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Abstract

Studying the complexity of mathematical proofs is important not only for auto-
mated theorem proving, but also for Mathematics as a whole. Each significant
result in this direction would potentially have a great impact on Foundations of
mathematics.

Surprisingly enough, the general Proof Complexity is closely related to Propo-
sitional Proof Complexity. The latter area was founded by Cook and Reckhow
in 1979, and enjoyed quite a fast development since then. One of the main re-
search directions is finding the precise complexity of some natural combinatorial
principle within a relatively weak propositional proof system.

The results in the thesis fall in this category. We study the Resolution
complexity of some Matching Principles. The three major contributions of the
thesis are as follows.

Firstly, we develop a general technique of proving resolution lower bounds for
the perfect matching principles based on regular planar graphs. No lower bounds
for these were known prior to our work. As a matter of fact, one such problem,
the Mutilated Chessboard, was suggested as hard to automated theorem provers
in 1964, and remained open since then. Our technique proves a tight resolution
lower bound for the Mutilated Chessboard as well as for Tseitin tautologies
based on rectangular grid graph. We reduce these problems to Tiling games, a
concept introduced by us, which may be of interest on its own.

Secondly, we find the exact Tree-Resolution complexity of the Weak Pigeon-
Hole Principle. It is the most studied combinatorial principle, but even its
Tree-Resolution complexity was unknown prior to our work. We develop a new,
more general method for proving Tree-Resolution lower bounds. We also define
and prove non-trivial upper bounds on worst-case proofs of the Weak Pigeon-
Hole Principle. The worst-case proofs are first introduced by us, as a concept
opposite to the optimal proofs.

Thirdly, we prove Resolution width-size trade-offs for the Pigeon-Hole Prin-
ciple. Proving the size lower bounds via the width lower bounds was known
since the seminal paper of Haken, who first proved an exponential lower bound
for the ordinary Pigeon-Hole Principle. The width-size trade-offs however were
not studied at all prior to our work. Our result gives an optimal width-size
trade-off for resolution in general.
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Chapter 1

Introduction

1.1 Introduction

Given a mathematical theorem, what is the size of its shortest proof within
an appropriate formalisation of Set Theory, say, ZF? What is the minimal
knowledge, we need, in order to prove a particular mathematical theorem, i.e.
what is the weakest formal system which allows us to prove the theorem? Given
a formal system, and different tautologies, can we say whether one of them is
“harder” than the other within this system? Finally, considering only the class
of theorems which have “short” proofs within a particular system, is it always
possible to find such, or at least not much bigger, proof? If not, for how weak
systems is it possible?

It is clear that (even a partial) answer to one of these questions would have
a great impact on the foundations of Mathematics. This motivates the develop-
ment of areas of mathematics such as Proof Theory and, more recently, Proof
Complexity. In order to justify the research in the latter area, we will start with

Some history

The idea of considering the lengths of a mathematical proofs as well as effi-
cient algorithms finding a short proof provided it exists can be tracked back as
early as 1956. The famous Gödel’s letter to von Neumann is probably the first
written document, where this ideas appeared explicitly, in a form allowing their
formalisation. Gödel writes:

“...It is evident that one can easily construct a Turing machine which, for
each formula F of the predicate calculus and for every natural number n, will
allow one to decide if F has a proof of length n [length = number of symbols].
Let Ψ (F, n) be the number of steps that the machine requires for that and let
ϕ (n) = maxF Ψ (F, n). The question is, how fast does ϕ (n) grow for an optimal
machine. One can show that ϕ (n) ≥ Kn. If there actually were a machine with
ϕ (n) ∼ Kn (or even only with ϕ (n) ∼ Kn2), this would have consequences
of the greatest magnitude. That is to say, it would clearly indicate that, de-
spite the unsolvability of the Entscheidungsproblem, the mental effort of the
mathematician in the case of yes-or-no questions could be completely [Gödel’s
footnote: apart from the postulation of axioms] replaced by machines. One

1



2 Chapter 1. Introduction

would indeed have to simply select an n so large that, if the machine yields no
result, there would then also be no reason to think further about the problem.
Now, it seems to me, however, to be totally within the realm of possibility that
ϕ (n) grows slowly. For 1.) it seems that ϕ (n) ≥ Kn is the only estimate that
can be derived from a generalisation of the proof of the Entscheidungsproblem;
2.) ϕ (n) ∼ Kn (or ∼ Kn2) means, of course, simply that the number of steps
vis-à-vis dem blossen Probieren [brute force] can be reduced from N to logN
(or (logN)2) [most likely N = 2n here]. Such strong reductions do indeed oc-
cur, however, in the case of other finite problems, e.g., in the case of calculating
a quadratic residue by means of repeated application of the law of reciprocity.
It would be interesting to know, for example, what the situation is in the case
of determining whether a number is a prime number, and in the case of finite
combinatorial problems, how strongly in general the number of steps vis-à-vis
the blossen Probieren can be reduced...” (This is the translation of the letter
which appears in [50]).

We have included such a long part of the letter in order to be able to make
the following very important points, especially because the letter is often quoted
in a somewhat negative context (see the second of the our remarks):

1. Gödel was probably the first man to understand the importance of the
automatisability of (very strong) proof systems. He put the ques-
tion in a rigorous context, and pointed out that it is very important not
only to some relatively small areas of mathematics, such as combinatorial
optimisation, but also for mathematics as a whole.

2. Gödel did not suggest that NP = P (or even L, linear time) as it may
seem, and as many people in structural complexity community erroneously
claim. A more careful reader would realise that the only thing Gödel said
is that he does not see any way for proving a better than linear
(quadratic) lower bound for an NP-language. As a matter of fact, this is
still the best lower bound we know up to date.

Surprisingly enough, the very general consideration, which appear in the letter
are strongly connected to concepts and notions which, at first glance, seem
to be much weaker. These are the very basic and fundamental complexity
classes as defined by the founders of the modern Computational (Structural)
Complexity Theory, Cook and Levin. In [19] and [34] they independently gave
the rigorous definitions of the complexity classes P and NP , and posed the P vs
NP question. It was not just a coincidence that Cook’s paper is entitled “The
complexity of theorem proving procedures”, and Levin mentioned the problem of
“... the search for proofs of finite length...” among the most important so-called
exhaustive-search problems.

Later on, Cook, together with Reckhow [20], founded the modern Proposi-
tional Proof Complexity. Event though their motivation was the NP vs co−NP
question, their work can be considered as an important step towards understand-
ing the complexity of mathematical proofs in general.
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The rest of the thesis

is organised as follows.
In the section 1.2 of this chapter, we first give the very fundamental def-

initions and results of Propositional Proof Complexity as they appear in the
original paper of Cook and Reckhow [20]. We then describe the main research
directions as they have developed in the following two, almost three, decades,
up to now.

The section 1.3 is an informal overview of results and open problems in
Propositional Proof Complexity. It contains description of some well known
and well studied propositional proof system as well as families of tautologies.
Many interesting results and open problems are listed. The section is not meant
to be a comprehensive survey of the area. The aim is rather to give the flavour
of Proof Complexity to a reader who does not know anything about it. For a
good, now a bit outdated, survey of results (without proofs) and open problems
we suggest [8].

In section 1.4, we state the results achieved by us. We first survey the known
result about resolution complexity of matching principles, and then explain what
the contributions of the present thesis are.

The next three chapters contain our results. They are extended and, hope-
fully, improved version of the papers [23], [24] and [22]. These chapters are
therefore self-contained, and can be read separately.

1.2 Propositional Proof Complexity vs Computational
Complexity

Fundamental Definitions and Results

We let TAUT denote the set of tautologies over any adequate set of connectives.
The famous NP vs co−NP can be stated as the following proposition.

Proposition 1.1 NP is closed under complementation if and only if TAUT is
in NP

In order to study the complexity of proofs one needs the formal definition
of a proof system

Definition 1.2 If L ⊆ Σ∗, a proof system for L is a polynomial-time com-
putable onto function f : Σ∗

1 → L for some alphabet Σ1. The proof system is
polynomially bounded iff there is a polynomial p (n) such that for all y ∈ L
there is x ∈ Σ∗

1 such that y = f (x) and |x| ≤ p (|y|). Here |.|denotes the size.

As Cook and Reckhow pointed out the above definition not only includes
all the “natural” proof systems, but also allows to define (somewhat artificial)
new systems, specific to a co−NP language L. Clearly, if there is polynomially
bounded proof system for a co−NP-complete language, the co−NP = NP .

NP , itself, can be defined in terms of proof systems as follows.
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Proposition 1.3 A set L is in NP iff L = ∅ or L has a polynomially bounded
proof system.

In order to compare the strength of the proof systems, we need the notion
of p(olynomial)-simulation.

Definition 1.4 If f1 : Σ∗
1 → L and f2 : Σ∗

2 → L are proof systems for L,
then f2 p-simulates f1 provided there is a polynomial-time computable function
g : Σ∗

1 → Σ∗
2 such that f2 (g (x)) = f1 (x) for all x ∈ Σ∗

1.

It is an important open problem whether there exists an optimal proof system
for co−NP, i.e. a proof system that p-simulates any other.

Main Research Directions

There are the following main streams in the Propositional Proof Complexity

1. To prove lower bounds for stronger and stronger systems. The best up-to-
date result is that there are “hard” tautologies for Bounded-depth Frege
with counting axioms (see the next chapter for the relevant definitions).
Lower bounds for Frege systems, however, seem to be far beyond the
current techniques. We cannot even rule out the possibility that Frege is
an optimal proof system. The importance of this stream comes from the
fact, that the development of techniques, used to prove super-polynomial
lower bounds for stronger and stronger systems, could eventually lead to a
lower bound that applies to any proof systems for a co−NP , thus proving
co−NP 6= NP.

2. To study the precise limitations of the weaker propositional proof systems.
There are many such systems that are “natural”, in the sense that they
are used in the real life, as a basis for SAT -solving algorithms. Therefore
it is interesting to know the strength of a particular proof system for both
theoretical and practical point of view. The results from the thesis fall
in this stream as we consider the resolution complexity of some natural
combinatorial principles, namely the matching principles.

3. To show (non)automatisability results. The positive results in this direc-
tion are very weak. Introducing weak notions of automatisability, we can
prove such results, but only for systems as weak as tree-like resolution.
On the other hand, if we adapt a natural definition of automatisability,
to find a proof of size only polynomially bigger than the optimal, even
tree-like resolution is not automatisable under some sensible complexity
assumptions.

1.3 Propositional proof systems and (families of) tau-
tologies

This section is an informal overview of results and open problems in Proposi-
tional Proof Complexity. It contains description of some well known and well
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studied propositional proof system as well as families of tautologies. The section
is self-contained, and we believe it would be of interest of a person who wants
to get the favour of the are.

There are two kind of objects in Propositional Proof Complexity: Propo-
sitional Proof Systems and Tautologies. Ideally, given a particular proof
system and particular tautology, we would like to know what the size is of the
shortest proof of the tautology within the system.

We first give the basic definitions, denotations and conventions that apply
to all the proof systems and tautologies. We then list some natural and well
studied proof systems as well as families of tautologies. Finally, we give a partial
map of the proof systems considered in this section.

Some terminology, denotations, and conventions

We shall first introduce some basic concepts.
A (finite) set of variables is given. Usually, we consider propositional vari-

ables, having the value either true or false. Sometimes, we also consider, and use
the adjective “propositional”, for 0− 1 variables, interpreting 0 as false and 1 as
true. A formula is built upon variables. Apart from the usual, propositional,
formulae, we shall call “formula” any polynomial equation/inequality built upon
some 0 − 1 variables. An important special form of formulae are clauses. A
clause is a disjunction of literals, each literal being either a propositional vari-
able or a negation of such a variable. It is straightforward to encode a clause
as a linear inequality or a polynomial equation. The clause l1 ∨ l2 ∨ . . . ∨ lw is
equivalent to the inequality

T (l1) + T (l2) + . . .+ T (lw) ≥ 1,

where

T (li) =
{

vi li is the variable vi
1− vi li is the negation of vi, ¬vi ,

or the equation
M (l1) ·M (l2) . . .M (lw) = 0,

where

M (li) =
{

1− vi li is the variable vi
vi li is the negation of vi, ¬vi .

A propositional proof systems operates on an unsatisfiable sets of for-
mulae. There are inference rules, which are used derive new formulae from
the already derived ones. Any such rule has to be sound, i.e. every truth
assignment falsifying the conclusion has to falsify at least one of the premises.
The initial set of formulae is refuted, when a contradiction is derived. The con-
tradiction means usually the constant “false”. However it may be encoded in
several different ways, the empty clause, the inequality “1 < 0”, the equality
“1 = 0” etc. We only consider complete proof system, i.e. it is always possible
to derive the contradiction from an unsatisfiable set of formulae. Apart from
inference rules, a proof system has a set of axioms. The axioms are tautologies,
i.e. true under any assignment, and are depend on the proof system only. As
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examples of axioms, we can mention “vj ≤ 1” and “0 ≤ vj”, where vj is a 0− 1
propositional variable, for inequalities-based systems; “vj−v2

j = 0 for equalities-
based systems; systems without axioms, such as resolution; or systems, such as
Frege, having infinite set of axioms such as “A → (B → A)” for any formulae
A, B.

We can now explain the general problem setting in propositional proof
complexity. We are given a proposition, we would like to prove within a
particular proof system. We first encode the negation of the proposition as a set
of formulae, and then use the inference rules and axioms of the proof system in
order to derive a contradiction.

By convention, we shall use “tautology” not only in the usual meaning, i.e.
for a formula that evaluates to true under any assignment, but also for the
negation of such a formula. We shall use “prove something” but what it really
means is that we refute its negation.

So far, we have explained only the first word of the concept “proof complex-
ity”. We introduce several complexity measures of propositional proofs. In order
to be able to speak about complexity, whenever we say “a tautology”, we really
mean a family of tautologies, parametrised by some integer n. Each measure
we then use is a function in n. The most important one is the size, measured
in the usual way, as the number of the symbols in the proof. An important
exception are equalities-based proof systems, for which the size does not make
much sense. The most important complexity measure there is the degree, that
is the maximal degree over all the polynomials contained in the proof. A similar
concept, specific to resolution only, is the width, i.e. the maximal number of
literals, contained in a single clause, taken over all the clauses in the proof. In
speaking about these measures, we shall use “big enough”, “hard” etc. for the
exponential size or linear degree; for polynomial size or constant de-
gree we shall use words like “small”, “easy” etc. Thus by saying that a certain
tautology is hard for some proof system, we mean, that a family of tautologies,
parametrised by some integer number n requires exp (Ω (n)) size proof or Ω (n)
degree proof within the proof system. Another measure is the space of a proof,
which will be defined shortly.

Another important concept is the graph of a proof. The vertices of the graph
are all the formulae appearing in the proof. There is an edge, whenever the
target of it has been derived, using the source as a premise. Clearly the graph
is a directed acyclic graph (DAG). Thus each vertex is of bounded (constant)
fan-in, as inference rules have constant size, and therefore constant number
of premises. The fan-out may be unbounded as a formula can be used many
times as a premise in deriving new formulae. The axioms and the formulae,
representing the negation of the original proposition, are exactly the sources of
the graph. The only sink is the contradiction. We can now define the space of
a proof as the pebbling number of its graph.

We can also explain the connection between proof systems and (restricted)
models of computations. Assuming an unsatisfiable set of clauses, we con-
sider the following search problem: Given a truth assignment, find a formula
from the given set, falsified under the assignment. We can take a refutation
of the initial set of formulae, and transform it into an algorithm, solving the
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search problem as follows. We first turn around all the edges of the graph of
the proof. The contradiction now becomes the only root (source) of the new
graph, and the axioms and the initial formulae become the leaves (sinks). We
perform a search in the new graph, starting from the root, which is falsified by
any assignment, and always going to a vertex which is falsified under the given
assignment. Such a vertex always exists as all the inference rules are sound. We
end up at a leaf, which cannot be an axiom, as an axiom always evaluates to
true, no matter what the assignment is. Therefore, we ended up in some of the
initial formulae, and moreover it is false under the given assignment. The model
of computations we get from the above procedure is a restricted branching
program. The restrictions are the formulae, we are allowed to keep at a node
and to query at an edge of the program. Clearly these restrictions are imposed
by the inference rules of the proof system.

The last, but probably the most important, consequence of these considera-
tion is so-called Prover-Adversary game. We shall give here only the general
idea. The technique is used to prove lower bounds on the size of the proofs
of (families of) propositions within a particular proof system. There are two
players, Prover and Adversary. Adversary claims that the proposition is sat-
isfiable. Prover’s task is to convict him in lying. In doing so, we can assume
that her strategy is kept as a restricted branching program, solving the search
problem. A position in the game is a formula. Given a position, Prover queries
another formula, and, depending on Adversary’s answer and rules of the game,
i.e. inference rules of the proof system, switches to another position. The game
is over, and Adversary loses, when a position is reached, which is the negation of
some of the original formulae or axioms. As Prover can always win, Adversary’s
task is to force her to memorise as much as possible. Therefore, any randomised
Adversary’s strategy which enforces big enough, subgraph in Prover’s restricted
branching program would prove the corresponding lower bound on the proposi-
tional proof.

Propositional proof systems

Resolution and restrictions, Tree-like and Regular resolution. Reso-
lution is probably the simplest system we can think of. It was introduced as
a proof system in [26], and as an algorithm for checking satisfiability in [25].
Resolution operates on a set of clauses. There are no additional axioms. The
only rule is the following:

A
⋃ {vj} B {¬vj}

A
⋃
B

,

i.e. given two clauses and a variable, so that one of the clauses contains the
variable, and the other contains the negated variable, we can derive a clause
which is the union of the initial ones with the occurrences of the resolved variable
removed.

There are two important restrictions of resolution: Regular resolution, if
each variable is resolved at most once along any path in the refutation graph,
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and Tree-like resolution, if the refutation graph is a tree. These two restric-
tion correspond to read-once branching program and decision tree computational
models, respectively. Unrestricted resolution is, however, weaker than (general)
branching program. Strange enough, the most successful SAT solvers are based
on DLL procedure [25], which is in fact equivalent to Tree-like Resolution, one
of the weakest propositional proof system. This can be explained by the in-
tuitively obvious trade-off between strength and automatisability, which in its
turn is strongly related to the design of good algorithmic heuristics.

Algebraic proof systems, Polynomial calculus and Nullstellensatz.

These systems are introduced in [18] and [4], respectively. Polynomial calcu-
lus operates on set of polynomial equations. There are three inference rules,

p (v) q (v)
p (v) + q (v)

p (v)
γ · p (v)

p (v)
vj · p (v)

,

which allows to derive any linear combination of some previously derived poly-
nomials, and to weaken an already derived polynomial by multiplying it by some
polynomial. There are the axioms

vj − v2
j

for each variable. The contradiction is represented by any constant, different
from zero. Clearly, polynomial calculus p-simulates resolution. As a computa-
tional model, it is equivalent to Groebner basis algorithms.

Polynomials Qi, satisfying

m∑
i=1

Qi (v) · p (v) +
n∑
j=1

Qj+m (v) · (vj − v2
j

)
= 1,

can be extracted from a given polynomial-calculus proof. They form a Null-
stellensatz proof, which is considered as a ”static” version of the polynomial-
calculus one. Note that, in general, the degree of the proof increases. There are
indeed tautologies, having a small (constant) degree polynomial calculus proof,
but require big (non-constant) degree Nullstellensatz proofs.

Inequalities based prof systems, Cutting planes and Lovasz-Schrijver.

Cutting planes was firstly known as an algorithm for Integer Programming,
introduced in [30]. As a proof system it was first considered in [21]. Cutting
planes operates on linear inequalities . There are rules, allowing to derive a
positive linear combination of some previously derived inequalities or axioms:

aT v ≤ α bT v ≤ β

(a+ b)T v ≤ (α+ β)
aT v ≤ α

(γ · a)T v ≤ (γ · α)
,
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as well as the cutting rule,
(γ · a)T v ≤ α

aT v ≤
⌊
α
γ

⌋ ,

where γ > 0. There are the axioms

−vj ≤ 0 vj ≤ 1 (1.1)

for each variable. Clearly, Cutting planes p-simulate resolution, even without
using the cutting rule.

Lovasz-Schrijver proof system is introduced in [35] both as a proof system
and as an algorithm for relaxation of integer programs. It operates on quadratic
inequalities. We can derive any positive linear combination of some already
derived quadratic inequalities by using the rules

p (v) ≤ 0 q (v) ≤ 0
p (v) + q (v) ≤ 0

q (v) ≤ 0
γ · q (v) ≤ 0

,

where γ > 0. We can also multiply a linear inequality by either a variable or a
negation of it:

l (v) ≤ 0
vj · l (v) ≤ 0

l (v) ≤ 0
(1− vj) · l (v) ≤ 0

.

The axioms are (1.1) as well as the new axioms

vj − v2
j ≤ 0 v2

j − vj ≤ 0.

Again, it is easy to show that Lovasz-Schrijver p-simulates resolution.
It is worth mentioning that the only known lower bounds for these systems

are obtained via a method called “effective interpolation” (see [39]). It would be
extremely interesting to show lower bounds for some natural, i.e. combinatorial,
tautologies.

Frege and Bounded-depth Frege

Frege proof system operates formulae. There are many variations in inference
rules and axioms, but they all are essentially equivalent, i.e. p-simulates each
other. Below we give a particular version of Frege systems, described in [13].
The only inference rule is modus ponens,

A A→ B

B
,

and there are ten axioms:

(A ∧B) → A (A ∧B) → B
A→ (A ∨B) B → (A ∨B)
(A→ B) → ((A→ ¬B) → ¬A) (¬¬A) → A
A→ (B → A ∧B) (A→ C) → ((B → C) → (A ∨B → C))
A→ (B → A) (A→ B) → (A→ (B → C)) → (A→ C)
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Here A, B and C are not particular instances, but any formulae built from the
variables vj.

A restricted version of Frege systems is Bounded-depth Frege systems.
There all the formulae in the proof are of constant depth, considered as AC0

boolean circuits with and, or and not gates. The importance of these comes
from the fact, that a proof of certain fragments of Bounded Arithmetic can be
translated into a Bounded-depth Frege propositional proof (see [33] for details).
Therefore, a super-polynomial lower bound on Bounded-depth Frege proofs of a
certain principle implies the unprovability of the corresponding statement within
the fragment of Bounded Arithmetic.

Tautologies

(Different versions of) the Pigeon-Hole Principle It is probably the
most widely used combinatorial principle. There are m pigeons and n holes,
m > n. The Pigeon-Hole Principle then states that there is no mapping from
the pigeons to the holes, such that every pigeon goes to some hole(s) and no two
pigeons go to the same hole. To encode it, we introduce propositional variables
pij, i ∈ [m], j ∈ [n], with the obvious meaning, pij is true if and only if the i-th
pigeon goes to the j-th hole. We consider several versions of the Pigeon-Hole
Principle.

The strongest version, called simply the Pigeon-Hole Principle, and de-
noted by PHPmn . We allow the mapping to be a relation, i.e. a pigeon can go
to more than one hole. PHPmn is encoded by the following set of clauses:

pi1 ∨ pi2 ∨ . . . ∨ pin for i ∈ [m] (1.2)

¬pik ∨ ¬pjk for k ∈ [n] , i, j ∈ [m] , i 6= j. (1.3)

The corresponding linear inequalities are pi1+pi2+. . .+pin ≥ 1and pik+pjk ≤ 1,
respectively.

Another version is so called Functional Pigeon-Hole Principle, FPHPmn ,
where a pigeon cannot split into many holes. To encode it, we add to the en-
coding of PHPmn the clauses

¬pij ∨ ¬pik for i ∈ [m] , i, k ∈ [n] , j 6= k. (1.4)

The functional pigeon-hole principle can be encoded as a system of low-degree
polynomial equations. The set of equations pi1+pi2+. . .+pin = 1 and pijpik = 0
are equivalent to the set of clauses (1.2) and (1.4). Note that the first version,
PHPmn , cannot be encoded in such a way without extension variables.

The Bijective Pigeon-Hole Principle is the last version we consider. It
is the functional version, where the function is required to be a bijection. To
encode it we add the set of clauses

p1j ∨ p2j ∨ . . . ∨ pmj for j ∈ [n] ,

which together with (1.3) are equivalent to the set of equations p1j + p2j + . . .+
pmj = 1 and pikpjk = 0.
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The Pigeon-Hole Principle has the distinction of the most studied combina-
torial principle within the Propositional Proof Complexity framework. A short
and most likely incomplete account follows.

The ordinary version, i.e. PHPn+1
n , was proven hard for Resolution in the

seminal paper of Haken [31]. In doing that, he invented an original method,
bottleneck-counting, which is very general and has been used in many different
settings so far (e.g. for reproving the separation between monotone P and
monotone NP .) It however took some 30 years to prove an exponential lower
bound for the weak Pigeon-Hole Principle, where the number of pigeons can be
much bigger than the number of holes [42], [43], [44].

PHPmn is hard for polynomial calculus, independently from the character-
istic of the field [3]. BPHPmn is trivially easy even for Nullstellensatz over a
field of characteristic 0. The most interesting, and still open question, is the
Nullstellensatz complexity of BPHPn+pk

n over a field of characteristic p, where
p is a prime number. An easy upper bound on the degree is pk, while the best
lower bound is 2k [9].

The strongest result known up to date is that the ordinary Pigeon-Hole
Principle, PHPn+1

n is hard for Bounded-depth Frege. A super-polynomial lower
bound was proven by Ajtai in [1]. Later on, the lower bound was improved to
exponential in [5]. The result holds even we allow Countnp axioms for some
prime p [9]; the strongest result about the relation between different versions of
the Pigeon-Hole Principle appear in [47].

The Pigeon-Hole Principle is trivially easy for Cutting Planes and Lovasz-
Schrijver. It is also easy for the Frege systems [12]; this is probably the only
non-trivial upper bound in proof complexity.

Perfect Matching and Counting mod-p Principles The Perfect Match-
ing Principle is a natural generalisation of the Bijective Pigeon-Hole Principle.
Given a graph G = (V,E), we introduce a propositional variable xe for every
edge e ∈ E, and express the statement “G admits a perfect matching” as the
following set of clauses:

∨
v∈N(u)

x{u,v} for every u ∈ V

¬x{u,v} ∨ ¬x{u,w} for every u ∈ V, v,w ∈ N (u) , v 6= w.

Here N (u) is the set of the neighbours of u in the graph G.
This principle naturally extends to hyper-graphs. Here we shall consider

only an important special case of it, Counting mod-p Principle, denoted by
Countnp . The hyper-graph H = (V,E) is the complete p-regular hyper-graph on
the set of vertices V = [n], where n is not divisible by p, i.e. E =

([n]
p

)
.

∨
a∈E, i∈A

xA for every i ∈ V

¬xb ∨ ¬xc for every b, c ∈ E, 0 < |b ∩ c| < p.
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The strongest result known are about Bounded-depth Frege complexity of these
principle can be found in [9] and [46].

Tseitin tautologies They have the distinction of being the first example of
provably “hard” tautologies. Tseitin proved that these formulae, based on certain
graphs, are hard for regular resolution as early as 1968 [51]. They are defined
as follows. A graph G = (V,E) and a vertex v0 ∈ V are given. We associate a
0 − 1 variable xe to each edge e ∈ E. The Tseitin or odd-charged tautology is
the following set equations

⊕
v∈N(u)

x{u,v} =
{

0 u 6= v0
1 u = v0

for every u ∈ V.

Here ⊕stands for summation modulo 2.
Tseitin tautologies are hard for resolution [52], polynomial calculus [14] and

bounded-depth Frege [28], [10]. An open problem is whether they are hard for
cutting planes and/or Lovasz-Schrijver.

Random k-SAT The random k-SAT formula Rm,n
k is defined as follows.

Given the set of all possible 2k
(n
k

)
k-clauses, we take a subset of size m uni-

formly at random. These are introduced in [17], where the following important
result is proven: There exist a constant ∆k, depending on k only, such that if
m ≥ ∆kn then Rm,n

k is unsatisfiable with high probability (w.h.p.), i.e. expo-
nential in n. Moreover, every resolution refutation is of exponential in n size
w.h.p.

A famous open problem is the sharp-threshold conjecture: There exist a
constant ∆k, depending on k only, such that for any constantε > 0 if m ≥
(∆k + ε)n then Rm,n

k is unsatisfiable w.h.p.; if m ≤ (∆k − ε)n then Rm,n
k is

satisfiable w.h.p. The closer we have got so far is that the threshold exists for
every n [27]. The sharp threshold conjecture is proven for k = 2 only [29]; in
this case the value is ∆2 = 1. Upper and lower bounds on ∆k are also known
for any k, and especially for k = 3.

Only the resolution and tree-like resolution complexity of the random k-SAT
is well studied [6].

Minimal Element Principle It states that every total order, defined on a
finite set, has a minimal element. Its negation, written as an Second Order
Existential (SO∃) sentence, is the following:

∃L ((∀x ¬L (x, x)) ∧ (∀.x, y ((x = y) ∨ L (x, y) ∨ L (y, x)))∧

(∀x, y, z (L (x, y) ∧ L (y, z)) → L (x, z)) ∧ (∀x∃y L (y, x))) .

Here L (x, y) stands for “x < y”. The Minimal Element Principle is interesting
for several reasons: It separates tree-like from general resolution; It is also a
good example both of the translation from SO∃ to propositional logic, described
in [48], and of the general tree-like resolution complexity characterisation of the
SO∃ sentences, proven in the same paper. As an illustrative example, we give



1.3. Propositional proof systems and (families of) tautologies 13

the translation of the Minimal Element Principle from SO∃ to propositional
form:

∀x ¬L (x, y) is translates into ¬lii for all i.
∀x, y ((x = y) ∨ L (x, y) ∨ L (y, x)) into lij ∨ lji for all i 6= j.
∀x, y, z L (x, y) ∧ L (y, z) → L (x, z) into¬lij ∨ ¬ljk ∨ lik for all i, j, k.
∀x∃y L (y, x) into l1j ∨ l2j ∨ . . . ∨ lnj for all j.

(Different versions of) the Induction Principle The (negation of) the
Induction Principle can be encoded as

p1 ∧ (p1 → p2) ∧ (p2 → p3) ∧ . . . ∧ (pn−1 → pn) ∧ ¬pn.
Another such principle, studied in the literature, is the House-Sitting

Principle. There are n + 1 persons, numbered from 0 to n, and n houses,
numbered from 1 to n. The i-th person owes the i-th house; the 0th person
does not owe a house. Each person has to stay in some house, either his/hers
own or having a bigger number. For each house, if the owner is at home, nobody
else can stay there. If not, any number of persons can stay in the house. This
principle can be encoded as the following set of clauses:

p01 ∨ p02 ∨ . . . ∨ p0n

pii ∨ pi,i+1 ∨ . . . ∨ pin for every i ∈ [n]

¬pii ∨ ¬pji for every i ∈ [n] , j < i

These principles are easy even for tree-like resolution which seems to be the
weakest system on our picture. They are however hard for Nullstellensatz [37].

Partial map of Propositional Proof Systems

The known separations are summarised on the figure 1.1. There are several
types of edges with the following meaning:

the source is provably stronger than the target, i.e. the former p-
simulates later, and there is a tautology that separates them, being easy
for the source but hard for the target.

the source p-simulates the target, but neither the converse nor a
separation is known.

there is a tautology which is easy for the source, but hard for the
target; neither p-simulation nor the converse separation is known.

the the two system are incomparable, i.e. there are tautologies
separating them in both ways.

The redundant edges, i.e. that can be deduced by the transitivity, are not
shown.
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Frege

Nullstelensatz

Polynomial Calculus
Lovasz−Shrijver

Bounded depth Frege

Cutting planes

Tree−like Resolution

Regular Resolution

(General) Resolution

Figure 1.1: Some propositional proof systems and relation among them

1.4 Contributions of the thesis

Known results

We shall first survey the known results about the resolution complexity of the
perfect matching principles.

The most important, and therefore the most studied one, is the Pigeon-
Hole Principle, PHPmn . In his seminal paper [31], Haken showed that any
resolution proof of PHPn+1

n has to be of size 2Ω(n). This was the first ever
truly exponential lower bound for a natural combinatorial principle and general
enough proof system.

Haken’s proof has been generalised and simplified in [16], [7], [11]. For

quite a while, the best known result had been a 2Ω
“

n2

m

”
lower bound from

[16], thus having left the case m = Ω
(
n2

m

)
as an important open problem in

resolution proof complexity. An important step was done in [38], where a 2Ω(nε)

lower bound on any regular-resolution proof of PHPmn was proven. Shortly
afterwards, the problem was solved by Raz in [42], and further strengthen and
improved by Razborov in [43], [44].

The results in [11] deserve special attention. They provide very general
methodology for proving lower bounds on the size of a resolution proof via the
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clauses width. More precisely, the following two inequalities are proven

ST (F) ≥ 2w(F`�)−w(F)

and

S (F) ≥ exp

(
Ω

(
(w (F ` �)− w (F))2

n

))
, (1.5)

where S (F) (ST (F)) is the size of smallest (tree-like) resolution refutation of
the unsatisfiable set of clauses F , n is the number of propositional variables
in F , and w (.) is the width defined as follows. The width of a clause is the
number of literals in it. The width of a set of clauses F is the maximal width
of a clause in the set. The width of a refutation of a set of clauses w (F ` �) is
the minimum taken over the widths of all possible refutations (considered as a
set of clauses).

As an easy consequence, we get lower bounds for the perfect matching prin-
ciples based on graphs having a good expansion property.

The resolution complexity of other kinds of matching principles, such as
modulo-p counting principles, have not been studied so well. No resolution lower
bounds were known, apart from the ones, proven for much stronger systems,
( [33], chapter 12), until the very recent work of Razborov [45]. The result
there is a very general lower bound for the perfect matching principle on a given
hyper-graph H of the form

exp
(

Ω
(

δ (H)
λ (H) r (H) log n (H) (r (H) + log n (H))

))
, (1.6)

where n (H) is the number of vertices of (H), δ (H) is the minimal degree of a
vertex, r (H) is the maximal size of a (hyper)edge, and λ (H) is the maximal
number of (hyper)edges incident to two different vertices.

As a consequences, we get two non-trivial resolution lower bounds,
exp

(
Ω
(

n
(logm)2

))
for FPHPmn and exp

(
Ω
(

n
p2 logn(p+logn)

))
for Countnp .

This thesis

There is however an important class of graphs, namely the planar ones, for
which neither the methodology in [11], extracted in the formula (1.5), nor the
result in [45], the formula (1.6) applies. Our main results, entitled

“Planar” tautologies hard for Resolution fills this gap.
Our motivation to consider the perfect matching principle on planar graphs

comes from the Mutilated Chessboard problem. It is a well known problem
in recreational mathematics: Given a chessboard with two diagonally opposite
squares removed (see the left side of the figure 1.2), can it be covered by domi-
noes, each domino covering two neighbouring squares? The answer is obvious,
“no”, once one observe that the missing squares are of the same colour, there-
fore there are two more squares of the other colour, and a domino cover always
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Figure 1.2: Mutilated Chessboard

consists of equal number of black and white squares, as a single piece covers two
neighbours which always have different colours.

In propositional proof complexity setting of the problem, we have not or-
dinary but 2n × 2n chessboard, and the question is: How hard is to prove
the impossibility of a domino cover within a particular proof system, in our
case resolution. The mutilated chessboard has the distinction to be the earliest
problem, conjectured to be hard for automated theorem provers [36]. Clearly, it
is a special case of a perfect matching problem (see the right side of the figure
1.2 for a graphical explanation). Proving a resolution lower bound for the Mu-
tilated Chessboard problem has been a hard open problem for quite a while. As
Urquhart pointed out in [53], it was “... another case where current techniques
appear impotent...”.

Thus our main contribution, and the main result in the thesis, is that we ob-
tain tight resolution lower bound of 2Ω(n) for the mutilated chessboard problem.
The main tool, we use in our proofs, is the representation of resolution proofs as
Prover-Adversary games, introduced by Pudlak in his recent paper [40]. This
gives a very “clean” proof of the lower bounds,. As an intermediate step in our
proof, we introduce the concept of tiling games, which is of independent interest.
Our reduction from a tautology to a tiling game is quite general. It allows to
prove lower bounds not only for the mutilated chessboard problem, but also for
a broad class of tautologies, based on regular planar graphs. These include not
only the perfect matching principles on such graphs, but also Tseitin tautologies.

The second contribution of our thesis is

Tree-like Resolution complexity of the Weak Pigeon-Hole Principle
Even though the tree resolution is a quite weak propositional proof system,
the exact complexity of tree-resolution proofs of PHPmn has not been known
prior to our paper. A 2Ω(n) lower bound was shown in [15], whereas one can
construct only a 2O(n logn) tree proof by “unfolding” the 2O(n) general resolution
proof given in the same paper. A 2O(n logn) lower was proven in [32], but only
for ordinary pigeon-hole principle, i.e. PHPn+1

n .
The first and the most important contribution of our work is closing the

gap. We prove a 2Ω(n logn) lower bound on any tree-resolution proof of PHPmn ,
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independently from m, even if it is infinity. It is tight up to a constant factor
in the exponent or, in other words, up to a polynomial transformation. In order
to prove the result, we introduce a new method for proving lower bounds on
tree-resolution proofs. It is more general than the existing one (see e.g. [48]).
The latter works only for balanced proofs, whereas any tree-like resolution proof
of PHPmn is highly unbalanced as shown in our paper.

The second result in this paper is considering the worst tree regular resolution
proofs of PHPmn . This is for the first time, the worst case proof complexity has
been considered. We prove an upper bound of 2O(n logm), which is non-trivial,
as there are mn variables, and one can therefore expect the worst case to be
as bad as 2mn (we consider of course only proofs which do not contain vacuous
weakening of axioms). This has the following very interesting consequence:
Consider PHP poly(n)

n , i.e. m is some polynomial in n. The optimal and the worst
regular tree-resolution proofs of PHP poly(n)

n are polynomially related, and so are
any two random regular tree-resolution proofs. This also has an implication
in automated theorem proving, as it shows that there are natural problems for
which any DLL-based proof search heuristic is as good as any other. The same
applies to the pigeon-hole principle, encoded as a SO∃ sentence. It is easy to
see than any such encoding would result in PHP

p(n)
q(n) , where p (.) and q (.) are

polynomials, and n is the size of the (finite) universe. Therefore, there exists a
non-empty class of SO∃ tautologies, such that any two tree resolution proofs of
a sentence from the class are polynomially related.

The last result of the thesis is

Resolution width-size trade-offs for the Pigeon-Hole Principle We
first prove an upper bound, i.e. construct a resolution proof of WPHPmn of

size 2O
“

n log n
log m

+logm
”

for any m and n. Such an upper bounds have been known
so far only for the two extreme cases m = n + 1 and m = 2

√
n logn (see [15]).

Ours matches these, and, moreover, we believe that it is the exact resolution
proof complexity of WPHPmn for all m and n (recall that the best lower bound

known so far is 2
Ω

“
n

(log m)2

”
from [45]).

We also prove a 2Ω(n) lower bound on any resolution proof of the weak
pigeon-hole principle, WPHPmn , when the width is bounded by

(
1
16 − ε

)
n2.

Unlike the general lower bound, it holds independently from the number of the
pigeons, m.

These two results not only give a resolution width-size trade-off for the Weak
Pigeon-Hole Principle, but also have the following interesting consequence. Let-
ting m = 2

√
n logn, we can use it to construct a tautology on N variables which

is provable in resolution within polylog (N) width. Any such proof however is of
super-polynomial in N size. At the same time, there is a proof of poly (N) size
and widthN . This is asymptotically, i.e. modulo the degrees of the polynomials,
the best resolution width-size trade-off, one could hope to prove.





Chapter 2

“Planar” tautologies hard for Resolution

We prove exponential lower bounds on the resolution proofs of some tautologies,
based on rectangular grid graphs. More specifically, we show a 2Ω(n) lower
bound for any resolution proof of the mutilated chessboard problem on a 2n×2n
chessboard as well as for the Tseitin tautology based on the n × n rectangular
grid graph. The former result answers a 35 year old conjecture by McCarthy.

2.1 Introduction

In the paper, we prove an exponential lower bound for any resolution proof of
the mutilated chessboard problem as well as for the Tseitin tautologies on a
rectangular grid graph.

Exponential lower bounds for resolution are known for matching problems
based on the complete bipartite graph Kn+1,n as well as for a special class of
graphs, namely expanders (see [31], [53], [16]). Exponential lower bounds for
Tseitin tautologies are also known for expander graphs only [51]. In the recent
paper [11], a common framework is given that generalises and simplifies all the
known proofs. Unfortunately, it does not work for tautologies based on planar
graphs.

Thus our main contribution is that we obtain exponential lower bounds for
tautologies, based on grid graphs. The main tool, we use in our proofs, is the
representation of resolution proofs as Prover-Adversary games. It is introduced
by Pudlak in his recent paper [40]. On a technical level, our contribution is a new
way to introduce randomness in Adversary’s strategy (although Pudlak, himself,
speaks about “super-strategy” rather than “randomised strategy”). In doing so,
we introduce the concept of tiling games. It turns out that the combination
of our reduction of the original problems to tiling games and Pudlak’s idea of
considering proofs as games gives very “clean” proofs of the lower bounds.

The paper is organised as follows. First, we define the two problems and
explain briefly Pudlak’s idea of considering resolution proofs as games. We then
introduce tiling games and prove lower bounds for them. Finally, we show the
reduction from the original problems to tiling games.

19



20 Chapter 2. “Planar” tautologies hard for Resolution
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Figure 2.1: The two original problems

Mutilated chessboard This problem has the distinction to be the earliest
proposed hard problem for theorem provers [36]. The problem is the following:
given a 2n × 2n chessboard with two diagonally opposite squares missing (see
the left side of Fig. 2.1), prove that it cannot be covered with dominoes. We
can consider it as a matching problem (the left part of Fig. 2.2): squares are
vertices of the graph, and there is an edge between every two neighbouring
squares. Thus one component of the bipartite graph consists of black squares
and the other consists of white ones. Two missing squares are of the same colour
which implies one of the components in the graph has two more vertices than
the other. That is why there is no perfect matching, i.e., dominoes tiling of the
mutilated chessboard.

The formalisation of the problem as a set of clauses is as follows. For ev-
ery square, we introduce (at most) four variables u, r, d, l corresponding to the
four possible ways of covering a square by a domino. We then write down the
following clauses, saying that every square is covered exactly once:

1. {u, r, d, l}

2. {u, r}, {u, d}, {u, l}, {r, d}, {r, l}, {d, l}
Whenever a variable does not make sense, i.e., a domino, going outside the
chessboard, we replace the corresponding variable by “false”.

Tseitin tautologies on grid graphs The definition of the problem is as
follows. Given a undirected graph, we attach a propositional variable to every
edge. We also select one vertex and label it by “true”, all others are labelled
by “false”. We require the exclusive-or of all the adjacent edges of every vertex
to be equal to its label. Obviously, this is impossible as every variable occurs
exactly twice in the exclusive-or part of these equations, but the exclusive-or of
all the labels is “true”.
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Figure 2.2: The “reverse” formulations

On a n× n rectangular grid graph, we colour white one of the corners, and
all the other vertices are black (see the right side of Fig. 2.1). We then write
the following set of clauses:

u⊕ r ⊕ d⊕ l =
{
false for all the black vertices
true for the only white vertex

• {u, r, d, l}, {u, r, d, l}, {u, r, d, l}, {u, r, d, l}, {u, r, d, l}, {u, r, d, l}, {u, r, d, l},{
u, r, d, l

}
for a black vertex

• {u, r, d, l}, {u, r, d, l}, {u, r, d, l}, {u, r, d, l}, {u, r, d, l}, {u, r, d, l}, {u, r, d, l},{
u, r, d, l

}
for the white vertex

Again, all the variables that do not make sense are replaced by “false”.
There is another, chessboard-style formulation of the problem. Given a

chessboard, tile it by dominoes, such that every square is covered by even num-
ber of tiles and one of the corners is covered by odd number of tiles. The
formulation is illustrated on the right side of Fig. 2.2.

2.2 Preliminaries

Resolution We first give some definitions. A literal is either a propositional
variable or the negation of propositional variable. A clause is a set of literals.
It is satisfied by a truth assignment if at least one of its literals is true under
this assignment. A set of clauses is satisfiable if there exists a truth assignment
satisfying all the clauses.

Resolution is a proof system designed to refute given set of clauses, i.e., to
prove that it is unsatisfiable. This is done by means of the resolution rule

C1
⋃ {v} C1

⋃ {¬v}
C1
⋃
C2

,

i.e., we can derive a new clause from two clauses that contain a variable and its
negation respectively. The goal is to derive the empty clause from the initial
ones. For technical reasons only, we use the weakening rule
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C

C
⋃ {v} ,

even though its use is not essential and can be avoided.
Anywhere we say we prove some proposition, we mean that first we take its

negation in a clausal form and then use resolution to refute these clauses.
There is an obvious way to represent every resolution refutation as a directed

acyclic graph whose nodes are labelled by clauses. The sources, i.e., the vertices
with no incoming edges, are the initial clauses, and the only sink, i.e., the
vertex with no outgoing edges, is the empty clause. If we reverse the directions
of the edges, and consider the sink as a root and the sources as leaves we get a
branching program. It is easy to see that it solves the following search problem,
associated with the given set of unsatisfiable clauses: given an assignment, find
a clause that falsifies it. Unfortunately, the reverse is not true, that is we cannot
convert any branching program, solving the search problem, into a resolution
proof.

As a matter of fact, there are polynomial-size branching programs, solving
both problems from the paper. Of course, this does not contradict to our main
result, as it shows that these branching programs cannot be transformed into
resolution proofs.

In our proof we essentially use a representation of resolution proofs as Prover-
Adversary games, called further Resolution Games. This approach is introduced
by Pudlak in [40]. A brief description follows.

Proofs as Games There are two players, named Prover and Adversary. An
unsatisfiable set of clauses is given. Adversary claims wrongly that there is a
satisfying assignment. Prover ’s task is to convict him in lying. A position in
the game is a partial assignment of the propositional variables. The game start
from the empty position. Prover has two kind of moves:

1. She queries a variable, whose value is unknown in the current position.
Adversary answers, and the position then is extended with the answer.

2. She forgets a value of a variable, which is known. The current position is
then reduced, i.e., the variable value becomes unknown.

The game is over, when the current partial assignment falsifies one of the clauses.
Prover then wins, having shown a contradiction.

As she can always win, simply querying consecutively all the variables and
not forgetting anything, Adversary’s task is to force Prover to use big memory,
“big” meaning exponential in the number of variables. We assume that she
keeps her strategy as a list of ordered pairs (position, move), where “position”
and “move” have their natural meaning. Thus, it is enough for Adversary to use
a strategy, which ensures big number of different possible positions, no matter
how Prover plays.

The reduction from a resolution proof to Resolution Game should now be
clear. Although trivial, we will not explain it here and refer to [40] for all
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the details. We should however note that a deterministic Adversary’s strategy
corresponds to a single path in the proof’s graph. Therefore, he has to use
a randomised strategy (called “super-strategy” in Pudlak’s paper) in order to
enforce a big enough subgraph.

It is very important to make the following conventions: Every time we say
“Prover’s strategy”, we mean wining strategy, as only a wining strategy corre-
sponds to a resolution proof. Every time we say “Prover ... in order to win” we
also mean wining strategy, i.e., Prover is not interested in wining a single game,
but any game, no matter how Adversary plays.

We can finally state the main results and explain informally the main ideas
behind the proofs.

Main results and outline of the proofs. We prove the following two the-
orems:

Theorem 2.1 Any resolution proof of the Mutilated Chessboard problem is of
size 2Ω(n).

A weaker version of the above theorem, with
√
n in the exponent, is proven

independently in [2].

Theorem 2.2 Any resolution proof of Tseitin tautologies, based on n× n rect-
angular grid graph, is of size 2Ω(n).

The general idea of the proofs is following:
We consider Resolution game. Clearly, Prover’s queries are pairs of neigh-

bouring squares, and Adversary’s answers are dominoes, covering these pairs.
A domino can be either “yes” or “no”, with the natural meaning. We divide
the chessboard into non-overlapping constant-size squares called zones. Dur-
ing the game every zone is either completely empty or completely covered by
dominoes by Adversary. Here “completely” means the entire zone, except pos-
sibly few squares on the borders. In the first, randomised, phase of his strategy,
Adversary first constructs many covers of the zone, depending on all the possi-
ble shapes of its neighbouring zones, and he then picks one of them at random
and remembers it. These covers satisfy certain conditions that will be explained
later in the paper, when proving the results. The second, deterministic, phase is
the real game. When Prover queries a variable, i.e., a domino, inside an empty
zone, Adversary puts the cover, already chosen in the first phase. He does not
however reveal the cover to Prover, but only answer the question consistently
with the cover. If Prover forgets all the queried variables inside a covered zone,
Adversary removes the cover, so that the zone becomes empty again. Thus a
zone is nonempty if and only if it contains at least one “significant” variable (the
exact meaning of this is given in the detailed proof), whose value is kept by
Prover. There are two main points in our proof:

1. Prover has to remember Ω (n) variable values at some point in the game in
order to win. That is in any resolution proof we have a clause, containing
linear in n number of variables. This can be proven on somewhat higher
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level, depending on the connection between zones, but not on their specific
covers or particular shapes. A nice abstraction of that is Tiling Games.
They are considered in a separate section.

2. Every two values, kept by Prover and belonging to different zones are in-
dependent of each other. Moreover, given any value, kept by Prover, there
is a constant probability, bounded away from 0 and 1, that the value agrees
with the first, randomised phase. These properties depend on randomised
phase only, and on some specific properties of the zone covers, designed
there. This can be thought as a reduction of Tilling Game to Resolution
Game.

It is not hard to see that these two conditions imply an exponential lower bound
on Provers’s memory, and therefore on any resolution proof of the corresponding
problem.

The rest of the paper is organised as follows. We first introduce Tiling
Games. They allow us to work on the level of zones only, when proving the first
main claim. We also prove an exponential lower bound for these games. After
that, we show a reduction between Resolution Games and Tiling Games that
preserves the lower bound. This proves the second main point.

2.3 Tiling games

In this section, we introduce tiling games and prove some results about their
complexity.

Definition of a general tiling game. The board of the game consists of
m×m squares. Any of them is a perfect square, except the bottommost right
one that has a dent on its right side. The board is shown on the left of Figure
2.3. The tiles of the game are squares. Their sides are of three kinds: “flat
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Shapes of the tiles

Figure 2.3: The tiling games

wall”, “hump”, and “dent”, as shown on the right of Figure 2.3, pictures A, B,
and C, respectively. Apart from its shape, every tile has also a colour, either red
or blue. When we say a general tiling game, we mean a game where any set of
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shapes is allowed, whereas to get a particular tiling game, we fix this set. Thus,
a (particular) tiling game is completely determined by its set of tiles. In both
cases, every colour, either red or blue, is allowed for every shape.

In what follows, we will however consider only sets of tiles, having the prop-
erty that they cannot completely cover the board. In particular, we put the
restriction that the difference between the number of dents and the number of
humps has to be even for any tile from the set. A trivial parity argument then
implies the impossibility of tiling the board. We can also note that there are 41
such tiles, and therefore 241 possible tiling games, as any subset of tiles defines
a different one. We will however be interested in only two of them.

There are two players, whose names are Prover and Adversary. Adversary
claims that there is a tiling of the board. Prover’s task therefore is to force a
clear contradiction, i.e., a tile on the board, which is inconsistent with one of
its neighbours. In that case, she wins the game, which is played as follows: At
the beginning the table is empty. At any round Prover starts by doing one of
the following two:

1. She asks Adversary to put a tile on a particular square. He does so, and
the round is over. We assume that Prover has infinite number of tiles of
any kind (that is any allowed shape and any colour).

2. She removes any tile, already on the board. Adversary does not do any-
thing, and the round is over.

The game is over, when Adversary is not able to play in the first case. That is,
there is no tile, whose shape is consistent with the tiles, already on the board
(note that the colour does not play any role here). Prover can always win by
simply asking about all the squares and not removing anything. Adversary,
knowing this, does not hope to play forever. His task instead is to force Prover
to use big memory, no matter what she does.

Therefore, we need finally to explain how Prover “memorises” her strategy:
The strategy is kept again as a list of ordered pairs (position, move), where
“position” and “move” have their natural meaning. It is now clear how Prover
plays: In the beginning, she finds a pair, having its position-part empty. She
then makes the move-part of the pair. A new position appears. Prover finds a
pair, having the new position in its position part, and then makes the move-part,
and so on... We need also the restriction, that every two pairs from Prover’s list
have to have different position-parts, that is Prover’s strategy is deterministic.

We can now explain how Adversary enforces the use of big memory.

Adversary’s strategy and general lower bounds. First of all, let us note,
that Adversary’s strategy cannot be deterministic, as Prover can query about
all the squares in some fixed order, never removing anything from the board,
thus wining the game in m2 memory.

We will now describe a randomised strategy, which is optimal against any
Prover’s strategy.

The first, randomised, part is very simple. It involves the colours only.
We choose the colour for all the squares independently, at random, with equal
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probabilities of 1/2. During the game, when asked to put a tile on a particular
square, Adversary always uses the initially chosen colour.

The second part is completely deterministic. It involves the shapes of the
tiles only. To explain it, we need some definitions.

Definition 2.3 Given a position, a bad square (for this position) is a square,
such that the board, except this square, can be tiled. The bad region is the set
of all the bad squares.

In general, it is not even clear that a bad square exists for any position.
From now on, we shall however consider only tiling games, which satisfy the
following

Property 2.4 The bad region for the starting position, i.e., an empty board, is
the entire board, itself.

Informally speaking, we would like to be able to move the “problematic”
square from the south-eastern corner to any other position. We can make the
following trivial observation:

Proposition 2.5 Given a position where the bad region consists of two or more
squares, Prover cannot win immediately, i.e., at this round.

The next observation, although simple, is essentially the second part of Ad-
versary’s strategy.

Proposition 2.6 Adversary can play in such a way, that the size of the bad
component decreases by at most a constant factor after every round.

Proof Let us denote the bad region by B. If Prover removes a tile from the
board, the size of B remains the same or increases. Let us suppose now that
Prover asks Adversary to put a tile on the empty square s. Adversary then
tries all possible tiles t1, t2 . . . tk, i.e., shapes consistent with the non-empty
neighbours of s, as the colour has already been decided in the first part of the
strategy. For each of these k possibilities, we denote the new bad region by
B1, B2 . . . Bk. Let us now observe that any bad square for the initial position, b,
has either to be s (if it is bad itself) or to belong to some Bj. The latter holds,
because in tiling the entire board except b, there is a tile among the tjs, put on
s, and then b certainly is in the corresponding Bj. Therefore, we have

|B1|+ |B2|+ . . .+ |Bk| ≥ |B| − 1.

It is now clear that Adversary has to take the most natural decision, that is to
maximise the size of the new bad region. In this case

|Bnew| ≥ |B| − 1
k

≥ |B|
2k

.

This completes the proof, as k is less or equal to the number of all possible
shapes of tiles, which is a constant (at most 41, as already mentioned). 2

An important consequence is the following fact.
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Proposition 2.7 In any play of a tiling game there has to be a point, when the
bad region area is αm2 for some constant α, strictly between 0 and 1. At the
same round the border of the bad area has to be of length βm for some positive
constant β depending on α.

Informally speaking, there must be a point, when the bad region is “big”,
i.e., quadratic in m. Naturally, in order to “surround” such a big area, we need
a “big”, i.e., linear in m, border. Of course, we need first to rigorously define the
concepts mentioned in the statement, even though their meaning is intuitively
clear.

Two squares on the board are neighbours if they have a common side. A
region is an arbitrary set of squares. The border and the complement of the
region R, ∂ (R) and co (R), are defined as follows: ∂ (R) is the set of squares,
having the property that each element in-there has a neighbour in R. co (R) is
all the rest, i.e., it contains every square that is in neither R nor ∂ (R). The
closure of R is R = R∪∂ (R). When we say “area” and “length”, we really mean
“number of squares”.

We can now prove the proposition, itself.
Proof Let us observe that the area of the bad region goes from its initial value
m2 to 0 at the end, as it is a wining play for Prover (Proposition 2.5). Consider
the first round, after which the area drops below m2/2. After that round, it has
to be bigger than m2/ (2× 2× 41), according to Proposition 2.6. This proves
the first part, with α ∈ [1/164, 1/2].

For the second part, we will use the following lemma, whose proof is given
in the appendix.

Lemma 2.8 For any region R, |∂ (R)|2 ≥ min
{∣∣R∣∣ , ∣∣∣co (R)

∣∣∣}.

Clearly, it implies the second claim in the proposition, with β = min
{√

α,
√

1− α
}
.

In our special case β =
√
α, as α ≤ 1/2. 2

Let us summarise what has been done so far: We have considered a general
tiling game, under the only (rather weak) assumption that the bad region is
the entire board at the starting position. We have proven that in any game
played, there is a point, when the bad region has to have a border linear in
m . We can note that we have not used the colours of the tiles in any way.

We can now formulate our second assumption.

Property 2.9 In any position in the game, the number of tiles on the board is
linear in the length of the border of the bad component.

Adding this general, though still weak, assumption, to the first one, we can
easily prove an exponential in m lower bound on Prover’s memory.

Theorem 2.10 In a tiling game, satisfying properties 2.4 and 2.9, any Prover’s
wining strategy is of size 2Ω(m).
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Proof According to Lemma 2.7, there is a point in the game, when the bad
area is of size quadratic in m. At the same point, the border has to be of
sizeΩ (m). By Property 2.9, the number of tiles on the board is Ω (m), too. The
probability, that this position is consistent with the first part of Adversary’s
strategy, random colouring, is 1/2Ω(m). Therefore Prover has to have at least
2Ω(m) different position in the memory, as otherwise, there would be a choice of
the colours, for which she does not win.2

At the end, let us note that our two lower bounds on the size of both a
position in the game (linear) and Prover’s memory (exponential) are tight. A
simple divide-and-conquer algorithm yields upper bounds of O (m) for the size
of the position at any time and 2O(m) for the memory Prover needs.

What remains to be done is to prove that our two assumptions are indeed
correct for the concrete tiling games we are interested in.

Length lower bounds for particular games We shall first define the two
games.

1. Tseitin is the tiling game, having as a set of tile-shapes all the shapes
for which the difference between the number of dents and the number of
humps is even.

2. Mutilated Chessboard is the tiling game, having as a set of tile-shapes
all the shapes for which the number of dents equals the number of humps.

Clearly, Mutilated Chessboard game is a restricted version of Tseitin game.
Thus, every lower bound for the former game applies to the latter, too. On the
other hand, one could expect that proving lower bounds for Mutilated Chess-
board game would be much harder. It is indeed the case, as the reader will
see. This is the reason, we spend most of the rest of the paper on Mutilated
Chessboard game rather than on Tseitin one.

First of all, let us observe that both games trivially fulfill the first assump-
tion, saying that initially, the bad region is the entire board.

Thus only the second assumption, namely that at any round, the number
of tiles on the board is linear in the border-length of the bad region, is to be
checked.

We start with the easier, Tseitin, tiling game. In this case, the deterministic
part of Adversary’s strategy can be simplified. The key observation is that we
can always keep the bad region isolated.

Definition 2.11 The bad region is isolated iff it is separated by tiles from
any other region of the board, consisting of empty squares. In other words, a
neighbour of a bad square is either another bad square or a tile, but never a
square, which is not bad.

In general, we need to consider all the connected components of empty
squares. We can keep the following invariant: exactly one of them is bad and
the others are good, i.e., they can be tiled. It can be easily proven that the only
component having one more dent that humps is the bad one, and moreover any
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component, having equal number of dents and humps, is good. When Prover
asks a question, she may disconnect the component, where the question is, into
(at most four) other components. Conversely, if Prover removes a tile from the
board, she may join some previously disconnected components into a new one.
Adversary needs to be careful only in the case when the Prover’s question discon-
nects the current bad component. If so, Adversary answers in such a way that
the biggest of the new obtained components becomes bad and the rest become
good. It is easy to see that Adversary can always do that by a tile, consistent
with the neighbours of the queried square. After any round of the game, the
bad component can decrease by a factor of four at most, thus Proposition 2.6
holds, and so does Proposition 2.7 with α ∈ [1/16, 1/2] and β = 1/4. As the
bad region is always isolated, its border consists of tiled squares only. Therefore
the second assumption is fulfilled, and Theorem 2.10 then applies, giving us the
following:

Lemma 2.12 Prover needs at least 2
m
4 memory cells in order to win Tseitin

tiling game.

Let us now consider the other tiling game, Mutilated chessboard one. It is
now not so easy as before, as the bad region does not need to be isolated. This
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Figure 2.4: Tiling to flow correspondence

is illustrated on Figure 2.4. Black squares are the tiled ones. We call them also
marked squares. The bad region is shown in gray. Its border contains not only
marked squares, but also some empty squares, which are shown dashed. One
could, in general, think that it is possible, in some clever way, to “surround”
a “big” bad area, using only “few” tiles. Our intuition however tells us, that
it should be impossible. If the border of the bad region is coarse, it would be
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possible to “push” a problematic square through it, thus “extending” the bad
region, which is impossible by its definition. The following argument formalises
the intuition.

We shall first explain the connection between of a position in the Mutilated
Chessboard game to max-flow in a graph. The vertices of the graph are the
empty squares and there is an edge between any two neighbours. We call a
source an empty square such that there are more dents inside it than the dents
in the neighbours, adjacent to the considered square, i.e., the humps of the
square if it were tiled. The difference between the number of these two numbers
is the capacity of the source. On the picture, there are four sources of capacity
one and one source of capacity two. They are the squares with outgoing arrows
only. In general, when counting them, we take into account the capacity, so that
we can say that there are six sources on the picture. If we exchange “dents” by
“humps” and vice versa in the above definition, we get the definition of a sink.
There are five sinks on the picture that are exactly the squares with incoming
edges only. Obviously, the number of sources is always greater by exactly one
than the number of sinks during the game. It is clear that the bad squares and
only they have the following property: if we choose one of them as a sink, so
that the number of sources equals the number of sinks, there is a max-flow of
capacity equal to the number of sources. An example is given on Figure 2.4,
where the crossed square is chosen and a max-flow (of value 6) is shown by the
arrows. It is also straightforward to convert the flow into the corresponding
tiling an vice versa.

Proposition 2.13 In any position of Mutilated Chessboard tiling game, the
number of empty border squares is a constant fraction of the total number of
border squares.

Proof We now consider the border of the bad region. What we need to prove
first is that the empty squares, belonging to it, are not “too many”, namely they
are less than the number of sources.

The proof uses a max flow - min cut argument. Let us introduce a new,
artificial vertex A, and a directed edge from every empty border square to A.
Let us put the new vertex as a sink of capacity one, and denote the number of
sources by k. We now claim that there is no flow of value k in the new graph.
Suppose there were. Then it had to go trough one of the new edges. But then
we could “stop” it in the corresponding border squares that would imply this
square is bad - a contradiction.

Since the max flow equals the min cut, there has to be a cut of size less than
k. Let us take one such cut, and call the sources side “right” and the sinks side
“left ”.

We first need to show that the artificial vertex A is not contained in the
cut1 (note that a cut can, in general, contain not only edges but also vertices,
having capacities). Suppose that the cut contained A. Consider the part of the
cut when restricted to the original graph, i.e., before adding A and the edges

1We thank Mikhail Alekhnovitch for pointing out that we have forgotten to include this
part of the argument in an earlier version of the paper.
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from any empty border square to A. This part of the cut must be of capacity
at least k− 1 as it separates the k sources from k− 1 sinks, and there is a max-
flow of value k − 1 in the original graph. Therefore any cut containing A is of
capacity at least k. This implies that it cannot be minimal as there is no flow
of value k in the new, containing A graph.

We can now see that all the bad squares are on the right side. Suppose there
were at least one on the other side. But this implies that the size of the cut is
greater or equal to k, because there is a flow of size k if a bad square is taken
as a sink - a contradiction.

Let us denote the sets of border squares on the left/right side by L/R respec-
tively. What we have proven so far is shown on Fig. 2.5. We should however
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Figure 2.5: Max flow-min cut argument

note that there are two properties, which we “ignore” in our proof, because we
do not need them. First, as a matter of fact, it can be proven that all the border
squares are on the left side of the cut. Therefore, R = ∅, and the cut contains
no artificial edges. Second, it can be shown that the bad area is connected.

The cut we consider contains at least the following edges: exactly one edge
from every vertex in R to the new vertex and at least one edge from every vertex
in L to some bad vertex (as every vertex in L is on the border of the bad area).
This implies that |L|+ |R| < k, that is the number of border squares is less than
the number of sources.

We can finally prove that the second property, saying that at any round, the
number of tiles on the board is linear in the border-length of the bad region,
is fulfilled. Given a position on the board, denote the border-length of the bad
region by l. Suppose the number of sources is at most l/2. There are then
at most that many empty squares on the border, thus the number of marked
squares, that is the number of tiles on the board, is at least l/2. Suppose
now the opposite, the number of sources is at least l/2 + 1. Observe now that
every marked square generates at most two sources, as any tile has at most two
humps. Thus, there have to be at least l/4 tiles on the board. This completes
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the argument.2
As proven before, the above proposition implies

Lemma 2.14 Prover needs 2Ω(m) memory cells in order to win Mutilated Chess-
board tiling game.

2.4 Reduction

In this section, we show how to reduce Resolution game, played on a chessboard,
into Tiling game. To understand what “reduction” really means in this context,
we need to look at Fig. 2.6.

PR AR=PT AT

Resolution Game Tiling Game

Reducer

1. PR’s move, 2. transformed into PT’s move.

3. AT’s reply.4. AR’s reply, derived from

noyes

Figure 2.6: The general schema of the reduction

The resolution game is played by Prover Resolution (PR) and Adversary
Resolution (AR), while the tiling game is played by Prover Tiling (PT) and
Adversary Tiling (AT). We think of AR and PT as a single person, named
Reducer, who carries the reduction. As shown on the figure, he first looks at
the PR’s move in the resolution game. He then transforms it into PT’s move
in the resolution game and plays it there. After having got AT’s reply, Reducer
transforms it into AR’s move and replies by it to the initial PR’s move in the
resolution game.

Thus, one can think that the real game is played between PR and AT. We
already have a particular AT’s strategy which forces an exponential lower bound
on any PT’s strategy. We will prove, that this important property can be carried
trough the reduction, that is to imply an exponential lower bound on any PR’s
strategy, too. We will only consider the reduction of Mutilated Chessboard
problem, which is technically harder. That is why, we describe it in full detail,
leaving the reduction for Tseitin tautologies to the reader.
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Mutilated chessboard As we mentioned before, we first divide the chess-
board into non-overlapping constant-size squares, called further zones. In our
rigorous proof, we use 48 × 48 squares. A zone in Mutilated Chessboard prob-
lem corresponds to a square in Mutilated Chessboard tiling game. We also
“move” one of the missing squares near to the other as shown on Fig. 2.7 for a
(48n + 2) × (48n + 2) chessboard. We first define what a zone is. It is a “big”,

=

Figure 2.7: The reduction: zones, corresponding to tiles

48 × 48, square, with “few” small squares cut off. We need to explain how the
missing squares can exactly appear.

We divide a zone into 12×12 smaller, 4×4, squares, further called sub-zones,
as done in the middle of Figure 2.7. Missing squares can only appear on the
sides of a zone, inside the four dashed “bands” which are the border part of the
four gray five-sub-zone areas. Moreover, there are only the following possible
shapes:

1. No missing squares (Fig. 2.8A). This corresponds to a flat wall, in the
tiling game.

2. Two neighbours, of different colour, belonging to a sub-zone, and not being
the two middle squares (Fig. 2.8B). In the tiling game, this corresponds
to a flat wall, similar to the previous case.

3. Two squares of the same colour, belonging to sub-zones, that are a sub-
zone away from each other (Fig. 2.8C). Two black missing squares corre-
spond to a hump in the tiling game, whereas two white missing squares
correspond to a dent.

4. Four missing squares, that are a combination of the previous two cases,
and, moreover, no two mutilated sub-zones can be neighbours (Fig. 2.8D).
Again, if two more white squares than black ones are missing, this is a dent
in the tiling game. The symmetric case, i.e., two more blacks, corresponds
to a hump.

Figure 2.8 shows all possible shapes of a zone border. They imply all possible
connections between two neighbouring zones. In particular, two neighbours can
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1 A B

2 C D

Figure 2.8: The reduction: possible shapes of zones and connections between
them

have only 0, 2 or 4 dominoes in common, and, moreover, these can only appear
as explained above.

We are now almost ready to explain the essence of the section, namely
Reducer’s algorithm. The last, but the most important concepts, we need, are
the different kind of questions we have in Resolution Game. At any round in
the game, we have a partial tiling of the chessboard. The tiling satisfies the
condition that any zone is either completely empty or completely covered by
dominoes from Adversary’s point of view. There are the following three kind of
Prover’s questions:

Definition 2.15 Dummy question is a question about a domino, connecting
two neighbouring zones, and within 3 sub-zones (that is 12 squares) from one of
the two common corners of the zones.

The answer to an impossible question is always “no”, so we can assume Prover
gets them for free, and she never asks such a question.

Definition 2.16 Forced question is a question, which is not dummy, but the
domino involved affects the current partial tiling.

The answer clearly depends on the current tiling.

Definition 2.17 Open question is a question, which is neither dummy nor
forced.

That is, an open question is about a domino:

1. The domino does not intersect the current (partial) cover.
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2. It either is completely inside an empty zone or connects two empty neigh-
bouring zones. In the latter case, the domino is also 12 squares away from
any zone corner.

We should note that “dummy” is a static concept, i.e., it does not depend on
the current partial tiling, whereas the concepts “forced” and “open”are dynamic.

We should also note that a forced/open question may be assigned to any
of two neighbouring zones. Sometimes, we will need to assign a question to a
particular zone. We will then use the following deterministic rules:

1. If the question is open, we associate it to either the right zone (if the
border is vertical) or the bottom one (if the border is horizontal).

2. If the question is forced, we associate it to the zone, which has been
covered first, starting from the last point in the game, when both zones
were empty. In this way we ensure that the question was open to its zone
at that time.

We can now describe

Reducer’s algorithm

The randomised phase. For any zone, further called “current”, we do the
following: For any possible shape of any combination of its nonempty neighbours
and any possible connection to its empty neighbours, either dent, hump or flat
wall, we design a set of tilings of the current zone. These tilings have to have
the property that not all of them agree on any open question associated to the
current zone. It is very important to note, that the number of all the tilings is
a constant. Adversary then chooses one of the tilings uniformly at random and
remembers the choice through the entire Resolution Game. What remains to
be proven is that a set of tilings, having the desired properties exists. This is
proven in Appendix, lemma 2.21.

The deterministic phase. We should first note that at any round in
Resolution Game, there are some “yes” and/or “no” dominoes on the mutilated
chessboard. These are visible to both Prover Resolution and Reducer, who is
also Adversary Resolution. Apart from them, there is a partial tiling of the
board, which is visible only to Reducer. This tiling is consistent with all the
“yes”/”no” dominoes until the end of the game, when Reducer gives up. In Tiling
Game, there are some tiles on the board. Moreover, there is a correspondence
between any tile and the corresponding zone in Resolution Game, as explained
at the beginning of the section.

Let us now consider the four stages of the reduction for the two possible
Prover Resolution’s moves, either asking a question or forgetting:

1. Asking a question about a domino.

(a) Prover Resolution asks a question in Resolution Game.
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i. The question is forced. Reducer answers immediately, without
going to the next stage.

ii. The question is open, and therefore it is the first one such ques-
tion about the considered empty zone. Reducer switches from
Adversary Resolution to Prover Tiling, thus going to the stage
(b)

(b) Prover Tiling asks a question in Tiling Game.

(c) Adversary Tiling puts a tile on the board.

(d) Given that tile and the neighbouring zones, Reducer gets the already
chosen (in the randomised phase) cover of the zone and puts it on the
mutilated chessboard, not revealing it to Resolution Prover. Reducer
then switches back to Adversary Resolution and answers to Prover
Resolution’s question consistently with the cover just put.

2. Forgetting a domino, which is already on the mutilated chessboard.

(a) Prover Resolution forgets a domino, already on the chessboard.

i. The domino is not the only “yes”/”no” domino inside the corre-
sponding zone. Reducer does not do anything else.

ii. The domino is the only “yes”/”no” domino inside that zone. Re-
ducer goes to stage (b).

(b) Reducer, acting as Prover Tiling, removes the corresponding tile in
the tiling game. After that, acting as Adversary Resolution, he for-
gets the cover of the zone, so that it becomes empty again.

The important lemma, that follows from our construction is the following:

Lemma 2.18 At any round of Resolution Game, we can take a set of “yes”/”no”
tiles, no two of them belonging to the same zone. They are independent and the
probability that each of them agrees with the randomised phase is a constant,
bounded away from both 0 and 1.

Proof Because of the way we associate a question to a zone at the time when
the zone was covered, the question was open for it. We can now use the fact,
that the cover was chosen at random, among the set of covers, such that not all
of them agree on any open question.2

That is enough to ensure that Theorem 2.10 applies, with the two colours,
corresponding to the two possible answers to the chosen questions. The prob-
abilities now are not 1/2 and 1/2, but some (small) constants, different from 0
and 1. This however does not affect the argument, so that the exponential lower
bound is carried from Tiling Game through the reduction to Resolution Game.
Acknowledgements We would like to thank Mikhail Alekhnovich for finding
the missing point already mentioned.
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2.5 Appendix

Here, we shall give rigorous proofs of all the intuitively obvious, but tedious to
prove, lemmas, used in the paper.

A lower bound on the length of a border, surrounding certain area.
An arbitrary set of squares, R, further often called a region is given on the
m×m board. We can then define the border and the complement of the region
R, ∂ (R) and co (R), as follows: ∂ (R) is the set of squares, having the property
that each element in-there has a neighbour in R. co (R) is all the rest, i.e. it
contains every square that is in neither R nor ∂ (R). As usual, we also define
the closure of R, R = R ∪ ∂ (R).

Clearly, we have ∂ (co (R)) ⊆ ∂ (R). Note that the inclusion is not strict, as
there can be squares in ∂ (R), surrounded only by squares in R, and therefore
not in ∂ (co (R)).

Lemma 2.19 For any region R, |∂ (R)|2 ≥ min
{∣∣R∣∣ , ∣∣∣co (R)

∣∣∣}.

Proof We shall first prove a simple isoperymetric inequality.

Proposition 2.20 Let C be a connected region of closure-area
∣∣C∣∣ = s, that

touches at most two neighbouring sides of the board. Then ∂ (C) has to be of
length at least

√
s (here both “area” and “length” mean “number of squares”).

Proof (of the proposition) W.l.o.g., we can assume that C, together with
its border, is contained in an a × b rectangle, a ≥ b. Obviously, the number
of non-empty squares has to be at least a - at least one in every row of the
rectangle, as no row can be bounded by two opposite sides of the board. Then

a2 ≥ ab ≥ s.

2

Note that this proposition does not hold if C touches three of the sides of the
chessboard. As an example, we can take small number of squares connecting
two neighbouring sides of the board, near to one of the corners. They divide it
into two connected areas, one of them being much smaller than the other. It is
now clear that the proposition does not hold for the bigger component.

We can now prove the lemma. Let us “transform” R as follows: We first
consider all connected sub-regions of R. They are disjoint, but their borders are
not, in general. We then join two neighbouring sub-regions, having intersecting
borders. In doing this, we could need to make some of the common-border
squares internal to the union. Therefore the overall area increases, whereas the
overall border-length decreases. We repeat the above procedure while possible.
In the end, we have a set of connected regions, R1, R2, . . . Rk, such that

[(a)]They are disjoint, and so are their borders, ∂ (R1) , ∂ (R2) , . . . ∂ (Rk).
These imply ∣∣R1

∣∣+ ∣∣R2

∣∣+ . . .
∣∣Rk∣∣ =

∣∣R∣∣
|R1|+ |R2|+ . . . |Rk| ≥ |R|
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(b)(c) |∂ (R1)|+ |∂ (R2)|+ . . . |∂ (Rk)| ≤ |∂ (R)|
We finish the proof by a case-analysis:

1. Each Rj touches two neighbouring sides of the chessboard at most. The
proposition 2.20 then applies to all the Rjs. Those inequalities, together
with (a) and (c) above, give

|∂ (R)|2 ≥ (|∂ (R1)|+ |∂ (R2)|+ . . . |∂ (Rk)|)2 ≥
|∂ (R1)|2 + |∂ (R2)|2 + . . . |∂ (Rk)|2 ≥∣∣R1

∣∣+ ∣∣R2

∣∣+ . . .
∣∣Rk∣∣ =

∣∣R∣∣ ,
as desired.

2. There is at least one Rj, that touches either two opposite sides of the
board or three sides of the board. In both cases, there has to be a “path”
of border squares connecting two opposite sides of the chessboard. Every
such a path contains at least m squares, and we are done.

3. There is at least one Rj , that touches all four sides of the chessboard. We
now consider the intersections of such an Rj with every horizontal line.
If each such intersection contains at least one border point, there are at
least m border squares, and we are done. If not, there is a row, consisting
of only interior points of Rj . It this case, we need to consider co (R). All
what we have done so far with R applies to co (R), too. Let us however
observe that only the previous two cases, 1 and 2 are now possible, as there
is entire horizontal line in R, that is not in co (R), dividing the board into
two disjoint rectangles. Thus

|∂ (R)|2 ≥ |∂ (co (R))|2 ≥
∣∣∣co (R)

∣∣∣ .
The first inequality is because of ∂ (co (R)) ⊆ ∂ (R). This completes the
proof.

2

Let us note that the strongest, sharp, version of the above lemma is as
follows: Consider an m ×m board, which is divided into three disjoint subset
R, S and T . Suppose also that S separates R from T , i.e. there are no two
neighbouring squares such that one is in R and the other is in T . The following
inequality holds:

|S|2 − |S| ≥ 2min {|R| , |T |} .

Possibility of tiling zones of certain shape, contained in big, 48 × 48,
squares. We first need to remind what the shape of a zone is. A zone is,
roughly speaking, a big, 48 × 48, square, with “few” small squares cut off. We
shall first explain how the missing squares can exactly appear.

We first divide a zone into 12 × 12 smaller, 4 × 4, squares, further called
sub-zones, as done on figure 2.9. Missing squares can only appear on the sides
of a zone, inside the four dashed “bands” which are the border part of the four
gray five-sub-zone areas (figure 2.9A). Moreover, there are only the following
possible shapes:
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Figure 2.9: Zones

1. Two neighbours , of different colour, belonging to a sub-zone, and not
being the two middle squares. An example is given on the eastern border
of the zone C, figure 2.9 (here and everywhere on figure 2.9, the missing
squares appear in black). Remember, in the tiling game, this corresponds
to a flat wall, as well as the case, where no missing squares appear (the
western side of the zone C, as an example).

2. Two squares of the same colour, belonging to sub-zones, that are a sub-
zone away from each other. The eastern border of the zone B is an exam-
ple. There are two black squares missing, which corresponds to a hump in
the tiling game (two white squares would correspond to a dent).

3. Four missing squares, that are a combination of the previous two cases,
and, moreover, no two mutilated sub-zones can be neighbours. The south-
ern border of zones B and the northern border of zone C are such examples.
Again, if two more white squares than black ones are missing, this is a dent
in the tiling game (B). The symmetric case (C) corresponds to a hump.
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We should not however forget that we have an additional domino, which cor-
responds to the open question. Thus we define a mutilated zone to be a zone
with a missing domino. Moreover, the number of the white squares, present in
the zone has to be equal to the number of white ones. That is, in the tiling
game, the number of dents is equal to the number of humps. This completes
the description of what a mutilated zone is.

As mentioned in the paper, the proposition we need is

Lemma 2.21 Any mutilated zone can be covered by dominoes.

Proof For a moment, we will ignore the last domino, cut off from the zone.
That is, we will first show how to deal with the missing border squares only. We
can then “repair” the solution in order to tackle the domino, we have “forgotten”
about.

In doing the first part, we proceed by a very simple case analysis.

• There are a “dent” and a “hump” on two neighbouring sides of the zone, as
shown on figure 2.9B. We “connect” the dent and the hump by two roads,
as shown on the same picture. The missing squares “vanish”, “absorbed”
by the roads (the squares of the roads are shown in full detail, i.e. colour;
the missing squares are in black, as explained before). The only missing
squares that are not absorbed, are those from the first case above. It is
important to observe that the two roads can be designed so that they do
not touch each other and none of them crosses one of the diagonals (in
our case, the gray diagonal). If the other two neighbouring sides contain
a dent and a hump, we connect them in a similar way.

• There are a dent and a hump on two opposite sides of the zone and the
other two sides are flat walls. We connect the dent and the hump, as
shown on figure 2.9C. Again, the two road do not touch each other and
are bounded by the two gray (vertical, in our case) lines.

• All the sides are flat walls. We do not do anything for a flat wall. As
explained before, any two missing neighbours remain.

We can now “cut off” the last domino. In general, it affects some road. What
we need, in order to complete the proof, is to show how to “repair” the affected
road. We first observe that only one road may need to be repaired. This is
due to the clever design of the roads, that ensures, no two of the touch each
other. We need now to consider all the possible ways, the domino can be “put”
inside the zone with already created roads. They are shown on figure 2.10. All
possible sub-zones are shown on the first row, where the part(s) of a road are
dashed (for convenience, we think of any two missing neighbours as a “small”
road). The rest of the figure shows how to repair the road locally. The cut off
domino is the bold-face bordered one. The dashed border dominoes are part of
a road. The gray squares are missing squares (note that they can only appear
in an end sub-zone). The normal bordered dominoes are the new introduced
ones, that is the ones, needed in “repairing” of the road. The possible cases are:
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Figure 2.10: Repairing the road

1. The simplest one, when the domino is inside a sub-zone and does not affect
a road. It is trivial to check, by looking at the pictures 1-5 (note 5 is not a
part of a real road, as explained before) , that the corresponding sub-zone
can be tiled by dominoes.

2. The domino affects two neighbours, but does not affect a road, as shown
on figure 2.10A. This clearly reduces to two instances of the previous case.

3. The domino lies on the road, inside a sub-zone. This can be fixed, as
shown on B and C . It is not hard to see, that each of them may be
impossible, so that both are needed to be considered.

4. The domino lies on the road, affecting two sub-zones. This reduces to at
most two instances of the first case, as shown on D and E.

5. The domino cuts only one square from the road, affecting two neighbouring
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sub-zones. F or G reduces it again to the first case.

6. The domino cuts only one square from the road, and it is inside a sub-zone.
This is the most complicated case, because of the two possibilities for the
affected road domino (H and I) and also because of the end sub-zones (J
and K). It is however not hard to see that these four cases are all the
possibilities.

This completes the proof. 2



Chapter 3

Tree-Resolution Complexity of the Weak
Pigeon-Hole Principle

We show some tight results about the tree-resolution complexity of the Weak
Pigeon-Hole Principle, PHPmn . We prove that any optimal tree-resolution proof
of PHPmn is of size 2θ(n logn), independently from m, even if it is infinity. So far,
the lower bound know has been 2Ω(n). We also show that any, not necessarily
optimal, regular tree-resolution proof PHPmn is bounded by 2O(n logm). To best
of our knowledge, this is the first time, worst-case proofs have been considered,
and a non-trivial upper bound has been proven. Finally, we discuss and con-
jecture some refinements of Riis’ Complexity Gap theorem for tree-resolution
complexity of Second Order Existential (SO∃) sentences of predicate logic.

3.1 Introduction

The Pigeon-Hole Principle (PHP ) is probably the simplest and at the same
time the most widely used combinatorial principle. In its classical formulations,
it states that there is no injective map from a finite m-element set to a finite
n-element set if m > n. PHPmn is very intuitive for the human way of thinking,
and it is also easily provable within set theory. This is however not the case for
some propositional proof systems. In his seminal paper [31], Haken showed that
any resolution proof of PHPn+1

n is of size 2Ω(n). His proof has been generalised
and simplified in [16], [7], [11]. For quite a while, the best known result had been
a 2Ω(n2/m) lower bound from [16], thus having left the case m = Ω

(
n2/ log n

)
as

an important open problem in resolution proof complexity. An important step
has been done in [38], where a 2Ω(nε) lower bound on any regular-resolution proof
of PHPmn is proven. Shortly afterwards, the problem has finally been solved by
Raz in [42], and further strengthen and improved by Razborov in [43], [44].

In this paper, we concentrate on tree-resolution. Even though it is probably
the weakest propositional proof system one could think of, the exact complexity
of tree-resolution proofs of PHPmn has not been known so far. A 2Ω(n) lower
bound was shown in [15], whereas one can construct only a 2O(n logn) tree proof
by “unfolding” the 2O(n) DAG-resolution proof given in the same paper. A
2O(n logn) lower was proven in [32], but only for ordinary pigeon-hole principle,
i.e. PHPn+1

n .

43
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The first contribution (section 3.3) of our paper is closing the gap. We prove
a 2Ω(n logn) lower bound on any tree-resolution proof of PHPmn , independently
from m, even if it is infinity. It is tight up to a constant factor in the exponent
or, in other words, up to a polynomial transformation. In order to prove the
result, we introduce a new method for proving lower bounds on tree-resolution
proofs. It is more general than the existing one (see e.g. [48]). The latter works
only for balanced proofs, whereas any tree-like resolution proof of PHPmn is
highly unbalanced as shown in the paper.

The second contribution (section 3.4) of the paper is considering the worst
tree regular resolution proofs of PHPmn . To best of our knowledge, this is for
the first time, the worst case proof complexity is considered. We prove an upper
bound of 2O(n logm), which is non-trivial, as there are mn variables, and one
can therefore expect the worst case to be as bad as 2mn (we consider of course
only proofs which do not contain vacuous weakening of axioms). This has the
following very interesting consequence: Consider PHP poly(n)

n , i.e. m is some
polynomial in n. The optimal and the worst regular tree-resolution proofs of
PHP

poly(n)
n are polynomially related, and so are any two random regular tree-

resolution proofs. This also has an implication in automated theorem proving,
as it shows that there are natural problems for which any DLL-based proof
search heuristic is as good as any other.

Finally (section 3.5), we discuss and conjecture some refinements of Riis’
Complexity Gap theorem for tree-resolution complexity of Second Order Exis-
tential (SO∃) sentences of predicate logic [48], motivated by our results. These
conjectures nicely relate tree-resolution gap(s) to a possible general-resolution
gap as well as to a characterisation, involving optimal and worst-case tree-
resolution proofs.

3.2 Preliminaries

We first give some definitions. A literal is either a propositional variable or the
negation of a propositional variable. A clause is a set of literals. It is satisfied
by a truth assignment if at least one of its literals is true under this assignment.
A set of clauses is satisfiable if there exists a truth assignment satisfying all the
clauses.

As we have already said, by PHPmn we denote the claim that there is no
injective map from a set of size m to a set of size n, where m > n. We encode
its negation as the following set of clauses

1. {pi1, pi2, . . . pin} for 1 ≤ i ≤ m

2.
{
pij , pik

}
for 1 ≤ i ≤ m, 1 ≤ j < k ≤ n

We allow m to be infinity. In this case, we have an infinite set of clauses, but all
the clauses themselves are finite. Although we consider the injective PHP , all
the results and proofs from the paper remain valid for the bijective PHP , too.
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Resolution is a proof system designed to refute given set of clauses i.e. to
prove that it is unsatisfiable. This is done by means of the resolution rule

C1
⋃ {v} C1

⋃ {v}
C1
⋃
C2

.

Thus, we can derive a new clause from two other clauses that contain a variable
and its negation respectively. The goal is to derive the empty clause from the
initial ones. Anywhere we say we prove some proposition, we mean that first
we take its negation in a clausal form and then resolution is used to refute these
clauses.

There is an obvious way to represent every resolution refutation as a directed
acyclic graph whose nodes are labelled by clauses. The sources, i.e. the vertices
with no incoming edges, are the initial clauses. The only sink, i.e. the vertex
with no outgoing edges, is the empty clause. Everywhere in the paper, we say
“the size of a proof”, we really mean the number of vertices in the corresponding
graph.

We can now define two important restricted versions of resolution. First one
is tree resolution when the graph is a tree or, in other words, we are not allowed
to reuse any previously derived clauses. The other one is regular resolution when
every variable is resolved at most once along any path from a source to the sink.

For an unsatisfiable set of clause, we can consider the following search prob-
lem: given a truth assignment, find a clause which is falsified under it. There is
a close connection between refuting an unsatisfiable set of clauses by some proof
system and solving the corresponding search problem within some model of
computation. In [33], it is proven that tree-resolution refutations are equivalent
to boolean decision trees. More precisely, given a refutation of the set of clauses,
it can be viewed as a decision tree, solving the search problem and vice versa.
The same result holds for regular resolution refutations and read-once branching
programs. In contrast to these, general resolution proofs are not equivalent to
branching programs. As a matter of fact, there is a polynomial-size branch-
ing program, solving the search problem corresponding to PHPn+1

n while all
resolution refutations are of exponential size.

Everywhere in the paper, we use the equivalence between a tree-resolution
proof and a boolean decision tree. All the proofs are, in fact, for decision
trees, whereas the results are stated in terms of tree-resolution proofs. We only
consider proofs that are regular. This is not a restriction at all as in a decision
tree, it does not make sense to query any variable more than once. On the
other hand, if we do not set this restriction, we would not be able to prove
any upper bounds, as any given proof can be extended by (unbounded) number
of “meaningless” applications of the resolution rule. Thus, from now on, every
time we say “tree resolution”, we really mean “regular tree resolution”. As already
mentioned we do not allow proofs to contain vacuous weakening of axioms. In
terms of decision trees a branch terminates as soon as a contradiction is reached.

An important technique, we use to prove lower bounds on proofs, is con-
sidering a proof as a Prover-Adversary game. It is first introduced in [41] and
developed further in [40] for general resolution. For tree resolution, it can be
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simplified, as done in [48]. Adversary claims that there is a satisfying assign-
ment. Prover’s task is to expose him. In order to do that, Prover asks questions
about variables according to a decision tree, she holds. Clearly, there is no way
for Adversary to win the game. His task is therefore to enforce a big enough sub-
tree, contained in Prover’s decision tree. If he has a strategy, enforcing that, no
matter what strategy Prover uses, we have a lower bound on the tree-resolution
refutations of the given set of clauses.

The only Adversary’s strategy, used so far, essentially shows that there are
certain number of branching points in any decision tree. It implies the existence
of a big balanced subtree of a certain hight, thus proving an exponential in the
hight lower bound. Unfortunately, this technique does not work for unbalanced
decision trees. PHPmn tree-resolution refutations is such an example as we shall
see in the next section. In order to tackle these, we introduce new, more general
method for proving lower bounds. It requires defining a function on the nodes
of the decision tree. The value of the function at any node should be a lower
bound of the size of the subtree rooted by that node. Thus the function value
on the root is a lower bound on the size of any decision tree solving the given
search problem.

3.3 Optimal proofs

We first construct a 2O(n logn) tree-resolution proof (in fact, boolean decision
tree, as we have already mentioned), and we prove the corresponding lower
bound.

Here we fix some notations that we will use in both this and the next section.
We denote the bigger, m-element set by M , and the other, n-element set by
N . We consider M and N as the two parts of the complete bipartite graph
Km,n, and then there is 1-1 correspondence between the edges of the graph and
variables p. Thus we can speak about a partial matching in Km,n instead of a
partial function form M to N . All the queries/questions, from the decision tree,
are about the edges. We can however say that a question is about a vertex, too
if the corresponding edge is incident to that vertex.

Upper bound

The sketch of the construction is as follows. Obviously, Prover can restrict
herself to the first n+1 elements of M . She asks consecutively all the questions
about the first element from M , namely p11, p12, . . . p1n. If all the answers
are “no”, a contradiction is found. Otherwise, suppose p1j is the first question
with a positive answer. Prover then asks all the remaining questions about the
j-th element of N , namely p2j , p3j , . . . pn+1, n. If at least one answer is “yes”,
a contradiction is found. If not, we can safely remove the first element from M
and the j-th element from N , and then look for a contradiction on a PHPm−1

n−1

instance.
The boolean decision tree is given on the figure 3.1 below. The internal

nodes are labelled with the queried variables, and the edges are marked with
the corresponding answer. Every external node (leave) is labelled by the found
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Figure 3.1: An optimal decision tree for PHPmn

contradiction, i.e. a clause falsified under the (partial) truth assignment corre-
sponding to the path from the root to this node. The nodes marked by PHPm−1

n−1

are, in fact, subtrees.
What remains is to estimate the size. The decision tree for PHPmn consists

of n copies of the decision tree for PHPm−1
n−1 plus a quadratic in n overhead.

More precisely

S (n) =
{
nS (n− 1) + 2n2 + n+ 1 if n > 1

5 if n = 1
,

where S (n) is the size of the decision tree for PHPmn .
It is now easy to prove by induction that S (n) ≤ 6 (n+ 1)!. Finally, an

application of Stirling’s approximation of the factorial gives the desired upper
bound.

Lower Bound

The main idea in our proof is to define a function on the nodes of the decision
tree. The value of the function at any node should be a lower bound of the
size of the subtree rooted by that node. After having done that, it suffices to
compute the function value on the root. The result is a lower bound on the size
of any decision tree, solving the search problem for PHPmn .

We assume, w.l.o.g., that n is even. W.l.o.g. we can also assume that
Prover’s decision tree is read-once, i.e. along every path any question is asked
at most once. Now, we can explain Adversary’s strategy.

An important concept, we introduce here, are counters. A counter is at-
tached to every vertex in M which is not matched yet to any vertex in N . In
addition, there is one special counter that will be explained later on. Initially all
the counters are set to zero. During the game, every counter is an upper bound
of the number of vertices in N that are “forbidden” for the corresponding vertex
in M . When some counter reaches the value n, Adversary “gives up”, although
it might be possible to continue the game a few more rounds.



48 Chapter 3. Tree-Resolution Complexity of the Weak Pigeon-Hole Principle

We can now classify all the questions that can appear in the decision tree and
show how to maintain the counters. Let k be the size of the partial matching
obtained so far, i.e. the number of “yes” answers along the path from the root
to the current node. There are three kinds of queries:

1. Free-choice. Neither of the two vertices involved is in the current partial
matching and the counter of the vertex from M is less than n

2 +k. Adver-
sary chooses either “yes” or “no” answer with some probability. The actual
probability does not matter, the important point is that the free choice
forces Prover to branch the decision tree at that point. If the answer is
“no”, only the counter of the element form M increases by one. If the
answer is “yes” this counter is cancelled, i.e. not maintained any more,
but the counters of all the other elements in M are increased by one.

2. Critical. Neither of the two vertices involved is in the current partial
matching but the counter of the vertex fromM is equal to n

2 +k. Adversary
answers “yes”, he current counter is cancelled, and the counters of all the
other elements in M are increased by one.

3. Forced. Some of the vertices involved (or both) is already in the matching.
Adversary answers “no” and does not change any of the counters attached
to the elements in M . He however increases by one the special counter,
which counts the forced questions.

First of all, it is easy to see that for a given element in M , its counter is an
upper bound on the number of elements in N that cannot be matched to that
element. There are also some other simple observations to be made. First one
says that Adversary always “survives” certain number of rounds.

Lemma 3.1 A contradiction can be found only when some counter reaches the
value n. In this case, at least n

2 “yes” answers must be present on the path from
the root to the current node.

Proof A simple induction on k proves the following assertion: All the counters
are bounded from above by n

2 +k along any path from a node, where the partial
matching is of size k, to the node, where that size becomes k + 1. The lemma
then follows.2

The next lemma shows that there must be a very long branch in any decision
tree. Together with the main result, it implies that every such tree is unbalanced.

Lemma 3.2 In every decision tree for PHPmn , there is a path of length Ω
(
n2
)
.

Proof Consider the path, where Adversary answers “no” to every free-choice
question. It is now easy to observe that when k-th critical questions asked, the
corresponding vertex from M has a counter value equal to n

2 + k − 1. That
counter has been increased k − 1 times because of the previous k − 1 critical
question. The remaining n

2 increases are result of “no” answers to free-choice
question about the corresponding vertex. Thus, along the particular path, we
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consider, any “yes” answer is preceded by n
2 negative answers about the same

vertex.
The lemma 3.1 claims that every path contains at least n

2 “yes” answers.
Therefore our path contains at least n2

4 “no” answers.2
We can now prove the main result.

Theorem 3.3 Every tree-resolution proof of PHPmn is of size 2Ω(n logn).

Proof First we define an appropriate function as it has been explained in the
beginning of the section.

Let us denote by k the size of the partial matching at the current node u,
i.e. the number of “yes” answers along the path from the root to u. Let us also
sort the m−k unmatched vertices from M in decreasing order of their counters,
and denote the values of the counters themselves by p1 ≥ p2 ≥ . . . ≥ pm−k. The
forced question counter is denoted by p0. The value of the function at the node
is then defined by

f (u) =

n
2
−k∏
i=1

qi, where qi =
{

n
2 + k − i− pi if it is positive

1 elsewhere

On the root, r, we have f (r) =
(
n
2 − 1

)
!, so that f (r) = 2Ω(n logn). It only

remains to prove that at any node the function value is a lower bound for the
size of the subtree rooted by the node.

The proof is by induction on the tuples of the form
p1, p2, . . . , pn

2
−k, p0 +

m−k∑
i= n

2
−k+1

pi


 .

We order them as follows. The shorter a tuple, the smaller it is. If two tuples
have equal length, the lexicographically bigger one is the smaller. Clearly, this
ordering makes the induction work from the leaves to the root of the decision
tree, as the tuple on any node is strictly bigger than the tuples on its successors
in the tree.

The basis case is then k = n
2 , where f (u) = 1, as the product is empty.

Obviously, the function value at the node is a lower bound of the corresponding
subtree, no matter what the only element of the tuple is.

To prove the induction steep, we need to consider all possible kind of ques-
tions that can appear at the current node u.

1. Forced. We consider the “no” branch only. Denoting its root (the “no”
successor of u) by v, we have f(u) = f(v), as only p0 increases by one
when going from u to v and f does not depend from p0. By the induction
hypothesis, we are done.

2. Critical. W.l.o.g. we assume that the question is about the element,
having p1 as a counter. It is so, because a critical question always involves
the biggest counter (Even if there are many counters with the biggest
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value n
2 + k, we can always consider p1, as two elements, having the same

counter value are indistinguishable to Adversary’s strategy). We consider
the “yes” branch only. Denoting the “yes” successor of u by v, we have
again f(u) = f(v). That is the case, because all the counters p2, . . . , pn

2
−k

increase by one when going from u to v, but so does k, therefore the
contributions q2, . . . , qn

2
−k do not change. q1 vanishes at v, but its value

at u is one, as p1 = n
2 + k. By the induction hypothesis, we are done.

3. Free-choice. There are three sub-cases:

(a) The index involved, j, is greater than n
2 − k. W.l.o.g. we can also

assume pn
2
−k > pj since if they were equal Adversary could behave

as the question were about n
2 − k-th element (again, any two vertices

having the same counter value are indistinguishable to Adversary’s
strategy). The “no” answer then does not change anything except
the last element of the tuple, but f does not depend on it. So,
f(u) = f(v), where v is the “no” successor of u. By the induction
hypothesis, we are done.

(b) The index involved, j, is between 1 and n
2 − k, but the contribution,

qj, of that element to the function f is one. That is similar to the
previous sub-case, as the “no” answer leaves the value of f unchanged
when going from from u to to its “no” successor v.

(c) The index j is between 1 and n
2 − k and the contribution, qj, of that

element to the function f is greater than one. This is the only non-
trivial case, in the sense that we need consider both subtrees of the
current node u. Note that if there are many counters, having the
same value equal to pj, w.l.o.g. we can think that j is the minimum
such index, so that the “no” answer does not change the order of the
counters.
The “no” subtree gives the tuple


p1, . . . pj−1, pj + 1, pj+1 . . . , pn

2
−k, p0 +

m−k∑
i= n

2
−k+1

pi




and the value

f (v) = (qj − 1)

n
2
−k∏

i = 1
i 6= j

qi.

The “yes” subtree gives


p1 + 1, . . . pj−1 + 1, pj+1 + 1 . . . , pn

2
−k + 1,m− n

2
+ p0 +

m−k∑
i= n

2
−k+1

pi
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and the value

f (w) =

n
2
−k∏

i = 1
i 6= j

qi.

The induction hypothesis then applies to both subtrees, so the size
of the current subtree is at least

1 + f (v) + f (w) = 1 + f (u) > f (u) .

This completes the proof.2

3.4 Worst case proofs

We first construct a 2O(n logm) boolean decision tree for PHPmn which is a lower
bound for the worst-case regular tree -resolution proofs. We also show the same
upper bound, i.e. any such proof cannot be worse than that. It is very important
to now note that “worst case”, in our context, has a completely different meaning
than the usual one, used in Complexity Theory or Analysis of Algorithms.

Lower bound

The sketch of the construction is as follows. Prover ask all the questions about
the first element from N , namely p11, p21, . . . pm1. If all the answers are “no”,
we can remove the first element from N , and thus get an PHPmn−1instance.
Otherwise, suppose pi1 is the first question with a positive answer. Prover then
asks all the remaining questions about the first element of N , namely pi+11,
pi+21, . . . pm1. If at least one answer is “yes”, a contradiction is found. If not,
we can safely remove the first element from N and the i-th element from M ,
and then look for a contradiction on a PHPm−1

n−1 instance.
The boolean decision tree is given on the figure 3.2 below.

p11
yes

ttjjjjjjjjjjjj
no

++WWWWWWWWWWWWWWWWW

p21
yes

wwoooooo
no��

p21
yes

wwooooooo
no

**TTTTTTTTTTTTT

f�p11; �p21g p31
yes

wwoooooo
no��

p31
yes

wwoooooo
no��

.
.
.

no

''
f�p11; �p31g .

.

.
no��

f�p21; �p31g p41
yes

wwoooooo
no��

pm1
yes

����
� no

''OOO
OOO

pm;1

yes

wwooooo no

��?
??

f�p21; �p41g .
.
.
no��

�� ��

�� ��
PHPm�1

n�1

�� ��

�� ��
PHPm

n�1

f�p11; �pm;1g
�� ��

�� ��
PHPm�1

n�1
pm;1

yes

wwooooo no

��?
??

f�p21; �pm;1g
�� ��

�� ��
PHPm�1

n�1

Figure 3.2: A worst-case decision tree for PHPmn

What remains is to estimate the size. The decision tree for PHPmn consists
of m copies of the decision tree for PHPm−1

n−1 , one decision tree for PHPmn−1
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plus a quadratic in m overhead. More precisely

S (m,n) =
{
mS (m− 1, n− 1) + S (m,n− 1) +m2 if n > 1

5 if n = 1
,

where S (m,n) denotes the size of the decision tree for PHPmn .
We have

S (m,n) > mS (m− 1, n− 1) > m (m− 1)S (m− 2, n − 2) >

. . .

dn
2 e−1∏
i=0

(m− i)S
(
m−

⌈n
2

⌉
,
⌊n

2

⌋)
.

Therefore, for every m > n > 2, we get

S (m,n) > 5
(
m−

⌈n
2

⌉)dn
2 e = 2Ω(n logm).

Upper bound

The main idea is the same as in the proof of the lower bound on the optimal
refutation. This time however, we introduce the counters to the elements of the
set N . Every counter pj equals to m minus the number of questions about the
j-th element of N that have already been asked. In other words, the counter
contains exactly the number of possible questions about the element to be asked
in the future. There is also one global counter p0 that is the sum of all the
counters pj, 1 ≤ j ≤ n.

We can now prove the main result of this section.

Theorem 3.4 Every regular tree-resolution proof of PHPmn is of size 2O(n logm).

Proof Again we define an appropriate function on the nodes of the read-once
decision tree. At any node the value of the function will be an upper bound on
the size of the subtree rooted at that node.

Let us denote by u the current node, and by P , P ⊆ N , the set of all the
vertices from N that are not yet matched to any vertex in M . The function f
is the defined as

f (u) = 2 (p0 + 1)
∏
j∈P

(pj + 1)− 1.

At the root of the tree, r, we have f (r) = 2 (mn+ 1) (m+ 1)n − 1, so that
f (r) = 2O(n logm). It only remains to prove that at any node the function value
is an upper bound for the size of the subtree rooted by the node.

The proof is by induction on the global counter p0 .
The basis case is then p0 = 0, so that all other p’s are zeros and therefore

f (u) = 1. In this case all variables have already been queried, as there are no
possible questions left. Therefore a contradiction has already been found and
f (u) = 1 is an upper bound.

To prove the induction steep, we consider the following two cases.
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1. The question at the current node, u, is about the i-th element from N ,
and i /∈ P . This means that element has already been matched to some
element in M , so that the current question is forced. Therefore, the “yes”
subtree consists of a single vertex, labelled by the contradiction found. Let
us denote by v the “no” successor of u. The induction hypothesis applies
at v, as p0 decreases by one there, so the size of any subtree rooted at u
is at most

2 + f (v) = 2 + 2p0

∏
j∈P

(pj + 1)− 1 ≤ 2 (p0 + 1)
∏
j∈P

(pj + 1)− 1 = f (u) .

2. The question at the current node, u, is about the i-th element from N ,
and i ∈ P . The induction hypothesis then applies to both “yes” and “no”
successors of u. Denoting them by v and w respectively, we have that the
size of any subtree rooted at u is at most

1 + f (v) + f (w) =

1 + 2p0

∏
j∈P\{i}

(pj + 1)− 1 + 2p0pi
∏

j∈P\{i}
(pj + 1)− 1 =

2p0

∏
j∈P

(pj + 1)− 1 < 2 (p0 + 1)
∏
j∈P

(pj + 1)− 1 = f (u) .

This completes the proof.2

3.5 Link to Complexity Gap theorem

In this section, we discuss a possible strengthening of Riis’ complexity gap the-
orem for tree resolution. We first state the theorem and conjecture that it can
be extended to show a gap not only between θ (poly (n)) and 2θ(n) but also from
2θ(n) to 2θ(n logn). We also conjecture the existence of a gap for general resolu-
tion and its connection with the gap for tree resolution. Let us also mention
that there is no complexity gap above 2θ(n logn), and, moreover, there are uni-
form, i.e. SO∃-generated, tautologies having highly non-uniform, fluctuating,
tree-resolution refutations. The proofs of these are however not included in the
present paper as they are out of its scope.

Let us first state the complexity gap theorem itself. We give here a formu-
lation which is slightly different than, but essentially equivalent to the original
one [48].

Theorem 3.5 Complexity Gap
We are given a second order existential (SO∃) sentence ψ of predicate logic

that fails in all finite models (in the original formulation first order sentence is
used, but the existential quantification over function or/and relation symbols is
assumed implicitly). There is a procedure which translates the sequence of sen-
tences An :=′′ ψ has a model of size n′′ into an unsatisfiable set Cψ,n of clauses.
The sequence Cψ,n is uniformly generated (in the sense of [49])and its size is
bound by a polynomial in n. The complexity gap theorem states that either 1 or
2 holds:
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1. The sequence Cψ,n have polynomial size in n tree-resolution refutations.

2. There exists a positive constant a such that for every n each tree-resolution
refutation of Cψ,n has to contain at least 2an clauses.

Furthermore, 2 holds if and only if ψ has an infinite model.

Thus the gap is between polynomial and exponential size proofs and shows
that no super-polynomial (e.g. 2θ(log

p n) for some p > 1) and sub-exponential
(e.g. 2θ(n

ε) for some 0 < ε < 1) optimal proofs can appear.
Let us now consider the following encoding of (the negation of) PHPn+1

n as
a SO∃ sentence (given also in [48])

∃f ((∀x, y (x = y) ∨ (f (x) 6= f (y))) ∧ (∃c∀x f (x) 6= c)) .

The complexity gap theorem gives only a 2Ω(n) lower bound, whereas we have
shown that its real complexity is 2θ(n logn). We have also shown that any, not
necessary optimal, proof of PHPn+1

n is of that size.
Another example we consider is the minimum element principle, saying that

a total order always has a minimal element. Its negation can be encoded as

∃L ((∀x ¬L (x, x)) ∧ (∀.x, y ((x = y) ∨ L (x, y) ∨ L (y, x)))∧
(∀x, y, z (L (x, y) ∧ L (y, z)) → L (x, z)) ∧ (∀x∃y L (y, x))) .

Here L (x, y) stands for x < y. It can be easily shown (the lower bound also
follows from theorem 3.5) that the optimal tree-resolution proof of the minimum
element principle, MEn (n is the number of elements), is 2θ(n). On the other
hand, one can construct a proof which is as bad as possible, i.e. of size 2θ(n

2).
There is also a short, i.e. polynomial size, general resolution proof of MEn.

These two examples motivate the following two conjectures. The first one
states that there is a second gap, while the second gives a characterisation of
both gaps in terms of optimal and worst-case tree-resolution refutation. It also
relates the gaps for tree- and general resolution.

Conjecture 3.6 Given a SO∃ sentence ϕ of predicate logic that fails in all
finite and infinite models, and denote its translation (the same as in the theorem
3.5) into propositional logic by Cψ,n. Then either 1, 2 or 3 holds:

1. The sequence Cψ,n have polynomial size in n tree-resolution refutations.

2. There is a refutation of Cψ,n of size 2an for some positive constant a.

3. There is a positive constant b such that for every n each tree-resolution
refutation of Cψ,n has to contain at least 2bn logn clauses.

Conjecture 3.7 Under the assumptions of the previous conjecture:
In the second case Cψ,n has both a polynomial size general resolution proof

and a worst-case tree-resolution proof, significantly worse than the optimal one,
i.e. of size 2Ω(n2).

In the the third case any general resolution proof of Cψ,n is of size 2Ω(n), and
any tree-resolution proof is polynomially related to the optimal one.



Chapter 4

Resolution Width-Size trade-offs for the
Pigeon-Hole Principle

We prove the following two results:
(1) There is a resolution proof of the Weak Pigeon-Hole Principle, WPHPmn

of size 2O
“

n log n
log m

+logm
”

for any number of pigeons m and any number of holes n.
(2) Any resolution proof of WPHPmn of width

(
1
16 − ε

)
n2 has to be of size

2Ω(n), independently from m.
These results give not only a resolution size-width tradeoff for the Weak

Pigeon-Hole Principle, but also almost optimal such trade-off for resolution in
general. The upper bound (1) may be of independent interest, as it has been
known for the two extreme values of m, m = n+ 1 and m = 2

√
n logn, only.

4.1 Introduction

The Pigeon-Hole Principle is one of the simplest and, at the same time, the
most important combinatorial principles. Its traditional formulation, denoted
usually by PHPmn , states that there is no injective map from a finite m-element
set into a finite n-element set if m > n. The Pigeon-Hole Principle also has
the distinction to be the first and, since then, the most used combinatorial
statement in propositional proof complexity. More specifically, it has been used
quite a number of times in proving lower bounds for concrete propositional proof
systems.

As the present paper is concerned with resolution proofs of PHPmn , we will
briefly survey the history of proving resolution lower bounds for the Pigeon-
Hole Principle. Everything started with the seminal Haken’s result [31], that
any resolution proof of PHPn+1

n is of size 2Ω(n). The proof has been generalised
and simplified in [16], [7], [11]. For quite a while, the best known result had been
a 2Ω(n2/m) lower bound from [16], thus having left the case m = Ω

(
n2/ log n

)
as

an important open problem in resolution proof complexity. Recently, a 2Ω(nε)

lower bound on any regular-resolution proof of PHPmn has appeared in [38].
Shortly after that, the problem has finally been solved by Raz in [42], and
further strengthened and improved by Razborov in [43], [44].

All the mentioned proofs use, explicitly or implicitly, the relation between

55
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width (or “pseudo-width”, as defined by Razborov) and size of the proof. This
relation, used in almost all resolution lower bounds, not only for the Pigeon-Hole
Principle, was extracted and stated precisely in [11]. On the other hand, nobody
has studied the question whether there is a width-size trade-off in resolution
proofs of some concrete statements. That is, can one pay for decreasing the
size by increasing the width? Our paper answers the question as far as the
Pigeon-Hole Principle is concerned.

We first prove an upper bound, i.e. construct a resolution proof of WPHPmn

of size 2O
“

n log n
log m

+logm
”

for any m and n. Such an upper bounds have been known
so far only for the two extreme cases m = n+1 and m = 2

√
n logn (see [15]). Our

result matches these, and, moreover, we believe that it is the exact resolution
proof complexity of WPHPmn for all m and n .

We also prove a 2Ω(n) lower bound on any resolution proof of the weak
pigeon-hole principle, WPHPmn , when the width is bounded by

(
1
16 − ε

)
n2.

Unlike the general lower bound in [43], it holds independently from the number
of the pigeons m.

These two results not only give a resolution width-size trade-off for the Weak
Pigeon-Hole Principle, but also have the following interesting consequence. Let-
ting m = 2

√
n logn, we get a tautology on N variables which is provable in reso-

lution within polylog (N) width. Any such proof however is of super-polynomial
in N size. At the same time, there is a proof of poly (N) size and width N .
This is asymptotically, i.e. modulo the degrees of the polynomials, the best
resolution width-size trade-off, one could hope to prove.

The rest of the paper is organised as follows. In the section 4.2 we introduce
the concepts, denotations and techniques. In the section 4.3 we show two trivial
results, for the sake of the completeness only. The upper bound for WPHPmn
is shown in the section 4.4. The lower bound, when the width is restricted,
is proven in the section 4.5 Finally, in the section 4.6, we discuss some open
questions.

4.2 Preliminaries

We first introduce some denotations and give some definitions. [n] denotes the
set {1, 2, . . . n}, and [n : m] denotes {n+ 1, n + 2, . . . m}.

A literal is either a propositional variable or the negation of a propositional
variable. A clause is a set of literals. It is satisfied by a truth assignment if
at least one of its literals is true under this assignment. A set of clauses is
satisfiable if there exists a truth assignment satisfying all the clauses.

PHPmn denotes the claim that there is no injective map from a set of size
m to a set of size n, where m > n. We encode its negation as the following set
of clauses

1. {pi,j | j ∈ [n]} for every pigeon i ∈ [m]

2.
{
pi,k, pj,k

}
for every hole k ∈ [n] and pigeons i, j ∈ [m], i 6= j
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Although we consider the injective PHP , all the results and proofs from the pa-
per remain valid for the functional (where the map is required to be a function)
and bijective PHP , too.

Resolution is a proof system designed to refute given set of clauses i.e. to
prove that it is unsatisfiable. This is done by means of the resolution rule

C1
⋃ {v} C2

⋃ {v}
C1
⋃
C2

.

Thus, we can derive a new clause from two other clauses that contain a variable
and its negation respectively. The goal is to derive the empty clause from the
initial ones. Anywhere we say we prove some proposition, we mean that first
we take its negation in a clausal form and then resolution is used to refute these
clauses. Sometimes, for technical reasons only, we could also use the weakening
rule

C1

C1
⋃
C2
.

There is an obvious way to represent every resolution refutation as a directed
acyclic graph whose nodes are labelled by clauses. The sources, i.e. the vertices
with no incoming edges, are the initial clauses. The only sink, i.e. the vertex
with no outgoing edges, is the empty clause. We then define the size of a proof
to be the number of internal vertices, i.e. non-leaves, which is equal to the
number of applications of the resolution rule. We do not however count the
number of weakenings if any, as they are not essential and can be removed from
the proof.

A very important technique, we use to prove lower bounds on proofs, is
considering a proof as a Prover-Adversary game. It is first introduced in [41]
and developed further in [40] especially for resolution.

There are two players, named Prover and Adversary. An unsatisfiable set of
clauses is given. Adversary claims wrongly that there is a satisfying assignment.
Prover’s task is to convict him in lying. A position in the game is a partial
assignment of the propositional variables. The game start from the empty po-
sition. Prover has two kind of moves:

1. She queries a variable, whose value is unknown in the current position.
Adversary answers, and the position then is extended with the answer.

2. She forgets a value of a variable, which is known. The current position is
then reduced, i.e., the variable value becomes unknown.

The game is over, when the current partial assignment falsifies one of the clauses.
Prover then wins, having shown a contradiction.

The link to resolution proofs is easily seen. We take such a proof, reverse
all the edges in its graph, and label all the vertices by the negation of the
corresponding clauses. What we get is a description of Prover’s winning strategy.
Any node in the new graph corresponds to a position in the game. The negation
of the corresponding clause is a conjunction of literals which defines the current
partial assignment. The variable to be queried by Prover at this position is the
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variable resolved in the proof. The leaves in the new graph are negation of the
initial clauses, i.e. arriving there means that an assignment falsifying such a
clause is found, and therefore Prover wins the game.

A deterministic Adversary’s strategy corresponds to a single path in the
proof’s graph. Therefore, he has to use a randomised strategy (called “super-
strategy” in Pudlak’s paper) in order to enforce a big enough subgraph. Any
such Adversary’s strategy can be used to prove a lower bound on any Prover’s
strategy description, and therefore on any resolution proof.

4.3 Two simple proofs of the Pigeon-Hole Principle.

In this section we construct two resolution proofs. They are stated and proven
for the ordinary Pigeon-Hole Principle, PHPn+1

n as one can always prove the
Weak Pigeon-Hole Principle by restricting it to the first n + 1 pigeons. The
first proof shows that WPHPmn can be proven in very small width which is also
optimal. The second one is the optimal-size proof for the ordinary pigeon-hole
principle. We will use it as a basis case in constructing a smaller proof in the
case m� n.

Proposition 4.1 There is a resolution proof of PHPn+1
n of (optimal) width n

and size 2O(n logn).

Proof The proof contains n stages, numbered from n to 0. For each k, the
k-th stage encodes the statement “there is no injective mapping of the first k
pigeons into the holes”. The corresponding clauses are{

p1,π(1), p2,π(2), . . . pk,π(k)

}
,

where π is any injective function from [k] into [n]. Thus the stage 0 con-
sists of the empty clause only. The n-th stage clauses can be derived by
consecutively resolving the axiom {pn+1,1, pn+1,2, . . . pn+1,n} with the axioms{
pn+1,π(1), p1,π(1)

}
,
{
pn+1,π(2), p2,π(2)

}
,. . . and

{
pn+1,π(n), pn,π(n)

}
for every in-

jective function π : [n] → [n].
What remains is to show how to go from the stage k + 1 to the stage k.

Given an injection π : [k] → [k], we shall derive the clause{
p1,π(1), p2,π(2), . . . pk,π(k)

}
(4.1)

from axioms and the k + 1-th stage clauses{
p1,π(1), p2,π(2), . . . pk,π(k), pk+1,j

}
, (4.2)

for all j ∈ [n] \Range (π). The derivation is as follows. We first use the axioms
{pk+1,1, pk+1,2, . . . pk+1,n} and

{
pk+1,π(1), p1,π(1)

}
,
{
pk+1,π(2), p2,π(2)

}
, . . .{

pk+1,π(k), pk,π(k)

}
to obtain

{
p1,π(1), p2,π(2), . . . pk,π(k), pk+1,j1, pk+1,j2, pk+1,jn−k

}
,
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where {j1, j2, . . . jn−k} = [n] \Range (π). We then consecutively resolve it with
the clauses (4.2) to “kill” the indices j1, j2, . . . jn−k and finally get the desired
clause (4.1).

All the clauses used in the proof are of width less than or equal to n. The
size can be estimated as follows. For every k, the k-th stage contains n!

(n−k)!
clauses, and in deriving each k-stage clause we have used n resolution steps.
The overall number of resolution steps therefore is

n

n∑
k=0

n!
(n− k)!

∼ enn! = 2O(n logn).

2

Proposition 4.2 There is a resolution proof of PHPn+1
n of (optimal) size

2n+O(logn) and width 1
4n

2 +O (n)

Proof The proof contains n stages, the k-th one encoding the statement “there
is no injective mapping of the first k + 1 pigeons into any k-the element subset
of [n]”. The corresponding set of clauses is

P1,S

⋃
P2,S

⋃
. . . Pk+1,S,

where S is any n − k-element subset of [n], and Pi,S is defined as Pi,S :=
{pi,j | j ∈ S}. Thus the stage 0 consists of the single axiom {p1,1, p1,2, . . . p1,n},
and the last stage, the n-th one, consists of the empty clause only.

What remains is to show how to go from the stage k − 1 to the stage k.
Given any n− k-element set S ⊆ [n] we shall derive the clause

P1,S

⋃
P2,S

⋃
. . . Pk+1,S (4.3)

from axioms and the k − 1-th stage clauses

P1,S
S{j}

⋃
P2,S

S{j}
⋃
. . . Pk,S∪{j}, (4.4)

for all j ∈ [n] \ S. The derivation is as follows. For each j ∈ [n] \ S, we consec-
utively resolve the clause (4.4) with the clauses

{
p1,j, pk+1,j

}
,
{
p2,j , pk+1,j

}
,. . .{

pk,j, pk+1,j

}
to obtain

P1,S

⋃
P2,S

⋃
. . . Pk+1,S ∪ pk+1,j. (4.5)

We then consecutively resolve these with the axiom {pk+1,1, pk+1,2, . . . pk+1,n}
to get the desired clause (4.3).

We shall estimate the size and the width of the above resolution proof. The
k-th stage consists of 2n−k clauses, and in deriving each of these we have used
k2 + k resolution steps. Thus the size of the proof is

n∑
k=1

(
k2 + k

)
2n−k = O(n22n) = 2n+O(logn).

The maximum width at the k-th stage is achieved when resolving the first clause
of (4.5) with the axiom, and it is (k + 1) (n− k) + n− 2. It is easy to see that
the maximum over k is achieved near to k = n−1

2 , and it is 1
4n

2 +O (n).2
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4.4 The upper bound

In this section we construct the following resolution proof of the Weak Pigeon-
Hole Principle.

Theorem 4.3 There is a resolution proof of WPHPmn of size 2O
“

n log n
log m

+logm
”

for every m and n .

Proof We construct the proof recursively as follows. We divide the pigeons
into m

i blocks of i pigeons in each block. We divide the holes into two groups
of size j and n − j, respectively (the figure 4.1). We first take each block of i

i

i

m pigeons

n holes

n� j

...

...

...

... j

holes

holes

m

i

blocks

...

...

...i

Figure 4.1: The recursion

pigeons against the first group of j holes, i.e. we consider PHP ij (the grey area
on the figure 4.1), provided that i > j. As there are additional n− j holes, we
can derive a clause saying that at least one pigeon from the block goes to the
second group of holes. We now consider each block as a single pigeon against the
second group of holes (shown by arrows on the figure 4.1) , i.e. we have PHP

m
i
n−j ,

assuming m
i > n−j. Strictly speaking, this is not an instance of the Pigeon-Hole

Principle. The propositional variables pij are now replaced by big disjunctions,
and therefore the negations pij are now big conjunctions. This is a potential
problem, because a resolution proof of the Pigeon-Hole principle can contain
clauses having many negative literals. If we try to transform directly such a
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proof into a proof of the new version of PHP , where we have blocks instead
of single pigeons, the expansion of these clauses would cause exponential blow-
up. However, the difficulty can be overcame by considering only proofs that
contains small (constant) number of negative literals in each clause. Indeed,
the proof from proposition 4.2, we shall use as a basis case in our construction,
is of such kind. By expanding the clause and simulating each resolution step,
we multiply the size of the proof by only a polynomial (in this particular case
quadratic) factor in the block-size. Therefore, denoting by S (m,n) the size of
the resolution proof of PHPmn , obtained in this way we get

S (m,n) ≤ m

i
S (i, j) + i2S

(m
i
, n− j

)
.

We now let i =
√
m and i = n

2 and get

S (m,n) ≤ √
mS

(√
m,

n

2

)
+mS

(√
m,

n

2

)
≤ m2S

(√
m,

n

2

)
.

After k iterations of the above, we get

S (m,n) ≤ m
2

“
1+ 1

2
+...+ 1

2k−1

”
S
(
m

1

2k ,
n

2k
)
≤ m4S

(
m

1

2k ,
n

2k
)
.

Let us now substitute log logm
logn for k:

S (m,n) ≤ m4S

(
n,
n log n
logm

)
.

By Proposition 4.2, S
(
n, n logn

logm

)
, which is the basis case of the recursion, can

be bounded by 2O
“

n log n
log m

”
. Therefore we have

S (m,n) ≤ 2O
“

n log n
log m

+logm
”
,

as claimed. 2

4.5 The lower bound

We shall prove the following

Theorem 4.4 For any positive constant ε, every resolution proof of WPHPmn
of width

(
1
16 − ε

)
n2 has to be of size 2Ω(n)

Proof We first describe Adversary’s strategy. He divides the set of holes
into two equally big sets H1 and H2 of size n

2 each (this does not need to be
at random), and then assign each pigeon to either H1 or H2, independently at
random with probability 1

2 . At this stage, Adversary does not assign a particular
hole to any pigeon, so we say that all the pigeons are floating. During the game,
a pigeon becomes fixed iff either an “yes” answer or at least n

16 ”no” answer about
it are present in the current position. “Fixed” means that a hole is assigned to
the pigeon. We can now explain Adversary replies to Prover’s moves. There are
several cases to be considered
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1. Prover “forgets” some information. This is the easiest case. Adversary may
need only to change the status of some pigeons from “fixed” to “floating”.

2. Prover makes a query about a pigeon P . Assuming w.l.o.g. that P has
been assigned to H1, Adversary answers as follows:

(a) P is fixed: consistently with the assigned hole.
(b) The query is about a hole in H2: “no”.
(c) P is floating and the query is about a hole in H1: if the number of

“no” answers, involving P and holes in H1, in the current position,
is less that n

4 − 1, Adversary answers “no”. Otherwise, he assigns the
first empty hole in H1to P , and then answers consistently with the
assignment. P becomes fixed.

It is easy to see that Adversary can play until there are n
4 fixed pigeons in either

part. Indeed, the only danger is when a pigeon P changes the status from
“floating” to “fixed”. Exactly n

4 holes are explicitly forbidden by “no” answers
at this stage, while less than n

4 holes are implicitly forbidden, because they are
assigned to the fixed pigeons. Thus there is an empty hole to be assigned to P .

Let us now consider the situation when Adversary gives up, i.e. there are
exactly n

4 in one of the parts, either H1 or H2. There have to be at least 4εn
“yes” fixed pigeons, as otherwise there would be more that

(
1
4 − 4ε

)
n busy “no”

pigeons and therefore the size of the position would be bigger than
(

1
16 − ε

)
n2.

As the parts H1 and H2 have been assigned to the pigeons independently at
random with probability 1

2 , it follows that the probability that the 4εn “yes”
busy pigeons are consistent with the initial assignment, is 1

24εn , and therefore
the description of Prover’s winning strategy has to be at least 24εn. 2

4.6 Conclusion

We have proven a resolution width-size trade-offs for the Weak Pigeon-Hole
Principle. There are, however, several open questions left.

The bound on the width,
(

1
16 − ε

)
n2, is too strong. At least for the ordi-

nary Pigeon-Hole Principle, one should be able to prove a stronger result. We
conjecture the following sharp-threshold.

Conjecture 4.5 For any positive constant ε, every resolution proof of PHPn+1
n

of width
(

1
4 − ε

)
n2 has to be of size 2Ω(n logn)

It is in agreement with the upper bounds we have proven, the propositions 4.1
and 4.2. In a preliminary version of this work, we claimed the above conjecture
as a proven result. Unfortunately, it seems that one cannot get this result with
an easy adaptation of the current lower-bound techniques.

Another interesting open problem is to tighten the gap between the known
upper and lower bounds on the resolution proofs of the weak pigeon hole prin-

ciple, WPHPmn . The best known lower bound, 2
Ω

“
n

(log m)2

”
, appears in [45]. We

conjecture that our upper bound is optimal.
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Conjecture 4.6 Any optimal proof of the WPHPmn is of size 2Ω
“

n log n
log m

”
for

n < m ≤ 2θ(
√
n logn).
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