regular expressions on strings:

regexp → <const value=stringconst/> |
<empty/> |
<anychar/> |

170 PowerForms: Declarative Client-Side Form Field Validation

<anything/> |
<charset value=stringconst/> |
<fix low=intconst high=intconst/> |
<relax low=intconst high=intconst/> |
<range low=charconst high=charconst/> |
<intersection> regexp* </intersection> |
<concat> regexp* </concat> |
<union> regexp* </union> |
<star> regexp </star> |
<plus> regexp </plus> |
<optional> regexp </optional> |
<repeat count=intconst> regexp </repeat>
<repeat low=intconst high=intconst> regexp </repeat>
<complement> regexp </complement> |
<regexp exp=stringconst/> |
<regexp id=stringconst> regexp </regexp> |
<regexp idref=stringconst/> |
<regexp uri=stringconst/> |
<include uri=stringconst/>

Here,regexp* denotes zero or more repetitions ofregexp . The nonterminalsstring-
const , intconst , andcharconst have the expected meanings.

Note that the verbose XML syntax also allows standard Perl syntax for regular
expressions through the construct<regexp exp=stringconst/>. Our full syntax is
however more general, since it includes intersection, general complementation, import
mechanisms, and a richer set of primitive expressions.

A regular expression is associated with a form field through a declaration:

formatdecl → <format name=stringconst
help=stringconst
error=stringconst>

regexp

</format>

The value of the optionalhelp attribute will appear in the status line of the browser
when the field has focus; similarly, the value of the optionalerror attribute will appear
if the field contains invalid data.

The format takes effect for a form field of type typetext, password, select,
radio, or checkbox whose name is the value of thename attribute. The need for
input formats is perhaps only apparent fortext andpassword fields, but we need the
full generality later in Section 11.3.

11.2.2 Semantics of Regular Expressions

Each regular expression denotes an inductively defined set of strings. Theconst ele-
ment denotes the singleton set containing itsvalue. Theempty element denotes the
empty set. Theanychar element denotes the set of all characters. Theanything
element denotes the set of all strings. Thecharset denotes the set of characters in
its value. Thefix element denotes the set of numerals fromlow to high all padded
with leading zeros to have the same length ashigh. Therelax element denotes the

11.2 Validation of Input Formats 171

set of numerals fromlow to high. Therange element denotes the set of singleton
strings obtained from the characterslow to high. Theintersection element de-
notes the intersection of the sets denoted by its children. Theconcat element denotes
the concatenation of the sets denoted by its children. Theunion element denotes the
union of the sets denoted by its children. Thestar element denotes zero or more
concatenations of the set denoted by its child. Theplus element denotes one or more
concatenations of the set denoted by its child. Theoptional element denotes the
union of the set containing the empty string and the set denoted by its child. The
repeat element with attributecount denotes a fixed power of the set denoted by its
child. Therepeat element with attributeslow andhigh denotes the corresponding
interval of powers of the set denoted by its child, wherelow defaults to zero andhigh
to infinity. Thecomplement element denotes the complement of the set denoted by its
child. Theregexp element with attributeexp denotes the set denotes by its attribute
value interpreted as a standard Perl regular expression. Theregexp element with at-
tribute id denotes the same set as its child, but in addition names it by the value of
id. Theregexp element with attributeidref denotes the same set as the regular ex-
pression whose name is the value ofidref. It is required that eachid value is unique
throughout the document and that eachidref value matches someid value. The
regexp element with attributeuri denotes the set recognized by a precompiled au-
tomaton. Theinclude element performs a textual insertion of the document denoted
by itsurl attribute.

11.2.3 Semantics of Format Declarations

The effect on a form field of a regular expression denoting the setS is defined as
follows. For atext or password field, the effect is to decorate the field with one of
four annotations:

• green light, if the current value is a member ofS;

• yellow light, if the current value is a proper prefix of a member ofS;

• red light, if the current value is not a prefix of a member of a non-emptyS; or

• n/a, if S is the empty set.

The form cannot be submitted if it has a yellow or red light. The default annotations,
which are placed immediately to the right of the field, are tiny icons inspired by traffic
lights, but they can be customized with arbitrary images to obtain a different look and
feel as indicated in Figure 11.3. Other annotations, like colorings of the input fields,
would also seem reasonable, but current limitations in JavaScript make this impossible.

For aselect field, the effect is to filter theoption elements, allowing only those
whose values are members ofS. There is a slight deficiency in the design of a singu-
lar select, since it in some browser implementations will always show one selected
element. To account for the situation where no option is allowed, we introduce an
extension of standard HTML, namely<option value="foo" error> which is le-
gal irrespective of the format. The form cannot be submitted if theerror option is
selected, unlessS is the empty set.

172 PowerForms: Declarative Client-Side Form Field Validation

traffic star check ok blank

green light

yellow
light

red light

n/a

Figure 11.3: Different styles of status icons.

For aradio field, the effect is that the button can only be depressed if its value is
a member ofS; if S is not the empty set, then the form cannot be submitted unless one
button is depressed. Note that the analogue of theerror option is the case where no
button is depressed.

For acheckbox field, the effect is that the button can only be depressed if its value
is a member ofS.

Using our mechanism, it is possible to create adeadlockedform that cannot be
submitted. The simplest example is the following, assuming the input field below is
the only one in theradio button group namedfoo:

<input type="radio" name="foo" value="aaa">
<format name="foo"><const value="bbb"></format>

Regardless of whether the radio buttonfoo is depressed or not,foo will never satisfy
its requirements. Thus, the form can never be submitted. This behavior exposes a flaw
in the design of the form, rather than an inherent problem with our mechanisms.

11.2.4 Examples

All reasonable data formats can be expressed as regular expressions, some more com-
plicated than others. A simple example is the password format for user ID registration,
seen in Figure 11.4, which is five or more characters not all alphabetic:

<regexp id="pwd">
<intersection>

<repeat low="5"><anychar/></repeat>
<complement>
<star>
<union>

<range low="a" high="z"/>
<range low="A" high="Z"/>

</union>

11.2 Validation of Input Formats 173

Figure 11.4: User ID registration.

</star>
</complement>

</intersection>
</regexp>

or alternatively using the Perl syntax where possible:

<regexp id="pwd">
<intersection>

<regexp exp=".{5,}"/>
<complement>
<regexp exp="[a-zA-Z]*"/>

</complement>
</intersection>

</regexp>

To enforce this format on the existing form, we just add the declarations:

<format name="Password1"><regexp idref="pwd"/></format>
<format name="Password2"><regexp idref="pwd"/></format>

At our Web site we show more advanced examples, such as legal dates including leap
days, URIs, and time of day. As a final example, consider a simple format for ISBN
numbers:

<regexp id="isbn">
<concat>

<repeat count="9">
<concat>
<range low="0" high="9"/>
<optional><charset value=" -"/></optional>

</concat>
</repeat>

174 PowerForms: Declarative Client-Side Form Field Validation

Figure 11.5: Checking ISBN numbers.

<charset value="0123456789X"/>
</concat>

</regexp>

or more succinctly:

<regexp id="isbn">
<regexp exp="([0-9]([-]?)){9}[0-9X]"/>

</regexp>

An input field that exploits this format is:

Enter ISBN number: <input type=text name="isbn" size=20>
<format name="isbn"

help="Enter an ISBN number"
error="Illegal ISBN format">

<regexp idref="isbn"/>
</format>

Initially, the field has a yellow light. This status persists, as seen in Figure 11.5, while
we enter the text"0-444-50264-" which is a legal prefix of an ISBN number. Enter-
ing another"-" yields a red light. Deleting this character and entering5 will finally
give a legal value and a green light.

While the input field has focus, thehelp string appears in the status line of the
browser. If the client attempts to submit the form with invalid data in this field, then
theerror text appears in an alert box.

An ISBN format that includes checksums can be described as a complex regular
expression that yields a 201-state automaton. This full format would only accept5 as
the last digit, since that is the correct checksum. Such a regular expression could hardly
be written by hand; in fact, we generated it using a C program. But as precompiled
automata may be saved and provided as formats, this shows that our technology also
allows us to construct and publish a collection of advanced default formats, similarly
to the datatypes employed in XML Schema [25] and the predefinedctype formats
suggested in [196].

11.3 Interdependencies of Form Fields

We present a simple, yet general mechanism for expressing interdependencies. We
have strived to develop a purely declarative notation that requires no programming

11.3 Interdependencies of Form Fields 175

skills. Our proposal is based on dynamically evolving formats that are settled through
a fixed-point process.

11.3.1 Syntax

We extend the syntax for formats as follows:

formatdecl → <format name=stringconst> format </format>

format → regexp |
<if> boolexp

<then> format </then>
<else> format </else>

</if> |
<format id=stringconst> format </format> |
<format idref=stringconst/>

boolexp → <match name=stringconst> regexp </match> |
<equal name=stringconst value=stringconst/> |
<and> boolexp* </and> |
<or> boolexp* </or> |
<not> boolexp* </not>

Now, the format that applies to a given field is dependent on the values of other fields.
The specification is a binary decision tree, whose leaves are regular expressions and
whose internal nodes are boolean expressions. Each boolean expression is a proposi-
tional combination of the primitivematch andequal elements that each test the field
indicated byname. Even this simple language is more advanced than required for most
uses.

11.3.2 Semantics of Boolean Expressions

A boolean expression evaluates to true or false. For atext or password field, equal
is true iff its current value equalsvalue; match is true iff its current value is a member
of the set denoted byregexp. For aselect field, equal is true iff the value of
a currently selected option equalsvalue; match is true iff the value of a currently
selected option is a member of the set denoted byregexp. For a collection ofradio
or checkbox fields,equal is true iff a button whose value equalsvalue is currently
depressed;match is true iff a button whose value is a member of the set denoted by
regexp is currently depressed.

For the boolean operators,and is true iff all of its children are true,or is true if
one of its children is true, andnot is true if all of its children are false.

11.3.3 Semantics of Interdependencies

Given a collection of form fieldsF1,. . . ,Fn with associated formats and values, we
define aniteration which in order does the following for eachFi:

• evaluate the current format based on the current values of all form fields;

• update the field based on the new current format.

176 PowerForms: Declarative Client-Side Form Field Validation

The updating varies with the type of the form field:

• for a text field, the status light is changed to reflect the relationship between
the current value and the current format;

• for a select field, the options are filtered by the new format, and the selected
options that are no longer allowed by the format are unselected; if the current
selection of a singularselect is disallowed, theerror option is selected;

• for a radio or checkbox field, a depressed button is released if its value is no
longer allowed by the format.

An iteration ismonotonic, which intuitively means that it can only delete user data.
Technically, an iteration is a monotonic function on a specific lattice of form status
descriptions. It follows that repeated iteration will eventually reach a fixed-point. In
fact, if b is the total number ofradio andcheckbox buttons,p is the total number of
select options, ands is the number of singularselects, then at mostb+ p+ s+ 1
iterations are required. Usually, however, the fixed-point will stabilize after very few
iterations; also, a compile-time dependency analysis can keep this number down. Only
complex forms with a high degree of interdependency will require many iterations.

The behavior of a PowerForm is to iterate to a new fixed-point whenever the client
changes an input field; furthermore, the form data can only be submitted when all the
form fields are in a status that allows this.

Note that the fixed-point we obtain is dependent on the order in which the form
fields are updated: permuting the fields may result in a different fixed-point. We choose
to update the fields in the textual order in which they appear in the document. This is
typically the order in which the client is supposed to consider them, and the resulting
fixed-point appears to coincide with the intuitively expected behavior. For simpler
forms, the order is usually not significant.

With form interdependency it is not only possible to create a deadlocked form that
can never be submitted, but also to create buttons that can never be depressed. Consider
again the example from Section 11.2. Since the valueaaa is different frombbb, the
foo button will instantly be released whenever it is depressed. Such behavior can of
course also stem from more complicated interdependent behavior.

The possible behaviors of PowerForms can in principle be analyzed statically. De-
fine the size|R| of a regular expression to be the number of states in the correspond-
ing minimal, deterministic finite-state automaton, and the size|F| of an input field
to be the product of the sizes of all regular expressions that it may be tested against.
Then a collection of input fieldsF1, . . . ,Fn determines a finite transition system with
|F1||F2| · · · |Fn| states for which the reachability problem is decidable but hardly feasi-
ble in practice. We therefore leave it to the Web author to avoid aberrant behavior.

11.3.4 Examples

As a first example, we will redo the questionnaire from Figure 11.1:

Have you attended past WWW conferences?
<input type="radio" name="past" value="yes">Yes
<input type="radio" name="past" value="no">No

11.3 Interdependencies of Form Fields 177

 If Yes, how did WWW8 compare?
<input type="radio" name="compare" value="better">Better
<input type="radio" name="compare" value="same">Same
<input type="radio" name="compare" value="worse">Worse

To obtain the desired interdependence, we declare the following format:

<format name="compare">
<if><equal name="past" value="yes"/>
<then><complement><const value=""/></complement></then>
<else><empty/></else>

</if>
</format>

Only if the first question is answered in the positive, may the second group of radio
buttons may be depressed and an answer is also required. A second example shows
how radio buttons may filter the options in a selection:

Favorite letter group:
<input type="radio" name="group" value="vowel" checked>vowels
<input type="radio" name="group" value="consonant">consonants

Favorite letter:
<select name="letter">
<option value="a">a
<option value="b">b
<option value="c">c
...
<option value="x">x
<option value="y">y
<option value="z">z

</select>

The unadorned version of this form allows inconsistent choices such asgroup having
valuevowel andletter having valuez. However, we can add the following format:

<format name="letter">
<if><equal name="group" value="vowel"/>

<then><charset value="aeiouy"/></then>
<else><charset value="bcdfghjklmnpqrstvwxz"/></else>

</if>
</format>

Apart from enforcing consistency, the induced behavior will make sure that the client
is only presented with consistent options, as shown in Figure 11.6. Next, consider the
form:

Personal info
<p>
Name: <input type="text" name="name" size="30">

Birthday: <input type="text" name="birthday" size="20">

178 PowerForms: Declarative Client-Side Form Field Validation

Figure 11.6: Only vowels are presented.

Figure 11.7: Collecting personal information.

<table border="0" cellpadding="0" cellspacing="0">
<tr><td valign="top">Marital status:</td>
<td><input type=radio name="marital" value="single" checked>single

<input type="radio" name="marital" value="married">married

<input type="radio" name="marital" value="widow">widow[er]
</td>
</tr>
</table>
<p>
Spousal info
<p>
Name: <input type="text" name="spouse" size="30">

Deceased <input type="radio" name="deceased" value="deceased">

11.3 Interdependencies of Form Fields 179

Several formats can be used here. For the birthday, we select from our standard library
a 35-state automaton recognizing legal dates including leap days:

<format name="birthday">
<regexp uri="http://www.brics.dk/bigwig/powerforms/date.dfa"/>

</format>

Among the other fields, there are some obvious interdependencies. Spousal info is only
relevant if themarital status is notsingle, and the spouse can only bedeceased if
themarital status iswidow:

<format name="spouse">
<if><equal name="marital" value="married"/>

<then><regexp idref="handle"/></then>
<else>
<if><equal name="marital" value="single"/>
<then><empty/></then>
<else><regexp idref="handle"/></else>

</if>
</else>

</if>
</format>

<format name="deceased">
<if><equal name="marital" value="widow"/>

<then><const value="deceased"/></then>
<else><empty/></else>

</if>
</format>

Here,handle refers to some regular expression for the names of people. Note that if
themarital status changes fromwidow tosingle, then thedeceased button will au-
tomatically be released. Dually, it seems reasonable that after a change fromsingle to
widow, thedeceased button should automatically be depressed. However, such action
is generally not meaningful, since it may cause the form to oscillate between two set-
tings. In our formalism, this would violate the monotonicity property that guarantees
termination of the fixed-point iteration. Still, the form cannot be submitted until the
deceased button is depressed for awidow. The initial form is shown in Figure 11.7.

An example of a more complex boolean expression involves the form in Fig-
ure 11.8. Here, simple formats determine that the correct style of phone numbers
is used for the chosen country. The option of requesting a visit from the NYC office is
only open to those customers who live in New York City. This constraint is enforced
by the following format:

<format name="nyc">
<if><and><equal name="country" value="US"/>

<match name="phone">
<concat>

<union>
<const value="212"/>
<const value="347"/>

180 PowerForms: Declarative Client-Side Form Field Validation

Figure 11.8: Collecting customer information.

<const value="646"/>
<const value="718"/>
<const value="917"/>

</union>
<anything/>

</concat>
</match>

</and>
<then><anything/></then>
<else><empty/></else>

</if>
</format>

Residents from other cities will find that they cannot depress the button.
As a final example of the detailed control that we offer, consider the form in Fig-

ure 11.9 which invites users to request a new version of a product. Until the client
has stated whether he has a license or not, it is impossible to choose a version. Once
the choice has been made, licensed users can choose between all versions, others are
limited to versions 1.1 and 1.2. The format on the last group of radio buttons is:

<format name="version">
<if><equal name="license" value="yes"/>

<then><anything/></then>
<else>
<if><equal name="license" value="no"/>

<then><union>
<const value="1.1"/>
<const value="1.2"/>

</union>
</then>
<else><empty/></else>

</if>
</else>

</if>
</format>

11.4 Applet Results 181

Figure 11.9: Collecting user information.

11.4 Applet Results

Java applets can be used in conjunction with forms to implement new GUI components
that collect data from the client. However, it is not obvious how to extract and validate
data from an applet and submit it to the server on equal footing with ordinary form
data.

We propose a simple mechanism for achieving this goal. We extend the applet
syntax to allowresult elements in addition toparam elements. An example is the
following:

<applet codebase="http://www.brics.dk/bigwig/powerapplets"
code="slidebar.class">

<param name="low" value="32">
<param name="high" value="212">
<result name="choice">

</applet>

When this applet is displayed, it shows a slide bar ranging over the interval [32..212].
When the form is submitted, the applet will be requested to supply a value for the
choice result. This value is then assigned to ahidden form field namedchoice and
will now appear with the rest of the form data. If the applet is not ready with the result,
then the form cannot be submitted.

This extension only works for applets that are subclasses of the special classPower-
Applet that we supply. It implements the methodputResult that is used by the applet
programmer to supply results, as well as the methodsresultsReady andgetResult
that are called by the JavaScript code that implements the form submission.

In relation to PowerForms, applet results play the same role as input fields. Thus,
they can have associated formats and be tested in boolean expressions. The value of
an optionalerror attribute will appear in the alert box if an attempt is made to submit
the form with a missing or invalid applet result.

11.5 Translation to JavaScript

A PowerForms document is parsed according to a very liberal HTML grammar that
explicitly recognizes the special elements such asformat andregexp. The generated
HTML document retains most of the original structure, except that it contains the
generated JavaScript code. Also, each input field is modified to includeonKeyup,
onChange, andonClick functions that react to modifications from the client.

182 PowerForms: Declarative Client-Side Form Field Validation

A function update foo is defined for each input field namefoo. This function
checks if the current data is valid and reacts accordingly. Another functionupdate all
is responsible for computing the global fixed-point.

Each regular expression is by the compiler transformed into a minimal, determin-
istic finite-state automaton, which is directly represented in a JavaScript data structure.
It is a simple matter to use an automaton for checking if a data value is valid. Fortext
andpassword fields, the status lights green, yellow, and red correspond to respectively
an accept state, a non-accept state, and the crash state. For efficiency, the generated
automata are time-stamped and cached locally; thus, they are only recompiled when
necessary.

The generated code is quite small, but relies on a 500 line standard library with
functions for manipulating automata and the Document Object Model [3].

11.6 Availability

The PowerForms system is freely available in an open source distribution from our
Web site located athttp://www.brics.dk/bigwig/powerforms/. The package
includes documentation, the examples from this paper and many more, and the com-
piler itself which is written in 4000 lines of C. The generated JavaScript code has been
tested for Netscape on Unix and Windows and for Explorer on Windows.

PowerForms are also directly supported by the<bigwig> system which is a high-
level language for generating interactive Web services [40, 38, 195, 194]. It is likewise
available athttp://www.brics.dk/bigwig/.1.

11.7 Conclusion

We have shown how to enrich HTML forms with simple, declarative concepts that
capture advanced input validation and field interdependencies. Such forms are subse-
quently compiled into JavaScript and standard HTML. This allows the design of more
complex and interesting forms while avoiding tedious and error-prone JavaScript pro-
gramming.

We would like to thank the entire<bigwig> team for assisting in experiments with
PowerForms. Thanks also go to the PowerForms users, in particular Frederik Esser,
for valuable feedback.

1For a more up-to-date description of the features in PowerForms see [190] The
newest version, which is based on Java and is incorporated intoJWIG, is available from
http://www.brics.dk/~ricky/powerforms/ .

http://www.brics.dk/bigwig/powerforms/
http://www.brics.dk/bigwig/
http://www.brics.dk/~{}ricky/powerforms/

Chapter 12

Language-Based Caching of
Dynamically Generated HTML

with Claus Brabrand, Steffan Olesen, and Michael I. Schwartzbach

Abstract

Increasingly, HTML documents are dynamically generated by interactive Web ser-
vices. To ensure that the client is presented with the newest versions of such documents
it is customary to disable client caching causing a seemingly inevitable performance
penalty. In the<bigwig> system, dynamic HTML documents are composed of higher-
order templates that are plugged together to construct complete documents. We show
how to exploit this feature to provide an automatic fine-grained caching of document
templates, based on the service source code. A<bigwig> service transmits not the
full HTML document but instead a compact JavaScript recipe for a client-side con-
struction of the document based on a static collection of fragments that can be cached
by the browser in the usual manner. We compare our approach with related techniques
and demonstrate on a number of realistic benchmarks that the size of the transmitted
data and the latency may be reduced significantly.

12.1 Introduction

One central aspect of the development of the World Wide Web during the last decade
is the increasing use ofdynamicallygenerated documents, that is, HTML documents
generated using e.g. CGI, ASP, or PHP by a server at the time of the request from a
client [221, 14]. Originally, hypertext documents on the Web were considered to be
principally static, which has influenced the design of protocols and implementations.
For instance, an important technique for saving bandwidth, time, and clock-cycles is
to cache documents on the client-side. Using the original HTTP protocol, a document
that never or rarely changes can be associated an “expiration time” telling the browsers
and proxy servers that there should be no need to reload the document from the server
before that time. However, for dynamically generated documents that change on every
request, this feature must be disabled—the expiration time is always set to “now”,
voiding the benefits of caching.

184 Language-Based Caching of Dynamically Generated HTML

Even though most caching schemes consider all dynamically generated documents
“non-cachable” [216, 15], a few proposals for attacking the problem have emerged [224,
186, 55, 116, 54, 78]. However, as described below, these proposals are typically not
applicable for highly dynamic documents. They are often based on the assumptions
that although a document is dynamically generated, 1) its construction on the server of-
ten does not have side-effects, for instance because the request is essentially a database
lookup operation, 2) it is likely that many clients provide the same arguments for the
request, or 3) the dynamics is limited to e.g. rotating banner ads. We take the next step
by considering complex services where essentially every single document shown to a
client is unique and its construction has side-effects on the server. A typical example of
such a service is a Web-board where current discussion threads are displayed according
to the preferences of each user. What we propose is not a whole new caching scheme
requiring intrusive modifications to the Web architecture, but rather a technique for
exploiting the caches already existing on the client-side in browsers, resembling the
suggestions for future work in [221].

Though caching does not work for whole dynamically constructed HTML docu-
ments, most Web services construct HTML documents using some sort of constant
templates that ideally ought to be cached, as also observed in [78, 220]. In Fig-
ure 12.1, we show a condensed view of five typical HTML pages generated by dif-
ferent<bigwig> Web services [40]. Each column depicts the dynamically generated
raw HTML text output produced from interaction with each of our five benchmark
Web services. Each non-space character has been colored either grey or black. The
grey sections, which appear to constitute a significant part, are characters that originate
from a large number of small, constant HTML templates in the source code; the black
sections are dynamically computed strings of character data, specific to the particular
interaction.

The lycos example simulates a search engine giving 10 results from the query
“caching dynamic objects”; thebachelor service will based on a course roster gen-
erate a list of menus that students use to plan their studies; thejaoo service is part
of a conference administration system and generates a graphical schedule of events;
thewebboard service generates a hierarchical list of active discussion threads; and the
dmodlog service generates lists of participants in a course. Apart from the first sim-
ulation, all these examples are sampled from running services and use real data. The
dmodlog example is dominated by string data dynamically retrieved from a database,
as seen in Figure 12.1, and is thus included as a worst-case scenario for our technique.
For the remaining four, the figure suggests a substantial potential gain from caching
the grey parts.

The main idea of this paper is—automatically, based on the source code of Web
services—to exploit this division into constant and dynamic parts in order to enable
caching of the constant parts and provide an efficient transfer of the dynamic parts
from the server to the client.

Using a technique based on JavaScript for shifting the actual HTML document
construction from the server to the client, our contributions in this paper are:

• an automatic characterization, based on the source code, of document fragments
ascachableor dynamic, permitting the standard browser caches to have signifi-
cant effect even on dynamically generated documents;

12.2 Related Work 185

(a) lycos (b) bachelor (c) jaoo (d) webboard (e) dmodlog

Figure 12.1: Benchmark services: cachable (grey) vs. dynamic (black) parts.

• a compact representationof the information sent to the client for constructing
the HTML documents; and

• a generalization allowing a whole group of documents, called adocument clus-
ter, to be sent to the client in a single interaction and cached efficiently.

All this is possible and feasible due to the unique approach for dynamically construct-
ing HTML documents used in the<bigwig> language [195, 40], which we use as a
foundation. Our technique is non-intrusive in the sense that it builds only on preexist-
ing technologies, such as HTTP and JavaScript—no special browser plug-ins, cache
proxies, or server modules are employed, and no extra effort is required by the service
programmer.

As a result, we obtain a simple and practically useful technique for saving network
bandwidth and reviving the cache mechanism present in all modern Web browsers.

Outline

Section 12.2 covers relevant related work. In Section 12.3, we describe the<bigwig>
approach to dynamic generation of Web documents in a high-level language using
HTML templates. Section 12.4 describes how the actual document construction is
shifted from server-side to client-side. In Section 12.5, we evaluate our technique by
experimenting with five<bigwig> Web services. Finally, Section 12.6 contains plans
and ideas for further improvements.

12.2 Related Work

Caching of dynamic contents has received increasing attention the last years since it
became evident that traditional caching techniques were becoming insufficient. In the

186 Language-Based Caching of Dynamically Generated HTML

following we present a brief survey of existing techniques that are related to the one
we suggest.

Most existing techniques labeled “dynamic document caching” are either server-
based, e.g. [186, 55, 116, 224], or proxy-based, e.g. [54, 199]. Ours is client-based, as
e.g. the HPP language [78].

The primary goal for server-based caching techniques is not to lower the network
load or end-to-end latency as we aim for, but to relieve the server by memoizing the
generated documents in order to avoid redundant computations. Such techniques are
orthogonal to the one we propose. The server-based techniques work well for ser-
vices where many documents have been computed before, while our technique works
well for services where every document is unique. Presumably, many services are
a mixture of the two kinds, so these different approaches might support each other
well—however, we do not examine that claim in this paper.

In [186], the service programmer specifies simple cache invalidation rules instruct-
ing a server caching module that the request of some dynamic document will make
other cached responses stale. The approach in [224] is a variant of this with a more
expressive invalidation rule language, allowing classes of documents to be specified
based on arguments, cookies, client IP address, etc. The technique in [116] instead
provides a complete API for adding and removing documents from the cache. That
efficient but rather low-level approach is in [55] extended withobject dependency
graphs, representing data dependencies between dynamic documents and underlying
data. This allows cached documents to be invalidated automatically whenever certain
parts of some database are modified. These graphs also allow representation offrag-
mentsof documents to be represented, as our technique does, but caching is not on the
client-side. A related approach for caching in the Weave Web site specification system
is described in [222].

In [199], a protocol for proxy-based caching is described. It resembles many of
the server-based techniques by exploiting equivalences between requests. A notion of
partial request equivalenceallows similar but non-identical documents to be identi-
fied, such that the client quickly can be given an approximate response while the real
response is being generated.

Active Cache [54] is a powerful technique for pushing computation to proxies,
away from the server and closer to the client. Each document can be associated a
cache applet, a piece of code that can be executed by the proxy. This applet is able
to determine whether the document is stale and if so, how to refresh it. A document
can be refreshed either the traditional way by asking the server or, in the other ex-
treme, completely by the proxy without involving the server, or by some combination.
This allows tailor-made caching policies to be made, and—compared to the server-
side approaches—it saves network bandwidth. The drawbacks of this approach are:
1) it requires installation of new proxy servers which can be a serious impediment
to wide-spread practical use, and 2) since there is no general automatic mechanism
for characterizing document fragments as cachable or dynamic, it requires tedious and
error-prone programming of the cache applets whenever non-standard caching policies
are desired.

Common to the techniques from the literature mentioned above is that truly dy-
namic documents, whose construction on the server often have side-effects and essen-
tially always are unique (but contain common constant fragments), either cannot be

12.2 Related Work 187

cached at all or require a costly extra effort by the programmer for explicitly program-
ming the cache. Furthermore, the techniques either are inherently server-based, and
hence do not decrease network load, or require installation of proxy servers.

Delta encoding [157] is based on the observation that most dynamically con-
structed documents have many fragments in common with earlier versions. Instead
of transferring the complete document, adelta is computed representing the changes
compared to some common base. Using a cache proxy, the full document is regen-
erated near the client. Compared to Active Cache, this approach is automatic. A
drawback is—in addition to requiring specialized proxies—that it necessitates proto-
cols for management of past versions. Such intrusions can obviously limit widespread
use. Furthermore, it does not help with repetitions within a single document. Such
repetitions occur naturally when dynamically generating lists and tables whose sizes
are not statically known, which is common to many Web services that produce HTML
from the contents of a database. Repetitions may involve both dynamic data from the
database and static markup of the lists and tables.

The HPP language [78] is closely related to our approach. Both are based on the
observation that dynamically constructed documents usually contain common constant
fragments. HPP is an HTML extension which allows an explicit separation between
static and dynamic parts of a dynamically generated document. The static parts of a
document are collected in atemplatefile while the dynamic parameters are in a sepa-
ratebindingfile. The template file can contain simple instructions, akin to embedded
scripting languages such as ASP, PHP, or JSP, specifying how to assemble the com-
plete document. According to [78], this assembly and the caching of the templates can
be done either using cache proxies or in the browser with Java applets or plug-ins, but
it should be possible to use JavaScript instead, as we do.

Edge Side Includes [212] is an XML-based language for assembling HTML doc-
uments and other resources dynamically. The language is more expressive than the
binding language in HPP, however all caching is performed by intermediate servers in
a content delivery network, and not by the clients.

An essential difference between HPP and our approach is that the HPP solution
is not integrated with the programming language used to make the Web service. With
some work it should be possible to combine HPP with popular embedded scripting lan-
guages, but the effort of explicitly programming the document construction remains.
Our approach is based on the source language, meaning that all caching specifications
are automatically extracted from the Web service source code by the compiler and the
programmer is not required to be aware of caching aspects. Regarding cachability,
HPP has the advantage that the instructions describing the structure of the resulting
document are located in the template file which is cached, while in our solution the
equivalent information is in the dynamic file. However, in HPP the constant fragments
constituting a document are collected in a single template. This means that HTML
fragments that are common to different document templates cannot be reused by the
cache. Our solution is more fine-grained since it caches the individual fragments sepa-
rately. Also, HPP templates are highly specialized and hence more difficult to modify
and reuse for the programmer. Being fully automatic, our approach guarantees cache
soundness. Analogously to optimizing compilers, we claim that the<bigwig> com-
piler generates caching code that is competitive to what a human HPP programmer
could achieve. This claim is substantiated by the experiments in Section 12.5. More-

188 Language-Based Caching of Dynamically Generated HTML

x:

x<[=y]:

y:

g

g

Figure 12.2: Theplug operator.

over, we claim that<bigwig> provides a more flexible, safe, and hence easier to use
template mechanism than does HPP or any other embedded scripting language. The
<bigwig> notion of higher-order templatesis summarized in Section 12.3. A thor-
ough comparison between various mechanisms supporting document templates can be
found in [40].

As mentioned, we use compact JavaScript code to combine the cached and the
dynamic fragments on the client-side. Alternatively, similar effects could be obtained
using browser plug-ins or proxies, but implementation and installation would become
more difficult. The HTTP 1.1 protocol [95] introduces both automatic compression
using general-purpose algorithms, such asgzip, byte-range requests, and advanced
cache-control directives. The compression features are essentially orthogonal to what
we propose, as shown in Section 12.5. The byte-range and caching directives pro-
vide features reminiscent of our JavaScript code, but it would require special proxy
servers or browser extensions to apply them to caching of dynamically constructed
documents. Finally, we could have chosen Java instead of JavaScript, but JavaScript is
more lightweight and is sufficient for our purposes.

12.3 Dynamic Documents in <bigwig>

The part of the<bigwig> Web service programming language that deals with dy-
namic construction of HTML documents is called DynDoc [195]. It is based on a
notion of templateswhich are HTML fragments that may containgaps. These gaps
can at runtime be filled with other templates or text strings, yielding a highly flexible
mechanism.

A <bigwig> serviceconsists of a number ofsessionswhich are essentially entry
points with a sequential action that may be invoked by a client. When invoked, a
session thread with its own local state is started for controlling the interactions with
the client. Two built-in operations,plugandshow, form the core of DynDoc. Theplug
operation is used for building documents. As illustrated in Figure 12.2, this operator
takes two templates,x andy, and a gap nameg and returns a copy ofx where a copy of
y has been inserted into everyg gap. A template without gaps is considered a complete
document. Theshowoperation is used for interacting with the client, transmitting a
given document to the client’s browser. Execution of the client’s session thread is
suspended on the server until the client submits a reply. If the document contains input
fields, theshow statement must have areceive part for receiving the field values into
program variables.

As in MAWL [144, 8], the use of templates permits programmer and designer

12.3 Dynamic Documents in <bigwig> 189

tasks to be completely separated. However, our templates arefirst-classvalues in that
they can be passed around and stored in variables as any other data type. Also they
arehigher-orderin that templates can be plugged into templates. In contrast, MAWL
templates cannot be stored in variables and only strings can be inserted into gaps. The
higher-order nature of our mechanism makes it more flexible and expressive without
compromising runtime safety because of two compile-time program analyses: agap-
and-field analysis[195] and anHTML validation analysis[39]. The former analysis
guarantees that at everyplug, the designated gap is actually present at runtime in the
given template and at everyshow, there is always a valid correspondence between the
input fields in the document being shown and the values being received. The latter
analysis will guarantee that every document being shown is valid according to the
HTML specification. The following variant of a well-known example illustrates the
DynDoc concepts:

service {
html ask = <html>What? <input name="what"></html>;
html hello = <html>Hello, <[thing]>!</html>;

session HelloWorld() {
string s;
show ask receive [s=what];
hello = hello<[thing=s];
show hello;

}
}

Two HTML variables,ask andhello, are initialized with constant HTML templates,
and a sessionHelloWorld is declared. The entities<html> and</html> are merely
lexical delimiters and are not part of the actual templates. When invoked, the session
first shows theask template as a complete document to the client. All documents
are implicitly wrapped into an<html> element and a form with a default “continue”
button before being shown. The client fills out thewhat input field and submits a
reply. The session resumes execution by storing the field value in thes variable. It
then plugs that value into thething gap of thehello template and sends the resulting
document to the client. The following more elaborate example will be used throughout
the remainder of the paper:

service {
html cover = <html>

<head><title>Welcome</title></head>
<body bgcolor=[color]>
<[contents]>

</body>
</html>;

html greeting = <html>
Hello <[who]>, welcome to <[what]>.

</html>;

html person = <html><i>Stranger</i></html>;

190 Language-Based Caching of Dynamically Generated HTML

session welcome() {
html h;
h = cover<[color="#9966ff",

contents=greeting<[who=person]];
show h<[what=<html>BRICS</html>];

}
}

It builds a “welcome to BRICS” document by plugging together four constant tem-
plates and a single text string, shows it to the client, and terminates. The higher-order
template mechanism does not require documents to be assembled bottom-up: gaps
may occur non-locally as for instance thewhat gap inh in the show statement that
comes from thegreeting template being plugged into thecover template in the pre-
ceding statement. Its existence is statically guaranteed by the gap-and-field analysis.

We will now illustrate how our higher-order templates

Figure 12.3:webboard

are more expressive and provide better cachability com-
pared to first-order template mechanisms. First note that
ASP, PHP, and JSP also fit the first-order category as they
conceptually correspond to having one single first-order tem-
plate whose special code fragments are evaluated on the
server and implicitly plugged into the template. Consider
now the unbounded hierarchical list of messages in a typi-
cal Web bulletin board. This is easily expressed recursively
using a small collection of DynDoc templates. However,
it can never be captured by any first-order solution with-
out casting from templates to strings and hence losing type
safety. Of course, if one is willing to fix the length of the
list explicitly in the template at compile-time, it can be ex-
pressed, but not with unbounded lengths. In either case,
sharing of repetitions in the HTML output is sacrificed,
substantially cutting down the potential benefits of caching.
Figure 12.3 shows thewebboard benchmark as it would
appear if it had been generated entirely using first-order templates: only the outermost
template remains and the message list is produced by one big dynamic area. Thus,
nearly everything is dynamic (black) compared to the higher-order version displayed
in Figure 12.1(d).

Languages without a template mechanism, such as Perl and C, that simply generate
documents using low-levelprint-like commands generally have too little structure of
the output to be exploited for caching purposes.

All in all, we have with theplug-and-showmechanism in<bigwig> successfully
transferred many of the advantages known from static documents to a dynamic context.
The next step, of course, being caching.

12.3.1 Dynamic Document Representation

Dynamic documents in<bigwig> are at runtime represented by theDynDocDagdata
structure supporting four operations: constructing constant templates,constant(c);

12.3 Dynamic Documents in <bigwig> 191

"Hello "

", welcome to "

"."

who

what

(a) Leaf:greeting

g

s

d

(b) Node:strplug(d,g,s)

1 2

g

dd

(c) Node:plug(d1,g,d2)

Figure 12.4: DynDocDag representation constituents.

string plugging,strplug(d,g,s); template plugging,plug(d1,g,d2); and showing
documents,show(d). This data structure represents a dynamic document as a binary
DAG (Directed Acyclic Graph), where the leaves are either HTML templates or strings
that have been plugged into the document and where the nodes represent pluggings that
have constructed the document.

A constant template is represented as an ordered sequence of its text and gap con-
stituents. For instance, thegreeting template from the BRICS example service is
represented as displayed in Figure 12.4(a) as a sequence containing two gap entries,
who andwhat , and three text entries for the text around and between the gaps. A con-
stant template is represented onlyoncein memory and is shared among the documents
it has been plugged into, causing the data structure to be a DAG in general and not a
tree.

The string plug operation,strplug, combines a DAG and a constant string by
adding a new string plug root node with the name of the gap, as illustrated in Fig-
ure 12.4(b). Analogously, theplug operation combines two DAGs as shown in Fig-
ure 12.4(c). For both operations, the left branch is the document containing the gap
being plugged and the right branch is the value being plugged into the gap. Thus, the
data structure merely records plug operations and defers the actual document construc-
tion to subsequentshow operations.

Conceptually, theshow operation is comprised of two phases: agap linkingphase
that will insert a stack of links from gaps to templates and aprint traversalphase that
performs the actual printing by traversing all the gap links. The need for stacks comes
from the template sharing.

The strplug(d,g,s), plug(d1,g,d2), andshow(d) operations have optimal
complexities,O(1), O(1), andO(|d|), respectively, where|d| is the lexical size of the
d document.

Figure 12.5 shows the representation of the document shown in the BRICS exam-
ple service. In this simple example, the DAG is a tree since each constant template
is used only once. Note that for some documents, the representation is exponentially
more succinct than the expanded document. This is for instance the case with the fol-
lowing recursive function:

html tree(int n) {
html list = <html><[gap]><[gap]></html>;
if (n==0) return <html>foo</html>;
return list<[gap=tree(n-1)];

}

192 Language-Based Caching of Dynamically Generated HTML

color who

what

contents

"..."

"..."

"..."

"..."

"..."

"..."

"..."

"..."

color

contents

who

what

"#9966ff"

(anonymous
fragment)

brics

person

greetingcover

Figure 12.5: DynDocDag representation of the document shown in the BRICS exam-
ple.

which, givenn, in O(n) time and space will produce a document of lexical sizeO(2n).
This shows that regarding network load, it can be highly beneficial to transmit the DAG
across the network instead of the resulting document, even if ignoring cache aspects.

12.4 Client-Side Caching

In this section we will show how to cache reoccurring parts of dynamically generated
HTML documents and how to store the documents in a compact representation. The
first step in this direction is to move the unfolding of the DynDocDag data structure
from the server to the client. Instead of transmitting the unfolded HTML document, the
server will now transmit a DynDocDag representation of the document in JavaScript
along with a link to a file containing some generic JavaScript code that will interpret
the representation and unfold the document on the client. Caching is then obtained by
placing the constant templates in separate files that can be cached by the browser as
any other files.

As we shall see in Section 12.5, both the caching and the compact representation
substantially reduce the number of bytes transmitted from the server to the client. The
compromise is of course the use of client clock cycles for the unfolding, but in a context
of fast client machines and comparatively slow networks this is a sensible tradeoff. As
explained earlier, the client-side unfolding is not a computationally expensive task, so
the clients should not be too strained from this extra work, even with an interpreted
language like JavaScript.

One drawback of our approach is that extra TCP connections are required for
downloading the template files the first time, unless using the “keep connection alive”
feature in HTTP 1.1. However, this is no worse than downloading a document with
many images. Our experiments show that the number of transmissions per interaction
is limited, so this does not appear to be a practical problem.

12.4 Client-Side Caching 193

s[0]

s[] = {"#9966ff"}

Document structure:

color

contents

who

what

d1_2.js d2_3.js d3_3.js

d4_1.js

String Pool:

(a) Dynamic document structure reply file.

"..."

"..."

"..."

"..."

"..."

"..."

"..." "..."

color

contents

who

what

d1_2.js d2_3.js

d4_1.jsd3_3.js

(b) Cachable template files.

Figure 12.6: Separation into cachable and dynamic parts.

12.4.1 Caching

The DynDocDag representation has a useful property: it explicitly maintains a sepa-
ration of theconstant templatesoccurring in a document, thestringsthat are plugged
into the document, and thestructuredescribing how to assemble the document. In
Figure 12.5, these constituents are depicted as framed rectangles, oval rectangles, and
circles, respectively.

Experiments suggest that templates tend to occur again and again in documents
shown to a client across the lifetime of a<bigwig> service, either because they occur
1) many times in the same document, 2) in many different documents, or 3) simply in
documents that are shown many times. The strings and the structure parts, however,
are typically dynamically generated and thus change with each document.

The templates account for a large portion of the expanded documents. This is
substantiated by Figure 12.1, as earlier explained. Consequently, it would be use-
ful to somehow cache the templates in the browser and to transmit only the dynamic
parts, namely the strings and the structure at eachshow statement. This separation of
cachable and dynamic parts is for the BRICS example illustrated in Figure 12.6.

As already mentioned, the solution is to place each template in its own file and
include a link to it in the document sent to the client. This way, the caching mechanism
in the browser will ensure that templates already seen are not retransmitted.

The first time a service shows a document to a client, the browser will obviously
not have cached any of the JavaScript template files, but as more and more documents
are shown, the client will download fewer and fewer of these files. With enough inter-
actions, the client reaches a point ofasymptotic cachingwhere all constant templates
have been cached and thus only the dynamic parts are downloaded.

Since the templates are statically known at compile-time, the compiler enumer-
ates the templates and for each of them generates a file containing the corresponding
JavaScript code. By postfixing template numbers with version numbers, caching can
be enabled across recompilations where only some templates have been modified.

In contrast to HPP, our approach is entirely automatic. The distinction between
static and dynamic parts and the DynDocDag structure are identified by the compiler,
so the<bigwig> programmer gets the benefits of client-side caching without tedious
and error-prone manual programming of bindings describing the dynamics.

194 Language-Based Caching of Dynamically Generated HTML

12.4.2 Compact Representation

In the following we show how to encode the cachable template files and the reply doc-
uments containing the document representation. Since the reply documents are trans-
mitted at eachshow statement, their sizes should be small. Decompression has to be
conducted by JavaScript interpreted in browsers, so we do not apply general purpose
compression techniques. Instead we exploit the inherent structure of the reply docu-
ments to obtain a lightweight solution: a simple yet compact JavaScript representation
of the string and structure parts that can be encoded and decoded efficiently.

Constant Templates

A constant template is placed in its own file for caching and is encoded as a call to a
JavaScript constructor function,F, that takes the number and version of the template
followed by an array of text and gap constituents respectively constructed via calls
to the JavaScript constructor functionsT andG. For instance, thegreeting template
from the BRICS example gets encoded as follows:

F(T(’Hello ’),G(3),T(’, welcome to ’),G(4),T(’.’));

Assuming this is version 3 of template number 2, it is placed in a file calledd2 3.js.
The gap identifierswho andwhat have been replaced by the numbers 3 and 4, re-
spectively, abstracting away the identifier names. Note that such a file needs only ever
be downloaded once by a given client, and it can be reused every time this template
occurs in a document.

Dynamics

The JavaScript reply files transmitted at eachshow contain three document specific
parts:include directivesfor loading the cachable JavaScript template files, thedynamic
structureshowing how to assemble the document, and astring pool containing the
strings used in the document.

The structure part of the representation is encoded as a JavaScript string constant,
by a uuencode-like scheme which is tuned to the kinds of DAGs that occur in the
observed benchmarks.

Empirical analyses have exposed three interesting characteristics of the strings
used in a document: 1) they are all relatively short, 2) some occur many times, and
3) many seem to be URLs and have common prefixes. Since the strings are quite
short, placing them in individual files to be cached would drown in transmission over-
head. For reasons of security, we do not want to bundle up all the strings in cachable
string pool files. This along with the multiple occurrences suggests that we collect
the strings from a given document in a string pool which is inlined in the reply file
sent to the client. String occurrences within the document are thus designated by their
offsets into this pool. Finally, the common prefix sharing suggests that we collect all
strings in atrie which precisely yields sharing of common prefixes. As an example,
the following four strings:

"foo",
"http://www.brics.dk/bigwig/",

12.4 Client-Side Caching 195

"http://www.brics.dk/bigwig/misc/gifs/bg.gif",
"http://www.brics.dk/bigwig/misc/gifs/bigwig.gif"

are linearized and represented as follows:

"foo|http://www.brics.dk/bigwig/[misc/gifs/b(igwig.gif|g.gif)]"

When applying the trie encoding to the string data of the benchmarks, we observe a
reduction ranging from 1780 to 1212 bytes (onbachelor) to 27728 to 10421 bytes
(ondmodlog).

The reply document transmitted to the client at theshow statement in the BRICS
example looks like:

<html>
<head>
<script src="http://www.brics.dk/bigwig/dyndoc.js"></script>
<script>I(1,2,3,4, 2,3,3,1);</script>
<script>S("#9966ff"); D("/&Ë$Î&I%",2,8,4);</script>
</head>
<body onload="E();"></body>

</html>

The document starts by including a generic 15K JavaScript library,dyndoc.js, for
unfolding the DynDocDag representation. This file is shared among all services and is
thus only ever downloaded once by each client as it is cached after the first service in-
teraction. For this reason, we have not put effort into writing it compactly. The include
directives are encoded as calls to the functionI whose argument is an array designat-
ing the template files that are to be included in the document along with their version
numbers. TheS constructor function reconstructs the string trie which in our example
contains the only string plugged into the document, namely “#9966ff”. As expected,
the document structure part, which is reconstructed by theD constructor function, is
not humanly readable as it uses the extended ASCII set to encode the dynamic struc-
ture. The last three arguments toD recount how many bytes are used in the encoding of
a node, the number of templates plus plug nodes, and the number of gaps, respectively.
The last line of the document calls the JavaScript functionE that will interpret all con-
stituents to expand the document. After this, the document has been fully replaced by
the expansion. Note that three script sections are required to ensure that processing
occurs in distinct phases and dependencies are resolved correctly. Viewing the HTML
source in the browser will display the resulting HTML document, not our encodings.

Our compact representation makes no attempts at actual compression such asgzip
or XML compression [149], but is highly efficient to encode on the server and to de-
code in JavaScript on the client. Compression is essentially orthogonal in the sense that
our representation works independently of whether or not the transmission protocol
compresses documents sent across the network, as shown in Section 12.5. However,
the benefit factor of our scheme is of course reduced when compression is added.

12.4.3 Clustering

In <bigwig>, theshow operation is not restricted to transmit a single document. It
can be a collection of interconnected documents, called acluster. For instance, a

196 Language-Based Caching of Dynamically Generated HTML

document with input fields can be combined in a cluster with a separate document
with help information about the fields.

A hypertext reference to another document in the same cluster may be created
using the notation&x to refer to the document held in the HTML variablex at the time
the cluster is shown. When showing a document containing such references, the client
can browse through the individual documents without involving the service code. The
control-flow in the service code becomes more clear since the interconnections can be
set up as if the cluster were a single document and the references were internal links
within it.

The following example shows how to set up a cluster of two documents,input
andhelp, that are cyclically connected withinput being the main document:

service {
html input = <html>

Please enter your name: <input name="name"><p>
Click here for help.

</html>;

html help = <html>
You can enter your given name, family name, or nickname.
<p>Back to the form.

</html>;

html output = <html>Hello <[name]>!</html>;

session cluster_example() {
html h, i;
string s;
h = help<[back=&i];
i = input<[help=&h];
show i receive [s=name];
show output<[name=s];

}
}

The cluster mechanism gives us a unique opportunity for further reducing network
traffic. We can encode the entire cluster as a single JavaScript document, containing
all the documents of the cluster along with their interconnections. Wherever there is
a document reference in the original cluster, we generate JavaScript code to overwrite
the current document in the browser with the referenced document of the cluster. Of
course, we also need to add some code to save and restore entered form data when the
client leaves and re-enters pages with forms. In this way, everything takes place in the
client’s browser and the server is not involved until the client leaves the cluster.

12.5 Experiments

Figure 12.7 recounts the experiments we have performed. We have applied our caching
technique to the five Web service benchmarks mentioned in the introduction.

In Figure 12.7(b) we show the sizes of the data transmitted to the client. The grey
columns show the original document sizes, ranging between 20 and 90 KB. The white

12.5 Experiments 197

columns show the sizes of the total data that is transmitted using our technique, none
of which exceeds 20 KB. Of ultimate interest is the black column which shows the
asymptotic sizes of the transmitted data, when the templates have been cached by the
client. In this case, we see reductions of factors between 4 and 37 compared to the
original document size.

The lycos benchmark is similar to one presented for HPP [78], except that our
reconstruction is of course in<bigwig>. It is seen that the size of our residual dy-
namic data (from 20,183 to 3,344 bytes) is virtually identical to that obtained by HPP
(from 18,000 to 3,250 bytes). However, in that solution all caching aspects are hand-
coded with the benefit of human insight, while ours is automatically generated by the
<bigwig> compiler. The other four benchmarks would be more challenging for HPP.

In Figure 12.7(c) we repeat the comparisons from Figure 12.7(b) but under the
assumption that the data is transmitted compressed usinggzip. Of course, this drasti-
cally reduces the benefits of our caching technique. However, we still see asymptotic
reduction factors between 1.3 and 2.9 suggesting that our approach remains worth-
while even in these circumstances. Clearly, there are documents for which the asymp-
totic reduction factors will be arbitrarily large, since large constant text fragments
count for zero on our side of the scales whilegzip can only compress them to a
certain size. Hence we feel justified in claiming that compression is orthogonal to our
approach. When the HTTP protocol supports compression, we represent the string
pool in a naive fashion rather than as a trie, sincegzip does a better job on plain string
data. Note that in some cases our uncompressed residual dynamic data is smaller than
the compressed version of the original document.

In Figure 12.7(d) and 12.7(e) we quantify the end-to-end latency for our technique.
The total download and rendering times for the five services are shown for both the
standard documents and our cached versions. The client is Internet Explorer 5 running
on an 800 MHz Pentium III Windows PC connected to the server via either a 28.8K
modem or a 128K ISDN modem. These are still realistic configurations, since by
August 2000 the vast majority of Internet subscribers used dial-up connections [115]
and this situation will not change significantly within the next couple of years [173].
The times are averaged over several downloads (plus renderings) with browser caching
disabled. As expected, this yields dramatic reduction factors between 2.1 and 9.7 for
the 28.8K modem. For the 128K ISDN modem, these factors reduce to 1.4 and 3.9.
Even our “worst-case example”,dmodlog, benefits in this setup. For higher bandwidth
dimensions, the results will of course be less impressive.

In Figure 12.7(f) we focus on the pure rendering times which are obtained by
averaging several document accesses (plus renderings) following an initial download,
caching it on the browser. For the first three benchmarks, our times are in fact a bit
faster than for the original HTML documents. Thus, generating a large document is
sometimes faster than reading it from the memory cache. For the last two benchmarks,
they are somewhat slower. These figures are of course highly dependent on the quality
of the JavaScript interpreter that is available in the browser. Compared to the download
latencies, the rendering times are negligible. This is why we have not visualized them
in Figure 12.7(d) and 12.7(e).

198 Language-Based Caching of Dynamically Generated HTML

original cachable+ dynamics dynamics

0

20

40

60

80

100

︸ ︷︷ ︸
lycos

︸ ︷︷ ︸
bachelor

︸ ︷︷ ︸
jaoo

︸ ︷︷ ︸
webboard

︸ ︷︷ ︸
dmodlog

KB

(b) size

0

2

4

6

8

10

︸ ︷︷ ︸
lycos

︸ ︷︷ ︸
bachelor

︸ ︷︷ ︸
jaoo

︸ ︷︷ ︸
webboard

︸ ︷︷ ︸
dmodlog

KB

(c) gzip size

0

5

10

15

20

25

30

︸ ︷︷ ︸
lycos

︸ ︷︷ ︸
bachelor

︸ ︷︷ ︸
jaoo

︸ ︷︷ ︸
webboard

︸ ︷︷ ︸
dmodlog

sec

(d) 28.8K modem download+rendering

0

2

4

6

8

10

︸ ︷︷ ︸
lycos

︸ ︷︷ ︸
bachelor

︸ ︷︷ ︸
jaoo

︸ ︷︷ ︸
webboard

︸ ︷︷ ︸
dmodlog

sec

(e) 128K ISDN download+rendering

0

500

1000

1500

2000

︸ ︷︷ ︸
lycos

︸ ︷︷ ︸
bachelor

︸ ︷︷ ︸
jaoo

︸ ︷︷ ︸
webboard

︸ ︷︷ ︸
dmodlog

msec

(f) pure rendering

Figure 12.7: Experiments with the template representation.

12.6 Future Work 199

12.6 Future Work

In the following, we describe a few ideas for further cutting down the number of bytes
and files transmitted between the server and the client.

In many services, certain templates often occur together in allshow statements.
Such templates could be grouped in the same file for caching, thereby lowering the
transmission overhead. In<bigwig>, the HTML validation analysis [39] already ap-
proximates a graph from which we can readily derive the set of templates that can
reach a givenshow statement. These sets could then be analyzed for tightly connected
templates using various heuristics. However, there are certain security concerns that
need to be taken into consideration. It might not be good idea to indirectly disclose a
template in a cache bundle if the show statement does not directly include it.

Finally, it is possible to also introduce language-based server-side caching which
is complementary to the client-side caching presented here. The idea is to exploit the
structure of<bigwig> programs to automatically cache and invalidate the documents
being generated. This resembles the server-side caching techniques mentioned in Sec-
tion 12.2.

12.7 Conclusion

We have presented a technique to revive the existing client-side caching mechanisms in
the context of dynamically generated Web pages. With our approach, the programmer
need not be aware of caching issues since the decomposition of pages into cachable
and dynamic parts is performed automatically by the compiler. The resulting caching
policy is guaranteed to be sound, and experiments show that it results in significantly
smaller transmissions and reduced latency. Our technique requires no extensions to
existing protocols, clients, servers, or proxies. We only exploit that the browser can
interpret JavaScript code. These results lend further support to the unique design of
dynamic documents in<bigwig>.

Chapter 13

Static Validation of
Dynamically Generated HTML

with Claus Brabrand and Michael I. Schwartzbach

Abstract

We describe a static analysis of<bigwig> programs that efficiently decides if all dy-
namically computed XHTML documents presented to the client will validate accord-
ing to the official DTD. We employ two data-flow analyses to construct a graph sum-
marizing the possible documents. This graph is subsequently analyzed to determine
validity of those documents. By evaluating the technique on a number of realistic
benchmarks, we demonstrate that it is sufficiently fast and precise to be practically
useful.

13.1 Introduction

Increasingly, HTML documents are dynamically generated by scripts running on a
Web server, for instance using PHP, ASP, or Perl. This makes it much harder for au-
thors to guarantee that such documents are reallyvalid, meaning that they conform
to the official DTD for HTML 4.01 or XHTML 1.0 [182]. Static HTML documents
can easily be validated by tools made available by W3C and others. So far, the best
possibility for a script author is to validate the dynamic HTML documents after they
have been produced at runtime. However, this is an incomplete and costly process
which does not provide any static guarantees about the behavior of the script. Alterna-
tively, scripts may be restricted to use a collection of pre-validated templates, but this
is generally not sufficiently expressive.

We present a novel technique for static validation of dynamic XHTML documents
that are generated by a script. Our work takes place in the context of the<bigwig>
language [40, 195], which is a full-fledged programming language for developing in-
teractive Web services. In<bigwig>, XHTML documents are first-class citizens that
are subjected to computations like all other data values. We instrument the compiler
with an interprocedural data-flow analysis that extracts a grammatical structure, called
asummary graph, covering the class of XHTML documents that a given program may

202 Static Validation of Dynamically Generated HTML

produce. Based on this information, the compiler statically determines if all docu-
ments in the given class conform to the DTD for XHTML 1.0. To accomplish this, we
need to reformulate DTDs in a novel way that may be interesting in its own right. The
analysis has efficiently handled all available examples. Furthermore, our technique
can be generalized to more powerful grammatical descriptions.

13.1.1 Outline

First, in Section 13.2, we give a brief introduction to dynamically generating XHTML
documents in the<bigwig> language. Section 13.3 formally defines the notion of
summary graphs. In Sections 13.4 and 13.5, the two parts of the data-flow analysis
are specified. Then, in Section 13.6, a notion of abstract DTDs is defined and used for
specifying XHTML 1.0. Section 13.7 describes the algorithm for validating summary
graphs with respect to abstract DTDs. In Section 13.8 we evaluate our implementation
on ten<bigwig> programs. Finally, in Sections 13.9 and 13.10 we briefly describe
related techniques and plans and ideas for future work.

13.2 XHTML Documents in <bigwig>

XHTML documents are just XML trees. In the<bigwig> language, XMLtemplates
are first-class data values that may be passed and stored as any other values. Templates
are more general than XML trees since they may containgaps, which are named place-
holders that can bepluggedwith templates and strings: Ifx is an XML template with a
gap namedg andy is another XML template or a text string, then the plug operation,
x<[g =y], results in a new template which is copy ofx where a copy ofy has been
inserted into theg gap:

x:

x<[=y]:

y:

g

g

A <bigwig> service consists of a number ofsessions. A session thread can be invoked
by a client who is subsequently guided through a number of interactions, controlled
by the service code on the server. Adocumentis a template where all gaps have been
filled. When a complete XHTML document has been built on the server, it can be
shown to the client who fills in the input fields, selects menu options, etc., and then
continues the session by submitting the input to the session thread.

This plug-and-show mechanism provides a very expressive way of dynamically
constructing Web documents. It is described in more detail in [195, 40] where a thor-
ough comparison with other mechanisms is given and other aspects of<bigwig> are
described. Since templates can be plugged into templates, these arehigher-ordertem-
plates, as opposed to the less flexible templates in the MAWL language [144, 8] where
only strings can be plugged in.

Note that the number of gaps may both grow and shrink as the result of a plug
operation. Also, gaps may appear in a non-local manner, as exemplified by thewhat

13.2 XHTML Documents in <bigwig> 203

gap being plugged with the templateBRICS in the following simple example
in the actual<bigwig> syntax:

service {
html cover = <html>

<head><title>Welcome</title></head>
<body bgcolor=[color]>
<[contents]>

</body>
</html>;

html greeting = <html>
Hello <[who]>, welcome to <[what]>.

</html>;

html person = <html>
<i>Stranger</i>

</html>;

session welcome() {
html h;
h = cover<[color="#9966ff",

contents=greeting<[who=person]];
show h<[what=<html>BRICS</html>];

}
}

This service contains four constant templates and a session which when invoked will
assemble a document using plug operations and show it to the client. Note thatcolor
is anattribute gapwhich can only be plugged with a string value, while the other gaps
can also be plugged with templates. Constant templates are delimited by<html>. . .
</html>. Implicitly, the mandatory surrounding<html> element is added to a docu-
ment before being shown. Also,<head>, <title>, and<body> elements and a form
with a default submit button is added if not already present. To simplify the presen-
tation, we do not distinguish between HTML and XHTML since there are only minor
syntactical differences. In the implementation, we allow HTML syntax but convert it
to XHTML.

Note that<bigwig> is as general as all other languages for producing XML trees,
since it is possible to define for each different element a tiny template like:

<html><ul style=[style]><[items]></html>

that corresponds to a constructor function. The typical use of larger templates is mostly
a convenience for the<bigwig> programmer.

The <bigwig> compiler already contains an interprocedural data-flow analysis
that keeps track of gaps and input fields in templates to enable type checking of plug
and show operations [195]. That analysis statically ensures that the gaps are present
when performing a plug operation and that the input fields in the documents being
shown match the code that receives the values. However, the validity of the docu-
ments being shown has not been considered before, neither for<bigwig> or—to our
knowledge—for any other programming language with such a flexible document con-
struction mechanism.

204 Static Validation of Dynamically Generated HTML

13.2.1 XML Templates

We now formally define an abstract XML template. We are given an alphabetΣ of
characters, an alphabetE of element names, an alphabetA of attribute names, an
alphabetG of template gap names, and an alphabetH of attribute gap names. For
simplicity, all alphabets are assumed to be disjoint. AnXML templateis generated by
Φ in the following grammar:

Φ → ε
→ •
→ g g∈G
→ e(∆)Φ e∈ E
→ Φ1Φ2

∆ → ε
→ (a = s) a∈ A, s∈ Σ∗
→ (a = h) a∈ A, h∈ H
→ ∆1∆2

An XML template is a list of ordered trees where the internal nodes areelements
with attributesand the leaves are either empty nodes,character datanodes, orgap
nodes. Element attributes are generated by∆. The• symbol represents an arbitrary
sequence of character data. We ignore the actual data, since those are never constrained
by DTDs, unlike attribute values which we accordingly represent explicitly. As an
example, we view thecover template abstractly as follows if we ignore character data
nodes consisting only of white-space:

l
l

l
,

,
,

title()

head() body(bgcolor=color)

•

contents

We introduce a function:
gaps: (Φ∪∆)→ 2G∪H

which gives the set of gap names occurring in a template or attribute list:

gaps(ε) = /0
gaps(•) = /0
gaps(g) = {g}

gaps(e(δ)ϕ) = gaps(δ)∪gaps(ϕ)
gaps(ϕ1ϕ2) = gaps(ϕ1)∪gaps(ϕ2)
gaps(a = s) = /0
gaps(a = h) = {h}
gaps(δ1δ2) = gaps(δ1)∪gaps(δ2)

A templateϕ with a unique root element and withgaps(ϕ) = /0 is considered a com-
pletedocument.

13.3 Summary Graphs 205

13.2.2 Programs

We represent a<bigwig> program abstractly as a control-flow graph with atomic
statements at each program point. The actual syntax for<bigwig> is very liberal
and resembles C or Java code with control structures and functions. For<bigwig> it
is a simple task to extract the normalized representation. If the underlying language
had a richer control structure, for instance with inheritance and virtual methods or
higher-order functions, we would need a preliminary control-flow analysis to provide
the control-flow graph.

A program uses a setX of XML template variables and a setY of string variables.
The atomic statements are:

xi = xj; (template variable assignment)
xi = ϕ; (template constant assignment)
yi = yj; (string variable assignment)
yi = s; (string constant assignment)
yi = •; (arbitrary string assignment)
xi = xj<[g=xk]; (template gap plugging)
xi = xj<[h=yk]; (attribute gap plugging)
show xi; (client interaction)

wherex∈ X andy∈Y for eachx andy. The assignments have the obvious semantics.
The plug statement replaces all occurrences of a named gap with the given value.
Theshow statement implicitly plugs all remaining gaps withε before the template is
displayed to the client. Also, the template is implicitly plugged into a wrapper template
like the following:

<html>
<head><title></title></head>
<body>

<form action="...">
<[doc]>
<input type="submit" value="continue">

</form>
</body>

</html>

for completing the document and adding a “continue” button. The<head>, <title>,
<body>, and<input> elements are of course only added if not already present. Since
we here ignore input fields in documents, thereceive part of show statements is
omitted in this description.

13.3 Summary Graphs

Given a program control-flow graph, we wish to extract a finite representation of all
the templates that can possibly be constructed at runtime. A program contains a finite
collection of constant XML templates that are identified through a mapping function:

f : N→Φ

206 Static Validation of Dynamically Generated HTML

whereN is the finite set of indices of the templates occurring in the program. A
program also contains a finite collection of string constants, which we shall denote by
C ⊆ Σ∗. We now define asummary graphas a triple:

G = (R,E,α)

whereR⊆ N is a set ofroots, E ⊆ N×G×N is a set ofedges, andα : N×H → S is
an attribute labeling function, whereS = 2C ∪{•}. Intuitively, • denotes the set of all
strings.

Each summary graphG defines a set of XML templates, which is called thelan-
guageof G and is denotedL(G). Intuitively, this set is obtained by unfolding the graph
from each root while performing all possible pluggings enabled by the edges and the
labeling function. Formally, we define:

L(G) = {ϕ ∈Φ | ∃r ∈ R : G, r ` f(r)⇒ ϕ}
where the derivation relation⇒ is defined for templates as:

G,n` ε⇒ ε G,n` •⇒ •

(n,g,m) ∈ E G,m` f(m)⇒ ϕ
G,n` g⇒ ϕ

G,n` δ⇒ δ′ G,n` ϕ⇒ ϕ′

G,n` e(δ)ϕ⇒ e(δ′)ϕ′

G,n` ϕ1⇒ ϕ′1 G,n` ϕ2⇒ ϕ′2
G,n` ϕ1ϕ2 ⇒ ϕ′1ϕ′2

and for attribute lists as:

α(n,h) 6= • s∈ α(n,h)
G,n` (a = h)⇒ (a = s)

α(n,h) = • s∈ Σ∗

G,n` (a = h)⇒ (a = s)

G,n` δ1⇒ δ′1 G,n` δ2⇒ δ′2
G,n` δ1δ2 ⇒ δ′1δ′2

As an example, consider the following summary graph consisting of four template
nodes, four plug edges, and a single attribute labeling:

items

items

text

ε

text

items

 <[]>

<[]>

itemslarge

<ul class=[]>
 <[]>

kind

kind
items

13.4 Gap Track Analysis 207

Template nodes, root nodes, and attribute labels are drawn as circles, double circles,
and boxes, respectively. The language of this summary graph is the set of allul lists
of classlarge with one or more character data items.

13.4 Gap Track Analysis

To obtain sufficient precision of the actual validation analysis, we first perform an
initial analysis that tracks the origins of gaps. We show in Section 13.5 exactly why
this information is necessary.

13.4.1 Lattices

The lattice for this analysis is simply:

T = (G∪H)→ 2N

ordered by pointwise subset inclusion. For each program point` we wish to compute
an element of the derived lattice:

TrackEnv̀ : X → T

which inherits its structure fromT . Intuitively, an element of this lattice tells us for a
given variablex and a gap nameg whether or notg can occur in the value ofx, and if
it can, which constant templatesg can originate from.

13.4.2 Transfer Functions

Each atomic statement defines a transfer functionTrackEnv̀→ TrackEnv̀ which mod-
els its semantics in a forward manner. If the argument isχ, then the results of applying
this transfer function are:

xi = xj; χ[xi 7→ χ(xj)]
xi = ϕ; χ[xi 7→ tfrag(ϕ,n)], whereϕ has indexn
xi = xj<[g=xk]; χ[xi = tplug(χ(xj),g,χ(xk))]
xi = xj<[h=yk]; χ[xi = tplug(χ(xj),h,λp. /0)]

where we make use of some auxiliary functions:

tfrag(ϕ,n) = λp.if p∈ gaps(ϕ) then {n} else /0

tplug(τ1, p,τ2) = λq.if p=q then τ2(q) else τ1(q)∪ τ2(q)

For the remaining statement types, the transfer function is the identity function. The
tfrag function states that all gaps in the given template originates from just that tem-
plate. Thetplug function adds all origins from the template being inserted and removes
the existing origins for the gap being plugged.

208 Static Validation of Dynamically Generated HTML

13.4.3 The Analysis

It is easy to see that all transfer functions are monotonic, so we can compute the least
fixed point iteratively in the usual manner [174]. The end result is for each program
point ` an environmenttrack̀ : X → T , which we use in the following as a conserva-
tive, upper approximation of the origins of the gaps. We omit the proof of correctness.

13.5 Summary Graph Analysis

We wish to compute for every program point and for every variable a summary of its
possible values. A set of XML templates is represented by a summary graph and a set
of string values by an element ofS .

13.5.1 Lattices

To perform a standard data-flow analysis, we need both of these representations to
be lattices. The setS is clearly a lattice, ordered by set inclusion and with• as a
top element. The set of summary graphs, calledG , is also a lattice with the ordering
defined by:

G1vG2 ⇔ R1⊆ R2 ∧ E1⊆ E2 ∧ α1 v α2

where the ordering onS is lifted pointwise to labeling functionsα. Clearly, bothS
andG are finite lattices. For each program point we wish to compute an element of
the derived lattice:

Env̀ = (X → G)× (Y→ S)

which inherits its structure from the constituent lattices.

13.5.2 Transfer Functions

Each atomic statement defines a transfer functionEnv̀ → Env̀ , which models its se-
mantics. If the argument is the pair of functions(χ,γ) and` is the entry program point
of the statement, then the results are:

xi = xj; (χ[xi 7→ χ(xj)],γ)
xi = ϕ; (χ[xi 7→ frag(n)],γ), whereϕ has indexn
yi = yj; (χ,γ[yi 7→ γ(yj)])
yi = s; (χ,γ[yi 7→ {s}])
yi = •; (χ,γ[yi 7→ •])
xi = xj<[g=xk]; (χ[xi 7→ gplug(χ(xj),g,χ(xk),

track`(xj))],γ)
xi = xj<[h=yk]; (χ[xi 7→ hplug(χ(xj),h,γ(yk),

track`(xj))],γ)
show xi; (χ,γ)

where we make use of some auxiliary functions:

13.5 Summary Graph Analysis 209

frag(n) = ({n}, /0,λ(m,h). /0)

gplug(G1,g,G2,τ) = (R1,
E1∪E2∪
{(n,g,m) | n∈ τ(g) ∧ m∈R2},

α1tα2)

hplug(G,h,s,τ) = (R,E,
λ(n,h′).if n∈ τ(h) then α(n,h′)ts

else α(n,h′))

whereGi = (Ri ,Ei,αi) andG = (R,E,α). A careful inspection shows that all transfer
functions are monotonic. Thefrag function constructs a tiny summary graph whose
language contains only the given template. Thegplug function joins the two summary
graphs and adds edges from all relevant template gaps to the roots of the summary
graph being inserted, which can be illustrated as follows:

<[g =]

g

Thehplug function adds additional string values to the relevant attribute gaps:

h

<[=h]

We are now in a position to point out the need for the gap track analysis specified in
Section 13.4. Without that initial analysis, theτ argument togplug andhplug would
always have to be the setN of all constant template indices to maintain soundness.
Plugging a value into a gapg would then be modeled by adding an edge from all nodes
having ag gap, even from nodes that originate from completely unrelated parts of the
source code or nodes where theg gaps already have been filled. For instance, it is likely
that a program building lists as in the summary graph example in Section 13.4 would
contain other templates with a gap nameditems . Requiring each gap name to appear
only in one constant template would solve the problem, but such a restriction would
limit the flexibility of the document construction mechanism significantly. Hence, we
rely on a program analysis to disregard the irrelevant nodes when adding plug edges.

13.5.3 The Analysis

Since we are working with monotonic functions on finite lattices, we can again use
standard iterative techniques to compute a least fixed point [174]. The proof of sound-

210 Static Validation of Dynamically Generated HTML

ness is omitted here, but it is similar to the one presented in [195].1 The end result is for
each program point̀ an environmentsummarỳ : X → G such thatL(summarỳ(xi))
contains all possible XML templates thatxi may contain at̀ . Those templates that are
associated withshow statements are required to validate with respect to the XHTML
specification. We assume that the implicitly surrounding continue-button wrapper
from Section 13.2 has been added already. Still, we must model the implicit plug-
ging of empty templates and strings into the remaining gaps, so for the statement:

show xi;

with entry program pointq, the summary graph that must validate with respect to the
XHTML DTD is:

close(summarỳ(xi), track̀ (xi))

wherecloseis defined by:

close(G,τ) = (R,
E∪{(n,g,mε) |n∈ τ(g)},
λ(n,h).if n∈ τ(h) then α(n,h)t{ε}

else α(n,h))

whereG = (R,E,α) and it is assumed thatf(mε) = ε. Theclosefunction adds edges
to an empty template for all remaining templates gaps, and adds the empty string as a
possibility for all remaining attribute gaps.

13.5.4 The Example Revisited

For the small<bigwig> example in Section 13.2, the summary graph describing the
document being shown to the client is inferred to be:

<head><title>Welcome</title></head>

</body>

<i>Stranger</i>

color

<body bgcolor=[]>color
 <[]>contents

who

what

Hello <[]>, welcome to <[]>.who what

contents

<html>
...

</html>

#9966ff

BRICS

As expected for this simple case, the language of the summary graph contains ex-
actly the single template actually being computed: Note that the XHTML template is
implicitly completed with the<html> fragment.

1The soundness of this algorithm relies on the assumption that all incoming branches to join points in
the flow graph agree on which gaps are open. This is achieved using a simple preliminary program trans-
formation that converts the “implicitε-plugs” of<bigwig> [35] into explicit ones using the information
from the DynDoc type system [195].

13.6 An Abstract DTD for XHTML 211

13.6 An Abstract DTD for XHTML

XHTML 1.0 is described by an official DTD [182]. We use a more abstract formalism
which is in some ways more restrictive and in others strictly more expressive. In
any case, the DTD for XHTML 1.0 can be captured along with some restrictions that
merely appear as comments in the official version. We define an abstract DTD to be a
quintuple:

D = (N ,ρ,A ,E ,F)

whereN ⊆ E is a set ofdeclaredelement names,ρ ∈ N is a root element name,
A : N → 2A is anN -indexed family of attribute name declarations,E : N → 2N •

a
family of element name declarations, andF : N → Ψ a family of formulas. We let
N • = N ∪{•}, where• represents arbitrary character data.

Intuitively, an abstract DTD consists of a number of element declarations whereof
one is designated as the root. Each element declaration consists of an element name,
a set of allowed attribute names, a set of allowed contents, and a formula constraining
the use of the element with respect to its attribute values and contents. A formula has
the syntax:

Ψ → Ψ ∧ Ψ
→ Ψ ∨ Ψ
→ ¬Ψ
→ true
→ attr (a) a∈ A
→ content(c) c∈N •

→ order(c1,c2) ci ∈N •

→ value(a,{s1, . . . ,sk}) a∈ A, k≥ 1, si ∈ Σ∗

We define thelanguageof D as follows:

L(D) = {ρ(δ)ϕ | D � ρ(δ)ϕ ∧ gaps(ϕ) = /0}
That is, the language is the set of documents where the root element isρ and the
acceptance relation� is satisfied. This relation is defined inductively on templates as
follows:

D � ε D � •
D � ϕ1 D � ϕ2

D � ϕ1ϕ2

names(δ)⊆A(e) D,δ,ϕ � F (e)
set(ϕ)⊆E(e) D � ϕ

D � e(δ)ϕ
For each element, it is checked that its attributes and contents are declared and that
the associated formula is satisfied. The auxiliary functionsnamesandsetare formally
defined by:

names(ε) = /0
names(a = s) = {a}
names(a = h) = {a}
names(δ1δ2) = names(δ1)∪names(δ2)

212 Static Validation of Dynamically Generated HTML

set(ε) = /0
set(•) = {•}
set(g) = /0

set(e(δ)ϕ) = {e}
set(ϕ1ϕ2) = set(ϕ1)∪set(ϕ2)

On formulas, the� relation is defined relative to the attributes and contents of an
element:

D,δ,ϕ � ψ1 D,δ,ϕ � ψ2

D,δ,ϕ � ψ1 ∧ ψ2

D,δ,ϕ � ψ1

ϕ � ψ1 ∨ ψ2

D,δ,ϕ � ψ2

ϕ � ψ1 ∨ ψ2

D,δ,ϕ � true
D,δ,ϕ 6� ψ

D,δ,ϕ � ¬ψ

a∈ names(δ)
D,δ,ϕ � attr (a)

exists(word(ϕ),c)
D,δ,ϕ � content(c)

before(word(ϕ),c1,c2)
D,δ,ϕ � order(c1,c2)

a /∈ names(δ)
D,δ,ϕ � value(a,{s1, . . . ,sk})

(a,si) ∈ atts(δ) 1≤ i ≤ k
D,δ,ϕ � value(a,{s1, . . . ,sk})

Theattr (a) formula checks whether an attribute of namea is present, andcontent(c)
checks whetherc occurs in the contents. Thevalue(a,{s1, . . . ,sk}) formula checks
whether ana attribute has one of the values ins1, . . . ,sk or is absent, andorder(c1,c2)
checks that no occurrence ofc1 comes after an occurrence ofc2 in the contents se-
quence. The auxiliary functionsattsandword and the predicatesexistsandbeforeare
formally defined by:

atts(ε) = /0
atts(a = s) = {(a,s)}
atts(a = h) = {(a,h)}
atts(δ1δ2) = atts(δ1)∪atts(δ2)

word(ε) = ε
word(•) = •
word(g) = ε

word(e(δ)ϕ) = e
word(ϕ1ϕ2) = word(ϕ1)word(ϕ2)

exists(w1 · · ·wk,c) ≡ ∃1≤ i ≤ k : wi =c

before(w1 · · ·wk,c1,c2) ≡ ∀1≤ i, j ≤ k :
wi =c1∧wj =c2 ⇒ i ≤ j

13.6 An Abstract DTD for XHTML 213

Two common abbreviations areunique(c)≡ order(c,c) (“c occurs at most once”) and
exclude(c1,c2)≡ ¬(content(c1) ∧ content(c2)) (“c1 andc2 exclude each other”).

Standard DTDs use restricted regular expressions to describe content sequences.
Instead, we use boolean combinations of four basic predicates, each of which corre-
sponds to a simple regular language. This is less expressive, since for example we
cannot express that a content sequence must have exactly three occurrences of a given
element. It is also, however, more expressive than DTDs since we allow the require-
ments on contents and attributes to be mixed in a formula. While the two formalism
are thus theoretically incomparable, our experience is that XML languages described
by DTDs or by more advanced schema languages typically are within the scope of our
abstract notion.

13.6.1 Examples for XHTML

The DTD for XHTML 1.0 can easily be expressed in our formalism. The root element
ρ is html and some examples of declarations and formulas are:

A(html) = {xmlns,lang,xml:lang,dir}
E(html) = {head,body}
F (html) = value(dir,{ltr,rtl}) ∧ content(head) ∧

content(body) ∧ unique(head) ∧
unique(body) ∧ order(head,body)

A(head) = {lang,xml:lang,dir,profile}
E(head) = {script,style,meta,link,object,isindex

title,base}
F (head) = value(dir,{ltr,rtl}) ∧ content(title) ∧

unique(title) ∧ unique(base)

A(input) = {id,class,style,title,lang,xml:lang,
dir,onclick,ondblclick,onmousedown,
onmouseup,onmouseover,onmousemove,
onmouseout,onkeypress,onkeydown,
onkeyup,type,name,value,checked,
disabled,readonly,size,maxlength,
src,alt,usemap,tabindex,accesskey,
onfocus,onblur,onselect,onchange,
accept,align}

E(input) = /0
F (input) = value(dir,{ltr,rtl}) ∧

value(checked,{checked}) ∧
value(disabled,{disabled}) ∧
value(readonly,{readonly}) ∧
value(align,{top,middle,bottom,

left,right}) ∧
value(type,{text,password,checkbox,

radio,submit,reset,file,
hidden,image,button}) ∧

(value(type,{submit,reset}) ∨ attr (name))

In five instances we were able to express requirements that were only stated as com-
ments in the official DTD, such as the last conjunct inF (input). The full description

214 Static Validation of Dynamically Generated HTML

of XHTML is available athttp://www.brics.dk/bigwig/xhtml/.

13.6.2 Exceptions in <bigwig>

In one situation does<bigwig> allow non-standard XHTML notation. In the official
DTD, theul element is required to contain at least oneli element. This is inconve-
nient, since the items of a list are often generated iteratively from a vector that may be
empty. To facilitate this style of programming,<bigwig> allows emptyul elements
but removes them at runtime before the XHTML is sent to the client. Accordingly,
the abstract DTD that we employ differs from the official one in this respect. Similar
exceptions are allowed for other kinds of lists and for tables. In the implementation,
these fragment removal rules are specified the same way as the element constraints in
the abstract DTD for XHTML, so essentially, we have just moved a few of the DTD
constraints into a separate file.

13.7 Validating Summary Graphs

For everyshow statement, the data-flow analysis computes a summary graphG =
(R,E,α). We must now for all such graphs decide the validation requirement:

L(G)⊆ L(D)

for an abstract DTDD = (N ,ρ,A ,E ,F). The root element name requirement ofD is
first checked separately by verifying that:

∀r ∈ R : f(r) = ρ(δ)ϕ for someδ andϕ

Then for each sub-templatee(δ)ϕ of a template with indexn in G we perform the
following checks:

• e∈N (the element is defined)

• names(δ)⊆ A(e) (the attributes are declared)

• occurs(n,ϕ)⊆ E(e) (the content is declared)

• n,δ,ϕ F (e) (the constraint is satisfied)

The validity relation is given by:2

n,δ,ϕ ψ1 n,δ,ϕ ψ2

n,δ,ϕ ψ1 ∧ ψ2

2Unfortunately, the rules for negation and disjunction presented here are flawed: The intended inter-
pretation ofn,δ,ϕ ψ is thatψ is satisfied byeverydocument represented by(n,δ,ϕ). If, for instance,
ψ1 is satisfied by just one of those documents andψ2 by all other, thenψ1∨ψ2 will wrongfully evaluate
to falseand¬(ψ1∨ψ2) to true. The solution to this is as presented in [57] to introduce a four-valued logic
with the truth value “sometimes” meaning that the formula is satisfied by some but not all documents rep-
resented by(n,δ,ϕ), and “don’t-know” in case a precise answer cannot be provided, for instance by the
disjunction ofsometimesandsometimes. However, negations and disjunctions are in the abstract DTD
for XHTML only used to express validity requirements beyond those definable by the standard DTD
notation, so the flaws here do not impose a significant problem in practice.

13.7 Validating Summary Graphs 215

n,δ,ϕ ψ1

n,δ,ϕ ψ1 ∨ ψ2

n,δ,ϕ ψ2

n,δ,ϕ ψ1 ∨ ψ2

n,δ,ϕ true
n,δ,ϕ 6 ψ

n,δ,ϕ ¬ ψ

a∈ names(δ)
n,δ,ϕ attr (a)

c∈ occurs(n,ϕ)
n,δ,ϕ content(c)

order(n,ϕ,c1,c2)
n,δ,ϕ order(c1,c2)

a 6∈ names(δ)
n,δ,ϕ value(a,{s1, . . . ,sk})
(a,si) ∈ atts(δ) 1≤ i ≤ k

n,δ,ϕ value(a,{s1, . . . ,sk})
(a,h) ∈ atts(δ) α(n,h) ⊆ {s1, . . . ,sk}

n,δ,ϕ value(a,{s1, . . . ,sk})
whereoccursis the least function satisfying:

occurs(n,ε) = /0
occurs(n,•) = {•}
occurs(n,g) =

S

(n,g,m)∈E
occurs(m, f(m))

occurs(n,e(δ)ϕ) = {e}
occurs(n,ϕ1ϕ2) = occurs(n,ϕ1)∪occurs(n,ϕ2)

andorder is the most restrictive function satisfying:

order(n,ε,c1,c2) = true
order(n,•,c1,c2) = true
order(n,g,c1,c2) =

V

(n,g,m)∈E
order(m, f(m),c1,c2)

order(n,e(δ)ϕ,c1,c2) = true
order(n,ϕ1ϕ2,c1,c2) = order(n,ϕ1,c1,c2)∧

order(n,ϕ2,c1,c2)∧
¬(c2∈occurs(n,ϕ1)∧

c1∈occurs(n,ϕ2))

The definition of the validity relation is straightforward. It duals the definition of the
acceptance relation in Section 13.6, except that we now have to take gaps into ac-
count. Only the auxiliary functions,occursandorder, are non-trivial. The function
occurs(n,ϕ) finds the subset ofN • that can occur as contents of the current element af-
ter plugging some gaps according to the summary graph, andorder(n,ϕ,c1,c2) checks
that it is not possible to obtain anc2 before anc1 in the contentsϕ. These two func-
tions are defined as fixed points because the summary graphs may contain loops. In
the implementation we ensure termination by applying memoization to the numerous
calls tooccursandorder.

Note that the validation algorithm is both sound and complete with respect to sum-
mary graphs: A graph is rejected if and only if its language contains a template that is

216 Static Validation of Dynamically Generated HTML

not in the language of the abstract DTD. Thus, in the whole validation analysis the only
source of imprecision is the data-flow analysis that constructs the summary graph.3

Also note that our notion of abstract DTDs has a useful locality property: All re-
quirements defined by an abstract DTD specify properties of single XML document
nodes and their attributes and immediate contents, so if some requirement is not ful-
filled by a given summary graph, it is possible to give a precise error message.

13.8 Experiments

The validation analysis has been fully implemented as part of the<bigwig> system
using a monovariant data-flow analysis framework. It has then been applied to all
available benchmarks, some of which are shown in the following table:

Name Lines Templates Size Shows Time

chat 65 3 (0,5) 2 0.1
guess 75 6 (0,3) 6 0.1
calendar 77 5 (8,6) 2 0.1
xbiff 561 18 (4,12) 15 0.1
webboard 1,132 37 (34,18) 25 0.6
cdshop 1,709 36 (6,23) 25 0.5
jaoo 1,941 73 (49,14) 17 2.4
bachelor 2,535 137 (146,64) 15 8.2
courses 4,465 57 (50,45) 17 1.3
eatcs 5,345 133 (35,18) 114 6.7

The entries for each benchmark are its name, the lines of code derived from a pretty
print of the source with all macros expanded, the number of templates, the size(|E|, |α|)
of the largest summary graph, the number ofshow statements, and the analysis time in
seconds (on an 800 MHz Pentium III with Linux).

Thechat benchmark is a simple chat service,guess is a number guessing game,
calendar shows a monthly calendar,xbiff is a soccer match reservation system,
webboard is a bulletin board service,cdshop is a demonstration of an online shop,
jaoo is a conference administration system,bachelor is a student management ser-
vice, courses is a course administration system, andeatcs is a collection of ser-
vices used by the EATCS organization. Some of the benchmarks are taken from the
<bigwig> documentation, others are services currently being used or developed at
BRICS.

The analysis found numerous validation errors in all benchmarks, which could then
be fixed to yield flawless services. No false errors were reported. As seen in the table
above, the enhanced compiler remains efficient and practical. Thebachelor service
constructs unusually complicated documents, which explains its high complexity.

3Because of the flaw mentioned on p. 214 the algorithm is in fact neither sound nor complete in
general—however, for the particular abstract DTD for XHTML that we use, we have not encountered
any wrong results to be produced in practice. As mentioned, these issues are definitively solved in the
JWIG analyses [57] and a similar solution could be applied here.

13.8 Experiments 217

13.8.1 Error Diagnostics

The <bigwig> compiler provides detailed diagnostic messages in case of validation
errors. For the flawed example:

1 service {
2 html cover = <html>
3 <head><title>Welcome</title></head>
4 <body bgcolo=[color]>
5 <table><[contents]></table>
6 </body>
7 </html>;
8
9 html greeting = <html>
10 <td>Hello <[who]>,<br clear=[clear]>
11 welcome to <[what]>.
12 </td>
13 </html>;
14
15 html person = <html>
16 <i>Stranger</i>
17 </html>;
18
19 session welcome() {
20 html h;
21 h = cover<[color="#9966ff",
22 contents=greeting<[who=person],
23 clear="righ"];
24 show h<[what=<html>BRICS</html>];
25 }
26 }

the compiler generates the following messages for the singleshow statement:

--- brics.wig:24: HTML validation:

brics.wig:4:

warning: illegal attribute ’bgcolo’ in ’body’

template: <body bgcolo=[color]><form>...</form></body>

brics.wig:5:

warning: possible illegal subelement ’td’ of ’table’

template: <table><[contents]></table>

contents: td

plugs: contents:{brics.wig:22}

brics.wig:10:

warning: possible element constraint violation at ’br’

template: <br clear=[clear]/>

constraint: value(clear,{left,all,right,clear,none})

plugs: clear:{brics.wig:23}

At each error message, a line number of an XML element is printed together with
an abbreviated form of the involved template, the names of the root elements of each
template that can be plugged into the gaps, the constraint being violated, and the line
numbers of the involved plug operations. Such reasonably precise error diagnostics is
clearly useful for debugging.

218 Static Validation of Dynamically Generated HTML

13.9 Related Work

There are other languages for constructing XML documents that also consider validity.
The XDuce language [110, 111] is a functional language in which XML templates
are data types, with a constructor for each element name and pattern matching for
deconstruction. A type is a regular expression overE•. Type inference for pattern
variables is supported. In comparison, we have a richer language and consequently
need more expressive types that also describe the existence and capabilities of gaps. It
seems unlikely that anything simpler than summary graphs would work. Also, we do
not rely on type annotations. Since we perform an interprocedural data-flow analysis,
we obtain a high degree of polymorphism that is difficult to express in a traditional
type system. The XMλ language [155] compares similarly to our approach.

The initial design of the<bigwig> template mechanism was inspired by the MAWL
language [144, 8]. The main difference is that MAWL only allows strings to plugged
into the gaps. Validating that MAWL programs only generate valid XHTML is there-
fore as easy as validating static documents, but such a simple document construction
mechanism often becomes too restrictive for practical use. We have shown that using
a highly flexible mechanism does not require validity guarantees to be sacrificed.

Most Web services are currently written either in Perl using CGI, in embedded
scripting languages such as ASP, PHP, or JSP, or as server-integrated modules, for
instance with Apache. Common to all these approaches is that there is no inherent
type system for HTML or XML documents. In general, documents are constructed
by concatenating text strings. These strings contain HTML or XML tags, attributes,
etc., but the compiler or interpreter is completely unaware of that. This means that
evenwell-formedness, that is, that tags are balanced and nested properly, which is
one requirement for validity, becomes difficult to verify. We get that for free during
parsing of the individual constant XML fragments and can concentrate on the many
other validity requirements given by specific DTDs.

However, a common way of programming services in these languages is to use
HTML or XML constructor functionsto build documents more abstractly as trees in-
stead of strings. This style is not enforced by the language, but if used consistently
well-formedness is guaranteed. The difference between this and the<bigwig> style is
that gaps in<bigwig> templates may appear non-locally, as described in Section 13.1,
which gives a higher degree of flexibility. Since the constructor-based style is sub-
sumed under the<bigwig> style as also described in Section 13.1, the summary graph
technique could be applied for other languages.

13.10 Extensions and Future Work

Instead of our four basic predicates we could allow general regular expressions over
the alphabetE•. We could then still validate a summary graph, but this would reduce to
deciding if a general context-free language is a subset of a regular language, which has
an unwieldy algorithm compared to the simple transitive closures that we presently rely
upon. Fortunately, our restricted regular languages appear sufficient. It is also possible
to include many features from a richer XML schema language such as DSD [133], in
particular context dependency and regular expression constraints on attribute values

13.11 Conclusion 219

and character data.4

Since our technique is parameterized in the choice of the abstract DTD, it eas-
ily generalizes to many other XML languages that can be described by such abstract
DTDs. Finally, we could enrich<bigwig> with a set of operators for combining and
deconstructing XML templates, making it a general XML transformation language.5

All such ideas readily permit analysis by means of summary graphs. However, a
method for translating a DTD into a summary graph will be required.

13.11 Conclusion

We have combined a data-flow analysis with a generalized validation algorithm to
enable the<bigwig> compiler to guarantee that all HTML or XHTML documents
shown to the client are valid according to the official DTD. The analysis is efficient and
does not generate many spurious error messages in practice. Furthermore, it provides
precise error diagnostics in case a given program fails to verify.

Since our algorithm is parameterized with an abstract DTD, our technique gener-
alizes in a straightforward manner to arbitrary XML languages that can be described
by DTDs. In fact, we can even handle more expressive grammatical formalisms. The
analysis has proved to be feasible for programs of realistic sizes. All this lends further
support to the unique design of dynamic documents in the<bigwig> language.

4The program analyses in theJWIG system [57] are based on the notion of summary graphs intro-
duced in this paper. InJWIG, we use general regular expressions for description of character data and
attribute values, and we apply the DSD2 schema language for the validity analysis, as suggested here.
Furthermore, we also apply summary graphs for checking the use of plug and receive operations which
in <bigwig> is handled by the technique described in [195].

5Preliminary steps in this direction are made in [58] in the context ofJWIG.

Chapter 14

The DSD Schema Language

with Nils Klarlund and Michael I. Schwartzbach

Abstract

XML (Extensible Markup Language), a linear syntax for trees, has gathered a remark-
able amount of interest in industry. The acceptance of XML opens new venues for the
application of formal methods such as specification of abstract syntax tree sets and tree
transformations.

A user domain may be specified as a set of trees. For example, XHTML is a user
domain corresponding to a set of XML documents that make sense as hypertext. A
notation for defining such a set of XML trees is called aschema language. We believe
that a useful schema notation must identify most of the syntactic requirements present
in the user domains, and yet be sufficiently simple and easy to understand both by
the schema authors and the users. Furthermore, it must allow efficient parsing and be
modular and extensible to support reuse and evolution of descriptions.

In the present paper, we give a tutorial introduction to the DSD (Document Struc-
ture Description) notation as our bid on how to meet these requirements. The DSD
notation was inspired by industrial needs. We show how DSDs help manage aspects
of complex XML software through a case study about interactive voice response sys-
tems, i.e., automated telephone answering systems, where input is through the tele-
phone keypad or speech recognition.

The expressiveness of DSDs goes beyond the DTD schema concept that is already
part of XML. We advocate the use of nonterminals in a top-down manner, coupled with
boolean logic and regular expressions to describe how constraints on tree nodes depend
on their context. We also support a general, declarative mechanism for inserting default
elements and attributes. Also, we include a simple technique for reusing and evolving
DSDs through selective redefinitions. The expressiveness of DSD is comparable to
that of the schema language XML Schema proposed by W3C, but their syntactic and
semantic definition is significantly larger and more complex. Also, the DSD notation
is self-describable: the syntax of legal DSD documents including all static semantic
requirements can be expressed within the DSD language itself.

222 The DSD Schema Language

14.1 Introduction

XML (Extensible Markup Language) [45] is a syntax derived from SGML for markup
of text. XML is particularly interesting to computer scientists because the markup no-
tation is really nothing but a way of specifying labeled trees. The tree view and the
convenient SGML syntax of HTML have been important to the development of the
World Wide Web. Thus, it may not be surprising that XML syntax since its introduc-
tion in 1998 has been hyped as a universal solution to the pervasive problem of format
incompatibility.

Such generous promises notwithstanding, at least one fascinating and fundamen-
tal quality sets XML-based notations apart from ad hoc syntax: they encourage tree
transformations—a technique that application programmers usually do not take ad-
vantage of. In fact, it would probably be considered a hassle even to define a set of
parse trees and procedures according to which they are constructed and parsed. XML
circumvents this problem by offering a primary representation based on trees, at the
expense of syntactic succinctness. Of course, trees and mappings between trees are
a main ingredient of computer science. For example, such mappings are essential to
building compilers, where the compilation process is partitioned into several phases,
most of which simply transform one intermediate tree format into another one. XML
has been suggested as an underlying notation for structuring and manipulating infor-
mation in general. As a foundation of this, XML schemas are needed to formalize the
sets of parse trees that constitute the individual languages.

The purpose of the present article is to indicate how XML opens new ways of
applying formal computer science techniques to general, practical problems. Specifi-
cally, we study the formal specification of XML languages, that is, sets of abstract syn-
tax trees, and default insertion mechanisms for common tree transformations needed
by application programmers. Both aspects are part of the DSD (Document Structure
Description) notation, which we introduce informally in this article. Before we explain
DSDs, let us mention some fundamental XML technologies that are already standard-
ized (in the sense of being a W3C Recommendation) or under development:

• Syntax: Schemas describe the formal syntax of XML languages. As for other
formal languages, a precise syntax description provides an essential basis, both
for the tool builders and the application users. XML has inherited the DTD
schema concept from SGML, but this notation is considered inadequate by many.
The newest schema notation from W3C is called XML Schema [209] and it has
recently achieved Recommendation status. However, as explained later, this
language is in our opinion not satisfactory, and several alternatives have been
proposed.

• Transformation: Since XML encourages construction of highly specialized lan-
guages, there is a strong need for domain-specific languages that allow general
transformations between XML languages to be defined more easily than possible
with general-purpose programming languages. XSLT [59], the transformation
part of the XSL language, became an official recommendation in 1999 and has
become very popular.

• Style sheets: CSS (Cascading Style Sheets) is an example of a specialized trans-

14.1 Introduction 223

formation language, designed to make visual rendering for XML (and HTML)
documents, which is a typical kind of transformation. It consists of a simple
tree transformation language and a target language of text properties for layout.
CSS2 [30] is the latest official recommendation.

• Database querying: Since XML documents in a sense generalize the relational
database model to general semi-structured, there is a need for corresponding
generalizations of query languages. A draft specification of the XQuery lan-
guage [27] has recently been published. The termschemaoriginates from the
database community where it denotes descriptions of the structure of relations.

• Linking and addressing: XML is designed to operate on the Web, so notations
for defining links between documents and for addressing fragments of docu-
ments are essential. XLink [73] allows generalized links between XML re-
sources to be defined. It is based on XPointer [72], which in turn uses XPath [61]
for expressing locations in XML documents in a robust manner. XPath is also
used in XML Schema to express uniqueness constraints, in XSLT as a pattern
matching mechanism, and in XQuery to express basic queries.

• Namespaces: XML languages are often built on top of other XML languages.
This introduces the demand for a name space mechanism to be able to distin-
guish the various parts of an XML document. XML Namespaces [44] allows
URIs to be associated with XML markup to be able to uniquely determine which
sublanguages the markup belongs to. We mention namespaces here because
they have implications to essentially all other XML technologies, in particular
schema languages.

For a more thorough introduction to these concepts, we refer to [162]. Agreeing on
well-designed languages for these fundamental technologies allows generic tools to
solve problems common to many XML application languages. Agreeing on a simple
but powerful schema language has the additional benefit of making it easier to design
and learn new XML languages. In the area of programming languages, the BNF no-
tation is an example of this phenomenon. Unarguably, the simplicity of that notation
has been a requisite for its widespread use.

In the area of schema languages, numerous proposals, such as DDML [32], DCD
[43], XML-Data [145], XDR [92], SOX [70], TREX [60], Schematron [119], Asser-
tion Grammars [184], and RELAX [169], have already emerged. Recently, W3C has
issued their XML Schema proposal [209] in an attempt to reconcile the efforts. How-
ever, it has been met with intense debate, primarily due to its unprecedented complex-
ity viewed by many as being unnecessary and harmful [191, 2]. Concurrently, RELAX
NG [62] has been developed as a descendant of RELAX and TREX and is now being
standardized by OASIS. The many proposals, and the outcome of the XML Schema
effort, indicate that it is far from obvious how the right schema language should be
designed. In general, the XML notation turns out to be so versatile that it is hard to
satisfy all design requirements and capture the various usage patterns, and at the same
time keep the schema notation simple. We give a more thorough comparison between
DSD and the most significant alternatives in Section 14.7.

Our DSD proposal—which is rigorously defined in [132]—has the ambition of
providing an expressive power comparable to that of XML Schema and RELAX NG,

224 The DSD Schema Language

while at the same time remaining simple to learn and use. We have tried to identify
the most central aspects of XML language syntax and turn these into a clean set of
schema constructs, based on well-known computer science concepts, such as boolean
logic and regular expressions. A DSD defines a grammar for a class of XML docu-
ments, including documentation for that class, and additionally a CSS-like notation for
specifying default parts of documents. As most other schema language proposals, the
DSD language itself uses the XML notation. This opens up for the possibility of being
self-describing, that is, having a DSD description of the DSD language.

We recall that an XML document consists of namedelementsrepresenting tree
nodes. Elements haveattributes, representing name/value pairs, andcontent, which is
Unicode text calledchardata, interspersed with subelements. We here ignore com-
ments and DTD information, and we assume that entity references have been ex-
panded. For example, consider the following XHTML document fragment:

<body class=’mystuff’>
Hello there

</body>

This fragment contains an element namedbody that corresponds to a tree node labeled
body. The node has an attribute namedclass and two children corresponding to its
content, that is, the part between the start tag<body...> and the end tag</body>. The
first child is a text node with valueHello, and the other is an element node labeledem.
Theem node in turn has one child node, which is a text node. The markup is required to
bewell-formed, meaning that the begin and end tags are balanced and nested properly,
which allows us to view XML documents as tree structures. A schema for XHTML
would for example state thatclass attributes in fact are allowed inbody elements,
that chardata is allowed in the content, but also that for instancebody elements cannot
appear within theem tags. A schema language should make it possible to easily express
such constraints.

Besides basing the DSD design on simple concepts that are familiar to computer
scientists, we have a number of more technical goals for the descriptive power of the
DSD notation. These goals are by no means comprehensive, but they reflect most of
the needs we have seen in document processing and database applications:

• DSD should allow context dependent descriptions of content and attributes,
since the context of a node, such as ancestors and attribute values, often gov-
erns what is legal syntax.

• Default attribute values and content should be defined in a declarative manner,
separate from the structural descriptions. Thus we seek a generalization of CSS
so that defaultable properties in the form of attributes and element content can
be defined for arbitrary XML domains. CSS manipulates defaults, but only for
properties in predefined formatting models.

• As most other schema languages, DSD should support node IDs and references
for expressing non-tree-structured data. In addition, it should permit the descrip-
tion of what references may point to.

• In order to support development and maintenance of large schemas, DSD should
contains mechanisms for schema evolution and reuse.

14.1 Introduction 225

• DSD should be self-describable. This property allows schemas themselves to be
viewed as application documents.

• The content model should be flexible enough to allow ordered and unordered
content to be mixed.

• It should be possible to intersperse informal documentation with the formal lan-
guage of schemas. That allows them to serve as complete language descriptions.

• Validity of chardata and attribute values should be defined with an extensible
mechanism so that only a minimal number of primitive types are included in the
core language.

• DSD should complement XSLT in the sense that assumptions made by XSLT
style sheets about the shape of input documents can be made explicit.

• Finally, it is also important to us that a DSD yields a linear-time algorithm for
checking conformance of XML documents.

To honor these ambitions, our design combines several elementary ideas: a uniform
notion of constraintthat captures the legality of attributes, attribute values, and con-
tent; conditional constraintsguarded byboolean expressionsthat capture dependen-
cies between attributes, attribute values, element contexts, and content;nonterminals
in the form of element IDs that allow several different versions of an element to coex-
ist; the concept ofprojected contentthat allows succinct descriptions of both ordered
and unordered content;regular expressionsto describe both attribute values and con-
tent sequences; automatic insertion ofdefaultattributes and element content guided by
boolean expressions; a simple notion of redefinition combined with a schema inclusion
mechanism for supporting extension and modularity; andpoints-torequirements that
constrain the targets of references.

The only major omission is the concept of namespaces, whose semantics until
recently has been the subject of controversy [31]. In the current version of DSD, we
do apply namespaces within the DSD language, but we do not support namespaces in
the application languages. We plan to add proper support for namespaces in a future
version to mend this limitation.

Naturally, there are constraints that within reason can be conceived but are not ex-
pressible in our formalism. Moving to Turing complete formalisms would complicate
the language unnecessarily. As in programming language grammar formalisms, it is
customary to supplement a grammatical check with a few specialized routines written
in a general programming language.

Despite its expressive power, the DSD language is simple enough that it can be
rigorously defined in 15 pages [132] (where the page count excludes examples and
introduction). The specification of the Structural Part of XML Schema runs to about
140 pages (counted in the same way). The present paper describes the main ideas of the
DSD notation and relates it to other XML schema language proposals. We also provide
an account of an industrial example that motivated DSD: HTML-like languages for
defining Interactive Voice Response (IVR) systems, which are user interfaces that work
through spoken prompts and telephone pad or speech input.

226 The DSD Schema Language

The main contribution of this work is the attempt to simplify and yet generalize
existing XML schema languages. Also, we believe to have identified some essential
design requirements and show that in particular boolean logic and regular expressions
are useful formalisms in schema languages.

14.1.1 Outline

After an overview of the XML tree model in Section 14.2, we introduce the DSD
concepts through little examples in Section 14.3, and we explain the notion of a meta-
DSD. In Section 14.4, we present a complete DSD example for information about
books. In Section 14.5, we describe a prototype implementation of the DSD processor,
and in Section 14.6, we discuss how an application programmer would benefit from
DSDs when learning and using a domain specific language for IVR applications. In
Section 14.7, we discuss related work, in particular XML Schema and RELAX NG.
We conclude in Section 14.8 with a summary of our experiences with DSD, followed
by plans and ideas for future development.

14.2 XML Concepts

The reader is assumed familiar with the most common XML concepts (XML is offi-
cially defined in [45]). However, since there unfortunately is no common agreement
on the terminology, we now give a brief description of the XML data model used in
DSD.

A well-formed XML document is represented as a tree. The leaves correspond to
empty elements, chardata, processing instructions, and comments. The internal nodes
correspond to non-empty elements. For that reason, we often confound the terms
“element” and “node”. DTD information is not represented in the tree. Each element
is labeled with a name and a set of attributes, which each consists of a name and a
value. Names, values, and chardata are Unicode strings [206].

Child nodes are ordered. Thecontentof an element is the sequence of its immedi-
ate child nodes. Thecontextof a node is the path of nodes from the root of the tree to
the node itself. Element nodes are ordered according todocument order: an elementa
is beforean elementb if the start tag ofa occurs before the start tag ofb in the usual
textual representation of the XML tree. We will assume that trees are a normalized by
a process that combines adjacent text nodes by concatenating their text.

Processing instructions with targetdsd or include, as well as elements and at-
tributes with namespacehttp://www.brics.dk/DSD, contain information relevant to
the DSD processing. All other processing instructions and also chardata consisting of
white-space only and comments are ignored.

14.3 The DSD Language

A DSD defines the syntax of a family of conforming XML documents. Anapplication
documentis an XML document intended to conform to a given DSD. It is the job of a
DSD processorto determine whether or not an application document is conforming. A

14.3 The DSD Language 227

DSD is itself an XML document. This section describes the main aspects of the DSD
language and its meaning. For a complete definition, we refer to [132].

A DSD can be associated with an application document by placing a special pro-
cessing instruction in the document prolog. This processing instruction has the form

<?dsd URI="URI"?>

whereURI is the location of the DSD. By inserting this in the application document,
the author states that the document is intended to conform to the designated DSD.

A DSD processor basically performs one top-down traversal of the application
document tree in order to check conformance. During this traversal, constraints and
other requirements from the DSD areevaluatedrelative to acurrent elementof the ap-
plication document. The DSD processor consults the DSD to determine the constraints
that areassignedto each node for later evaluation. Initially, a constraint is assigned to
the root node. Evaluation of a constraint may entail the insertion of default attribute
values and default content in the current element. Also, it may assign constraints to
the subelements of the current element. If no constraints are violated during the entire
tree traversal, the original document conforms to the DSD. The document augmented
with inserted defaults constitutes the result of the DSD processing.

A DSD consists of a number of definitions, each associated with an ID for refer-
ence. In the following, the various kinds of DSD definitions are described. We use a
number of small examples, some inspired by the XHTML language [182] and some
that are fragments of the book example described in Section 14.4.

14.3.1 Element Constraints

The central definition in DSD is theelement definition. An element definition specifies
an element name and aconstraint. During conformance checking, each element node
in the application document is assigned an ID referring to an element definition from
the DSD. In order for the element node to match the element definition, they must have
the same name, and the element node must satisfy the constraint.

The IDs of element definitions are reminiscent of nonterminals in context-free
grammars. Each ID determines the syntactic requirements imposed on the content,
attributes, and context of the elements to which it is assigned. We distinguish between
definition IDs and element names in order to allow several versions of an element to
coexist. Thus, several different element definitions may occur with the same name. To
avoid confusion about the term “ID”, note that element definition IDs are references
into the DSD and that multiple application document elements may be assigned the
same ID.

As an example, consider a DSD describing a simple database containing informa-
tion about books, such as, their titles, authors, ISBN numbers, and so on. Imagine
that both the whole database and each book entry must contain atitle element, but
with different structures. Book entry titles may contain only chardata and no markup,
and defaults may be specified for them. Database titles may on the other hand contain
arbitrary content and no attributes, and cannot be given by defaults. These two kinds
of title elements can be defined as follows:

228 The DSD Schema Language

<ElementDef ID="book-title" Name="title" Defaultable="yes">
<Content><StringType/></Content>

</ElementDef>

<ElementDef ID="database-title" Name="title">
<ZeroOrMore><Union>
<StringType/><AnyElement/>

</Union></ZeroOrMore>
</ElementDef>

A constraint is defined by a number of constraint expressions, which can contain dec-
larations of attributes and element content, boolean expressions about attributes and
context, and conditional subconstraints guarded by boolean expressions. The con-
straint is satisfied if the evaluation of each constituent succeeds. These aspects are
described in the following sections.

The example below expresses something that is impossible or cumbersome to for-
malize in other schema proposals, namely the requirement that anchor elements in
XHTML are not nested:

<ElementDef ID="a">
<Constraint><Not><Context>
<Element Name="a"/><SomeElements/>

</Context></Not></Constraint>
<ElementDef>

This element definition contains a single constraint expression, which is a simple
boolean expression querying the element context. Note that the name attribute of the
ElementDef is missing here. That simply means that the name is the same as the ID.

In DTD, the anchor nesting restriction cannot be formalized and merely appears
as a comment. The DTD does excludea elements from appearing immediately below
othera elements, but, for instance, it allows<a><a>.... Most other
schema languages, including XML Schema, has the same limitation.

Boolean expressions are built from the usual boolean operators,And, Or, Not,
Imply, etc., and are used for several purposes: they express dependencies between
attributes, and they are used as guards in conditional constraints and default declara-
tions, as explained later.

14.3.2 Attribute Declarations

During evaluation of a constraint, attributes aredeclaredgradually. Only attributes
that have been declared are allowed in an element. Since constraints can be condi-
tional and attributes are declared inside constraints, this evaluation scheme allows hi-
erarchical structures of attributes to be defined. Such structures cannot be described by
other schema proposals although they are common. For instance, in an XHTMLinput

element, thelength attribute may be present only if thetype attribute is present and
has valuetext or password. In most schema languages, this kind of constrain is not
expressible. Their solution is to allow all combinations and resort to other means, typi-
cally general programming languages, for expressing the extra requirements. However,
since dependencies are a very common phenomenon in XML languages, this is clearly

14.3 The DSD Language 229

not satisfactory. Another typical example can be found in the XML Schema specifica-
tion [209], Section 3.2.3: “default andfixed may not both be present [...] ifdefault
anduse are both present, use must have the actual valueoptional [...] if ref is present,
then all of<simpleType>, form andtype must be absent”. Surprisingly, even though
the XML Schema language repeatedly uses such dependencies itself, they cannot be
expressed in XML Schema. In contrast, the conditional constraints and boolean ex-
pressions in DSD capture this notion of dependencies in a straightforward manner.

An attribute declarationconsists of a name and a string type. The name specifies
the name of the attribute, and the string type specifies the set of its allowed values. Un-
less it is declared as optional, an attribute must be present if it is declared. Conversely,
only declared attributes are allowed to be present.

The presence and values of declared attributes can be tested in boolean expressions
and context patterns. For instance, the expression:

<Attribute name="action">
<StringType IDRef="URI"/>

</Attribute>

evaluates totrue if and only if the attribute namedaction satisfies two conditions: it
has been declared and it is present in the current element with a value matching the
string typeURI.

The CSS language can assign properties to the elements in a document, based
on context-sensitive selectors. In generic XML settings where properties appear as
element attributes, such as in SMIL [109], this can lead to semantic ambiguities since
setting and testing of attributes occurs in no pre-defined order. Our notion of gradual
attribute declaration avoids such ambiguities.

14.3.3 String Types

A string typeis a set of strings defined by a regular expression. String types are used
for two purposes: to define valid attribute values and to define valid chardata.

Regular expressions provide a simple, well-known, and expressive formalism for
specification of sets of strings. Many reasonable sets can be defined, and by the cor-
respondence with finite-state automata, an efficient implementation is possible. A
rich set of operators is provided, such asSequence, ZeroOrMore, Union, Optional,
Intersection, andComplement.

The use of regular expressions is more flexible than using a predefined collection
of data types. Special automata representations for large alphabets hold the promise
that the efficient regular expression implementations extend to Unicode.1

Most well-known data types, such as URIs, email addresses, and ZIP codes, can
be described by regular expressions. The following example shows the definition of
ISBN numbers:

<StringTypeDef ID="isbn">
<Sequence>
<Repeat Value="9">

<Sequence>

1See e.g.http://www.brics.dk/automaton/

230 The DSD Schema Language

<CharRange Start="0" End="9"/>
<Optional><CharSet Value=" -"/></Optional>

</Sequence>
</Repeat>
<CharSet Value="0123456789X"/>

</Sequence>
</StringTypeDef>

This defines ISBN numbers to consist of 10 digits, optionally separated by single
blanks or dashes, and where the final digit may also be the character ’X’. In a more fa-
miliar notation, this regular expression would be written as([0-9][-]?){9}[0-9X].
The benefit of our more voluminous notation is that the syntactic structure of the ex-
pression is immediate from the XML structure.

In comparison, other schema languages typically provide a number of predefined
data types and focus less on flexibility and user defined types. More details are given
in Section 14.7.

14.3.4 Content Expressions

Recall that the content of an element is a sequence of element nodes and chardata
nodes.Content expressionsare used to specify sets of such sequences. These expres-
sions are a kind of regular expression that occur in element constraints.

Content expressions are built of atomic expressions and content expression opera-
tors. An atomic expression is either an element description or a string type. An element
description is essentially a reference to an element definition. It matches a given ele-
ment node if their names match. The string types specify chardata child nodes. Check-
ing that content sequences satisfy the given constraints has the side-effect that element
definition IDs are assigned to the subelements. Also, as explained in Section 14.3.6, in-
sertion of default content occurs while checking content expressions. Because of these
side-effects, we need a non-standard interpretation of the regular expression constructs
occurring in content expressions, in order to get a well-defined behavior.

The content expression operators includeSequence, ZeroOrMore, AnyElement,
Union and If. A Sequence is matched with a content expression by a left-to-right
traversal. ForZeroOrMore, the traversal is eager, that is, it continues as long as there
is a match of the subexpression. ForUnion, the traversal allows backtracking. Each
option is tried, and the first one that matches is chosen. TheIf construct defines a
conditional subexpression.

As an example, the valid content of a XHTMLtable element (see [182], App.
A.1) can be described by the following content expression:

<Sequence>
<Optional><Element IDRef="caption"/></Optional>
<Union>
<ZeroOrMore><Element IDRef="thead"/></ZeroOrMore>
<ZeroOrMore><Element IDRef="tfoot"/></ZeroOrMore>

</Union>
<Optional><Element IDRef="thead"/></Optional>
<Optional><Element IDRef="tfoot"/></Optional>

14.3 The DSD Language 231

<Union>
<OneOrMore><Element IDRef="tbody"/></OneOrMore>
<OneOrMore><Element IDRef="tr"/></OneOrMore>

</Union>
</Sequence>

Ignoring the syntactic overhead of the XML notation, this example could just as eas-
ily be expressed in DTD. But, as explained in the following, DSDs also allow more
complex content requirements to be specified.

A constraint may contain more than one content expression. Each of them then
must match some of the content of the current element, just like each attribute dec-
laration must match an attribute. More precisely, each content expression is matched
against a subsequence of the content that consists of elements mentioned in the con-
tent expression itself. Thus, the actual content isprojectedonto the elements that the
content expression contains. If, for instance, a content expression mentions elements
A andB, and the content is a sequence of elementsA, B, C, followed by a chardata node
and an elementA, then this expression is matched against the projected contentA, B,
A. This method makes it easy to combine requirements of bothorderedandunordered
content. Additionally, unordered content is declared just like attributes.

In the XHTML specification, the content of thehead element is described as
“head.misc, combined with a singletitle and an optionalbase element in any or-
der”. In a DTD, this requirement can be formalized only by listing all the possible
combinations in a single regular expression. The XML Schema proposal introduces a
separate operator to express interleavings, however, it cannot be combined arbitrarily
with the other content description operators. With DSD, a simple constraint with three
content expressions does the job:

<Content IDRef="head.misc"/>
<Element IDRef="title"/>
<Optional><Element IDRef="base"/></Optional>

When such a set of content expressions is evaluated, each of them is evaluated on the
projected content, namely the subsequence of the content that mentions the element
names in the expression. The first expression only looks at the elements that occur in
head.misc (which is defined elsewhere); the second only looks attitle elements and
states that there must be exactly one of these; and the third expression states that there
can be an optionalbase element somewhere in the content. Additionally, each content
node must be matched by exactly one content expression. Thus, generally speaking,
content expressions in a constraint must not overlap with respect to element names
they mention, just as it is an error to declare an attribute more than once. This simple
and intuitive approach is unique to DSD.

For another example, consider the combination of the following two content ex-
pressions:

<Sequence>
<Element IDRef="first"/>
<Element IDRef="initial"/>
<Element IDRef="last"/>

232 The DSD Schema Language

</Sequence>
<Optional><Element IDRef="homepage"/></Optional>

Together they require that the content consists of the three elementsfirst, initial,
andlast occurring in that order, and that a singlehomepage element may optionally
occur anywhere in that sequence. Without multiple content expressions and the notion
of projected content, all possible combinations would have to be be explicitly listed.

As explained in Section 14.7, the content description mechanisms in other schema
languages are typically also based on variations of regular expressions, in some cases
adding a notion of inheritance. The solution to the problem of expressing combined
ordered and unordered content is however unique to DSD.

14.3.5 Context Patterns

A context patterncan be used with defaults, constraints and content descriptions to
make them context dependent.

Context patterns are very similar to CSS selectors [30]. A context pattern is a se-
quence of context terms. Acontext termis either an element pattern or aSomeElements
element. Anelement patternspecifies an element name and a set of attributes. Recall
that we define thecontextof the current element to be the sequence of nodes that start
at the root of the XML tree and end in the current element.

Before summarizing the meaning of context patterns, we provide an example of a
context pattern that matches thoseli elements immediately withinul elements inside
form elements whosemethod attribute has valuepost:

<Context>
<Element Name="form">
<Attribute Name="method" Value="post"/>

</Element>
<SomeElements/>
<Element Name="ul"/>
<Element Name="li"/>

</Context>

The matching semantics of contexts is as follows. The context of the current element
is matched by a context pattern if the context can be decomposed into consecutive
fragments such that the sequence of fragments matches the sequence of context terms
in the pattern. An element pattern matches a single element node if the name and at-
tributes match. ASomeElements matches any context fragment. Implicitly, all context
patterns begin with aSomeElements element.

To see how useful context-dependent definitions are, let us consider a common
situation: an XML grammar that represents not one but several related XML notations.
For example, a DSD may specify both draft and final markup notations for books. This
is the scenario mentioned in the XML 1.0 specification, where conditional sections of
DTDs may be used to describe variations:

<!ENTITY % draft ’INCLUDE’ >
<!ENTITY % final ’IGNORE’ >
<![%draft;[

14.3 The DSD Language 233

<!ELEMENT book (comments*, title, body, supplements?)>
]]>
<![%final;[
<!ELEMENT book (title, body, supplements?)>
]]>

Here, two flags (parameter entities), calleddraft andfinal, are used to control the
expansion of the two conditional definitions ofbook. Typically, these flags would be
declared in the document type declaration of the application document, whereas the
conditional sections would be declared in an external DTD. The declarations in the
application document are processed before the external DTD.

As stated, the first conditional definition is expanded since the first item of the
conditional definition expands toINCLUDE. Similarly, the second definition is not ex-
panded since the first item expands toIGNORE. This mechanism is somewhat unsafe: a
document writer must set two flags at the same time, and their values must be opposite
each other.

With DSDs, the parameterization of the XML grammar can be explained in terms
of the application document itself. For example, if the root element is calledDOC, then
an attributedraft of this element would govern the definition of abook:

<ElementDef ID="book">
<Sequence>
<If>

<Context>
<Element Name="DOC">
<Attribute Name="draft" Value="true"/>

</Element><SomeElements/>
</Context>
<Then><ZeroOrmore>
<Element IDRef="comments"/>

</ZeroOrMore></Then>
</If>
<Element IDRef="title"/>
<Element IDRef="body"/>
<Optional><Element IDRef="supplements"/></Optional>

</Sequence>
</ElementDef>

Here the logic of the different versions is clearly spelled out at the XML level of the ap-
plication document itself. We believe that expressing this logic is not possible with any
of the other schema language proposals, since they do not have equivalent notions of
context expressions and conditional constraints. One exception is Schematron, which
employs the powerful language XPath for expressing constraints, as explained in Sec-
tion 14.7.

234 The DSD Schema Language

14.3.6 Default Insertion

It is convenient to application document authors to be able to omit implied attributes
and other document parts. Since schemas describe the document structure, they are a
suitable place to specify default values for such parts. Validating a document then has
the side-effect of inserting the defaults, which is often useful to subsequent document
processing.

In DSD, default attributes and content are defined by an association to a boolean
expression. Such attributes or content isapplicablefor insertion at a given place in the
application document if the boolean expression evaluates to true at that place.

In other schema languages, the most common approach is to specify the defaults
together with the structural descriptions, for instance at the attribute declarations.
However, by specifying the defaults separately in a declarative manner, the default
mechanism becomes more flexible because it allows variations of the default values.
The IVR application shown in Section 14.6 utilizes this property extensively.

The following example defines that thelength of input fields of typetext is by
default 20:

<Default>
<Context>
<Element Name="input">

<Attribute Name="type" Value="text"/>
</Element>

</Context>
<DefaultAttribute Name="length" Value="20"/>

</Default>

Defaults are inserted “upon request” by constraints:

• When an attribute declaration is encountered and the declared attribute is not
present in the current element, an applicable default is inserted, if any exists.

• During evaluation of a content expression, if an element description or a string
type is encountered and the next content node does not match the description,
then an applicable default is inserted, if any exists. Default elements can be
inserted only if declared as defaultable by the description.

A notion ofspecificityof defaults, reminiscent of CSS [30], is used to determine a de-
fault when more than one is applicable. Intuitively, the default with the most complex
boolean expression is chosen. If two are equally complex, the one latest defined is
chosen.

For convenience, defaults can also be defined in the application document. Every
application document element may contain default definitions, which in a sense extend
the DSD. Such default definitions are recognized using theDSD namespace. They are
not considered part of the application document by the DSD processor. Their scope is
not the whole application document. Instead, they are considered as applicable only to
the subtree rooted by the element in which they occur.

The following example shows how thelength default previously defined may
be overridden for certaintext type input elements, namely those insideform ele-
ments that have anaction attribute whose value is a string starting with the prefix
http://www.brics.dk/:

14.3 The DSD Language 235

<DSD:Default>
<Context>
<Element Name="form">

<Attribute Name="action"/>
<Sequence>
<String Value="http://www.brics.dk/"/>
<ZeroOrMore><AnyChar/></ZeroOrMore>

</Sequence>
</Attribute>

</Element>
<SomeElements/>
<Element Name="input">

<Attribute Name="type" Value="text"/>
</Element>

</Context>
<DefaultAttribute Name="length" Value="30"/>

</DSD:Default>

Analogously to CSS, defaults defined in the application document are always consid-
ered more specific than defaults defined in the DSD document. Moreover, when two
application document defaults are applicable and they are not siblings, the one with
the smallest scope, that is, the innermost one, will always be considered more specific
than the other.

Most other schema languages contain a default mechanism. However, some only
support attribute defaults or content defaults that only contain chardata. Only DSD
allows individual elements to be inserted in content sequences, and it is also unique in
separating the default declarations from the structural descriptions. In Section 14.6, we
will look at examples that involve managing a great number of interdependent defaults.

14.3.7 ID Attributes and Points-To Requirements

In attribute declarations, a DSD may declare that application document attributes are
of typeID or IDRef, as also possible with DTDs. An attribute of typeID is considered
a definitionof the value of the attribute. Such a definition must be unique. Similarly,
an IDRef attribute is areferenceto the element containing the attribute defining the
given value, and such an element must exist.

Additionally, a DSD may impose apoints-torequirement on the element denoted
by a reference. Such a requirement is defined by a boolean expression, which may
probe attribute values and context as we have seen. This unique mechanism allows
a more precise description of semi-structured data. An example is the DSD notation
itself, as shown in Section 14.3.10.

In the following example, abook-reference attribute is declared. It must refer to
an element with an attribute of typeID occurring in abook element:

236 The DSD Schema Language

<AttributeDecl ID="book-reference" IDType="IDRef">
<PointsTo>
<Context><Element Name="book"/></Context>

</PointsTo>
</AttributeDecl>

TheID definitions,IDRef references, and points-to requirements are checked in a sep-
arate phase after the main traversal of the application document.

14.3.8 Redefinitions and Evolving DSDs

Many XML languages are built from existing languages. Also, often a whole family of
related languages is to be defined. DSDs support these software practices by providing
two simple mechanisms:document inclusionandredefinition. This allows schemas to
be created from existing schemas through modifications and extensions.

Both DSD documents and application documents can be created as extensions of
other documents using a specialinclude processing instruction of the form:

<?include URI="URI"?>

whereURI denotes the document to be included, that is, inserted in place of the pro-
cessing instruction. A document can only be included once into a given document;
subsequent attempts are ignored.

In DSDs, all definitions can be renewed. One can include a document containing a
definition of a concept and then later redefine the concept. Since the DSD language is
designed to be self-describable, the meta-DSD must be able to express this notion of
redefinition.

To accommodate modifications of DSD definitions, two new attribute types,RenewID

andCurrIDRef, are introduced besideID andIDRef. All definitions can be redefined
usingRenewID. An IDRef attribute refers to thefinal definition or redefinition in the
document for thatID. An attribute of typeCurrIDRef refers to thecurrent definition,
which is the last definition or redefinition occurring before the reference and that does
not contain it. Assume that in some existing DSD abook element has been defined as
follows:

<ElementDef ID="book">
<Constraint IDRef="book-constraints"/>

</ElementDef>

<ConstraintDef ID="book-constraints">
...

</ConstraintDef>

Consider a situation where we want to reuse this DSD but would like to extend the
book constraints with a new attribute declaration. This can be done usingRenewID to
redefinebook-constraint andCurrIDRef to refer to the original definition:

14.4 The Book Example 237

<ConstraintDef RenewID="book-constraints">
<Constraint CurrIDRef="book-constraints"/>
<AttributeDecl Name="new-attribute"/>

</ConstraintDef>

Most schema languages support modularization usinginclude-like features. Some
also allow redefinitions, but without being able to refer to the old definitions as our
CurrIDRef. More details are given in Section 14.7.

14.3.9 Self-documentation

Documentation may be associated to most constructs in a DSD. Documentation is
treated as meta-information, which does not affect the processing. It allows a DSD
to be virtually self-documenting towards application authors. Also, a DSD processor
may use this information when errors are detected to provide the author with useful
help.

The DSD language allows three kinds of documentation:Label, which can be used
to attach a label to the construct;Doc, which is intended for full documentation of the
construct; andBriefDoc, intended for a brief description. Documentation may consist
of arbitrary XML, but XHTML is recommended. This allows useful visual effects,
such as showing the brief description in a box that pops up when the mouse is over the
construct. Examples of documentation are shown in Section 14.6.

14.3.10 The Meta-DSD

The DSD language is self-describable: there is a DSD that completely captures the
requirements for an XML document to be a valid DSD. We provide such a DSD of
less than 500 lines (allowing sometimes several tags on the same line), called themeta-
DSD. It can be used both as a human readable description of DSD to clarify its syntax,
and by DSD processors to check whether a given XML document is a valid DSD. The
meta-DSD resides athttp://www.brics.dk/DSD/dsd.dsd. Thus, all DSD documents
should contain the processing instruction:

<?dsd URI="http://www.brics.dk/DSD/dsd.dsd"?>

stating that they are intended to conform to the meta-DSD. As noted in Section 14.5,
the property of being entirely self-describable is not only aesthetically pleasing, it is
also practically useful for application development. Furthermore, it supports develop-
ment of schemas: the same tool that checks validity of application documents can be
used to check that a given XML document is a valid DSD. Most other schema lan-
guages require separate tools for that, since they are not completely self-describable.

14.4 The Book Example

We now present a small example of a complete DSD. It describes an XML syntax
for databases of books. Such a description could be arbitrarily detailed. We have
settled for title, ISBN number, authors (with home pages), publisher (with home page),
publication year, and reviews. The main structure of the DSD is as follows:

238 The DSD Schema Language

<?dsd URI="http://www.brics.dk/DSD/dsd.dsd"?>

<DSD IDRef="database" DSDVersion="1.0">
<ElementDef ID="database">
<ZeroOrMore>

<Element IDRef="book"/>
</ZeroOrMore>
<Element IDRef="database-title"/>

</ElementDef>
...

</DSD>

In thedatabase element we use projected content to allow the uniquetitle to appear
anywhere in the sequence ofbook elements. If we wanted to mandate the position of
the title element, then a surroundingSequence constructor was required. The re-
maining definitions are presented below, excluding thetitle element and theisbn
string type that are shown in Section 14.3. We first show the definition ofbook ele-
ments:

<ElementDef ID="book">
<AttributeDecl Name="isbn" Optional="yes">

<StringType IDRef="isbn"/>
</AttributeDecl>
<Sequence>

<If><Attribute Name="isbn"/>
<Then>
<Optional><Element IDRef="book-title"/></Optional>

</Then>
<Else>
<Element IDRef="book-title"/>

</Else>
</If>
<OneOrMore><Element IDRef="author"/></OneOrMore>
<Element IDRef="publisher"/>
<Element Name="year">
<StringType IDRef="digits"/>

</Element>
<Optional>
<Element Name="review">
<StringType IDRef="url"/>

</Element>
</Optional>

</Sequence>
</ElementDef>

Note that theisbn attribute is optional. If it is not present in abook, then atitle is
mandatory. The definitions ofauthor andpublisher are as follows:

14.4 The Book Example 239

<ElementDef ID="author">
<Sequence>

<Element Name="first">
<StringType IDRef="simple"/>

</Element>
<Optional>
<Element Name="initial">
<StringType IDRef="simple"/>

</Element>
</Optional>
<Element Name="last">
<StringType IDRef="simple"/>

</Element>
</Sequence>
<Optional><Element IDRef="homepage"/></Optional>

</ElementDef>

<ElementDef ID="publisher">
<StringType IDRef="simple"/>
<Optional><Element IDRef="homepage"/></Optional>

</ElementDef>

An order is imposed onfirst, initial, andlast, but projected content allows the
optional homepage element to appear anywhere. Allhomepage elements contains a
URL:

<ElementDef ID="homepage">
<StringType IDRef="url"/>

</ElementDef>

<StringTypeDef ID="url">
<ZeroOrMore><AnyChar/></ZeroOrMore>

</StringTypeDef>

A naive definition ofurl is chosen here. It could be replaced with the full 200 line
official definition, which is indeed a regular language. The remaining string type defi-
nitions are as follows:

<StringTypeDef ID="simple">
<OneOrMore>

<Union>
<CharRange Start="a" End="z"/>
<CharRange Start="A" End="Z"/>
<CharSet Value="._- &"/>

</Union>
</OneOrMore>

</StringTypeDef>

<StringTypeDef ID="digits">
<ZeroOrMore>

<CharRange Start="0" End="9"/>

240 The DSD Schema Language

</ZeroOrMore>
</StringTypeDef>

Such string types could be part of a standard library, constructed as a file containing
numerousStringTypeDefelements that are accessed through theincludemechanism.
The following definition allows untitled books to receive the default titleUntitled:

<Default>
<Context>

<Element Name="book"/>
</Context>
<DefaultContent>

<title>Untitled</title>
</DefaultContent>

</Default>

An example of a conforming application document looks as follows:

<?dsd URI="http://www.brics.dk/DSD/book.dsd"?>

<database>
<title>Classic Computer Science Books</title>
<book isbn="0201485419">
<title>The Art of Computer Programming</title>
<author>

<first>Donald</first><initial>E</initial>
<last>Knuth</last>
<homepage>
http://www-cs-faculty.stanford.edu/~knuth/

</homepage>
</author>
<publisher>

Addison-Wesley
<homepage>http://www.aw.com</homepage>

</publisher>
<year>1998</year>
<review>

http://www.amazon.com/exec/obidos/ASIN/0201485419
</review>

</book>
</database>

14.5 The DSD 1.0 Tool

A prototype DSD processor has been implemented. It tests conformance of application
documents and inserts defaults. This shows that it is possible to implement a complete
DSD processor in less than 5000 lines of straightforward C code.

Given the URI of an application document containing a DSD-reference processing
instruction, the DSD tool performs the traversal of the application document as de-
scribed in Section 14.3, and if it succeeds, it then performs the ID/IDRef and points-to
checks described in Section 14.3.7. Before the application document is processed, the

14.6 Industrial Case Study: IVR Systems 241

DSD document, including all application document defaults, is checked to see whether
it conforms to the meta-DSD. This check can be omitted by a command-line option if
the user is certain that the DSD is in fact valid.

If an error occurs, that is, if a document is not conforming to its DSD, then a suit-
able error message is inserted in the document which is then output. If the processing
succeeds without errors, then the defaults are added to the application document. As
an extra feature, the tool can be instructed to add special attributes that detail the el-
ement ID assigned to a node. Such parsing information can be useful in subsequent
processing by other XML tools.

By using a DSD processor as a front-end for other XML tools, these often become
much simpler to construct since the subsequent phases may assume that the input sat-
isfies the syntactic requirements defined by a certain DSD. This is exemplified by the
IVR system described in the next section. The DSD processor itself relies on this tech-
nique. Using the meta-DSD, which is a complete description of the DSD language
itself, the processor checks that a purported DSD document is indeed a DSD. This
bootstrapping technique has reduced the size of the implementation considerably and
made it more robust and readable.

The DSD processor analyzes application documents in linear time: execution time
is proportional to the size of the application document. This assumes that the document
size includes the inserted defaults, and that we view all default definitions, including
those written in the application document, as belonging to the DSD. The constant of
proportionality naturally depends on the complexity of the given DSD. This linear-
time property makes the behavior of the DSD processor more predictable than with
other schema language processors, where such guarantees are typically not required
by the language specification.

14.6 Industrial Case Study: IVR Systems

IVR (Interactive Voice Response) systems range from simple telephony applications
to complicated dialogue systems based on speech recognition. But even the simpler
systems are notoriously difficult to construct since their programming involves com-
plex timing and error issues. To simplify the task, many layers of abstractions are
introduced. At the highest level, an application programmer chooses between ready-
made dialogues, which are parameterized with prompts and timeout durations. In this
section, we will show how XML and the DSD Schema may help an application pro-
grammer to learn and to use a specialized notation with many interdependent param-
eters such as prompts, timeout values, error counts, and error messages. In particular,
we will show how a DSD processor automatically selects defaults for such parameters
according to the programmer’s preferences.

Our case study is based on XPML (Extensible Phone Markup Language), an HTML-
like experimental language developed at AT&T Labs [129]. The XPML notation has
evolved from a simple variation of HTML, dubbed PML, to a rather elaborate pro-
gramming notation for telephone services that rely on text-to-speech, touchtone input,
speech recognition, and call control.

Often, XPML documents resemble conventional marked-up documents, but some-
times they are heavily customized with many default time and prompt settings, mak-

242 The DSD Schema Language

ing them more like notations in a programming language. For such markup language
applications, DSDs may play an important role in describing almost all syntactic con-
straints, while providing a practical solution to the handling of defaults. Indeed, ques-
tions of how to use PML effectively in practice originally motivated the development
of the DSD language.

The XPML notation as outlined here is somewhat incomplete. It is similar to
VoiceXML, a new dialogue markup language developed by AT&T, IBM, Lucent and
Motorola. VoiceXML is not very similar to HTML, but otherwise resembles XPML in
scope and purpose.

14.6.1 The IVR Scenario

Our case study is presented from the application programmer’s point of view. The
scenario calls for the development of a tiny interactive voice application that greets
customers of different nationalities. The programmer will use the domain-specific
language XPML, whose syntax is defined using DSD. The main idea of XPML is that
simple HTML-like pages describe a finite-state machine, where intra-page hyperlinks
become goto statements and text becomes synthesized speech;input fields correspond
to subdialogues for obtaining numbers andselect elements become dialogues `a la “for
sales, choose 1; for customer service, choose 2,...”.

Each subdialogue construct provides numerous parameters for specifying prompts,
help messages, timeout durations, timeout counts, and messages in various error sit-
uations. As a further complication, there are several interdependencies among these
parameters. For example, some HTML elements are associated with several possi-
ble interaction stylesthat support situations such as: unusually many choices in a
menu, number input restricted to certain ranges, variations in dialogue style (“press
any key when you hear the right choice”), etc. The interaction style is specified by an
interaction attribute. Naturally, the kinds of prompt parameters, along with many
other settings, are dependent on the value of this attribute.

14.6.2 DSDs for Syntax Explanations

Our application programmer is a novice XPML user, who has seen only a few exam-
ples of XPML code. One role of the DSD is to provide a readable, concise syntactic
summary. The programmer should not have to read the DSD as an XML file; instead,
a BNF-like version in the form of a hyperlinked HTML document may be produced
by an XSLT style sheet transformation. For example, the DSD definition of the ele-
mentXPML, the top element of an XPML document, is shown below (left) through an
XSLT style sheet transformation into HTML. The pretty-printed version is designed to
resemble the concrete syntax of an application document; the original DSD definition
(right) is less appealing:

14.6 Industrial Case Study: IVR Systems 243

<XPML> ID=XPML:
(<head>

Constrainthead-constraint
</head> [Defaultable],
<body>

Constraintbody-constraint
</body>)

</XPML>

<ElementDef ID="XPML">
<Sequence>

<BriefDoc>
The head element
may be omitted.

</BriefDoc>
<Element Name="head"

Defaultable="yes">
<Constraint IDRef=
"head-constraint"/>

</Element>
<BriefDoc>
The body element is
mandatory.

</BriefDoc>
<Element Name="body">
<Constraint IDRef=
"body-constraint"/>

</Element>
</Sequence>

</ElementDef>

The BriefDoc documentation strings of the XML version are translated into HTML
title attributes—they provide the effect of a pop-up explanation when the mouse
pointer is over the corresponding definition. This particular snippet of a DSD spec-
ifies that theXPML element consists of ahead element followed by abody element.
The head is defaultable, which means that it may be omitted if a default for it has
been specified, and its attributes and content are specified by the constraint named
head-constraint. Similarly, thebody element is specified by the constraintbody-

constraint. The XSLT style sheet can be found at the DSD Web site; it is rather
complicated, taking up approximately 25 pages.

14.6.3 DSDs for Debugging

We now explore how schemas may help the debugging of XML documents. Assume
that the application programmer’s first attempt at the XPML program is:

<?dsd URI="xpml-att.dsd"?>
<XPML>
<head>
<application name="HELLOWORLD"/>
<maintainer address="klarlund@research.att.com"

loglevel="2"/>
<title>The Greeting Application</title>

</head>
<body>
Welcome.

<audio url="/audioclips/greeting.vox"/>

244 The DSD Schema Language

<menu name="nationality">

<option dtmf="0">To end</option>
<do>

<comment>go to end point</comment>
</do>
<option> If you speak English. </option>
<do> Hello! How are you? </do>
<option> If you speak Danish. </option>
<do> Goddag! Hvordan går det? </do>

</menu>

</body>
</XPML>

The programmer has inserted a<?dsd URI="xpml-att.dsd"?> processing instruction
to indicate that the document must conform to the DSD namedxpml-att.dsd. Using
the DSD processor to check the syntax of the document will now produce the response:

Error in ’greetings-first-attempt.pml’
line 10: attribute ’nointerrupt’ has illegal value ’y’
while checking attribute in constraint
"message-attributes", ’xpml-core.dsd’ line 377

An automated error analysis tool would display this constraint along with the pertinent
auxiliary definitions:

ConstraintDef ID=message-attributes:
nointerrupt="YesOrNo"[Optional]

StringTypeDef ID=YesOrNo:
("yes " | "Yes " | "no " | "No ")

revealing that the programmer must write"yes" instead of"y". Naturally, the other
schema notations offer similar capabilities. Most people will probably get acquainted
with schemas only through such error-reporting; thus, it is very important that the
schema notation itself is as simple as possible to make error messages understandable
for non-experts.

14.6.4 DSDs for Myriads of Defaults

Once the above error is corrected, the DSD processor accepts the document and inserts
all the default attributes and default elements specified by the DSD for XPML. The
resulting document is:

<?dsd URI="xpml-att.dsd"?>
<XPML>
<head>
<application name="HELLOWORLD"/>

14.6 Industrial Case Study: IVR Systems 245

<maintainer address="klarlund@research.att.com"
loglevel="2"/>

<title>The Greeting Application</title>
</head>
<body>
Welcome.

<audio url="/audioclips/greeting.vox"/>

<menu asrmode="none" endchars="#" finaltimeout="5000ms"

interaction="basic" interdigittimeout="4000ms"
maxmisselected="3" maxtimeout="2" maxtterrs="3"
name="feelings" timeout="0ms">

<option dtmf="0">To end</option>
<do>
<comment>go to end point</comment>

</do>
<option> If you speak English. </option>
<do> Hello! How are you? </do>
<option> If you speak Danish. </option>
<do> Goddag! Hvordan går det? </do>
<help>No help is available.</help>
<initial>
<enumerate><option/>Press
<emph><dtmf/></emph>.

</enumerate>
</initial>
<timeout> You have exceeded the time limit. </timeout>
<toomanyerrors>Sorry, too many errors.</toomanyerrors>
<counttimeout>Sorry, too many timeouts.</counttimeout>
<pause>Pausing. Press pound sign to continue.</pause>

</menu>

</body>
</XPML>

It is similar to the original document except that all timing and counting parameters that
are relevant according to the schema have been inserted. Also, various default mes-
sages used in error and help situations, like<help>No help is available.</help>

have been inserted. Voice programming, as well as HTML layout, is dependent on a
great number of parameters whose tuning is often essential to obtaining the desired
performance. However, it would be quite a burden if all parameters should explicitly
be stated in each document.

This example shows how DSDs generally allow XML notations to be abstracted
away from rendering details in a way similar to CSS. However, we should note that
DSDs do not subsume CSS: in the domain of visual formatting there are some arith-
metic rules about inheritance of values that cannot be expressed in DSD.

246 The DSD Schema Language

DSD style sheets

DSD defaults defined by both the system and the application programmer may be
gathered in files known asexternal parsed entities. These are just like XML documents
except that multiple root elements are allowed. They work as style sheets by inclusion
in the application document via theinclude processing instruction.

Below, the application programmer has defined a DSD style sheet that overrides
the defaulthelp element for themenu construct in two ways: for amenu without aclass
attribute, the message “We’re sorry, can’t help you more right now, but please call us
at 1-800-greetings” is specified; for amenu with aclass attribute of valueexplain, the
default content ofhelp instructs the customer to press “1” to have the error explained.

<DSD:Default>
<Context>
<Element Name="menu"/>

</Context>
<DefaultContent>
<help>

We’re sorry, can’t help you more right now,
but please call us at 1-800-greetings

</help>
</DefaultContent>

</DSD:Default>

<DSD:Default>
<Context>
<Element Name="menu">

<Attribute Name="class" Value="explain"/>
</Element>

</Context>
<DefaultContent>

<help>
Press 1 for further explanation.

</help>
</DefaultContent>

</DSD:Default>

Thus, parameters can be gathered hierarchically in files to achieve the cascading effect
that enable abstractions, formulated as sets of defaults, to be easily customized.

14.6.5 DSDs for Simplifying XPML Processing

With a DSD processor, XML documents may benormalizedby default insertion in the
sense that (1) without inserted defaults (assuming all default information is erased from
the DSD) the document is not conforming and (2) with defaults inserted the document
is conforming and no more defaults would be inserted—if it were to be run again.

Since defaults can only be overridden by application document, the defaults given
with the DSD itself provide a set of assumptions about the shape of the document
that results from running the DSD processor on a valid document. For example, the
XPML interpreter can assumemenu elements are fully filled-in with timing attributes

14.7 Related Work 247

and content such ashelp anderror messages, since an application programmer pro-
vided default can change this information, but not permit it to disappear.

For this reason, the system programmer, who is writing a semantic interpreter for
XPML, may omit a host of error and default situations that would otherwise be typical
of a domain specific language like XPML. In other words, the DSD notation itself,
with its emphasis on parameters and defaults, becomes a domain modeling tool that
directly simplifies the building of software.

14.6.6 Summary of DSD Advantages

We have made a preliminary description of the full XPML language. Our experiments
show that almost all of the syntax and static semantics of XPML can be captured as
DSDs. This exercise has illustrated four practical aspects of DSD schemas:

• DSDs aid the XPML programmer to choose the right syntactic constructs. To
enhance readability of DSDs, we indicate how to present them in a more con-
ventional BNF-like way that closely resembles the concrete syntax of the XPML
notation.

• XPML programmers can easily check their documents for most errors using the
DSD processor alone.

• XPML programmers can use the CSS-like default mechanism that comes with
DSDs. Thus, XPML programs can be “styled” in a declarative and modular
fashion.

• DSD descriptions significantly simplify the programming of an interpreter for
XPML.

In contrast, the XML Schema notation proposed by the W3C covers only the first two
points, and only partly so: first, the notation is incapable of capturing much of the at-
tribute structure of XPML, and second, the notation itself is so complicated that it may
impede its use as an explanatory medium directed towards computer professionals.

14.7 Related Work

The specification of the basic XML notation includes the schema language DTD (Doc-
ument Type Definition), which is a subset of the DTD mechanism known from SGML.
XML DTD is a grammar notation that allows a content model and a list of attributes to
be declared for each element name. The content model is a restricted form of regular
expressions over element names and chardata nodes: if chardata is allowed, then only
unordered content can be described. Also, content specifications have to satisfy a de-
terminism property, which is reminiscent of our operational interpretation of content
expressions. Attributes can be declared with another restricted form of regular expres-
sions permitting only enumerations of strings to be specified. The attribute declara-
tions also allow defaults to be specified. As in DSD, validity checking is performed by
a top-down traversal of the application document. In addition to grammatical descrip-
tions, DTD also contains the notions ofentity definitions, which is a kind of macro

248 The DSD Schema Language

mechanism, andnotations, which provide semantic references to data formats. The
typical use of entity definitions is subsumed by our inclusion mechanism and the vari-
ous definition constructs. DSD, as well as many other schema languages, does not have
an equivalent of DTD notations, since we regard them as independent of syntactical
descriptions.

It is generally agreed that DTD is insufficient for many purposes. Some typical ar-
guments are: it does not itself use XML notation; most common data types for chardata
and attribute values cannot be expressed; there is very limited support for modularity
and reuse of descriptions; and content and attribute declarations cannot depend on
attributes or element context.

A large number of other schema languages have been proposed since the introduc-
tion of XML and DTD. In the following, we give a brief summary of these, focusing
on what we believe are the most important alternatives: XML Schema and RELAX
NG. A further comparison of various schema language proposals, including DSD, can
be found in [146].

14.7.1 XML Schema

Based on the experience with the DTD, XML-Data, DDML, DCD, and SOX schema
languages, which we mention in Section 14.7.3, W3C has designed the language
XML Schema. The requirements that this schema language should address accord-
ing to W3C are found in [151]. This document briefly outlines usage scenarios such
as publishing, electronic commerce transactions, authoring, databases, and metadata
exchange, which are areas we believe are covered by DSDs. The design principles
are summarized as follows: “The XML Schema language shall be more expressive
than XML DTDs; expressed in XML; self-describing; usable by a wide variety of
applications that employ XML; straightforwardly usable on the Internet; optimized
for interoperability; simple enough to implement with modest design and run time
resources; and coordinated with relevant W3C specs.” Additionally, a number of
structural requirements are defined: “The XML Schema language must define mecha-
nisms for constraining document structure (namespaces, elements, attributes) and con-
tent (datatypes, entities, notations); mechanisms to enable inheritance for element,
attribute, and datatype definitions; mechanism for URI reference to standard semantic
understanding of a construct; mechanism for embedded documentation; mechanism
for application-specific constraints and descriptions; mechanisms for addressing the
evolution of schemata; and mechanisms to enable integration of structural schemas
with primitive data types.”

The DSD language, we believe, satisfies the principles and requirements outlined
above, except that we have paid less attention to a precise coordination with other W3C
standards (some of which were under development when DSD was designed). Laying
aside issues such as whether XML Schema or DSD is straightforwardly usable on the
Internet, we present next some significant technical and conceptual differences.

Constraints vs. complex types

The most essential difference between XML Schema or DSD is the way structural
descriptions are specified. In DSD, the central notion is theconstraint, which cor-

14.7 Related Work 249

responds to thecomplex typesin XML Schema. However, the constraints in DSD
involve boolean logic and context expressions; neither feature has a counterpart in
XML Schema.

The DSD constraint mechanism allows attribute declarations and content descrip-
tions to depend on attributes in the current element and of its ancestors. As shown in
Section 14.3.2, this is a very useful mechanism that we believe many XML language
descriptions can benefit from. In fact, both XHTML and the XML Schema language
itself have validity requirements of this form, but they simply cannot be formalized in
XML Schema.

Content models

The notion of complex types in XML Schema is also related to our content expressions.
In XML Schema, the regular expression operators cannot be combined arbitrarily. For
instance, the operator for describing unordered content can contain only individual
elements. This makes it difficult to express combinations of ordered and unordered
content. Also, in XML Schema when describing mixed content, that is, content con-
taining both elements and chardata, no constraints can be given on the chardata. Only
if the content is pure chardata can its values be constrained. In DSD, these limitations
do not exist.

String types vs. simple types

The string types in DSD correspond to thesimple typesin XML Schema defined in
[25]. While we resort to regular expressions and user defined libraries of common type
definitions, XML Schema is primarily based on a large number of predefined types
and various derivation mechanisms. But, XML Schema UNIX-style regular expres-
sions are also supported. The derivation operators can admittedly be more appropriate
than standard regular expression operators, but the expressive power of these two ap-
proaches is formally the same. In our opinion, this sublanguage of XML Schema may
be too complex relative to its benefits.

Inclusion and redefinition vs. inheritance and substitution groups

XML Schema and DSD also differ significantly in their approach to amending and
reusing definitions. DSD uses a simple inclusion mechanism combined with selective
redefinitions, while XML Schema contains a more complicated type system inspired
by object-oriented programming languages. This type system contains two mecha-
nisms: inheritance by extension or restriction along with substitution groups. The
inheritance mechanism allows instance elements of a subtype in places where a su-
pertype is required, but only if the elements are explicitly typed in the application
document using specialxsi:type attributes. Also, types can be defined to be abstract
or final, as known from programming languages. The substitution group mechanism
allows groups of types to be defined in a way that resembles the inheritance mecha-
nism, but without the hierarchical type structure and explicit types. The DSD proposal
does not rely on object-orientation, since we found that most application domains do
not lend themselves to this paradigm and are better served with a simpler mechanism.

250 The DSD Schema Language

This raises the question of how DSDs may emulate inheritance. The answer is that
a constraint describing the content of an element type may be extended to include more
content according to an attribute describing the subtype. The constraint augmentation
technique is much more flexible than derivation, for example, content may depend on
more than one attribute. However, it does not offer the guarantee that a later definition
will not violate the principle of object-orientation that an object of a subtype can be
used wherever a supertype is expected.

Default insertion

The default mechanism in XML Schema is similar to the one of DTDs, except that
default strings can be inserted in empty elements. In DSD, the defaults are not tied
to the element and attribute declarations, but are instead defined by an association to
a context expression that can query ancestors and attributes. If for a default definition
this expression is true for the current element, the default is applicable. As shown
in Section 14.6.4, this mechanism may be quite useful in practice. Also, with DSDs
default content is not inserted when an element is empty, but when a content expression
requests it. In contrast to XML Schema, this mechanism allows defaults to be inserted
in the middle of a content sequence, and it is not limited to chardata.

Self-describability

In general, a schema language is self-describing if and only if it is possible within that
language to express all requirements for a document to define a valid schema. Such a
self-description is called ameta-schema.

According to the design requirements, XML Schema was originally intended to
be self-describable, however, the resulting language is not. As previously mentioned,
it is not just a few technicalities that hinder this property: examples as the one in
Section 14.3.2 can be found throughout the language specification. This precludes
XML Schema from the many practical benefits of having a meta-schema similar to the
one for DSD in Section 14.3.10. Additionally, it seems unsatisfactory to suggest an
XML language intended to describe all common XML languages that cannot describe
itself. In a sense, its complexity is higher than its expressiveness.

It is important to note that any schema language can be tweaked into being self-
describable according to the above definition: instead of forbidding certain syntactic
constructions, one can allow them all and just give them some obscure but well-defined
semantics. The fact that DSD is self-describable does not imply that all valid DSDs are
meaningful: since schemas capture requirements only about syntax or static semantics,
there may always be semantic inconsistencies in a syntactically valid document. Still,
in our experience the meta-DSD is able to catch most errors that occur while writing
schemas.

Other features

XML Schema contains a few special features not mentioned so far. The notion ofnil
valuesin XML Schema allows elements to be empty despite of content requirements.
Specifically, such an element must be declared nillable and have axsi:nil="true"

attribute. This feature can be emulated directly by our general conditional constraints.

14.7 Related Work 251

XML Schema includes a subset of XPath [61] for expressing uniqueness require-
ments, keys, and references. A uniqueness constraint specifies that a given expression
must be true at most once throughout a certain subset of the document. Keys and ref-
erences are similar generalizations of the ID/IDREF concepts used in DTD and DSD.
To keep the schema language simple, we have chosen not to include such general
mechanisms in DSD.

14.7.2 RELAX NG

As a competitor to W3C’s XML Schema, the RELAX NG language has emerged
through a joining of the RELAX and TREX projects in an effort sponsored by OA-
SIS. These languages all appeared after the DSD 1.0 specification was published.

RELAX [169] is based on the automata-theoretic characterization of regular tree
languages formulated in [167]. According to the original RELAX concept, a spec-
ification expresses a nondeterministic bottom-up tree automaton. In order to decide
whether a given document is accepted by the automaton, an efficient algorithm must
work bottom-up in order to carry out a subset construction on the fly. We depart funda-
mentally from RELAX on this point: we chose to make DSDs similar to deterministic,
top-down automata, even though they formally have less expressive power. There are
several reasons for this decision. First, a top-down approach typically matches the hier-
archical structure of the information being represented and thus is more natural to use.
Second, bottom-up parsing prevents online processing, which requires a left-to-right
traversal of the document text. Third, our idea that schemas should be a foundation
for extending CSS to arbitrary XML requires that we use the same approach as CSS,
which is top-down. Fourth, it is not obvious that the added expressive power is really
necessary in practice. With our semantics, defaults are inserted deterministically as a
part of the parsing process. Had we chosen a more general automaton model, default
insertion would become very complex. Indeed, RELAX is suggested as a notation that
is explicitly designed not to support default insertions. RELAX NG has inherited this
lack of a default mechanism. But like the XML schema team, we believe that defaults
must be supported by the schema notation.

Our notion of constraint assignment is superficially similar to the way automata
states are assigned by RELAX to nodes of the XML tree. However, our current se-
mantics is formulated as a parsing process, not in terms of automata theory.

It was announced [168] that the RELAX project, influenced by the DSD notation,
would adopt a top-down approach based on an automata-theoretic semantics. This
has made the RELAX language quite similar to the TREX language [60], which has
motivated the merge of the two projects.

A schema in RELAX NG is described by a top-down grammar, as in DSD. Ele-
ments are described bypatternscorresponding to the notions of constraints in DSD and
complex types in XML Schema. In contrast to XML Schema, RELAX NG contains a
choice pattern operator, reminiscent of our booleanOr operator. However, neither the
full boolean logic nor the conditional constraints are available, so complex dependen-
cies may require all combinations of allowed attributes and contents to be spelled out.
Also, RELAX NG does not contain a notion equivalent to our context expressions, so
ancestor dependencies need to be encoded into the top-down grammar. This can cause
a blow-up of the schema description when describing multiple ancestor dependencies.

252 The DSD Schema Language

For instance, to simultaneously disallow nesting anchor elements and form elements,
the grammar size will essentially increase by a factor of four.

RELAX NG relies on externally defined data types for attribute values and char-
data. Only operators for enumerations and lists are built-in. In current implementa-
tions, the data types from XML Schema are supported, but this is not required by the
specification. As in XML Schema, chardata cannot be constrained if describing mixed
content—in contrast to DSD where this is possible.

We believe that RELAX NG has succeeded in providing a simple and expressive
alternative to XML Schema. However, the lack of support for defaults, ancestor de-
pendencies, and boolean logic may limit its usability.

14.7.3 Other Proposals

DDML [32], which also has been called XSchema, was the result of a collaborative
effort on the XML-DEV mailing list. It is a relatively straightforward generalization of
DTD concepts using an XML notation, only adding little expressive power. A related
language called DCD was proposed in [43]. It suggests using COBOL-like pictures
for expressing string datatypes, adds cardinality constraints to the content models, and
is formulated in the RDF framework. XML-Data [145] introduced element keys and
references to generalize the ID/IDREF mechanism from DTD, and also inheritance
of element descriptions for supporting modularization and reuse. Related to that is
SOX [70], which is based more purely on an object-oriented paradigm. The XDR
language [92] was designed as a simplification of XML-Data. None of these languages
offer a unifying notion of context-dependent constraint as that in DSD.

Assertion Grammars [184] is an interesting approach that achieves some of our
goals since it is based implicitly on nonterminals. It contains a powerful notion of
tree patterns, which is reminiscent of our context patterns. Recast in our terminology,
assertions are redefinitions of nonterminals that conditionally extend their meaning.
The condition reflects the context where the addition is valid. We believe it would be
possible to explain Assertion Grammars fully in terms of DSD concepts. Conceivably,
Assertion Grammar concepts could be integrated with DSDs, where they would stand
for abbreviations of DSD constructs. Assertion Grammars allow only a restricted class
of extensions, and they do not allow as flexible context dependencies as DSDs.

The Schematron proposal [119] is based on idea of adapting the XPath frame-
work for expressing tree patterns and validity constraints, as an alternative to gram-
mar-centered formalisms. A Schematron schema consists of a number of declarative
rules, each essentially being defined by two XPath expressions: acontextspecifying
the applicability of the rule and aassertionspecifying a validity requirement. Schema-
tron language descriptions are open, in the sense that everything that is not explicitly
forbidden is allowed. Most other schema languages, including DSD, have the opposite
view. Because of the open description model and the high expressiveness of XPath,
Schematron is often viewed as a supplement to ordinary schemas, not as a replacement.

As argued in Section 14.6.4, our form of default insertion is a useful way of assign-
ing CSS-like properties in the form of element attributes to the application document.
We know of no other work that has suggested a generalization of CSS based on a
schema notation.

14.8 Conclusion 253

Finally, we compare DSDs to XSLT [59], which is a Turing-complete XML trans-
formation language based on a tree-walking model. We have attempted to design DSD
such that its expressive power matches essential aspects of this functional program-
ming language. Specifically, it is very common that XSLT programs visit each node
only once, recurse on children according to XPath tests that concern attributes of the
current node and properties of ancestors, and carry no parameters. Generally speak-
ing, DSDs can mimic the recursion of such XSLT programs. Technically, this can
be proven by constructing a DSD constraint for each named or unnamed template.
The functionxsl:apply-templates, the basic recursive construct, can be translated
into a constraint that drives typing of subnodes. The nodes selected are identified
in the DSD through a propagation of types, where non-empty types are used in all
non-selected nodes. The details of this correspondence would require very technical
arguments, which are outside the scope of this paper.

In XSLT, the programmer’s assumptions about the existence or absence of at-
tributes or children is implicit, and XSLT processors do not produce any error mes-
sages if such assumptions are not complied with. With DSD, the assumptions can
be formalized and checked using the boolean logic and context-dependent constraint
mechanisms.

14.8 Conclusion

The DSD language provides a simple but expressive alternative to other XML schema
proposals. It embodies a formal approach to the specification, validation, and default
completion of XML syntax. It addresses issues such as context dependencies, declar-
ative defaults, schema evolution, semi-structured data, complex data types, and effi-
cient implementation. It has an expressive power that mirrors some essential aspects
of XSLT. Moreover, the DSD language has been implemented and tested in practice. It
is our hope that ideas from DSD may further simplify XML standards that go beyond
just being grammar notations.

More concretely, we believe that in particular the following ideas have proven
successful: the application of context expressions, boolean logic, and conditional con-
straints to describe dependencies, the flexible content model, the declarative default
mechanism, and the top-down traversal method.

By the many proposals for XML schema languages, it is clear that there is no ideal
solution to the problem of designing the right schema language that fits all purposes.
We believe that the DSD language has succeeded in identifying the most central as-
pects of defining sets of XML document. Still, from the experience with DSD and
other recent schema language proposals we are confident that the DSD language can
be further simplified and yet become even more expressive in practice. Based on this,
we continue the development of the DSD schema language in the future.2 As a first
goal, DSD needs proper support for namespaces, as mentioned earlier.

Our implementation of a DSD processor is available in an open source package.
Please visit the DSD project home page athttp://www.brics.dk/DSD/ for more in-
formation. This home page also contains other DSD resources, such as the official

2The paper [57] contains an informal description of DSD2, a successor to DSD.

http://www.brics.dk/DSD/

254 The DSD Schema Language

specification of the DSD 1.0 language [132], example DSDs and application docu-
ments, and the XSLT style sheet for DSDs mentioned in Section 14.6.2.

Acknowledgments

We sincerely appreciate the extraordinarily thorough feedback that we received from
the reviewers. We also thank the participants of the Spring 2000 XML course at the
University of Aarhus for their enthusiasm. DSD users in the XML community have
also provided us with many insightful comments and suggestions.

Chapter 15

Extending Java for High-Level
Web Service Construction

with Aske Simon Christensen and Michael I. Schwartzbach

Abstract

We incorporate innovations from the<bigwig> project into the Java language to pro-
vide high-level features for Web service programming. The resulting language,JWIG,
contains an advanced session model and a flexible mechanism for dynamic construc-
tion of XML documents, in particular XHTML. To support program development we
provide a suite of program analyses that at compile time verify for a given program
that no runtime errors can occur while building documents or receiving form input,
and that all documents being shown are valid according to the document type defini-
tion for XHTML 1.0.

We compareJWIG with Servlets and JSP which are widely used Web service de-
velopment platforms. Our implementation and evaluation ofJWIG indicate that the
language extensions can simplify the program structure and that the analyses are suf-
ficiently fast and precise to be practically useful.

15.1 Introduction

The Java language is a natural choice for developing modern Web services. Its built-in
network support, strong security guarantees, concurrency control, and wide-spread de-
ployment in both browsers and servers, together with popular development tools make
it relatively easy to create Web services. In particular, JavaServer Pages (JSP) [202]
and Servlets [201], which are both Java based technologies, have become immensely
popular. However, both JSP, Servlets, and many other similar and widely used tech-
nologies, such as ASP, PHP, and CGI/Perl, suffer from some problematic shortcom-
ings, as we will argue in the following and try to address.

256 Extending Java for High-Level Web Service Construction

15.1.1 Sessions and Web Pages

In general, JSP, Servlets, and related approaches provide only low-level solutions to
two central aspects of Web service design:sessionsanddynamic construction of Web
pages.

A session is conceptually a sequential thread on the server that has local data,
may access data shared with other threads, and can perform several interactions with a
client. With standard technologies, sessions must be encoded by hand which is tedious
and error prone. More significantly, it is difficult to understand the control-flow of an
entire service from the program source since the interactions between the client and
the server are distributed among several seemingly unrelated code fragments. This
makes maintenance harder for the programmer if the service has a complicated control
flow. Also, it prevents compilers from getting a global view of the code to perform
whole-service program analyses.

The dynamic construction of Web pages is typically achieved by print statements
that piece by piece construct HTML fragments from text strings. Java is a general
purpose language with no inherent knowledge of HTML, so there are no compile-time
guarantees that the resulting documents are valid HTML. For static pages, it is easy to
verify validity [177], but for pages that are dynamically generated with a full program-
ming language, the problem is in general undecidable. Not even the much simpler
property of being well-formed can be guaranteed in this way. Instead of using string
concatenation, document fragments may be built in a more controlled manner with li-
braries of tree constructor functions. This automatically ensures well-formedness, but
it is more tedious to use and the problem of guaranteeing validity is still not solved.

The inability to automatically extract the control-flow of the sessions in a service
raises another problem. Typically, the dynamically generated HTML pages contain
input forms allowing the client to submit information back to the server. However,
the HTML page with the form is constructed by one piece of the service code, while
a different piece takes care of receiving the form input. These two pieces must agree
on the input fields that are transmitted, but when the control-flow is unknown to the
compiler, this property cannot be statically checked. Thorough and expensive runtime
testing is then required, and that still cannot give any guarantees.

The<bigwig> language [40] is a research language designed to overcome these
problems. Its core is a strongly typed C-like language. On top is a high-level no-
tion of sessions where client interactions resemble remote procedure calls such that
the control-flow is explicit in the source code [38]. Also, XHTML [182], the XML
version of HTML, is a built-in data type with operations for dynamically constructing
documents. The values of this data type are well-formed XHTML fragments which
may contain “named gaps”. Such fragments can be combined with a special “plug”
operation which inserts one fragment into a gap in another fragment. This proves
to be a highly flexible but controlled way of building documents. The client inter-
actions and the dynamic document construction are checked at compile time using a
specialized type system [195] and a program analysis [39] performing a conservative
approximation of the program behavior to attack the problems mentioned above. More
specifically,<bigwig> services are verified at compile time to ensure that 1) a plug
operation always finds a gap with the specified name in the given fragment, 2) the
code that receives form input is presented with the expected fields, and 3) only valid

15.1 Introduction 257

XHTML 1.0 is ever sent to the clients.

15.1.2 Contributions

In this paper we obtain similar benefits for Java applications. Our specific contributions
are to show:

• how the session model and the dynamic document model of<bigwig> can be
integrated smoothly into Java;

• how the type system from [195] and the program analysis from [39] can be com-
bined, generalized, and applied to Java to provide even stronger static guarantees
than known from<bigwig>; and

• how our service model subsumes and extends both the Servlet and the JSP style
of defining Web services.

The integration into Java is achieved using a class library together with some exten-
sions of the language syntax. The resulting language is calledJWIG. When running a
JWIG service without applying the static analyses, a number of special runtime errors
may occur: If one of the three correctness properties mentioned in the previous section
is violated, an exception is thrown. The goal of the static analyses is to ensure at com-
pile time that these exceptions never occur. In addition to having this certainty, we can
eliminate the overhead of performing runtime checks.

Such guarantees cannot be given for general Servlet or JSP programs. However,
we show that the structures of such programs are special cases inJWIG: Both the
script-centered and the page-centered styles can be emulated by the session-centered,
so none of their benefits are lost.

Our current implementation uses XHTML 1.0, but the approach generalizes in
a straightforward manner to an arbitrary interaction language described by an XML
schema, such as WML or VoiceXML.

A cornerstone in our program analyses is a novel notion ofsummary graphswhich
provides a suitable abstraction of the sets of XML fragments that appear at runtime.
We show how these graphs can be obtained from a data-flow analysis and that they
comprise a precise description of the information needed to verify the correctness
properties mentioned above.

Throughout each phase of our program analysis, we will formally define in what
sense the phase is correct and we will give a theoretical bound on the worst-case com-
plexity. We expect the reader to be familiar with Java and monotone data-flow analysis,
and to have a basic understanding of HTML and XML.

15.1.3 Problems with Existing Approaches

In the following we give a more thorough explanation of the support for sessions and
dynamic documents in JSP and Servlets and point out some related problems.

The overall structure of a Web service written as a Servlet resembles that of a CGI
script. When a request is received from a client, a thread is started on the server. This
thread generates a response, usually an HTML page, and perhaps has some side-effects
such as updating a database. Before terminating it sends to the client the response,

258 Extending Java for High-Level Web Service Construction

import javax.servlet.*;

public class SessionServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

ServletContext context = getServletContext();

HttpSession session = request.getSession(true);

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html><head><title>Servlet</title></head><body> ");

if (session.isNew()) {

out.println("<form action=\"SessionServlet\"> " +

"Enter your name: <input name=\" handle \"> " +

"<input type=\"submit\"></form> ");

session.putValue("state", "1");

} else {

String state = (String) session.getValue("state");

if (state.equals("1")) {

String name = (String) request.getParameter("handle ");

int users =

((Integer) context.getAttribute("users")).intValue() + 1;

context.setAttribute("users", new Integer(users));

session.putValue("name", name);

out.println("Hello " + name +

", you are user number " + users);

session.putValue("state", "2");

} else /* state.equals("2") */ {

String name = (String) session.getValue("name");

out.println("Goodbye " + name);

session.invalidate();

}}

out.println("</body></html> ");

}}

Figure 15.1: Example Servlet code. The session flow is encoded into theHttpSession

object, and HTML documents are constructed by printing string fragments to a stream.

which is dynamically created by printing strings to an output stream. We call this a
script-centeredapproach. The main advantages of Servlets compared to CGI scripts
are higher performance and a convenient API for accessing the HTTP layer. A Servlet
engine typically uses a thread pool to avoid the overhead of constantly starting threads.
Also, Servlets have the general Java benefits of a sandboxed execution model, support
for concurrency control, and access to the large set of available Java packages.

A small Servlet program is shown in Figure 15.1. A client running this service is
guided through a sequence of interactions which we call asession: First, the service
prompts for the client’s name, then the name and the total number of invocations is
shown, and finally a “goodbye” page is shown. TheServletContext object contains
information shared to all sessions, while theHttpSession object is local to each ses-
sion. Both kinds of state are accessed via a dictionary interface. The overall structure
of the code resembles aswitch statement that branches according to the current inter-
action. The Servlet API hides the details of cookies and URL rewriting which is used
to track the client throughout the session. HTML documents are generated by printing

15.1 Introduction 259

<html><head><title>JSP Demo</title></head><body>
Hello <%

String name = request.getParameter("who ");

if (name==null) name = "stranger";

out.print(name);

%>!
<p>
This page was last updated: <%= new Date() %>

</body></html>

Figure 15.2: Example JSP page. Code snippets are embedded within the HTML code
using special<%...%> tags. When a client requests the page, the code snippets are
replaced by the strings that result from the evaluation.

strings to the output stream.
A JSP service turns the picture inside out by being defined by an HTML document

with embedded code snippets. We call this apage-centeredapproach. Figure 15.2
shows a simple JSP program which dynamically inserts the current time together with
a title and a user name based on the input parameters. This approach is quite similar
to ASP and PHP, except that the underlying language and its runtime model is safer
and better designed. An implementation of JSP typically performs a simple translation
into Servlets. This model fits into situations where the service presents pages that are
essentially static but with a few dynamic fragments inserted. For more complicated
services the code tends to dominate the pages, such that they converge towards straight
Servlet implementations.

Both JSP and Servlets allow only a single interaction with the client before ter-
mination. To simulate a sequential thread, the client is given a session identifier that
is stored either as a cookie, as an SSL session key, or in a hidden form field. The
local state associated with the thread is stored as attributes in anHttpSession object
from which it must be recovered when execution is later resumed. Thus, a sequence
of interactions must be encoded by the programmer in a state machine fashion where
transitions correspond to individual interactions. This is somewhat cumbersome and
precludes cases where the resident local state includes objects in the heap or a stack of
pending method invocations. However, it should be noted that the state machine model
implies other advantages when it is applicable. Specifically, it allows robust and effi-
cient implementations as evidenced by J2EE engines that ensure scalability and trans-
action safety by dividing session interactions into atomic transitions. If a Web service
runs on a J2SE engine, then only the disadvantages exist since every interaction is then
typically handled by a new thread anyway.

Data that is shared between several session threads must in JSP and Servlets be
stored in a dictionary structure or an external databases. This is in many cases ad-
equate, but still conceptually unsatisfying in a language that otherwise supports ad-
vanced scoping mechanisms, such as nested classes.

Finally, JSP and Servlets offer little support for the dynamic construction of XHTML
or general XML documents. JSP allows the use of static templates in which gaps
are filled with strings generated by code fragments. Servlets generate all documents
as strings. These techniques cannot capture well-formedness of the generated docu-

260 Extending Java for High-Level Web Service Construction

ments, let alone validation according to some schema definition. Well-formedness can
be ensured by relying on libraries such as JDOM [114], where XML documents are
constructed as tree data structures. However, this loses the advantages from JSP of
using human readable templates and validity can still only be guaranteed by expensive
runtime checks.

Another concern in developing Web services is to provide a separation between the
tasks of programmers and designers. With JSP and Servlets, the designer must work
through the programmer who maintains exclusive control of the markup tags being
generated. This creates a bottleneck in the development process.

The JWIG language is designed to attack all of these problems within the Java
framework. For a more extensive treatment of Servlets, JSP, and the many related
languages, we refer to the overview article on<bigwig> [40]. The central aspects
of JWIG are an explicit session model and a notion of higher-order XML templates,
which we will explain in detail in the following sections.

15.1.4 Outline

We begin by describing the specialJWIG language constructs and packages in Sec-
tion 15.2. These extensions are designed to allow flexible, dynamic construction of
documents and coherent sessions of client interactions. In Section 15.3 we explain
how to obtainJWIG programflow graphsthat abstractly describe the flow of strings
and XML templates through programs. These flow graphs form the basis of the data-
flow analyses that are described in Section 15.4. They culminate in the inference of
summary graphswhich model the sets of XML documents that variables or expres-
sions may evaluate to at given program points. To compute this information we need a
preliminarystring analysis. In Section 15.5 we describe how the results from the sum-
mary graph analysis are used to verify that the runtime errors mentioned earlier cannot
occur for a given program. This involves the use of a novel XML schema language,
Document Structure Description 2.0. We provide an overview of our implementation
in Section 15.6, and evaluate it on some benchmark programs to show that the anal-
ysis techniques are sufficiently fast and precise to be practically useful. Finally, we
describe ideas for future work in Section 15.7.

15.2 The JWIG Language

The JWIG language is designed as an extension of Java. This extension consists of a
service framework for handling session execution, client interaction and server inte-
gration, and some syntactic constructs and support classes for dynamic construction of
XML documents.

15.2.1 Program Structure

A JWIG application is a subclass of the classService containing a number of fields
and inner classes. An instance of this class plays the role of a runningservice.

A service contains a number of differentsessions, which are defined by inner
classes. Each session class contains amain method, which is invoked when a client
initiates a session. The fields of a service object are then accessible from all sessions.

15.2 The JWIG Language 261

import dk.brics.jwig.runtime.*;

public class MyService extends Service {

int counter = 0;

synchronized int next() { return ++counter; }

public class ExampleSession extends Session {

XML wrapper =

[[<html><head><title>JWIG</title></head>
<body><[body]></body></html>]];

XML hello =

[[<form>Enter your name: <input name=" handle ">
<input type="submit"></form>]];

XML greeting =

[[Hello <[who]>, you are user number <[count]>]];

XML goodbye =

[[Goodbye <[who]>]];

public void main() throws IOException {

show wrapper<[body =hello];

String name = receive handle ;

show wrapper<[body =greeting<[who =name,count =next()]];

exit wrapper<[body =goodbye<[who =name]];

}}}

Figure 15.3: Example JWIG program. TheMyService service contains one session
type namedExampleSession which has the same functionality as the Servlet in Fig-
ure 15.1.

This provides a simple shared state that is useful for many applications. Concurrency
control is not automatic but can be obtained in the usual manner throughsynchronized

methods. Of course, external databases can also be applied, for instance using JDBC,
if larger data sets are in use. The fields of a session object as well as local variables
in methods are private to each session thread. This approach of applying the stan-
dard scope mechanisms of Java for expressing both shared state and per-session state
is obviously simpler than using theServletContext andHttpSession dictionaries in
Servlets and JSP.

Figure 15.3 shows aJWIG service which is equivalent to the Servlet service from
Figure 15.1. In the following, we describe the new language constructs for defining
XML templates, showing documents to the clients, and receiving form input.

Session classes come in a number of different flavors, each with different purposes
and capabilities, as indicated by its superclass:

• Service.Session is the most general kind of interaction pattern, allowing any
number of interactions with the client while retaining an arbitrary session state.
When aService.Session subclass is initiated, a new thread is started on the
server, which lives throughout all interactions with the client. At all intermediate
interactions, after supplying the XML to be sent to the client, the thread simply
sleeps, waiting for the client to respond.

• Service.Page is used for simple requests from the client. AService.Page

262 Extending Java for High-Level Web Service Construction

SESSION
THREAD

PAGE
XHTML

Figure 15.4: Client-server sessions in Web services. On the left is the client’s browser,
on the right is a session thread running on the server. The tread is initiated by a client
request and controls the sequence of session interactions.

is similar to aService.Session, except that it allows no intermediate client
interactions. This is conceptually similar to the mechanism used in Servlet and
JSP applications, where a short-lived thread is also initiated for each interaction.

• Service.Seslet is a special kind of session, called aseslet, that is used to in-
teract with the service from applets residing on the client or with other Web
services. AService.Seslet does not interact with the client directly in the
form of input forms and e.g. XHTML output; instead, it is parameterized with
anInputStream and anOutputStream which are used for communication with
the applet or Web service on the client-side. The notion of seslets was introduced
in [40].

For the remainder of this article we focus onService.Session. In contrast to the
session API in Servlets and JSP, it provides a clear view of the service flow because
the sequences of interactions constituting sessions are explicit in the program control-
flow. Thissession-centeredapproach originates from the MAWL project [144].

We specifyService.Page by a separate class in order to illustrate that the script-
and page-centered approaches are special cases of the session-centered approach, and
to identify applications of these simpler interaction models to allow implementations
to perform special optimizations.

15.2.2 Client Interaction

Communication with the client is performed through theshow statement which takes
as argument an XML template to be transmitted to the client. A session terminates
by executing theexit statement whose argument is an XML template that becomes
the final page shown. Intermediate XML templates need not conform to any XML
schema, but when they are used as arguments toshow or exit statements they must be
valid XHTML 1.0 [182]. Otherwise, aValidateException is thrown.

During client interactions, the session thread is suspended on the server. Thus, the
execution of theshow statement behaves as a remote procedure call to the client. Return
values are specified by means of form fields in the document. For allform elements,

15.2 The JWIG Language 263

a defaultaction attribute is automatically inserted with a URL pointing to the session
thread on the server. The responses from the client are subsequently obtained using
the receive expression, which takes as argument the name of an input field in the
XHTML document that was last shown to the client and returns the corresponding
value provided by the client as aString. If no such input field was shown to the client,
then no corresponding value is transmitted and aReceiveException is thrown. There
may be several occurrences of a given input field. In this case, all the corresponding
values may be received in order of occurrence in the document into aString array
using the expressionreceive[]. The non-array version is only permitted if the input
field occurs exactly once; otherwise, aReceiveException is thrown. The array version
cannot fail: In case there are no fields, the empty array is produced.

Figure 15.4 illustrates the interactions of a session. In theJWIG example service
in Figure 15.3, themain method contains three client interactions: twoshow state-
ments and oneexit statement. Clearly, the session flow is more explicit than in the
corresponding Servlet code in Figure 15.1.

15.2.3 Dynamic Document Construction

In Servlets and JSP, document fragments are generated dynamically by printing strings
to a stream. InJWIG, we instead use a notion of XMLtemplates. A template is a well-
formed XML fragment which may contain namedgaps. A specialplug operation is
used to construct new templates by inserting existing templates or strings into gaps
in other templates. These templates are higher-order, because we allow the inserted
templates to contain gaps which can be filled in later, in a way that resembles higher-
order functions in functional programming languages. Templates are identified by a
special data type,XML, and may be stored in variables and passed around as any other
type. Once a complete XHTML document has been built, it can be used in ashow

statement.
Syntactically, theJWIG language introduces the following new expressions for

dynamic XML document construction:

[[xml]] (template constant)
exp1 <[g = exp2] (the plug operator)
([[xml]]) exp (XML cast)
get url (runtime template inclusion)

These expressions are used to define template constants, plug templates together, cast
values to theXML type, and to include template constants at runtime, respectively. The
url denotes a URL of a template constant located in a separate file, andxml is a well-
formed XML template according to the following grammar:

xml : str (character data)
| <name atts> xml </ name> (element)
| <[g]> (template gap)
| <{ stm}> (code gap)
| xml xml (sequence)

atts : ε (empty)

264 Extending Java for High-Level Web Service Construction

who<[=who<h1>Hello <[]></h1> World!]

<h1>Hello World!</h1>

Figure 15.5: The plug operation. The two XHTML templates in the top are combined
to produce the one below by plugging into thewho gap.

| name=" str" (attribute constant)
| name=[g] (attribute gap)
| atts atts (sequence)

Here, str denotes an arbitrary Unicode string,namean arbitrary identifier,g a gap
name, andstma statement block that returns a value of typeString or XML. Actual
XML values must of course be further constrained to be well-formed according to the
XML 1.0 specification [45]. Moreover, in this description we abstract away all DTD
information, comments, processing instructions, etc. In Figure 15.3, there are four
template constants:wrapper, hello, greeting, andgoodbye. Thehello template, for
instance, contains two gaps namedwho andcount , respectively.

XML templates can be composed using the plug operationexp1 <[g = exp2] . The
result of this expression is a copy ofexp1 with all occurrences of the gap namedg
replaced by copies ofexp2. This is illustrated in Figure 15.5. Ifexp2 is a string, all
special XML characters (<, >, &, ’, and") are automatically escaped by the correspond-
ing XML character references. Ifexp1 contains no gaps namedg, a PlugException

is thrown. A gap that has not been plugged is said to beopen. The exp2 expres-
sion is required to be of typeString or XML. If it is not one of these, it is coerced to
String. There are three kinds of gaps: template gaps, attribute gaps, and code gaps.
Both strings and templates may be plugged into template gaps, but only strings may be
plugged into attribute gaps. Attempts to plug templates into attribute gaps will cause a
PlugException to be thrown. When a template is shown, all remaining open gaps are
removed in the following way: Each template gap is replaced by the empty string, and
for each attribute gap, the entire attribute containing the gap is removed. As an exam-
ple, this removal of attributes is particularly useful for checkboxes and radio buttons
wherechecked attributes either must have the valuechecked or be absent. One can
use a template containing the attribute gapchecked=[c] and then plugchecked into c

whenever the field should be checked and simply omit the plug otherwise.
The code gaps are not filled in using the plug operation: Instead, when a template

containing code gaps is shown, the code blocks in the code gaps are executed in doc-
ument order. The resulting strings or templates are then inserted in place of the code.
Because this does not happen until the template is shown, the code in code gaps can
only access variables that are declared in the service class or locally within the code
gap.

The plug operation is the only way of manipulating XML templates. Thus, our
XML type is quite different from both the string output streams in Servlets and JSP and
the explicit tree structures provided by JDOM. We exploit this to obtain a compact
and efficient runtime representation, and as a foundation for performing our program

15.2 The JWIG Language 265

analyses. The notion of code gaps allows us to directly emulate the JSP style of writing
services, which is often convenient, but while still having the explicit notion of sessions
and the guarantees provided by the program analyses.

In order to be able to perform the static analyses later, we need a simple restriction
on the use of forms and input fields in the XML templates: Ininput and button

elements we require syntactically that attributes namedtype and multiple cannot
occur as attribute gaps in elements defining input fields. The same restriction holds for
name attributes, unless thetype attribute has valuesubmit or image. In addition, we
make a number of simple modifications of the documents being shown and of the field
values being received:

1. In HTML and XHTML, lists, tables, and select menus are not allowed to have
zero entries. However, it is often inconvenient to be required to perform special
actions in those cases. Just before a document is shown, we therefore remove
all occurrences of and similar constructs. For select menus, we add
a dummy option in case none are present.

2. If attempting to receive the selected value of aselect menu that is not declared
asmultiple or the value of aradio button set, then, if no option is either pre-
selected usingchecked or selected by the client, the null value is received instead
of throwing aReceiveException — even though no name–value pair is sent
according to the XHTML 1.0/HTML 4.01 specification [185].

3. Forsubmit andimage fields, we change the corresponding returned name–value
pair fromX=Y tosubmit=X. This makes it easier to recognize the chosen submit
button in case of graphical buttons.

4. For submit buttons, a single name–value pair is produced from thename and
thevalue attributes. However, for graphical submit buttons, that is, fields with
type="image", HTML/XHTML produces two name–value pairs,X.x andX.y
for the click coordinates, whereX is the value of thename attribute, but the
value attribute is ignored. To obtain a clean semantics, we ensure by patching
the returned list of pairs that in every case, all three name–value pairs are pro-
duced. For instance, with graphical submit buttons we add asubmit=X pair,
andsubmit.x andsubmit.y contain the click coordinates. For normal submit
buttons,submit.x andsubmit.y contain the value-1.

Clearly, these restrictions and modifications do not impose any practical limitations on
the flexibility of the template mechanism. In fact, they serve as a convenience to the
programmer since many special cases in XHTML need not be considered.

As for other Java types, casting is required when generic containers or methods are
used. An XML template may be cast using the special syntax([[xml]]) exp. This is a
promise from theJWIG programmer that any value that will ever be contained inexpat
this point will be legal to use in all situations wherexml is legal. If this is the case, the
cast is said to bevalid. At runtime, aCastException is thrown if the sets of gaps and
input fields inexpdo not match those inxml. If casting to a template with exactly one
occurrence of a given field, then it is required that the actual values also has exactly one
occurrence of that field—except for radio buttons, where multiple occurrences count
as one. For the gaps, two properties must be satisfied: If the template being cast to has

266 Extending Java for High-Level Web Service Construction

any gaps of a given name, then at least one such gap must also exist in the actual value;
and, if there is a template gap in the template being cast to, then the actual value cannot
contain any attribute gaps of that name. Note that this runtime check is not complete
since it only considers gaps and input fields and not XHTML validity. However, if
invalid XHTML is produced, it will eventually result in aValidateException at a
show statement.

Alternatively, the ordinary cast(XML) exp may be used. It generates aCast-
Exception if the actual type ofexp is not XML, but no promises are made about the
gaps or input fields.

LargeJWIG applications may easily involve hundreds of template constants. For
this reason, there is support for specifying these externally, instead of inlined in the
program source. The constructget url loads the XML template located aturl at run-
time. This template can then later be modified and reloaded by the running service.

When the service is analyzed, the template constant referred to by theget url
construct is loaded and treated as a constant in the analysis. The analysis is then
of course only valid as long as the template is unchanged. However, validity will
be preserved if the template remains structurally the same. To obtain fresh security
guarantees, it is simply required to reinvoke the program analyzer.

These features can also be used to support cooperation between the programmers
and the Web page designers. For a first draft, the programmers can create some tem-
plates that have the correct structure but only a primitive design. While the program
is being developed using these templates, the designers can work on improving them
to give them a more sophisticated design. The program analyzer will ensure that the
structure of gaps and fields is preserved.

In addition to the main features mentioned above, a session object contains a num-
ber of fields and methods that control the current interaction, such as, access control
using HTTP authentication, cookies, environment variables, SSL encryption, and var-
ious timeout settings. The service object additionally contains acheckpoint method
which serializes the shared data and stores it on disk. This is complemented by a
rollback method which can be used in case of server crashes to improve robustness.

To summarize, we have now added special classes and language constructs to sup-
port session management, client interactions, and dynamic construction of XHTML
documents. By themselves, we believe that these high-level language extensions aid
development of Web services. The extensions may cause various exceptions: aVali-

dateException if one attempts to show an XML document which is not valid XHTML
1.0; aReceiveException if trying to receive an input field that occurs an incompatible
number of times; aPlugException if a plug operation fails because no gaps of the
given name and type exist in the template; and aCastException if an illegal cast is
performed because the gaps or fields do not match. In the following sections, we show
that it is possible to statically check whether the first three kinds of exceptions can
occur. This is possible only because of the program structure that the new language
constructs enforce. For instance, it is far from obvious that similar guarantees could
be given for Servlet or JSP services.

15.2 The JWIG Language 267

desugarer javacprogram
JWIG Java class

analyzer

analysis

filescode Web server

results

Figure 15.6: The JWIG program translation process in our current implementation.
The JWIG program is desugared into Java code which is compiled to class files. These
class files are used both in the Web server and to perform the program analyses.

15.2.4 The JWIG Program Translation Process

The steps involved in compiling, analyzing, and running aJWIG program are depicted
in Figure 15.6. First, the special syntactic constructs ofJWIG are translated into ap-
propriate Java constructs by a simple source-to-source desugaring transformation. The
resulting Java source files are compiled into Java class files as usual. These class files
together with the accompanying externally specified XML template constants consti-
tute the Web service. Of course, an implementation is not forced to have this structure:
For instance, one could imagine aJWIG compiler that directly produces class files
instead of going via Java code.

The analysis works on the class file level. When the analyzer is invoked, it is given
a collection of class files to analyze. We call this collection theapplication classes; all
others constitute thenon-application classes. Exactly one of the application classes
must be a subclass ofService. For efficiency reasons, the application classes can be
just the few classes that actually constitute theJWIG service, not including all the
standard Java classes that the program uses. Our analyses are designed to cope with
this limited view of the program as an open system.

The soundness of the analyses that we describe in the following sections is based
on a set of well-formedness assumptions:

• all invocation sites in the application classes must either always invoke meth-
ods in the application classes or always invoke methods in the non-application
classes;

• no fields or methods of application classes are accessed by a non-application
class;

• no XML operations are performed in non-application classes; and

• XML casts are always valid, according to the definition in the previous section.

These assumptions usually do not limit expressibility in practice. In some cases, the
second assumption can be relaxed slightly, for instance if some method called from
a non-application class does not modify anyString or XML value that will ever reach
other application class methods. This makes it possible to safely use callback mech-
anisms such as theComparator interface. The assumption about casts is deliberately

268 Extending Java for High-Level Web Service Construction

class
files

flow graph
constructor

string
analysis

regular
languages

flow
graph analysis

summary graph summary
graphs

analysis
plug

analysis
resultsanalysis

receive

analysis
show

Figure 15.7: Structure of the program analyzer.

quite strong: As ordinary casts, XML casts provide a back-door to the programmer to
bypass the static type system.

The structure of the program analyzer is shown in Figure 15.7. From the class
files, we first generateflow graphs. From these, we generatesummary graphs, which
we analyze in three different ways corresponding to the properties mentioned in the
previous section.

15.2.5 An Example JWIG Program

We will use the followingJWIG program throughout the remaining sections to illus-
trate the various phases of the analysis. This admittedly rather artificial service applies
mostJWIG-specific language constructs:

import dk.brics.jwig.runtime.*;

public class Greetings extends Service {
String greeting = null;

public class Welcome extends Session {
XML cover = [[<html>

<head><title>Welcome</title></head>
<body bgcolor=[color]>

<{
if (greeting==null)
return [[Hello World!]];

else
return [[<[g]>]] <[g =greeting];

}>
<[contents]>

</body>
</html>]];

XML getinput = [[<form>Enter today’s greeting:
<input type="text" name=" salutation ">
<input type="submit"></form>]];

XML message = [[Welcome to <[what]>.]];

public void main() {
XML h = cover<[color="white",contents=message];
if (greeting==null) {
show cover<[color="red",contents=getinput];

15.3 Flow Graph Construction 269

greeting = receive salutation;
}
exit h<[what=[[BRICS]]];

}
}

}

The first time theWelcome session is initiated, the client is prompted for a greeting text
in one interaction, and then in the next interaction the greeting is shown together with
a “Welcome to BRICS” message. For subsequent sessions, only the second interaction
is performed.

15.3 Flow Graph Construction

Given aJWIG program, we first construct an abstract flow graph as a basis for the
subsequent data-flow analyses. The flow graph captures the flow of string and XML
template values through the program and their uses in show, plug, and receive opera-
tions.

15.3.1 Structure of Flow Graphs

Thenodesin this graph correspond to abstract statements:

x = exp; (assignment)
show x; (client interaction)
receive f ; (receive field)
receive[] f ; (receive field array)
nop; (no operation)

whereexpdenotes an expression of one of the following kinds:

x (variable read)
"str" (string constant)
[[xml]] (XML template constant)
x <[g = y] (plug operation)
null (null value)
anystring (arbitrary string)

andx andy are program variables,g is a gap name,f is a field name,str is a string
constant, andxml is an XML template constant that does not contain any code gaps.
All code gaps in the originalJWIG program are expressed using normal gaps and plug
operations in the flow graph, as will be explained in Section 15.3.3.

We assume that every variable occurring in the flow graph has a declared type:
STRING representing strings, orXML representing XML templates. These types are
extended to expressions as one would expect, andnull has the special typeNULL. Let
EXPSTRINGdenote the expressions of typeSTRING or NULL, andEXPXML denote those
of typeXML or NULL.

The assignment statement evaluates its expression and assigns the value to the
given variable. The variable and the expression must have the same type. All flow

270 Extending Java for High-Level Web Service Construction

graph variables are assumed to be declared with a global scope. Evaluating expres-
sions cannot have side-effects. The argument toshow statements is always of type
XML. As described later, we modelreceive expressions from theJWIG program as
pairs of statements, each consisting of areceive statement and an assignment. The
receive andreceive[] statements record program locations where input field values
are received. The last kind of flow-graph statement,nop, is the no-operation statement
which we use to model all operations that are irrelevant to our analyses, except for
recording split and join points.

The expressions basically correspond to those in concreteJWIG programs, except
anystring which is used to model standard library string operations where we do not
know the exact result. In the plug operation, the first variable always has typeXML,
and the second has typeXML or STRING.

Each node in the graph is assigned anentry labeland anexit labelas in [174], and
additionally each XML template constant has atemplate label. All labels are assumed
to be unique. The union of entry labels and exit labels constitute theprogram points
of the program.

The graph has two kinds of edges:flow edgesandreceive edges. A flow edge mod-
els the flow of data values between the program points. Each edge has associated one
source node and one destination node, and is labeled with a set of program variables
indicating which values that are allowed to flow along that edge. A receive edge goes
from areceive node to ashow node. Its presence indicates that the control-flow of the
program may lead from the correspondingshow statement to thereceive statement
without reaching anothershow first. We use these edges to describe from whichshow

statements the received field can originate.

15.3.2 Semantics of Flow Graphs

Formally, the semantics of a flow graph is defined by a constraint system. LetV be the
set of variables that occur in the flow graph,XML be the set of all XML templates, and
STRINGbe the set of all strings over the Unicode alphabet. Each program point` is
associated an environmentE`:

E` : V → 2XML∪ STRING

The entire set of environments forms a lattice ordered by pointwise set inclusion. For
each node in the graph we generate a constraint. Letentry andexit denote the entry
and exit labels of a given node. If the statement of the node is an assignment,x = exp; ,
then the constraint is:

Eexit(y) =

{
Êentry(exp) if x = y

Eentry(y) if x 6= y

For all other nodes, the constraint is:

Eexit = Eentry

15.3 Flow Graph Construction 271

The mapÊ` : EXP→ 2XML∪ STRINGdefines the semantics of flow graph expressions
given an environmentE`:

Ê`(exp) =

E`(x) if exp= x

{str} if exp= "str"

{xml} if exp= [[xml]]

π(E`(x),g,E`(y)) if exp= x <[g = y]

/0 if exp= null

STRING if exp= anystring

The functionπ captures the meaning of the plug operation. Due to the previously
mentioned type requirements, the first argument toπ is always a set of XML template
values. The function is defined by:

π(A,g,B) =
[

xml∈A,b∈B

{π(xml,g,b)}

whereπ is defined by induction in the XML template according to the definition in
Section 15.2.3:

π(xml,g,b) =

str if xml= str

<nameπ(attr,g,b)>
π(xml′,g,b) </ name> if xml= <name attr> xml′ </ name>

b if xml= <[g]>

<[h]> if xml= <[h]> andh 6= g

π(xml1,g,b) π(xml2,g,b) if xml= xml1 xml2

π(attr,g,b) =

ε if attr = ε
name=" str" if attr = name=" str"

name=" b" if attr = name=[g] andb∈ STRING

name=[h] if attr = name=[h]

and(h 6= g∨b∈ XML)
π(attr1,g,b) π(attr2,g,b) if attr = attr1 attr2

This defines plug as a substitution operation where template gaps may contain both
strings and templates and string gaps may contain only strings.

For each flow edge from̀ to `′ labeled with a variablex we add the following
constraint:

E`(x) ⊆ E`′(x)

to model that the value ofx may flow from` to `′.
We now define the semantics of the flow graph as the least solution to the constraint

system. This is well-defined because all the constraints are continuous. Note that the
environment lattice is not finite, but we do not need to actually compute the solution
for any concrete flow graph.

272 Extending Java for High-Level Web Service Construction

In the following section we specify a translation fromJWIG programs into flow
graphs. In this translation, eachshow statement, plug expression, andreceive ex-
pression occurring in theJWIG program has a corresponding node in the flow graph.
Also, each operand of ashow or plug operation has a corresponding variable in the
flow graph. Correctness of such a translation is expressed as two requirements: 1)
Let envbe the least solution to the flow graph constraint system. If we observe the
store of aJWIG program at either ashow or a plug operation during some execution,
then the value of each operand is contained inenv̀ (x) where` is the node correspond-
ing to theJWIG operation andx is the variable corresponding to the operand. 2) If
some session thread of an execution of theJWIG program passes ashow statement and
later areceive expression without passing any othershow statement in between, then
the flow graph contains a receive edge from the node corresponding to thereceive

expression to the node corresponding to theshow statement.

15.3.3 From JWIG Programs to Flow Graphs

The flow graph must capture the flow of string and XML values in the originalJWIG
program. Compared to<bigwig> and the flow graph construction in [39] this is sub-
stantially more involved due to the many language features of Java. We divide this
data flow into three categories: 1) per-method flow of data in local variables, 2) data
flow to and from field variables, and 3) flow of argument and return values for method
invocations. Since local variables are guaranteed to be private to each method invoca-
tion, we model the first kind of data flow in a control-flow sensitive manner. With field
variables, this cannot be done because they may be accessed by other concurrently
running session threads, and because we are not able to distinguish between different
instantiations of the same class. The second kind of data flow is therefore modeled in
a control-flow insensitive manner.

The translation ignores variables whose type is notString, XML, or an array of any
dimension of these two. For each of the two analyzed types, a unique flow graphpool
variable is created for representing all the values of that type that cannot be tracked by
the analysis. Pooled values include those assigned to and fromObject variables and
arrays, and arguments and results of methods outside the application classes. We add
an assignment ofanystring to the pool variable of typeSTRING to be maximally pes-
simistic about the string operations in the non-application classes. Something similar
is not done for theXML type since we have assumed that XML values are produced
only inside the analyzed classes.

In addition to capturing data flow, the flow graph must contain receive edges that
reflect the correspondence between show and receive operations in theJWIG program.
This requires knowledge of the control flow in addition to the data flow.

Before the actual translation into flow graphs begin, each code gap is converted
to a template gap with a unique name, and the code inside the gap is moved to a new
method in the service class.

The whole translation ofJWIG programs into flow graphs proceeds through a se-
quence of phases, as described in the following. SinceJWIG includes the entire Java
language we attempt to give a brief overview of the translation rather than explain all
its details. We claim that this translation is correct according to the definition in the
previous section, however it is beyond the scope of this article to state the proof.

15.3 Flow Graph Construction 273

nop

greeting=anystring

t1="white"

t2=cover<[=t1]

h=t2<[=message]contents

t2=t2<[=getinput]

t1="red"

t2=cover<[=t1]

contents

show t2

show t2

receive salutation

t2=[[BRICS]]

t2=h<[=t2]what

color

color

Figure 15.8: Flow graph for themain method after Phase 1. All edges are here implic-
itly labeled with the set of variables{h,t1,t2}.

1. Individual methods

In the first phase, each method in the application classes is translated individually into a
flow graph. Each statement produces one or more nodes, and edges are added to reflect
the control flow inside the method. Each edge is labeled with all local variables of the
method. Nested expressions are flattened using fresh local variables and assignments.
The specialJWIG operations are translated into the corresponding flow graph state-
ment or expression, and all irrelevant operations are modeled withnop nodes. Each
receive expression is translated into two nodes: areceive node and an assignment
of anystring, since we need to model the locations of these operations but have no
knowledge of the values being received. The control structures,if, switch, for, etc.,
are modeled withnop nodes and flow edges, while ignoring the results of the branch
conditions. XML casts are translated into XML template constants. This is sound
since we have assumed that all casts are valid. Figure 15.8 shows the flow graph for
themain method of the exampleJWIG program in Section 15.2.5.

2. Code gaps

As mentioned, each code gap has been converted into a template gap whose name
uniquely identifies the method containing its code. Before everyshow statement, a
sequence of method calls and plug operations is inserted to ensure that all code gaps
that occur in the program are executed and that their results are inserted. To handle
code gaps that generate templates that themselves contain code gaps, an extra flow
edge is added from the end of the plug sequence to the start. The analysis in [39] does
not support code gaps.

274 Extending Java for High-Level Web Service Construction

a1=exp1

a2=exp2

f1=a1 g1=a1

g2=a2f2=a2

G.m

x=y.m(exp1,exp2)

a3=g3

x=a3

a3=f3

*

a1,a2 a1,a2

g1,a2

g1,g2

g3

a3

F.m

a3

f3

f1,f2

f1,a2

Figure 15.9: Modeling method invocations. Assuming that the invocation ofm in the
expression on the left may lead to the classesF or G, the flow graph on the right is
generated whereF.m and G.m are the flow graphs for the target methods. First, the
actual parameters are evaluated, then they are passed to the formal parameters for each
method and the method bodies are processed, and finally, the return value is collected
and the flow is merged. The* label denotes all local variables in the caller method.

3. Method invocations

The methods are combinedmonovariantly: each method is represented only once in
the flow graph for the whole program. This means that the subsequent analyses that
build on the flow graphs also are monovariant. To estimate which methods can be
called at each invocation site, a call graph of theJWIG program is constructed using
a class hierarchy analysis(CHA) [71, 203]. This gives us for each invocation site a
set of possible target methods. Of course, other call graph analyses could be applied
instead, but CHA has proven to be fast and sufficiently precise for these purposes.

For each method invocation, we need to transfer the arguments and the return
value, and to add flow edges to and from the possible target methods. The caller
method uses a set of special local variables for collecting the arguments and the return
value. We first insert a chain of assignments to these caller argument variables. Then
we branch for each possible target method and add a chain of assignments from the
caller argument variables to the target method parameters, followed by a flow edge
to the target method entry point. Similarly, we add flow edges from the method exit
points and transfer the return value via a caller result variable. For target methods in
non-application classes, we use the pool variables in place of the argument and return
value variables of the target method.

Figure 15.9 shows an example of a flow graph for a method invocation where the
CHA has determined that there are two possible targets.

4. Exceptions

For everytry-catch-finally construct, we add edges from all nodes corresponding
to statements in thetry block to the entry node of thecatch block. These edges are
labeled with all local variables of the method. This ensures that the data flow for local
variables is modeled correctly. Adding edges from all nodes of thetry blocks may
seem to cause imprecision. A more complex analysis would only add edges from the
nodes that correspond to statements that actually may throw exceptions that are caught

15.3 Flow Graph Construction 275

by thecatch block. However, our simple approach appears to be sufficiently precise
in practice.

In order to be able to set up the receive edges in a later phase, we also need to
capture the intraprocedural control flow of exceptions. For this purpose, we add a
specialdrain nodefor each method. For each statement, we add a flow edge with
an empty label to the drain node of its method. This represents the control flow for
uncaught exceptions within each method. This flow may subsequently lead either to
drain nodes for caller methods or tocatch blocks. To model this, we use the CHA
information: For each target method of an invocation site, an edge is added from
the drain node of the target method to the drain node of the method containing the
invocation site. If the invocation site is covered by an exception handler within the
method, an extra edge is added from the drain node of the target method to the entry
of the handler.

5. Show and receive operations

The preceding phases have set up flow edges representing all possible control flow in
the program. This means that we at this point are able to infer the correspondence
betweenshow andreceive nodes to create the receive edges by looking at the flow
graph alone, without considering the originalJWIG program.

We treat the entry points ofmain methods of session classes as if they wereshow

statements that show a document with a single form containing no input fields. This
models the fact that no input fields can be read withreceive until a document has been
shown.

For each program point̀ in the flow graph we compute the set ofshow nodes
that according to the flow edges may lead to` without passing anothershow node in
between. This is done with a fixed point iteration, starting with empty sets at each
program point. To each exit label of ashow noden, we associate the singleton set con-
taining justn. For all other nodes, the sets at the entry points are propagated to the exit
points, and at join points, we take the union of the incoming sets. This is essentially
a simple forward data-flow analysis on the flow graph. Since there are finitely many
show nodes and we only apply monotone operations, the iteration eventually termi-
nates. For eachreceive andreceive[] node, we then add a receive edge to each node
in the associated set.

6. Arrays

Array variables are translated into variables of their base type. An array is treated as
a single entity whose possible values are the union of of its entries. Construction of
arrays usingnew is modeled withnull values to reflect that they are initially empty.

An assignment to an array entry is modeled using weak updating [56] where the
existing values of the array are merged with the new value. This is done by inserting
two nop nodes around the assignment and adding an edge bypassing it labeled by the
updated variable. This process is shown in Figure 15.10.

When one array variable is assigned to another, these variables become aliases.
Such aliased variables are joined into one variable. This variable will be treated as a

276 Extending Java for High-Level Web Service Construction

nop

nop

x[y]=z x=z x

*

*

Figure 15.10: Shortcutting array updates. Assignments into arrays are modeled using
weak update where all entries are merged.

field variable and handled as described below, if at least one of its original variables
was a field variable. This joining is similar to the technique used in [203].

7. Field variables

As mentioned, we model the use of field variables in a flow-insensitive manner where
all instances of a given class are merged. This is done for each field simply by adding
flow edges labeled by the name of the field from all its definitions to all its uses. To
avoid constructing a quadratic number of edges, we add a dummy “x=x” node to collect
the definitions and the uses for each variablex.

In <bigwig>, a simpler and more restrictive approach was chosen: All global
string variables were modeled withanystring, and for the global HTML variables,
which correspond to the XML field variables inJWIG, the initializer expressions
would dictate the types [39].

8. Graph simplification

Finally, we perform some reductions of the flow graph. This is not necessary for
correctness or precision of the subsequent analyses, but as we show in Section 15.6.2,
it substantially decreases the time and space requirements.

First, we remove all code that is unreachable from session entry points according
to the flow edges. We ignore edges that originate from method returns since these
edges do not indicate reachability.

Using a standard reaching definitions analysis on the flow graph [1, 174], we then
find for each assignment all possible uses of that definition. This gives us a set of pairs
of nodes where the first node is an assignment to some variable and the second node
contains an expression which uses that variable. Once this information is obtained,
we remove every flow edge andnop node in the graph, and then add new flow edges
corresponding to the definition–use pairs. Each new edge is labeled with the single
variable of the pair. Finally, a copy propagation optimization is performed to compress
chains of copying statements [1].

These transformations all preserve the data flow. In the resulting flow graphs, there
are nonop nodes and all edges are labeled with a single variable, which is crucial for
the performance of the subsequent analyses.

This construction of flow graphs forJWIG programs is correct in the sense defined
in Section 15.3.2, both with and without the simplification phase.

15.3 Flow Graph Construction 277

15.3.4 Complexity

During the construction of the flow graph, we have performed two forward data-flow
analyses on the intermediate graphs: one for setting up the receive edges in Phase 5
and the reaching definitions analysis in Phase 8. In the following sections, we will
describe two more forward data-flow analyses on flow graphs. To bound the worst-
case time requirements for all these analyses, we make some general observations. By
implementing the analyses using a standard work-list algorithm rather than the chaotic
iteration algorithm [174], the time can be bound by:

O

(
t · ∑

m∈nodes

|var(m)| ·h· ∑
m′∈succ(m)

|var(m′)|
)

where

• t is the maximum cost of computing one binary least-upper-bound operation or
one transfer function for a single variable;

• nodesis the set of flow-graph nodes;

• var(m) denotes the union of the labels of edges adjacent to the nodem;

• h is the height of the lattice for a single variable; and

• succ(m) is the set of successor nodes ofm.

For each nodem, an environment associates two lattice elements to each variablev
in var(m), one for the entry label and one for the exit label. Each can change at
mosth times. Because of the work-list, each change for an exit label can result in at
most ∑m′∈succ(m) |var(m′)| binary least-upper-bound operations and transfer function
computations, that is, one for each variable in each successor node, without any other
environment changes for exit labels.

Phases 1-7 create at mostO(n2) flow-graph nodes andO(n2) edges wheren is the
textual size of the program. The reason for the quadratic increase in the number of
nodes is the encoding of argument transferring for method invocations in Phase 3 and
the encoding of code gap execution in Phase 2.

The receive edge analysis in Phase 5 does not consider the variables at all. This
is equivalent to settingvar(m) to contain just one variable. Since there are at most
O(n2) edges,∑m∈nodes|succ(m)| is O(n2). The lattice height,h, is the number ofshow
statements, which isO(n), and the timet is O(n). Therefore, this analysis runs in time
O(n4).

The complexity of the reaching definitions analysis in Phase 8 can also be bound
by the formula above. There areO(n) variables, the lattice height isO(n), and the
time t is O(n). Again, since there areO(n2) edges,∑m∈nodes|succ(m)| is O(n2). To-
gether, we get that this analysis runs in timeO(n6). Since the other phases of the
flow-graph construction are linear in the size of the flow graph, the total construction
of the flow graph of a givenJWIG program requires worst-caseO(n6) time. As shown
in Section 15.6.2, this bound is rarely encountered in practice.

278 Extending Java for High-Level Web Service Construction

t3=[[Hello World!]]

greeting=anystring

message=[[Welcome...]]

init=[[...]]

t2=[[BRICS]]

t2=h<[=t2]

t2=t2<[=t3]

t1="white"

t2=cover<[=t1]

h=t2<[=message]

show t2

t2=t2<[=getinput]

t1="red"

show t2

t3=t2<[=greeting]

t2=t2<[=t3]

t2=[[<[]>]]

receive

contents

c1

salutation

c1

what

contents

g

g

getinput=[[<form>...</form>]]

greeting=null

getinput

h t2

t2 t3

t3

t3

t3

greeting

greeting

message

cover

t1

t2

t1

t2

t2

t2

t2

t2

t2

t2

color

cover

cover=[[<html>...</html>]]

colort2=cover<[=t1]

show init
init

Figure 15.11: Flow graph for the JWIG example program.

After the simplification phase, an extra property is satisfied: Since all flow edges
are definition–use edges,|var(m)| is O(1) for all nodesm. Since the flow graph still
contains onlyO(n2) nodes and edges, the formula above then reduces to:

O(n2 ·h· t)

This will be used later to estimate the complexities of the remaining analyses.

15.3.5 Flow Graph for the Example

Figure 15.11 shows the flow graph that is generated for theJWIG program from Sec-
tion 15.2.5. The left part of the graph corresponds to themain method, the top right
part is the initialization of the field variables, and the bottom right part corresponds
to the code in the code gap. The thin edges are flow edges, and the single thick edge
is a receive edge. Theshow node in the top left corresponds to the entry point of the
session. Theinit template is a simple valid XHTML document with a form that con-
tains no fields. This models the fact that no input values are receivable when session
threads are initiated. Note that edges in the part corresponding to themain method
have changed compared to Figure 15.8 because of the graph simplification phase.

15.4 Summary Graph Analysis

To statically verify that a givenJWIG program will never throw any of the special
JWIG exceptions we perform asummary graph analysisbased on the flow graph which

15.4 Summary Graph Analysis 279

contains all the information we need from the original program. Summary graphs
model how templates are constructed and used at runtime. This analysis depends on a
preliminarystring analysisthat for each string expression finds a regular language that
approximates the set of strings it may evaluate to. For each analysis we define a lattice
expressing an abstraction of the data values along with a corresponding abstract se-
mantics of the expressions and statements, and then apply standard data-flow analysis
techniques to find the least solutions.

15.4.1 String Analysis

Given a flow graph of aJWIG program, we must statically model which strings are
constructed and used at runtime. In [39] the corresponding analysis is mixed into the
summary graph analysis. Separating these analyses leads to a simpler specification and
implementation without damaging the analysis precision. We describe here a rather
simple analysis which is adequate for all our benchmarks. However, it should be clear
that a more precise string analysis capturing relevant string operations easily could be
applied instead, as explained in Section 15.7.

We first define astring environmentlattice:

SE= Y → REG

whereY is the set of string variables that occur in the program andREG is the fam-
ily of regular languages over the Unicode alphabet. We choose regular languages
for modeling string sets because they fit elegantly into the validity analysis algorithm
in Section 15.5.5. The ordering onREG is language inclusion andSE inherits this
ordering pointwise. We compute an element of this lattice for every program point
with a forward data-flow analysis using standard techniques, such as the monotone
frameworks of [174, 122]: For every statement that can appear in the flow graph we
define a monotone transfer functionSE→ SEand then compute the least fixed point
by iteration. First, for each flow-graph string expression we define its abstract denota-
tion by extending every environment mapΣ ∈ SEfrom variables to string expressions,
Σ̂ : EXPSTRING→ REG:

Σ̂(exp) =

Σ(x) if exp= x,

{str} if exp= "str"

U∗ if exp= anystring

/0 if exp= null

whereU denotes the Unicode alphabet.
For every string assignment statementx = exp; the transfer function is defined by:

Σ 7→ Σ[x 7→ Σ̂(exp)]

that is, the string environment is updated forx to the environment value ofexp. Clearly,
this is a monotone operation. For all other statements the transfer function is the iden-
tity function, since they do not modify any string variables. The lattice is not finite,
but by observing that the only languages that occur are either total or subsets of the
finitely many string constants that appear in the program, termination of the fixed point

280 Extending Java for High-Level Web Service Construction

iteration is ensured. A more advanced string analyses, for instance one modeling con-
catenations more precisely, would require widening for ensuring termination.

The worst-case complexity of this analysis can be estimated by the formula from
the previous section. By the observation above, we only use a part of the lattice. This
part has heightO(n) since there are at mostO(n) string constants in the program. The
time t for performing a least-upper-bound or transfer function computation isO(n).
Thus, this particularly simple string analysis runs in worst-case timeO(n4) wheren is
the size of the originalJWIG program.

The result of this analysis is for each program point` a map:string` : Y → REG.
This analysis is correct in the following sense: For any execution of the program,
any program point̀ , and any string variablex, the regular languagestring`(x) will
always contain the value ofx at `. That is, the analysis result is a conservative upper
approximation of the string flow.

15.4.2 Summary Graphs

As the string analysis, the summary graph analysis fits into standard data-flow frame-
works, but it uses a significantly more complex lattice which we define in the follow-
ing. Let X, G, andN be respectively the sets of template variables, gap names, and
template labels that occur in the program. Asummary graph SGis a finite representa-
tion of a set of XML documents defined as:

SG= (R,T,S,P)

where

R⊆ N is a set ofroot nodes,
T ⊆ N×G×N is a set oftemplate edges,
S: N×G→ REGis astring edgemap, and
P : G→ 2N×Γ×Γ is agap presencemap.

HereΓ = 2{OPEN,CLOSED} is thegap presence latticewhose ordering is set inclusion.
Intuitively, the languageL(SG) of a summary graphSGis the set of XML documents
that can be obtained by unfolding its templates, starting from a root node and plugging
templates and strings into gaps according to the edges. Assume thatt : N→ xmlmaps
every template label to the associated template constant. The presence of a template
edge(n1,g,n2) ∈ T informally means that thet(n2) template may be plugged into the
g gaps int(n1), and a string edgeS(n,g) = L means that every string in the regular
languageL may be plugged into theg gaps int(n).

The gap presence map,P, specifies for each gap nameg which template constants
may contain openg gaps reachable from a root and whetherg gaps may or must ap-
pear somewhere in the unfolding of the graph, either as template gaps or as attribute
gaps. The first component ofP(g) denotes the set of template constants with openg
gaps, and the second and third components describe the presence of template gaps and
attribute gaps, respectively. Given such a triple,P(g), we letnodes(P(g)) denote the
first component. For the other components, the valueOPEN means that the gaps may
be present, andCLOSED means that they may be absent. Recall from Section 15.2.3
that, at runtime, if a document is shown with open template gaps, these are treated as

15.4 Summary Graph Analysis 281

empty strings. For open attribute gaps, the entire attribute is removed. We need the
gap presence information in the summary graphs to 1) determine where edges should
be added when modeling plug operations, 2) model the removal of gaps that remain
open when a document is shown, and 3) detect that plug operations may fail because
the specified gaps have already been closed.

This unfolding of summary graphs is explained more precisely with the following
formalization:

unfold(SG) = {d ∈ XML | ∃r ∈ R : SG, r ` t(r)⇒ d whereSG= (R,T,S,P)}

Theunfolding relation, ⇒, is defined by induction in the structure of the XML tem-
plate. For the parts that do not involve gaps the definition is a simple recursive traver-
sal:

SG,n` str⇒ str

SG,n` xml1 ⇒ xml′1 SG,n` xml2⇒ xml′2
SG,n` xml1 xml2⇒ xml′1 xml′2

SG,n` atts⇒ atts′ SG,n` xml⇒ xml′

SG,n` <name atts> xml </ name> ⇒ <name atts′> xml′ </ name>

SG,n` ε⇒ ε

SG,n` name=" str" ⇒ name=" str"

SG,n` atts1 ⇒ atts′1 SG,n` atts2⇒ atts′2
SG,n` atts1 atts2⇒ atts′1 atts′2

There is no unfolding for code gaps since they have already been reduced to template
gaps in the flow graph construction. For template gaps we unfold according to the
string edges and template edges and check whether the gaps may be open:

str∈ S(n,g)
(R,T,S,P),n` <[g]> ⇒ str

(n,g,m) ∈ T (R,T,S,P),m` t(m)⇒ xml
(R,T,S,P),n` <[g]> ⇒ xml

n∈ nodes(P(g))
(R,T,S,P),n` <[g]> ⇒ <[g]>

For attribute gaps we unfold according to the string edges, and check whether the gaps
may be open:

str∈ S(n,g)
(R,T,S,P),n` name=[g] ⇒ name=" str"

n∈ nodes(P(g))
(R,T,S,P),n` name=[g] ⇒ name=[g]

282 Extending Java for High-Level Web Service Construction

The following function,close, is used on the unfolded templates to plug the empty
string into remaining template gaps and remove all attributes with gap values:

close(xml) =

<name close(atts)>
close(xml′) </ name> if xml= <name atts> xml′ </ name>

ε if xml= <[g]>

close(xml1) close(xml2) if xml= xml1 xml2
xml otherwise

close(atts) =

close(atts1) close(atts2) if atts= atts1 atts2

ε if atts= name=[g]

atts otherwise

We now define the language of a summary graph by:

L(SG) = {close(d) ∈ XML | d ∈ unfold(SG)}
Let G be the set of all summary graphs. This set is a lattice where the ordering is
defined as one would expect:

(R1,T1,S1,P1)v (R2,T2,S2,P2) ⇔
R1 ⊆R2 ∧ T1⊆ T2 ∧

∀n∈N,g∈G : S1(n,g) ⊆ S2(n,g) ∧ P1(g)v P2(g)

where the ordering on gap presence maps is defined by componentwise set inclusion.
This ordering respects language inclusion: IfSG1v SG2, thenL(SG1)⊆ L(SG2).

Compared to the summary graphs in [39] this definition differs in the following
ways: First of all, the gap presence map is added. The old algorithm worked under
the assumption that all incoming branches to join points in the flow graph would agree
on which gaps were open. This was achieved using a simple preliminary program
transformation that would convert the “implicitε-plugs” of<bigwig> [35] into explicit
ones using the information from the DynDoc type system [195]. SinceJWIG does not
inherit this implicit-plug feature from the<bigwig> design nor uses a DynDoc-like
type system we have added the gap presence map. This map contains the information
from the “gap track analysis” in [39], but in addition to finding gaps thatmaybe open
it also tracksmustinformation which we need to verify the use of plug operations later.

Secondly, the present definition is more flexible in that it allows strings to be
plugged into template gaps. In [39], template gaps were completely separated from
attribute gaps. Thirdly, we generalize the flat string lattice to full regular languages
allowing us to potentially capture many string operations.

Figure 15.12 shows an example summary graph consisting of two nodes, a single
template edge, and two string edges. The language of this summary graph is the set of
XML documents that consist oful elements with aclass="large" attribute and zero
or moreli items containing some text from the languageL. Note that theitems gap
in the root template may beOPEN according to the gap presence map, so the empty
template may be plugged in here, corresponding to the case where the list is empty.

Note that our analysis ismonovariant, in the sense that each template constant
is only represented once. It is possible to perform a more expensive analysis that

15.4 Summary Graph Analysis 283

{large}

kind

L

text

<ul class=[]>
 <[]>

items
kind <[]>

<[]>items
text

items
items

1 2

Gap presence: kind
items
text

({1,2},{OPEN}, {CLOSED})

(Ø,{CLOSED},{CLOSED})

{Ø,{CLOSED},{CLOSED})

Figure 15.12: A summary graph whose language is a set of XML documents, each
containing aul list with zero or more text items and aclass attribute. The node on the
left is a root, andL denotes some set of strings.

duplicates summary graph nodes according to some criteria, but we have not yet en-
countered the need. On the other hand, our analysis ispolyvariant in XML element
constructors, since these are analyzed separately for each occurrence in the templates.

The summary graph abstraction has evolved through experiments during our pre-
vious work on<bigwig>. We claim that it is in a finely tuned balance between ex-
pressibility and complexity. In [58], we give a constructive proof that summary graphs
have the same expressive power as the regular expression types of XDuce [110], in
the sense that they characterize the same family of XML languages—if disregarding
restrictions on character data and attributes, which are not supported by XDuce. How-
ever, summary graphs contain extra structure, for instance, by the gap presence maps,
which is required during analysis to model the gap plugging mechanism. Summary
graphs contain the structure and expressiveness to capture the intricacies of normal
control flow in programs and are yet sufficiently tractable to allow efficient analysis.

15.4.3 Constructing Summary Graphs

At every program point̀ in the flow graph, each template variablex∈ X is associated
a summary graph, as modeled by thesummary graph environmentlattice:

SGE= X → G

which inherits its structure pointwise fromG . We compute an element of the lattice
for every program point using yet another forward data-flow analysis. Let[[xml]] n

mean the template constant labeledn, and lettgaps(n) and agaps(n) be the sets of
template gap names and attribute gap names, respectively, that occur in the template
constant labeledn. Given an environment lattice element∆ ∈ SGEwe define an ab-
stract denotation for template expressions,∆̂ : EXPXML→ G :

∆̂(exp) =

∆(x) if exp= x

const(tgaps(n),agaps(n),n) if exp= [[xml]] n

tplug(∆(x),g,∆(y)) if exp= x <[g = y]

andy has typeXML

splug(∆(x),g,string`(y)) if exp= x <[g = y]

andy has typeSTRING

(/0, /0,λ(m,h). /0,λh.(/0, /0, /0)) if exp= null

284 Extending Java for High-Level Web Service Construction

where the auxiliary functions are:

const(A,B,n) = ({n}, /0,λ(m,h). /0,
λh.(if h∈ A∪B then {n} else /0,

if h∈ A then {OPEN} else {CLOSED},
if h∈ B then {OPEN} else {CLOSED}))

tplug((R1,T1,S1,P1),g,(R2,T2,S2,P2)) =
(R1,
T1∪T2∪{(n,g,m) | n∈ nodes(P1(g)) ∧ m∈ R2)},
λ(m,h).S1(m,h)∪S2(m,h),
λh.if h=g then P2(h) else (p1∪ p2,merge(t1, t2),merge(a1,a2)))

whereP1(h) = (p1, t1,a1) andP2(h) = (p2, t2,a2)

merge(γ1,γ2) = if γ1={OPEN}∨ γ2={OPEN} then {OPEN} else γ1∪ γ2

splug((R,T,S,P),g,L) =
(R,
T,
λ(m,h).if h=g∧m∈ nodes(P(h)) then S(m,h)∪L else S(m,h),
λh.if h=g then (/0,{CLOSED},{CLOSED}) else P(h))

For template constants, we look up the set of gaps that appear and construct a simple
summary graph with one root and no edges. Thetplug function models plug operations
where the second operand is a template expression. It finds the summary graphs for
the two sub-expressions and combines them as follows: The roots are those of the
first graph since it represents the outermost template. The template edges become
the union of those in the two graphs plus a new edge from each node that may have
open gaps of the given name to each root in the second graph. The string edge sets
are simply joined without adding new information. For the gaps that are plugged
into, we take the gap presence information from the second graph. For the other gaps
we use themergefunction to mark gaps as “definitely open” if they are so in one
of the graphs and otherwise take the least upper bound. Thesplug function models
plug operations where the second operand is a string expression. It adds the set of
strings obtained by the string analysis for the string expression to the appropriate string
edge, and then marks the designated gaps as “definitely closed”. Thenull constant is
modeled by the empty set of documents. Attempts to plug or show a null template
yield null dereference exceptions at runtime, and we do not wish to perform a specific
null analysis.

Having defined the analysis of expressions we can now define transfer functions for
the statements. As for the other data-flow analysis, only assignments are interesting.
For every XML assignment statementx = exp; the transfer function is defined by:

∆ 7→ ∆[x 7→ ∆̂(exp)]

and for all other statements the transfer function is the identity function.
By inspecting thetplug, merge, andsplug functions it is clear that the transfer

function is always monotone. The latticeSGEis not finite, but analysis termination

15.4 Summary Graph Analysis 285

is ensured by the following observation: For any program, all summary graph com-
ponents are finite, exceptREG. However, the string analysis produces only a finite
number of regular languages, and we here use at most all possible unions of these. So,
only a finite part ofSGEis ever used.

The result of this analysis is for each program point` a map:

summarỳ : EXPXML→ G

This analysis is conservative as the string analyses, that is, it is sound but not complete:
For any execution of the program, any program point`, and any XML expressionexp,
the set of XML documentsL(summarỳ(exp)) will always contain the value ofexpat
`.

The worst-case complexity of this analysis can also be estimated using the formula
from Section 15.3.4. The lattice height is the sum of the heights of the four summary
graph components. The node setN and the gap name setG both have sizeO(n),
again wheren is the size of the originalJWIG program. The height of the root node
component is thusO(n). For each template edge(n,g,n′) which is created during the
analysis,(n,g) determines a specific gap in a specific template in the originalJWIG
program. Since there can be at mostO(n) of these, we can at most constructO(n2)
template edges. Similarly, for the string edge map, all butO(n) pairs of elements from
N andG are mapped to a fixed element. For the string analysis, we have argued that the
height of the used part of the string lattice isO(n), so the string edge component has
heightO(n2). Both the domain and the co-domain of the gap presence map have size
O(n), so this component also has heightO(n2). In total, the heighth of the summary
graph lattice isO(n2). For the same reasons, the sizes of the summary graphs that are
constructed are also at mostO(n2). All operations on summary graphs are linear in
their sizes, so the timet for computing a summary graph operation isO(n2). Inserting
this in the formula gives that the summary graph construction runs in timeO(n6) in
the size of the program. Note that without the flow-graph simplification phase, the
formula would have givenO(n8) instead ofO(n6).

15.4.4 Summary Graphs for the Example

For theJWIG example program from Section 15.2.5, the following summary graph is
generated for theexit statement in themain method:

<html>...</html> Welcome ... BRICS

Hello World! <[]>

contents what

c1
c1

{white}

color

g

U*

g

Implicitly in this illustration, the gap presence map maps everything to(/0,{CLOSED},
{CLOSED}), and the string edge map maps to the empty language by default. Because

286 Extending Java for High-Level Web Service Construction

of the simple flow in the example program, the language of this summary graph is pre-
cisely the set of XML documents that may occur at runtime. In general, the summary
graphs are conservative since they they may denote languages that are too large. This
means that the subsequent analyses can be sound but not complete.

15.5 Providing Static Guarantees

The remaining analyses are independent of both the originalJWIG program and the
flow graphs. All the relevant information is at this stage contained in the inferred
summary graphs. This is a modular approach where the “front-end” and “back-end”
analyses may be improved independently of each other. Also, summary graphs provide
a good context for giving intuitive error messages.

15.5.1 Plug Analysis

We first validateplug consistencyof the program, meaning that gaps are always present
when subjected to the plug operation and that XML templates are never plugged into
attribute gaps. This information is extracted from the summary graph of the template
being plugged into.

In the earlier works [195] a similar check was performed directly on the flow
graphs. Our new approach has the same precision, even though it relies exclusively
on the summary graphs. Furthermore, we no longer require the flow graph to agree
on the gap information for all incoming branches in the join points, as mentioned in
Section 15.4.2.

For a specific plug operationx <[g = y] at a program point̀, consider the sum-
mary graphsummarỳ(x) = (R,T,S,P) given by the data-flow analysis described in the
previous section. Let(p, t,a) = P(g). We now check consistency of the plug operation
simply by inspecting that the following condition is satisfied:

t = {OPEN}∨a = {OPEN} if y has typeSTRING, and
t = {OPEN}∧a = {CLOSED} if y has typeXML.

This captures the requirement that string plug operations are allowed on all gaps that
are present, while template plug operations only are possible for template gaps. If a
violation is detected, a precise error message can be generated: for instance, ify has
type XML, t = {OPEN}, and a ={OPEN,CLOSED}, we report that, although there
definitely are open template gaps of the given name, there may also be open attribute
gaps, which could result in aPlugException at runtime.

As mentioned, the summary graphs that are constructed are conservative with re-
spect to the actual values that appear at runtime. However, the plug analysis clearly
introduces no new imprecision, that is, this analysis is both sound and complete with
respect to the summary graphs: It determines that a given plug operation cannot fail if
and only if for every value inunfold(summarỳ(x)), the plug operation does not fail.
If the plug analysis detects no errors, it is guaranteed that noPlugException will ever
be thrown when running the program. Since the analysis merely inspects the gap pres-
ence map component of each summary graph that is associated with a plug operation,
this analysis takes timeO(n).

15.5 Providing Static Guarantees 287

15.5.2 Receive Analysis

We now validatereceive consistency, meaning thatreceive andreceive[] operations
always succeed. For the single-string variant,receive, it must be the case that for
all program executions, the last document being shown before the receive operation
contained exactly one field of the given name. Also, there must have been at least one
show operation between the initiation of the session thread and the receive operation.
If these properties are satisfied, it is guaranteed that noReceiveException will ever
be thrown when running the program.

The array variant,receive[], always succeeds, so technically, we do not have to
analyze those operations. However, we choose to consider it as an error if we are able
to detect that for a givenreceive[] operation, there are no possibility of ever receiving
other that the empty array. This is to follow the spirit of Java where, for instance, it
is considered a compile-time error to specify a cast operation that is guaranteed to fail
for all executions.

In case the name of the field is eithersubmit, submit.x, or submit.y, then we
know that it comes from a submit button or image. As described in Section 15.2.3,
exactly one value is then always generated. That is, in these cases, bothreceive and
receive[] always succeed. For the remainder of this section, we thus assume that the
field name is not one among those three.

Given a receive operation, we need to count the number of occurrences of input
fields of the given name that may appear in every document sent to the client in an
associatedshow operation. For a concrete XHTML/HTML document, this information
is defined by Section 17.13.2 in [185]. For a runningJWIG program, a conservative
approximation of the information can be extracted from the receive edges in the flow
graph and the summary graphs of the associatedshow operations.

Compared to the field analysis in<bigwig> [195], this situation differs in a num-
ber of ways: 1) The present analysis works on summary graphs rather than on flow
graphs. 2) In the old analysis, the plug and receive analyses were combined. We sepa-
rate them into two independent analyses without losing any precision. 3) In<bigwig>,
a form is always inserted automatically around the entire document body. That pre-
cludes documents from having other forms for submitting input to other services. As
described in Section 15.2.2,JWIG instead allows multiple forms by identifying those
relevant to the session by the absence of anaction attribute in theform element. 4) The
notions of tuples and relations in [195] are inJWIG replaced by arrays andreceive[]
operations.

Again, we will define a constraint system for computing the desired information.
This information is represented by a value of the following lattice,C:

*

1
0

The element 0 means that there are always zero occurrences of the field, 1 means that
there is always exactly one occurrence,∗ means that the number varies depending on

288 Extending Java for High-Level Web Service Construction

the unfolding or that it is greater than one,� represents one or more radio buttons, and
⊥ represents an unknown number. The constraint system applies two special monotone
operators onC: ⊕ for addition and⊗ for multiplication. These are defined as follows:

⊕ ⊥ 0 � 1 ∗
⊥ ⊥ 0 � 1 ∗
0 0 0 � 1 ∗
� � � � ∗ ∗
1 1 1 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

⊗ ⊥ 0 � 1 ∗
⊥ ⊥ 0 ⊥ ⊥ ⊥
0 0 0 0 0 0
� ⊥ 0 � � ∗
1 ⊥ 0 � 1 ∗
∗ ⊥ 0 ∗ ∗ ∗

Assume that we are given a summary graph(R,T,S,P) corresponding to a specific
show statement. Two special functions are used for extracting information about fields
and gaps for an individual node in the summary graph:

count: N→GFP

allforms: N→ 2GFP

whereGFP= (F →C)×(G→C) shows the number of occurrences of fields and gaps
in a specific form. Theallforms function returns a set of such values, corresponding to
the various forms that may appear, andcountcounts disregarding theform elements:

count(n) = (fcount(n, t(n)),gcount(n, t(n)))

allforms(n) =
[

k∈forms(t(n))

{(fcount(n,k),gcount(n,k))}

where

forms(xml) =

{xml} if xml= <form atts> xml′ </form>
andattsdoes not containaction

forms(xml′) if xml= <name atts> xml′ </name>

andname6= form

or attscontainsaction

forms(xml1)∪ forms(xml2) if xml= xml1 xml2
/0 otherwise

gcount(n,xml)(g) =

gcount(n,xml1)(g)
⊕gcount(n,xml2)(g) if xml= xml1 xml2
gcount(n,xml′)(g)
⊕gcount(n,atts)(g) if xml= <name atts> xml′ </name>

1 if xml= <[g]>

andn /∈ nodes(P(g))
∗ if xml= <[g]>

andn∈ nodes(P(g))
0 otherwise

15.5 Providing Static Guarantees 289

gcount(n,atts)(g) =

gcount(n,atts1)(g)
⊕gcount(n,atts2)(g) if atts= atts1 atts2

1 if atts= <[g]>

andn /∈ nodes(P(g))
∗ if atts= <[g]>

andn∈ nodes(P(g))
0 otherwise

fcount(n,xml)(f) =

fcount(n,xml1)(f)
⊕fcount(n,xml2)(f) if xml= xml1 xml2
fcount(n,xml′)(f) if xml= <name atts> xml′ </name>

andname/∈ FIELDS

fc(n,atts) if xml= <name atts> xml′ </name>

andname∈ FIELDS

andattscontainsname=" f"

0 otherwise

The forms function finds the relevantform elements in the given template,gcount
counts the number of occurrences of a given gap name, andfcount counts the num-
ber of occurrences of a given field name. Note that the latter two functions need to
consider the gap presence map of the summary graph. For the field count we can as-
sume that only valid XHTML is shown because of the show analysis presented in the
next section, and we can exploit the restrictions about input field elements described
in Section 15.2.3. The set FIELDS= {input,button,select,textarea,object} con-
tains all names of elements that define input fields. The functionfc(n,atts) counts the
number of name–value pairs that may be produced: Ifatts containstype="radio",
then it returns�; otherwise, ifattscontains atype attribute with valuereset, submit,
or image, or an attribute with namedisabled or declare, it returns 0; otherwise, if it
containstype="checkbox" or an attribute namedmultiple, it returns∗, and otherwise
it returns 1. In order to detect whetherdisabled or declare occur, the gap presence
map and the string edges need to be consulted in case of attribute gaps.

With these auxiliary functions in place, we can now define the valuefp ∈C rep-
resenting the number of occurrences off in the possible unfoldings of the summary
graph:

fp =
G

r∈R

Φ(r)

If for every root, the number of occurrences is always 0, always�, or always 1, the
final result is 0,�, or 1, respectively; if it sometimes is� and sometimes 1, the result
is 1; and otherwise it is∗. The functionΦ traverses the nodes in the summary graph,
looking for applicable forms:

Φ(n) =
G

(ff ,gg)∈allforms(n)

infields(n,(ff ,gg)) t
G

(n,h,m)∈T, h∈tgaps(n)

Φ(m)

The left-hand factor counts the field occurrences for eachform element that occurs
directly in the template ofn, while the right-hand factor looks at the templates that

290 Extending Java for High-Level Web Service Construction

may be plugged into gaps inn.

infields(n,(ff ,gg)) = ff (f)⊕
M

h∈G

(gg(h)⊗ infollow(n,h))

infollow(n,h) =
G

(n,h,m)∈T

infields(m,count(m))

Given a current noden and an element(ff ,gg) of GFP representing the fields and gaps
directly available in a particular form, theinfieldsfunction sums the field occurrences
according toff and those that may occur due to plug operations. For the latter part,
we iterate through the possible gaps and multiply each count with the gap multiplicity.
The infollow function follows the template edges and recursively finds the number of
field occurrences in the same way asoutfollowbut now assuming that we are inside a
form.

As usual, we can compute the least fixed point by iteration because the lattice is
finite and all operations are monotone. Since thecountandallforms functions never
return⊥, the result,fp, is always in the set{0,�,1,∗}. The desired properties can now
be verified by inspecting that:

fp∈ {1,�} for receive operations, and
fp 6= 0 for receive[] operations.

for every summary graph computed for someshow operation that is connected by a
receive edge to the receive operation in the flow graph.

As the plug analysis, this receive analysis is both sound and complete with respect
to the summary graphs and the receive edges — assuming that only valid XHTML is
ever shown: For areceive f operation, the analysis determines that it cannot fail if
and only if for every label̀ of a show node which has an edge to thereceive node,
it is the case that in every XML document inL(summarỳ(x)), each form without
an action attribute produces exactly onef field value. A similar property holds for
receive[] operations.

For eachreceive andreceive[] operation, we calculatefp for every summary
graph of an associatedshow operation. Thus,fp is calculatedO(n2) times, wheren
is the size of the originalJWIG program. The auxiliary functionscountandallforms
can be pre-computed in timeO(n). Each argument toinfieldsdenotes a specific form
element in a template constant. Since there areO(n) template nodes andO(n) form
elements in the program, bothΦ and infieldsare given at mostO(n) different values
as arguments. Since the lattice has constant height, we therefore iterate through the
summary graphO(n) times. Each iteration performs a single traversal of the summary
graph which takes timeO(n2). In total, the receive analysis runs in timeO(n5) in the
size of the originalJWIG program.

15.5.3 Show Analysis

For everyshow statement in theJWIG program, we have computed a summary graph
that describes how the XML templates are combined in the program and which XML
documents may be shown to the client at that point. This gives us an opportunity to
verify that all documents being shown arevalid with respect to some document type.

15.5 Providing Static Guarantees 291

In particular, we wish to ensure that the documents are valid XHTML 1.0 [182] which
is the most commonly used XML language for interactive Web services. XHTML 1.0
is the official XML version of the popular HTML 4.01. It is relatively easy to translate
between the two, so in principle our technique works for HTML as well.

Validity of an XML document means that it is well-formed and in addition satis-
fies some requirements given by a schema for the particular language. The first part,
well-formedness, essentially means that the document directly corresponds to a tree
structure whose internal nodes are elements by requiring element tags to balance and
nest properly. This part comes for free inJWIG, since all XML templates are syntacti-
cally required to be well-formed. The remaining validity requirements specify which
attributes a given element may have and which text and subelements that may appear
immediately below the element in the XML tree. Such properties are specified using a
schema language. In XHTML, the requirements are given by a DTD (Document Type
Definition) schema plus some extra restrictions that cannot be formalized in the DTD
language.

Our validation technique is parameterized by the schema description. Thereby
we expect that it will be straightforward to support for instance WML or VoiceXML
which are used for alternative interaction methods, in place of XHTML. Rather that
using DTD, we apply a novel schema language,Document Structure Description 2.0
(DSD2) [160]. This schema language is more expressive than DTD, so more validity
requirements can be formalized. The expressive power of DSD2 is comparable to that
of W3C’s XML Schema [209], but DSD2 is significantly simpler, as indicated below.

15.5.4 The Document Structure Description 2.0 Language

The DSD2 language is designed as a successor to the schema language described in
[132, 133]. A DSD2 schema description of an XML language is itself an XML doc-
ument. ADSD2 processoris a tool that takes as input a DSD2 schema and an XML
document called theinstance document. It then inserts default attributes and contents
in the instance document according to the schema and checks whether the instance
document with defaults inserted isvalid. This is done by traversing the tree struc-
ture of the instance document in a top-down manner. For every element node, default
attributes and contents are inserted and it is checked that all requirements about the
attributes and contents of the element are satisfied.

The following description of DSD2 is intended to give a brief overview—not to
define the language exhaustively. A normative specification document for DSD2 is
currently under development [160].

Conceptually, a DSD2 schema consists of a list ofconstraints. A constraint is ei-
ther adeclaration, a requirement, a conditional constraint, or adefault specification.
Furthermore, there are notions ofstring normalization, keysand references, andop-
tions which we can ignore here. During the top-down traversal, the processor checks
each element in turn. Thecurrent elementis the one currently being checked. This
check of an individual element is performed in five steps:

1. all applicable constraints are found;

2. default attributes and contents are inserted;

292 Extending Java for High-Level Web Service Construction

3. the requirements are checked;

4. it is checked that all attributes of the current element are declared; and

5. it is checked that the contents matches all contents declarations and that the
whole contents are declared.

The following description of the various types of constraints explains these steps in
more detail:

Declarations A declaration constraint contains a list ofattribute declarationsand
contents declarations. An attribute declaration specifies that an attribute with
a given name is allowed in the current element provided that the value matches
a given regular expression. A contents declaration is a regular expression over
characters and element names that specifies a requirement for the presence, or-
dering, and number of occurrences of sub-elements and character data. A con-
tents declaration only looks at elements that are mentioned in the regular ex-
pression. This subsequence of the contents is called theprojected contents. If
the expression contains any character sub-expressions, all character data in the
contents is included in the projected contents. Checking a contents declaration
succeeds if the projected contents matches the regular expression. All attributes
and contents that have been matched by a declaration are considered to bede-
clared.

Requirements A requirement constraint contains boolean expressions that must eval-
uate to true for the current element. Boolean expressions are built of the usual
boolean operators, together with attribute expressions which probe the presence
and values of attributes, element expressions which probe the name of the cur-
rent element, andparent andancestoroperators which probe whether certain
properties are satisfied for the elements above the current element in the instance
document tree.

Conditional constraints A conditional constraint contains a list of constraints whose
applicability is guarded by a boolean expression. Only when the boolean ex-
pression evaluates to true for the current element, the constraints within are pro-
cessed.

Defaults A default constraint specifies a default value for an attribute or a default
contents sequence for an empty element. In case of conflicts, for instance if two
default attributes with the same name are applicable, all but the one specified
last in the schema are ignored.

For convenience, specifications can be grouped and named for modularity and reuse.
Furthermore, the DSD2 schema can restrict the name of the root element: for exam-
ple, in XHTML, it must behtml. DSD2 has full support for Namespaces [44]. For
XHTML, the namespacehttp://www.w3.org/1999/xhtml is used, and all elements
must use the empty namespace prefix.

As an example, the following snippet of the DSD2 description of XHTML 1.0
describesdl elements:

15.5 Providing Static Guarantees 293

<if><element name="dl"/>

<declare>

<attribute name="compact"><string value="compact"/></attribute>

<repeat min="1"><union>

<element name="dt"/><element name="dd"/>

</union></repeat>

</declare>

<constraint ref="ATTRS"/>

</if>

These constraints show that adl element may contain acompact attribute, provided
that its value iscompact, and that it must contain at least onedt or dd sub-element.
Additionally, ATTRS, which is defined elsewhere, describes some additional common
attributes that may occur.

The following example (abbreviated with “...”) describesa elements:

<if><element name="a"/>

<declare>

<attribute name="name"><stringtype ref="NMTOKEN"/></attribute>

<attribute name="shape"><stringtype ref="SHAPE"/></attribute>

...

<repeat><union>

<string/>

<contenttype ref="PHRASE"/>

...

</union></repeat>

</declare>

<constraint ref="HREFLANG"/>

...

<default name="shape" value="rect"/>

<require>

<not><ancestor><element name="a"/></ancestor></not>

</require>

</if>

This reads: If the current element is named “a”, then the sub-constraints are applica-
ble. First, the attributesname, shape, etc. are declared. Thestringtype constructs
are references to regular expressions defining the valid attribute values. Then, a con-
tents declaration states that all text is allowed as contents together with some contents
expressions defined elsewhere. After that, there are some references to constraint def-
initions and a default specification for theshape attribute. Finally, there is a require-
ment stating thata elements cannot be nested. The latter constraint is an example of a
validity requirement that cannot be expressed by DTD or XML Schema.

As a final example, the following requirement can be found in the description of
input elements:

<require>

<or>

<attribute name="type">

<union><string value="submit"/><string value="reset"/></union>

</attribute>

<attribute name="name"/>

</or>

</require>

294 Extending Java for High-Level Web Service Construction

This states that there must be atype attribute with valuesubmit or reset or a name

attribute. This is another validity requirement that cannot be expressed concisely in
most other schema languages. The whole DSD2 schema for XHTML 1.0 can be found
athttp://www.brics.dk/DSD/xhtml1-transitional.dsd.

15.5.5 Validity Analysis

We show below how the DSD2 processing algorithm explained in the previous section
generalizes from concrete XML documents to summary graphs. In fact, the DSD2
language has been designed with summary graph validation in mind. Since the DSD2
language is a generalization of the DTD language, the following algorithm could be
adapted to DTD. One benefit of using DSD2 instead of DTD or XML Schema is that it
allows us to capture many more errors. Every validity requirement that merely appear
as comments in the DTD schema for XHTML can be formalized in DSD2, as exem-
plified in the previous section. Of course, there still are syntactic requirements that
even DSD2 cannot express. For instance, in tables, thethead, tfoot, andtbody sec-
tions must contain the same number of columns, and thename attributes ofa elements
must have unique values. Summary graphs clearly do not have the power to count
such numbers of occurrences, so we do not attempt to also check these requirements.
Still, our approach based on DSD2 captures more syntactic errors than is possible with
DTD. Only the uniqueness requirements specified by ID and IDREF attributes are not
checked, but they do not play a central role in the schema for XHTML anyway.

Recall from Section 15.2.3 that we make a few modification of the documents at
runtime just before they are sent to the clients. It is trivial to modify the validation
algorithm to take these modifications into account. For instance, rather that requiring
one or more entries in all lists, the analysis permits any number since lists with zero
entries are always removed anyway.

Given a DSD2 schema and a summary graphSG= (R,T,S,P) associated to some
show statement, we must check that every XML document inL(SG) is valid according
to the schema. The algorithm for validating a summary graph with respect to a DSD2
schema proceeds in a top-down manner mimicking the definition of the unfolding rela-
tion in Section 15.4.2, starting from the root elements in the templates of the summary
graph root nodes. In contrast to the analyses described in the previous sections, we
will describe this one in a less formal manner because of the many technical details
involved. Rather than showing all the complex underlying equation systems or de-
scribing the entire algorithm in detailed pseudo-code, we attempt to present an concise
overview of its structure.

For each rootr ∈ R, we perform the following steps:

1. Let p be a pointer to the root element int(r).

2. Check that the name of thep element is valid for a root element.

3. Initialize M = /0 and callcheck(r, p,c0).

If no violations are detected,SG is valid which implies that all documents inL(SG)
are valid. Thecheckprocedure is given a summary graph noden, a pointerp to an
element int(n), and acontext map c. It recursively checks validity of thep element

15.5 Providing Static Guarantees 295

and the sub-trees below it, assuming the specified context. A context map assigns a
truth value to everyparent andancestor expression occurring in the schema. The
mapc0 maps everything tofalse.

The setM is a globalmemoization setwhich consists of triples that—as the ar-
guments tocheck—contain a summary graph node, a pointer to an element in the
template of the node, and a context map. This set at all times describes the elements
and contexts that already have been checked. We use it to avoid performing redundant
computations. For a given schema and summary graph, there are only finitely many
possible memoization sets, so termination is guaranteed, even in case of cycles in the
summary graph.

The procedurecheck(n, p,c) does the following, essentially corresponding to the
five steps for checking individual elements in the algorithm from the previous section,
but now also considering gaps:

1. If (n, p,c) ∈ M, then skip all the following steps; otherwise add(n, p,c) to M
and proceed.

2. Compute a new context mapc′. This is done by re-evaluating eachparent and
ancestor expression, based on thep element and thec map. Note that because
of thec map, this can be done in constant time in the size of the summary graph
and the templates.

3. Find all constraints in the schema that are applicable for thep element. This
is done by traversing the schema and for each conditional constraint, evaluating
its boolean expression. If it evaluates totrue, it is included. When evaluating
boolean expressions, the context mapc′ is consulted for evaluatingparent and
ancestor sub-expressions. We describe later more details on how the boolean
expressions are evaluated.

4. Build a collection of defaults that should be inserted. This is done by traversing
the applicable defaults. An attribute default is included if thep element does
not have an attribute of that name. A contents default is included if the contents
of the p element is empty. In order to determine whether or not attributes or
contents occur, we need to consider the gap presence map,P, the template edges,
T, and the string edges,S, in case there are gaps among the attributes or contents
of the p element. Note that we do not actually insert the defaults here but only
collect them. When the defaults are collected, we need to updatec′ according to
the collected defaults since default attributes may affect the truth values of the
parent andancestor expressions.

5. For each applicable requirement, check that its boolean expression evaluates to
true. If it does not, then the summary graph is not valid.

6. For each attribute in thep element, including the collected default attributes,
check that it is declared by the applicable attribute declarations. An attribute
is declared by an attribute declaration if the attribute value matches the regu-
lar expression of the declaration. In case the attribute is an attribute gap, this
amounts to checking inclusion of one regular language of Unicode strings in an-
other. However, it is possible that one attribute declaration specifies that a given

296 Extending Java for High-Level Web Service Construction

attribute may have one set of values and another declaration specifies that the
same attribute may also have another set of values. Therefore, in general, we
check that all values that are possible according to the string edges,S, match
some declaration. If some attribute is not declared, the summary graph is not
valid.

7. For each contents declaration, check that the contents ofp element matches the
declaration. As previously mentioned, a contents sequence matches a contents
declaration if the projected contents is in the language of the regular expression
of the declaration. In case there are no gaps in the contents, this is a simple check
of string inclusion in a regular language. If there are gaps, the situation is more
involved: The template edges from the gaps may lead to templates which at the
top-level themselves contain gaps. (Thetop-levelof a template is the sequence
of elements, characters, and gaps that are not enclosed by other elements.) In
turn, this may cause loops of template edges. Therefore, in general, the set of
possible contents sequences forms a context-free language, which we represent
by a context-free grammar. Without such loops, the language is regular. The
problem of deciding inclusion of a context-free language in a regular language
is decidable [108], but computationally expensive. For that reason, we approx-
imate the context-free language by a regular one: Whenever a loop is found
in the context-free grammar, we replace it by the regular languageA∗ whereA
consists of the individual characters and elements occurring in the loop. This
allows us to apply a simpler regular language inclusion algorithm. Although
loops in summary graph often occur, our experiments show that it is rare that
this approximation actually causes any imprecision. In addition to checking that
all contents declarations are satisfied, we check that all parts of the contents has
been declared, that is, matched by some declaration. If not, the summary graph
is not valid. Again, if any declaration contains a character sub-expression, all
character data is considered declared.

8. Look through the immediate contents of thep element. For each sub-element
p′ that occurs withint(n), call check(n, p′,c′) recursively. For each template
gap g in the contents, find all each outgoing template edge(n,g,n′) ∈ T and
call check(n′, p′,c′) recursively for every elementp′ occurring at the top-level of
t(n′).

Note that, assuming a fixed schema, steps (1)-(7) can be performed in linear time
in the number of attributes in the current element and in the length of its contents,
independently of the rest of thet(n) template and of all the other templates. Because
of the memoization, the entire algorithm for whole summary graphs therefore runs in
linear time in the size of the templates, which in a sense is optimal.

Also note that in contrast to the algorithm for validating XML documents, this
one does not have side-effects on the summary graphs: defaults arenot inserted in
the templates, but the validity checks works as if they were inserted. It would not be
possible to explicitly insert the defaults, since each template in general is evaluated in
many different contexts during the validity check.

Evaluation of boolean expressions for conditional constraints and requirement con-
straints is non-trivial because we have to consider all the possible unfoldings of the

15.6 Implementation and Evaluation 297

summary graph. We apply afour-valuedlogic for that purpose. Evaluating a boolean
expression results in one of the following values:

true – if evaluating the expression on every possible unfolding would result intrue;

false– if they all would result infalse;

some– if some unfolding would result intrue and others infalse;

don’t-know – if the processor is unable to detect whether all, no, or some unfoldings
would result intrue.

All boolean operators extend naturally to these values. The valuedon’t-know is for
instance produced by the conjunction ofsomeandsome. If the guard of a conditional
constraint evaluates todon’t-know, we terminate with a “don’t know” message. How-
ever, for our concrete XHTML schema, this can in fact never happen.

Compared with the technique described in [39], we have now moved from an ab-
stract version of DTD to the more powerful DSD2 schema language. Furthermore, by
the introduction of four-valued logic for evaluation of boolean expressions, we have
repaired a defect that in rare cases caused the old algorithm to fail.

Our algorithm is sound, that is, if it validates a given summary graph it is certain
that all unfoldings into concrete XML documents are also valid. Because of the possi-
bility of returning “don’t know” and of the approximation of context-free languages by
regular ones, the algorithm is generally not complete. An alternative to our approach
of “giving up” when these situations occur would be to branch out on all individual un-
foldings and use classical two-valued logic. This shows that the problem is decidable.
However, the complexity of the algorithm would then increase significantly, and, for
the XHTML schema, false errors can only occur in the rare cases where we actually
need to approximate context-free languages by regular ones, as mentioned above.

15.6 Implementation and Evaluation

To make experiments for evaluating theJWIG language design and the performance of
the program analyses, we have made a prototype implementation. It consists of the fol-
lowing components, roughly corresponding to the structure in Figures 15.6 and 15.7:

• a simple desugarer, made with JFlex [141], for translatingJWIG programs into
Java code;

• the<bigwig> low-level runtime system [38] which in its newest version [170]
is based on a module for the Apache Web Server [20] and extended with Java
support;

• a Java-based runtime system for representing and manipulating XML templates;

• a part of the Soot optimization framework for Java [213, 203], which converts
Java bytecode to a more convenient 3-address instruction code language, called
Jimple;

• a flow graph package, which operates on the Jimple code generated by Soot and
also uses Soot’s CHA implementation;

298 Extending Java for High-Level Web Service Construction

Figure 15.13: A snapshot of the Memory Game being played.

• a finite-state automaton package with UTF16 Unicode alphabet and support for
all standard regular operations [171];

• a summary graph construction package which also performs the string analysis;

• a plug and receive analyzer which performs the checks described in Section 15.5.1
and 15.5.2; and

• a DSD2 validity checker with summary graph support.

All parts are written in Java, except the low-level runtime system which is written in C.
The Java part of the runtime system amounts to 3000 lines, and the analysis framework
is 12,500 lines.

15.6.1 Example: The Memory Game

To give a more complete example of aJWIG service, we present the well-known Mem-
ory Game, where the player must match up pairs of cards lying face down. First, the
number of pairs is chosen, next the game itself proceeds iteratively, and finally the
player is congratulated. A snapshot of the game in progress is seen in Figure 15.13.

The main session, presented in Figure 15.14, looks just like a corresponding se-
quential Java program. The templates being used are presented in Figure 15.15. The
construction of a grid of cards is performed by themakeCardTable method presented
in Figure 15.16. The class representing individual cards is seen in Figure 15.17. In all,
the Memory Game is written in 169 lines ofJWIG.

By itself, the session concept and the XML templates simplify the program com-
pared to solutions in JSP or Servlets. Furthermore, since the example is analyzed

15.6 Implementation and Evaluation 299

public class Game extends Session {

public void main() {

// ask for number of cards

int howmany;

do {

show wrap <[body = welcome <[atmost = images.length]]);

howmany = Integer.parseInt(receive howmany);

} while (howmany < 1 || howmany > images.length);

// generate random permutation of cards

Card[] cards = new Card[howmany*2];

Random random = new Random();

for (int i = 0 ; i < howmany ; i++) {

for (int c = 0 ; c < 2 ; c++) {

int index;

do {

index = random.nextInt(howmany*2);

} while (cards[index] != null);

cards[index] = new Card(i);

}

}

// play the game

int pairsleft = howmany;

int moves = 0;

show makeCardTable(cards);

while (pairsleft > 0) {

// first card picked

int firstcard = Integer.parseInt(receive submit);

cards[firstcard].status = 1;

show makeCardTable(cards);

// second card picked

int secondcard = Integer.parseInt(receive submit);

cards[secondcard].status = 1;

moves++;

// check match

if (cards[firstcard].value == cards[secondcard].value) {

cards[firstcard].status = 2;

cards[secondcard].status = 2;

if (--pairsleft > 0)

show makeCardTable(cards);

} else {

show makeCardTable(cards);

cards[firstcard].status = 0;

cards[secondcard].status = 0;

}

}

// done, show result

exit farewell <[howmany = howmany, moves = moves];

}

}

Figure 15.14: The main session of the Memory Game.

300 Extending Java for High-Level Web Service Construction

private static final XML wrap = [[

<html>
<head><title>The JWIG Memory game</title></head>
<body><form><[body]></form></body>

</html>
]];

private static final XML welcome = [[

<h3>Welcome to the JWIG Memory game!</h3>
<p>How many pairs of cards do you want (from 1 to <[atmost]>)?</p>
<input type="text" name=" howmany"/>

]];

private static final XML farewell = wrap <[body = [[

<h3>Thank you for playing this game!</h3>
<p>You found all <[howmany]> pairs using <[moves]> moves.</p>

]]];

Figure 15.15: Templates from the Memory Game.

private XML makeCardTable(Card[] cards) {

XML table = [[<table><[row]></table>]];

for (int y=0; y < (cards.length+COLS-1)/COLS; y++) {

XML row = [[<tr><[elem]></tr><[row]>]];

for (int x=0; x < COLS; x++) {

XML elem = [[<td><[contents]></td><[elem]>]];

int index = y*COLS+x;

if (index < cards.length) {

elem = elem <[contents = cards[index].makeCard(index)];

}

row = row <[elem = elem];

}

table = table <[row = row];

}

return wrap <[body = table];

}

Figure 15.16: Generating a grid of cards in the Memory Game.

15.6 Implementation and Evaluation 301

private class Card {

public int status;

public int value;

public Card(int value) {

this.status = 0;

this.value = value;

}

public XML makeCard(int index) {

switch(status) {

case 0:

return [[<input type="image" alt="card"
src=[image] name=[index] />]]

<[image = back_image, index = index];

case 1:

return [[]]

<[image = images[value], num = value];

case 2:

return [[]]

<[image = blank_image];

default:

return null;

}

}

}

Figure 15.17: Representing a card in the Memory Game.

302 Extending Java for High-Level Web Service Construction

without errors, we know that noJWIG exceptions will be thrown while the game is be-
ing played. In particular, we are guaranteed that all documents being shown are valid
XHTML according to the strict standard imposed by the DSD2 schema.

The JWIG runtime system, which is also used in the<bigwig> project, is tailor-
made for session-based Web services. Each session thread is associated a unique URL
which refers to a file on the server. This file at all times contains the most recent page
shown to the client. The session code runs as a JVM thread that lives for the entire
duration of the session. In contrast, sessions in Servlet and JSP services run as short-
lived threads where the session identity is encoded using cookies or hidden input fields,
as described in Section 15.1.3. This precludes sessions from being bookmarked, such
that the client cannot suspend and later resume a session, and the history buffer in the
browser typically gets cluttered with references to obsolete pages. In our solution, the
session URL functions as an identity of the session, which avoids all these problems.
These aspects are described in more detail in [40].

If we introduce an error in the program, by forgetting thename attribute in the
input field in thewelcome template, then theJWIG analyzer produces the following
output:

*** Field ‘howmany’ is never available on line 68

*** Invalid XHTML at line 49

--- element ’input’: requirement not satisfied:

<or xmlns="http://www.brics.dk/DSD/2.0/error">

<attribute name="type">

<union>

<string value="submit" />

<string value="reset" />

</union>

</attribute>

<attribute name="name" />

</or>

In the first line, the receive analysis complains that thehowmany field is never avail-
able from the client. The remainder of the error message is from the show analysis,
which notices that theinput element violates the quoted constraint from the XHTML
schema. This particular validity error is not caught by DTD validation of the generated
document. If the involved element contained gaps, the error message would include
a print of all relevant template and string edges and values of the gap presence map,
which shows the relevant plug operations. Clearly, such diagnostics are useful for
debugging.

15.6.2 Performance

The JWIG implementation may be evaluated with respect to compile-time, analysis-
time, or run-time. The compile-time performance is not an issue, sinceJWIG programs
are simply piped through a JFlex desugarer and compiled using a standard Java com-
piler. TheJWIG runtime performance is not particularly interesting, since we reuse the
<bigwig> runtime system and the standard J2SE JVM. The critical component in our
system is the extensive collection of static analyses that we perform on the generated
class files.

15.6 Implementation and Evaluation 303

Name Lines Templates Shows/Exits Total Time

Chat 80 4 3 5.370
Guess 94 8 7 7.147
Calendar 133 6 2 7.029
Memory 167 9 6 9.718
TempMan 238 13 3 7.719
WebBoard 766 32 24 9.769
Bachelor 1078 88 14 115.641
Jaoo 3923 198 9 35.997

Figure 15.18: The benchmark services.

Name Load Construct Size Before Simplify Size After

Chat 3.205 1.871 238/388 0.232 107/99
Guess 3.242 1.993 286/442 0.152 113/89
Calendar 3.276 2.241 386/672 0.254 124/127
Memory 3.284 2.227 451/765 0.292 143/127
TempMan 3.290 2.604 779/1437 0.883 200/192
WebBoard 3.244 2.660 878/1285 0.775 422/287
Bachelor 3.255 4.303 2278/3676 21.862 1059/914
Jaoo 3.557 5.647 3009/4407 14.045 1406/1008

Figure 15.19: Flow graph construction.

As shown in Figure 15.7, the static analysis is a combination of many components,
which we in the following quantify separately. Our benchmark suite, shown in Fig-
ure 15.18, is a collection of small to medium sizedJWIG services, most of which have
been converted from corresponding<bigwig> applications [39]. The right-most col-
umn shows the total time in seconds for the entire suite of program analyses. For all
benchmarks, at most 150 MB memory is used.

The four larger ones are an XML template manager where templates can be up-
loaded and edited (TempMan), an interactive Web board for on-line discussions (Web-
Board), a system for study administration (Bachelor), and a system for management
of the JAOO 2001 conference (Jaoo).

Figure 15.19 shows the resources involved in computing the flow graphs on a 1
GHz Pentium III with 1 GB RAM running Linux. For each benchmark we show the
time in seconds used by Soot, the time in seconds used by phases 1 through 7 described
in Section 15.3, the size of the resulting flow graph, the time in seconds used by the
simplifying Phase 8, and the size of the simplified flow graph. The flow graph sizes are
shown as number of nodes and number of flow edges. The loading time is dominated
by initialization of Soot. Phases 1 through 7 of the flow graph construction is seen to
be linear in the program size. The time for the simplification phase strongly depends
on the complexity of the document constructions, which explains the relatively large
number for theJaoo service. For all benchmarks, the simplification phase substantially
reduces the flow graph size. Furthermore, recall that before the simplification phase,
flow edges may have multiple variables, while after simplification, they all have exactly

304 Extending Java for High-Level Web Service Construction

Name Time Largest Size

Chat 0.103 2/1/5
Guess 0.105 2/1/3
Calendar 0.440 5/9/5
Memory 2.627 7/8/5
TempMan 0.203 11/13/9
WebBoard 1.189 9/11/11
Bachelor 24.673 47/83/24
Jaoo 5.067 33/45/48

Figure 15.20: Summary graph construction.

Name Plug Receive Show False Errors

Chat 0.002 0.004 0.953 0
Guess 0.015 0.002 1.638 0
Calendar 0.017 0.000 0.801 0
Memory 0.003 0.002 1.283 0
TempMan 0.004 0.015 0.720 0
WebBoard 0.016 0.003 1.882 0
Bachelor 0.133 0.009 61.406 0
Jaoo 0.059 0.002 7.620 0

Figure 15.21: Summary graph analysis.

one variable.

Figure 15.20 quantifies the computation of summary graphs, including the string
analysis. For each benchmark we show the total time in seconds and the size of the
largest summary graph, in terms of nodes, template edges, and non-trivial string edges.
The relatively large numbers for theBachelor example correctly reflects that it con-
structs complicated documents. Without graph simplification, the total time for the
Memory example blows up to more than 15 minutes, while theJaoo example was
aborted after 90 minutes. We conclude that summary graph construction appears to
be inexpensive in practice and that graph simplification is worth the effort.

Figure 15.21 deals with the subsequent analysis of all the computed summary
graphs. For each benchmark we show the total time in seconds for each of the three
analyses and the total number of false errors generated by the conservative analyses.
In all cases, the times are smaller than for the other phases. Many benchmarks gen-
erated errors, but by careful inspection, they were all seen to correctly identify actual
XHTML validity errors. Thus, the analysis appears to be precise enough to serve as a
real help to the programmer.

We conclude that theJWIG prototype implementation is certainly feasible to use,
but that there is room for performance improvements for the implementation.

15.7 Plans and Ideas for Future Development 305

15.7 Plans and Ideas for Future Development

Our current system can be extended and improved in many different directions which
we plan to investigate in future work. These can be divided into language design, pro-
gram analysis, and implementation issues, and are briefly described in the following.

15.7.1 Language Design

So far, the design ofJWIG has focused on two topics that are central to the de-
velopment of interactive Web services: sessions and dynamic construction of Web
documents. However, there are many more topics that could benefit from high-level
language-based solutions, as shown in [40].

One example is validation of form input. Many Web services apply intricate
JavaScript client-side code in the Web documents for checking that input forms are
filled in consistently. For instance, it is typical that certain fields must contain num-
bers or email addresses, or that some fields are optional depending on values entered
in other fields. Proper error messages need to be generated when errors are detected
such that the clients have the chance to correct them, and extra checks need to be
performed on the server. The PowerForms language [37] has been developed to at-
tack the problem of specifying form input validation requirements in a more simple
and maintainable way based on regular expressions and boolean logic. It should be
straightforward to integrate PowerForms intoJWIG.

The current XML cast operation inJWIG is somewhat unsatisfactory for two rea-
sons: 1) if a cast fails due to invalid XHTML, an exception is not thrown immediately
since it is not detected until a subsequent show operation; and 2) its expressiveness is
limited—for instance, unions of templates cannot be expressed. One solution to this
may be to use DSD2 descriptions instead of constant templates in the cast operations.
However, to generalize the analyses correspondingly, a technique for transforming a
DSD2 description of an XML language into a summary graph is needed. We believe
that this is theoretically possible—further investigation will show whether it is also
practically feasible.

Another idea is to broaden the view from interactive Web services to whole Web
sites comprising many services and documents. The Strudel system [86] has been
designed to support generation and maintenance of Web sites according to the design
principle that the underlying data, the site structure, and the visual presentation should
be separated. A notion of data graphs allows the underlying data to be described,
a specialized query language is used for defining the site structure, and an HTML
template language that resembles the XML template mechanism inJWIG defines the
presentation. We believe that the development of interactive services can be integrated
into such a process. For sites that comprise both complex interactive session-based
services and more static individual pages, the concepts in theService.Session and
Service.Page classes could be applied.JWIG could also benefit from a mechanism
for specifying dependencies between the pages or sessions and the data, for instance,
such that pages are automatically cached and only recomputed when certain variables
or databases are modified.

We have shown that our template mechanism is suitable for constructing XHTML
documents intended for presentation. If the underlying data of a Web service is rep-

306 Extending Java for High-Level Web Service Construction

resented with XML, as suggested by Strudel, we will need a general mechanism for
extracting and transforming XML values. Currently, we only provide the plug opera-
tion for combining XML templates—a converse “unplug” operation would be required
for deconstructing XML values. Preliminary results suggest that our notion of sum-
mary graphs and our analyses generalize to such general XML transformations [58].
XDuce [110] is a related research language designed to make type-safe XML transfor-
mations. In XDuce, types are simplified DTDs where we instead use the more pow-
erful DSD2 notation. Furthermore, XDuce is a tiny functional language whileJWIG
contains the entire Java language. Instead of relying on a type system for ensuring that
the various XML values are valid according to some schema definition, we perform
data-flow analyses based on summary graphs. Based on these ideas, a current project
aims to makeJWIG a general and safe XML transformation language.

15.7.2 Program Analysis

The experiments indicate that the notion of summary graphs is suitable for modeling
the XML template mechanism and that the analysis precision is adequate. However,
the preliminary string analysis described in Section 15.4.1 can be improved. The mod-
ular design of the analyses makes it possible to replace this simple string analysis by
a more precise one. For example, string concatenation operations could be modeled
more precisely by exploiting the fact that regular languages are closed under finite
concatenation. Because of loops in the flow graphs, this would in general produce
context-free languages so a suitable technique for approximating these by regular lan-
guages is needed. That essentially amounts to applying widening for ensuring termi-
nation. Other operations, such as the substring methods, could also easily be modeled
more precisely than withanystring. An advanced version of such an analysis would
apply flow-sensitivity, such that e.g.if statements that branch according to the value
of a string variable would be taken into account, and instead of modelingreceive by
anystring, the regular languages provided by PowerForms specifications could be ap-
plied. A natural extension to these ideas would be to add a “regular expression cast”
operator to theJWIG language. As the other cast operations, that would provide a
back-door to the analysis which occasionally can be convenient no matter how precise
the analysis may be.

The current program analysis is based on the assumption that the medium used
for communication with the clients is XHTML. However, since the show analysis is
parameterized by a DSD2 description, validity with respect to any XML language
describable by DSD2 can be checked instead. Two obvious alternatives are WML,
Wireless Markup Language[217], which is used for mobile WAP devices with limited
network bandwidth and display capabilities, and VoiceXML,Voice Extensible Markup
Language[33], for audio-based dialogs. Such languages can be described precisely
with DSD2. Only the receive analysis requires modification since it needs to identify
the forms and fields, or whatever the equivalent notions are in other formalisms.

15.7.3 Implementation

Our current implementation is a prototype developed to experiment with the design
and test the performance. This means that there are plenty of ways to improve the

15.8 Conclusion 307

performance of the analysis and the runtime system.
We plan to apply themetafront syntax macros [42] in a future version to im-

prove the quality of the parsing error messages. This will also allow us to experiment
with syntax macros as a means for developing highly domain-specific languages in the
context of Java-based interactive Web services.

The application of Soot in the generation of flow graphs is sometimes a bottleneck
in the analysis, even though the theoretical complexity of this translation is trivial
compared to the other analysis phases. This suggests that we use a tailor-made byte-
code to flow-graph converter instead.

Finally, we believe that it is possible to significantly improve the runtime perfor-
mance forJWIG services by integrating theJWIG runtime system with a Java En-
terprise Edition server. For instance, this allowsService.Page to become essentially
as efficient as JSP code by exploiting that the threads are never suspended byshow

statements. JRockit [4] is a commercial JVM implementation which is tuned for Web
servers with high loads. In particular, it supports light-weight threads which will sig-
nificantly reduce the overhead induced by our session model.

15.8 Conclusion

We have definedJWIG as an extension of the Java language with explicit high-level
support for two central aspects of interactive Web services: 1) sessions consisting of
sequences of client interactions and 2) dynamic construction of Web pages. Com-
pared to other Web service programming languages, these extensions can improve the
structure of the service code. In addition to being convenient during development and
maintenance of Web services, this allows us to perform specialized program analy-
ses that check at compile time whether or not runtime errors may occur due to the
construction of Web pages or communication with the clients via input forms. The
program analyses are based on a unique notion ofsummary graphswhich model the
flow of document fragments and text strings through the program. These summary
graphs prove to contain exactly the information needed to provide all the desired static
guarantees of the program behavior.

This article can be viewed as a case study in program analysis. In contains a total
of seven analyses operating on different abstractions of the source program: one for
making receive edges during flow graph construction, the reaching definitions analysis
in the flow-graph simplification phase, the string analysis, the summary graph con-
struction, and the plug, receive, and show analyses. The whole suite of analyses is
modular in the sense that each of them easily can be replaced by a more precise or
efficient one, if the need should arise. If, for example, future experience shows that
the control-flow information in the flow graphs is too imprecise, one could apply a
variable-type analysis[203] instead of CHA. Or, if the string analysis should turn out
to be inadequate for developing, e.g., WML services, it could be replaced by another.
Analysis correctness is given by the correctness of each phase. For instance, the flow
graphs conservatively approximate the behavior of the originalJWIG programs, the
summary graphs conservatively model the template constructions with respect to the
flow graphs, and the validity results given by the show analysis are conservative with
respect to the summary graphs.

308 Extending Java for High-Level Web Service Construction

The language extensions permit efficient implementation, and despite the theoret-
ical worst-case complexities of the program analyses, they are sufficiently precise and
fast for practical use.

All source code for ourJWIG implementation, including API specifications and
the DSD2 schema for XHTML 1.0, is available fromhttp://www.brics.dk/JWIG/.

Chapter 16

Static Analysis for
Dynamic XML

with Aske Simon Christensen and Michael I. Schwartzbach

Abstract

We describe thesummary graphlattice for dataflow analysis of programs that dy-
namically construct XML documents. Summary graphs have successfully been used
to provide static guarantees in theJWIG language for programming interactive Web
services. In particular, theJWIG compiler is able to check validity of dynamically
generated XHTML documents and to type check dynamic form data. In this paper
we present summary graphs and indicate their applicability for various scenarios. We
also show that summary graphs have exactly the same expressive power as the regular
expression types from XDuce, but that the extra structure in summary graphs makes
them more suitable for certain program analyses.

16.1 Introduction

XML documents will often be generated dynamically by programs. A common exam-
ple is XHTML documents being generated by interactive Web services in response to
requests from clients. Typically, there are no static guarantees that the generated docu-
ments are valid according to the DTD for XHTML. In fact, a quick study of the outputs
from many large commercial Web services shows that most generated documents are
in fact invalid. This is not a huge problem, since the browsers interpreting this out-
put are quite forgiving and do a fair job of rendering invalid documents. Increasingly,
however, Web services will generate output in other XML languages for less tolerant
clients, many of whom will themselves be Web services.

Thus it is certainly an interesting question to statically guarantee validity of dy-
namically generated XML. Our approach is to perform a dataflow analysis of the pro-
gram generating XML documents. This is a standard technique that is basically just
parameterized by the finite lattice used to abstract the computed values and the trans-
fer functions modeling the statements. The contribution described in this paper is the
definition of an appropriate lattice ofsummary graphsthat strikes a balance between
expressive power and complexity. We show how summary graphs have been used to

310 Static Analysis for Dynamic XML

efficiently analyze realistic Web services with great accuracy. Also, we discuss what
kind of operations on XML values that successfully can be captured by such dataflow
analysis. Finally, we show that summary graphs have the same expressive power as
the regular expression types of XDuce [110, 112, 111].

16.2 XML Templates

We have concretely analyzed programs in theJWIG language, which is an extension
of Java designed for programming interactive Web services.JWIG is a descendant
of the<bigwig> language [40]. For the current discussions, we only need to consider
how XML documents are built.JWIG is based on the notion of XMLtemplates, which
are just sequences of XML trees containing namedgaps. A specialplug operation is
used to construct new templates by inserting existing templates or strings into gaps in
other templates. Using XHTML as an example, the main method of aJWIG program
manipulating templates could look like:

public void main() {
XML wrapper = [[<html>

<head>
<title>JWIG Example</title>

</head>
<body>

<[contents]>
</body>

</html>]];

XML item = [[<[text]> <[items]>]];

XML x = [[<ul class=[kind]> <[items]>]];

for (int i=0; i<n; i++) {
x = x<[items = item<[text=i]];

}
show wrapper<[contents=x]<[kind="large"];

}

Gaps appear either astemplate gaps, such ascontents, or asattribute gaps, such as
kind. Both strings and templates may be plugged into template gaps, whereas attribute
gaps only allow strings. The plug operation,x<[g=y], returns a copy ofx where copies
of y have been inserted into allg gap. Template constants are denoted by[[. . .]].

Note that XML values need not be constructed bottom-up, since gaps can be left
in templates as targets for later plug operations. Also, a plug operation will fill in all
occurrences of the given gap, even if they originate from different subtemplates. The
more common language design of building XML values from constructors is a special
case of this mechanism, since e.g. a construction likel[X] from XDuce corresponds
to [[<l><[g]></l>]] <[g=X]. The plug operation has proved itself to be flex-
ible and intuitive. Also, it is convenient to write larger constant fragments in ordinary
XML syntax rather than using nested constructor invocations.

16.3 Summary Graphs 311

16.3 Summary Graphs

We want to perform dataflow analysis of programs constructing XML values by plug-
ging together templates. This key ingredient for such an analysis is a finite lattice for
summarizing the state of a computation for each program point. Based on earlier expe-
riences [195, 39], we have defined the lattice ofsummary graphs. Such a graph has as
nodes the set of template constants occurring in the given program. The edges corre-
spond to possible pluggings of gaps with strings or other templates. Given a concrete
program, we letG be the set of gap names that occur andN be a set oftemplate indices
denoting the instances of XML template constants. A summary graphSGis formally
defined as follows:

SG= (R,T,S,P)

where:

R⊆ N is a set ofroot nodes,
T ⊆ N×G×N is a set oftemplate edges,
S: N×G→ REGis astring edgemap, and
P : G→ 2N×Γ×Γ is agap presencemap.

HereΓ = 2{OPEN,CLOSED} is thegap presence latticewhose ordering is set inclusion,
andREGis the set of regular languages over the Unicode alphabet.

Intuitively, the languageL(SG) of a summary graphSGis the set of XML docu-
ments that can be obtained by unfolding its templates, starting from a root node and
plugging templates and strings into gaps according to the edges. The presence of a
template edge(n1,g,n2) ∈ T informally means that the template with indexn2 may be
plugged into theg gaps in the template with indexn1, and a string edgeS(n,g) = L
means that every string in the regular languageL may be plugged into theg gaps in the
template with indexn.

The gap presence map,P, specifies for each gap nameg which template constants
may contain openg gaps reachable from a root and whetherg gaps may or must ap-
pear somewhere in the unfolding of the graph, either as template gaps or as attribute
gaps. The first component ofP(g) denotes the set of template constants with open
g gaps, and the second and third components describe the presence of template gaps
and attribute gaps, respectively. Given such a triple,P(g), we letnodes(P(g)) denote
the first component. For the other components, the valueOPEN means that the gaps
may be open, andCLOSED means that they may be closed or never have occurred. At
runtime, if a document is shown with open template gaps, these are treated as empty
strings. For open attribute gaps, the entire attribute is removed. We need the gap pres-
ence information in the summary graphs to 1) determine where edges should be added
when modeling plug operations, 2) model the removal of gaps that remain open when
a document is shown, and 3) detect that plug operations may fail because the specified
gaps have already been closed.

This unfolding of summary graphs is explained more precisely with the following
formalization:

unfold(SG) = {d | ∃r ∈ R : SG, r ` t(r)⇒ d whereSG= (R,T,S,P)}

312 Static Analysis for Dynamic XML

Here,t(n) denotes the template with indexn. Theunfolding relation,⇒, is defined by
induction in the structure of the XML template. For the parts that do not involve gaps
the definition is a simple recursive traversal:

SG,n` str⇒ str

SG,n` xml1 ⇒ xml′1 SG,n` xml2⇒ xml′2
SG,n` xml1 xml2⇒ xml′1 xml′2

SG,n` atts⇒ atts′ SG,n` xml⇒ xml′

SG,n` <name atts> xml</name>⇒ <name atts′> xml′ </name>

SG,n` ε⇒ ε

SG,n` name="str"⇒ name="str"

SG,n` atts1 ⇒ atts′1 SG,n` atts2⇒ atts′2
SG,n` atts1 atts2⇒ atts′1 atts′2

For template gaps we unfold according to the string edges and template edges and
check whether the gap may be open:

str∈ S(n,g)
(R,T,S,P),n` <[g]>⇒ str

(n,g,m) ∈ T (R,T,S,P),m` t(m)⇒ xml
(R,T,S,P),n` <[g]>⇒ xml

n∈ nodes(P(g))
(R,T,S,P),n` <[g]>⇒ <[g]>

For attribute gaps we unfold according to the string edges, and check whether the gap
may be open:

str∈ S(n,g)
(R,T,S,P),n` name=[g]⇒ name="str"

n∈ nodes(P(g))
(R,T,S,P),n` name=[g]⇒ name=[g]

Using a functionclosethat removes all remaining gaps in an XML template, we now
define the language of a summary graph by:

L(SG) = {close(d) | d ∈ unfold(SG)}
Summary graphs for a given program form a lattice where the ordering is defined as
one would expect:

(R1,T1,S1,P1)v (R2,T2,S2,P2) ⇔
R1⊆R2∧T1⊆T2 ∧ ∀n∈ N,g∈G : S1(n,g)⊆S2(n,g)∧P1(g)vP2(g)

where the ordering on gap presence maps is defined by componentwise set inclusion.
This respects language inclusion: ifSG1 v SG2, thenL(SG1)⊆ L(SG2), but the con-
verse implication is false.

Continuing the previous example, the summary graph inferred for the XML value
being shown to the client is:

16.3 Summary Graphs 313

<ul class=[kind]>
 <[items]>

<[text]>
<[items]>

contents
kind
items
text

Gap presence: (Ø,{CLOSED},{CLOSED})
(Ø,{CLOSED},{CLOSED})
({2,3},{OPEN},{CLOSED})
(Ø,{CLOSED},{CLOSED})

<html>
 <head>
 <title>JWIG Example</title>
 </head>
 <body>
 <[contents]>
 </body>
</html>

"large"

text

contents

kind

items

items

1 2

3

0(−?[1−9][0−9]*)

It is relatively simple to define appropriate transfer functions and perform a standard
monotone dataflow analysis for theJWIG language [57]. The most interesting example
is the template plug operation,z= x <[g = y] wherey is of type XML. This operation
assigns toz a copy ofx wherey has been plugged into allg gaps. It is modeled by the
following transfer function:

(Rz,Tz,Sz,Pz) =
(Rx,
Tx∪Ty∪{(n,g,m) | n∈ nodes(Px(g)) ∧ m∈ Ry)},
λ(m,h).Sx(m,h)∪Sy(m,h),
λh.if h=g then Py(h)

else (px∪ py,merge(tx, ty),merge(ax,ay))
where Px(h) = (px, tx,ax) and Py(h) = (py, ty,ay))

where

merge(γ1,γ2) = if γ1={OPEN}∨ γ2={OPEN} then {OPEN} else γ1∪ γ2.

The tuples(Rx,Tx,Sx,Px) and(Ry,Ty,Sy,Py) denote the summary graphs that are asso-
ciated tox andy at the entry point, and(Rz,Tz,Sz,Pz) is the summary graph forzat the
exit point. The roots in the resulting graph are those of thex graph since it represents
the outermost template. The template edges become the union of those in the two
given graphs plus a new edge from each node that may have open gaps of the given
name to each root in the second graph. The string edge sets are simply joined without
adding new information. For the gaps that are plugged into, we take the gap pres-
ence information from the second graph. For the other gaps we merge the information
appropriately.

The set of regular expressions describing computed string values are determined
through a separate dataflow analysis. Thus we obtain summary graphs that conserva-
tively describe all computed XML values at each program point; for more details see
[57]. The worst-case complexity for this algorithm isO(n6), wheren is the size of the
program.

314 Static Analysis for Dynamic XML

16.4 Static Guarantees in JWIG

Based on the inferred summary graphs, various static guarantees can be issued.
First we must deal with a self-inflicted problem stemming from the liberal gap-

and-plug mechanism. We need to know that whenever a gap is being plugged, it is
actually present in the XML value. However, this information is directly available
in the gap presence map component, and a trivial inspection suffices. Note that in
the special case of constructors, corresponding to[[<l><[g]></l>]] <[g=X],
this property trivially holds.

Second, we need to validate the XML values being generated. This is dependent
of the XML language in question, which must first be specified. We could use or-
dinary DTDs for this purpose, but have instead chosen the XML schema language
DSD2 [160], which is a further development of DSD [133]. We have a general algo-
rithm that given a summary graphSGand a DSD2 schema can verify that every doc-
ument inL(SG) validates according to the schema. The DSD2 schema for XHTML
is more comprehensive than most others, since it specifies correct formats for attribute
values that are URIs and includes several context-sensitive requirements that are only
stated as comments in the official DTD.

The final analysis is specific to XHTML and verifies that the form data expected
by the server is actually present in the last document being shown to the client.

These analyses are fully specified in [57]. They have rather high worst-case com-
plexities, but are in practice able to handle realistic program. The following table
shows statistics for some small to largish benchmarks.

Name Lines Templates Largest Graph Total Time

Chat 80 4 (2,6) 5.37
Guess 94 8 (2,4) 7.15
Calendar 133 6 (5,14) 7.03
Memory 167 9 (7,13) 9.72
TempMan 238 13 (11,22) 7.72
WebBoard 766 32 (9,22) 9.77
Bachelor 1,078 88 (47,107) 115.64
Jaoo 3,923 198 (33,93) 36.00

To indicate the scale of each benchmark, we give the number of lines of code and the
number of template constants. We also show the size of the largest summary graph
computed for each benchmark by indicating the number of nodes (reachable from
the roots) and the number of edges. The time, measured in seconds, is the total for
inferring summary graphs and performing the three subsequent analyses.

16.5 Analyzing Deconstruction

The present version of theJWIG language does not contain any mechanism for de-
construction of XML values. However, the summary graph analysis can—with simple
modifications—easily handle this.

We extend theJWIG language with a notion of deconstruction based on XPath [61]

16.5 Analyzing Deconstruction 315

that generalizes most other proposals. Since we are working on XML values contain-
ing gaps, we get two variations.

Theselectexpression looks likex>[path], wherex is an XML value andpath is
a location path. The result is an array of XML values corresponding to those subtrees
that are rooted by the elements of the computed node set. The XML valuex is first
closed, that is, all gaps are removed, as was the case beforeshow operations. Other
deconstruction mechanisms can clearly be obtained as special cases. For example, the
pattern matching of XDuce corresponds to writing a selector path for each case and
trying them out in turn.

By exploiting the gap mechanism, we can also introduce a complementary opera-
tion that replaces parts of an XML values by gaps. Thegapify expression looks like
x>[path=g], wherex is an XML value,path is a location path, andg is an identi-
fier. The result is a copy ofx where the subtrees rooted by the computed node set are
replaced by gaps namedg. Again,x is first closed. Ifx is the XML value:

<html>
<head>

<title>
JWIG example

</title>
</head>
<body>

<ul class="large">
0
1
2
3

</body>

</html>

then the result ofx>[//li[text()>’0’] is the following XML array with three en-
tries:

{ [[1]], [[2]], [[3]] }

and the result ofx>[//li[text()>’0’ = g] is the “negative image” in form of the
XML value with gaps namedg in place of the selected subtemplates:

<html>
<head>

<title>
JWIG example

</title>
</head>
<body>

<ul class="large">
0
<[g]>
<[g]>
<[g]>

316 Static Analysis for Dynamic XML

</body>
</html>

The summary graph analysis can be extended with transfer functions for select and
gapify. In [57], the close operation only occurs in connection withshow operations.
However, because of our extensions with the select and gapify we now need to model
close operations separately. We must remove all gaps that might be open according to
the gap presence map. To model that a template gap is removed, one simply adds a
template edge to a node with an empty template. For attribute gaps, we need a small
modification of the string edge component of the summary graph structure:

S: N×G→ REG×2{÷}

The new element÷ represents the possibility that the designated attribute might be
removed. The definition of the unfolding relation is extended with a rule describing
this meaning:

(,÷) ∈ S(n,g)
(R,T,S,P),n` name=[g]⇒ ε

To model that an attribute gap is removed in a close operation, we just add÷ to the
appropriate string edge. The gap presence map of the result of a close operation maps
all gaps to(/0,{CLOSED},{CLOSED}).

The core observation when modeling select and gapify operations is in both cases
that an XPath selector path can be evaluated symbolically on a summary graph. The
resulting node set is represented abstractly by assigning a status to each element in all
templates assigned to nodes in the summary graph. The possible status values are:

• all: every occurrence of this element belongs to the node set in every unfolding
of the summary graph;

• some: at least one occurrence of this element belongs to the node set in every
unfolding of the summary graph;

• definite: the conditions for bothall andsomeare satisfied;

• none: no occurrences of this element belong to the node set in any unfolding of
the summary graph;

• don’t know: none of the above can be determined.

This forms a 5-valued logic reminiscent of the logic used when analyzing validity with
respect to DSD2 schemas [57]. Based on these status values, it is straightforward
conservatively to compute summary graphs for the results of select and gapify.

For a select expression, all subtemplates whose root elements do not have status
noneare added to the summary graph, inherit all relevant edges, and are made the only
root nodes.

For a gapify expression, all subtemplates whose root elements do not have status
noneare replaced by a gap namedg. If the status issomeor don’t know, the new gap
will have a template edge to a copy of the old subtemplate. The gap presence map of
the new summary graph will be

λh.if h=g then (hits,any,{CLOSED}) else (/0,{CLOSED},{CLOSED})

16.5 Analyzing Deconstruction 317

wherehits is the set of all template nodes containing an element with status different
from none, andany is {OPEN} if there is an element with statusdefiniteor some,
{CLOSED} if all elements have statusnone, and{OPEN, CLOSED} otherwise.

Continuing the example from Section 16.4, the result of the select expression is
described by

Gap presence: text (Ø,{CLOSED},{CLOSED})

<[text]>
1

0|(−?[1−9][0−9]*)

and the result of the gapify expression by

<ul class=[kind]>
 <[items]>

<html>
 <head>
 <title>JWIG Example</title>
 </head>
 <body>
 <[contents]>
 </body>
</html>

"large"

contents

kind

items

items
<[items]>

<[text]>

text

<[g]>

g

1 2

3

4

Gap presence: contents
kind
items
g

(Ø,{CLOSED},{CLOSED})

({3},{OPEN,CLOSED},{CLOSED})
text (Ø,{CLOSED},{CLOSED})

(Ø,{CLOSED},{CLOSED})

(Ø,{CLOSED},{CLOSED}) 0|(−?[1−9][0−9]*)

items

items

We are currently implementing the select and gapify operations and the associated
extensions of the summary graph analysis in theJWIG system to test the analysis
precision and performance in practice.

Deconstruction is mainly relevant for XML values that are imported from external
sources. To obtain non-trivial analyses, we need to obtain summary graph descriptions
of such values. In practice this will by done by performing automatic translations from
DTDs or DSD2 schemas. We believe that such translations can be made sufficiently
precise. As an example, consider the following DTD:

<!ELEMENT card (name,title?,phone+,logo)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT logo EMPTY>
<!ATTLIST logo src CDATA #REQUIRED>

It is exactly captured by the following summary graph:

318 Static Analysis for Dynamic XML

<card>
 <[name]>
 <[title]>
 <[phone]>
 <[logo]>
</card>

<name>
 <[pcdata]>
</name>

title

name

title

<title>
 <[pcdata]>
</title>

<phone>
 <[pcdata]>
</phone>
<[phone]>

phone

phone

phone

pcdata

pcdata

pcdata

U*

U*

U*

<logo src=[cdata]/>
logo

U*

cdata

where all gaps are closed andU is the set of all Unicode characters. For a richer schema
language as DSD2 the translation will of course become more complex, and it will in
some cases be necessary to perform conservative approximations.

16.6 Regular Expression Types

Summary graphs turn out to have the same expressive power as the regular expression
types of XDuce [110]. To be exact, this comparison only holds for a restricted version
of summary graphs. Since XDuce does not support attributes, those must be left out.
Also, summary graphs allow for restrictions on character data appearing in element
contents, which is also not supported by XDuce.

Regular expression types are essentially solutions to recursive equations using the
operators() (the empty value),l[T] (singleton element),S|T (union), andS,T (se-
quencing). For example, the derived operatorT* is defined by the equation:

X = T,X | ()

A regular expression type defines a set of XML values corresponding to all finite un-
foldings. It is now a simple matter to build inductively a summary graph that defines
the same set of XML values. The four operators are modeled by summary graphs as
follows:

�
�

�
�

<l><[g]></l>

�� ��-

- -

�
�

�
�

-

�
�

�
�

-

HHHj
���*

���*
HHHj

l[T] T

<[g]><[h]>

g

g

h
S,T

S|T <[g]>
g

()

g

S

T

S

T

All gaps are closed in these summary graphs. An edge to a variable is modeled by an
edge to the root node of the summary graph corresponding to its right-hand side. For
example, the derived summary graph forT* is:

16.6 Regular Expression Types 319

$'
?

�
�

�
�

--

?

�
�

�
� ?

�
�

�
�

<[g]> <[g]><[h]>

T

g

gg

h

Note that the sequencing operator is associative as required in XDuce. The inverse
translation is equally straightforward, but requires that the summary graph is firstnor-
malized. First, all open gaps are translated into closed ones by adding a template edge
to an empty template. Second, all non-empty template constants are decomposed into
one of the forms<l><[g]></l> or <[g]><[h]>. This is done by repeatedly applying
the rewritings sketched by:

�����*

-HHHHHj

�����*

-HHHHHj

-

�
�

�
���

�����*

-

@
@

@
@@R

HHHHHj�
�

�
�
�����*

HHHHHj

�
�

�
�

�
�

�
�<[g]><[h]>

g

h Y

X

�����*

-HHHHHj
�
�

�
�

-�
�

�
�

<l><[g]></l> X
g

�
�

�
�

�
�

�
�

<l>X</l>

XY �

�

Given a normalized summary graph, we first assign a type variable to each node. Then
for each node of the form:

�
�

�
�

-<l><[g]></l>
X g

Y1,Y2, . . . ,Yn

we define the type equations:

X = l[Y]
Y = Y1 | . . .|Yn

for each node of the form:

�
�

�
�
�����*

HHHHHj

<[g]><[h]>
X

g

h
Z1,Z2, . . . ,Zk

Y1,Y2, . . . ,Yn

we define the type equations:

X = Y,Z
Y = Y1 | . . .|Yn

Z = Z1 | . . .| Zk

and for empty nodes:

320 Static Analysis for Dynamic XML

�
�

�
�X

we define the type equation:

X = ()

Finally, for the root nodesR1, . . . ,Rn we define the type equation:

R = R1 | . . .| Rn

and the typeR is the final result of the translation. These two translations demonstrate
the close relationship between our approach and that of XDuce.

Our analysis is thus also able to infer regular expression types for programs that
dynamically construct XML values. This result does not directly apply to XDuce, since
we infer different types for variables at each program point. It is, however, possible
to subsequently verify a subtype relationship between each declared and inferred type.
The resulting type reconstruction algorithm is of course not complete with respect to
the type rules of XDuce [110]; in fact, their abilities to accept programs are most likely
incomparable.

Note that the summary graph lattice contains extra structure in the form of the
root sets and the gap presence maps. Also, the lattice order is more fine-grained than
the language inclusion used as subtyping in XDuce. All this constitutes a scaffolding
that is required during analysis but is not needed to express the final results. Note
also that the analysis uses a kind of constructor polyvariance, since constructors in the
summary graph are represented once for each invocation site. We believe that similar
ideas would need to be developed for XDuce, if flow-sensitive type reconstruction
were to be attempted directly.

16.7 Conclusion

We have presented the lattice of summary graphs as a convenient means for abstracting
sets of XML values during dataflow analyses of programs that dynamically construct
XML documents. Summary graphs have been used in the fully implementedJWIG
language, and we have indicated the applicability for other scenarios.

Bibliography

[1] A. V. A HO, R. SETHI, AND J. D. ULLMAN , Compilers – Principles, Tech-
niques, and Tools, Addison-Wesley, November 1985.

[2] L. A LSCHULER, XML Schemas: Last word on last call, July 2000.
http://www.xml.com/pub/a/2000/07/05/specs/lastword.html.

[3] V. A PPARAO ET AL., Document Object Model (DOM) level
1 specification, October 1998. W3C Recommendation.
http://www.w3.org/TR/REC-DOM-Level-1/.

[4] A PPEAL VIRTUAL MACHINES, JRockit – the faster server JVM, 2002.
http://www.jrockit.com/.

[5] K. R. APT, Ten years of Hoare’s logic: A survey—part I, ACM Transactions on
Programming Languages and Systems, 3 (1981), pp. 431–483.

[6] K. A RNOLD, J. GOSLING, AND D. HOLMES, The Java Programming Lan-
guage, Addison-Wesley, 3rd ed., June 2000.

[7] D. ATKINS, T. BALL , M. BENEDIKT, G. BRUNS, K. COX, P. MATAGA , AND

K. REHOR, Experience with a domain specific language for form-based ser-
vices, in Proc. Conference on Domain-Specific Languages, DSL ’97, USENIX,
October 1997.

[8] D. ATKINS, T. BALL , G. BRUNS, AND K. COX, Mawl: a domain-specific
language for form-based services, IEEE Transactions on Software Engineering,
25 (1999), pp. 334–346.

[9] L. ATKINSON, Core PHP Programming, Prentice Hall, 2nd ed., August 2000.

[10] A. AYARI AND D. BASIN, Bounded model construction for monadic second-
order logics, in Proc. 12th International Conference on Computer-Aided Verifi-
cation, CAV ’00, vol. 1855 of LNCS, Springer-Verlag, July 2000.

[11] A. AYARI , D. BASIN, AND S. FRIEDRICH, Structural and behavioral modeling
with monadic logics, in Proc. 29th International Symposium on Multiple-Valued
Logic, ISMVL ’99, IEEE Computer Society, May 1999.

[12] A. AYARI , D. BASIN, AND A. PODELSKI, LISA: A specification language
based on WS2S, in Proc. 11th International Workshop on Computer Science
Logic, CSL ’97, vol. 1414 of LNCS, Springer-Verlag, August 1997.

322 BIBLIOGRAPHY

[13] T. BALL AND S. K. RAJAMANI , Bebop: A symbolic model checker for boolean
programs, in Proc. 7th International Workshop on SPIN Software Model Check-
ing, SPIN ’00, vol. 1885 of LNCS, Springer-Verlag, August/September 2000.

[14] P. BARFORD, A. BESTAVROS, A. BRADLEY, AND M. CROVELLA, Changes
in web client access patterns: Characteristics and caching implications, World
Wide Web Journal, 2 (1999), pp. 15–28. Kluwer.

[15] G. BARISH AND K. OBRACZKA, World Wide Web caching: Trends and
techniques, IEEE Communications Magazine, Internet Technology Series, 38
(2000), pp. 178–184.

[16] D. BASIN AND S. FRIEDRICH, Combining WS1S and HOL, in Frontiers of
Combining Systems 2, D. M. Gabbay and M. de Rijke, eds., vol. 7 of Studies in
Logic and Computation, Research Studies Press/Wiley, February 2000, pp. 39–
56.

[17] D. BASIN, S. FRIEDRICH, AND S. MÖDERSHEIM, B2M: A semantic based
tool for BLIF hardware descriptions, in Proc. 3rd International Conference on
Formal Methods in Computer-Aided Design, FMCAD ’00, vol. 1954 of LNCS,
Springer-Verlag, November 2000, pp. 91–107.

[18] D. BASIN AND N. KLARLUND, Automata based symbolic reasoning in hard-
ware verification, Formal Methods In System Design, 13 (1998), pp. 255–288.
Kluwer. Earlier version in CAV ’95, vol. 939 of LNCS, Springer-Verlag.

[19] K. BAUKUS, K. STAHL , S. BENSALEM, AND Y. L AKHNECH, Abstracting
WS1S systems to verify parameterized networks, in Proc. 6th International
Workshop on Tools and Algorithms for Construction and Analysis of Systems,
TACAS ’00, vol. 1785 of LNCS, Springer-Verlag, March/April 2000.

[20] B. BEHLENDORF ET AL., The Apache HTTP server project, 2002.
http://httpd.apache.org/.

[21] M. BENEDIKT, T. REPS, AND M. SAGIV , A decidable logic for describing
linked data structures, in Programming Languages and Systems, Proc. 8th Eu-
ropean Symposium on Programming, ESOP ’99, vol. 1576 of LNCS, Springer-
Verlag, March 1999.

[22] T. BERNERS-LEE, R. FIELDING, AND H. FRYSTYK, Hy-
pertext transfer protocol – HTTP/1.0, May 1996. RFC1945.
http://www.w3.org/Protocols/rfc1945/rfc1945.

[23] M. BIEHL, N. KLARLUND , AND T. RAUHE, Algorithms for guided tree
automata, in Proc. 1st International Workshop on Implementing Automata,
WIA ’96, vol. 1260 of LNCS, Springer-Verlag, August 1996.

[24] M. BIEHL, N. KLARLUND , AND T. RAUHE, Mona: Decidable arithmetic in
practice, in Proc. 4th International Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems, FTRTFT ’96, vol. 1135 of LNCS, Springer-
Verlag, September 1996.

BIBLIOGRAPHY 323

[25] P. V. BIRON AND A. M ALHOTRA, XML Schema part 2: Datatypes, May 2001.
W3C Recommendation.http://www.w3.org/TR/xmlschema-2/.

[26] P. E. BLACK AND P. J. WINDLEY, Inference rules for programming lan-
guages with side effects in expressions, in Proc. 9th International Conference
on Theorem Proving in Higher Order Logics, TPHOLs ’96, vol. 1125 of LNCS,
Springer-Verlag, August 1996.

[27] S. BOAG ET AL., XQuery 1.0: An XML query language, December 2001. W3C
Working Draft.http://www.w3.org/TR/xquery/.

[28] J.-P. BODEVEIX AND M. FILALI , Quantifier elimination technics for program
validation, tech. rep., IRIT 97-44-R, 1997.

[29] J.-P. BODEVEIX AND M. FILALI , FMona: A tool for expressing validation
techniques over infinite state systems, in Proc. 6th International Workshop on
Tools and Algorithms for Construction and Analysis of Systems, TACAS ’00,
vol. 1785 of LNCS, Springer-Verlag, March/April 2000.

[30] B. BOS, H. W. LIE, C. LILLEY, AND I. JACOBS, Cascading style
sheets, level 2, CSS2 specification, May 1998. W3C Recommendation.
http://www.w3.org/TR/REC-CSS2/.

[31] R. BOURRET, Namespace myths exploded, March 2000.
http://www.xml.com/pub/a/2000/03/08/namespaces/.

[32] R. BOURRET, J. COWAN, I. MACHERIUS, AND S. S. LAURENT, Document
definition markup language (DDML) specification, version 1.0, January 1999.
W3C Note.http://www.w3.org/TR/NOTE-ddml.

[33] L. BOYER, P. DANIELSEN, J. FERRANS, G. KARAM , D. LADD, B. LUCAS,
AND K. REHOR, Voice eXtensible Markup Language, version 1.0, May 2000.
W3C Note.http://www.w3.org/TR/voicexml/.

[34] C. BRABRAND, Synthesizing safety controllers for interactive Web services,
Master’s thesis, Department of Computer Science, University of Aarhus, De-
cember 1998.

[35] C. BRABRAND, <bigwig> Version 1.3 – Reference Manual, BRICS, Depart-
ment of Computer Science, University of Aarhus, September 2000. Notes Series
NS-00-4.

[36] C. BRABRAND, A. MØLLER, S. OLESEN, AND M. I. SCHWARTZBACH,
Language-based caching of dynamically generated HTML, World Wide Web
Journal, (2002). Kluwer. (See Dissertation Chapter 12).

[37] C. BRABRAND, A. MØLLER, M. RICKY, AND M. I. SCHWARTZBACH, Pow-
erForms: Declarative client-side form field validation, World Wide Web Jour-
nal, 3 (2000), pp. 205–314. Kluwer. (See Dissertation Chapter 11).

324 BIBLIOGRAPHY

[38] C. BRABRAND, A. MØLLER, A. SANDHOLM , AND M. I. SCHWARTZBACH,
A runtime system for interactive Web services, Computer Networks, 31 (1999),
pp. 1391–1401. Elsevier. Also in Proc. 8th International World Wide Web Con-
ference, WWW8. (See Dissertation Chapter 10).

[39] C. BRABRAND, A. MØLLER, AND M. I. SCHWARTZBACH, Static validation of
dynamically generated HTML, in Proc. ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, PASTE ’01, June
2001, pp. 221–231. (See Dissertation Chapter 13).

[40] C. BRABRAND, A. MØLLER, AND M. I. SCHWARTZBACH, The<bigwig>
project, ACM Transactions on Internet Technology, 2 (2002), pp. 79–114. (See
Dissertation Chapter 9).

[41] C. BRABRAND AND M. I. SCHWARTZBACH, Growing languages with meta-
morphic syntax macros, in Proc. ACM SIGPLAN Workshop on Partial Evalua-
tion and Semantics-Based Program Manipulation, PEPM ’02, January 2002.

[42] C. BRABRAND AND M. I. SCHWARTZBACH, The metafront system: Extensible
syntax processing. In preparation, 2002.

[43] T. BRAY, C. FRANKSTON, AND A. M ALHOTRA, Document content descrip-
tion for XML, July 1998. W3C Note.http://www.w3.org/TR/NOTE-dcd.

[44] T. BRAY, D. HOLLANDER, AND A. L AYMAN , Namespaces in XML, January
1999. W3C Recommendation.http://www.w3.org/TR/REC-xml-names/.

[45] T. BRAY, J. PAOLI , C. M. SPERBERG-MCQUEEN, AND E. MALER, Extensi-
ble Markup Language (XML) 1.0 (second edition), October 2000. W3C Rec-
ommendation.http://www.w3.org/TR/REC-xml.

[46] R. BROOKS-BILSON, Programming ColdFusion, O’Reilly & Associates, Au-
gust 2001.

[47] R. E. BRYANT, Graph-based algorithms for boolean function manipulation,
IEEE Transactions on Computers, 35 (1986), pp. 677–691.

[48] R. E. BRYANT, Symbolic boolean manipulation with ordered binary-decision
diagrams, ACM Computing Surveys, 24 (1992), pp. 293–318.

[49] J. R. BÜCHI, Weak second-order arithmetic and finite automata, Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 6 (1960), pp. 66–92.

[50] J. R. BÜCHI, On a decision method in restricted second-order arithmetic, in
Proc. 1st International Congress on Logic, Methodology, and Philosophy of
Science, Stanford University Press, 1962.

[51] J. R. BURCH, E. M. CLARKE, K. L. M CMILLAN , D. L. DILL , AND L. J.
HWANG, Symbolic model checking:1020 states and beyond, in Proc. 5th Annual
IEEE Symposium on Logic in Computer Science, LICS ’90, IEEE Computer
Society, June 1990.

BIBLIOGRAPHY 325

[52] W. R. BUSH, J. D. PINCUS, AND D. J. SIELAFF, A static analyzer for finding
dynamic programming errors, Software: Practice and Experience, 30 (2000),
pp. 775–802. John Wiley & Sons.

[53] K. M. BUTLER, D. E. ROSS, R. KAPUR, AND M. R. MERCER, Heuristics to
compute variable orderings for efficient manipulation of ordered binary deci-
sion diagrams, in Proc. 28th Design Automation Conference, DAC ’91, ACM,
June 1991.

[54] P. CAO, J. ZHANG, AND K. BEACH, Active cache: Caching dynamic con-
tents on the Web, in Proc. IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing, Middleware ’98, Springer-Verlag,
September 1998.

[55] J. CHALLENGER, P. DANTZIG, AND A. IYENGAR, A scalable system for con-
sistently caching dynamic Web data, in Proc. 18th Annual Joint Conference
of the IEEE Computer and Communications Societies, INFOCOM ’99, March
1999.

[56] D. R. CHASE, M. WEGMAN, AND F. K. ZADECK, Analysis of pointers and
structures, in Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’90, June 1990.

[57] A. S. CHRISTENSEN, A. MØLLER, AND M. I. SCHWARTZBACH, Extending
Java for high-level Web service construction, Tech. Rep. RS-02-11, BRICS,
March 2002. Submitted for journal publication. (See Dissertation Chapter 15).

[58] A. S. CHRISTENSEN, A. MØLLER, AND M. I. SCHWARTZBACH, Static anal-
ysis for dynamic XML, Tech. Rep. RS-02-24, BRICS, May 2002. Submitted.
(See Dissertation Chapter 16).

[59] J. CLARK, XSL transformations (XSLT) specification, November 1999. W3C
Recommendation.http://www.w3.org/TR/xslt.

[60] J. CLARK, TREX – tree regular expressions for XML, February 2001.
http://www.thaiopensource.com/trex/spec.html.

[61] J. CLARK AND S. DEROSE, XML path language, November 1999. W3C Rec-
ommendation.http://www.w3.org/TR/xpath.

[62] J. CLARK AND M. M URATA, RELAX NG specification, December 2001. OA-
SIS.http://www.oasis-open.org/committees/relax-ng/.

[63] C. CONSEL ET AL., Domain-specific languages. http://compose.labri.fr/

documentation/dsl/.

[64] S. A. COOK AND D. C. OPPEN, An assertion language for data structures,
in Proc. 2nd ACM Symposium on Principles of Programming Languages,
POPL ’75, January 1975.

326 BIBLIOGRAPHY

[65] C. CORBETT, M. B. DWYER, J. HATCLIFF, AND ROBBY, A language frame-
work for expressing checkable properties of dynamic software, in Proc. 7th In-
ternational Workshop on SPIN Software Model Checking, SPIN ’00, vol. 1885
of LNCS, Springer-Verlag, August/September 2000.

[66] T. H. CORMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algo-
rithms, MIT Press, 1990.

[67] P. COUSOT, Formal models and semantics, in Handbook of Theoretical Com-
puter Science, J. van Leeuwen, ed., vol. B, MIT Press/Elsevier, 1990, pp. 841–
993.

[68] K. COX, T. BALL , AND J. C. RAMMING , Lunchbot: A tale of two ways to pro-
gram Web services, Tech. Rep. BL0112650-960216-06TM, AT&T Bell Labo-
ratories, 1996.

[69] N. DAMGAARD , N. KLARLUND , AND M. I. SCHWARTZBACH, YakYak: Pars-
ing with logical side constraints, in Developments in Language Theory. Foun-
dations, Applications, and Perspectives, G. Rozenberg and W. Thomas, eds.,
World Scientific, November 2000, pp. 286–304.

[70] A. DAVIDSON ET AL., Schema for object-oriented XML 2.0, July 1999. W3C
Note.http://www.w3.org/TR/NOTE-SOX/.

[71] J. DEAN, D. GROVE, AND C. CHAMBERS, Optimization of object-oriented
programs using static class hierarchy analysis, in Proc. 9th European Con-
ference on Object-Oriented Programming, ECOOP ’95, vol. 952 of LNCS,
Springer-Verlag, August 1995.

[72] S. DEROSE, E. MALER, AND R. DANIEL JR., XML pointer language, Septem-
ber 2001. W3C Candidate Recommendation.http://www.w3.org/TR/xptr.

[73] S. DEROSE, E. MALER, AND D. ORCHARD, XML linking language, June
2001. W3C Recommendation.http://www.w3.org/TR/xlink.

[74] D. L. DETLEFS, K. R. M. LEINO, G. NELSON, AND J. B. SAXE, Extended
static checking. Research Report 159, Compaq Systems Research Center, De-
cember, 1998.

[75] A. V. DEURSEN, P. KLINT, AND J. VISSER, Domain-specific languages, in
The Encyclopedia of Microcomputers, Marcel Dekker, 2002, pp. 53–68.

[76] J. DONER, Tree acceptors and some of their applications, Journal of Computer
and System Sciences, 4 (1970), pp. 406–451. Academic Press.

[77] N. DOR, M. RODEH, AND M. SAGIV , Checking cleanness in linked lists,
in Proc. 7th International Static Analysis Symposium, SAS ’00, vol. 1824 of
LNCS, Springer-Verlag, June/July 2000.

[78] F. DOUGLIS, A. HARO, AND M. RABINOVICH, HPP: HTML macro-
preprocessing to support dynamic document caching, in Proc. 1st USENIX

BIBLIOGRAPHY 327

Symposium on Internet Technologies and Systems, USITS ’97, December
1997.

[79] M. DUBINKO, S. SCHNITZENBAUMER, M. WEDEL, AND

D. RAGGETT, XForms requirements, April 2001. W3C Working Draft.
http://www.w3.org/TR/xhtml-forms-req.html.

[80] J. ELGAARD, Verifying C pointer programs using monadic second-order logic,
Master’s thesis, Department of Computer Science, University of Aarhus, 1999.

[81] J. ELGAARD, N. KLARLUND , AND A. M ØLLER, MONA 1.x: New techniques
for WS1S and WS2S, in Proc. 10th International Conference on Computer-Aided
Verification, CAV ’98, vol. 1427 of LNCS, Springer-Verlag, June/July 1998,
pp. 516–520. (See Dissertation Chapter 5).

[82] J. ELGAARD, A. MØLLER, AND M. I. SCHWARTZBACH, Compile-time de-
bugging of C programs working on trees, in Programming Languages and Sys-
tems, Proc. 9th European Symposium on Programming, ESOP ’00, vol. 1782
of LNCS, Springer-Verlag, March/April 2000, pp. 182–194. (See Dissertation
Chapter 7).

[83] C. C. ELGOT, Decision problems of finite automata design and related arith-
metics, Transactions of the American Mathematical Society, 98 (1961), pp. 21–
52.

[84] D. EVANS, LCLint user’s guide. http://lclint.cs.virginia.edu/guide/.

[85] D. EVANS, Static detection of dynamic memory errors, in Proc. ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI ’96, May 1996.

[86] M. F. FERNANDEZ, D. SUCIU, AND I. TATARINOV, Declarative specification
of data-intensive Web sites, in Proc. 2nd Conference on Domain-Specific Lan-
guages, DSL ’99, USENIX/ACM, October 1999.

[87] D. FLANAGAN , JavaScript: The Definitive Guide, O’Reilly & Associates, June
1998.

[88] R. W. FLOYD, Assigning meanings to programs, Mathematical Aspects of
Computer Science, (1967), pp. 19–32. American Mathematical Society.

[89] J. S. FOSTER, M. FÄHNDRICH, AND A. A IKEN, A theory of type qualifiers,
in Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’99, May 1999.

[90] P. FRADET, R. GAUGNE, AND D. LE MÉTAYER, Static detection of pointer er-
rors: An axiomatisation and a checking algorithm, in Programming Languages
and Systems, Proc. 6th European Symposium on Programming, ESOP ’96,
vol. 1058 of LNCS, Springer-Verlag, April 1996.

328 BIBLIOGRAPHY

[91] P. FRADET AND D. LE MÉTAYER, Shape types, in Proc. 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’97,
January 1997.

[92] C. FRANKSTON AND H. S. THOMPSON, XML-Data reduced, July 1998.
http://www.ltg.ed.ac.uk/~ht/XMLData-Reduced.htm.

[93] A. O. FREIER, P. KARLTON, AND P. C. KOCHER, The SSL protocol version
3.0, November 1996.http://home.netscape.com/eng/ssl3/draft302.txt.

[94] T. GENET AND V. V. T. TONG, Reachability analysis of term rewriting systems
with Timbuk, Tech. Rep. RR-4266, INRIA Rennes, 2001.

[95] J. GETTYS, J. MOGUL, H. FRYSTYK, L. MASINTER, P. LEACH,
AND T. BERNERS-LEE, Hypertext transfer protocol, HTTP/1.1, 1999.
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[96] R. GHIYA AND L. J. HENDREN, Putting pointer analysis to work, in Proc. 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’98, January 1998.

[97] A. GIRGENSOHN AND A. L EE, Seamless integration of interactive forms into
the Web, Computer Networks and ISDN Systems, 29 (1997), pp. 1531–1542.
Elsevier. Also in Proc. 6th International World Wide Web Conference, WWW6.

[98] J. GLENN AND W. I. GASARCH, Implementing WS1S via finite automata,
in Proc. 1st International Workshop on Implementing Automata, WIA ’96,
vol. 1260 of LNCS, Springer-Verlag, August 1996.

[99] GRAMMATECH INC., CodeSurfer user guide and reference manual. Available
from http://www.grammatech.com/papers/.

[100] D. GRIES, The Science of Programming, Springer-Verlag, 1981.

[101] S. GUNDAVARAM , CGI Programming on the World Wide Web, O’Reilly & As-
sociates, March 1996.

[102] A. GUPTA AND A. L. FISHER, Representation and symbolic manipulation
of linearly inductive boolean functions, in Proc. International Conference on
Computer-Aided Design, ICCAD ’93, IEEE Computer Society, November
1993.

[103] K. HAVELUND AND T. PRESSBURGER, Model checking Java programs us-
ing Java PathFinder, International Journal on Software Tools for Technology
Transfer, 2 (2000), pp. 366–381. Springer-Verlag.

[104] L. HENDREN, J. HUMMEL , AND A. NICOLAU, Abstractions for recursive
pointer data structures: Improving the analysis and transformation of impera-
tive programs, in Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’92, June 1992.

BIBLIOGRAPHY 329

[105] J. G. HENRIKSEN, J. L. JENSEN, M. E. JØRGENSEN, N. KLARLUND ,
R. PAIGE, T. RAUHE, AND A. SANDHOLM, Mona: Monadic second-order
logic in practice, in Proc. 1st International Workshop on Tools and Algorithms
for Construction and Analysis of Systems, TACAS ’95, vol. 1019 of LNCS,
Springer-Verlag, May 1995.

[106] C. A. R. HOARE, An axiomatic basis for computer programming, Communi-
cations of the ACM, 12 (1969), pp. 576–580. ACM.

[107] A. HOMER, J. SCHENKEN, M. GIBBS, J. D. NARKIEWICZ, J. BELL,
M. CLARK , A. ELMHORST, B. LEE, M. MILNER, AND A. REHAN, ASP.NET
Programmer’s Reference, Wrox Press, September 2001.

[108] J. E. HOPCROFT ANDJ. D. ULLMAN , Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley, April 1979.

[109] P. HOSCHKA ET AL., Synchronized multimedia integration lan-
guage (SMIL) 1.0 specification, June 1998. W3C Recommendation.
http://www.w3.org/TR/REC-smil.

[110] H. HOSOYA AND B. C. PIERCE, XDuce: A typed XML processing language,
in Proc. 3rd International Workshop on the World Wide Web and Databases,
WebDB ’00, vol. 1997 of LNCS, Springer-Verlag, May 2000.

[111] H. HOSOYA AND B. C. PIERCE, Regular expression pattern matching for XML,
in Proc. 28th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’01, January 2001.

[112] H. HOSOYA, J. VOUILLON, AND B. C. PIERCE, Regular expression types for
XML, in Proc. 5th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’00, September 2000.

[113] T. HUNE AND A. SANDHOLM, A case study on using automata in control
synthesis, in Proc. 5rd International Conference on Fundamental Approaches
to Software Engineering, FASE ’00, vol. 1783 of LNCS, Springer-Verlag,
March/April 2000.

[114] J. HUNTER AND B. MCLAUGHLIN , JDOM, 2001.http://jdom.org/.

[115] ICONOCAST INC., ICONOCAST Newsletter, August 17, 2000.
http://www.iconocast.com/issue/20000817.html.

[116] A. IYENGAR AND J. CHALLENGER, Improving Web server performance by
caching dynamic data, in Proc. 1st USENIX Symposium on Internet Technolo-
gies and Systems, USITS ’97, December 1997.

[117] D. JACKSON, Aspect: An economical bug-detector, in Proc. 13th International
Conference on Software Engineering, ICSE ’91, IEEE Computer Society /
ACM, May 1991.

330 BIBLIOGRAPHY

[118] D. JACKSON AND M. VAZIRI , Finding bugs with a constraint solver, in Proc.
International Symposium on Software Testing and Analysis, ISSTA ’00, ACM,
August 2000.

[119] R. JELLIFFE, The Schematron: An XML structure validation lan-
guage using patterns in trees, 1999. http://www.ascc.net/

xml/resource/schematron/schematron.html.

[120] J. L. JENSEN, M. E. JØRGENSEN, N. KLARLUND , AND M. I.
SCHWARTZBACH, Automatic verification of pointer programs using monadic
second-order logic, in Proc. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’97, June 1997.

[121] B. JONSSON ANDM. NILSSON, Transitive closures of regular relations for ver-
ifying infinite-state systems, in Proc. 6th International Workshop on Tools and
Algorithms for Construction and Analysis of Systems, TACAS ’00, vol. 1785
of LNCS, Springer-Verlag, March/April 2000.

[122] J. B. KAM AND J. D. ULLMAN , Monotone data flow analysis frameworks,
Acta Informatica, 7 (1977), pp. 305–317. Springer-Verlag.

[123] P. KELB, T. MARGARIA, M. MENDLER, AND C. GSOTTBERGER, MoSeL:
A flexible toolset for Monadic Second-order Logic, in Proc. 3rd International
Workshop on Tools and Algorithms for Construction and Analysis of Systems,
TACAS ’97, vol. 1217 of LNCS, Springer-Verlag, April 1997.

[124] F. KLAEDTKE, Decision procedure for an extension of WS1S, in Proc. 15th
International Workshop on Computer Science Logic, CSL ’01, vol. 2142 of
LNCS, Springer-Verlag, September 1997.

[125] N. KLARLUND, A homomorphism concepts for omega-regularity, in Proc. 8th
International Workshop on Computer Science Logic, CSL ’94, vol. 933 of
LNCS, Springer-Verlag, September 1997.

[126] N. KLARLUND, Mona & Fido: The logic-automaton connection in practice,
in Proc. 11th International Workshop on Computer Science Logic, CSL ’97,
vol. 1414 of LNCS, Springer-Verlag, August 1997.

[127] N. KLARLUND, An nlogn algorithm for online BDD refinement, Journal of Al-
gorithms, 32 (1999), pp. 133–154. Academic Press. Earlier version in CAV ’97,
vol. 1254 of LNCS, Springer-Verlag.

[128] N. KLARLUND, A theory of restrictions for logics and automata, in Proc. 11th
International Conference on Computer-Aided Verification, CAV ’99, vol. 1633
of LNCS, Springer-Verlag, July 1999. An extended version “Relativizations for
the Logic-Automaton Connection” has been submitted for publication.

[129] N. KLARLUND, From the programmer’s point of view: XML
for IVR and how DSD schemas may help. Unpublished revi-
sion of “XPML: Industrial Case Study”, currently available at
http://www.research.att.com/projects/DSD/industrial-case/software-

symposium-ATT-00-paper/, September 2000.

BIBLIOGRAPHY 331

[130] N. KLARLUND , J. KOISTINEN, AND M. I. SCHWARTZBACH, Formal design
constraints, in Proc. ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA ’96, October 1996.

[131] N. KLARLUND AND A. M ØLLER, MONA Version 1.4 User Manual, BRICS,
Department of Computer Science, University of Aarhus, January 2001. Notes
Series NS-01-1. Available fromhttp://www.brics.dk/mona/. Revision of
BRICS NS-98-3.

[132] N. KLARLUND , A. MØLLER, AND M. I. SCHWARTZBACH, Document
Structure Description 1.0, December 2000. BRICS, Department of Com-
puter Science, University of Aarhus, Notes Series NS-00-7. Available from
http://www.brics.dk/DSD/.

[133] N. KLARLUND , A. MØLLER, AND M. I. SCHWARTZBACH, The DSD
schema language, Automated Software Engineering, 9 (2002), pp. 285–319.
Kluwer. (See Dissertation Chapter 14). Preliminary version in Proc. 3rd ACM
SIGPLAN-SIGSOFT Workshop on Formal Methods in Software Practice,
FMSP ’00.

[134] N. KLARLUND , A. MØLLER, AND M. I. SCHWARTZBACH, MONA imple-
mentation secrets, International Journal of Foundations of Computer Science,
(2002). World Scientific Publishing Company. (See Dissertation Chapter 6).
Preliminary version in Proc. 5th International Conference on Implementation
and Application of Automata, CIAA ’00, vol. 2088 of LNCS, Springer-Verlag.

[135] N. KLARLUND , M. NIELSEN, AND K. SUNESEN, Automated logical verifica-
tion based on trace abstraction, in Proc. 15th ACM Symposium on Principles
of Distributed Computing, PODC ’96, May 1996.

[136] N. KLARLUND , M. NIELSEN, AND K. SUNESEN, A case study in automated
verification based on trace abstractions, in Formal System Specification, The
RPC-Memory Specification Case Study, M. Broy, S. Merz, and K. Spies, eds.,
vol. 1169 of LNCS, Springer-Verlag, November 1996, pp. 341–374.

[137] N. KLARLUND AND T. RAUHE, BDD algorithms and cache misses, Tech. Rep.
RS-96-5, BRICS, 1996.

[138] N. KLARLUND AND M. I. SCHWARTZBACH, Graph types, in Proc. 20th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’93, January 1993.

[139] N. KLARLUND AND M. I. SCHWARTZBACH, Graphs and decidable transduc-
tions based on edge constraints, in Proc. 19th International Colloquium on Trees
in Algebra and Programming, CAAP ’94, vol. 787 of LNCS, Springer-Verlag,
April 1994.

[140] N. KLARLUND AND M. I. SCHWARTZBACH, A domain-specific language for
regular sets of strings and trees, IEEE Transactions on Software Engineering,
25 (1999), pp. 378–386.

332 BIBLIOGRAPHY

[141] G. KLEIN, JFlex – the fast scanner generator for Java, 2001.
http://www.jflex.de/.

[142] A. KOLAWA AND A. HICKEN, Insure++: A tool to support total quality soft-
ware. http://www.parasoft.com/products/insure/papers/tech.htm.

[143] J. KORPELA, JavaScript and HTML: Possibilities and caveats, 2000.
http://www.hut.fi/u/jkorpela/forms/javascript.html.

[144] D. A. LADD AND J. C. RAMMING , Programming the Web: An application-
oriented language for hypermedia services, World Wide Web Journal, 1 (1996).
O’Reilly & Associates. Proc. 4th International World Wide Web Conference,
WWW4.

[145] A. LAYMAN ET AL ., XML-Data, January 1998. W3C Note.
http://www.w3.org/TR/1998/NOTE-XML-data/.

[146] D. LEE AND W. W. CHU, Comparative analysis of six XML schema languages,
ACM SIGMOD Record, 29 (2000), pp. 76–87.

[147] T. LEV-AMI , T. REPS, M. SAGIV, AND R. WILHELM , Putting static analysis
to work for verification: A case study, in Proc. International Symposium on
Software Testing and Analysis, ISSTA ’00, ACM, August 2000.

[148] T. LEV-AMI AND M. SAGIV , TVLA: A system for implementing static analyses,
in Proc. 7th International Static Analysis Symposium, SAS ’00, vol. 1824 of
LNCS, Springer-Verlag, June/July 2000.

[149] H. LIEFKE AND D. SUCIU, XMill: An efficient compressor for XML data, ACM
SIGMOD Record, 29 (2000), pp. 153–164.

[150] Y. A. LIU, Efficiency by incrementalization: An introduction, Higher-Order and
Symbolic Computation, 13 (2000), pp. 289–313. Kluwer.

[151] A. MALHOTRA AND M. M ALONEY, XML Schema requirements, February
1999. W3C Note.http://www.w3.org/TR/NOTE-xml-schema-req.

[152] T. MARGARIA, Verification of systolic arrays in M2L(Str), Tech. Rep. MIP-
9613, Universit¨at Passau, 1996.

[153] O. MATZ, A. MILLER, A. POTTHOFF, W. THOMAS, AND E. VALKEMA , Re-
port on the program AMoRE, Tech. Rep. Report 9507, Inst. f¨ur Informatik u.
Prakt. Mathematik, CAU Kiel, 1995.

[154] K. MCMILLAN , Symbolic Model Checking, Kluwer, 1993.

[155] E. MEIJER AND M. SHIELDS, XMλ: A functional language for con-
structing and manipulating XML documents. Draft. Available from
http://www.cse.ogi.edu/~mbs/pub/xmlambda/, 1999.

BIBLIOGRAPHY 333

[156] A. R. MEYER, Weak monadic second-order theory of successor is not elemen-
tary recursive, in Logic Colloquium: Symposium on Logic 1972-73, R. Parikh,
ed., vol. 453 of Lecture Notes in Mathematics, Springer-Verlag, 1975, pp. 132–
154.

[157] J. C. MOGUL, F. DOUGLIS, A. FELDMANN , AND B. KRISHNAMURTHY, Po-
tential benefits of delta encoding and data compression for HTTP, in Proc. ACM
SIGCOMM Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, SIGCOMM ’97, September 1997.

[158] A. MØLLER, MONA project home page. http://www.brics.dk/mona/.

[159] A. MØLLER, PALE project home page. http://www.brics.dk/PALE/.

[160] A. MØLLER, Document Structure Description 2.0. In preparation, 2002.

[161] A. MØLLER AND M. I. SCHWARTZBACH, The pointer assertion logic engine,
in Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’01, June 2001. Also in ACM SIGPLAN Notices 36, 5
(May 2001). (See Dissertation Chapter 8).

[162] A. MØLLER AND M. I. SCHWARTZBACH, The XML revolution – technolo-
gies for the future Web, December 2001. BRICS, Department of Com-
puter Science, University of Aarhus, Notes Series NS-01-8. Available from
http://www.brics.dk/~amoeller/XML/. Revision of BRICS NS-00-8.

[163] A. MØLLER AND M. I. SCHWARTZBACH, Interactive Web ser-
vices with Java, April 2002. BRICS, Department of Computer Sci-
ence, University of Aarhus, Notes Series NS-02-1. Available from
http://www.brics.dk/~amoeller/WWW/.

[164] F. MORAWIETZ AND T. CORNELL, The logic-automaton connection in linguis-
tics, in Proc. International Conference on Logical Aspects of Computational
Linguistics, LACL ’97, no. 1582 in LNCS, Springer-Verlag, September 1997.

[165] F. MORAWIETZ AND T. CORNELL, On the recognizability of relations over a
tree definable in a monadic second order tree description language, Tech. Rep.
SFB 340, Seminar f¨ur Sprachwissenschaft Eberhard-Karls-Universit¨at Tübin-
gen, 1997.

[166] J. M. MORRIS, A general axiom of assignment, in Marktoberdorf Summer
School on Theoretical Foundations of Programming Methodology, vol. 91 of
NATO Science Series, Reidel, August 1982.

[167] M. MURATA, Hedge automata: A formal model for XML schemata, June 1999.
http://www.xml.gr.jp/relax/hedge nice.html.

[168] M. MURATA, August 2000. Announcement onhttp://www.xmlhack.com/.

[169] M. MURATA, How to RELAX, August 2000.http://www.xml.gr.jp/relax/.

334 BIBLIOGRAPHY

[170] A. MØLLER, The<bigwig> runtime system, 2001. http://www.brics.dk/

bigwig/runwig/.

[171] A. MØLLER, dk.brics.automaton – finite-state automata and regular ex-
pressions for Java, 2001.http://www.brics.dk/automaton/.

[172] NETSCAPE CORP., JavaScript form validation sample code, 1999.
http://developer.netscape.com/docs/examples/javascript/formval/

overview.html.

[173] J. NIELSEN, Designing Web Usability: The Practice of Simplicity, New Riders
Publishing, December 1999.

[174] F. NIELSON, H. R. NIELSON, AND C. HANKIN , Principles of Program Anal-
ysis, Springer-Verlag, October 1999.

[175] M. NILSSON, Analyzing parameterized distributed algorithms, Master’s thesis,
Department of Computer Systems at Uppsala University, Sweden, 1999.

[176] OPEN MARKET, FastCGI: A high-performance Web server interface, April
1996. Available fromhttp://www.fastengines.com/whitepapers/.

[177] G. OSKOBOINY, HTML Validation Service, 2001. http://validator.

w3.org/.

[178] S. OWRE AND H. RUESS, Integrating WS1S with PVS, in Proc. 12th Inter-
national Conference on Computer-Aided Verification, CAV ’00, vol. 1855 of
LNCS, Springer-Verlag, July 2000.

[179] V. PADOVANI , H. COMON, J. LENEUTRE, AND R. TINGAUD, A formal veri-
fication of telephone supplementary service interactions, Tech. Rep. LSV-99-5,
Cachan, France, 1999.

[180] P. K. PANDYA , DCVALID 1.4: The user manual, tech. rep.,
Tata Institute of Fundamental Research, 2000. Available from
http://www.tcs.tifr.res.in/~pandya/dcvalid.html.

[181] P. K. PANDYA , Specifying and deciding quantified discrete-time duration cal-
culus formulae using DCVALID, Tech. Rep. TCS00-PKP-1, Tata Institute of
Fundamental Research, 2000.

[182] S. PEMBERTON ET AL., XHTML 1.0: The extensible hypertext markup lan-
guage, January 2000. W3C Recommendation.http://www.w3.org/TR/xhtml1.

[183] M. RABIN , Decidability of second-order theories and automata on infinite
trees, American Mathematical Society, 141 (1969), pp. 1–35.

[184] D. RAGGETT, Assertion grammars. http://www.w3.org/People/Raggett/

dtdgen/Docs/, May 1999.

[185] D. RAGGETT, A. L. HORS, AND I. JACOBS, HTML 4.01 specification, Decem-
ber 1999. W3C Recommendation.http://www.w3.org/TR/html4/.

BIBLIOGRAPHY 335

[186] K. RAJAMANI AND A. COX, A simple and effective caching scheme for dy-
namic content, tech. rep., CS Dept., Rice University, September 2000.

[187] A. S. RASMUSSEN, Symbolic model checking using monadic second order
logic as requirement language, Master’s thesis, Technical University of Den-
mark (DTU), 1999. IT-E 821.

[188] RATIONAL SOFTWARE CORP., Purify. http://www.rational.com/.

[189] J. C. REYNOLDS, Intuitionistic reasoning about shared mutable data structure,
in Millennial Perspectives in Computer Science, Proc. 1999 Oxford–Microsoft
Symposium in Honour of Sir Tony Hoare, J. Davies, B. Roscoe, and J. Wood-
cock, eds., Palgrave, November 2000, pp. 303–321.

[190] M. RICKY, Automatisk validering af webbaserede formularer, Master’s thesis,
Department of Computer Science, University of Aarhus, 2002. (In Danish).

[191] J. ROBIE, W3C XML Schema questionnaire, July 2000.
http://www.ibiblio.org/xql/tally.html.

[192] M. SAGIV, T. REPS, AND R. WILHELM , Solving shape-analysis problems in
languages with destructive updating, ACM Transactions on Programming Lan-
guages and Systems, 20 (1998), pp. 1–50. ACM.

[193] M. SAGIV, T. REPS, AND R. WILHELM , Parametric shape analysis via 3 val-
ued logic, in Proc. 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’99, January 1999.

[194] A. SANDHOLM AND M. I. SCHWARTZBACH, Distributed safety controllers
for Web services, in Proc. 3rd International Conference on Fundamental Ap-
proaches to Software Engineering, FASE ’98, vol. 1382 of LNCS, Springer-
Verlag, March/April 1998.

[195] A. SANDHOLM AND M. I. SCHWARTZBACH, A type system for dynamic Web
documents, in Proc. 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’00, January 2000.

[196] S. SCHNITZENBAUMER, M. WEDEL, AND M. GUNATILAKE , XHTML-
FML 1.0: Forms markup language, 1999. Stack Overflow AG.
http://www.mozquito.org/documentation/spec xhtml-fml.html.

[197] M. I. SCHWARTZBACH ET AL., <bigwig> project home page.
http://www.brics.dk/bigwig/.

[198] T. R. SHIPLE, J. H. KUKULA , AND R. K. RANJAN, A comparison of Pres-
burger engines for EFSM reachability, in Proc. 10th International Confer-
ence on Computer-Aided Verification, CAV ’98, vol. 1427 of LNCS, Springer-
Verlag, June/July 1998.

[199] B. SMITH , A. ACHARYA, T. YANG, AND H. ZHU, Exploiting result equiva-
lence in caching dynamic Web content, in Proc. 2nd USENIX Symposium on
Internet Technologies and Systems, October 1999.

336 BIBLIOGRAPHY

[200] M. A. SMITH AND N. KLARLUND, Verification of a sliding window proto-
col using IOA and Mona, in Proc. Formal Techniques for Distributed System
Development, FORTE ’00, vol. 183 of IFIP Conference Proceedings, Kluwer,
October 2000.

[201] SUN MICROSYSTEMS, Java Servlet Specification, Version 2.3, 2001. Available
from http://java.sun.com/products/servlet/.

[202] SUN MICROSYSTEMS, JavaServer Pages Specification, Version 1.2, 2001.
Available fromhttp://java.sun.com/products/jsp/.

[203] V. SUNDARESAN, L. J. HENDREN, C. RAZAFIMAHEFA , R. VALLEE-RAI ,
P. LAM , E. GAGNON, AND C. GODIN, Practical virtual method call resolution
for Java, in Proc. ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA ’00, October 2000.

[204] S. TANI , K. HAMAGUCHI , AND S. YAJIMA, The complexity of the optimal
variable ordering problems of a shared binary decision diagram, in Proc. Inter-
national Conference on Computer-Aided Design, ICCAD ’93, IEEE Computer
Society, November 1993.

[205] J. W. THATCHER AND J. B. WRIGHT, Generalized finite automata with an
application to a decision problem of second-order logic, Mathematical Systems
Theory, 2 (1968), pp. 57–82. Springer-Verlag.

[206] THE UNICODE CONSORTIUM, The Unicode Standard, Version 2.0, Addison
Wesley, 1996.http://www.unicode.org/.

[207] P. THISTLEWAITE AND S. BALL , Active FORMs, Computer Networks and
ISDN Systems, 28 (1996), pp. 1355–1364. Elsevier. Also in Proc. 5th Inter-
national World Wide Web Conference, WWW5.

[208] W. THOMAS, Automata on infinite objects, in Handbook of Theoretical Com-
puter Science, J. van Leeuwen, ed., vol. B, MIT Press/Elsevier, 1990, pp. 133–
191.

[209] H. S. THOMPSON, D. BEECH, M. MALONEY, AND N. MENDELSOHN,
XML Schema part 1: Structures, May 2001. W3C Recommendation.
http://www.w3.org/TR/xmlschema-1/.

[210] F. TIP, A survey of program slicing techniques, Journal of Programming Lan-
guages, 3 (1995), pp. 121–189. CompSciNet.

[211] B. A. TRAKHTENBROT, Finite automata and the logic of one-place predicates,
Siberian Mathematical Journal, 3 (1962), pp. 103–131. English translation in
AMS Transl. 59 (1966), 23–55.

[212] M. TSIMELZON, B. WEIHL, AND L. JACOBS, ESI language specification 1.0.
http://www.edge-delivery.org/language spec 1-0.html, 2001.

BIBLIOGRAPHY 337

[213] R. VALLEE-RAI , L. HENDREN, V. SUNDARESAN, P. LAM , E. GAGNON,
AND P. CO, Soot – a Java optimization framework, in Proc. IBM Centre for
Advanced Studies Conference, CASCON ’99, IBM, November 1999.

[214] A. VAN DEURSEN, P. KLINT, AND J. VISSER, Domain-specific languages: An
annotated bibliography, ACM SIGPLAN Notices, 35 (2000), pp. 26–36.

[215] J. WALDMANN , Tree automata in RX. Software demo at 3rd International
Workshop on Implementing Automata, WIA ’99, 1999.

[216] J. WANG, A survey of Web caching schemes for the Internet, ACM Computer
Communication Review, 29 (1999), pp. 36–46.

[217] WAP FORUM, Wireless Markup Language, version 2.0, September 2001. Wire-
less Application Protocol Forum. Available fromhttp://www.wapforum.org/.

[218] M. WEBB AND M. PLUNGJAN, JavaScript form FAQ knowledge base, 2000.
http://developer.irt.org/script/form.htm.

[219] D. WEISE AND R. F. CREW, Programmable syntax macros, in Proc. ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’93, June 1993.

[220] C. WILLS AND M. M IKHAILOV , Studying the impact of more complete server
information on Web caching, Computer Communications, 24 (2001), pp. 184–
190. Elsevier. Also in Proc. 5th International Web Caching and Content Deliv-
ery Workshop.

[221] A. WOLMAN, Characterizing Web workloads to improve perfor-
mance, July 2000. University of Washington. Available from
http://www.cs.washington.edu/homes/wolman/generals/.

[222] K. YAGOUB, D. FLORESCU, V. ISSARNY, AND P. VALDURIEZ, Caching
strategies for data-intensive Web sites, in Proc. 26th International Conference
on Very Large Data Bases, VLDB ’2000, Morgan Kaufmann, September 2000.

[223] S. YANG, Logic synthesis and optimization benchmarks user guide, version 3.0,
Tech. Rep. 1991-IWLS-UG-Saeyang, Microelectronics Center of North Car-
olina, 1991.

[224] H. ZHU AND T. YANG, Class-based cache management for dynamic Web con-
tents, in Proc. 20th Annual Joint Conference of the IEEE Computer and Com-
munications Societies, INFOCOM ’01, April 2001, pp. 1215–1224.

Recent BRICS Dissertation Series Publications

DS-02-4 Anders Møller. Program Verification with Monadic Second-
Order Logic & Languages for Web Service Development.
September 2002. PhD thesis. xvi+337 pp.

DS-02-3 Riko Jacob. Dynamic Planar Convex hull. May 2002. PhD
thesis. xiv+112 pp.

DS-02-2 Stefan Dantchev.On Resolution Complexity of Matching Prin-
ciples. May 2002. PhD thesis. xii+70 pp.

DS-02-1 M. Oliver Möller. Structure and Hierarchy in Real-Time Sys-
tems. April 2002. PhD thesis. xvi+228 pp.

DS-01-10 Mikkel T. Jensen.Robust and Flexible Scheduling with Evolu-
tionary Computation. November 2001. PhD thesis. xii+299 pp.

DS-01-9 Flemming Friche Rodler. Compression with Fast Random Ac-
cess. November 2001. PhD thesis. xiv+124 pp.

DS-01-8 Niels Damgaard.Using Theory to Make Better Tools. October
2001. PhD thesis.

DS-01-7 Lasse R. Nielsen. A Study of Defunctionalization and
Continuation-Passing Style. August 2001. PhD thesis.
iv+280 pp.

DS-01-6 Bernd Grobauer.Topics in Semantics-based Program Manipu-
lation. August 2001. PhD thesis. ii+x+186 pp.

DS-01-5 Daniel Damian. On Static and Dynamic Control-Flow Infor-
mation in Program Analysis and Transformation. August 2001.
PhD thesis. xii+111 pp.

DS-01-4 Morten Rhiger. Higher-Order Program Generation. August
2001. PhD thesis. xiv+144 pp.

DS-01-3 Thomas S. Hune.Analyzing Real-Time Systems: Theory and
Tools. March 2001. PhD thesis. xii+265 pp.

DS-01-2 Jakob Pagter.Time-Space Trade-Offs. March 2001. PhD thesis.
xii+83 pp.

DS-01-1 Stefan Dziembowski.Multiparty Computations — Information-
Theoretically Secure Against an Adaptive Adversary. January
2001. PhD thesis. 109 pp.

	Abstract
	Acknowledgments
	I Overview
	Introduction
	Structure of the Dissertation
	About Domain-Specific Formal Languages

	Program Verification with Monadic Second-Order Logic
	The Mona Tool
	The Automaton--Logic Connection
	Core WS1S
	Complexity
	BDD Representation of Automata
	Tree Logics and Tree Automata
	Finite vs. Infinite Structures
	Restrictions and Three-Valued Logic
	Other Implementation Tricks
	Applications

	Program Verification
	Overview
	Related Work
	Pointer Assertion Logic and Graph Types
	Encoding Programs and Properties in Mona Logic

	Languages for Web Service Development
	Interactive Web Services
	The Session-Centered Approach
	Script-Centered Languages
	Page-Centered Languages
	Session-Centered Languages
	A Runtime Model with Support for Sessions

	Dynamic Construction of Web Pages
	Program Analyses
	Flow Graphs for JWIG Programs
	Summary Graphs for XML Expressions
	Analyzing Plug Operations
	Analyzing Receive Operations
	Analyzing Show Operations

	Declarative Form Field Validation
	The PowerForms Language
	PowerForms in JWIG

	Other Aspects of Web Service Languages
	Concurrency Control
	Security Issues
	Language Abstractions with Syntax Macros

	Schema Languages for XML
	The Document Structure Description Language
	Validating Summary Graphs with DSD2

	Conclusion

	II Publications
	Mona 1.x: New Techniques for WS1S and WS2S
	Introduction
	M2L(Str) and WS1S
	DAGs for Compilation
	Experimental Results
	Related and Future Work

	Mona Implementation Secrets
	Introduction
	The Automaton--Logic Connection
	Benchmark Formulas
	Implementation Secrets
	BDD-based Automata Representation
	Cache-Conscious Data Structures
	Eager Minimization
	Guided Tree Automata
	DAGification
	Three-Valued Logic and Automata
	Formula Reductions

	Future Developments
	Conclusion

	Compile-Time Debugging of C Programs Working on Trees
	Introduction
	The Language
	The C Subset
	Modeling the Store
	Store Logic
	Program Annotations and Hoare Triples

	Deciding Hoare Triples
	Weak Monadic Second-Order Logic with Recursive Types
	Encoding Stores and Formulas in WSRT
	Predicate Transformation

	Deciding WSRT
	The Naive Decision Procedure
	A Decision Procedure using Guided Tree Automata

	Conclusion

	The Pointer Assertion Logic Engine
	Introduction
	A Tiny Example
	Related Work

	Pointer Assertion Logic
	Store Model
	Graph Types
	The Programming Language
	Program Annotations
	Semantics of Annotations

	Example: Threaded Trees
	Hoare Logic Revisited
	Deciding Hoare Triples in Mona
	Data Abstractions
	Implementation and Evaluation
	Conclusion

	The <bigwig> Project
	Introduction
	Motivation
	The <bigwig> Language
	Overview

	Session-Centered Web Services
	The Script-Centered Approach
	The Page-Centered Approach
	The Session-Centered Approach
	Structure of <bigwig> Services
	A Session-Based Runtime Model

	Dynamic Construction of HTML Pages
	Analysis of Template Construction and Form Input
	HTML Validity Analysis
	Caching of Dynamically Generated HTML
	Code Gaps and Document Clusters

	Form Field Validation
	Concurrency Control
	Syntax Macros
	Other Web Service Aspects
	HTML Deconstruction
	Seslets
	Databases
	Security

	Evaluation
	Experience with <bigwig>
	Performance

	Conclusion
	Acknowledgments

	A Runtime System for Interactive Web Services
	Introduction
	Motivation
	The Session Concept
	CGI Scripts and Sequential Session Threads
	Other CGI Shortcomings
	Handling Safety Requirements Consistently

	Components in the Runtime System
	Dynamics of the Runtime System
	Execution of a Thread
	Starting up a Session Thread
	Interaction with the Client
	Interaction with the Controller

	Extending the Runtime System
	Related Work
	Conclusions and Future Work

	PowerForms: Declarative Client-Side Form Field Validation
	Introduction
	Input Validation
	Field Interdependencies
	JavaScript Programming
	Our Solution: PowerForms
	Related Work

	Validation of Input Formats
	Syntax
	Semantics of Regular Expressions
	Semantics of Format Declarations
	Examples

	Interdependencies of Form Fields
	Syntax
	Semantics of Boolean Expressions
	Semantics of Interdependencies
	Examples

	Applet Results
	Translation to JavaScript
	Availability
	Conclusion

	Language-Based Caching of Dynamically Generated HTML
	Introduction
	Related Work
	Dynamic Documents in <bigwig>
	Dynamic Document Representation

	Client-Side Caching
	Caching
	Compact Representation
	Clustering

	Experiments
	Future Work
	Conclusion

	Static Validation of Dynamically Generated HTML
	Introduction
	Outline

	XHTML Documents in <bigwig>
	XML Templates
	Programs

	Summary Graphs
	Gap Track Analysis
	Lattices
	Transfer Functions
	The Analysis

	Summary Graph Analysis
	Lattices
	Transfer Functions
	The Analysis
	The Example Revisited

	An Abstract DTD for XHTML
	Examples for XHTML
	Exceptions in <bigwig>

	Validating Summary Graphs
	Experiments
	Error Diagnostics

	Related Work
	Extensions and Future Work
	Conclusion

	The DSD Schema Language
	Introduction
	Outline

	XML Concepts
	The DSD Language
	Element Constraints
	Attribute Declarations
	String Types
	Content Expressions
	Context Patterns
	Default Insertion
	ID Attributes and Points-To Requirements
	Redefinitions and Evolving DSDs
	Self-documentation
	The Meta-DSD

	The Book Example
	The DSD 1.0 Tool
	Industrial Case Study: IVR Systems
	The IVR Scenario
	DSDs for Syntax Explanations
	DSDs for Debugging
	DSDs for Myriads of Defaults
	DSDs for Simplifying XPML Processing
	Summary of DSD Advantages

	Related Work
	XML Schema
	RELAX NG
	Other Proposals

	Conclusion

	Extending Java for High-Level Web Service Construction
	Introduction
	Sessions and Web Pages
	Contributions
	Problems with Existing Approaches
	Outline

	The JWIG Language
	Program Structure
	Client Interaction
	Dynamic Document Construction
	The JWIG Program Translation Process
	An Example JWIG Program

	Flow Graph Construction
	Structure of Flow Graphs
	Semantics of Flow Graphs
	From JWIG Programs to Flow Graphs
	Complexity
	Flow Graph for the Example

	Summary Graph Analysis
	String Analysis
	Summary Graphs
	Constructing Summary Graphs
	Summary Graphs for the Example

	Providing Static Guarantees
	Plug Analysis
	Receive Analysis
	Show Analysis
	The Document Structure Description 2.0 Language
	Validity Analysis

	Implementation and Evaluation
	Example: The Memory Game
	Performance

	Plans and Ideas for Future Development
	Language Design
	Program Analysis
	Implementation

	Conclusion

	Static Analysis for Dynamic XML
	Introduction
	XML Templates
	Summary Graphs
	Static Guarantees in JWIG
	Analyzing Deconstruction
	Regular Expression Types
	Conclusion

	Bibliography

