
B
R

IC
S

D
S

-01-9
F.F.R

odler:
C

om
pression

w
ith

F
astR

andom
A

ccess

BRICS
Basic Research in Computer Science

Compression with Fast Random Access

Flemming Friche Rodler

BRICS Dissertation Series DS-01-9

ISSN 1396-7002 November 2001

Copyright c© 2001, Flemming Friche Rodler.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/01/9/

Compression with Fast Random Access

Flemming Friche Rodler

Ph.D. Dissertation

Department of Computer Science
University of Aarhus

Denmark

Compression with Fast Random Access

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfillment of the Requirements for the

Ph.D. Degree

by
Flemming Friche Rodler

April 10, 2002

Another wavelet skimmed in and broke a little further up the sand. A sense of
freshness, of expectation was in the air. The great gathered ocean was stirring

itself in the distance.
— Red Pottage (1899), Mary Cholmondeley (1859-1925).

Abstract

The main topic of this dissertation is the development and use of methods for
space efficient storage of data combined with fast retrieval. By fast retrieval
we mean that a single data element can be randomly selected and decoded
efficiently. In particular, the focus will be on compression of volumetric data
with fast random access to individual voxels, decoded from the compressed data.

Volumetric data is finding widespread use in areas such as medical imag-
ing, scientific visualization, simulations and fluid dynamics. Because of the
size of modern volumes, using such data sets in uncompressed form is often
only possible on computers with extensive amounts of memory. By designing
compression methods for volumetric data that support fast random access this
problem might be overcome. Since lossless compression of three-dimensional
data only provides relatively small compression ratios, lossy techniques must
be used. When designing compression methods with fast random access there
is a choice between designing general schemes that will work for a wide range of
applications or to tailor the compression algorithm to a specific application at
hand. This dissertation will be concerned with designing general methods and
we present two methods for volumetric compression with fast random access.
The methods are compared to other existing schemes showing them to be quite
competitive.

The first compression method that we present is suited for online compres-
sion. That is, the data can be compressed as it is downloaded utilizing only
a small buffer. Inspired by video coding the volume is considered as a stack
of slices. To remove redundancies between slices a simple “motion estimation”
technique is used. Redundancies are further reduced by wavelet transforming
each slice using a two-dimensional wavelet transform. Finally, the wavelet data
is thresholded and the resulting sparse representation is quantized and encoded
using a nested block indexing scheme, which allows for efficient retrieval of
coefficients. While being only slightly slower than other existing schemes the
method improves the compression ratio by about 50%.

As a tool for constructing fast and efficient compression methods that sup-
port fast random access we introduce the concept of lossy dictionaries and show
how to use it to achieve significant improvements in compressing volumetric
data. The dictionary data structure is widely used in computer science as a
tool for space efficient storage of sparse sets. The main performance parame-

vii

ters of dictionaries are space, lookup time and update time. In this dissertation
we present a new and efficient dictionary scheme, based on hashing, called
Cuckoo hashing. Cuckoo hashing achieves worst case constant lookup
time, expected amortized constant update time and space usage of three words
per element stored in the dictionary, i.e., the space usage is similar to that of
binary search trees. Running extensive experiments we show Cuckoo hash-

ing to be very competitive to the most commonly used dictionary methods.
Since these methods have nontrivial worst case lookup time Cuckoo hashing

is useful in time critical systems where such a guarantee is mandatory.

Even though, time efficient dictionaries with a reasonable space usage exist,
the space usage of these are still too large to be of use in lossy compression.
However, if the dictionary is allowed to store a slightly different set than in-
tended, new and interesting possibilities originate. Very space efficient and fast
data structures can be constructed by allowing the dictionary to discard some
elements of the set (false negatives) and also allowing it to include elements
not in the set (false positives). The lossy dictionary we present in this disser-
tation is a variant of Cuckoo hashing which results in fast lookup time. We
show that our data structure is nearly optimal with respect to space usage.
Experimentally, we find that the data structure has very good behavior with
respect to keeping the most important elements of the set which is partially
explained by theoretical considerations. Besides working well in compression
our lossy dictionary data structure might find use in applications such as web
cache sharing and differential files.

In the second volumetric compression method with fast random access that
we present in this dissertation we look at a completely different and rather un-
exploited way of encoding wavelet coefficients. In wavelet based compression it
is common to store the coefficients of largest magnitude, letting all other coeffi-
cients be zero. However, the new method presented allows a slightly different set
of coefficients to be stored. The foundation of the method is a three-dimensional
wavelet transform of the volume and the lossy dictionary data structure that we
introduce. Comparison to other previously suggested schemes in the literature,
including the two-dimensional scheme mentioned above, shows an improvement
of up to 80% in compression ratio while the time for accessing a random voxel
is considerably reduced compared to the first method.

viii

Acknowledgments

I would like to use this opportunity to thank all the people who gave me their
time and support during my years as a student.

First and foremost I would like to thank my supervisor, Professor Brian
H. Mayoh, for his support, encouragement and confidence. Brian was the first
to introduce me to the interesting aspects of wavelet theory and has always
inspired me to investigate various interesting topics guiding me in the right
directions.

A special thanks goes to Professor Robert M. Gray for letting me visit
his research group, Signal Compression and Classification Group, at Stanford
University. I would like to thank everyone there for being very friendly. Also,
a special thanks to Professor Bernd Girod for providing me with a research
project and guidance while at Stanford. Also, thanks to Eckehard Steinbach
for many fruitful discussions on my research.

Thanks to Rasmus Pagh for co-authoring several papers. We had many
good and productive discussions.

During my time as a Ph.D. student I have had the opportunity to share office
with Thomas Hune, Rasmus Pagh and Jacob Pagter. Besides functioning as
lunch partners these people have provided me with many interesting discussions
both within and outside computer science.

Also, I would like to thank everyone at BRICS in Århus for providing a
warm and interesting research environment. BRICS is a very dynamic and
pleasant place to work.

A special thanks goes to my undergraduate study group, Claus Brabrand,
Thomas Hune and Tom Sørensen. Without them I would never have made it
(at least they claim) through the first years at University.

Finally I would like to thank my family, especially my parents, Kirsten
and Herbert Rodler, who have given me love, encouragement and support.
Also thanks to my brother and best friend, Peter Rodler, for his love and
also for always being there to play squash. I would also like to thank my
girlfriend, Xenia Andersen, for proofreading my English but also for all her
love and understanding, especially during the last two months of writing this
dissertation.

Flemming Friche Rodler,
Århus, April 23, 2002.

ix

Contents

Abstract vii

Acknowledgments ix

1 Introduction 1
1.1 Outline of Dissertation . 3
1.2 List of Contributions . 5

1.2.1 Chapter 4 . 5
1.2.2 Chapter 5 . 5
1.2.3 Chapter 7 . 5
1.2.4 Chapter 8 . 6

2 Wavelet Theory 7
2.1 Multiresolution Analysis . 7
2.2 Wavelets . 9

2.2.1 Properties . 10
2.3 The Fast Wavelet Transform and its Inverse 12

2.3.1 Complexity . 14
2.3.2 Initialization . 15

2.4 Multidimensional Bases . 15
2.4.1 Nonstandard Basis . 15
2.4.2 Standard Basis . 17
2.4.3 Higher Dimensions . 17
2.4.4 Complexity of Multidimensional Transforms 17

2.5 Thresholding . 18
2.6 Wavelets on the Interval . 19

2.6.1 Zero Padding . 19
2.6.2 Periodic Extension . 20
2.6.3 Symmetric Extension . 20
2.6.4 Boundary Wavelets and Lifting 21

2.7 Chapter Summary . 22

3 Introduction to Dictionaries 23

xi

4 Cuckoo Hashing 25
4.1 Introduction . 25

4.1.1 Previous Work on Linear Space Dictionaries 25
4.2 Preliminaries . 27
4.3 Algorithm – Cuckoo Hashing . 28

4.3.1 Analysis . 30
4.4 Experiments . 33

4.4.1 Data Structure Design and Implementation 33
4.4.2 Setup . 35
4.4.3 Results . 36

4.5 Model . 42
4.6 Chapter Summary . 44

5 Lossy Dictionaries 45
5.1 Introduction . 45

5.1.1 This Chapter . 45
5.1.2 Applications . 46
5.1.3 Related Work . 46

5.2 Theory – Lossy Dictionaries . 47
5.2.1 Preliminaries . 48
5.2.2 Our Data Structure . 49
5.2.3 Construction Algorithm 50
5.2.4 Quality of Solution . 52
5.2.5 A Lower Bound . 53
5.2.6 Using More Tables . 54

5.3 Experiments . 54
5.3.1 Application . 56

5.4 Chapter Summary . 57

6 Volumetric Compression with Fast Random Access 59
6.1 Previous Work . 60

7 Coding with Motion Estimation and Blocking 65
7.1 General Overview of Coder . 65

7.1.1 Volume Encoder . 65
7.1.2 Volume Decoder . 66

7.2 Description of the Encoding Stages 67
7.2.1 Test Data . 67
7.2.2 Temporal Prediction . 67
7.2.3 Wavelet Decomposition, Thresholding and Quantization . 68
7.2.4 Encoding Wavelet Coefficients – Data Structure 69

7.3 Analysis of Performance . 73
7.4 Experiments . 75

7.4.1 Compression Ratio and Distortion 76
7.4.2 Timing Results . 77
7.4.3 Selective Block-wise Decoding 78

7.5 Issues with Block Indexing Methods 80

xii

7.6 Chapter Summary . 82

8 Coding with Three-dimensional Wavelets and Hashing 89
8.1 Coding Method . 89
8.2 Experiments . 94

8.2.1 Compression Ratio and Distortion 95
8.2.2 Timing Results . 97
8.2.3 Selective Block-wise Decoding 99

8.3 Scalable or Multiresolution Decoding 100
8.4 Chapter Summary . 101

9 Comparison 109
9.1 Fast Decoding for Random Access 109
9.2 Good Visual Fidelity at High Compression Ratios 109
9.3 Multiresolutional Decoding . 110
9.4 Selective Block-wise Decoding . 110
9.5 Online Compression . 110

10 Conclusions 113
10.1 Final Summary . 113
10.2 Future Directions . 114

10.2.1 Cuckoo Hashing . 115
10.2.2 Lossy Dictionaries . 115
10.2.3 Coding using Motion Estimation and Blocking 115
10.2.4 Coding using Three-Dimensional Wavelets and Hashing . 115
10.2.5 General Challenges in Compression with Fast Random

Access. 116

Bibliography 117

xiii

Chapter 1

Introduction

“Where shall I begin, please your Majesty?” he asked. ”Begin at the
beginning,” the King said, gravely, ”and go on till you come to the end: then

stop.”
— Alice’s Adventures in Wonderland (1865), Lewis Carroll (1832-98).

The main topic of this dissertation is the development of methods for data
compression of volumetric data, in particular methods that support fast ran-
dom access to individual voxels, decoded from the compressed data. As a part
of this we introduce the concept of lossy dictionaries and present two techniques,
based on hashing. One for solving the dictionary problem and one for solving
the lossy dictionary problem.

Volumetric data is becoming increasingly important and common in areas
such as scientific visualization and medical imaging of scannings such as Mag-
netic Resonance (MR), Computer Tomography (CT) and Positron Emission
Tomography (PET). For example three-dimensional data obtained from a MR
scanner can be used in diagnostics or pre-operational planning. Volume data
also occurs in physical simulations, fluid dynamics and many more areas.

Applications that manage and process volumetric data often implicitly as-
sume that the data can be loaded completely into memory. Unfortunately, the
size of volumetric data is often prohibitive unless large and expensive computers
with extensive amounts of memory are used. To alleviate the memory problem
compression methods can be utilized, the idea being that a compressed repre-
sentation of the volume can be loaded into memory with voxels reconstructed on
the fly when needed. In order to facilitate the high compression ratios required,
such methods must necessarily be lossy in nature. Normally in lossy compres-
sion the only concern is to achieve a good trade-off between rate and distortion.
In volumetric compression, however, the time it takes to reconstruct a single
voxel from the compressed representation is also a major concern for interactive
applications, since volume based applications often access data in unpredictable
ways. That is, we strive to achieve a good trade-off between rate, distortion,
and reconstruction time. Ideally, if the bit-budget and the reconstruction time
can be made small enough for an acceptable distortion then it will appear to
the volume based application as if it accessed an uncompressed volume, i.e., the

1

2 Chapter 1. Introduction

compression and decompression become transparent. This is illustrated in Fig-
ure 1.1. We note that compression methods that are specially designed to work
with a specific application might give better results with respect to both com-
pression ratio and access speed than general purpose methods. However, if the
application changes or if we wish to use the compression method for a different
application then the compression algorithm and data structure may have to be
redesigned. The development of general purpose methods are therefore very
important for maximum flexibility.

Compression

Decompression

(x1,y1,z1) , (x2,y2,z2) ,

ApplicationCompressed data

Main memoryOriginal data

Figure 1.1: The general concept of volumetric compression with fast random access. If
decompression is fast enough and the reconstruction quality is good, then decompression may
seem transparent to the application.

Wavelet based methods are among the most successful in lossy image com-
pression. Since the coining of the name wavelet in the early 1980s and the
introduction of multiresolution analysis by Mallat and Meyer in the late 1980s
the theory of wavelets has been developed as a formal framework and analytical
tool in mathematics and computer science. Many of the properties associated
with wavelets such as localized analysis, good energy compaction, and time-
frequency analysis have been and are still applied with success in areas such
as computer graphics and signal analysis and processing. Data compression is
only one example where the introduction of wavelets has pushed the envelope
of state-of-the art algorithms considerably. For example, besides being eminent
at energy compaction the hierarchical or multiresolutional representations of
wavelets provide an elegant way to describe an image or an volumetric object
at different levels of detail. This hierarchical property is useful in compression,
especially in compression with fast random access, where it can be used for
selective refinement. For example, in a real time application a coarse represen-
tation of the volume can be decoded first and when time permits, details can
be added for more accurate computations. The significance of wavelets in data
compression is evident in the fact that all recent standards such as JPEG2000
and MPEG-4 include wavelet based methods. The two methods for compressing
volumetric data with fast random access that are presented in this dissertation
are both based on wavelets.

In the search for faster and better compression schemes for volumetric com-
pression with fast random access we introduce the concept of lossy dictionar-

1.1. Outline of Dissertation 3

ies which we use to gain significant improvements over existing compression
schemes. Dictionaries are part of many algorithms and data structures. A dic-
tionary provides access to information indexed by a set S of keys drawn from
a universe U , i.e., S ⊂ U . Given a key, the dictionary returns the associated
information or reports that the key is not in the set. The important parame-
ters when designing dictionaries are the space usage, the time it takes to look
up an element, and how long it takes to update the dictionary, i.e., insert and
delete elements in S. Theoretically, there is no trade-offs of these parameters
as there exist dictionaries with space usage close to the information theoret-
ical minimum having constant lookup time and expected amortized constant
update time. However, large constant factors and difficulty of implementation
hinder practical use of these data structures. By using more space very fast
data structures can be constructed. The challenge which we consider in this
dissertation is therefore to combine speed with a reasonable space usage.

A lossy dictionary is much like a normal dictionary with the exception that
we allow it to store a slightly different set S′ than the intended set S. The error
we allow can be two-sided. That is, we allow the lossy dictionary to include
elements not originally in S and we also allow it to report some elements not
being in S when in fact they are. This relaxation allows for fast and very space
efficient dictionaries. The formalization of which elements to keep from the
original set S is done by associating weights to each element in S. The task of
the lossy dictionary is then to maximize the sum of weights of the keys stored
under a given space constraint. We present a lossy dictionary and show how it
can be used with success in the setting of lossy compression with fast random
access.

1.1 Outline of Dissertation

Chapter 2 introduces the underlying wavelet theory used throughout the dis-
sertation. The theory will be presented by means of multiresolution analysis,
since this is a good framework for describing not only wavelets and their prop-
erties but also how the fast wavelet transform is computed. We also explain
why wavelets are well suited for data compression.

Chapter 3 briefly introduces the dictionary problem and serves as an intro-
duction to Chapter 4 and Chapter 5.

Chapter 4 presents a new and efficient dictionary with worst case constant
lookup time and amortized expected constant time for updates. A nice prop-
erty of our dictionary is that it is simple to implement. The space usage is
similar to that of binary search trees, i.e., three words per key on average. The
practicality of the scheme is backed by extensive experiments and comparisons
with several well known methods, showing it to be quite competitive also in
the average case. We call the scheme Cuckoo hashing motivated by the way
elements are inserted into the data structure.

4 Chapter 1. Introduction

Chapter 5 introduces the concept of lossy dictionaries and presents an ef-
ficient lossy data structure. Experimentally, we find that the lossy dictionary
data structure has good behavior with respect to keeping the most important
keys. By assuming stronger hash functions, than those used in the experiments,
we obtain theoretical results which partly explain the experimental results. Fur-
thermore, we show that our data structure is nearly optimal with respect to
space usage. We conclude the chapter by a small example to motivate the use
of lossy dictionaries in lossy compression with fast random access.

Chapter 6 serves as an introduction to Chapter 7 and Chapter 8. It moti-
vates the need for volumetric compression with fast random access and considers
good design criteria for such methods. Also, an extensive survey of related work
on volumetric compression is given.

Chapter 7 presents the first of two methods for volumetric compression with
fast random access presented in this dissertation. The method is based on the
observation that one of the three dimensions of volumetric data can be con-
sidered similar to time. For this reason the volume is considered as a time
sequence of slices. To remove redundancies in this “temporal” direction, a sim-
ple motion estimation technique is employed. Redundancies are then further
reduced by decomposing the motion compensated slices into a two-dimensional
wavelet basis. In order to encode the wavelet coefficients of largest magnitude
and their significance map, we use a three-step block indexing scheme to locate
the nonzero coefficients. The method improves the compression ratio of existing
schemes by about 50% while offering acceptable access times when accessing
voxels. Since the method only needs access to a few slices at a time it can
be used in an online setting where data is compressed as it is downloaded or
otherwise transferred to the system.

Chapter 8 describes the second volumetric compression method which fol-
lows a completely different approach to the storage of wavelet transformed data.
While it is common to store the coefficients of largest magnitude, and let all
other coefficients be zero, we allow a slightly different set of coefficients to be
stored. This brings into play the lossy hashing technique of Chapter 5 that
allows space efficient storage and very efficient retrieval of wavelet coefficients.
The coefficients are computed by a three-dimensional wavelet transform. Our
approach is applied to compression of volumetric data sets. For the Visible Man
CT volume [86] we obtain up to 80% improvement in compression ratio over
previously suggested schemes, including the first method based on temporal
prediction presented in Chapter 7. Further, the time for accessing a random
voxel is quite competitive with existing schemes.

Chapter 9 provides a comparison between the two compression methods. In
particular, we look at the settings in which one method is preferable over the
other in relation to a set of design criteria given in Chapter 6.

1.2. List of Contributions 5

Chapter 10 summarizes the conclusions of the dissertation and provides
pointers and directions for future research.

1.2 List of Contributions

This section relates the scientific papers, that I have written during my Ph.D
studies, to the chapters of this dissertation.

1.2.1 Chapter 4

Chapter 4 is based on the technical report Cuckoo Hashing. The paper has
been published as a technical report [63] and as a conference paper [64].

[63] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. Technical
Report RS-01-32, BRICS, August 2001.

[64] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. In Proceed-
ings of the 9th European Symposium on Algorithms (ESA ’01), volume
2161 of Lecture notes in Computer Science, pages 121-133, Berlin, 2001.
Springer-Verlag.

The technical report extends the conference paper by including a new section
where experimental results are explained in terms of a simple model. Also,
more detailed text and figures have been added.

1.2.2 Chapter 5

Chapter 5 is based on the technical report Lossy Dictionaries. The paper has
been published as a technical report [65] and as conference paper [66].

[65] Rasmus Pagh and Flemming Friche Rodler. Lossy Dictionaries. Technical
Report RS-01-33, BRICS, August 2001.

[66] Rasmus Pagh and Flemming Friche Rodler. Lossy Dictionaries. In Pro-
ceedings of the 9th European Symposium on Algorithms (ESA ’01), volume
2161 of Lecture notes in Computer Science, pages 300-311, Berlin, 2001.
Springer-Verlag.

The technical report extends the conference paper by simplifying the proof of
the construction algorithm and by adding more detailed text and figures. Also,
a section on applications of the presented data structure has been added.

1.2.3 Chapter 7

Chapter 7 is based on the Technical Report Wavelet Based 3D Compression
with Fast Random Access for Very Large Volume Data. The paper has been
published as a technical report [70] and as a conference paper [71].

6 Chapter 1. Introduction

[70] Flemming Friche Rodler. Wavelet Based 3D Compression for Very Large
Volume Data Supporting Fast Random Access. Technical Report RS-99-
34, BRICS, October 1999.

[71] Flemming Friche Rodler. Wavelet Based 3D Compression with Fast Ran-
dom Access for Very Large Volume Data. In Proceedings of the Seventh
Pacific Conference on Computer Graphics and Applications, pages 108-
117, Seoul, Korea, 1999.

The technical report extends the conference paper by adding a section which
gives a more thorough introduction to wavelet theory.

1.2.4 Chapter 8

Chapter 8 is based on the technical report Fast Random Access to Wavelet
Compressed Volumetric Data Using Hashing. The paper has been published
as a technical report [73] and has been accepted for publication as a journal
paper [72].

[73] Flemming Friche Rodler and Rasmus Pagh. Fast Random Access to
Wavelet Compressed Volumetric Data Using Hashing. Technical Report
RS-01-34, BRICS, August 2001.

[72] Flemming Friche Rodler and Rasmus Pagh. Fast Random Access to
Wavelet Compressed Volumetric Data Using Hashing. To Appear in ACM
Transactions on Graphics.

There are only minor changes between the two versions.

Chapter 2

Wavelet Theory

In this chapter we present the underlying mathematical foundations of the
wavelet theory and hierarchical decomposition used throughout the dissertation.
We start by introducing the multiresolution analysis (MRA) concept which
can be used as a method to describe hierarchical bases. This will lead to the
definition of wavelets and the fast wavelet transform. Furthermore, we discuss
the properties of wavelets and explain why they work so well in compression.

2.1 Multiresolution Analysis

The theory of multiresolution analysis was initiated by Stéphane Mallat [52]
and Yves Meyer1.

Definition 2.1 (Multiresolution Analysis) A multiresolution analysis
(MRA) is a sequence (Vj)j∈Z of closed subspaces of L2(R) satisfying the fol-
lowing five properties:

1. ∀j ∈ Z : Vj ⊂ Vj+1

2.
⋂

j∈Z Vj = {0}

3.
⋃

j∈Z Vj = L2(R)

4. f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1

5. ∃φ ∈ V0 such that {φ(x− k)}k constitutes an orthonormal basis for V0.

The first and third property of the definition gives us the approximation feature
of the MRA. Furthermore the third property states that any function in L2(R)
can be approximated arbitrarily well by its projection onto Vj for a suitably
large j, i.e., if PVj denotes the projection operator onto Vj then:

lim
j→∞

‖f − PVjf‖ = 0 . (2.1)

1Yves Meyer, 1986 – Ondelettes, fonctions splines et analyzes graduées. Lectures given at
the University of Torino, Italy.

7

8 Chapter 2. Wavelet Theory

The first property is a causality property which guarantees that an approxi-
mation at a resolution j contains all the information necessary to compute an
approximation at a coarser resolution j − 1. The second property proves that
as j tends towards −∞ the projection of f onto Vj contains arbitrarily little
energy, or stated differently we lose all the details of f when the resolution j
goes towards −∞:

lim
j→−∞

‖PVjf‖ = 0 . (2.2)

The aspect of a MRA comes with the fourth property which tells us that
the resolution increases with j and that all the spaces are scaled versions of
each other2.

Define φj,k as

φj,k(x) = 2
j
2φ(2jx− k) . (2.3)

As a direct consequence of properties 4 and 5 we have that {φj,k(x) = 2
j
2φ(2jx−

k)}k∈Z constitutes an orthonormal basis for Vj. Since the orthonormal projec-
tion of f onto Vj is obtained by the following expansion

PVjf =
∞∑

k=−∞
〈f, φj,k〉φj,k , (2.4)

we have that
aj [k] = 〈f, φj,k〉 (2.5)

provides a discrete approximation of f at scale j, where 〈·, ·〉 denotes the inner
product and is defined for f, g ∈ Vj as

〈f, g〉 =
∫
R
f(x)g∗(x)dx , (2.6)

where g∗(x) is the complex conjugate of g(x). The functions φj,k are called
scaling functions. The requirement for the φj,k’s to generate orthonormal bases
for the Vj’s can be relaxed and it can be shown that we only need to require
that they generate a Reisz basis for the MRA spaces, see e.g. [17].

Example 2.1 As an example of a multiresolution analysis we introduce the
Haar MRA [34] where the approximations are composed as piecewise constant
functions. The MRA spaces are defined as

Vj = {f ∈ L2(R) : ∀k ∈ Z , f |[k2−j ,(k+1)2−j] = Constant} (2.7)

and the scaling functions are generated from the box function 1[0,1]. The prop-
erties in the definition of a MRA are easily verified.

2Henceforth resolution and scale will be used interchangeably

2.2. Wavelets 9

2.2 Wavelets

The basic tenet of multiresolution analysis is that whenever there exists a se-
quence of closed subspaces satisfying Definition 2.1 then there exists an or-
thonormal wavelet basis {ψj,k}j,k given by the following definition.

Definition 2.2 (Wavelet) A wavelet is a function ψ ∈ L2(R) chosen such
that the dyadic family

ψj,k(x) = 2
j
2ψ(2jx− k), k, j ∈ Z (2.8)

of functions constitutes an orthonormal basis for L2(R). ψ is often referred to
as the mother wavelet since it generates the whole family.

This family of functions is called the dyadic wavelet family since it is gener-
ated by dyadic dilates and translates of a single function ψ. Given the above
definition we can write the dyadic wavelet transform as

dj,k = 〈f, ψj,k〉 =
∫
R
f(x)ψ∗

j,k(x)dx, k, j ∈ Z , (2.9)

where the dj,k’s denote the wavelet coefficients. The reconstruction formula
becomes

f(x) =
∑

j

∑
k

dj,kψj,k(x) . (2.10)

The connection to multiresolution analysis arises because the function f at scale
j, i.e. PVjf , can be written as

PVjf = PVj−1f +
∑

k

〈f, ψj−1,k〉ψj−1,k , (2.11)

where ψ is a wavelet and the summation describes the detail necessary to go
from the coarser space PVj−1 to the finer space PVj . In the following this will
be formalized.

For every j ∈ Z we define the complement space Wj as the orthogonal
complement of Vj in Vj+1, i.e.: Wj = Vj+1 ∩ V ⊥

j . We can then write Vj+1 as

Vj+1 = Vj ⊕Wj , (2.12)

where ⊕ is the orthogonal direct sum. By definition all of the spaces Wj satisfy

Wj⊥Wj′ for j 6= j′ , (2.13)

since for j > j′ : Wj′ ⊂ Vj and Vj⊥Wj. By the definition of the complement
spaces and by iteration it follows that for j > J :

Vj = VJ ⊕
j−1⊕
l=J

Wl . (2.14)

10 Chapter 2. Wavelet Theory

Because VJ → {0} for J → −∞ in L2(R) this implies

Vj =
j−1⊕

l=−∞
Wl . (2.15)

Again by noticing that Vj → L2(R) when j →∞ we get

L2(R) =
∞⊕

l=−∞
Wj , (2.16)

which by virtue of (2.13) implies that we have decomposed L2(R) into a set of
mutually orthogonal subspaces. Since it is easy to prove that the complement
spaces Wj inherit the scaling property

f(x) ∈Wj ⇔ f(2x) ∈Wj+1 , (2.17)

all we need to do in order to construct a wavelet basis is to find a function
ψ ∈ L2(R) such that {ψ(x − k)}k∈Z constitutes a basis for W0. Then for a
fixed j ∈ Z we have that {ψj,k}k∈Z is an orthonormal basis for Wj . Finally,
we have by means of (2.16) that {ψj,k}(j,k)∈Z2 constitutes an orthonormal basis
for L2(R). Finding the functions φ and ψ is in general nontrivial and requires
some mathematical work.

Example 2.2 In the previous example we introduced the Haar MRA. The cor-
responding Haar wavelet is given by

ψ(x) =




1 for 0 ≤ x < 1
2

−1 for 1
2 ≤ x < 1

0 otherwise .

(2.18)

2.2.1 Properties

In compression and many other applications we use the ability of wavelets to
efficiently approximate many different signals with few nonzero wavelet coeffi-
cients. Much of this ability can be attributed to the properties of the wavelets
given in the following list.

• Support: The support of a wavelet is given by the following closure:

supp(ψ) = {x ∈ R : ψ(x) 6= 0} (2.19)

If there exist a, b ∈ R such that supp(ψ) ⊂ [a, b] then ψ is said to be
compactly supported. There are two main reasons why a wavelet with a
small support is preferable in compression. Firstly, if the function f(x)
that we want to compress has a singularity at x′ within the support of ψj,k

then 〈f, ψj,k〉 might have large magnitude. Now, if ψ has compact support
with width S then at each scale j the support of ψj,k will include x′, S
times. This makes it desirable to have S as small as possible. Secondly, as
we shall see in Section 2.3.1 a small support for the wavelet implies faster
decomposition and reconstruction algorithms. This is essential since we
are aiming for fast reconstruction times.

2.2. Wavelets 11

• Vanishing moments: A function ψ is said to have n vanishing moments
if the following holds true:∫

R
xkψ(x)dx = 0 for k = 0, .., n − 1 . (2.20)

Many signals can be approximated well piecewisely by low order poly-
nomials of degree p. So if the analyzing wavelet has n > p vanishing
moments this results in wavelet coefficients close to zero. Unfortunately,
vanishing moments come at the expense of wider support, see e.g. [53, pp.
241-245]. In fact, for orthogonal wavelets with n vanishing moments the
width of the support will be at least 2n − 1. The Daubechies wavelets
are optimal in this respect. If we expect our signals to be highly regular
with only a few isolated singularities then wavelets with many vanishing
moments are preferable. On the other hand wavelets with small support
might be the better choice if our signals are expected to contain many
singularities.

• Smoothness: The smoothness or regularity of a wavelet is usually mea-
sured in terms of the number of continuous derivatives it has. Smooth
wavelets are important in lossy compression of images. In lossy wavelet
based compression, errors are mostly introduced during quantization of
the wavelet coefficients. We see from the reconstruction formula

f(x) =
∑
j,k

dj,kψj,k(x) (2.21)

that if the wavelet coefficient dj,k is changed by ε the error εψj,k(x) will be
added to f(x). If ψ is smooth the introduced artifacts will also be smooth
and smooth artifacts are perceptually less annoying than irregular ones.
Smoothness comes at the expense of wider support [53, pp. 241-245].

• Symmetry: Wavelets that are symmetric or antisymmetric are impor-
tant for several reasons. The wavelet transform is a transform over sig-
nals in L2(R). In order to transform a signal with finite support (i.e.,
in L2([0, 1])) it must be extended to L2(R). To this end several ways of
performing the extension exist, many resulting in boundary effects in the
wavelet domain (i.e. high coefficients) near 0 and 1. This is undesirable
for many applications especially compression. Symmetric or antisymmet-
ric wavelets allow for (anti)symmetric extensions at the boundaries which
partly solves the problem.

Symmetric and antisymmetric wavelets are synthesized with filters having
linear phase. Wavelets and their synthesizing filters are introduced in
Section 2.3. The linear phase property of the filters are important for
some applications.

• Orthogonality: Daubeschies [17] proved that except for the Haar wavelet
there exist no (anti)symmetric real orthogonal compactly supported wave-
let bases. By giving up orthogonality and allowing for biorthogonal

12 Chapter 2. Wavelet Theory

wavelets3 it is possible to construct compactly supported (anti)symmetric
wavelet bases [17, 53]. For a complete description of biorthogonal wavelets
we refer to [53].

• Localization: Wavelets with small support or rapid decay towards zero
are said to be well localized in the spatial domain. In contrast is local-
ization in the spectral or frequency domain which is important for some
applications. The Heisenberg uncertainty principle4 [35] gives a bound on
how localized a function can be simultaneously in time and frequency

σ2
t σ

2
ω ≥

1
4
, (2.22)

where

σ2
t =

∫
R

(t− tc) |g(t)|2 dt σ2
ω =

∫
R

(ω − ωc) | ĝ(ω)|2 dω (2.23)

denotes the standard deviation from the centers of gravity given by

tc =
∫
R
t |g(t)|2 dt ωc =

∫
R
ω | ĝ(ω)|2 dω . (2.24)

Thus good spatial localization comes at the expense of poorer localization
in frequency. For a wavelet basis, which consists of scaled versions of the
mother wavelet, this means that high frequencies (narrow wavelets) are
analyzed with good positional accuracy whereas low frequencies (wide
wavelets) are analyzed more accurately in frequency. This adaption to
frequency is contrary to other time-frequency analysis methods such as
the windowed Fourier transform and it is an important property in, e.g.,
sound processing and analysis.

2.3 The Fast Wavelet Transform and its Inverse

The fast wavelet transform (FWT) decomposes the signal f in the wavelet basis
by recursively convolving the signal with filters H and G. Assume that we have
a function fJ ∈ VJ given by

fJ(x) =
∑

k

aJ,kφJ,k(x) ∈ VJ (2.25)

with
aJ,k = 〈fJ , φJ,k〉 =

∫
R
fJ(x)φ∗J,k(x)dx . (2.26)

3Biorthogonal wavelets are given by two dual bases {ψj,k}(j,k)∈Z2 and {ψ̃j,k}(j,k)∈Z2 . For

any (j, j′, k, k′) ∈ Z4 we have 〈ψj,k, ψj′,k′〉 = δj,j′δk,k′ . The dual bases span the spaces Wj

and W̃j respectively. Similarly, there are two scaling functions φj,k and φ̃j,k spanning the
two multiresolution approximations Vj and Ṽj . The biorthogonality implies that Wj is not
orthogonal to Vj but to Ṽj . Likewise, W̃j is not orthogonal to Ṽj but to Vj . A function
f ∈ L2(R) has two possible decompositions f =

∑
j,k〈f, ψj,k〉ψ̃j,k =

∑
j,k〈f, ψ̃j,k〉ψj,k.

4The Heisenberg uncertainty principle originates from quantum mechanics, but is in fact
a general property of functions.

2.3. The Fast Wavelet Transform and its Inverse 13

The fast wavelet transform then computes the wavelet coefficients of the discrete
signal

aJ [k] = aJ,k, (2.27)

where each sample of aJ [k] according to (2.26) is a weighted average of f around
a neighborhood of f with averaging kernel φJ,k. We will now look at the FWT
of a signal fJ .

We have fJ ∈ VJ = VJ−1⊕WJ−1 and thus there exist sequences aJ−1,k and
dJ−1,k such that

fJ(x) =
∑

k

aJ−1,kφJ−1,k(x) +
∑

k

dJ−1,kψJ−1,k(x) , (2.28)

where dJ−1,k are the wavelet coefficients at scale J − 1. Because of property 1
of Definition 2.1 of a MRA the sequences aJ−1,k and dJ−1,k can be computed
as

aJ−1,k = 〈fJ , φJ−1,k〉 =
∫
R
f(x)φ∗J−1,k(x)dx (2.29)

dJ−1,k = 〈fJ , ψJ−1,k〉 =
∫
R
f(x)ψ∗

J−1,k(x)dx . (2.30)

By repeating on the aJ−1,k’s the complete set of discrete wavelet coefficients
dJ−1,k, dJ−2,k, . . . , d0,k can be computed. So the FWT successively decomposes
the approximation PVjf into a coarser approximation PVj−1 plus the wavelet
coefficients PWj−1 .

Unfortunately, computing the wavelet coefficients by means of (2.29) and
(2.30) would not be very efficient. We find hope in the following theorem, which
is due to Mallat [52].

Theorem 2.1 (The fast orthogonal wavelet transform) For an orthogo-
nal wavelet basis there exist filters H = {hn}n and G = {gn}n such that

aj−1,k =
∑
n

hn−2kaj,n (2.31)

dj−1,k =
∑
n

gn−2kaj,n . (2.32)

Similarly the inverse computation is given by

aj,k =
∑
n

hk−2naj−1,n +
∑
n

gk−2ndj−1,n . (2.33)

Theorem 2.1 connects wavelets with filter banks. The convolution in (2.31)
and (2.32) can be interpreted as filtering the signal aj with filters H and G,
respectively as illustrated in Figure 2.1. Note that because of the 2k in the sum
a dyadic downsampling takes place. This is important since the downsampling
ensures that the data is not doubled. The inverse transform in (2.33) first
upsamples by inserting zeros and then interpolates by filtering its input signals
aj−1 and dj−1 to obtain the reconstructed signal aj .

Example 2.3 The Haar wavelet corresponds to two-tap5 filters given by H =
[1√

2
, 1√

2
] and G = [1√

2
,− 1√

2
].

5Tap is the term used to denote the filter length of a Finite Impulse Response (FIR) filter.

14 Chapter 2. Wavelet Theory

H

G

2

2

H

G

2

2
H

G2

2
H

G2

2

dj−1

dj−2

dj−1

aj

aj−1

aj−2

aj−1

aj

Figure 2.1: A 3-channel filter bank for computing a two level wavelet decomposition and its
inverse.

2.3.1 Complexity

A finite signal aJ [k] cannot be decimated indefinitely. The iterative process
must at least terminate when there is only one approximation coefficient a0

left. Normally, for compression purposes, only a few iterations, say 2 to 5,
are applied. For I iterations the wavelet decomposition is composed of the
wavelet coefficients at scale J − I ≤ j < J plus the remaining approximation
coefficients at scale J − I. The time complexity of the algorithm is easy to
analyze. If we start with N samples and two filters H and G having at most
K filter coefficients then

KN +
KN

2
+
KN

4
+ · · ·+ 1 ≤ 2KN (2.34)

is an upper bound on the number of additions and multiplications that will
be performed. Table 2.1 shows the filter length, the support width, and the
number of vanishing moments of some well known wavelets.

Wavelet family Haar Daubechies Coiflets Symlets
Order 1 M M M

Support width 1 2M − 1 6M − 1 2M − 1
Filter length 2 2M 6M 2M

Vanishing moments 1 M 2M M

Table 2.1: The filter length, the support width, and the number of vanishing moments of
some well known wavelets of order M.

Instead of using the number of multiplications and additions, we can alter-
natively use the number of wavelet coefficients needed for reconstruction as a
measure of complexity. It is easy to see that in order to compute one coefficient
of aj [k], K coefficients are needed, i.e., K/2 coefficients from both aj−1[k] and
dj−1[k], respectively.

Because the wavelet coefficients must be retrieved from memory in order
to compute the inverse transform and since memory lookups can be expensive
compared to the traditional arithmetic operations this is an important com-
plexity measure for our applications. In fact, we consider this measure to be
more exact and revealing since the number of multiplications and additions
often can be optimized by reusing previous computations (especially in higher
dimensions) or by using the lifting scheme [80].

2.4. Multidimensional Bases 15

2.3.2 Initialization

As mentioned in the beginning of Section 2.3 the FWT computes the wavelet
coefficients of a discrete signal aJ [k] given by

aJ [k] = 〈f, φJ,k〉, (2.35)

meaning that aJ [k] is a local average of f ∈ VJ around k but not precisely
equal to f(k). So we need to find aJ [k] from f in order to start the algorithm.
Often this is omitted and the algorithm is applied directly on a sampled version
f [n] of f(x). Frequently, f [n] is given as samples recorded by a device of finite
resolution such as a CCD camera or MR scanner that averages and samples an
analog signal, so without information about the averaging kernel of the sampling
device, decomposing the samples f [n] directly is justified.

2.4 Multidimensional Bases

The above constructions have been concerned with the task of decomposing
functions in L2(R). In order to analyze multidimensional functions these tech-
niques must be extended to L2(Rd). Defining a MRA {V d

j } of L2(Rd) formally
is a straightforward extension of Definition 2.1. In this section we only consider
separable MRA’s.

2.4.1 Nonstandard Basis

We start by an extension to two dimensions. If {Vj}j is a MRA of L2(R) then
the tensor product spaces defined as

{V 2
j = Vj ⊗ Vj}j∈Z (2.36)

constitute a separable two-dimensional MRA for L2(R2) and in the case where
{φj,k}k∈Z is an orthonormal basis for Vj , the product functions

{φ2
j,k,l(x, y) = φj,k(x)φj,l(y)}(k,l)∈Z2 (2.37)

form an orthonormal basis for V 2
j . As for the one-dimensional case this allows

for the definition of the complement spaces W 2
j . We have

V 2
j+1 = Vj+1 ⊗ Vj+1

= (Vj ⊕Wj)⊗ (Vj ⊕Wj)

= V 2
j ⊕ [(Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj)] .

(2.38)

This shows that
{ψ2,λ

j,k,l : λ ∈ {v, h, d}}(k,l)∈Z2 , (2.39)

with the wavelets ψ2,λ
j,k,l given by

ψ2,v
j,k,l(x, y) = φj,k(x)ψj,l(y),

ψ2,h
j,k,l(x, y) = ψj,k(x)φj,l(y),

ψ2,d
j,k,l(x, y) = ψj,k(x)ψj,l(y)

(2.40)

16 Chapter 2. Wavelet Theory

is an orthonormal basis for W 2
j and therefore {ψ2,λ

j,k,l}(j,k,l)∈Z3 is an orthonormal
basis for L2(R2).

The interpretation of the wavelets in terms of filters is carried over from the
one-dimensional case and we obtain separable two-dimensional filters

h[x, y] = h[x]h[y] , gv[x, y] = h[x]g[y]

gh[x, y] = g[x]h[y] , gd[x, y] = g[x]g[y] .
(2.41)

Filtering with these corresponds to filtering first along the rows of the discrete
signal and then along the columns. After filtering, downsampling in each di-
rection is performed. This is illustrated in Figure 2.2. Note that for clarity
subsampling is illustrated as the last step in the figure but for efficiency it takes
place during filtering.

Filter rows Filter columns Subsample

G HG

HH GH

GG

H
a h

dv

Figure 2.2: One decomposition level of a two-dimensional wavelet transform. The a, h, v,
and d in the result indicate which filter was used to compute the subband.

Example 2.4 Using the filters of the previous example we see that the two-
dimensional Haar decomposition is given by

all = ((c1 + c2)/
√

2 + (c3 + c4)/
√

2)/
√

2 = (c1 + c2 + c3 + c4)/2

dlh = ((c1 + c2)/
√

2− (c3 + c4)/
√

2)/
√

2 = (c1 + c2 − c3 − c4)/2
dhl = ((c1 − c2)/

√
2 + (c3 − c4)/

√
2)/
√

2 = (c1 − c2 + c3 − c4)/2
dhh = ((c1 − c2)/

√
2− (c3 − c4)/

√
2)/
√

2 = (c1 − c2 − c3 + c4)/2 ,

(2.42)

where c1, . . . , c4 on the right-hand side of the equations are data values in a
2× 2 sub-block. all is the average coefficient and dlh, dhl, and dhh are the detail
coefficients corresponding to filtering with gh, gv and gd respectively. We use
the subscripts l and h to denote whether we used the lowpass or the highpass
filter. A subscript lh indicates that the lowpass filter was used horizontally and
the highpass filter was used vertically. Reconstruction is given by

c1 = (all + dlh + dhl + dhh)/2
c2 = (all + dlh − dhl − dhh)/2
c3 = (all − dlh + dhl − dhh)/2
c4 = (all − dlh − dhl + dhh)/2 .

(2.43)

Note that if we want fast reconstruction we can divide by 4 on the right-hand
side of (2.42) instead of dividing by 2. That way the 2 in the reconstruction
equations becomes a 1 for easier computation.

2.4. Multidimensional Bases 17

2.4.2 Standard Basis

The above construction of multidimensional bases is often referred to as the
nonstandard basis. Another construction is the standard basis where (2.37)
and (2.40) are replaced by

φj1,j2,k,l(x, y) = φj1,k(x)φj2,l(y),

ψ2,v
j1,j2,k,l(x, y) = φj1,k(x)ψj2,l(y),

ψ2,h
j1,j2,k,l(x, y) = ψj1,k(x)φj2,l(y),

ψ2,d
j1,j2,k,l(x, y) = ψj1,k(x)ψj2,l(y) .

(2.44)

We note that in the standard basis the wavelets can have varying resolutions
in different spatial directions. That is, the standard basis does not allow for
strictly different resolution levels. For this reason, the standard basis construc-
tion is not often used in compression since direct control of the resolution is
lost.

2.4.3 Higher Dimensions

As mentioned the extension to higher dimensions are analogous to two dimen-
sions. For completeness, we show, in Figure 2.3, how the different wavelet
coefficients are arranged into subbands for a two-level three-dimensional trans-
form. In three dimensions we obtain seven detail subbands on each level and
one average subband. Using the Haar wavelet the decomposition equations are
given by

a = (c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8)/2
√

2

d1 = (c1 + c2 + c3 + c4 − c5 − c6 − c7 − c8)/2
√

2

d2 = (c1 + c2 − c3 − c4 + c5 + c6 − c7 − c8)/2
√

2

d3 = (c1 + c2 − c3 − c4 − c5 − c6 + c7 + c8)/2
√

2

d4 = (c1 − c2 + c3 − c4 + c5 − c6 + c7 − c8)/2
√

2

d5 = (c1 − c2 + c3 − c4 − c5 + c6 − c7 + c8)/2
√

2

d6 = (c1 − c2 − c3 + c4 + c5 − c6 − c7 + c8)/2
√

2

d7 = (c1 − c2 − c3 + c4 − c5 + c6 + c7 − c8)/2
√

2 ,

(2.45)

where c1, . . . , c8 are the eight coefficients in a 2× 2× 2 subregion of the three-
dimensional signal. The numbering 0, . . . , 7 of the detail coefficients corresponds
to the different combinations of applying the lowpass and highpass filters in each
direction.

2.4.4 Complexity of Multidimensional Transforms

In one dimension it takes, according to Section 2.3.1, K wavelet coefficients to
reconstruct one coefficient of the next resolution level of the inverse transform.
For a d-dimensional transform it follows thatKd coefficients are needed. For the

18 Chapter 2. Wavelet Theory

d4
3

d2
3

d1
3

d3
3

d7
3

d5
3

d1
2

d2
2 d3

2

d4
2 d5

2

d5
1

d4
1

d1
1

d2
1

d3
1

a

Figure 2.3: Subbands of a three-level three-dimensional wavelet transform. The subbands
are numbered di

j , where j denotes the resolution level while i denotes the subband number
within the level.

Haar wavelet this means that 4 coefficients must be retrieved in two dimensions
and 8 in three dimensions. Other orthogonal wavelet filters are at least four
taps long, so at least 16 and 64 coefficients must be accessed to reconstruct one
coefficient at the next resolution level for two and three dimensions respectively.
As seen in (2.43) of Example 2.4 the extracted wavelet coefficients can be reused
to reconstruct neighboring data values, if they all are needed. However, because
our aim is to achieve fast random access this is not the case. For this reason we
use the Haar wavelet in the two compression methods described in Chapter 6.

2.5 Thresholding

In Section 2.2.1 we pointed out that the wavelet representation for many func-
tions is able to concentrate most of the energy in a small number of wavelet
coefficients with the rest of the coefficients being zero or close to zero. By set-
ting all the small valued coefficients to zero a very sparse representation can be
obtained and exploited for compression purposes. For an orthonormal wavelet
transform this thresholding of the coefficients corresponds to a global optimal
approximation in terms of the Mean Square Error (MSE) given by

MSE =
1
N

∑
k

(xk − x̂k)2 =
1
N

(x− x̂)T · (x− x̂)

=
1
N

(W TW (x− x̂))T · (W TW (x− x̂))

=
1
N

((y − ŷ)T ·WW T · ((y − ŷ)

=
1
N

∑
k

(yk − ŷk)2 ,

(2.46)

where W is an orthonormal transform and the xk and x̂k are the original and
reconstructed signals and the yk and ŷk are the transform coefficients before

2.6. Wavelets on the Interval 19

and after thresholding. As a consequence one can explicitly give the exact error
that occurs due to thresholding.

The wavelet coefficients that remain nonzero after thresholding are called
the significant coefficients and their positions in the transformed signal is called
the significance map. In compression both the values of the significant coeffi-
cients and the significance map must be coded.

2.6 Wavelets on the Interval

The above mentioned theory has described how to decompose signals of L2(Rd).
However, in data compression we are more often concerned with finite signals,
i.e., signals on an interval. To decompose a signal defined on an interval [a, b],
wavelet bases for L2([a, b]) must be constructed. In the following sections we
briefly describe four approaches to the construction of such wavelets. It suffices
to look at the case [a, b] = [0, 1]. For any interval [a, b] a wavelet basis for
L([a, b]) can be constructed from the wavelet basis for L([0, 1]) by a dilation of
b − a and a translation of a. Extensions to multi-dimensional wavelets on an
interval can be performed as described in Section 2.4.

Note that wavelets on an interval are not so important in compression with
fast random access. Especially, if a three-dimensional wavelet transform is
used, since far too many wavelet coefficients must be retrieved in order to
reconstruct a single data element if other wavelets than the Haar wavelet are
used. Corresponding to a two-tap filter boundary problems are easily avoided
with the Haar wavelet. However, in Chapter 7 and Chapter 8 it will become
apparent that the compression methods we present can easily be converted into
using higher order wavelets on the interval.

2.6.1 Zero Padding

In zero padding the signal f is extended from the interval [0, 1] to the whole
real line R as:

fpad(x) =

{
f(x), for x ∈ [0, 1]
0, otherwise .

(2.47)

Since fpad is defined on R, Theorem 2.1 can be applied to decompose fpad(x).
The main advantage of this method is simplicity since the MRA can be used
without modification at the border. However, there are two major disadvan-
tages of the method. The first disadvantage is that even though f is smooth,
discontinuities can occur at the border. From Section 2.2.1 we know that this
might yield large coefficients near the boundary. The second issue is that too
many coefficients are generated. Ideally, it should suffice to use N − 1 wavelet
coefficients plus 1 average coefficient to represent a signal with N samples. For
zero padding this is generally not the case.

20 Chapter 2. Wavelet Theory

2.6.2 Periodic Extension

Instead of zero padding we can extend the signal f(x) ∈ L2([0, 1]) by the peri-
odic repetition

fper(x) =
∞∑

i=−∞
fpad(x+ i) . (2.48)

This is illustrated in Figure 2.4. Since this extension to R might create discon-
tinuities near the boundary, large wavelet coefficients may be introduced. This
was discussed in Section 2.2.1.

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

f(x)

Figure 2.4: Periodic extension of f(x) ∈ L2([0, 1]).

As fper ∈ L2(R) the wavelet coefficients can be computed as

dj,k = 〈fper, ψj,k〉 =
∫
R
fper(x)ψ∗

j,k(x)dx . (2.49)

The periodic wavelet transform can be computed efficiently by replacing the
convolution of (2.31) and (2.32) by circular convolution.

Since it can be proven that∫
R
fper(x)ψj,k(x)dx =

∫ 1

0
f(x)ψper

j,k (x)dx , (2.50)

where ψper
j,k is a periodized version of ψj,k given by

ψper
j,k (x) = 2j/2

∞∑
i=−∞

ψ(2j(x+ i)− k) , (2.51)

extending f(x) by periodization corresponds to using wavelets modified to the
interval. If supp(ψj,k) ∈ [0, 1] and x ∈ [0, 1] then ψper

j,k (x) = ψj,k(x). The
restriction to the interval [0, 1] thus means that only the boundary wavelets,
whose support cross either x = 0 or x = 1, are modified.

2.6.3 Symmetric Extension

The problem with discontinuities at the boundary can partly be alleviated by
folding the signal f(x) ∈ L2([0, 1]) to obtain a symmetric extension, illustrated
in Figure 2.5, and given by

f sym(x) =
∞∑

i=−∞
fpad(x− 2i) +

∞∑
i=−∞

fpad(2i− x) . (2.52)

2.6. Wavelets on the Interval 21

Similar to (2.50) we can verify that∫
R
f sym(x)ψj,k(x)dx =

∫ 1

0
f(x)ψsym

j,k (x)dx (2.53)

with ψsym
j,k (x) given by

ψsym
j,k (x) =

∞∑
i=−∞

ψj,k(x− 2i) +
∞∑

i=−∞
ψj,k(2i − x) (2.54)

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

f(x)

Figure 2.5: Symmetric extension of f(x) ∈ L2([0, 1]).

If f(x) is continuously differentiable, then f sym(x) is at least C0 continuous.
This means that ψsym

j,k (x) produces smaller wavelet coefficients than ψper
j,k (x) near

x = 0 and x = 1. However, because f sym(x) is not continuously differentiable
at these end points, we may still obtain larger coefficients near the boundary
than inside. Especially, if f(x) is very smooth.

For ψsym
j,k (x) to be used in the construction of a basis for L2([0, 1]), ψj,k(x)

must be (anti)symmetric around x = 1/2. In Section 2.2.1 it was mentioned
that except for the Haar wavelet no symmetric real orthogonal wavelet with
compact support exists. However, there exist biorthogonal wavelets with com-
pact support that are (anti)symmetric.

2.6.4 Boundary Wavelets and Lifting

Given a smooth signal and a wavelet with enough vanishing moments the
wavelet transform will result in small wavelet coefficients. The wavelets ψper

j,k (x)
and ψsym

j,k (x) constructed in the two previous sections have respectively 0 and
1 vanishing moments. Therefore these wavelets may generate large coefficients
near the boundary as if the signal or its derivative was discontinuous. In order
to take full advantage of the signals regularity near the border special bound-
ary wavelets that have as many vanishing moments as the original wavelets
ψj,k have to be constructed. Several methods for constructing such wavelets
exist. In this section we briefly mention two such methods. In [15], Cohen et
al. show how to modify the Daubechies wavelets to the interval and provide
fast algorithms for the wavelet transform. As the algorithm switches filters
near the boundary it is more complicated than the FWT given in Theorem 2.1
and therefore not as fast. Also the construction of the boundary filters is quite
technical.

22 Chapter 2. Wavelet Theory

A more intuitive construction is given by Fernández et al. in [26] using the
lifting scheme of Sweldens [80]. The wavelets constructed there are biorthogonal
spline wavelets. These wavelets are symmetric, have compact support, and may
have an arbitrary number of vanishing moments. The algorithm also changes
behavior near the boundary. Furthermore, note that thresholding as described
in Section 2.5 is no longer optimal when biorthogonal wavelets are used. In [32]
Gross proposes a method for determining the most significant coefficients for
biorthogonal transforms. This method suffers from its complexity, and often
the magnitude based thresholding is used despite being suboptimal, e.g., see
the JPEG2000 standard [41].

2.7 Chapter Summary

This chapter has explained the theory of wavelets in terms of multiresolution
analysis and we presented the fast discrete wavelet transform of Mallat. We
looked at the properties that have made wavelet so successful in image compres-
sion. Especially, the energy compacting property combined with thresholding is
very important in generating very sparse representations for lossy compression.
We also briefly explained how to extend wavelets to multiple dimensions and
we discussed issues with boundary wavelets.

Chapter 3

Introduction to Dictionaries

The dictionary data structure is ubiquitous in computer science. A dictionary
is used to maintain a set S under insertion and deletion of elements, referred to
as keys, from a universe U . Membership queries, like “x ∈ S?”, provide access
to the data. In case of a positive answer the dictionary also provides a piece of
satellite data that was associated with x when it was inserted.

A large literature has grown around the problem of constructing efficient
dictionaries, and theoretically satisfying solutions have been found. Often a
slightly easier problem has been considered, namely the membership problem,
which is the dictionary problem without associated information. It is usually
easy to derive a dictionary from a solution to the membership problem, using
extra space corresponding to the associated information. E.g., in all methods
discussed in this dissertation, with the exception of Bloom filtering and similar
methods, the associated information of x ∈ S can be stored together with x in a
hash table. In this dissertation we are particularly interested in dictionary and
membership schemes using little memory. In the following we let n denote |S|.

The most efficient dictionaries, in theory and in practice, are based on hash-
ing techniques. The main performance parameters are of course lookup time,
update time, and space. In theory, there is no trade-off between these. One
can simultaneously achieve constant lookup time, expected amortized constant
update time, and space within a constant factor of the information theoretical
minimum of B = log

(|U |
n

)
bits [10]. In practice, however, the various constant

factors are crucial in many applications. In particular, lookup time is a criti-
cal parameter. It is well known that the expected time for all operations can
be made within a factor of (1 + ρ) from optimal (one universal hash function
evaluation, one memory lookup) if space O(n/ρ) is allowed. Therefore the chal-
lenge is to combine speed with a reasonable space usage. In particular, we only
consider schemes using O(n) words of space.

In Chapter 4 and Chapter 5 we present two new dictionary schemes based
on hashing. The first scheme, which is the focus of Chapter 4, is a new dy-
namic hashing scheme called Cuckoo hashing. We show that the new scheme
has worst case constant lookup time and amortized expected constant time for
updates. The space usage equals that of binary search trees. Furthermore, we

23

24 Chapter 3. Introduction to Dictionaries

show through extensive experiments that Cuckoo hashing is quite competi-
tive with the most commonly used dictionary methods, having nontrivial worst
case lookup time. A large literature, surveyed in Chapter 4.1.1, is devoted to
practical and theoretical aspects of dictionaries.

The second method, presented in Chapter 5.2, was partly developed as a
tool for lossy compression with fast random access. In this setting space and
lookup speed are of the essence. Current dictionary methods that are (nearly)
optimal with respect to space are not practical to implement and rather slow
in practice. However, if one relaxes the requirements to the membership data
structure, allowing it to store a slightly different key set than intended, new
possibilities arise. Since the data structure is allowed some errors with regards
to the elements it reports as being in the set, we refer to it as a lossy dictionary.
In Chapter 5.2 we present such a data structure and examine its properties both
theoretically and experimentally. We find that it has very good experimental
behavior which is partly explained by theoretical results.

Chapter 4

Cuckoo Hashing

4.1 Introduction

The contribution of this chapter is a new, simple to implement hashing scheme
called Cuckoo hashing. A description and analysis of the scheme is given
in Section 4.3, showing that it possesses the same theoretical properties as the
dynamic dictionary of Dietzfelbinger et al. [21]. That is, it has worst case con-
stant lookup time and amortized expected constant time for updates. A special
feature of the lookup procedure is that (disregarding accesses to a small hash
function description) there are just two memory accesses, which are indepen-
dent and can be done in parallel if this is supported by the hardware. Our
scheme works for space similar to that of binary search trees, i.e., three words
per key in S on average.

Using weaker hash functions (simpler and easier to implement) than those
required for our analysis, Cuckoo hashing is very simple to implement. Sec-
tion 4.4 describes such an implementation, and reports on extensive experiments
and comparisons with the most commonly used methods, having no worst case
guarantee on lookup time. To our knowledge an experiment comparing the
most commonly used methods on a modern multi-level memory architecture
has not previously been described in the literature. Our experiments show
Cuckoo hashing to be quite competitive, especially when the dictionary is
small enough to fit in cache. We thus believe it to be attractive in practice,
when a worst case guarantee on lookups is desired.

4.1.1 Previous Work on Linear Space Dictionaries

Hashing, first described in public literature by Dumey [23], emerged in the
1950s as a space efficient heuristic for fast retrieval of keys in sparse tables.
Knuth surveys the most important classical hashing methods in [47, Section
6.4]. These methods also seem to prevail in practice. The most prominent
ones, and the basis for our experiments in Section 4.4, are Chained Hashing

(with separate chaining), Linear Probing, and Double Hashing. A more
recent scheme called Two-Way Chaining [3] will also be investigated. We
detail our implementation in Section 4.4.

25

26 Chapter 4. Cuckoo Hashing

Theoretical Work.

Early theoretical analysis of hashing schemes was typically done under the as-
sumption that hash function values were uniformly random and independent.
Precise analyses of the average and expected worst case behaviors of the above-
mentioned schemes have been made, see e.g. [30, 47]. We mention just a few
facts, disregarding asymptotically vanishing terms.

For Linear Probing the expected number of memory probes for successful
and unsuccessful lookups are 1

2(1 + 1
1−α) and 1

2(1 + 1
(1−α)2

), respectively, where
α denotes the fraction of the table occupied by keys, 0 < α < 1. The longest
probe sequence is of expected length Ω(log n). In Double Hashing the ex-
pected costs of successful and unsuccessful lookups are, respectively, ln(1

1−α)/α
and 1

1−α . The longest successful probe sequence is expected to be of length
Ω(log n), and there is no bound on the length of unsuccessful searches . For
Chained Hashing, lookups have expected costs 1 + α/2 and 1 + α2/2, re-
spectively, for hash table size n/α. The expected maximum chain length is
Θ(log n/ log log n). In terms of the number of probes, the above implies that
Chained Hashing is better than Double Hashing, which is again better
than Linear Probing. Note that for these three schemes, an insertion corre-
sponds to an unsuccessful lookup, and that a deletion corresponds to a successful
lookup. However, because of excellent cache usage we will see in Section 4.4
that on average Linear Probing is the best performer.

Two-Way Chaining is an alternative to Chained Hashing that offers
O(log log n) expected maximal lookup time. The implementation that we con-
sider represents the lists by arrays of size O(log log n). To achieve linear space
usage, one must then use a hash table of size O(n/ log log n), implying that the
average chain length is Ω(log log n). Another scheme with expected O(log log n)
time per operation is Multilevel Adaptive Hashing [8]. However, lookups can
be performed in O(1) worst case time if O(log log n) hash function evaluations,
memory probes and comparisons are possible in parallel. This is similar to the
scheme described in this paper, though we use only two hash function evalua-
tions, two memory probes, and two comparisons.

Though the results seem to agree with practice, the randomness assump-
tions used for the above analyses are questionable in applications. Carter and
Wegman [14] succeeded in removing such assumptions from the analysis of
chained hashing, introducing the concept of universal hash function families.
When implemented with a random function from Carter and Wegman’s univer-
sal family, chained Hashing has constant expected time per dictionary operation
(plus an amortized expected constant cost for resizing the table). Constructions
of universal hash function families with very efficient evaluation have since ap-
peared [18, 20, 85].

A dictionary with worst case constant lookup time was first obtained by
Fredman et al. [27], though it was static, i.e., it did not support updates. It was
later augmented with insertions and deletions in amortized expected constant
time by Dietzfelbinger et al. [21]. Dietzfelbinger and Meyer auf der Heide [22]
improved the update performance by exhibiting a dictionary in which operations
are done in constant time with high probability, namely at least 1−n−c, where

4.2. Preliminaries 27

c is any constant of our choice. A simpler dictionary with the same properties
was later developed [19]. When n = |U |1−o(1) a space usage of O(n) words is not
within a constant factor of the information theoretical minimum B. The earlier
mentioned dictionary of Brodnik and Munro [10] offers the same performance
as [21], using O(B) bits in all cases.

Experimental Work.

Although the above results leave little to improve from a theoretical point of
view, large constant factors and complicated implementation hinder direct prac-
tical use. For example, in the “dynamic perfect hashing” scheme of [21] the up-
per bound on space is 35n words. The authors of [21] refer to a more practical
variant due to Wenzel [90] that uses space comparable to that of binary search
trees.

According to [45] the implementation of this variant in the LEDA library [56],
described in [90], has average insertion time larger than that of AVL trees for
n ≤ 217, and more than four times slower than insertions in chained hashing1.
The experimental results listed in [56, Table 5.2] show a gap of more than a
factor of 6 between the update performance of chained hashing and dynamic
perfect hashing, and a factor of more than 2 for lookups2.

Silverstein [79] reports that the space upper bound of the dynamic perfect
hashing scheme of [21] is quite pessimistic compared to what can be observed
when run on a subset of the DIMACS dictionary tests [55]. He goes on to explore
ways of improving space as well as time, improving both the observed time and
space by a factor of roughly three. Still, the improved scheme needs 2 to 3 times
more space than an implementation of linear probing to achieve similar time
per operation. Silverstein also considers versions of the data structures with
packed representations of the hash tables. In this setting the dynamic perfect
hashing scheme was more than 50% slower than linear probing, using roughly
the same amount of space.

Is seems that recent experimental work on “classical” dictionaries (that do
not have worst case constant lookup time) is quite limited. In [45] it is reported
that chained hashing is superior to an implementation of dynamic perfect hash-
ing in terms of both memory usage and speed. Judging from leading textbooks
on algorithms, Knuth’s selection of algorithms is in agreement with current
practice for implementation of general purpose dictionaries. In particular, the
excellent cache usage of Linear Probing makes it a prime choice on modern
architectures.

4.2 Preliminaries

It is common to study the case where keys are bit strings in U = {0, 1}w and
w is the word length of the computer (for theoretical purposes modeled as a
RAM). This restriction is discussed below. A special value ⊥ ∈ U is reserved

1On a Linux PC with an Intel Pentium 120 MHz processor.
2On a 300 MHz SUN ULTRA SPARC.

28 Chapter 4. Cuckoo Hashing

to signal an empty cell in hash tables. For Double Hashing an additional
special value is used to indicate a deleted key.

Our algorithm uses hash functions from a universal family.

Definition 4.1 A family {hi}i∈I , hi : U → R, is (c, k)-universal if, for any
k distinct elements x1, . . . , xk ∈ U , any y1, . . . , yk ∈ R, and uniformly random
i ∈ I, Pr[hi(x1) = y1, . . . , hi(xk) = yk] ≤ c/|R|k.

A standard construction of a (2, k)-universal family for prime p > 2w and range
R = {0, . . . , r/2 − 1} is

{x 7→ ((
k−1∑
l=0

alx
l) mod p) mod r/2 | 0 ≤ a0, a1, . . . , ak−1 < p} . (4.1)

If U is not too large compared to k, there exists a space-efficient (2, k)-
universal family due to Siegel [78] that has constant evaluation time. However,
the constant factor of the evaluation time is rather high.

Theorem 4.1 (Siegel) There is a constant c such that, for k = 2Ω(w), there
exists a (2, k)-universal family, using space and initialization time kc, that can
be evaluated in constant time.

The restriction that keys are single words is not a serious one. Longer keys
can be mapped to keys of O(1) words by applying a random function from a
(O(1), 2)-universal family. There is such a family whose functions can be eval-
uated in time linear in the number of input words [14]. It works by evaluating
a function from a (O(1), 2)-universal family on each word, computing the bit-
wise exclusive or of the function values. See [85] for an efficient implementation.
Such a function with range {0, 1}2 log(n)+c will, with probability 1 − O(2c), be
injective on S. In fact, with constant probability the function is injective on
a given sequence of Ω(2c/2n) consecutive sets in a dictionary of initial size n
(see [21]). When a collision between two elements of S occurs, everything is re-
hashed. If a rehash can be done in expected O(n) time, the amortized expected
cost of this is O(2−c/2) per insertion. In this way we can effectively reduce the
universe size to O(n2), though the full keys still need to be stored to decide
membership. For c = O(log n) the new keys are of length 2 log n + O(1) bits.
For any δ > 0, Theorem 4.1 then provides a family of constant time evaluable
(2, nΩ(1))-universal hash functions, whose functions can be stored using space
nδ.

4.3 Algorithm – Cuckoo Hashing

Cuckoo hashing is a dynamization of a static dictionary described in [62].
The dictionary uses two hash tables, T1 and T2, each of length r/2 and two
hash functions h1, h2 : U → {0, . . . , r/2 − 1}. Every key x ∈ S is stored in cell
h1(x) of T1 or h2(x) of T2, but never in both. Our lookup function is

4.3. Algorithm – Cuckoo Hashing 29

function lookup(x)
return T1[h1(x)] = x ∨ T2[h2(x)] = x

end

Two table accesses are in fact (worst case) optimal among all data structures
using linear space, except for special cases, see [62].

Remark: The idea of storing keys in one out of two places given by hash
functions previously appeared in [44] in the context of PRAM simulation, and
in [3] for Two-Way Chaining, mentioned in Section 4.1.1.

It is shown in [62] that if r/2 ≥ (1 + ρ)n for some constant ρ > 0 (i.e., the
tables are to be a bit less than half full), and h1, h2 are picked uniformly at
random from an (O(1), O(log n))-universal family, the probability that there is
no way of arranging the keys of S according to h1 and h2 is O(1/n). By the
discussion in Section 4.2 we may assume without loss of generality that there
is such a family, with constant evaluation time and negligible space usage. A
suitable arrangement of the keys in the two hash tables was shown in [62] to be
computable in linear time by a reduction to 2-sat.

y

z

v

x

T2T1

v

z

y

x

T2T1

x

y

zu

v

s t

T1 T2

(a) (b)

Figure 4.1: (a) Key x is successfully inserted by moving keys y and z to the other table.
(b) Key x cannot be accommodated and a rehash is necessary. Arrows point to the other
possible location of the keys.

We now consider a dynamization of the above. Deletion is of course simple
to perform in constant time, not counting the possible cost of shrinking the
tables if they are becoming too sparse. As for insertion, it turns out that the
“cuckoo approach”, kicking other keys away until every key has its own “nest”,
works very well. Specifically, if x is to be inserted we first see if cell h1(x) of T1

is occupied. If not, we are done. Otherwise we set T1[h1(x)]← x anyway, thus
making the previous occupant “nestless”. This key is then inserted in T2 in the
same way, and so forth, see Figure 4.1(a). As it may happen this process loops,
see Figure 4.1(b), the number of iterations is bounded by a value “MaxLoop” to
be specified in Section 4.3.1. If this number of iterations is reached everything is
rehashed with new hash functions, and we try once again to accommodate the
nestless key. Using the notation x ↔ y to express that the values of variables
x and y are swapped, the following code summarizes the insertion procedure.

30 Chapter 4. Cuckoo Hashing

procedure insert(x)
if lookup(x) then return
loop MaxLoop times

if T1[h1(x)] = ⊥ then { T1[h1(x)]← x; return }
x↔ T1[h1(x)]
if T2[h2(x)] = ⊥ then { T2[h2(x)]← x; return }
x↔ T2[h2(x)]

end loop
rehash(); insert(x)

end

The above procedure assumes that the tables remain larger than (1+ρ)n cells.
When no such bound is known, a test must be done to find out when a rehash
to larger tables is needed.

The lookup call preceding the insertion in the procedure ensures robust-
ness if the key to be inserted is already in the dictionary. A slightly faster
implementation can be obtained if this is known not to occur.

Note that the insertion procedure is biased towards inserting keys in T1. As
will be seen in Section 4.4 this leads to faster successful lookups, due to more
keys being found in T1. The insertion time is only slightly worse than that of
a more symmetric implementation. This effect is even more pronounced if one
uses an asymmetric scheme where T1 is larger than T2. Another variant is to
use a single table for both hash functions, but this requires keeping track of
the hash function according to which each key is placed. In the following we
consider just the basic two-table scheme.

4.3.1 Analysis

Our analysis has two main parts:

• First we consider what happens if one tries arbitrarily long to insert the
new key, i.e., MaxLoop = ∞. We show that if the insertion procedure
does not terminate, it is not possible to accommodate all the keys of
the new set using the present hash functions, and a rehash is necessary.
In conjunction with the result from [62], this shows that the insertion
procedure loops without limit with probability O(1/n).

• Next we turn to the analysis for the case where insertion is possible,
showing that the insertion procedure terminates in O(1) iterations, in the
expected sense.

This accounts for the claimed time bound, except for the cost of rehashing.
A rehash has no failed insertions with probability 1−O(1/n). In this case, the
expected time per insertion is constant, so the expected time is O(n). Because
the probability of having to start over with new hash functions is bounded
away from 1, the total expected time for a rehash is O(n). This implies that
the expected time for insertion is constant if r/2 ≥ (1 + ρ)(n + 1). Resizing
of tables can be done in amortized expected constant time per update by the
usual doubling/halving technique, e.g. see [21].

4.3. Algorithm – Cuckoo Hashing 31

xj−2

xj−1

xi+2

xi+1

x1 = xi+j−1

xi+j

x2 = xi+j−2

x3 = xi+j−3

xi = xj

xl

xj−3

xj−2

xj−1

xi+1

xi = xj

xi−1 = xj+1

x2 = xi+j−2

x1 = xi+j−1

xi+j xl

xj−3

xj−2

xi+1

xj−1

xi = xj

x3 = xi+j−3

x2 = xi+j−2

x1 = xi+j−1

xj+i xl

Figure 4.2: Stages of an insertion of key x1. Boxes correspond to cells in either of the two
tables, and arcs indicate the other possible position of a key. Bold arcs show where the nestless
key is to be inserted.

32 Chapter 4. Cuckoo Hashing

The Insertion Procedure Loops

Consider the sequence x1, x2, . . . of nestless keys in the infinite loop. For i, j ≥ 1
we defineXi,j = {xi, . . . , xj}. Let j be the smallest index such that xj ∈ X1,j−1,
and let l be the minimum index such that l + 1 > j and xl+1 ∈ X1,l.

We now argue that the first l steps of the insertion proceed as depicted in
Figure 4.2. The topmost configuration in the figure is the one preceeding the
insertion of x1. The configuration just before xj becomes nestless for the second
time is shown in the middle of the figure. One step later we have that xk is now
in the previous location of xk+1, for 1 ≤ k < j. Let i < j be the index such
that xi = xj. We now consider what happens towards the third stage. If i > 1
then xj reclaims its previous location, occupied by xi−1. If i > 2 then xi−1

subsequently reclaims its previous position, which is occupied by xi−2, and so
forth. Thus we have xj+z = xi−z for z = 0, 1, . . . , i − 1, and end up with x1

occurring again as xi+j−1. This is shown in the third stage of the figure. Note
that the dotted cell must, by definition of l, be identical to one of the other
cells in the figure.

It is easy to see that the number of cells is not sufficient to accommodate
Xi,l for the current choice of hash functions. For a formal proof, we define
sk = |h1[X1,k]|+ |h2[X1,k]|, i.e., sk is the number of table cells available to X1,k.
Obviously sk ≤ sk−1 + 1, as every key xi, i > 1, has either h1(xi) = h1(xi−1)
or h2(xi) = h2(xi−1). In fact, sj−1 = sj−2 ≤ j − 1, because the key xj found
in T1[h1(xj−1)] or T2[h2(xj−1)] occurred earlier in the sequence. As all of the
keys xj, . . . , xj+i−1 appeared earlier in the sequence, we have sj+i−2 = sj−2.
Similar to before we have sl = sl−1. In conclusion, |X1,l| = l + 1 − i and
sl = sl−1 ≤ sj+i−2 + (l − 1)− (j + i− 2) = sj−2 + l + 1− j − i < l + 1− i.

Successful Insertion

Consider a prefix x1, x2, . . . , xl of the sequence of nestless keys. The crucial fact
is that there must be a subsequence of at least l/3 keys without repetitions,
starting with an occurrence of the key x1, i.e., the inserted key. If there is no
repetition this is obvious. Otherwise the first l steps of the insertion proceed as
in Figure 4.2. In particular, one of the sequences x1, . . . , xj−1 and xj+i−1, . . . , xl

is the desired one of length at least l/3.
Suppose that the insertion loop runs for at least t iterations. By the above

there is a sequence of distinct keys b1, . . . , bm, m ≥ (2t − 1)/3, such that b1 is
the key to be inserted, and such that for some β ∈ {0, 1}

h2−β(b1) = h2−β(b2), h1+β(b2) = h1+β(b3), h2−β(b3) = h2−β(b4), . . . (4.2)

Given b1 there are at most nm−1 sequences of m distinct keys. For any such
sequence and any β ∈ {0, 1}, if the hash functions were chosen from a (c,m)-
universal family, the probability that (4.2) holds is bounded by c (r/2)−(m−1).
Thus, the probability that there is any sequence of length m satisfying (4.2)
is bounded by 2c (2n/r)m−1 ≤ 2c (1 + ρ)−(2t−1)/3+1. Suppose we are using
a (c, 6 log1+ρ n)-universal family, for some constant c. Then the probability
of more than 3 log1+ρ n iterations is O(1/n2). Thus, we can set MaxLoop =

4.4. Experiments 33

3 log1+ρ n with a negligible increase in the probability of a rehash. When there
is no rehash the expected number of iterations is at most

1+
∞∑
t=2

2c (1 + ε)−(2t−1)/3+1

= 1 + 2c(1 + ε)4/3
∞∑

t=0

((1 + ε)−2/3)t

= 1 +O(1
1−(1+ε)−2/3)

= O(1 + 1/ε) .

(4.3)

4.4 Experiments

To examine the practicality of Cuckoo Hashing we experimentally compare
it to three well known hashing methods, described by Knuth in [47, Section 6.4]:
Chained Hashing (with separate chaining), Linear Probing and Double

Hashing. We also consider Two-Way Chaining [3].
The first three methods all attempt to store a key x at position h(x) in a

hash table. They differ in the way collisions are resolved, i.e., what happens
when two or more keys hash to the same location.

Chained Hashing. A chained list is used to store all keys hashing to a given
location.

Linear Probing. A key is stored in the next empty table entry. Lookup of
key x is done by scanning the table beginning at h(x) and ending when
either x or an empty table entry is found. When deleting a key, some
keys may have to be moved back in order to fill the hole in the lookup
sequence, see [47, Algorithm R] for details.

Double Hashing. Insertion and lookup are similar to Linear Probing, but
instead of searching for the next position one step at a time, a second hash
function value is used to determine the step size. Deletions are handled
by putting a “deleted” marker in the cell of the deleted key. Lookups skip
over deleted cells, while insertions overwrite them.

The fourth method, Two-Way Chaining, can be described as two in-
stances of Chained Hashing. A key is inserted in one of the two hash tables,
namely the one where it hashes to the shortest chain. A cache-friendly imple-
mentation, as recently suggested in [9], is to simply make each chained list a
short, fixed size array. If a longer list is needed, a rehash must be performed.

4.4.1 Data Structure Design and Implementation

We consider positive 32 bit signed integer keys and use 0 as ⊥. The data
structures are robust in that they correctly handle attempts to insert an element
already in the set, and attempts to delete an element not in the set. During a

34 Chapter 4. Cuckoo Hashing

rehash, this is known not to occur and slightly faster version of the insertion
procedure is used.

Our focus is on achieving high performance dictionary operations with a
reasonable space usage. By the load factor of a dictionary we will understand
the size of the set relative to the memory used3. As seen in [47, Figure 44] the
speed of Linear Probing and of Double Hashing degrades rapidly for load
factors above 1/2. On the other hand, none of the schemes improve much for
load factors below 1/4. As Cuckoo Hashing only works when the size of each
table is larger than the size of the set, we can only perform a comparison for
load factors less than 1/2. To allow for doubling and halving of the table size,
we let the load factor to vary between 1/5 and 1/2, focusing especially on the
typical load factor of 1/3. For Cuckoo Hashing and Two-Way Chaining

there is a chance that an insertion may fail, causing a forced rehash. If the
load factor is larger than a certain threshold, somewhat arbitrarily set to 5/12,
we use the opportunity to double the table size. By our experiments this only
slightly decreases the average load factor.

Apart from Chained Hashing, the schemes considered have in common the
fact that they have only been analyzed under randomness assumptions that are
currently, or inherently, unpractical to implement, i.e., O(log n)-wise indepen-
dence or n-wise independence. However, experience shows that rather simple
and efficient hash function families yield performance close to that, predicted
under stronger randomness assumptions. We use a function family from [20]
with range {0, 1}q for positive integer q. For every odd a, 0 < a < 2w, the fam-
ily contains the function ha(x) = (ax mod 2w) div 2w−q. Note that evaluation
can be done very efficiently by a 32 bit multiplication and a shift. However,
this choice of hash function restricts us to consider hash tables whose sizes are
powers of two. A random function from the family (chosen using C’s rand
function) appears to work fine with all schemes except Cuckoo Hashing. For
Cuckoo Hashing we experimented with various hash functions and found
that Cuckoo Hashing was rather sensitive to the choice of hash function. It
turned out that the exclusive or of three independently chosen functions from
the family of [20] was fast and worked well. We have no good explanation for
this phenomenon. For all schemes, various alternative hash families were tried,
with a decrease in performance.

All methods have been implemented in C. We have striven to obtain the
fastest possible implementation of each scheme. Specific choices made and
details differing from the references are:

Chained Hashing. C’s malloc and free functions were found to be a per-
formance bottleneck, so a simple “freelist” memory allocation scheme is
used. Half of the allocated memory is used for the hash table, and half
for list elements. If the data structure runs out of free list elements, its
size is doubled. We store the first element of each linked list directly
in the hash table. This often saves one cache miss. It also slightly im-
proves memory utilization, in the expected sense. This is because every

3For Chained Hashing, the notion of load factor traditionally disregards the space used
for chained lists, but we desire equal load factors to imply equal memory usage.

4.4. Experiments 35

nonempty chained list is one element shorter and because we expect more
than half of the hash table cells to contain a linked list for the load factors
considered here.

Double Hashing. To prevent the tables from clogging up with deleted cells,
resulting in poor performance for unsuccessful lookups, all keys are re-
hashed when 2/3 of the hash table are occupied by keys and “deleted”
markers. The fraction 2/3 was found to give a good tradeoff between the
time for insertion and unsuccessful lookups.

Linear Probing. Our first implementation, like that in [79], employed dele-
tion markers. However, we found that using the deletion method described
in [47, Algorithm R] was considerably faster, as far fewer rehashes were
needed. Note that the consecutive search for a key or an empty cell makes
excellent use of the cache on most computer architectures.

Two-Way Chaining. We allow four keys in each bucket. This is enough to
keep the probability of a forced rehash low for hundreds of thousands of
keys, by the results in [9]. For larger collections of keys one should allow
more keys in each bucket, resulting in general performance degradation.

Cuckoo Hashing. The architecture on which we experimented could not par-
allelize the two memory accesses in lookups. Therefore we only evaluate
the second hash function after the first memory lookup has shown unsuc-
cessful.

Some experiments were done with variants of Cuckoo Hashing. In par-
ticular, we considered Asymmetric Cuckoo, in which the first table is twice
the size of the second one. This results in more keys residing in the first table,
thus giving a slightly better average performance for successful lookups. For
example, after a long sequence of alternate insertions and deletions at load fac-
tor 1/3, we found that about 76% of the elements resided in the first table of
Asymmetric Cuckoo, as opposed to 63% for Cuckoo Hashing. There is
no significant slowdown for other operations. We will describe the results for
Asymmetric Cuckoo when they differ significantly from those of Cuckoo

Hashing.

4.4.2 Setup

Our experiments were performed on a PC running Linux (kernel version 2.2)
with an 800 MHz Intel Pentium III processor, and 256 MB of memory (PC100
RAM). The processor has a 16 KB level 1 data cache and a 256 KB level
2 “advanced transfer” cache. As will be seen, our results nicely fit a simple
model parameterized by the cost of a cache miss and the expected number of
probes to “random” locations. The results are thus believed to have signifi-
cance for other hardware configurations. An advantage of using the Pentium

III processor for timing experiments is its rdtsc instruction which can be used
to measure time in clock cycles. This gives access to very precise data on
the behavior of functions. In our case it also supplies a way of discarding

36 Chapter 4. Cuckoo Hashing

measurements significantly disturbed by interrupts from hardware devices or
the process scheduler, as these show up as a small group of timings signifi-
cantly separated from all other timings. Programs were compiled using the gcc
compiler version 2.95.2, using optimization flags -O9 -DCPU=586 -march=i586
-fomit-frame-pointer -finline-functions -fforce-mem -funroll-loops
-fno-rtti. As mentioned earlier, we use a global clock cycle counter to time
operations. If the number of clock cycles spent exceeds 5000, and there was no
rehash, we conclude that the call was interrupted, and disregard the result (it
was empirically observed that no operation ever took between 2000 and 5000
clock cycles). If a rehash is made, we have no way of filtering away time spent
during interrupts. However, all tests were made on a machine with no irrel-
evant user processes, so disturbances should be minimal. On our machine it
took 32 clock cycles to call the rdtsc instruction. These clock cycles have been
subtracted from the results.

4.4.3 Results

Dictionaries of Stable Size

Our first test was designed to model the situation in which the size of the dic-
tionary is not changing too much. It considers a sequence of mixed operations
with keys generated at random. We constructed the test operation sequences
from a collection of high quality random bits publicly available on the Inter-
net [54]. The sequences start by insertion of n distinct random keys, followed by
3n times four operations: A random unsuccessful lookup, a random successful
lookup, a random deletion, and a random insertion. We timed the operations
for several n in the equilibrium, where the number of elements is stable. For
load factor 1/3 our results appear in Figure 4.3 and Figure 4.4, which shows
an average over 10 runs. As Linear Probing was consistently faster than
Double Hashing, we chose it as the sole open addressing scheme in the plots.
Time for forced rehashes was added to the insertion time. Results had a large
variance, over the 10 runs, for sets of size 212 to 216. Outside this range the
extreme values deviated from the average by less than about 7%. The large
variance sets in when the data structure starts to fill up the level 2 cache. We
believe it is due to other processes evicting parts of the data structure from
cache.

As can be seen, the time for lookups is almost identical for all schemes as
long as the entire data structure fits in level 2 cache, i.e., for n < 216/3. After
this the average number of random memory accesses (with the probability of
a cache miss approaching 1) shows up. This makes linear probing an aver-
age case winner, with Cuckoo Hashing and Two-Way Chaining following
about 40 clock cycles behind. For insertion the number of random memory ac-
cesses again dominates for large sets, while a higher number of in-cache accesses
and more computation makes Cuckoo Hashing, and in particular Two-Way

chaining, relatively slow for small sets. The cost of forced rehashes sets in for
Two-Way Chaining for sets of more than a million elements, at which point
better results may have been obtained by a larger bucket size. For deletion

4.4. Experiments 37

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

log n

C
lo

ck
 C

yc
le

s
Successful Lookup

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

log n

C
lo

ck
 C

yc
le

s

Unsuccessful Lookup

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

Figure 4.3: The average time per operation in equilibrium for load factor 1/3.

38 Chapter 4. Cuckoo Hashing

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

350

400

450

log n

C
lo

ck
 C

yc
le

s
Insert

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

350

log n

C
lo

ck
 C

yc
le

s

Delete

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

Figure 4.4: The average time per operation in equilibrium for load factor 1/3.

4.4. Experiments 39

Chained Hashing lags behind for large sets due to random memory accesses
when freeing list elements, while the simplicity of Cuckoo Hashing makes it
the fastest scheme. We conjecture the slight rise in time for the largest sets is
due to saturation of the bus, as the machine runs out of memory and begins
swapping.

It is interesting to note that according to the theoretical results mentioned in
Section 4.1.1 Double Hashing and Chained Hashing should perform better
than Linear Probing.

Growing and Shrinking Dictionaries

The second test concerns the cost of insertions in growing dictionaries and
deletions in shrinking dictionaries. This will be different from the above due
to the cost of rehashes. Together with Figure 4.3 and Figure 4.4 this should
give a fairly complete picture of the performance of the data structures under
general sequences of operations. The first operation sequence inserts n distinct
random keys, while the second one deletes them. The plot is shown in Figure
4.5. For small sets the time per operation seems unstable, and dominated by
memory allocation overhead (The start table size was 4. If minimum table
size 210 is used, the curves become monotone). For sets of more than 212

elements the largest deviation from the averages over 10 runs was about 6%.
Disregarding the constant minimum amount of memory used by any dictionary,
the average load factor during insertions was within 2% of 1/3 for all schemes
except Chained Hashing whose average load factor was about 0.31. During
deletions all schemes had average load factor 0.28. Again the fastest method
is Linear Probing, followed by Chained Hashing and Cuckoo Hashing.
This is largely due to the cost of rehashes.

DIMACS Tests

Access to data in a dictionary is rarely random in practice. In particular,
the cache is more helpful than in the above random tests, for example due to
repeated lookups of the same key, and quick deletions. As a rule of thumb,
the time for such operations will be similar to the time when all of the data
structure is in cache. To perform actual tests of the dictionaries on more re-
alistic data, we chose a representative subset of the dictionary tests of the 5th
DIMACS implementation challenge [55]. The tests involving string keys were
preprocessed by hashing strings to 32 bit integers, as described in Section 4.2.
This preserves, with high probability, the access pattern to keys. For each test
we recorded the average time per operation. The minimum and maximum of
six runs can be found in Tables 4.1 and 4.2, which also list the average load
factor. Linear probing is again the fastest, but mostly just 20-30% faster than
the Cuckoo schemes.

40 Chapter 4. Cuckoo Hashing

8 10 12 14 16 18 20 22
0

100

200

300

400

500

600

700

800

900

1000

log n

C
lo

ck
 C

yc
le

s
Insert

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

100

200

300

400

500

600

700

800

log n

C
lo

ck
 C

yc
le

s

Delete

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

Figure 4.5: The average time per insertion/deletion in a growing/shrinking dictionary for
average load factor ≈ 1/3.

4.4. Experiments 41

Joyce Eddington
Linear 42 - 45 (.35) 26 - 27 (.40)
Double 48 - 53 (.35) 32 - 35 (.40)
Chained 49 - 52 (.31) 36 - 38 (.28)

A.Cuckoo 47 - 50 (.33) 37 - 39 (.32)
Cuckoo 57 - 63 (.35) 41 - 45 (.40)

Two-Way 82 - 84 (.34) 51 - 53 (.40)

Table 4.1: Average clock cycles per operation and load factors for two DIMACS string tests.

3.11-Q-1 Smalltalk-2 3.2-Y-1
Linear 99 - 103 (.30) 68 - 72 (.29) 85 - 88 (.32)
Double 116 - 142 (.30) 77 - 79 (.29) 98 - 102 (.32)
Chained 113 - 121 (.30) 78 - 82 (.29) 90 - 93 (.31)

A.Cuckoo 166 - 168 (.29) 87 - 95 (.29) 95 - 96 (.32)
Cuckoo 139 - 143 (.30) 90 - 96 (.29) 104 - 108 (.32)

Two-Way 159 - 199 (.30) 111 - 113 (.29) 133 - 138 (.32)

Table 4.2: Average clock cycles per operation and load factors for three DIMACS integer
tests.

The Number of Cache Misses During Insertion

We have seen that the number of random memory accesses (i.e., cache misses) is
critical to the performance of ashing schemes. Whereas, there is a very precise
understanding of the probe behavior of the classic schemes (under suitable
randomness assumptions), the analysis of the expected time for insertions in
Section 4.3.1 is rather crude, establishing just a constant upper bound. One
reason that our calculation does not give a very tight bound is that we use a
pessimistic estimate on the number of key moves needed to accommodate a new
element in the dictionary. Often a free cell will be found even though it could
have been occupied by another key in the dictionary. We also pessimistically
assume that a large fraction of key moves will be spent backtracking from an
unsuccessful attempt to place the new key in the first table.

Figure 4.6 shows experimentally determined values for the average number
of probes during insertion for various schemes and load factors below 1/2. We
disregard reads and writes to locations known to be in cache, and the cost
of rehashes. Measurements were made in equilibrium after 105 insertions and
deletions, using tables of size 215 and truly random hash function values. It is
believed that this curve is independent of the table size (up to vanishing terms).
The curve for Linear Probing does not appear, as the number of non-cached
memory accesses depends on cache architecture (length of the cache line), but
it is typically very close to 1. The curve for Cuckoo Hashing seems to be
2 + 1/(4 + 8α) ≈ 2 + 1/(4ρ). This is in good correspondence with (4.3) of
the analysis in Section 4.3.1. As noted in Section 4.3 the insertion algorithm
of Cuckoo Hashing is biased towards inserting keys in T1. If we instead of

42 Chapter 4. Cuckoo Hashing

0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

3

3.5

4

Load Factor

C
ac

he
 M

is
se

s
Cuckoo
Two−Way Chaining
Chained Hashing
Double Hashing

Figure 4.6: The average number of random memory accesses for insertion.

starting the insertion in T1 choose the start table at random, the number of
cache misses decreases slightly for insertion. This is because the number of free
cells in T1 increases as the load balance becomes even. However, this also means
a slight increase in lookup time. Also, note that since insertion checks if the
element is already inserted Cuckoo Hashing uses at least two cache misses.
It should be remarked that the highest load factor for Two-Way Chaining is
O(1/ log logn).

Since lookups are very similar to insertion in Chained Hashing, one could
think that the number of cache misses would be equal for the two operations.
However, in our implementation, obtaining a free cell from the freelist may
result in an extra cache miss. This is the reason why the curve for Chained

Hashing in the figure differs from a similar plot in Knuth [47, Figure 44].

4.5 Model

In this section, we look at a simple model of the time it takes to perform a
dictionary operation, and note that our results can be explained in terms of
this model. On a modern computer, memory speed is often the bottleneck.
Since the operations of the investigated hashing methods mainly perform reads
and writes to memory, we will assume that cache misses constitute the dominant
part of the time needed to execute a dictionary operation. This leads to the

4.5. Model 43

following model of the time per operation.

Time = O +N ·R · (1−C/T) , (4.4)

where the parameters of the model are described by

• O – Constant overhead of the operation.

• R – Average number of random memory accesses.

• C – Cache size.

• T – Size of the hash tables.

• N – Cost of a non-cache read.

The term R · (1 − C/T) is the expected number of cache misses for the
operations with (1−C/T) being the probability that a random probe into the
tables results in a cache miss. Note that the model is not valid when the table
size T is smaller than the cache size C. The size C of the cache and the size T of
the dictionary are well known. From Figure 4.6 we can, for the various hashing
schemes and for a load factor of 1/3, read the average number R of random
memory accesses needed for inserting an element. Note that several accesses to
consecutive elements in the hash table is counted as one random access, since
the other accesses are then in cache. The overhead of an operation, O, and the
cost of a cache miss, N , are unknown factors that we will estimate.

Performing experiments, reading and writing to and from memory, we ob-
served that the time for a read or a write to a location known not to be in cache
could vary dramatically depending on the state of the cache. For example, a
read resulting in a cache miss will cause the cache line to be filled with the newly
read value plus values from the surrounding memory locations. However, if the
old contents of the cache line have been written to, the old contents must first
be written back to memory, resulting in significant longer timings for the read.
For this reason, we expect parameter N to depend slightly on both the par-
ticular dictionary methods and the combination of dictionary operations. This
means that R and T are the only parameters not dependent on the methods
used.

Method N O

Cuckoo 71 142
Two-Way 66 157
Chained 79 78
Linear 88 89
Average 76 -

Table 4.3: Estimated parameters according to the model for insertion.

Using the timings for insert from Figure 4.4 and the average number of cache
misses observed in Figure 4.6, we estimated N and O for insertion for the four

44 Chapter 4. Cuckoo Hashing

hashing schemes. As mentioned, we believe the slight rise in time for the largest
sets in the tests of Figure 4.4 to be caused by other non-cache related factors.
So since the model is only valid for T ≥ 216, the two parameters were estimated
for time timings with 216 ≤ T ≤ 223. The results are shown in Table 4.3. As
can be seen from the table, the cost of a cache miss varies slightly from method
to method. The largest deviation from the average is about 15%.

8 10 12 14 16 18 20 22 24
50

100

150

200

250

300

350

400

450

log n

C
lo

ck
 C

yc
le

s
Insert

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

Figure 4.7: Model versus observed data.

To investigate the accuracy of our model we plotted in Figure 4.7 the esti-
mated curves for insertion together with the observed curves used for estimating
the parameters. As can be seen, the simple model explains the observed values
quite nicely.

Having said this, we must admit that the values of N and O estimated for
the schemes cannot be accounted for. In particular, it is clear that the true
behavior of the schemes is more complicated than suggested by the model.

4.6 Chapter Summary

We have presented a new dictionary with worst case constant lookup time. It is
simple to implement, and has average case performance comparable to the best
previous dictionaries. Earlier schemes with worst case constant lookup time
were more complicated to implement and had worse average case performance.

Despite having a reasonable space usage compared to other fast dictionaries
the space requirements are too large to be of use in lossy compression. In
Chapter 5 we develop a relaxation of Cuckoo Hashing that is readily turned
into an efficient tool for lossy compression with fast random access.

Chapter 5

Lossy Dictionaries

5.1 Introduction

In the previous chapter it was demonstrated that efficient dictionaries with a
reasonable space usage exist. However, the space usage is still too large to be
of use in lossy compression. We now turn to a relaxation of dictionaries that
results in a space efficient data structure that can be used for lossy compression
with fast random access.

If one relaxes the requirements to the membership data structure, allowing
it to store a slightly different key set than intended, new possibilities arise.
A technique finding many applications in practice is Bloom filtering [7]. This
technique allows space-efficient storage of a superset S′ of the key set S, such
that S′ \ S is no more than an ε fraction of the universe U = {0, 1}w . For
n� 2w, about log(1/ε) bits per key in S are necessary and sufficient for this [13].
This is a significant savings compared to a membership data structure using
B = log

(2w

n

) ≈ n log(2we
n) bits. Lookup of a key using Bloom filtering requires

O(log(1/ε)) memory accesses and is thus relatively slow compared to other
hashing schemes when ε is small. Also, Bloom filtering differs from most other
hashing techniques in that it does not yield a solution to the dictionary problem.

5.1.1 This Chapter

In this chapter we introduce the concept of lossy dictionaries that can have not
only false positives (like Bloom filters), but also false negatives. That is, some
keys in S (with associated information) are thrown away when constructing the
dictionary. For false positives there is no guarantee on the associated informa-
tion returned. We let each key in S have a weight, and try to maximize the
sum of weights of keys in the dictionary under a given space constraint.

We study this problem on a unit cost RAM, in the case where keys are
machine words of w bits, examining a very simple and efficient data structure
from a theoretical as well as an experimental point of view. Experimentally,
we find that our data structure has surprisingly good behavior with respect
to keeping the keys of largest weight. The experimental results are partially
explained by our theoretical considerations, under strong assumptions on the
hash functions involved. Specifically, we assume that in our RAM model, for

45

46 Chapter 5. Lossy Dictionaries

a number of random functions, arbitrary function values can be returned in
constant time by an oracle. We also show that our data structure is nearly
optimal with respect to space usage.

5.1.2 Applications

Recently, interest in lossy (volume) data compression with fast random access
to decoded data has arisen [37, 46, 33, 71, 72, 4]. In Chapter 8 we show that
lossy dictionaries are well suited for this purpose, providing lossy storage of
the coefficients of wavelet transformed data. Compared to the previously best
methods in the literature [37, 71, 4], our lossy dictionary based volumetric
compression scheme performs about 50%-80% better in terms of compression
ratio, while offering quite competitive random access times.

A cache can be seen as a dictionary that stores a small subset of a large key
set, plus associated information. It is thus inherently lossy. A lossy dictionary
allowed to discard a small fraction of a key set may thus in many cases be a quite
acceptable implementation. If no wrong information is to be returned, we can
allow no false positives. Our lossy dictionary seems best suited for applications
where the cache only changes periodically, as for example in Web caching.

Web cache sharing [25] is a technique for implementing cooperating caches,
for example Web proxies. When a request arrives at a proxy, it first checks
whether it can answer the request. If not, it can forward the request to other
proxies in the network. However, this increases traffic and is rather expensive.
In cooperative caching each proxy keeps a summary of the content of all relevant
proxies available to it. To reduce space requirements, this summary is stored
with a small fraction of error using Bloom filtering. Often this reduces network
traffic dramatically, since there is no more than a small chance that an expensive
request forwarding is performed in vain. Lossy dictionaries with two-sided error
could be used as a summary rather than a Bloom filter, since a small fraction
of false negatives (cache misses) is tolerable.

In fact, the general idea of using in-memory summaries to reduce the number
of expensive operations, such as I/O’s, is well known in the database community.
It dates at least back to [75], which uses Bloom filtering for efficient management
of different versions of databases.

5.1.3 Related Work

Most previous work related to static dictionaries has considered the membership
problem on a unit cost RAM with word size w. As mentioned in Chapter 4.1.1
the first membership data structure with worst case constant lookup time using
O(n) words of space was constructed by Fredman et al. [27]. For constant δ > 0,
the space usage is O(B) when 2w > n1+δ, but in general the data structure may
use Ω(Bw) bits of space. The space usage has been lowered to B + o(B) bits
by Brodnik and Munro [10]. The lower order term was subsequently improved
to o(n) +O(logw) bits by Pagh [61]. The main concept used in [61] is that of
a quotient function q of a hash function h, defined to be a function such that
the mapping x 7→ (h(x), q(x)) is injective.

5.2. Theory – Lossy Dictionaries 47

The membership problem with false positives only was first considered by
Bloom [7]. He described a technique, now known as Bloom filtering, where
lookups return the conjunction of a number of bits from a bit vector. The
locations of the bit probes are the values of a series of hash functions on the
element to be looked up. Apart from Bloom filtering [7] presents a less space
efficient data structure that is readily turned into a lossy dictionary with only
false positives. However, the space usage of the derived lossy dictionary is not
optimal. Carter et al. [13] provided a lower bound of n log(1/ε) bits on the space
needed to solve membership with an ε fraction false positives, for n� 2w, and
gave data structures with various lookup times matching or nearly matching this
bound. Though none of their membership data structures have constant lookup
time, such a data structure follows by plugging the abovementioned results on
space optimal membership data structures [10, 61] into a general reduction
provided in [13]. In fact, the dictionary of [61] can be easily modified to a lossy
dictionary with false positives, thus also supporting associated information,
using O(n+ logw) bits more than the lower bound.

Another relaxation of the membership problem was recently considered by
Buhrman et al. [11]. They store the set S exactly, but allow the lookup proce-
dure to use randomization and to have some probability of error. For two-sided
error δ they show that there exists a data structure of O(nw/δ2) bits in which
lookups can be done using just one bit probe. To do the same without false
negatives it is shown that O(n2w/δ2) bits suffice and that this is essentially
optimal. Schemes using more bit probes and less space are also investigated. If
one fixes the random bits of the lookup procedure appropriately, the result is
a lossy dictionary with error δ. However, it is not clear how to efficiently guar-
antee the δ fraction of false positives in a reasonable model of computation, so
this does not immediately give rise to a lossy dictionary.

5.2 Theory – Lossy Dictionaries

Consider a set S containing keys x1, . . . , xn with associated data or information
d1, . . . , dn and positive weights v1, . . . , vn. Suppose we are given an upper bound
m on available space and an error parameter ε > 0. The lossy dictionary problem
for ε = 0 is to store a subset of the keys in S and corresponding associated
information in a data structure of m bits, trying to optimize the sum of weights
of included keys. This corresponds to only allowing false negatives. For general
ε we also allow the dictionary to contain 2wε keys from the complement of S,
corresponding to false positives. In this section we show the following theorem.

Theorem 5.1 Let a sequence of keys x1, . . . , xn ∈ {0, 1}w , associated informa-
tion d1, . . . , dn ∈ {0, 1}l, and weights v1 ≥ · · · ≥ vn > 0 be given. Let r > 0 be
an even integer, and b ≥ 0 an integer. Suppose we have oracle access to random
functions h1, h2 : {0, 1}w → {1, . . . , r/2} and corresponding quotient functions
q1, q2 : {0, 1}w → {0, 1}s \ 0s. There is a lossy dictionary with the following
properties:

48 Chapter 5. Lossy Dictionaries

1. The space usage is r(s− b+ l) bits (two tables with r/2 cells of s − b+ l
bits).

2. The fraction of false positives is bounded by ε ≤ (2b − 1)r/2w.

3. The expected weight of the keys in the set stored is
∑n

i=1 pr,i vi where

pr,i ≥
{

1− 52 r−1/(r
i − 2), for i < r/2

2 (1 − 2/r)i−1 − (1− 2/r)2(i−1), for i ≥ r/2

is the probability that xi is included in the set (which is independent of
vi).

4. Lookups are done using at most two (independent) accesses to the tables.

5. The construction time is O(n log∗ n+ rl/w).

As discussed in Section 5.2.1 there exist quotient functions for s = w −
log(r/2) + O(1) if the hash functions map approximately the same number of
elements to each value in {1, . . . , r/2}. The inequality in item 2 is satisfied
for b = blog(2wε/r + 1)c, so for s = w − log r + O(1) an ε fraction of false
positives can be achieved using space r (log(1

ε+r/2w)+ l+O(1)). As can be seen
from item 3, almost all of the keys {x1, . . . , xr/2} are expected to be included
in the set represented by the lossy dictionary. For i ≥ r/2 our bound on pi,r

is shown in Figure 5.6 of Section 5.3, together with experimentally observed
probabilities. If n ≥ r and r is large enough it can be shown by integration
that, in the expected sense, more than 70% of the keys from {x1, . . . , xr} are
included in the set (our experiments indicate 84%). We show in Section 5.2.5
that the amount of space that we use to achieve this is within a small constant
factor of optimal.

Note that by setting b = 0 we obtain a lossy dictionary with no false pos-
itives. Another point is that given a desired maximum space usage m and
false positive fraction ε, the largest possible size r of the tables can be cho-
sen efficiently. Assume, for example, that we have quotient function with
range dlog(2w+1/r)e and consider the case b = 0. The memory usage is
r(dlog(2w+1/r)e + l). Whenever r is doubled, the number of bits per cell be-
comes one less. This means that the memory usage increases piecewise linearly
in r, with jumps when r is a power of two. By setting r = 2i for i = 1, 2, 3, . . .
we find the i for which m is first exceeded. The correct value of r can now
easily be found in the interval 2i−1 < r < 2i. For general b this becomes
more complicated, as we need to investigate more intervals, but finding r is still
implementable in O(logm) time.

5.2.1 Preliminaries

The starting point for the design of our data structure is the Cuckoo hashing

scheme described in Chapter 4. In Cuckoo hashing, two hash tables T1 and
T2 are used together with two hash functions h1, h2 : {0, 1}w → {1, . . . , r/2},
where r denotes the combined size of the hash tables, assumed to be even. A

5.2. Theory – Lossy Dictionaries 49

key x ∈ S is stored in either cell h1(x) of T1 or cell h2(x) of T2. It was shown,
in [62] that if r ≥ (2 + ρ)n, for ρ > 0, and h1, h2 are random functions, there
exists a way of arranging the keys in the tables according to the hash functions
with probability at least 1 − 52

ρr . For small ρ this gives a dictionary utilizing
about 50% of the hash table cells. The arrangement of keys was shown to be
computable in expected linear time.

Another central concept is that of quotient functions. Recall that a quotient
function q of a hash function h is a function such that the mapping x 7→
(h(x), q(x)) is injective [61]. When storing a key x in cell h(x) of a hash table,
it is sufficient to store q(x) to uniquely identify x among all other elements
hashing to h(x). To mark empty cells one needs a bit string not mapped to by
the quotient function, e.g., 0s for the quotient functions of Theorem 5.1. The
idea of using quotient functions is that storing q(x) may require fewer bits than
storing x itself. If a fraction O(1/r) of all possible keys hashes to each of r hash
table cells, there is a quotient function whose function values can be stored in
w − log r +O(1) bits.

Example We consider the hash function family from [20] mapping from
{0, 1}w to {0, 1}t, i.e., with r = 2t. It contains functions of the form ha(x) =
(ax mod 2w) div 2w−t for a odd and 0 < a < 2w. Letting bit masks and
shifts replace modulo and division, these hash functions can be evaluated very
efficiently. A corresponding family of quotient functions is given by qa(x) = (ax
mod 2w) mod 2w−t, whose function values can be stored in w − log r bits.

The idea behind our lossy dictionary, compared to cuckoo hashing de-
scribed in Chapter 4, is to try to fill the hash tables almost completely, working
with key sets of size similar to or larger than r. Each key has two hash table
cells to which it can be matched.

Thus, given a pair of hash functions, the problem of finding a maximum
weight subset of S that can be arranged into the hash tables is a maximum
weight matching problem that can be solved in polynomial time, see e.g. [16].
In Section 5.2.3 we will present an algorithm that finds such an optimal solution
in time O(n log∗ n), exploiting structural properties of our data structure. The
term O(rl/w) in the time bound of Theorem 5.1 is the time needed to copy
associated information to the tables. Assume for now that we know which keys
are to be represented in which hash table cells.

5.2.2 Our Data Structure

For b = 0 we simply store quotient function values in nonempty hash table cells
and the value 0s in empty hash table cells, using s bits per cell, as shown in
Figure 5.1. For general b, we store only the first s − b bits. Observe that no
more than 2b keys with the same hash function value can share the first s − b
bits of the quotient function value. This means that there are at most 2b − 1
false positives for each nonempty cell. Since 0s is not in the range, this is also
true for empty cells. In addition to the s− b bits, we use l bits per cell to store
associated information.

We now proceed to fill in the remaining details on items 3 and 5 of Theo-
rem 5.1.

50 Chapter 5. Lossy Dictionaries

q1(x4)

q1(x2)

q2(x3)

q2(x5)

q1(x1)

h1(x2)

h1(x4)

h1(x1)

h2(x3)

h2(x5)

Figure 5.1: Data structure.

5.2.3 Construction Algorithm

Recall that the task of constructing our data structure boils down to finding
the largest weight arrangement of keys in the tables. Given hash functions
h1 and h2 and a key set K, we define the bipartite graph G(K) with vertex
set {1, 2} × {1, . . . , r/2}, corresponding in a natural way to hash table cells,
and the multiset of edges {{(1, h1(x)), (2, h2(x))} | x ∈ K}, corresponding to
keys. Note that there may be parallel edges if several keys have the same pair
of hash function values. We will use the terms keys/edges and cells/vertices
synonymously. A connected component of G(K) is defined to be saturated if
the number of edges is greater than or equal to the number of vertices, i.e., if
it is not a tree. We have the following characterization of the key sets that can
be placed in the tables according to the given hash functions.

Lemma 5.1 The key set K can be placed in the tables if and only if each
connected component of G(K) is a tree, plus possibly an extra edge.

Proof. By Hall’s theorem, K can be placed in the tables if and only if every
subset K ′ ⊆ K satisfies |h1(K ′)| + |h2(K ′)| ≥ |K ′|. This is true if and only
if every subset K ′ of edges in G(K) covers at least |K ′| vertices. Since it is
equivalent to quantify only over subsets of edges within a connected component,
the lemma follows. 2

By an optimal solution for a key set K we will understand a maximum
weight subset of K that can be placed in the tables.

Lemma 5.2 There is an optimal solution for {x1, . . . , xi} including key xi if
and only if for any optimal solution K ′ for {x1, . . . , xi−1}, the set K ′∪{xi} can
be placed in the tables.

Proof. If K ′∪{xi} can be placed in the tables for some solution K ′ optimal for
{x1, . . . , xi−1}, then K ′ ∪ {xi} must be optimal for {x1, . . . , xi}.

On the other hand, suppose that for some K ⊆ {x1, . . . , xi−1}, the key set
K ∪ {xi} can be placed in the tables and has optimal weight, and let K ′ be
an optimal solution for {x1, . . . , xi−1}. Consider the connected components of

5.2. Theory – Lossy Dictionaries 51

(1, h1(xi)) and (2, h2(xi)) in G(K). By Lemma 5.1 and since K ∪ {xi} can be
placed in the tables, at least one of the (possibly identical) connected compo-
nents must be a tree, without loss of generality assume it is the component of
(1, h1(xi)). Since K ∪ {xi} is optimal, the connected component of (1, h1(xi))
in G({x1, . . . , xi−1}) must also be a tree. (If there was a cycle, a key of higher
weight could be substituted for xi, contradicting the optimality of K ∪ {xi}.)
In particular, the connected component of (1, h1(xi)) in G(K ′) is a tree. Thus,
by Lemma 5.1 the set K ′ ∪ {xi} can be placed in the tables. 2

The lemma implies that the following greedy algorithm finds an optimal key
set S′ given keys sorted according to nonincreasing weight.

1. Initialize a union-find data structure for the cells of the hash tables.

2. For each equivalence class, set a “saturated” flag to false.

3. For i = 1, . . . , n:

(a) Find the equivalence classes c1 of cell h1(xi) in T1, and c2 of cell
h2(xi) in T2.

(b) If c1 or c2 is not saturated:

i. Include xi in the solution.
ii. Join c1 and c2 to form an equivalence class c.
iii. Set the saturated flag of c if c1 = c2 or if the saturated flag is

set for c1 or c2.

In the loop, equivalence classes correspond to the connected components
of the graph G({x1, . . . , xi−1}). There is a simple implementation of a union-
find data structure for which operations take O(log∗ n) amortized time; see [81]
which actually gives an even better time bound. Figures 5.2 to 5.5 show the
four possible cases in step 3b of the algorithm.

xi

Figure 5.2: The case where c1 = c2 and the component is nonsaturated. The component
becomes saturated.

What remains is arranging the optimal key set S′ in the tables. Consider a
vertex in G(S′) of degree one. It is clear that there must be an arrangement such
that the corresponding cell contains the key of the incident edge. Thus, one can
iteratively handle edges incident to vertices of degree one and (conceptually)
delete them. As we remove the same number of edges and vertices from each

52 Chapter 5. Lossy Dictionaries

xi

Figure 5.3: The case where c1 = c2 and the component is saturated. The new element is
not included.

xi

Figure 5.4: The case with one saturated and one nonsaturated component. The new com-
ponent becomes saturated.

xi

Figure 5.5: The case with two saturated components. The new element is not included.

connected component, the remaining graph consists of connected components
with no more edges than vertices and no vertices of degree one, i.e., cycles.
The arrangement of edges in a cycle follows as soon as one key has been put
(arbitrarily) into one of the tables. The above steps are easily implemented to
run in linear time. This establishes item 5 of Theorem 5.1.

5.2.4 Quality of Solution

We now turn to the problem of estimating the quality of the solution. Note that
the optimal key set returned by our algorithm does not depend on the actual
weights, but only on the sequence of hash function values. Thus, the expected
weight of our optimal solution is

∑n
i=1 pr,i vi, where pr,i is the probability that

the ith key is included in the returned optimal set of keys, which is independent
of the weights.

Our algorithm includes all keys {k1, . . . , ki} in the optimal solution returned
if they can all be accommodated under the given hash functions. Using the
result of [62] mentioned in Section 5.2.1 on {k1, . . . , ki} with δ = r/i − 2, we
have that for i < r/2 this happens with probability at least 1−52 r−1/(r/i−2).
In particular, pr,i is at least this big.

For i ≥ r/2 we derive a lower bound on pr,i as follows. If one of the

5.2. Theory – Lossy Dictionaries 53

vertices (1, h1(ki)) and (2, h2(ki)) in G({k1, . . . , ki−1}) is isolated, then ki is
in the optimal solution returned. The randomness assumption on our hash
functions implies that G({k1, . . . , ki−1}) has i− 1 randomly and independently
chosen edges. Thus, we have the bound pr,i ≥ 1 − (1 − (1 − 2/r)i−1))2 =
2(1 − 2/r)i−1 − (1 − 2/r)2(i−1) ≈ 2e−i/r − e−2i/r. This establishes item 3 of
Theorem 5.1 and concludes the proof.

5.2.5 A Lower Bound

This section gives a lower bound on the amount of memory needed by a lossy
dictionary with an ε fraction of false positives and γn false negatives. Our proof
technique is similar to that used for the lower bound in [13] for the case γ = 0.

Proposition 5.1 For 0 < ε < 1/2 and 0 < γ < 1, a lossy dictionary repre-
senting a set S ⊆ {0, 1}w of n keys, 120 < n ≤ 2w−1, with at most 2wε false
positives and at most γn false negatives must use space of at least

(1− γ)n log
(

1
ε+ n/2w

)
− 5

2n bits.

Proof. We can assume without loss of generality that γn is integer (this only
gives a stronger space lower bound), and that 2wε is integer. Consider the set of
all data structures used for the various subsets of n elements from {0, 1}w . Any
of these data structures must represent a set of at most 2wε+ n keys, in order
to meet the requirement on the number of false positives. Thus, the number
of n-element sets having up to γn keys outside the set represented by a given
data structure is at most

∑γn
i=0

(2wε+n
n−i

)(2w

i

)
. Since ε < 1/2 and n ≤ 2w−1 we

have 2wε + n ≤ 2w, and so the largest term in the summation is
(
2wε+n
n−γn

)(
2w

γn

)
.

Thus we have the upper bound n
(2wε+n

n−γn

)(2w

γn

)
.

We will use the inequalities (a
b)b ≤ (ab) < (ae

b)b, see e.g. [43, Proposition
1.3]. By the upper bound on the number of sets representable by each data
structure, we need, in order to represent all

(2w

n

)
key sets, space at least

log
(

2w

n

)
− log

(
n

(
2wε+ n

(1− γ)n
)(

2w

γn

))

≥ log
(

2w

n

)n

− log

(
n

(
(2wε+ n)e
(1− γ)n

)(1−γ)n (2we

γn

)γn
)

= n log
(

2w

n

(1− γ)n
(2wε+ n)e

)
− γn log

(
(1− γ)n

(2wε+ n)e
2we

γn

)
− log n

= n log
(

(1− γ)/e
ε+ n/2w

)
− γn log

(
1− γ

γ(ε+ n/2w)

)
− log n

= (1− γ)n log
(

1
ε+ n/2w

)
− (H(γ) + log e)n− log n

where H(γ) = −γ log γ − (1− γ) log(1− γ) ≤ 1 is the binary entropy function.
For n > 120 the sum of the last two terms is smaller than 5

2n. 2

54 Chapter 5. Lossy Dictionaries

In the discussion following Theorem 5.1 we noted that if there are quotient
functions with optimal range, the space usage of our scheme is n log(1

ε+n/2w) +
O(n) when tables of combined size n are used. The expected fraction γ of false
negatives is less than 3/10 by Theorem 5.1. This means that our data structure
uses within O(n) bits of 10/7 times the lower bound. The experiments described
in Section 5.3 indicate that the true factor is less than 6/5.

5.2.6 Using More Tables

We now briefly look at a generalization of the two-table scheme to schemes
with more tables. Unfortunately the algorithm described in Section 5.2.3 does
not seem to generalize to more than two tables. An optimal solution can again
be found using maximum weight matching, but the time complexity of this
solution is not attractive. Instead we can use a variant of the cuckoo scheme
described in Chapter 4, greedily attempting to insert keys in order x1, . . . , xn.

For two tables an insertion attempt for xi works as follows: We store xi in
cell h1(xi) of T1 pushing the previous occupant, if any, away and thus making
it nestless. If cell h1(xi) was free we are done. Otherwise we insert the new
nestless element in T2, possibly pushing out another element. This continues
until we either find a free cell or loop around unable to find a free cell, in which
case xi is discarded. It follows from Chapter 4 and the analysis in Section 5.2.3
that this algorithm finds an optimal solution, though, not as efficiently as the
algorithm given in Section 5.2.2. When using three or more tables it is not
obvious in which of the tables one should attempt placing the nestless key. One
heuristic that works well is to simply pick one of the two possible tables at
random. It is interesting to compare this heuristic to a random walk on an
expander graph, which will provably cross any large subset of the vertices with
high probability.

The main drawback of using three tables is, of course, that another memory
probe is needed for lookups. Furthermore, as the range of the hash functions
must be smaller than when using two tables, the smallest possible range of
quotient functions is larger, so more space may be needed for each cell.

5.3 Experiments

An important performance parameter of our lossy dictionaries is the ability to
store many keys with high weight. We tested this ability for lossy dictionaries
using two and three tables. For comparison, we also tested the simple one-table
scheme that stores in each cell the key of greatest weight hashing to it. The
tests were done using truly random hash function values, obtained from a high
quality collection of random bits freely available on the Internet [54]. Figure 5.6
shows experimentally determined values of pr,αr, the probability that the key
with index i = αr is stored in the dictionary, determined from 104 trials. For
the experiments with one and two tables we used table size r = 2048 while
for the experiment with three tables we used r = 1536. We also tried various
other table sizes, but the graphs were almost indistinguishable from the ones

5.3. Experiments 55

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

α

One Table
P

ro
ba

bi
lit

y

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Two Tables

P
ro

ba
bi

lit
y

α

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Three Tables

P
ro

ba
bi

lit
y

α

Figure 5.6: The observed probability that the element with (αr)th highest weight is stored
when using one, two, and three tables. For two tables our lower bound is shown.

shown. From Figure 5.6 we see the significant improvement of moving from
one to more tables. As predicted, nearly all of the r/2 heaviest keys are stored
when using two tables. For three tables this number increases to about .88r.
Of the r heaviest keys, about 84% are stored when using two tables, and 95%
are stored when using three tables.

Apart from asymptotically vanishing differences around the point where the
curves start falling from 1, the graphs of Figure 5.6 seem independent of r. For
two tables the observed value of pr,αr for α > 1/2 is approximately 3.5/9.6α

56 Chapter 5. Lossy Dictionaries

and for three tables it is approximately 8/33α for α > 0.95.
The gap to the two-table lower bound of Theorem 5.1 can be explained

by the fact that this lower bound considers only two cells of the hash tables,
whereas opportunities for storing keys may appear when considering more cells.

5.3.1 Application

To give a flavor of the practicality of our lossy dictionary we turn to the real
world example of lossy image compression using wavelets. In Chapter 8 a
method for compressing volumetric data with fast random access is described
in detail. Today most state-of-the-art image coders, such as JPEG2000 [41],
are based on wavelets. As discussed in Chapter 2 the wavelet transform has the
ability to efficiently approximate nonlinear and nonstationary signals with coef-
ficients whose magnitudes, in sorted order, decay rapidly towards zero. This is
illustrated in Figure 5.7. The figure shows the sorted magnitudes of the wavelet
coefficients for the Lena image, a standard benchmark in image processing
illustrated in Figure 5.8, computed using Daubechies second order wavelets.
Thresholding the wavelet coefficients by a small threshold, i.e., setting small
valued coefficients to zero, introduces only a small Mean Square Error while
leading to a sparse representation that can be exploited for compression pur-
poses. The main idea of most wavelet based compression schemes is to keep
the value and position of the r coefficients of largest magnitude. To this end
many advanced schemes, such as zerotree coding, have been developed. None
of these schemes support access to a single pixel without decoding significant
portions of the image.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

Coefficient

M
ag

ni
tu

de

Figure 5.7: Largest 5000 magnitudes of 67615 wavelet coefficients of the Lena image.

Recently, interest in fast random access to decoded data, accessing only
a few wavelet coefficients, has arisen. A survey of methods dealing with this
problem is given in Chapter 6. In this section, however, we use the Lena image
to give a flavor of the usefulness of lossy dictionaries on real world data and
refer to Chapter 8 for a much more elaborate example. We store the coefficients
of Figure 5.7 in a two-table lossy dictionary of total table size r = 211, using a
simple family of hash functions. Specifically, we use hash functions of the form

h(x) = ((a2x
2 + a1a2x+ a0) mod p) mod r/2,

5.4. Chapter Summary 57

Figure 5.8: The Lena image. A standard image benchmark in compression.

where p is a prime larger than any key, 0 < a0, a1, a2 < p and a1 is even. A
corresponding quotient function is

q(x) = 2(((a2x
2 + a1a2x+ a0) mod p) div r/2) + x mod 2 .

Again, 104 iterations were made, selecting random functions from the above
family using C’s rand function. The graph of pr,αr is indistinguishable from
that in Figure 5.6. For our application, we obtain an MSE of 200, which is 27%
more than the MSE when storing the r coefficients of largest magnitude. This
difference would be difficult at best to detect in the reconstructed image. The
previously mentioned family of [20] had somewhat worse performance. Using
three tables reduces the increase in MSE to a mere 1%.

5.4 Chapter Summary

We have introduced the concept of lossy dictionaries and presented a simple and
efficient data structure implementing a lossy dictionary. Our data structure
combines very efficient lookups and near-optimal space utilization, and thus
seems a promising alternative to previously known data structures when a small
percentage of false negatives is tolerable, such as the examples mentioned in
Section 5.1.2.

In Chapter 8 we show that our lossy dictionary can be used as an effective
tool for volumetric compression with fast random access.

Chapter 6

Volumetric Compression with Fast Random

Access

We will consider volumetric or volume data as discrete collections of scalar
or vector values sampled over a uniform grid in n-dimensional space (n ≥ 3).
Volumetric data sets occur naturally in areas such as medical imaging and
scientific visualization. Volumes produced by medical scanners such as CT,
MR or PET are examples of three-dimensional data. Other examples are the
output of physical simulations, and concentric mosaics used in image based
rendering [77]. Sampled light fields [50] or lumigraphs [31] are examples of
four-dimensional volumes also used in image based rendering. Four-dimensional
volumes also appear as time varying three-dimensional volumes in, for example,
computational fluid dynamics [59, pp. 84-87, pp. 125-143]. In this dissertation
we focus on three-dimensional data only.

The management and processing of such massive data sets present many
challenges to developers and researchers. One problem is that these data sets
are often too large to keep in internal memory in uncompressed form. For
example, the Visible Man [86] CT scanned data set takes roughly 1 Gbyte of
storage, and the most detailed anatomical photo data sets are orders of mag-
nitude larger. Thus, we are faced with memory requirements far exceeding the
typical memory available on ordinary PCs and workstations. Even when taking
the rapid development of larger memory and storage capabilities into account.
On the other hand, it is desirable and becoming increasingly important, for ex-
ample in interactive visualization, that any part of the data set can be rapidly
retrieved. This implicitly assumes that the data can be loaded into memory for
efficient processing. A solution to these apparently conflicting goals is to con-
sider using compressed representations. Needed are methods allowing the user
to load a compressed version of the volume into a small amount of memory and
enable him to access and visualize it as if the whole uncompressed volume was
present. Such a compression scheme must necessarily allow fast random access
to individual voxels, decoded from the compressed volume. As we point out in
Section 6.1 lossless compression schemes only provide very low compression ra-
tios. Therefore lossy techniques have to be considered. Since lossy compression
removes information from the data, lossless compression has often been pre-
ferred in medical imaging. However, in [68] Perlmutter et al. demonstrate that

59

60 Chapter 6. Volumetric Compression with Fast Random Access

lossy compression algorithms can be designed such that diagnostic accuracy is
preserved. They use an embedded wavelet coding scheme with compression
ratios of up to 80:1 for digital mammograms.

When designing lossy volume compression methods, certain properties (in-
spired from [4]) are desirable and should be considered during design:

1. Fast decoding for random access. As described above, fast decoding is a
necessity for use in real-time or interactive applications. Also, applications
often access data in unpredictable ways.

2. Good visual fidelity at high compression ratios. This seems obvious but it
requires techniques for exploiting data redundancies in all n dimensions.

3. Scalable or multiresolution decoding is a desirable property which allows
applications to process data at different levels of detail. For example, it
could allow a rendering algorithm to render the data in low resolution
at interactive frame-rates. When the user is satisfied with the setup, the
renderer switches to full resolution.

4. Selective block-wise decoding. Even though our motivation is fast ran-
dom access to individual voxels, some applications access data locally. In
such cases it is useful if the compressed data can be decoded block-wise
efficiently.

5. Online compression. By online compression we mean that the encoder is
able to compress the volume while it is being downloaded or transferred
to the system by other means. This is important in cases where there is
not enough space to temporally store the data before compressing it.

In Chapter 7 and Chapter 8 we will present two methods for volumetric
compression with fast decoding of randomly selected voxels. Before this a survey
of previous related work is given in Section 6.1. Chapter 7 presents the first
method which we will refer to as Method 1 while the second method, referred
to as Method 2, is described in Chapter 8. A comparison between the two
methods is given in Chapter 9.

6.1 Previous Work

Research in lossy compression has mainly focused on lossy compression of still
images or time sequences of images such as movies. The aim of these methods
is to obtain the best compression ratio while minimizing the distortion in the
reconstructed images. Often this limits the random accessibility. The reason
being that most compression schemes employ variable bitrate techniques such
as Huffman (used in JPEG [39] and MPEG [40]) and Arithmetic coders [74], or
differential encoders such as the Adaptive Differential Pulse Code coder [74].
On the other hand, such methods provide fast sequential decoding which is
important in, for example, compression of images and video sequences.

6.1. Previous Work 61

However, techniques dealing with the issue of random access in volumetric
data have been emerging. In [57, 58] Muraki introduced the idea of using
wavelets to efficiently approximate three-dimensional data. The two-dimension-
al wavelet transform was extended to three dimensions and it was shown how to
compute the wavelet coefficients. By setting small coefficients to zero, Muraki
showed that the shape of volumetric objects could be described in a relatively
small number of three-dimensional functions. The motivation for the work was
to obtain shape descriptions to be used in, for example, object recognition. No
results on storage savings were reported. The potential of wavelets to reduce
storage is evident, though.

Motivated by the need for faster visualization, a method for both compress-
ing and visualizing three-dimensional data based on vector quantization was
given by Ning and Hesselink [60]. The volume is divided into blocks of small
size and the voxels in each block are collected into vectors. The vectors are then
quantized into a codebook. Rendering by parallel projection is accelerated by
preshading the vectors in the codebook and reusing precomputed block projec-
tions. Since the accessing of a single voxel is reduced to a simple table lookup in
the codebook, fast random access is supported. Compressing two volumes both
of size 128 × 128 × 128, a compression factor of 5 was obtained with blocking
and contouring artifacts being reported.

Burt and Adelson proposed the Laplacian Pyramid [12] as a compact hi-
erarchical image code. This technique was extended to three dimensions by
Ghavamnia and Yang [29] and applied to volumetric data. Voxel values can
be accessed randomly by traversing the pyramid structure on the fly. Since
there is high computational overhead connected with the reconstruction, the
authors suggest a cache structure to speed up reconstructions during ray cast-
ing. They achieve a compression factor of about 10 with the rendered images
from the compressed volume being virtually indistinguishable from images ren-
dered from the original data.

Several compression methods, both lossless and lossy, for compressing and
transmitting Visible Human images were presented and compared by Thoma
and Long [84]. Among the lossy schemes, which as expected outperformed the
lossless ones in terms of compression ratio, the scheme based on wavelets per-
formed best. The wavelet method suggested by the authors compresses the
images individually and consists of three steps comprised of a wavelet trans-
form followed by vector quantization with Huffman coding of the quantization
indices. This makes it a traditional two-dimensional subband coder, and com-
pression factors of 20, 40 and 60 were reported with almost no visible artifacts
for a factor of 20. The coder does not allow for fast random access to individual
voxels as it was mainly designed for storage and transmission purposes. Also,
there is no exploitation of inter-pixel redundancies between adjacent slices.

Motivated by the need for efficient compression of medical data, several
methods that exploit correlation in all three dimensions have been proposed
in recent years [6, 2, 1, 51, 69, 89, 5, 49]. Three of these methods are lossless
methods based on predictive coding [2, 49, 1] and provide compression ratios
of about 2:1. A compression ratio of 2:1 does not allow large volumes to be
loaded into main memory. The other methods are lossy and utilize a three-

62 Chapter 6. Volumetric Compression with Fast Random Access

dimensional wavelet transform. The most recent of these are due to Bilgin et
al. [6]. The method is a straightforward extension of zerotree coding proposed
by Shapiro [76] and produces an embedded bit-stream which allows progres-
sive reconstruction of data, i.e., it is possible to decode a lossy version of the
data by using any prefix of the bit-stream. If the complete bit-stream is avail-
able, lossless reconstruction is possible. In order to improve performance, the
zerotree symbols are further compressed using a context based adaptive arith-
metic coder. Compression ratios of up to 80 were reported, still with good
fidelity. However, none of the methods support fast random access.

The methods mentioned above all have in common that they support either
high compression ratios or fast random access, but not both. Recently, methods
dealing with issues of both fast random access and high compression ratios have
emerged. In [37, 38], Ihm and Park present an algorithm achieving compres-
sion ratios of up to 28 for CT slices of the Visible Man, still with good fidelity
of the reconstructed slices for a ratio of about 15:1. The algorithm divides
the volume into blocks and decomposes each block using a three-dimensional
wavelet decomposition. The wavelet coefficients in each block are then adap-
tively thresholded, which produces a sparse representation. Each block is coded
separately using a data structure that takes the spatial coherency of the wavelet
coefficients into consideration. The method also supports selective block-wise
decoding and online compression.

Very recently, Bajaj et al. [4] have described an extension of [38] to RGB
color volumes. Again the volume is divided into blocks, and the wavelet trans-
form is performed three times on each block, once for each color component.
The three corresponding wavelet coefficients are then vector quantized. The
quantization indices are encoded block-wise in a manner similar to the tech-
nique used in [38]. To speed up voxel reconstruction, they introduce what they
call zerobit encoding, which essentially corresponds to using a significance map
signaling if certain wavelet coefficients are zero, or if they have to be retrieved.
This is similar to the significance map we describe in Chapter 8. Compared to
an extension of [38] to color volumes (without zerobit encoding), Bajaj et al.
reported a 10% to 15% increase in compression ratio and a speedup in voxel
access of a factor of 2.5. Selective block-wise decoding time is improved by a
factor of about 4 to 5.5. depending on the compression ratio.

Not focusing directly on fast random access, Grosso et al. describe in [33] a
wavelet based compression method for volumetric data suited for volume render-
ing. Each subband of the wavelet transformed data is independently runlength
encoded. The problem with runlength encoding is that it does not allow for
efficient retrieval of a single coefficient. In order to accelerate rendering speed,
a method that avoids starting from the beginning of the runlength sequence is
suggested. For a triple (i, j, k) a lookup table indexed by (i, j) is generated.
Each entry in the table points to a runlength encoding of the coefficients cor-
responding to k. If the renderer accesses the data in the k-direction, efficient
rendering can be achieved. However, it is obvious that fast random access is
not supported.

6.1. Previous Work 63

In [46] Kim and Shin present a similar approach for fast volume rendering.
The main difference is the way coefficients are arranged into runs. They divide
the volume into blocks that are coded separately. Each block is decomposed in a
three-dimensional wavelet basis. The thresholded coefficients are then ordered
according to the reconstruction order and run-length encoded. Compression ra-
tios of up to 40:1 were reported with good visual fidelity at ratios of up to about
30:1. Using the Shear Warp rendering algorithm of Lacroute and Levoy [48],
Kim and Shin demonstrated that their algorithm using the compressed volume
is only roughly two times slower, compared to using the uncompressed volume.
Because of the run-length encoding, the algorithm does not support fast ran-
dom access to individual voxels. Selective block-wise decoding is supported,
though no results are reported.

The three methods [38, 4, 46] described above all make use of the Haar
wavelet, which is convenient because of its simplicity. Since the mentioned
methods all divide the data into blocks it is not clear, because of boundary
conditions, how they generalize to wavelets with more vanishing moments, i.e.,
using wavelets with longer filters.

We conclude this section by noting that many of the results on volumetric
compression in the literature are difficult to compare to one another since there
is little consensus as to which data sets to use in presenting results. However,
in volumetric compression with fast random access it seems that the CT images
of the Visible Man are becoming a standard benchmark.

Chapter 7

Coding with Motion Estimation and

Blocking

As one of the three spatial dimensions can be considered as similar to time,
three-dimensional compression can borrow good ideas from research in video
compression. Inspired by video coding we propose a coding scheme for wavelet
based compression of very large volume data with fast random access. The
main ideas are to use motion estimation to link sequences of two-dimensional
slices rather than to use three-dimensional coding directly and to utilize a data
structure, supporting fast random access, for encoding the wavelet coefficients
and their significance map using a recursively block indexing scheme to locate
the significant coefficients. Compared to the methods that support fast random
access described in Chapter 6.1 our algorithm supports much higher compres-
sion ratios (up to 60:1 depending on quality) with an acceptable loss in decoding
speed.

7.1 General Overview of Coder

First we present a black-box overview of both the encoder and the decoder,
depicted in Figure 7.1. Detailed explanation of each stage will be given after-
wards. A new observation that makes our coding strategy significantly different
from earlier methods is that even though the data is genuinely volumetric in
nature, we are not confined to treating it as such. Instead we can treat it as
a sequence of two-dimensional slices in position or time and draw on results
developed in the area of video coding. A major issue in video coding is the
removal or exploitation of temporal redundancy or correlation.

7.1.1 Volume Encoder

Figure 7.1 depicts the four basic stages of our encoder together with the cor-
responding stages of the decoder. When designing our new coding scheme we
constantly have to consider the trade-off between compression rate, distortion
and decoding speed. When coding the volume we assume that we have divided
it into two-dimensional slices in the z-direction. The first stage of the encoder
will then be the removal of correlation along this z-direction. We call this stage

65

66 Chapter 7. Coding with Motion Estimation and Blocking

Reconstruct

Volume Decoder

Volume Encoder

Encoding

Wavelet
Indicies

Indicies
Residual

Prediction &

Voxel

Temporal
PredictionVolume Wavelet

Quantisation
and

Thresholding

Encoded
Volume

Dequantisation
Decode
Wavelet

Coefficient

2-D

PSNR
Level

Compute

Value

(X,Y,Z)

Reconstructed
Voxel Value

Decomposition

Residual
Prediction &

Figure 7.1: Overview of the encoder and the decoder.

temporal prediction. Ideally the next step should then according to [83], per-
form a three-dimensional wavelet decomposition to further remove correlations
in both the spatial and temporal directions. Since a three-dimensional trans-
form is computationally more expensive than a two-dimensional transform and
under the assumption that the prediction stage has removed enough of the tem-
poral correlation, we adopt a two-dimensional wavelet transform to handle the
spatial redundancy as the next stage. The third stage, which is typical for a
lossy subband coder, removes insignificant coefficients to make the representa-
tion even sparser. This step also quantizes the remaining coefficients restricting
these to a small number of possibilities. Finally, in the last stage, the wavelet
transformed data is encoded efficiently in a way that allows fast retrieval of the
data needed to reconstruct individual voxels.

7.1.2 Volume Decoder

In general the decoder consists of the inverse stages of the encoder but in reverse
order. However, there is a small but significant difference. Since the decoder
acts on input from the user or another program some stages of the decoder
have to communicate information back to other stages in order to retrieve the
desired voxels from the encoded data. This is not necessary in the encoder
since it encodes the whole volume at once. For example, the indices of the
wavelet coefficients needed for reconstruction must be passed to the stage that
extracted them from the compressed bit-stream.

7.2. Description of the Encoding Stages 67

7.2 Description of the Encoding Stages

7.2.1 Test Data

The data that we use for our experiments is the same as in [37] and was kindly
made available by Professor Insung Ihm. The data set is a volume of size
512×512×512 rebuilt from the fresh1 CT slices of the Visible Man. Rebuilding
the volume was necessary since the fresh CT slices have varying pixel sizes and
spacings. Each voxel is represented as a 12 bit grayscale value in the interval
[0,4095] and is stored in 16 bits resulting in a total volume size of 256 Mbytes.
In the rest of the dissertation we will refer to this data set as the Visible Man
data set.

7.2.2 Temporal Prediction

Many different methods for motion estimation and motion compensation have
been reported and investigated in the literature. Among the most popular
are block-matching algorithms [28, 82], parametric motion models [36, 67, 83],
optical flow [82] and pel-recursive methods [82].

The scheme that we have chosen to adopt, depicted in Figure 7.2, is the
simplest one possible, yet very effective. It corresponds to a best matching
neighbor scheme. Every n-th slice, called an I-slice, is used as a reference slice

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

y

P-Slice I-Slice P-Slice I-SliceI-Slice

x

z

Figure 7.2: Ordering of I-slices and P-slices.

and is coded without temporal prediction. This corresponds to intra frames in
MPEG and H.263 [40, 42]. The prediction of a slice in between two I-slices,
called P-slices, is then chosen to be the neighboring I-slice giving the best match
in terms of the Mean Square Error. Finally, the residual is constructed and sent
to the next stage of the coder for further processing. The voxel values of the
original data reside in the integer interval [0,4095] so the possible values of the
residual lie in the interval [-4095,4095]. By using both backward and forward
I-slices in the prediction, we effectively half the longest distance between an
I-slice and a P-slice. Experiments have shown this to give significantly better
compression results than just using forward prediction. The distance n between

1There exist both fresh and frozen CT and MRI images.

68 Chapter 7. Coding with Motion Estimation and Blocking

two I-slices is chosen to be n = 2k for faster processing. The issue of selecting
a good value for k will be discussed in Section 7.4.

7.2.3 Wavelet Decomposition, Thresholding and Quantization

An important objective for our compression scheme is to code the volume with
high accuracy in a minimum number of bits. Wavelets have proven to be very
effective at achieving this goal. As mentioned in Chapter 2.2.1 wavelets have
the ability to efficiently concentrate the energy of a signal in a few wavelet
coefficients with large magnitude creating a compact or sparse representation
and thus making it easier to code in a smaller amount of bits.

When implementing the wavelet transform we have to decide which wavelet
to use and how many levels of decomposition to perform. Different wavelets
correspond to filters of different length as described in Chapter 2.3.1. Table 7.1
shows how the choice of wavelet and the number of decomposition levels af-
fect the number of wavelet coefficients that are used in the two-dimensional
reconstruction.

Filter length
2 4 6 8

Level

1 4 16 36 64
2 7 31 71 127
3 10 46 106 190
4 13 61 121 253

Table 7.1: The influence of filter length and decomposition level on the number of coefficients
needed for reconstruction in two dimensions.

Even though, the Haar wavelet does not perform so well in terms of qual-
ity as other wavelets it certainly allows for faster reconstruction, only being a
two-tap filter, and thus it becomes our choice of wavelet. For the number of
decomposition levels, we restrict ourselves to two levels, despite the fact that
in wavelet based compression it is common to perform three or four levels. For
two levels of decomposition more than 93% of all the coefficients are already
decomposed into wavelet coefficients and according to Table 7.1 we only need
7 coefficients to reconstruct a voxel in an I-slice and 14 coefficients in a P-slice.

After applying the wavelet transform to each slice, all wavelet coefficients
below a certain threshold are set to zero in order to make the representation
even sparser. The threshold is determined such that the PSNR2 does not drop
below a user specified value, see Figure 7.1. According to Chapter 2.5 the co-
efficients from all the slices should be sorted and then in ascending order be
set to zero until the desired PSNR is obtained. Sorting the wavelet coefficients
is only practical if enough disk space is available to store all the coefficients.
Considering the available harddisk space on modern computers this is feasi-
ble. However, in this chapter we will consider a compression algorithm where

2PSNR = 10 log10(
max(x2

i)

MSE
) , xi being the samples of the original data.

7.2. Description of the Encoding Stages 69

only a few slices are necessary at a time. Because the algorithm reads data
sequentially and only needs to buffer a small number of images it can be used
online where slices are compressed as they are downloaded. Instead of using a
global threshold computed by sorting all wavelet coefficients we use a different
threshold for each slice. This of course is not globally optimal for the volume
but it provides a reasonable solution to the online problem. When calculating
the PSNR of each slice we use the global maximum of the whole volume,which
is set to 2b where b is the number of bits used to represent a voxel.

After thresholding we rescale the wavelet coefficients as mentioned in Ex-
ample 2.4 and round the remaining coefficients to the nearest integer. Since few
coefficients are remaining, rounding the coefficients is negligible with respect to
the Mean Square Error. The rescaling insures that the coefficients now lie in
the interval [−4095, 4095], i.e., use (2.42) with division by 4 to see this.

7.2.4 Encoding Wavelet Coefficients – Data Structure

The last stage of the compression process is the encoding of the remaining
wavelet coefficients. In addition, we also need to encode the positional infor-
mation about the coefficients – this is often referred to as the significance map.
Shapiro [76] showed that the bits needed to code the significance map are likely
to consume a large part of the bit-budget with the situation becoming worse
at low bitrates. In his paper Shapiro proposed a technique called zerotree cod-
ing for storing the significance map. Although effective, this method does not
lend itself to fast retrieval of individual wavelet coefficients. The same problem
is true for run-length coding, Huffman coding or arithmetic coding since they
produce variable length codes [74].

We now propose a method for storing the significant coefficients and their
significance map. The method is illustrated in Figure 7.3 and is designed to
fit the preprocessed CT images of the Visible Man data set described in Sec-
tion 7.2.1 but is easily extended to other volumes.

��

��

��

��

��

��

����

����

����

��
��
��
��
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
��
��
��
��
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��

������������
��
��
��
����
��
��
��

��
��
��
��

��
��
��
����
��
��
��

����

��
��
��
����
��
��
��

��
��
��
��

��
��
��
����
��
��
��

����

��

��

��

Block 32 offset

Block 8 offset

Block 32

15

0

Slice Info Block 32 Info

Zeroline map

Significance map offset

Byte stream offset Byte stream offset

7 15
31

0 0
0

Block 8 offset

significance map
Block 8

Block 8 Info

0 z 0 0

Line

Slice stream

map
Significance

offset significance map

Byte stream offset

Significance map offset Significance map offset

Byte stream

Block 32 stream Block 8 stream

Figure 7.3: Data structure used for encoding significant wavelet coefficients.

Given that most of the wavelet coefficients have been set to zero and the

70 Chapter 7. Coding with Motion Estimation and Blocking

usually spatial coherence of a wavelet decomposed image it is likely that the zero
coefficients appear in dense clusters. This hypothesis is backed by experiments
such as the one illustrated in Figure 7.4, which depicts the significance map for
an I-slice and a P-slice for the Visible Man data set.

(a) (b)

Figure 7.4: Significance map of thresholded wavelet decomposition with PSNR level 46. A
black dot in the map indicates the position of a nonzero coefficient. (a) Slice no. 344 (I-slice)
and (b) slice no. 343 (P-slice).

Figure 7.5: The significance map is initially divided into blocks. Note that many of the
blocks are empty. Later nonempty blocks will be divided further.

The initial idea will be to split each slice into quadratic blocks of length
b and then use a bitmap (block b significance map) to differentiate between
the blocks containing at least one nonzero coefficient (nonzero b block) and the
blocks having all coefficients equal to zero (zero b block). This is illustrated in
Figure 7.5. Spending one bit on each block in the bitmap is optimal with respect
to first order entropy if the block size b is chosen such that the ratio between
zero blocks and nonzero blocks is one half. Table 7.2 shows the percentage

7.2. Description of the Encoding Stages 71

of nonzero blocks for different sized blocks and PSNR levels, with a fixed I-
slice spacing of n = 4. For each PSNR level we have marked the values, in
the table, closest to 50%. From the table we notice that b = 32 is the best
choice.3 The bitmaps (block 32 significance map) for each slice are collected

PSNR Level
43 46 49 52 53

Block
Size

4 5.5% 7.9% 10.6% 15.5% 22.9%
8 10.8% 14.7% 18.4% 24.5% 32.6%
16 19.8% 24.8% 29.3% 35.8% 43.7%
32 32.8% 38.4% 43.3% 50.0% 58.2%
64 55.8% 61.7% 66.0% 70.6% 78.0%

Table 7.2: Number of nonzero blocks in percent for different block sizes and PSNR levels.

into records called slice info records, together with other information which we
explain shortly, and kept in an array. Retrieval of a slice info record is then a
simple array lookup since each record has a fixed size. For each of the nonzero
32 blocks, further information needs to be stored and we allocate a new record
(block 32 info) for each of them. These records are also stored in a stream. Each
slice contains a variable number of nonzero 32 blocks, so in order to quickly find
a given block 32 info record in the stream we add the following offsets to the
slice info record. Block 32 offset holds the index in the block 32 stream of
the first block 32 info record for that particular slice. The line offset array
contains counts of all nonzero 32 blocks that precede a given line in the block
32 significance map. In order to find the position of a given block 32 record
in the stream, we first compute where it is in the bitmap. Then we count the
number of bits that precedes it in the respective bitmap-line. This count is then
added to the block 32 offset together with the correct line offset and the result
is used for lookup. Counting the number of bits in a bitmap line can be done
efficiently by using a precomputed table with 216 = 65536 entries.

PSNR Level
43 46 49 52 53

Block
Size

4 16.7% 20.6% 24.5% 31.0% 39.3%
8 33.1% 38.1% 42.4% 48.9% 56.0%
16 60.2% 64.5% 67.6% 71.5% 75.1%

Table 7.3: Empirical probability of a block being nonzero given that it is contained in a
nonzero block of size 32.

Following the same idea, the nonzero 32 blocks can be split into sub-blocks.
Table 7.3 shows the empirical conditional probabilities of a block with size 4, 8
and 16 being nonzero given that it is contained in a nonzero block of size 32. It
follows that a sub-block of size 8 is a good choice. The information about these

3b is a power of two for efficient processing.

72 Chapter 7. Coding with Motion Estimation and Blocking

sub-blocks is stored in records (block 8 info) and kept in a new stream (block 8
stream). Similar to the problem of addressing the 32 blocks we need offsets to
quickly access a block 8 info record. To this end we add a block 8 significance
map and a block 8 offset to the block 32 info record. There are at most 5123

82

nonzero sub-blocks of size 8 in the volume. To offset all of these we need at
least 21 bits. We observe that there are at most 5122

82 nonzero blocks of size 8 in
each slice so instead of using 32 bits in the block 32 info record4 we divide the
offset in two using 32 bits in the slice info record and only 16 bits in the block
32 record. That way the total overhead of storing all the offsets is reduced.
Finally each nonzero 8 block is divided into lines keeping a bitmap (zeroline
map) in the block 8 info record marking the lines which contain all zeros. For
all other lines containing at least one nonzero coefficient we keep one byte as a
significance map. This way we need between 0 and 8 bytes for the map, hence
we store them in a stream (significance map stream) introducing a new offset,
the significance map offset, which is similarly divided between the three info
records for efficient storage. Table 7.4 shows that dividing the sub-blocks into
lines is a good idea since about half of the lines in an 8 sub-block are zero. The

PSNR Level
43 46 49 52 53

Zerolines 60.7% 57.2% 53.6% 47.6% 40.1%

Table 7.4: Empirical probability of a line in a nonzero sub-block of size 8 being all zero.

significance maps give the positions of the significant coefficients.
In the following, it will be explained how the coefficients are stored. As

stated in Section 7.2.3 the wavelet coefficients have been scaled and rounded
to the integer interval [-4095,4095]. Rather than using 13 bits to represent the
values in this interval, we quantize the nonzero coefficients, as described below,
to the interval [0,255] so they fit into one byte and we store them in a stream
(byte stream) pointed to by offsets (significance offset) located in all three info
records. Inspired from [37, 38] we observe that the coefficients within a size
8 sub-block are likely to be numerically close. So whenever the coefficients in
a sub-block all belong to either the interval [θ, θ + 127] or the interval [−θ −
128,−θ], where θ is a two-byte offset, we code them by storing θ in the byte
stream followed by a signed displacement (1 byte) for each coefficient. For all
other 8× 8 sub-blocks not satisfying this property, we quantize the coefficients
in the sub-block using a uniform scalar quantizer given by

C̃ =
⌊
A−B
255

× x+ 0.5
⌋

+B , (7.1)

where A and B are 16 bit integer parameters to the quantizer, the byte x is the
quantization value and C̃ is the reconstructed value. For each 8 × 8 sub-block

4Offsets are 8, 16 or 32 bits to ease programming.

7.3. Analysis of Performance 73

G: A, B and x can be determined as

A = max
C∈G

(C) , B = min
C∈G

(C) , x =
⌊
255 × C −B

A−B + 0.5
⌋
. (7.2)

We only quantize the significant coefficients. If there are both negative and pos-
itive coefficients in the same block quantization steps are unnecessarily spent
spanning the interval]− τ, τ [making (7.2) ineffective, see Figure 7.6.

0 4095−4095 τ−τ

Figure 7.6: Situation after thresholding. Coefficients are either zero or in the shaded region.

We improve (7.2) by using

A = max
C∈G

(|C|) , B = min
C∈G

(|C|) , (7.3)

C ≥ 0 : x =
⌊
127× C −B

A−B + 0.5
⌋
, C < 0 : x =

⌊
127 × C +B

A−B − 1.5
⌋
, (7.4)

with reconstruction for x ≥ 0 and x < 0 respectively being

C̃ =
⌊
A−B
127

× x+ 0.5
⌋

+B , C̃ =
⌊
A−B
127

× (x+ 1)− 0.5
⌋
−B . (7.5)

After quantization A, B and the quantized coefficients are stored in the byte
stream.

How a coefficient is stored can be coded in 1 bit and placed in the most
significant bit (MSB) of the byte stream offset in the block 8 info record. This
bit is free since there are only 322 = 1024 coefficients in each 32 block and
we use 16 bits for the offset. Similarly for all P-slices we use the MSB of the
block 32 offset in the slice info record to indicate the direction of the prediction.
Looking at the sizes of the offsets used throughout the data structure, it is quite
easy to verify that they are large enough.

The design of the data structure has been based on the Visible Man data
set. However, from Figure 7.3 it is obvious that the data structure can easily
be modified to accommodate volumes of varying sizes. All that is needed to
compress larger volumes is to make the offsets and tables in the Slice Info record
larger. This can be done without sacrificing compression ratio since this record
only constitute a very small fraction of the total bit-budget.

7.3 Analysis of Performance

In this section we analyze the work needed for decoding a single voxel. The
reconstruction filter for the Haar wavelet is a two-tap filter. Performing a
two level reconstruction we therefore need 7 wavelet coefficients (four for the

74 Chapter 7. Coding with Motion Estimation and Blocking

first level and three for the second). If we are decoding a voxel in a P-slice
we must also decode the same number of coefficients for the I-slice resulting
in the retrieval of 14 wavelet coefficients. Table 7.5 shows average values for
the number of wavelet coefficients that must be retrieved and the number of
additions performed for different I-slice spacings. It is observed that the amount
of information that needs to be retrieved and the number of additions that must
be performed are not critical with respect to the slice spacing.

Weighted average for a spacing of
I-slice P-slice 2 4 8 16 32

Coefficients 7 14 10.50 12.25 13.13 13.56 13.78
Additions 6 12 9.00 10.50 11.25 11.63 11.81

Table 7.5: Number of coefficients and additions needed for reconstruction of a voxel given
different I-slice spacings.

For accessing a wavelet coefficient the approximate workload can be as-
sessed. First we look at the algorithm for decoding the wavelet coefficient
corresponding to the voxel at location (x, y, z).

function Wavelet coefficient(x, y, z)
S := Lookup Slice Info(z);

(1) if is in zero block(x, y, S) then return 0;

B32 := Lookup Block32 Info(S, block 32 offset);
Calculate relative index (x′, y′) in B32;

(2) if is in zero block(x′, y′, B32) then return 0;

B8 := Lookup Block8 Info(B32, S, block 8 offset, bitmap);
Calculate relative index (x′′, y′′) in B8;

(3) if is zeroline(y′′, B8) then return 0;

M := significance map(M, offsets);
(4) if bit(x′′, M) = 0 then return 0;

Access bytestream using offsets;
(5) return value;
end;

The division of each slice into blocks and lines was designed so the empirical
probability of going from (1)→(2), (2)→(3), (3)→(4), or (4)→(5) in the recon-
struction algorithm is roughly one half. Combining these probabilities with
the fact that less than 6 percent of the wavelet coefficients are nonzero (see
Section 7.4) we obtain the numbers in Table 7.6.

From this table we estimate that on average 1 + 1
2 + 1

4 + 1
8 + 1

16 ≈ 2 lookups
in the encoded data have to be performed in order to retrieve one wavelet coef-
ficient. In addition, one lookup in the bitcount table is performed on average.

According to Table 7.5 roughly 13 wavelet coefficients must be extracted
from the compressed data in order to reconstruct a single voxel. Observing

7.4. Experiments 75

Stage 1 2 3 4 5
Probability 100% 50% 25% 12.5% 6%

Table 7.6: Empirical probability of reaching a certain stage in the algorithm.

from (2.43) that 4 values can be reconstructed from 4 wavelet coefficients this
seems inefficient. Figure 7.7 shows how the wavelet coefficients on different
levels are related to the reconstructed coefficients. If the voxels are accessed in
some regular pattern, increased efficiency can be achieved by reconstructing all
voxels in the 4×4 neighborhood reusing the extracted coefficients. Furthermore,
the grouping of the first level detail coefficients ensures that the information
about each group resides in the same Block 8 Info record resulting in fewer
lookups in the data structure.

Two levels One level Reconstruction

Figure 7.7: Relationship between average, detail and reconstructed coefficients.

7.4 Experiments

In this section we present results based on the Visible Man data set as described
in Section 7.2.1. Before presenting the main results we first deal with the issue of
selecting a k such that the distance n = 2k between two I-slices is best possible.
Table 7.7 illustrates the size of the compressed volume for different choices of k
with a desired PSNR level fixed at 46. According to the table selecting k = 2,
resulting in I-slice spacings of 4, produces the best result. For PSNR levels in
the range 43–56 we obtained similar results proving k = 2 to be a good choice.

Spacing n = 2k Original 2 4 8 16 32
Compressed size (Mb) 256 7.11 6.01 6.28 7.14 8.24

Table 7.7: Compressed size for different I-slice spacings. The desired PSNR level is 46.

76 Chapter 7. Coding with Motion Estimation and Blocking

7.4.1 Compression Ratio and Distortion

The main results of our coding scheme (Method 1) are presented in Table 7.8.
We tested with desired PSNR levels of 43.0, 46.0, 48.03, 51.6, and 55.8 achiev-
ing compression ratios between 60.2:1 and 14.5:1. On average this is about a
50% reduction in size compared to the results in [37]. This can be seen from
Figure 7.8 which shows the PSNR as a function of the compression ratio for
our method and [37]. One of the main reasons for achieving an increased com-
pression rate is that our method succeeds in setting more wavelet coefficients
to zero for a given PSNR level, see Table 7.9. As mentioned in Chapter 6.1
an improvement to [37] has very recently been proposed in [4]. The reported
improvement was a 10%-15% increase in compression ratio for the RGB color
volume of the Visible Man. Even if a similar increase holds for the Visible Man
data set used in our experiments, our method still performs best, rate-distortion
wise.

0 10 20 30 40 50 60 70
42

44

46

48

50

52

54

56

Compression Ratio

P
S

N
R

Method 1
Ihm & Park

Figure 7.8: Rate-distortion curve for the Visible Man data set.

We note, in Table 7.8, that the actual PSNR is not equal to the one de-
sired, but close. This is because thresholding stops before the desired PSNR
level is exceeded. Also rounding and quantization of the coefficients introduce
additional errors.

Figure 7.12 and Figure 7.13 at the end of this chapter show sample slices
from the original volume and from compressed volumes at different compression
ratios. It is observed that for the highest compression ratios some blockiness
and loss of small level details occur. In all cases edges are preserved extremely
well. We have also generated ray-cast rendered images from the original and
compressed volumes. Figures 7.14 to 7.17 at the end of this chapter depict
rendered images of skin and bone. To generate the images we used Volvis

7.4. Experiments 77

Desired lower bound on PNSR
43.0 46.0 48.3 51.6 55.8

Compression
Ratio 60.2:1 42.6:1 32.4:1 22.2:1 14.5:1

Size (Mb) 4.26 6.01 7.90 11.56 17.68

Errors
Actual PSNR 43.00 46.00 48.29 51.55 55.62

SNR 24.98 27.98 30.27 33.53 37.60
MSE 839.59 421.39 248.83 117.34 45.92

Table 7.8: Results on compression ratio and quality.

PNSR levels
43.0 46.0 48.3 51.6 55.8

Method 1 1.44% 2.14% 2.94% 4.62% 7.73%
Ihm & Park 2.78% 4.57% 6.32% 8.94% 13.30%

Table 7.9: The percent of nonzero coefficients after thresholding for different PSNR levels.

2.1 [88]5. The images are essentially indistinguishable from the original except
for the volumes with PSNR level of 43 and 46. For these two cases the in-
troduced artifacts are not significantly disturbing the image and most of the
details are well preserved.

7.4.2 Timing Results

To evaluate the time for accessing voxels from the compressed data, we mea-
sured the time it took to access 1,000,000 randomly selected voxels in the com-
pressed volumes, using C’s rand() function. These experiments were conducted
on two different computers. The first computer used was a SGI Octane work-
station with a 175 MHz R10000 CPU with a 32 Kbyte level 1 data cache and a
1 Mbyte level 2 cache. This machine is very similar (except maybe differences
in the amount of installed memory and cache) to the one used in [37], so direct
comparison is possible. Programs were compiled with the cc compiler version
7.3.1.1m, using optimization flags -Ofast=IP30. The second computer used
was a PC with an 800 MHz Intel Pentium III processor with 16 Kbyte level 1
data cache and 256 Kb level 2 cache. On this machine programs were compiled
with gcc version 2.95.2, using optimization flags -O9 -fomit-frame-pointer
-fno-rtti. Both machines were equipped with 256 Mbytes of main memory.

Results are listed in Tables 7.10. As a reference, we also list in the ta-
bles the time it takes to access 1,000,000 randomly selected voxels from the
uncompressed data. However, because the Visible Man data set could not fit
into main memory on the two computers used we simulated accessing voxels
in uncompressed data by allocating a piece of memory accessing entries of this
piece at random. For the PC we noted that the time it took to randomly ac-

5The rendering system that we used only supports byte data, so the volumes were uniformly
quantized from 12 bits to 8 bits before rendering.

78 Chapter 7. Coding with Motion Estimation and Blocking

CPU Uncompressed
Compression Ratio

60.2:1 42.6:1 32.4:1 22.2:1 14.5:1
PC 0.50 3.68 4.04 4.36 4.87 5.54
SGI 1.65–3.03 8.07 9.04 9.81 10.93 13.02

Table 7.10: Voxel reconstruction times in seconds for accessing 1,000,000 randomly selected
voxels for the Visible Man data set.

cess 1,000,000 elements varied very little with the size of the allocated piece of
memory, as long as it was significantly larger than the cache. However, for the
SGI we found that there is a linear dependence between the size of the allo-
cated memory and the time it takes to access the random voxels. For a piece of
memory varying between 20%–80% of the size of the Visible Man volume, the
time it took to randomly access 1,000,000 voxels varied between 1.65 and 3.03
seconds.

From table 7.10, we observe that accessing random voxels from the Visible
Man data set on a PC is about 7 to 11 times slower than accessing uncompressed
data. Running on the SGI, it is more difficult to evaluate how much slower it is
to access compressed data because of the mentioned variation when accessing
uncompressed data. Figure 7.9 shows the time for accessing 1,000,000 random
voxels in compressed data on the SGI as a function of the PSNR level for our
method and the method by Ihm and Park [37].

From the figure, we observe that at low PSNR levels the two methods per-
form about the same, while for higher PSNR levels [37] is about 30% faster
than our method. Considering the time it would take to access the voxels from
a harddisk or over a network this is a small and acceptable slowdown. It should
be noted that a speedup of about a factor of 2.5 compared to Ihm and Parks
method [37] has recently been obtained in [4] for color volumes. This speedup,
if it holds for the Visible Man data set, results in a method faster than ours,
especially at high PSNR levels. However, our method achieves significantly
higher compression ratios for the same PSNR level.

Observe that accessing voxels from highly compressed data is faster than
accessing voxels from less compressed data. The reason for this is that at
high compression ratios more wavelet coefficients are zero resulting in faster
termination of the reconstruction algorithm in Section 7.3.

7.4.3 Selective Block-wise Decoding

Applications working with volumetric data hardly make accesses purely at ran-
dom. Instead accesses are made in some regular way. As explained in Section 7.3
this might lead to more efficient decoding. We have performed an experiment
where voxels are reconstructed in 4 × 4 × 4 blocks in the following way. A
4 × 4 × 4 block is considered to contain voxels from 3 P-slices followed by an
I-slice. We start by decoding the 4 × 4 voxels in the I-slice. Assuming that
we have kept the I-slice voxel values from the block above the one we are re-

7.4. Experiments 79

42 44 46 48 50 52 54 56
7

8

9

10

11

12

13

14

PSNR

T
im

e

Method 1
Ihm & Park

Figure 7.9: Time for accessing 1,000,000 voxels in compressed data for the Visible Man data
set on the SGI.

constructing we compute the 4 × 4 voxels of each P-slice reusing the already
computed I-slice values. Results on reconstruction time for the whole volume
are shown in Table 7.10. We also experimented with how long it takes to access
the uncompressed volumes block by block. This was done by using 6 nested
loops. The first three loops indexed the blocks, while the last three loops ac-
cessed voxels within each block. As the Visible Man data set could not fit into
the memory of the computers used, we simulated block-wise access by accessing
a 256 × 512 × 512 array (half the size of the data set), multiplying the time it
took by two. On the PC we obtained different times for the Visible Man data
set depending on whether the loops were arranged in a cache friendly way or
not. This effect was not observed for the SGI. We believe that the SGI com-
piler optimizes for such effects, as using lesser optimization options resulted in
significantly longer timings.

CPU Uncompressed
Compression Ratio

60.2:1 42.6:1 32.4:1 22.2:1 14.5:1
PC 1.48–2.20 19.22 19.87 20.48 21.45 22.93
SGI 3.04 41.60 43.00 44.3 46.35 50.09

Table 7.11: Selective block-wise reconstruction times in seconds for the Visible Man data
set.

Roughly an extra 18-20 seconds on the PC are spent on the compressed
volumes than on the original. On SGI about 38-47 extra seconds are needed.
Considering that the images in Figure 7.14 and Figure 7.16 shown at the end
of this chapter each took about 4 minutes to render on the SGI we find this

80 Chapter 7. Coding with Motion Estimation and Blocking

acceptable. Figure 7.10 compares our method to [37]. We note that our method
is about 35% slower. We find this quite acceptable considering the higher
compression ratio offered. However, if the significance map improvement in [4]
is able to improve the block-wise decoding results of [37] by a factor of 4-5.5
this becomes by far the fastest method at high PSNR levels.

42 44 46 48 50 52 54 56
25

30

35

40

45

50

55

PSNR

T
im

e

Method 1
Ihm & Park

Figure 7.10: Selective block-wise decoding for the Visible Man data set on the SGI.

7.5 Issues with Block Indexing Methods

We will understand block indexing as a technique used to efficiently identify and
locate significant coefficients in a compressed bit-stream. When using block
indexing the decomposed volume is divided into blocks, either two- or three-
dimensional, and a bitmap is used to signal which blocks contain significant
coefficients. To save bits for the significance map the blocks are initially chosen
large. To further locate significant coefficients the significant blocks are then
recursively split resulting in new smaller blocks with corresponding significant
maps. To facilitate fast random access, pointers are used to efficiently locate
the begin of the code stream of each block. Both the method presented in this
chapter and the methods [38, 4] described in Chapter 6.1 can be classified as
block indexing techniques.

On average about 13 wavelet coefficients must be retrieved in order to re-
construct a voxel for the method described in this chapter, see Table 7.5. Since
each of the 13 coefficients is located in different blocks, the data necessary to
reconstruct a voxel might reside far apart in memory. However, for the three-
dimensional scheme described in [38], 15 coefficients must be decoded from the
compressed bit-stream. One reason why the method in [38] is slightly faster
than our method is that even though more wavelet coefficients must be de-
coded in order to reconstruct a voxel, it is more cache efficient. Initially the

7.5. Issues with Block Indexing Methods 81

volume is divided into blocks and each block is wavelet transformed and coded
separately. To reconstruct a voxel, only data from one block must be accessed
and processed.

However, there are two problems with computing the wavelet transform
block-wise. First of all, it does not fully exploit the clustering of zeros. This is
illustrated in Figure 7.11. This figure shows the difference in the significance
map between decomposing the volume block-wise and decomposing the whole
volume. Figure 7.11(a) is the same as Figure 7.4(a). Comparing Figure 7.11(a)
with the slices in Figure 7.12 we note that except for the average part, significant
coefficients occur mostly at edges. In Figure 7.11(b), however, the significant
coefficients are much more uniformly distributed and it is clear that large blocks
are less useful.

(a) (b)

Figure 7.11: Significance maps of thresholded wavelet decompositions with PSNR level 46.
A black dot in the maps indicates the position of a nonzero coefficient. (a) Decomposition of
a whole slice. (b) Block-wise decomposition of a slice.

Secondly, blocking does not generalize well to higher order wavelets with
corresponding longer filters. The reason for this, as discussed in Chapter 2.6, is
boundary conditions. Because of blocking, boundary voxels constitute a much
larger fraction of the volume than when no blocking is used.

Considering the two above mentioned issues it is clear, from a compression
ratio point of view, that it is an advantage to compute the wavelet transform on
the whole volume instead of using a block-wise decomposition. Unfortunately,
the two-dimensional method described in this chapter does not support scal-
able decoding in all three dimensions. For that we need a three-dimensional
multiresolution analysis. Also, as discussed, the method does not utilize CPU
cache as efficiently as the other methods, which becomes even worse in three
dimensions as more wavelet coefficients have to be decoded.

In Chapter 8 we present a different approach (Method 2) to lossy compres-
sion with fast random access that does not use block indexing to code the
significance map. The approach generalizes well to other wavelets and it sup-

82 Chapter 7. Coding with Motion Estimation and Blocking

ports scalable decoding as it is based on a three-dimensional wavelet transform
on the whole volume. Also, it clusters coefficients of the same resolution level
and the same spatial position together for cache efficient retrieval. It is supe-
rior with respect to compression ratio and access time. Unfortunately, it lacks
the ability to compress data in an online setting since it makes multiple passes
over the data. A comparison and further discussion of Method 1 given in this
chapter and Method 2 presented in Chapter 8 are the topics of Chapter 9.

7.6 Chapter Summary

We have presented a wavelet based 3D compression scheme for very large volume
data supporting fast random access to individual voxels within the volume.
Experiments on the CT data of the Visible Man have proven that our method is
capable of providing high compression rates with fairly fast decoding of random
voxels. Our intension is to provide a method that allows a wider range of users
the ability of working with and visualize very large volume data.

7.6. Chapter Summary 83

(a) Original (b) Ratio: 14.5:1, PSNR: 55.6

(c) Ratio: 22.2:1, PSNR: 51.6 (d) Ratio: 32.4:1, PSNR: 48.3

(e) Ratio: 42.6:1, PSNR: 46.0 (f) Ratio: 60.2:1, PSNR: 43.0

Figure 7.12: Sample slice (no. 345) of the Visible Man data set for various compression
ratios.

84 Chapter 7. Coding with Motion Estimation and Blocking

(a) Original (b) Ratio: 14.5:1, PSNR: 55.6

(c) Ratio: 22.2:1, PSNR: 51.6 (d) Ratio: 32.4:1, PSNR: 48.3

(e) Ratio: 42.6:1, PSNR: 46.0 (f) Ratio: 60.2:1, PSNR: 43.0

Figure 7.13: Zoom of sample slice (no. 345) of the Visible Man data set for various com-
pression ratios.

7.6. Chapter Summary 85

(a) Original (b) Ratio: 14.5:1, PSNR: 55.6

(c) Ratio: 22.2:1, PSNR: 51.6 (d) Ratio: 32.4:1, PSNR: 48.3

(e) Ratio: 42.6:1, PSNR: 46.0 (f) Ratio: 60.2:1, PSNR: 43.0

Figure 7.14: Rendered images of the Visible Man data set for various compression ratios.

86 Chapter 7. Coding with Motion Estimation and Blocking

(a) Original (b) Ratio: 14.5:1, PSNR: 55.6

(c) Ratio: 22.2:1, PSNR: 51.6 (d) Ratio: 32.4:1, PSNR: 48.3

(e) Ratio: 42.6:1, PSNR: 46.0 (f) Ratio: 60.2:1, PSNR: 43.0

Figure 7.15: Zoom of rendered images of the Visible Man data set for various compression
ratios.

7.6. Chapter Summary 87

(a) Original (b) Ratio: 14.5:1, PSNR: 55.6

(c) Ratio: 22.2:1, PSNR: 51.6 (d) Ratio: 32.4:1, PSNR: 48.3

(e) Ratio: 42.6:1, PSNR: 46.0 (f) Ratio: 60.2:1, PSNR: 43.0

Figure 7.16: Rendered images of bone from the Visible Man data set for various compression
ratios.

88 Chapter 7. Coding with Motion Estimation and Blocking

(a) Original (b) Ratio: 14.5:1, PSNR: 55.6

(c) Ratio: 22.2:1, PSNR: 51.6 (d) Ratio: 32.4:1, PSNR: 48.3

(e) Ratio: 42.6:1, PSNR: 46.0 (f) Ratio: 60.2:1, PSNR: 43.0

Figure 7.17: Zoom of rendered images of bone from the Visible Man data set for various
compression ratios.

Chapter 8

Coding with Three-dimensional Wavelets

and Hashing

In this chapter we present a coding scheme for wavelet based compression of very
large volume data with fast random access. It is based on a new approach to
lossy storage of the coefficients of wavelet transformed data. Instead of storing
the set of coefficients with largest magnitude we will allow a slightly different
set of coefficients to be stored. To this end we use the lossy dictionary data
structure described in Chapter 5. As mentioned in Chapter 5 this data structure
provides space efficient storage and very efficient retrieval of the coefficients.
Experiments on the Visible Man data set show an up to 80% improvement in
compression ratio over previously suggested schemes including the approach
presented in Chapter 7. Furthermore, the time for accessing a random voxel is
competitive to existing schemes.

8.1 Coding Method

In designing our coding method we have to consider the trade-off between com-
pression ratio, distortion, and speed of retrieval. As mentioned the Haar wavelet
decomposition is simple to compute. In order to reconstruct a single data
value, only one coefficient from each subband must be retrieved. Higher order
wavelets, while promising better compression ratios, require the retrieval of sig-
nificantly more coefficients. Focusing on fast retrieval of voxels, we choose to use
the Haar wavelet. However, our method easily generalizes to other wavelets. As
we shall see in Section 8.2 the Haar wavelet provides good compression results.

We have chosen to use 3 decomposition levels. This provides a good trade-
off between how sparse a representation the wavelet transform produces, and
the number of coefficients needed to reconstruct a single voxel. We thus have
one level of average coefficients and three levels of wavelet coefficients, each level
consisting of seven subbands, as depicted in Figure 8.1. In order to reconstruct
a voxel, we need 22 coefficients: 1 average coefficient, and 7 wavelet coefficients
from each of the three detail levels. Most wavelet based compression schemes
exploit the fact, mentioned in Chapter 2.5, that a very sparse representation can
be obtained by thresholding the wavelet representation. After thresholding, the
challenge is to efficiently store positions and values of the nonzero coefficients.

89

90 Chapter 8. Coding with Three-dimensional Wavelets and Hashing

d4
3

d2
3

d1
3

d3
3

d7
3

d5
3

d1
2

d2
2 d3

2

d4
2 d5

2

d5
1

d4
1

d1
1

d2
1

d3
1

a

Figure 8.1: Subbands of a three-level three-dimensional wavelet transform. The subbands
are numbered di

j , where j denotes the resolution level while i denotes the subband number
within the level.

This corresponds to storing the set W containing the n most important wavelet
coefficients. Using the hashing scheme described in Chapter 5, we will take a
slightly different approach. We noted in Chapter 5 that the most space efficient
methods for storing sparse tables have a rather high overhead for lookups, but
that an index set W ′ slightly different from a given set W can be stored in a way
allowing much more efficient lookups. By not storing exactly the n coefficients
of largest magnitude, we get a larger MSE, but we will see that the increase is
quite acceptable compared to the gain in compression ratio.

Since the sparseness of the wavelet coefficients change between subband
levels, we will use a different set of hash tables for each level. For the moment,
we will in fact pretend that each subband is stored as a separate lossy dictionary.
We later merge the hash tables of subbands at the same level. The main reason
for choosing a three-level (instead of a two-level) wavelet transform is that the
average coefficients take up a fraction of just 2−9 of the wavelet transformed
volume, and can therefore with negligible overhead be stored in uncompressed
form.

To use the lossy dictionary data structure, we map (x, y, z) positions of a
subband B to indices in the range 0, . . . , |B| − 1 in a straightforward way. De-
note, by ix,y,z the index corresponding to (x, y, z). We use pairwise independent
pseudo-random permutations of the following form:

φ(x, y, z) = (a ix,y,z + b) mod p , (8.1)

where p is the smallest prime greater than |B|, and a, b are chosen at random
such that 0 < a < p, and 0 ≤ b < p. For each hash table, we have two
such permutations φ1 and φ2, and take as our hash functions h1(x, y, z) =
φ1(x, y, z) mod r/2 and h2(x, y, z) = φ2(x, y, z) mod r/2, where r denotes the
combined size of the two tables. To store the coefficient with index (x, y, z)
in entry h1(x, y, z) of hash table one, we only need to specify the quotient
φ1(x, y, z) div r/2 and the uniformly quantized value of the coefficient (the same

8.1. Coding Method 91

holds for hash table two). We choose the number of quantization levels to be a
value such that the distortion introduced by quantization constitutes a minor
part of the total distortion. This desired value is then adjusted slightly, such
that the quantization index and the quotient fit into an integer number of bits.
This defines the size of each entry in the hash tables. In case of an empty cell,
we store the quotient ((a (p−1)+ b) mod p) div r/2, which does not match the
quotient of any index (x, y, z). This is in correspondence with the definition of
quotient functions in Theorem 5.1 of Chapter 5.

For performance reasons, we do not store the significant coefficients exactly
as described above where each subband is stored in a separate lossy dictionary.
Instead, we store all coefficients of a subband level in a single lossy dictionary
of correspondingly larger size. This is done in such a way that the wavelet
coefficients of a subband level that are needed for the same voxel reconstruction
are more or less adjacent in the hash tables. This significantly improves the
time for retrieving the coefficients, because of better cache usage. The merging
of the tables is illustrated in Figure 8.2. At each subband level, we number the
seven subbands 0, . . . , 6. The way in which wavelet coefficients are accessed at
each subband level during a voxel reconstruction is as follows: The same index
within each subband is needed. When hashing index (x, y, z) of the subband
with number s we use the functions

h′i(x, y, z, s) = (φi(x, y, z) + s) mod r/2, (8.2)

for i = 1, 2. This gives corresponding indices in different subbands at the same
subband level consecutive hash function values (modulo r/2). There was no
significant degradation in MSE as a result of making hash function values cor-
related in this way. To be able to distinguish coefficients in different subbands,
we pack the subband number together with the quotient.

a

c

a

3

1 1

b2

b

c

2

3

T1

T2

2 31

3

a c

b

a

a c

b

3

c

2

1

b21

(a) (b)

Figure 8.2: How tables are merged. (a) No merging – a separate lossy dictionary is used
for each subband. (b) All coefficients of a subband level are stored in one lossy dictionary.
Note that coefficients at the same spatial position get consecutive hash values as shown by
the dashed boxes.

The above describes how we store the wavelet coefficients, but not how
to determine the size of the hash tables at different subband levels. This is

92 Chapter 8. Coding with Three-dimensional Wavelets and Hashing

nontrivial, as the best ratio between tables at different levels depends on the
volume and the desired distortion. We use a simple heuristic, namely to perform
global thresholding and use the number of nonzero coefficients at each level as
the total size of the hash tables at that level. As we nearly store the coefficients
remaining after thresholding, the MSE will be similar to the MSE introduced
by the thresholding.

(a) (b)

Figure 8.3: Wavelet coefficients corresponding to the same spatial location. (a) Illustrated
in two dimensions. (b) In three dimensions we obtain an octree like structure. Note that,
except for the top voxel, all voxels point to eight children. For clarity this is not shown.

While the scheme described this far is reasonably fast, a significant speedup
can be obtained by exploiting the fundamental property of the stored wavelet
coefficients: A very large fraction of coefficients is zero. Thus, in many cases
only zero coefficients are found in the detail levels. To avoid such expensive
lookups we store, together with each average coefficient, a small significance
map that can be consulted to avoid some lookups of detail coefficients that are
zero. In particular, we divide subband levels 3 and 2 into 2 × 2 × 2 blocks.
If all seven blocks at the same spatial location in the seven different subbands
of a level only have zero coefficients, we set a bit in the significance map of
the corresponding average coefficient. This uses 8 bits for subband level 3
(at level 3 there are 8 blocks of size 2 × 2 × 2 that correspond to the same
spatial location as the average coefficient), and a single bit for subband level
2. Figure 8.3(a) shows, in two dimensions, the spatial relationship between the
blocks at different subband levels. Finally, we set a bit to indicate whether all
seven corresponding wavelet coefficients at subband level 1 are zero. In total, we
use 10 bits for the significance map per average coefficient. Since the average
coefficients only constitute a fraction of 2−9 of all wavelet coefficients this is
negligible. The complete data structure used is illustrated in Figure 8.4. The
illustration is in two dimensions for simplicity.

When reconstructing a voxel we first look up the average coefficient and
the significance map. For each subband level, where the significance map does
not declare all coefficients to be zero, we must then look up the seven coef-

8.1. Coding Method 93

T1

T2

T1

T2

T1

T2

Significance map

Coefficient

Figure 8.4: How the coefficients at different levels are stored in the data structure.

ficients in the hash tables of that level. Let r denote the combined size of
the two hash tables used for the subband level, and let φ1 and φ2 denote
the pseudo-random permutations used. If the position within the subbands,
at a given subband level, is (x, y, z), we evaluate φ1(x, y, z) and φ2(x, y, z).
Then, starting at position φ1(x, y, z) mod r/2 of hash table one and position
φ2(x, y, z) mod r/2 of hash table two, we extract two sequences of seven con-
secutive quotients and subband numbers. If a quotient in the sequence from
table i equals φi(x, y, z) div r/2, for some i, and the subband number equals
the position in the sequence, the coefficient in that subband is nonzero, and its
value is calculated from the quantized value in the table. Otherwise the coeffi-
cient is zero. When all the necessary wavelet coefficients have been extracted,
the inverse Haar wavelet transform is applied. Using the same notation as in
Chapter 2.4.3, the reconstruction formulas for one level of the inverse Haar
wavelet transform are

c1 = (a+ d1 + d2 + d3 + d4 + d5 + d6 + d7)/2
√

2

c2 = (a+ d1 + d2 + d3 − d4 − d5 − d6 − d7)/2
√

2

c3 = (a+ d1 − d2 − d3 + d4 + d5 − d6 − d7)/2
√

2

c4 = (a+ d1 − d2 − d3 − d4 − d5 + d6 + d7)/2
√

2

c5 = (a− d1 + d2 − d3 + d4 − d5 + d6 − d7)/2
√

2

c6 = (a− d1 + d2 − d3 − d4 + d5 − d6 + d7)/2
√

2

c7 = (a− d1 − d2 + d3 + d4 − d5 − d6 + d7)/2
√

2

c8 = (a− d1 − d2 + d3 − d4 + d5 + d6 − d7)/2
√

2

(8.3)

Depending on the voxel that is to be reconstructed we must traverse an
octree like structure from top to bottom, as illustrated in Figure 8.3(b), using
one of the eight formulas at each node in the octree.

As discussed in Chapter 6 applications do not always access data totally
at random. To enhance decoding efficiency when some locality in the access
patterns exists, our decoding algorithm also supports selective block-wise de-

94 Chapter 8. Coding with Three-dimensional Wavelets and Hashing

coding. When reconstructing a single voxel, seven wavelet coefficients must be
retrieved for each subband level. These wavelet coefficients can be reused to
compute neighboring voxels. In selective block-wise decoding, we retrieve all
512 wavelet coefficients necessary to compute all voxels in a 8 × 8 × 8 block.
To do this we must decode one average coefficient and all its associated detail
coefficients as illustrated in Figure 8.3(b). From (8.3) it appears that 56 addi-
tions/subtractions must be performed to reconstruct eight voxels. However, by
reusing computations this can be reduced to 24 operations.

8.2 Experiments

In this section we present results based on two data sets. The first data set is
the 512 × 512 × 512 CT data set of the upper body of the Visible Man used
in Chapter 7. Each voxel is stored in 2 bytes, in which 12 bits are used, and
the whole volume takes up 256 Mbytes. The second data set is a CT scan
of an engine block, resampled to size 256 × 256 × 112 to make all dimensions
a multiple of 8. Each voxel is stored in 1 byte and the volume uses about 7
Mbytes of space. The original Engine Block data set was obtained from [24].

Experiment
Subband level 1 2 3 Best

3 166.59 162.49 163.02 162.49

2 54.10 53.23 53.98 53.23

1 24.29 15.23 13.57 13.57

Total MSE 244.98 230.95 230.57 229.29

Total PSNR 48.84 48.61 48.62 48.64

Table 8.1: MSE for the three subband levels when using three different pseudo-random
permutations.

The exact set of wavelet coefficients that is stored during compression de-
pends somewhat on the particular parameters of the pseudo-random permu-
tations in (8.1). For each compression ratio, we have compressed the volume
three times, and for each subband level selected the permutation yielding the
best results. Table 8.1 shows the results of compressing the Visible Man data
set three times at a compression ratio of 44:1. The highlighted values in the
table show the best MSE for each subband. Except for subband level 1 there
is little variation in the MSE between the three runs. For higher compression
ratios we observed a decrease in this variation. For lower compression ratios
the variation decreased in subband level 1 and increased in subband level 2. We
believe this behavior can be explained in terms of Figure 5.6 in Chapter 5. This
figure shows the observed probability that a given coefficient is included in the
dictionary when using truly random and independent hash functions. However,
we use weaker hash functions in our implementation. This fact, together with
the particular decay of the wavelet coefficients (see Figure 5.7 for an example)
for the subband level in relation to the hash table sizes, result in the observed
variation of the MSE.

8.2. Experiments 95

As mentioned in Section 8.1 we uniformly quantize the wavelet coefficients.
The number of quantization levels is chosen such that the quantization induced
distortion is a minor part of the total distortion. The number of bits used for
coefficients at subband level 3 varied between 4.0 and 7.5 bits depending on the
compression ratio. The exact number was chosen such that the hash quotient
and the quantization level would fit into an integer number of bits. For the
other subband levels we increase the desired number of bits used by 1.5 bits per
level. This is necessary because of the 2

√
2 scaling of the wavelet coefficients

in (2.45) of Chapter 2.

8.2.1 Compression Ratio and Distortion

It is important that our compression scheme provides high compression ratios at
low distortion, while maintaining fast random access. In our first experiment we
compressed the two test volumes at various ratios. The results are summarized
in Tables 8.2 and 8.3. Figures 8.5 and 8.6 show the PSNR as a function of
the compression ratio. The PSNR was calculated from the voxel differences
between the original voxel values and the voxel values reconstructed from the
compressed data. In Figure 8.5 we also show the rate-distortion performance of
Method 1 described in Chapter 7 and the method by Ihm and Park given in [37].
As can be seen from the figure, our method gives strictly better performance in
the distortion range investigated, and it significantly outperforms the previous
best methods, nearly doubling the compression ratio compared to method 1 in
Chapter 7 at high ratios. For low compression ratios it seems that the three
methods converge. As in Chapter 7 we note that a 10%–15% improvement
of [37] was reported in [4].

Comparing the fraction of nonzero wavelet coefficients, shown in Table 8.2,
with the same fraction of method 1, shown in Table 7.9, we find one explanation
for the higher compression ratios. The method in this chapter simply succeeds
in setting more coefficients to zero for the same distortion.

Figure 8.6 shows that the achieved compression ratios for the Engine Block
data set are not as large as for the Visible Man data set. This can be explained
by observing the percent of nonzero wavelet coefficients in Tables 8.2 and 8.3.
We observe that the wavelet decomposition performs better on the Visible Man
data set, in terms of obtaining a sparse representation for a given distortion,
than on the Engine Block data set. This can partially be explained by noting
that large areas of the Visible Man data set contains only zero valued voxels.

Even though the PSNR measure is an accepted measure in lossy compres-
sion, visual inspection of the quality is very important. To that end Figures 8.9
and 8.10 shows sample slices for the various compression ratios. We observe
that for the best PSNRs the reconstructed slices are virtually indistinguishable
from the original. However, for a PSNR of 43 blocking artifacts and loss of
small level detail occur.

We also generated rendered images of the original and compressed volumes
using the VolPack rendering engine [87]. The rendered images are depicted in
Figures 8.11 to 8.14. For the Visible Man data set, the images at compression
ratios of up to 44:1 are essentially indistinguishable from the original. However,

96 Chapter 8. Coding with Three-dimensional Wavelets and Hashing

0 20 40 60 80 100 120
42

44

46

48

50

52

54

56

58

Compression Ratio

P
S

N
R

Method 2
Method 1
Ihm & Park

Figure 8.5: Rate-distortion curve for the Visible Man data set.

5 10 15 20 25
36

38

40

42

44

46

48

Compression Ratio

P
S

N
R

Method 2

Figure 8.6: Rate-distortion curve for the Engine Block data set.

the close ups in Figure 8.12 reveal beginning blocking artifacts for compression
ratios of 27:1 and 44:1. For the images at ratio 80:1 and 109:1 reconstruction
artifacts become noticeable, however most of the features and details are still
preserved. For the Engine Block data set, artifacts begin to appear at com-
pression ratio 11:1 but not until a ratio of 21:1 do they become significantly
noticeable. Again, when zooming the blocking artifacts appear sooner.

8.2. Experiments 97

Compression
Ratio 109:1 80:1 44:1 27:1 15:1

Size (Mb) 2.36 3.68 5.83 9.48 17.57

Errors
PSNR 43.28 45.76 48.64 51.19 56.07
SNR 25.25 27.74 30.62 33.17 38.05
MSE 788.7 445.4 229.3 127.5 41.4

Fraction of nonzero wavelet coefficients 0.96% 1.56% 2.60% 4.68% 8.24%

Table 8.2: Results on compression ratio and quality for the Visible Man data set.

Compression
Ratio 20.6:1 14.1:1 11.3:1 8.0:1 5.9:1

Size (Mb) 0.34 0.50 0.62 0.87 1.19

Errors
PSNR 37.91 41.77 42.19 45.36 47.64
SNR 22.29 26.15 26.54 29.74 32.02
MSE 10.53 4.32 3.95 1.89 1.12

Fraction of nonzero wavelet coefficients 3.60% 4.89% 6.79% 8.78% 11.06%

Table 8.3: Results on compression ratio and quality for the Engine Block data set.

8.2.2 Timing Results

The time for accessing 1,000,000 randomly selected voxels was evaluated as de-
scribed in Chapter 7.4.2 using the same hardware and compile options. Results
are given in Tables 8.4 and 8.5 with and without the significance map opti-
mization discussed in Section 8.1. As in Chapter 7.4.2 we also list in the tables
timings for accessing the uncompressed data.

CPU Significance map Uncompressed
Compression Ratio

109:1 80:1 44:1 27:1 15:1

PC
Yes

0.50
1.61 1.82 2.09 2.44 2.86

No 4.73 4.84 4.94 4.82 4.95

SGI
Yes

1.65 – 3.03
3.79 4.63 5.68 7.13 8.67

No 14.88 15.78 16.30 16.70 17.00

Table 8.4: Voxel reconstruction times in seconds for accessing 1,000,000 randomly selected
voxels for the Visible Man data set.

CPU Significance map Uncompressed
Compression Ratio

20.6:1 14.1:1 11.3:1 8.0:1 5.9:1

PC
Yes

0.49
2.10 2.47 2.70 3.14 3.45

No 4.51 4.64 4.73 4.76 4.97

SGI
Yes

1.17
5.28 6.25 7.09 8.26 8.86

No 12.93 12.97 13.06 13.12 13.27

Table 8.5: Voxel reconstruction times in seconds for accessing 1,000,000 randomly selected
voxels for the Engine Block data set.

Observe from Table 8.4 that on the PC accessing voxels from the compressed
Visible Man data set using the significance map is about 3 to 6 times slower than
accessing uncompressed data. On the SGI it is, as discussed in Chapter 7.4.2,

98 Chapter 8. Coding with Three-dimensional Wavelets and Hashing

difficult to assess the slowdown when accessing compressed data. For the Engine
Block data set, accessing compressed data on both computers is about 4.5 to
7.5 times slower. In Figure 8.7 we show the time for accessing 1,000,000 random
voxels in compressed data on the SGI as a function of the PSNR level. From
the figure, we observe that Method 2 outperforms Method 1 in Chapter 7 and
the method given in [37]. For high distortion (small PSNR), Method 2 is about
twice as fast as [37]. Note however, that if the speedup of [37] by a factor of
about 2.5 reported in [4] also holds for the CT data of the Visible Human this
will result in a faster method than Method 2, especially at high PSNR levels.
Even if this is the case, we believe that Method 2 is still highly relevant as it
produces compression ratios that are up to three times larger than the method
in [37].

Similar to observations in Chapter 7 it is observed that accessing voxels from
highly compressed data is faster than accessing voxels from less compressed
data. The main reason for this is that at high compression ratios fewer wavelet
coefficients are kept, resulting in a more efficient significance map because of
more zero coefficients. Furthermore, as the compression ratio increases, more
of the compressed data might fit into data cache of the computer, which again
results in a speedup. This last type of speedup can be noticed in the timings
where the significance map was disabled. From Table 8.4 and Table 8.5 we see
that enabling the use of the significance map gives a speedup of about 2-4 times
for the Visible Man data set compared to having it disabled. The improvement
is largest at high compression ratios where the significance map is more effective
because of more zeros. For the Engine Block data set, the speedup is slightly
smaller. The reason for this, as discussed above, is that the Visible Man data
set contains more voxels with value zero.

42 44 46 48 50 52 54 56 58
2

4

6

8

10

12

14

PSNR

T
im

e

Method 2
Method 1
Ihm & Park

Figure 8.7: Time for accessing 1,000,000 voxels in compressed data for the Visible Man data
set on the SGI.

8.3. Scalable or Multiresolution Decoding 99

8.2.3 Selective Block-wise Decoding

As mentioned in Chapter 6 not all applications access data completely at ran-
dom. To improve decoding efficiency when data is accessed locally Method 2
supports selective block-wise decoding. As mentioned in Section 8.1 the voxels
in an 8 × 8 × 8 block can be decoded efficiently by reusing both wavelet co-
efficients and computations in the reconstruction formulas. The effectiveness
of selective block-wise decoding was evaluated by decoding the entire volume,
block by block. The timings are shown for the two data sets in Tables 8.6
and 8.7. The timings for accessing the uncompressed volume were done as
described in Chapter 7.4.3.

From tables 8.6 and 8.7, we observe that decoding the whole volume block-
wise is significantly slower than accessing uncompressed data. However, con-
sidering the memory requirements needed for large uncompressed volumes we
think this overhead is quite acceptable. Also, applications such as some volume
renderers require orders of magnitudes longer processing time. From the tables,
we also note that as the compression ratio decreases the decoding time increases.
This can be explained by the fact that the significance map is less effective at
low ratios. Finally, in Figure 8.8, we compare our method to Method 1 of Chap-
ter 7 and the method in [37] for the Visible Man data set. For a PSNR level
below 50 our method performs best. Again, if the improvement in [4] is able to
improve the results of [37] by a factor of 4-5.5, the improved method would be
about 7–42 seconds faster than Method 2 depending on the PSNR level.

42 44 46 48 50 52 54 56 58
10

15

20

25

30

35

40

45

50

55

PSNR

T
im

e

Method 2
Method 1
Ihm & Park

Figure 8.8: Selective block-wise decoding for the Visible Man data set on the SGI.

100 Chapter 8. Coding with Three-dimensional Wavelets and Hashing

CPU Uncompressed
Compression Ratio

109:1 80:1 44:1 27:1 15:1

PC 1.48–2.20 6.24 7.75 10.06 13.12 17.17

SGI 3.04 14.22 19.22 26.42 38.27 51.28

Table 8.6: Selective block-wise reconstruction times in seconds for the Visible Man data set.

CPU Uncompressed
Compression Ratio

20.6:1 14.1:1 11.3:1 8.0:1 5.9:1

PC 0.08 0.59 0.71 0.85 1.08 1.33

SGI 0.15 1.46 1.67 2.08 2.65 3.28

Table 8.7: Selective block-wise reconstruction times in seconds for the Engine Block data
set.

CPU Downsampling factor Uncompressed
Compression Ratio

109:1 80:1 44:1 27:1 15:1

PC

1

0.50

1.61 1.82 2.09 2.44 2.86
2 1.49 1.63 1.82 2.07 2.34
4 1.18 1.26 1.37 1.50 1.59
8 0.81 0.81 0.81 0.81 0.81

SGI

1

1.65 – 3.03

3.79 4.63 5.68 7.13 8.67
2 3.32 3.93 4.68 5.55 6.50
4 1.18 1.26 1.37 1.50 1.59
8 1.20 1.20 1.20 1.20 1.20

Table 8.8: Voxel reconstruction times in seconds for the Visible Man data set when accessing
1,000,000 randomly selected voxels at lower resolutions.

CPU Downsampling factor Uncompressed
Compression Ratio

20.6:1 14.1:1 11.3:1 8.0:1 5.9:1

PC

1

0.50

2.10 2.47 2.70 3.14 3.45
2 1.80 2.08 2.20 2.47 2.61
4 1.30 1.42 1.44 1.42 1.44
8 0.73 0.73 0.73 0.73 0.73

SGI

2

1.65 – 3.03

5.28 6.25 7.09 8.26 8.86
2 4.48 5.28 5.83 6.54 6.55
4 2.82 3.23 3.20 3.20 3.22
8 1.15 1.15 1.15 1.15 1.15

Table 8.9: Voxel reconstruction times in seconds for the Engine Block data set when accessing
1,000,000 randomly selected voxels at lower resolutions.

8.3 Scalable or Multiresolution Decoding

While relatively fast, the decoding process might still be too slow for inter-
active applications. In some applications it is possible to work with a low
resolution representation of the volume. Volume rendering is such an example.
When the user is satisfied with the setup at the low resolution, the application
switches to full resolution producing the final result. Since our method uses

8.4. Chapter Summary 101

a three-dimensional wavelet transform, it supports multiresolutional decoding
in a natural way. For example, by assuming that the wavelet coefficients at
subband level 3 are all zero, we can omit the last reconstruction step. This
results in a volume half the size of the original volume in each dimension. By
omitting coefficients at subband levels 1 and 2, our algorithm can return voxels
from a volume that is downsampled by a factor of 2, 4, or 8 in each direction.
Since the algorithm does not need to decode coefficients assumed to be zero
this results in a speedup. In Table 8.8 and Table 8.9 we present results on de-
coding 1,000,000 randomly selected voxels from the two compressed volumes at
different resolutions. As expected, the reconstruction time of a voxel decreases
as the downsampling factor increases. When downsampling 8 times we notice
that the access time does not depend on the compression ratio. This is because
we access only the uncompressed average coefficients, and these do not change
with the compression ratio. Accessing and decoding the average coefficients
take slightly longer than accessing uncompressed data since we still need to
apply the scaling in the reconstruction formulas (8.3).

8.4 Chapter Summary

We have presented a new method for compression of volumetric data that sup-
ports fast random access to individual voxels within the compressed data. The
method is based on a wavelet decomposition of the data, and a new technique
for storing the significant coefficients and their significance map using hashing.
The new hashing technique may be of independent use in other compression ap-
plications. Results comparing our new compression method to other techniques
show an improvement over the entire distortion range investigated. For high
ratios, the improvement in ratio is up to 80%. We also reported competitive
access times for our method.

102 Chapter 8. Coding with Three-dimensional Wavelets and Hashing

(a) Original (b) Ratio: 15:1, PSNR: 56.1

(c) Ratio: 27:1, PSNR: 51.2 (d) Ratio: 44:1, PSNR: 48.6

(e) Ratio: 80:1, PSNR: 45.8 (f) Ratio: 109:1, PSNR: 43.3

Figure 8.9: Sample slice (no. 345) of the Visible Man data set for various compression ratios.

8.4. Chapter Summary 103

(a) Original (b) Ratio: 15:1, PSNR: 56.1

(c) Ratio: 27:1, PSNR: 51.2 (d) Ratio: 44:1, PSNR: 48.6

(e) Ratio: 80:1, PSNR: 45.8 (f) Ratio: 109:1, PSNR: 43.3

Figure 8.10: Zoom of sample slice (no. 345) of the Visible Man data set for various com-
pression ratios.

104 Chapter 8. Coding with Three-dimensional Wavelets and Hashing

(a) Original (b) Ratio: 15:1, PSNR: 56.1

(c) Ratio: 27:1, PSNR: 51.2 (d) Ratio: 44:1, PSNR: 48.6

(e) Ratio: 80:1, PSNR: 45.8 (f) Ratio: 109:1, PSNR: 43.3

Figure 8.11: Rendered images of the Visible Man data set for various compression ratios.

8.4. Chapter Summary 105

(a) Original (b) Ratio: 15:1, PSNR: 56.1

(c) Ratio: 27:1, PSNR: 51.2 (d) Ratio: 44:1, PSNR: 48.6

(e) Ratio: 80:1, PSNR: 45.8 (f) Ratio: 109:1, PSNR: 43.3

Figure 8.12: Zoom of rendered images of the Visible Man data set for various compression
ratios.

106 Chapter 8. Coding with Three-dimensional Wavelets and Hashing

(a) Original (b) Ratio: 5.9:1, PSNR: 47.6

(c) Ratio: 8.0:1, PSNR: 45.4 (d) Ratio: 11.3:1, PSNR: 42.2

(e) Ratio: 14.1:1, PSNR: 41.8 (f) Ratio: 20.6:1, PSNR: 37.9

Figure 8.13: Rendered images of the Engine Block data set for various compression ratios.

8.4. Chapter Summary 107

(a) Original (b) Ratio: 5.9:1, PSNR: 47.6

(c) Ratio: 8.0:1, PSNR: 45.4 (d) Ratio: 11.3:1, PSNR: 42.2

(e) Ratio: 14.1:1, PSNR: 41.8 (f) Ratio: 20.6:1, PSNR: 37.9

Figure 8.14: Zoom of rendered images of the Engine Block data set for various compression
ratios.

Chapter 9

Comparison

In this chapter we briefly compare the two volumetric compression methods
with fast random access, presented in Chapter 7 and Chapter 8, to each other.
Many aspects of the two methods, such as compression ratio and access speed,
have already been compared in Chapter 8. However, Chapter 8 focused on
comparing the two methods to methods in the published literature. In this
chapter we focus on comparing the two methods with each other in relation to
the design criteria mentioned in Chapter 6.

9.1 Fast Decoding for Random Access

In order to be of use in interactive applications our compression methods have to
provide fast random access to voxels. Of the two methods presented, Method 2
was the fastest. Depending on the compression ratios Method 2 was about 3–6
times slower than accessing uncompressed data on the PC for the Visible Man
data set. Considering that the Visible Man data set was too large to fit into
memory on the computers used, we think this is a reasonable slowdown.

9.2 Good Visual Fidelity at High Compression Ra-

tios

Achieving high compression ratios while maintaining good visual fidelity is very
important. As volumes increase in size the memory requirements increase cubi-
cally. Therefore high compression ratios are vital, if volumetric applications and
algorithms are to be run on computers with limited memory. On the other hand
in many applications only a small degradation in the reconstruction quality is
tolerable, e.g., care must be taken in medical imaging.

For the Visible Man data set Method 1 and Method 2 obtained compres-
sion ratios of up to 60:1 and 109:1 respectively for the same PSNR. The re-
construction error at these ratios, though noticeable in rendered images, might
be acceptable for some applications. However, if only a small degradation in
quality is allowed, the compression ratios have to be lowered. We found that
for the same visual fidelity Method 2 produced the best compression ratio, e.g,
see Figure 7.13 and Figure 8.10 (the rendered images are not readily compared,

109

110 Chapter 9. Comparison

as two different volume rendering techniques were used). This is in good corre-
spondence with the results obtained by using the PSNR as a measure of quality.
In fact, since all methods for volumetric compression with fast random access
currently use the Haar wavelet we believe that the PSNR is a good way of
measuring and comparing the quality of the reconstructed volumes.

9.3 Multiresolutional Decoding

The timing results in Chapter 7.4.2 and Chapter 8.2.2 indicate that current
methods might not be fast enough for real-time applications. One solution
to this problem is to use coarser representations of the volume. For example,
in volume rendering one could decode and render a downsampled version of
the volume at interactive frame-rates and when time permits the renderer and
decoding algorithm could switch to full resolution.

Because Method 1 compresses volumes by employing temporal prediction it
does not support scalable decoding in a natural way. However, since it uses a
two-dimensional wavelet transform it scales better with respect to the number of
wavelet coefficients necessary for reconstruction. The three-dimensional wavelet
transform used by Method 2 makes scalable decoding straightforward. Timing
results show that for a downsampling factor of 8, accessing compressed data is
almost as fast as accessing uncompressed data on the PC.

9.4 Selective Block-wise Decoding

The motivation throughout this dissertation has been fast random access to
individual voxels. However, some applications access data locally. To enhance
decoding efficiency in such cases both Method 1 and Method 2 support selective
block-wise decoding.

At low PSNR levels Method 2 is significantly faster than Method 1 when
decoding block-wise, while at high PSNR levels the two methods perform more
equally. From the timing results in Chapter 8.2.2 we observe that accessing the
complete volume block-wise is much faster than accessing all voxels in random
order.

9.5 Online Compression

In systems with limited storage it is desirable if the volume data can be com-
pressed while it is being downloaded or transferred to the system by other
means. This kind of online compression puts limitations on the resources avail-
able to the encoder.

In order to compress a volume, Method 1 only accesses a few slices at a
time. This only requires a small buffer and Method 1 therefore supports online
compression. Method 2, on the other hand, makes multiple passes over the
data. First a pass to compute the wavelet coefficients, then a pass to compute
the table sizes by thresholding, and finally three passes to find the best hash
functions for each subband. For this reason Method 2 does not support online

9.5. Online Compression 111

compression. However, if the table sizes and hash functions are known a priory
online compression is possible.

Chapter 10

Conclusions

10.1 Final Summary

Many algorithms for compressing volumetric data have been proposed in the
last decade. However, most of the research focus has been on efficient transmis-
sion and storage of volumes. This only in part solves the problems associated
with handling such large data sets. For one thing, keeping the volumes uncom-
pressed in memory when they are used as input to other applications may only
be possible on expensive high end computers with extensive amounts of mem-
ory. Recently though, the need for keeping the volumes compressed while they
are accessed by other applications has been recognized, thereby introducing the
challenge of supporting fast random access to the compressed data.

In this dissertation two methods (Method 1 and Method 2) for volumet-
ric compression with fast random access have been proposed. The methods
improve on existing methods either by employing ideas from video coding or
by combining techniques from subband coding with the new concept of lossy
dictionaries introduced in this dissertation.

The two-dimensional “motion” compensating coder (Method 1) presented
in Chapter 7 benefits from being able to code data in an online setting while of-
fering high compression ratios and moderate access times. The second method
(Method 2), presented in Chapter 8, which is based on a three-dimensional
wavelet transform and a lossy dictionary data structure significantly improves
the compression ratio compared to existing schemes while providing quite com-
petitive random access times.

Performance tests show that Method 2 yields an increase in compression
ratio of about 80% for the same amount of distortion compared to Method 1
at high ratios. Comparing to other existing methods the compression ratio is
up to three times better. Furthermore, the time to access a random voxel is
competitive with existing schemes. As the compression algorithm of Method 2
makes several passes over the data, enough storage capacity must be available
to store the whole volume uncompressed. However, Method 1 can be used in
an online setting using only a small buffer, where data is compressed as it is

113

114 Chapter 10. Conclusions

downloaded or generated by, for example, a MR scanner.

In the subband coding literature the prevailing practice is to store the set
of coefficients with largest magnitude. At low bitrates coding the positions of
these coefficients, denoted the significance map, constitutes a significant por-
tion of the total bitbuget. Many advanced schemes have been suggested to
reduce this cost. One major reason for the success of Method 2 is the idea that
instead of storing the exact set of wavelet coefficients with largest magnitude,
significant bit savings can be achieved by storing a slightly different set. This
has also been noted in [91]. To that end we introduced the concept of lossy
dictionaries as a tool for achieving efficient compression with fast random access.

The concept of lossy dictionaries is presented in Chapter 5. In the setting
of lossy dictionaries, we are given a set of keys, each key associated with a
weight. The task of a lossy dictionary is then to store as many keys as possible
while maximizing the sum of weights of the keys stored under a given space
constraint. In Chapter 5 we presented a lossy dictionary data structure and
showed it to have very good behavior with respect to the set of keys stored. We
furthermore proved our data structure to be nearly optimal with respect to the
space used. Also, we have shown that our lossy dictionary is very well suited for
lossy compression with fast random access. We believe that lossy dictionaries
might find use in other applications as well. For example, they might be used
in web cache sharing and differential files.

The efficient lossy dictionary data structure that we described in Chapter 5
was built on the cuckoo hashing scheme presented in Chapter 4. Cuckoo

hashing is a new dynamic dictionary with worst case constant lookup time
and amortized expected constant time for updates. Besides being simple to
implement, it has average case running times comparable to several well known
and often used dictionary methods. These methods have nontrivial worst case
lookup time, which makes Cuckoo hashing useful in time critical applica-
tions where such a guarantee is necessary. The typical space usage of cuckoo

hashing is three words per key. This is similar to binary search trees.

10.2 Future Directions

In this work we have presented methods for improving both compression ratio
and random access time for wavelet compressed volumes. This is an important
step both towards making volumetric data processing less memory demanding,
but also it paves the way for generating and using even larger volumes. However,
several challenges remain. In the following, we list some open problems for the
four major chapters (Chapter 4, 5, 7, and 8) of this dissertation. Finally, we
provide some interesting ideas for future research in lossy compression with fast
random access including possible improvements to the methods given in this
dissertation.

10.2. Future Directions 115

10.2.1 Cuckoo Hashing

First of all, an explicit practical hash function family that is provably good
for the dictionary scheme has yet to be found. Secondly, we lack a precise
understanding of why the scheme exhibits low constant factors. In particular,
the curve of Figure 4.6 and the fact that forced rehashes are rare for load
factors quite close to 1/2 need to be explained. Another point to investigate is
whether using more than two tables yields practical dictionaries. Experiments
in Chapter 5 suggest that space utilization could be improved to more than
80% using three tables. However, it remains to be seen how this would affect
insertion performance.

10.2.2 Lossy Dictionaries

For lossy dictionaries some of the same challenges as for Cuckoo hashing re-
main. Though simple and efficient hash functions seem to work well in practice
with our lossy dictionary, the challenge of finding such families that provably
work well remains. Furthermore, the last two graphs in Figure 5.6 are not
completely understood. Especially, the theoretical lower bound shown in the
figure must be improved to match the statistically determined bound. Also,
it is not completely understood why the insertion heuristic for three or more
tables works so well.

10.2.3 Coding using Motion Estimation and Blocking

Some aspects of Method 1 need further research and attention. For example,
we only employ a very simple prediction scheme. By using a more advanced
prediction schemes we might be able to reduce the number of slices that is
coded without temporal prediction and thereby increase the compression ratio.
Block matching might at first seem attractive because of its simplicity when
decoding. However, we believe that the correlation of volumetric data will
be captured better by, for example, a parametric motion model that captures
zoom well. Also, how other wavelet types will affect compression ratio and
quality must be evaluated. Since our method only performs a two-dimensional
wavelet transform it scales better than using a three-dimensional transform,
with respect to the number of coefficients that is needed for reconstruction
when the wavelet filters become longer. This is attractive since the number of
coefficients that must be extracted directly affects decoding speed.

10.2.4 Coding using Three-Dimensional Wavelets and Hashing

One interesting idea for future research in lossy compression is the concept of
not storing the most significant wavelet coefficients but a slightly different set
of coefficients. This might yield a combined rate-distortion improvement when
used in combination with existing techniques. The idea has been mentioned
before by Xiong et al. [91] but it has still not attracted the attention we think
it deserves.

116 Bibliography

10.2.5 General Challenges in Compression with Fast Random
Access.

Of course, a general challenge in compression with fast random access is to
further improve compression ratio and access time. Another important step
forward would be to consider the compression of color volumes. The first at-
tempt at compressing color volumes with fast random access was reported by
Bajaj et al. in [4]. Basically, the authors suggest to vector quantize the
wavelet coefficients of the individual RGB color components. The quantization
indices are then coded using a method very similar to the method given in [38].
Compression ratios of up to 80:1 were reported. Since our Method 2 already
outperforms [38] providing compression ratios of up to 109:1, we believe it to
be a good platform for further color compression experiments.

Finally, to make our compression method useful in an interactive visualiza-
tion environment, decoding speed must be improved, either by developing an
efficient cache structure temporary holding voxel values or by adding redun-
dancy to the data structure to decrease lookup overhead. However, to be of
real value this would require special purpose designed data structures for the
particular rendering method, which has not been the focus of this dissertation.

Bibliography

[1] Bruno Aiazzi, Pasquale Alba, Luciano Alparone, and Stefano Baronti.
Lossless compression of multi/hyper-spectral imagery based on a 3-D
fuzzy prediction. IEEE Transactions on Geoscience and Remote Sensing,
37(5):2287–2294, 1999.

[2] Bruno Aiazzi, Pasquale Alba, Stefano Baronti, and Luciano Alparone.
Three-dimensional lossless compression based on a separable generalized
recursive interpolation. Proceedings of the 1996 IEEE International Con-
ference on Image Processing, pages 85–88, 1996.

[3] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced
allocations. SIAM Journal on Computing, 29(1):180–200 (electronic), 1999.

[4] Chandrajit Bajaj, Insung Ihm, and Sanghun Park. 3D RGB image com-
pression for interactive applications. ACM Transactions on Graphics, 20,
March 2001. To appear.

[5] Atilla M. Baskurt, Hugues Benoit-Cattin, and Christophe Odet. A 3-D
medical image coding method using a separable 3-D wavelet transform. In
Yongmin Kim, editor, Medical Imaging 1995: Image Display, pages 184–
194. Proceedings of SPIE 2431, 1995.

[6] A. Bilgin, G. Zweig, and M. W. Marcellin. Three-dimensional image com-
pression using integer wavelet transforms. Applied Optics: Information
Processing, Special Issue on Information Theory in Optoelectronic Sys-
tems, 39:1799–1814, April 2000.

[7] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, July 1970.

[8] Andrei Z. Broder and Anna R. Karlin. Multilevel adaptive hashing. In Pro-
ceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’90), pages 43–53. ACM Press, New York, 2000.

[9] Andrei Z. Broder and Michael Mitzenmacher. Using multiple hash func-
tions to improve IP lookups. To appear in INFOCOM, 2001.

[10] Andrej Brodnik and J. Ian Munro. Membership in constant time and
almost-minimum space. SIAM Journal on Computing, 28(5):1627–1640
(electronic), 1999.

117

118 Bibliography

[11] Harry Buhrman, Peter Bro Miltersen, Jaikumar Radhakrishnan, and
S. Venkatesh. Are bitvectors optimal? In Proceedings of the 33rd Annual
ACM Symposium on Theory of Computing (STOC ’00), pages 449–458.
ACM Press, New York, 2000.

[12] Peter J. Burt and Edward H. Adelson. The laplacian pyramid as a compact
image code. IEEE Transactions on Communications, 31(4):532–540, April
1983.

[13] Larry Carter, Robert Floyd, John Gill, George Markowsky, and Mark Weg-
man. Exact and approximate membership testers. In Proceedings of the
10th Annual ACM Symposium on Theory of Computing (STOC ’78), pages
59–65. ACM Press, New York, 1978.

[14] Larry Carter and Mark N. Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences, 18(2):143–154, 1979.

[15] A. Cohen, I. Daubechies, and P. Vial. Wavelet bases on the interval and
fast algorithms. Journal of Applied and Computational Harmonic Analysis,
1(12):54–81, 1993.

[16] William J. Cook, William H. Cunningham, William R. Pulleyblank, and
Alexander Schrijver. Combinatorial optimization. John Wiley & Sons Inc.,
New York, 1998. A Wiley-Interscience Publication.

[17] Ingrid Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, Penn-
sylvania, 1992.

[18] Martin Dietzfelbinger. Universal hashing and k-wise independent ran-
dom variables via integer arithmetic without primes. In Proceedings of
the 13th Symposium on Theoretical Aspects of Computer Science (STACS
’96), pages 569–580. Springer-Verlag, Berlin, 1996.

[19] Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pippenger.
Polynomial hash functions are reliable (extended abstract). In Proceed-
ings of the 19th International Colloquium on Automata, Languages and
Programming (ICALP ’92), volume 623 of Lecture Notes in Computer Sci-
ence, pages 235–246. Springer-Verlag, Berlin, 1992.

[20] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti
Penttonen. A reliable randomized algorithm for the closest-pair problem.
Journal of Algorithms, 25(1):19–51, 1997.

[21] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Heide, Hans Rohnert, and Robert E. Tarjan. Dynamic perfect hash-
ing: Upper and lower bounds. SIAM Journal on Computing, 23(4):738–
761, 1994.

[22] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal
class of hash functions and dynamic hashing in real time. In Proceedings of

Bibliography 119

the 17th International Colloquium on Automata, Languages and Program-
ming (ICALP ’90), volume 443 of Lecture Notes in Computer Science,
pages 6–19. Springer-Verlag, Berlin, 1990.

[23] Arnold I. Dumey. Indexing for rapid random access memory systems.
Computers and Automation, 5(12):6–9, 1956.

[24] The Engine Block data set. http://www9.informatik.uni-
erlangen.de/∼cfrezksa/volren/.

[25] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache:
A scalable wide-area web cache sharing protocol. IEEE/ACM Transactions
on Networking, 8(3):281–293, 2000.

[26] G. Fernández, S. Periaswamy, and Wim Sweldens. LIFTPACK: A software
package for wavelet transforms using lifting. In M. Unser, A. Aldroubi, and
A. F. Laine, editors, Wavelet Applications in Signal and Image Processing
IV, pages 396–408. Proceedings of SPIE 2825, 1996.

[27] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse
table with O(1) worst case access time. Journal of the Association for
Computing Machinery, 31(3):538–544, 1984.

[28] Didier J. Le Gall. The MPEG video compression algorithm. Signal Pro-
cessing: Image Communication, 4:129–140, 1992.

[29] Mohammad H. Ghavamnia and Xue D. Yang. Direct rendering of laplacian
pyramid compressed volume data. Proceedings of Visualization ’95, pages
192–199, October 1995.

[30] Gaston Gonnet. Handbook of Algorithms and Data Structures. Addison-
Wesley Publishing Co., London, 1984.

[31] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F.
Cohen. The lumigraph. Computer Graphics, Proceedings of SIGGRAPH
’96, pages 43–54, 1996.

[32] Markus H. Gross. L2 optimal oracles and compression strategies for
semiorthogonal wavelets. Technical Report 254, Computer Science De-
partment, ETH Zürich, December 1996.

[33] Roberto Grosso, Thomas Ertl, and Joachim Aschoff. Efficient data struc-
tures for volume rendering of wavelet-compressed data. WSCG ’96 – The
Fourth International Conference in Central Europe on Computer Graphics
and Visualization, February 1996.

[34] A. Haar. Zur Theorie der orthogonalen Funktionensysteme. Mathematis-
che Annalen., 69:331–371, 1910.

[35] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik. Zeitschrift für Physik, 43:172–198, 1927.

120 Bibliography

[36] Michael Hoetter. Differential estimation of the global motion parameters
zoom and pan. Signal Processing, 16:249–265, 1989.

[37] Insung Ihm and Sanghun Park. Wavelet-based 3D compression scheme for
very large volume data. In Graphics Interface, pages 107–116, June 1998.

[38] Insung Ihm and Sanghun Park. Wavelet-based 3D compression scheme for
interactive visualization of very large volume data. Computer Graphics
Forum, 18(1):3–15, March 1999.

[39] ISO/IEC JTC1 and ITU-T. Digital compression and coding of continuous-
tone still images. ITU-T Recommendation T.81 – ISO/IEC 10918-1
(JPEG), 1992.

[40] ISO/IEC JTC1 and ITU-T. Information technology – generic coding of
moving pictures and associated audio information – part 2: Video. ITU-T
Recommendation H.262 – ISO/IEC 13818-2 (MPEG-2), 1994.

[41] ISO/IEC JTC1 and ITU-T. Information technology – JPEG 2000 image
coding system. JPEG 2000 final committee draft version 1.0, March 2000.

[42] ITU-T. Video coding for low bit rate communication. ITU-T Recommen-
dation H.263, version 1, Nov 1995; version 2, Jan. 1998.

[43] Stasys Jukna. Extremal Combinatorics with Applications in Computer
Science. Springer-Verlag, 2000.

[44] Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der Heide. Ef-
ficient PRAM simulation on a distributed memory machine. Algorithmica,
16(4-5):517–542, 1996.

[45] Jyrki Katajainen and Michael Lykke. Experiments with universal hashing.
Technical Report DIKU Report 96/8, University of Copenhagen, 1996.

[46] Tae-Young Kim and Yeong Gil Shin. An efficient wavelet-based compres-
sion method for volume rendering. In Proceedings of the Seventh Pacific
Conference on Computer Graphics and Applications, pages 147–156, Seoul,
Korea, October 1999.

[47] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley Publishing Co., Reading, Massachusetts,
second edition, 1998.

[48] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-
warp factorization of the viewing transformation. In Proceedings of SIG-
GRAPH 94, pages 451–458, 1994.

[49] K. Lau, W. Vong, and W. Ng. Lossless compression of 3-D images by vari-
able predictive coding. Proceedings of 2nd Singapore International Con-
ference on Image Processing, pages 161–165, 1992.

Bibliography 121

[50] Marc Levoy and Pat Hanrahan. Light field rendering. Computer Graphics
Proceedings, Annual Conference Series (SIGGRAPH ’96), pages 31–42,
1996.

[51] Jiebo Luo, Xiaohui Wang, Chang W. Chen, and Kevin J. Parker. Volumet-
ric medical image compression with three-dimensional wavelet transform
and octave zerotree coding. In Rashid Ansari and Mark J. Smith, edi-
tors, Visual Communications and Image Processing ’96, pages 579–590.
Proceedings of SPIE 2727, 1996.

[52] Stéphane Mallat. A theory for multiresolution signal decomposition: The
wavelet representation. IEEE Trans on Pattern Analysis and Machine
Intelligens, 11(7):674–693, July 1989.

[53] Stéphane Mallat. A Wavelet Tour of Signal Processing 2nd Edition. Aca-
demic Press, 1999.

[54] George Marsaglia. The Marsaglia random number CDROM including the
diehard battery of tests of randomness. http://stat.fsu.edu/pub/diehard/.

[55] Catherine C. McGeoch. The fifth DIMACS challenge – dictionary tests.
http://cs.amherst.edu/∼ccm/challenge5/dicto/.

[56] Kurt Mehlhorn and Stefan Näher. LEDA. A platform for combinatorial
and geometric computing. Cambridge University Press, Cambridge, 1999.

[57] Shigeru Muraki. Approximation and rendering of volume data using
wavelet transforms. Proceedings of Visualization ’92, pages 21–28, October
1992.

[58] Shigeru Muraki. Volume data and wavelet transforms. IEEE Computer
Graphics & Applications, 13(4):50–56, July 1993.

[59] Gregory M. Nielson, Hans Hagen, and Heinrich Müller, editors. Scientific
Visualization: Overviews, Methodologies, and techniques. IEEE Computer
Society, 1997.

[60] Paul Ning and Lambertus Hesselink. Fast volume rendering of compressed
data. Proceedings of Visualization ’93, pages 11–18, October 1993.

[61] Rasmus Pagh. Low redundancy in static dictionaries with O(1) lookup
time. In Proceedings of the 26th International Colloquium on Automata,
Languages and Programming (ICALP ’99), volume 1644 of Lecture Notes
in Computer Science, pages 595–604. Springer-Verlag, Berlin, 1999.

[62] Rasmus Pagh. On the cell probe complexity of membership and perfect
hashing. In Proceedings of the 33rd Annual ACM Symposium on Theory
of Computing (STOC ’01), pages 425–432. ACM Press, New York, 2001.

[63] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Technical
Report RS-01-32, BRICS, August 2001.

122 Bibliography

[64] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Proceed-
ings of the 9th European Symposium on Algorithms (ESA ’01), volume
2161 of Lecture Notes in Computer Science, pages 121–133, Berlin, 2001.
Springer-Verlag.

[65] Rasmus Pagh and Flemming Friche Rodler. Lossy dictionaries. Technical
Report RS-01-33, BRICS, August 2001.

[66] Rasmus Pagh and Flemming Friche Rodler. Lossy dictionaries. In Pro-
ceedings of the 9th European Symposium on Algorithms (ESA ’01), volume
2161 of Lecture Notes in Computer Science, pages 300–311, Berlin, 2001.
Springer-Verlag.

[67] C. A. Papadopoulos and Trevor G. Clarkson. Motion compensation using
second-order geometric transformations. IEEE Transactions. on Circuits
and Systems for Video Technology, Vol. 5:319–331, August 1995.

[68] S.M. Perlmutter, P.C. Cosman, R.M. Gray, R.A. Olshen, D. Ikeda, C.N.
Adams, B.J. Betts, M. Williams, K.O. Perlmutter, J. Li, A. Aiyer, L. Fa-
jardo, R. Birdwell, and B.L. Daniel. Image quality in lossy compressed
digital mammograms. Signal Processing, 52(2):189–210, 1997.

[69] Michael A. Pratt, Chee-Hung H. Chu, and Stephen T. Wong. Volume com-
pression of MRI data using zerotrees of wavelet coefficients. In Michael A.
Unser, Akram Aldroubi, and Andrew F. Laine, editors, Wavelet Applica-
tions in Signal and Image Processing IV, pages 752–763. Proceedings of
SPIE 2431, 1996.

[70] Flemming Friche Rodler. Wavelet based 3D compression for very large
volume data supporting fast random access. Technical Report RS-99-34,
BRICS, October 1999.

[71] Flemming Friche Rodler. Wavelet based 3D compression with fast random
access for very large volume data. In Proceedings of the Seventh Pacific
Conference on Computer Graphics and Applications, pages 108–117, Seoul,
Korea, 1999.

[72] Flemming Friche Rodler and Rasmus Pagh. Fast random access to wavelet
compressed volumetric data using hashing. To Appear in ACM Transac-
tions on Graphics.

[73] Flemming Friche Rodler and Rasmus Pagh. Fast random access to wavelet
compressed volumetric data using hashing. Technical Report RS-01-34,
BRICS, August 2001.

[74] Khalid Sayood. Introduction to Data Compression. Morgan Kaufmann
Publishers, Inc., USA, 1996.

[75] Dennis S. Severance and Guy M. Lohman. Differential files: Their ap-
plication to the maintenance of large data bases. ACM Transactions on
Database Systems, 1(3):256–267, September 1976.

Bibliography 123

[76] Jerome M. Shapiro. Embedded image coding using zerotress of wavelet
coefficients. IEEE Transactions on Signal Processing, 41(12):3445–3462,
December 1993.

[77] Heung-Yeung Shum and Li-Wei He. Rendering with concentric mosaics.
Computer Graphics Proceedings, Annual Conference Series (SIGGRAPH
’99), pages 299–306, 1999.

[78] Alan Siegel. On universal classes of fast high performance hash functions,
their time-space tradeoff, and their applications. In Proceedings of the
30th Annual Symposium on Foundations of Computer Science (FOCS ’89),
pages 20–25. IEEE Computer Society Press, Los Alamitos, CA, 1989.

[79] Craig Silverstein. A practical perfect hashing algorithm. Manuscript, 1998.

[80] Wim Sweldens. The lifting scheme: A custom-design construction of
biorthogonal wavelets. Applied and Computational Harmonic Analysis,
3(2):186–200, 1996.

[81] Robert Endre Tarjan. Efficiency of a good but not linear set union algo-
rithm. Journal of ACM, 22:215–225, 1975.

[82] A. M. Tekalp. Digital video processing. Prentice Hall Signal Processing
Series, 1995.

[83] Jo Yew Tham, Surendra Ranganath, and Ashraf A. Kassim. Scalable
very low bit-rate video compression using motion compensated 3-D wavelet
decomposition. IEEE ISPACS Workshop, 3:38.7.1–38.7.5, November 1996.

[84] Geoge R. Thoma and L. Rodney Long. Compressing and transmitting
visible human images. IEEE Multimedia, 4(2):36–45, 1997.

[85] Mikkel Thorup. Even strongly universal hashing is pretty fast. In Proceed-
ings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’00), pages 496–497. ACM Press, New York, 2000.

[86] The visible human project. The National Library of Medicine (NLM)
homepage – http://www.nlm.nih.gov/research/visible/visible human.
html.

[87] The volpack volume rendering library. Stanford Computer Graphics Lab-
oratory. http://graphics.stanford.edu/software/volpack/.

[88] Volvis 2.1. Visualization Laboratory of the Department of Com-
puter Science at the State University of New York at Stony Brook.
http://www.cs.sunysb.edu/∼vislab/volvis home.html.

[89] J. Wang and H. Huang. Medical image compression by using three-
dimensional wavelet transformation. IEEE Transactions on Medical Imag-
ing, 15:547–554, August 1996.

124 Bibliography

[90] M. Wenzel. Wörterbücher für ein beschränktes Universum. Diplomarbeit,
Fachbereich Informatik, Universität des Saarlandes, 1992.

[91] Xixiang Xiong, Kannan Ramchandran, and Michael T. Orchard. Space-
frequency quantization for wavelet image coding. IEEE Transactions on
Image Processing, 6(5):677–693, May 1997.

Recent BRICS Dissertation Series Publications

DS-01-9 Flemming Friche Rodler. Compression with Fast Random Ac-
cess. November 2001. PhD thesis. xiv+124 pp.

DS-01-8 Niels Damgaard.Using Theory to Make Better Tools. October
2001. PhD thesis.

DS-01-7 Lasse R. Nielsen. A Study of Defunctionalization and
Continuation-Passing Style. August 2001. PhD thesis.
iv+280 pp.

DS-01-6 Bernd Grobauer.Topics in Semantics-based Program Manipu-
lation. August 2001. PhD thesis. ii+x+186 pp.

DS-01-5 Daniel Damian. On Static and Dynamic Control-Flow Infor-
mation in Program Analysis and Transformation. August 2001.
PhD thesis. xii+111 pp.

DS-01-4 Morten Rhiger. Higher-Order Program Generation. August
2001. PhD thesis. xiv+144 pp.

DS-01-3 Thomas S. Hune.Analyzing Real-Time Systems: Theory and
Tools. March 2001. PhD thesis. xii+265 pp.

DS-01-2 Jakob Pagter.Time-Space Trade-Offs. March 2001. PhD thesis.
xii+83 pp.

DS-01-1 Stefan Dziembowski.Multiparty Computations — Information-
Theoretically Secure Against an Adaptive Adversary. January
2001. PhD thesis. 109 pp.

DS-00-7 Marcin Jurdziński. Games for Verification: Algorithmic Issues.
December 2000. PhD thesis. ii+112 pp.

DS-00-6 Jesper G. Henriksen.Logics and Automata for Verification: Ex-
pressiveness and Decidability Issues. May 2000. PhD thesis.
xiv+229 pp.

DS-00-5 Rune B. Lyngsø.Computational Biology. March 2000. PhD
thesis. xii+173 pp.

DS-00-4 Christian N. S. Pedersen.Algorithms in Computational Biology.
March 2000. PhD thesis. xii+210 pp.

DS-00-3 Theis Rauhe. Complexity of Data Structures (Unrevised).
March 2000. PhD thesis. xii+115 pp.

