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Abstract

This thesis addresses several aspects of static and dynamic control-flow informa-
tion in programming languages, by investigating its interaction with program
transformation and program analysis.

Control-flow information indicates for each point in a program the possible
program points to be executed next. Control-flow information in a program
may be static, as when the syntax of the program directly determines which
parts of the program may be executed next. Control-flow information may be
dynamic, as when run-time values and inputs of the program are required to
determine which parts of the program may be executed next. A control-flow
analysis approximates the dynamic control-flow information with conservative
static control-flow information.

We explore the impact of a continuation-passing-style (CPS) transformation
on the result of a constraint-based control-flow analysis over Moggi’s compu-
tational metalanguage. A CPS transformation makes control-flow explicitly
available to the program by abstracting the remainder of the computation into
a continuation. Moggi’s computational metalanguage supports reasoning about
higher-order programs in the presence of computational effects. We show that a
non-duplicating CPS transformation does not alter the result of a monovariant
constraint-based control-flow analysis.

Building on control-flow analysis, we show that traditional constraint-based
binding-time analysis and traditional partial evaluation benefit from the effects
of a CPS transformation, while the same CPS transformation does not affect
continuation-based partial evaluation and its corresponding binding-time anal-
ysis. As an intermediate result, we show that reducing a program in the compu-
tational metalanguage to monadic normal form also improves binding times for
traditional partial evaluation while it does not affect continuation-based partial
evaluation.

In addition, we show that linear β-reductions have no effect on control-
flow analysis. As a corollary, we solve a problem left open in Palsberg and
Wand’s CPS transformation of flow information. Furthermore, using Danvy
and Nielsen’s first-order, one-pass CPS transformation, we present a simpler
CPS transformation of flow information with a simpler correctness proof.

We continue by exploring Shivers’s time-stamps-based technique for approx-
imating program analyses over programs with dynamic control flow. We for-
malize a time-stamps-based algorithm for approximating the least fixed point
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of a generic program analysis over higher-order programs, and we prove its
correctness.

We conclude by investigating the translation of first-order structured pro-
grams into first-order unstructured programs. We present a one-pass translation
that integrates static control-flow information and that produces programs con-
taining no chains of jumps, no unused labels, and no redundant labels.
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Chapter 1

Introduction and Overview

Understanding the flow of control in computer programs is an essential step
in the design and implementation of program analysis and program transfor-
mation. Most of today’s compilers and optimizers make use of control-flow
information in an automated process, in the purpose of generating more effi-
cient programs. Control-flow information in a program indicates the possible
choices of instructions following the execution of an instruction in the program.

As a notation for expressing computation, programming languages have
evolved from early languages with explicit control structures into modern lan-
guages facilitating high-level description of computations. In early program-
ming languages, explicit control structures provide static control-flow informa-
tion (e.g., flowcharts). In contrast, modern higher-order programming languages
increasingly rely on an automated process for extracting dynamic control-flow
information and for converting high-level specifications into implementations
using explicit control structures.

This thesis investigates several aspects of static and dynamic control-flow in-
formation in programming languages, and the interaction between control-flow
information and program analysis and transformation. We consider the control-
flow analysis of high-level languages and its interaction with the continuation-
passing-style (CPS) transformation. As a follow-up, we consider the interaction
between the CPS transformation and binding-time analysis as used in offline
partial evaluation. We also show several methods for constructing flow infor-
mation of a program after the continuation-passing-style transformation.

We consider the analysis of programs with dynamic control flow, namely
higher-order programs in which the possibilities of flow of control depend on run-
time values in the program. We formalize and prove the correctness of a generic
technique for approximating a range of program analyses. We also consider
the problem of translating structured first-order programs into unstructured
first-order programs with conditional and unconditional jumps.

In the rest of the introduction we describe the main objects of discourse
of the dissertation, together with background and related work relevant to the
later results. We continue by providing a short description of the technical
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2 Introduction and Overview

results which can be found in the following chapters of the dissertation, and we
discuss their relevance with respect to recent related work. The remainder of
the dissertation is composed from the text of research articles documenting our
technical results.

1.1 Background

Throughout this dissertation we use the λ-calculus [8] as a metalanguage for
reasoning about higher-order programming languages. Based on a mathemat-
ical notation for expressing function abstraction and function application, the
λ-calculus has proved itself as a useful tool for reasoning about programming
languages semantics and transformations; for a long time it has been consid-
ered to be the foundational concept behind programming languages [75]. In its
typed version, the λ-calculus has further use as a tool for reasoning about safety
properties of languages.

Various formal semantics of λ-terms have been defined, among them, de-
notational semantics [109] and operational semantics [99]. A semantics for
λ-terms usually involves a choice of evaluation strategy, for instance call-by-
name or call-by-value [98]. A semantics, incorporating an evaluation strategy,
determines reasoning principles, as, for instance, relations among meanings of
programs and their transformations. In this dissertation, we consider programs
with call-by-value semantics, although we avoid being specific about the precise
definition of their semantics.

We also consider languages with computational effects. Computational ef-
fects, such as nondeterminism, mutable state, continuations or exceptions, are
powerful and useful programming tools. Introducing computational effects breaks
however the reasoning principles available at the level of pure λ-calculus. For in-
stance, programs which may be equivalent in a the setting of the pure λ-calculus
are no longer equivalent in a setting which allows computational effects.

The notion of monads [81, 118] has proved to be a useful tool for reason-
ing about programming languages with computational effects. Moggi’s com-
putational metalanguage [82] extends the λ-calculus and provides a theoretical
foundation which restores some of the reasoning principles familiar in the pure
λ-calculus. Using Moggi’s computational metalanguage, computational effects
can be abstracted and sound reasoning principles can be established indepen-
dently of such effects. Furthermore, the computational metalanguage has also
been used as a support for reasoning about partial evaluation or program anal-
ysis.

1.1.1 Continuations and continuation-passing style

Functional programming languages are also based on the notion of function
abstraction and function application. In this sense, the control of the execution
of the program is implicit. Functional programs are declarative rather than
imperative: the user declares the functions that are used, and declares the way
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in which they are composed in order to compute the final result. Therefore,
in functional programming languages, the user has little direct interaction with
the control flow of the program, which is generally believed to lead to more
readable programs [37, 59].

Nevertheless, the need for a handle on the control-flow of the program, al-
lowing, for instance, jumps out of the current scope or current procedure, has
lead to the introduction of continuations. After Strachey and Wadsworth [114],
continuations are essentially an abstraction of the remainder of the computa-
tion. In functional programming languages, one can abstract the context of an
expression into a continuation: a function that receives the value of the expres-
sion and returns it to the context. The evaluation of an expression completes
by calling the continuation with the computed value.

The notion of continuations has emerged in several forms in the 1960’s and
early 1970’s, see for instance Reynolds’s survey [102]. Since then, continuations
have been used in compilation [3, 6, 44, 113], logic [48, 83], and semantics [43,
101, 109]. Turning a term into continuation passing style amounts to making
explicit the continuations inside the term. Such transformation enables a simple
implementation of control constructs present in modern programming languages
as Scheme [73] or ML [7]. On a semantic level, a continuation semantics [109,
114] enables reasoning about explicit control features as jumps in first-order
languages or call-with-current-continuation in higher-order languages. Together
with mutable locations, continuations can be used to model arbitrary monadic
computational effects [42].

The transformation of λ-terms into continuation-passing style has been the
subject of a long line of research. Plotkin [98] has introduced call-by-name
and call-by-value CPS transformations, and has established the key property
of evaluation-order independence. The CPS transformations yield large terms,
and Plotkin identifies so-called “administrative redexes” which are redexes in-
troduced by the translation which are not legitimate part of the computation in
the original program. Danvy and Filinski [31] identify the flow of continuations
in administrative reductions and produce a one-pass CPS transformation which
yields CPS terms without administrative redexes. The one-pass CPS transfor-
mation is higher-order though: it involves a function which takes a term and
returns another term. Reasoning on such a transformation becomes difficult [36].

CPS terms without administrative redexes may be obtained by embedding
the original term in the computational metalanguage, reducing it into monadic
normal form, and introducing continuations [49]. The result is equivalent to
the result of a Plotkin-style CPS transformation followed by administrative
reductions. Alternative CPS transformations have been developed, at the level
of syntactic theories [105], or, non-compositionally, at the level of terms [107].

Recently, Danvy and Nielsen have discovered a one-pass CPS transforma-
tion [34, 86] which yields CPS terms without administrative redexes through a
compositional first-order translation. This aspects make Danvy and Nielsen’s
CPS transformation a more suitable support for reasoning about CPS programs
using structural-induction principles. In Chapter 4 we make use of this prop-
erty to obtain a simpler proof of correctness of the CPS transformation of flow
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information.

1.1.2 Static program analysis

Static program analysis is at the heart of today’s modern compilers. The goal
of program analysis is to extract program properties to enable program trans-
formations, usually with the purpose of optimizing the run-time behavior of the
program.

Typical question answered through program analysis concern run-time prop-
erties of programs. For instance, data-flow analysis in first-order languages [23,
71] determines properties of program points dependent on the set of values taken
by variables during the run of a program. Such analyses are extensively used
in compilers and code generators, but also in various other systems as profilers,
security verifiers, etc.

Cousot and Cousot’s seminal work in abstract interpretation [23] has opened
the path to a wide area of research in formalizing and proving the correctness
of program analyses. Kam and Ullman have introduced the notion of mono-
tone frameworks [71]. In particular, they have characterized the importance of
distributivity for data-flow analyses and have shown the undecidability of the
meet-over-all-paths (MOP) solution for constant propagation. Nielson also has
connected the maximal fixed-point (MFP) and the MOP solutions of a data-
flow analysis with a direct-style and, respectively, continuation-passing style
semantic formulation of a collecting interpretation [87].

A range of analyses are used in determining the static/dynamic aspect of
program points in partial evaluation [66] (binding-time analyses) or determining
the security level of program points and information flow [1, 55, 127] (security
analyses). Other analyses determine properties relative to memory manage-
ment, for instance region inference for higher-order languages [117]. But of
crucial importance to analysis of higher-order languages is control-flow analysis,
which is the topic of next section.

1.1.3 Control-flow analysis

In higher-order languages, extracting run-time properties of programs often in-
volves a control-flow analysis. In functional languages, for instance, such an
analysis determines a conservative approximation of what functions may be
called at each application point in the program.

Early control-flow analyses by Jones and Mycroft [68] extracted minimal
control-flow graphs. Shivers designed and proved the semantic correctness of a
control-flow analysis for CPS Scheme [112], presenting at the same time several
direct applications of control-flow analysis such as induction variable elimina-
tion, type recovery and super-β. Sestoft’s closure analysis [111] uses abstract
interpretation to extract the control-flow information as a least fixed point of a
functional; Bondorf’s thesis [12] makes use of control-flow information to per-
form defunctionalization [35, 103].
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Recent developments have introduced the specification of a control-flow anal-
ysis through a set of constraints generated by the input program. Originally
introduced by Palsberg and Schwartzbach in the context of object-oriented lan-
guages [95], constraint-based control-flow analysis has soon been extended to
higher-order applicative languages [47, 61]. The analysis of a program proceeds
by extracting a set of constraints and employing a standard worklist algorithm
to solve the constraints. The algorithm works in cubic time on the size of the
program.

Constraint-based analysis has been connected with other forms of analysis,
in particular with set-based analysis [51, 52] and type inference [53, 94]. These
connections are further used to extend flow analysis to typed intermediate lan-
guages [62].

Extensions of the analysis include adding data-flow information or by intro-
ducing polyvariance on various forms of context information [89, 90, 112, 125].
Such extensions yield more precise results, often at a price in the run-time of the
analysis. On the other direction, observing that the cubic time upper-bound of
the constraint-based analysis may still be prohibitive for large programs, other
authors propose more tradeoffs between speed and precision [54, 56, 116].

1.1.4 Partial evaluation and binding-time analysis

Partial evaluation [22, 66] is a technique of automatic program specialization.
The goal if partial evaluation is to produce more efficient specialized versions
of generic programs, by exploiting the knowledge about static inputs. Most
often, such knowledge includes the static parts of the control flow of the input
programs [80].

A partial evaluator is a program to perform partial evaluation. Given an
input program and a part of its inputs, a partial evaluator produces as output a
residual program. The residual program, evaluated together with the remaining
input of the original program, produces the same result as the evaluation of the
original program with the complete input.

An online partial evaluator specializes programs by attempting to straight-
forwardly interpret the given program. The online partial evaluator performs
computation where possible and generates code otherwise. Naturally, this in-
terpretation involves a large amount of symbolic computation. Moreover, ter-
mination is difficult to ensure and there is little control over the specialization
process and over the size and shape of the residual program.

The offline approach to partial evaluation involves two phases. First, a
binding-time analysis is performed. The analysis requires that the user distin-
guishes the binding times of the inputs of the program into static (known at
specialization time) and dynamic (not known at specialization time). The analy-
sis then traverses the input program and determines the binding times of control
structures and variables in the program. The result of binding-time analysis is
usually in the form of static/dynamic annotations on individual statements of
the source program. The second phase then amounts to performing the compu-
tation annotated as static and generating code for the statements annotated as
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dynamic.
Offline partial evaluation based on annotations specified through a two-level

λ-calculus [66, 88] has been thoroughly investigated [14, 65, 78, 79, 92, 121].
More recently, Hatcliff and Danvy have proven the correctness of a partial eval-
uator for Moggi’s computational metalanguage [50]. The partial evaluator relies
on a binding-time analysis through type inference. Such an analysis is closely
related to a flow-based binding-time analysis [93].

Continuation-based partial evaluation [13, 50, 66, 76] has emerged from the
need for binding-time improvements. A continuation-based partial evaluator
implements a continuation-based reduction engine for the static language. Such
reduction engine has the property of extracting potentially static code out of
dynamic contexts, which is known to be a binding-time improvement [32, 33].

1.1.5 Continuation-passing style and program analysis

The interaction between the continuation-passing style and program analysis
has been studied on several lines of research. Nielson’s work on data-flow analy-
sis [87] showed how a continuation semantics yields a more precise (and possibly
uncomputable) analysis, by relating the direct-style abstract collecting seman-
tics with the MFP solution and the continuation-passing abstract collecting se-
mantics with the MOP solution. Consel and Danvy show that BTA yields more
precise results on a CPS-transformed program [20]. Likewise, Muylaert-Filho
and Burn’s work [84] suggests a benefic effect of a syntactic CPS transformation
on strictness analysis.

On a different note, Sabry and Felleisen’s article “Is continuation-passing
useful for data-flow analysis?” [106] shows that the results of a constant-propa-
gation analysis on a CPS transformed program may be incomparable with the
results of the same constant-propagation analysis over the original program.
The result has a negative tone, since, for instance, a compiler writer might
not be able to decide whether to CPS-transform a program before or after the
analysis phase.

More recent work, by Palsberg and Wand [97] and Damian and Danvy [26],
independently observed that a definite answer can be found if one restricts one
self to a constraint-based control-flow analysis. Such result gives to a compiler
writer more freedom of choice, since, while the constant-propagation analysis of
Sabry and Felleisen gives more precise results due to its inherited flow-awareness,
it also has a higher worst-case complexity [25]. In turn, the preservation of
flow information obtained by a constraint-based analysis enables one to prove
properties about the interaction between CPS and binding-time analysis used
in partial evaluation.

1.1.6 Static transition compression

In partial-evaluation terminology [66, Section 4.4], static transition compression
amounts to compressing chains of jumps in residual programs at specialization
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time. The process of specializing first-order flow-chart programs leads to resid-
ual programs in form of unstructured labeled commands where control flow is
expressed in terms of conditional and unconditional jumps.

Residual programs often contain chains of jumps, namely jumps to other
unconditional jumps. Such chains of jumps impose a run-time overhead, which
can be statically eliminated, since we are able to compute the ending point of
the chain of jumps.

The issue of transition compression is traditional in compilers. Machine-level
languages express control flow in terms of conditional and unconditional jumps.
Therefore, a standard step in a compiler involves a translation from a structured
language to an unstructured language where control flow is expressed only in
terms of conditional and unconditional jumps [2, 4, 45, 123].

A translation of structured flow commands as conditional statements and
while-loops into an unstructured language of conditional and unconditional
jumps is a simple exercise. The resulting translation is simple and composi-
tional and therefore simple to implement and to reason about. The drawback
of this simplicity is the quality of the generated code. In particular, nested
control-flow statements give rise to chains of jumps, potentially linear in the
size of the program.

It is also simple to devise a post-processing phase removing such chains of
jumps by replacing each jump in the chain to a jump to the final destination.
The drawback of such a phase is that it may require multiple passes on the
code to remove such jumps. One of the topics of this dissertation is a one-pass
translation which generates no chains of jumps.

1.2 Overview of the dissertation

This thesis addresses several issues about static and dynamic control-flow infor-
mation and its interaction with program analysis and program transformation.
We consider the impact of the CPS transformation on control-flow analysis and
on binding time-analysis, by exploring several different CPS transformations of
flow information and binding times. We consider the issue of analyzing pro-
grams with dynamic control flow, i.e., programs in which the possibilities of
flow of control depends on run-time values in the program. We formalize Shiv-
ers’s time-stamps technique as a generic fixed-point algorithm and we prove
its correctness. We also present a translation which achieves static transition
compression.

A overview of the results included in the dissertation is as follows:

Chapter 2: Starting from the folklore observation that program analyses are
fragile with respect to program transformation, we explore the impact
of the CPS transformation over the results of control-flow analysis and
binding-time analysis.

We use Moggi’s computational metalanguage as a support for reasoning
about program analysis and CPS transformation. Such choice is justified
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by the reasoning principles available for the computational metalanguage,
which allow us to reason about a more realistic setting of programs with
computational effects. Moreover, we are able to use Hatcliff and Danvy’s
approach to the CPS transformation [49]: reduction to monadic normal
form followed by the introduction of continuations. This separation in
two steps enables us to distinguish between the effect of let-flattening and
let-β-reductions on program analysis and the effect of introducing contin-
uations. Therefore, the results are not particular to a full CPS transfor-
mation, they also account for monadic normal forms, which are a useful
intermediate form for compilation and partial evaluation. We consider
three target monovariant constraint-based analyses: control-flow analysis,
binding-time analysis for traditional partial evaluation and binding-time
analysis for continuation-based partial evaluation.

We show that reduction to monadic normal form and introduction of con-
tinuations does not affect the results of the control-flow analysis. Given
the flow information extracted by the analysis of the source program,
for each of these two transformations, we are able to construct, in linear
time, the flow information extracted by the analysis of the transformed
program. Such a construction is particularly useful in the case of control-
flow analysis after the introduction of continuations. In this case, due to
the larger size of the CPS terms and the cubic complexity of the anal-
ysis, it is cheaper to perform the analysis on the original program, also
because we now know that no information is lost or gained by the CPS
transformation.

Using this result, we also show that the CPS transformation improves the
result of the constraint-based binding-time analysis for traditional par-
tial evaluation. Our results formalize folklore knowledge about binding-
time-improvements by CPS transformation in partial evaluation [20]. The
improvements come from two main sources.

1. As part of the reduction to monadic normal forms, let-flattening is
shown to improve the results of the binding-time analysis. This result
essentially provides a static version of Hatcliff and Danvy’s online let-
flattening [50], where let-flattening occurs inside the specializer, after
binding-time separation.

2. The introduction of continuations is proven to provide a binding-time
improvement. The abstraction of contexts provides a support for
maintaining static computations inside dynamic contexts. Binding-
time-improvements originate in the let-rule which requires that the
body of a let must be dynamic if its header is also dynamic. As ex-
plained in Chapter 2, such rule is needed in order to preserve dynamic
computational effects. Binding-time improvements also originate in
the relocation of contexts over conditional branches. Such improve-
ments, however, might lead to code duplication, unless avoided by
let-insertion.
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Together, these two binding-time improvements suggest an avenue of im-
provements of results in similar program analyses. A CPS transforma-
tion might also lead to improvements in analyses which have similar con-
straints, as for instance, the ones emerging from strong non-interference
requirements [1]. As we discuss in Chapter 2, security analysis might be
such an analysis, but, on the other hand, region analysis might lead to
mixed results.

Finally, we show that, naturally, the CPS transformation has no effect
on the constraint-based binding-time analysis for continuation-based par-
tial evaluation. Such analysis does not enforce the let rule and accounts
for the CPS-based specializer’s ability to relocate static computation out-
side dynamic contexts. This result thus leaves the user the freedom of
choice between CPS-transforming a program before making use of a tra-
ditional partial evaluator, or leaving the program in direct style and using
a continuation-based partial evaluator.

Chapter 3: We consider the traditional way of performing a CPS transfor-
mation, namely a Plotkin-style transformation followed by administrative
reductions and we construct the corresponding CPS transformation of flow
information.

Palsberg and Wand [97] have defined a CPS transformation of flow for the
Plotkin-style CPS transformation. They transform the flow information
obtained by the constraint-based analysis on a source program into the
flow information for the CPS program. Plotkin’s CPS transformation
leads to prohibitively large terms including administrative redexes, and
administrative reductions remain unaccounted.

Starting from the observation that administrative reductions are linear, we
prove a general statement about linear β-reductions and constraint-based
control-flow analysis. We show that the control-flow information for a
program after a linear reduction is a simple restriction of the control-flow
information of the original program. We are therefore able to say that
linear β-reductions do not affect the result of the control-flow analysis.
We also conclude that we are able to extract the flow information for
the resulting program from the control-flow information of the original
program by a simple projection.

Turning back to the CPS transformation of flow, by successively apply-
ing linear reductions, we are able to conclude that a Plotkin-style CPS
transformation followed by administrative reductions does not affect the
control-flow analysis. We are also able to construct the flow information
for the CPS term without administrative reductions as a direct projection
of the CPS flow information.

Chapter 4: Following Danvy and Nielsen’s recent discovery of a compositional,
first-order, one-pass CPS transformation, we adapt the CPS transforma-
tion of flow to this new syntactic support. As we also explain in Chapter 4,
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there are several reasons for which the new CPS transformation of flow
has a simpler definition and simpler proof of correctness.

The compositional formulation of the transformation is essential for per-
forming a proof by induction on the CPS transformation. Relying also on
the compositional formulation of the flow analysis, we are able to prove in-
ductively that the constructed flow information is correct. Since the CPS
transformation is first-order, we do not require reasoning on higher-order
objects, and, since the transformation is one-pass, we directly generate
flow information for programs without going through administrative re-
ductions.

The simpler transformation of flow re-confirms the result of the preser-
vation of flow information through a CPS transformation. It provides
a direct, linear-time method for computing the CPS flow information.
Compared with the results of the previous chapter, we no longer need to
construct the intermediate flow information for the larger CPS program
with administrative redexes.

Chapter 5: We reconsider Shivers’s time-stamps technique in the context of
program analysis for languages with dynamic control-flow graphs. We
prove its correctness as a generic algorithm for approximating the least
fixed point of such program analyses.

In his PhD thesis [112], Shivers extracts a formal specification of a control-
flow analysis for a higher-order applicative language. At application points,
the analysis explores the set of functions which may be called at run time
at the application point. The number of functions is unknown, due to the
dynamic aspect of the control-flow graph. Shivers proposes an algorithm
based on time-stamps which approximates the result of the analysis by
using a conservative approximation of the set of functions called at each
application site. Due to the mutual dependency between the set computed
by this analysis and the approximation obtained using time-stamps, the
correctness of the method is non-trivial and only informally justified.

We present a formalization of the time-stamps technique and we prove
its correctness. We define a generic formulation of a program analysis
on programs with dynamic control-flow graphs, where we consider that
the set of the possible future program points to be explored at a node
in the graph is dependent on current analysis information. We define a
time-stamps-based version of the analysis and we prove that it computes
a conservative approximation of the original analysis.

In addition, we extend the initial formalization of the algorithm to non-
tail-recursive formulations of program analyses. In particular, we show
how to extend the time-stamps-based algorithm to apply to Sabry and
Felleisen’s constant propagation, and we are able to compare its result
with a constraint-based analysis. We also obtain a polynomial estimate
on the time and space complexity of the algorithm as a function of the
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complexity of the basic operations involved. We conclude that further
assessment on the practicality of the method is needed.

Chapter 6: We consider the issue of static transition compression. We con-
sider a simple source language of structured commands using as control
structures conditional statements and while loops. We also consider a sim-
ple target language of labeled unstructured commands, using as control
structures conditional and unconditional jumps to labels of commands.

We show how a simple compositional translation generates chains of jumps,
spurious empty instructions and redundant (multiple) labels. We show
how such translation induces a run-time overhead, potentially linear on
the size of the program. Taking an inspiration from the notion of contin-
uations we extend the translation with inherited attributes including the
label of the next generated command.

We obtain a compositional, one-pass and linear time translation which
provably does not generate chains of jumps, spurious empty instructions,
unused labels or redundant labels. The translation therefore achieves
static transition compression. It thus removes the need for an expensive
post-processing phase for compressing chains of jumps or for removing
unused or redundant labels. It is therefore most suitable for run-time
code generation environments like, for instance, just-in-time compilation
or program specialization.

1.3 Conclusions and perspectives

At the term of this study, let us place our key results into perspective.
One of the main concepts presented in this dissertation is the CPS transfor-

mation of flow information. Several CPS transformations of flow are presented,
based on several CPS transformations of terms. The existence of a reversible
flow transformation indicates that, from the point of view of flow analysis,
continuation-passing style and direct-style intermediate forms are equally at-
tractive choices for an optimizing compiler, as long as a monovariant constraint-
based analysis is being used.

More work is needed to assess the impact of the CPS transformation on
the result of program analysis. Other methods of program analysis could also
be investigated in this respect, possibly by relating them with constraint-based
analyses which we have considered here. More precise control-flow analyses
could also be explored, as, for instance, k-CFA or polymorphic-splitting-based
CFA. As long as more precise information is extracted in an uniform way, my
thesis (as illustrated in Chapter 2) provides a methodology for comparing results
of program analyses across program transformations.

We also formalize CPS as a binding-time improvement. For constraint-based
binding-time analysis, improvements originate mainly in the let-rule, both when
reducing programs to monadic normal form and when introducing continuations.
In essence, continuation-based partial evaluation includes all these binding-time
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improvements. Analyses that share similar properties with binding-time analy-
sis are likely to exhibit similar improvements after a CPS transformation. Given
more time, we could investigate whether such improvements can be integrated
in a continuation-based processor, similar to a continuation-based partial eval-
uator.

We also proved time-stamps to be a generic tool for approximating a whole
range of analyses over programs with dynamic control flow. Further optimiza-
tions of the time-stamps-based algorithm would be worth investigating. More
practical experiments and comparisons with alternative implementations could
provide more new answers.

Finally, we present a simple one-pass translation from a language of struc-
tured commands to a language of unstructured commands. It should be straight-
forward to extend the translation to short-cut boolean operators. The formu-
lation of the translation in terms of code blocks could also allow an integration
with block-reshuffling strategies.

Control-flow information is pervasive in our thesis. We use it to construct
the flow information after a CPS transformation. We also use it to compute
the result of a binding-time analysis and to determine the binding times of
a CPS-transformed program. A simpler definition of the CPS transformation
makes control flow in the resulting program more explicit, leading to simpler
proofs. Dynamic control-flow information can be approximated using time-
stamps. Static control-flow information in the translation of first-order programs
yields simpler and more efficient code. Our thesis therefore provides further
evidence that control-flow information plays a key role in the understanding of
program analysis and transformation.



Chapter 2

Syntactic Accidents in
Program Analysis:
On the Impact of the CPS
Transformation

Abstract1

We show that a non-duplicating transformation into continuation-
passing style (CPS) has no effect on control-flow analysis, a pos-
itive effect on binding-time analysis for traditional partial evalua-
tion, and no effect on binding-time analysis for continuation-based
partial evaluation: a monovariant control-flow analysis yields equiv-
alent results on a direct-style program and on its CPS counterpart,
a monovariant binding-time analysis yields less precise results on
a direct-style program than on its CPS counterpart, and an en-
hanced monovariant binding-time analysis yields equivalent results
on a direct-style program and on its CPS counterpart. Our proof
technique amounts to constructing the CPS counterpart of flow in-
formation and of binding times.

Our results formalize and confirm a folklore theorem about tradi-
tional binding-time analysis, namely that CPS has a positive effect
on binding times. What may be more surprising is that the benefit
does not arise from a standard refinement of program analysis, as,
for instance, duplicating continuations.

The present study is symptomatic of an unsettling property of pro-
gram analyses: their quality is unpredictably vulnerable to syntac-
tic accidents in source programs, i.e., to the way these programs

1This chapter is an extended version of [26]. The chapter is joint work with Olivier Danvy.
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are written. More reliable program analyses require a better under-
standing of the effect of syntactic change.

2.1 Introduction

2.1.1 Motivation

Program analyses are vulnerable to syntactic accidents in source programs in
that innocent-looking, meaning-preserving transformations may substantially
alter the precision of an analysis.

For a simple example, binding-time analysis (BTA) is vulnerable to re-
association: given two static expressions s1 and s2 and one dynamic expression
d, it makes a difference whether the source program is expressed as (s1 +s2)+d
or as s1 + (s2 + d). In the former case, the inner addition is classified as static
and the outer one is classified as dynamic. In the latter case, both additions are
classified as dynamic.

With the exception of BTA (and of region inference, see Section 2.8.1.1),
little is known about the effect of programming style on program analyses.
BTA is an exception because its output critically determines the amount of
specialization carried out by an offline partial evaluator [22, 66]. Therefore,
the output of binding-time analyses has been intensively studied, especially in
connection with syntactic changes in their input. As a result, “binding-time
improvements” have been developed to milk out extra precision from binding-
time analyses [66, Chapter 12], to the point that partial-evaluation users are
encouraged to write programs in a particular style [64]. That said, binding-time-
improvements are not specific to offline partial evaluation—they are also routine
in staging transformations [70] and in the formal specification of programming
languages for semantics-directed compiling [88, Section 8.2].

Since one of the most effective binding-time improvements is the transforma-
tion of source programs into continuation-passing style (CPS) [20, 113], people
have wondered whether CPS may help program analysis in general. Nielson’s
early work on data-flow analysis [87] suggests so, since it shows that for a non-
distributive analysis, a continuation semantics yields more precise results than a
direct semantics. The CPS transformation is therefore a Good Thing, since for
a direct semantics, it gives the effect of a continuation semantics. In the early
1990’s, Muylaert-Filho and Burn’s work [84] was providing further indication
of the value of the CPS transformation for abstract interpretation when Sabry
and Felleisen entered the scene.

In their stunning article “Is continuation-passing useful for data-flow analy-
sis?” [106], Sabry and Felleisen showed that for constant propagation, analyzing
a direct-style program and analyzing its CPS counterpart yields incomparable
results. They showed that CPS might increase precision by duplicating contin-
uations, and also that CPS might decrease precision by confusing return points.
These results are essentially confirmed by Palsberg and Wand’s recent CPS
transformation of flow information [97]. At any rate, except for continuation-
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based partial evaluation [50], there seems to have been no further work about
the effect of CPS on the precision of program analysis in general.

The situation is therefore that the CPS transformation is known to have an
unpredictable effect on constant propagation and is also believed to have a pos-
itive effect on binding-time analysis. Still, we do not know for sure whether this
positive effect is truly positive, or whether it worsens binding times elsewhere
in the source program. One may also wonder whether, besides distributive
monotone frameworks, there exist other program analyses on which CPS has no
effect.

In this article, we answer these two questions by studying the effect of a
non-duplicating CPS transformation on two off-the-shelf constraint-based pro-
gram analyses—control-flow analysis (CFA) and BTA. Using a uniform proof
technique, we formally show that:

(1) CPS has no effect on CFA, i.e., analyzing a direct-style program and an-
alyzing its CPS counterpart yields equivalent results.

(2) CPS does not make BTA yield less precise results, and for the class of
examples for which continuation-based partial evaluation was developed,
it makes BTA yield results that are strictly more precise.

(3) CPS has no effect on an enhanced BTA which takes into account continu-
ation-based partial evaluation.

This increased precision entailed by CPS also concerns analyses that have
been noticed to be structurally similar to BTA, such as security analysis, pro-
gram slicing, and call tracking [1]. These analyses display a similar symptom:
for example, we are told that, in practice, users tend to find security analyses too
conservative, without quite knowing what to do to obtain more precise results.
(Here, “more precise results” means that more parts of the source program can
be classified as low security.)

In the next section, we point out how the dependency induced by let-
expressions leads to a loss of precision.

2.1.2 A loophole: the let rule

Partial evaluation is a transformation technique for specializing programs. Of-
fline partial evaluation [66] is a staged technique for specializing programs. In
a first phase, the binding times of a source program (i.e., which parts are static
and should be evaluated at partial-evaluation time and which parts are dynamic
and should be part of the specialized program) are analyzed. In a second phase,
specialization proper takes place (i.e., the static parts are evaluated and the
dynamic parts are residualized). Binding-time analysis is thus a data-flow anal-
ysis and when source programs are higher-order, it is driven by control-flow
information. Such information is in turn obtained by a control-flow analysis.

A partial evaluator is correct when the meaning of the residual program is
the same as the meaning of the source program applied to the static input. In
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particular, if the source language includes computational effects (for instance
non-termination), the specializer must ensure that all the dynamic side effects
of the source program are exhibited by the residual program.

To ensure this contextual coherence, a binding-time analysis classifies a let
expression to be dynamic if its header is dynamic, because of possible side effects
in the header and regardless of the binding time of the body. (Similarly, if a
let header is classified to be of high security, the whole let expression is also
classified to be of high security, regardless of the security level of its body.)
Therefore, the body of the following λ-abstraction is classified as dynamic if e
is dynamic:

λx.let v = e in b

The CPS counterpart of this λ-abstraction reads as follows:

λx.λk.e′ (λv.b′ k)

where e′ and b′ are the CPS counterparts of e and b, respectively. Now, assume
that b naturally yields a static result independently of x, but is coerced to be
dynamic because of the let rule. In the CPS term, e′ also yields a dynamic
result, i.e., intuitively, v is classified to be dynamic.2 Intuitively, b′ also yields
a static result and sends it to its continuation k. Therefore, in direct style, b
yields a dynamic result whereas in CPS, it yields a static result.

Two observations need to be made at this point:

(1) The paragraph above is the standard motivation for improving binding
times by CPS transformation [20] (see Section 2.8.2 for further detail).
Nevertheless, what this paragraph leaves unsaid—and what actually has
always been left unsaid—is whether this local binding-time improvement
corresponds to a global improvement as well, or whether it may make
things worse elsewhere in the source program. (In Section 2.7, we prove
that this local improvement actually is a global improvement as well.)

(2) In their core calculus of dependency [1], Abadi et al. make a point that
any function classified as d → s (resp. h → l, etc.) is necessarily a constant
function. Nevertheless, as argued above, given a direct-style function clas-
sified to be d → d because of the let rule, its CPS counterpart may very
well be classified as d → (s → o) → o and not be a constant function in
continuation-passing style (i.e., a function applying its continuation to a
constant).

Together, these two observations tell us that the let rule is overly conservative
in BTA, security analysis, etc. CPS makes it possible to exploit the untapped
precision of this rule non-trivially by providing a local improvement which—and
this is a point of this article—is also a global improvement.

This global improvement is distinct from the common method of improving
precision of program analysis by duplicating the analysis over the same program

2This intuition is formalized in the rest of this article.
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Λ Λml Λmnf Λcps
call-by-value

encoding
// normalization

let .assoc + let .β
// introduction of

continuations
//

Figure 2.1: Staged CPS transformation

points. Sabry and Felleisen, for example, said that any improvement in precision
provided by CPS is solely due to continuation duplication [106]. This assessment
is true for their analysis, but it does not hold in general, as we have just shown
for binding-time analysis.

Other approaches to improving analysis results amount to refining the defini-
tion of the analysis by including more information, such as, for instance, context
information [61, 89, 90, 112]. In contrast, CPS-transforming the source program
naturally provides a representation of the context as a syntactic support for re-
finement to the (unchanged) analysis.

In his work on data-flow analysis [87], Nielson shows that duplicating the
analysis over conditional branches improves the analysis results. Let us point
out that the CPS transformation also leads to binding-time improvements for
conditional expressions. Indeed, to ensure contextual coherence for conditionals,
the binding-time analysis makes conditional branches dynamic if the test is
dynamic. This approximation can be circumvented with a CPS transformation.
Therefore, the improvement is not produced by duplicating the analysis, but
merely by the context relocation induced by the CPS transformation. This
point is developed further in Section 2.7.4.

2.1.3 Overview

In this work we use a staged CPS transformation. Several equivalent methods
exist for performing a global CPS transformation of a program. For exam-
ple, one can use a Plotkin-style CPS transformation with administrative re-
ductions [98], or one can stage the CPS transformation as normalization to a
monadic normal form followed by introduction of continuations [49]. Other CPS
transformations exist [105, 107], but we have not connected them with program
analysis.

Therefore, we use a CPS transformation obtained as follows:

1. call-by-value embedding of the input program into Moggi’s computational
metalanguage [49, 82],

2. normalization under let .assoc and let .β (as defined in Hatcliff and Danvy’s
account of CPS [49]), and

3. introduction of continuations.

The staged transformation is visualized in the diagram of Figure 2.1.
The rest of this article is organized as follows: in Section 2.2 we define

the input language, the transformation steps leading to CPS, and the program
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analyses. More specifically, in Section 2.2.1 we present the labeled language of
input programs. In Section 2.2.2 we review the computational metalanguage and
the corresponding call-by-value encoding of the input language. In Section 2.2.3
we recall the monadic let-reductions.

We continue by introducing the constraint-based analyses for the compu-
tational metalanguage. In Section 2.2.5 we specify the control-flow analysis.
In Section 2.2.6 we specify the binding-time analysis corresponding to tradi-
tional partial evaluation. In Section 2.2.7 we specify the binding-time analysis
corresponding to continuation-based partial evaluation.

In Section 2.3 we outline how to compare the results of a constraint-based
program analysis across a program transformation.

In Section 2.4 we evaluate the effect on constraint-based analyses incurred by
the normalization of the source program with respect to let-reductions: we inves-
tigate the effect of let .β (Section 2.4.1) and let .assoc (Section 2.4.2) reductions
over each of the analyses. We conclude (Section 2.4.3) that linear let-reductions
and let flattening do not change the result of the control-flow analysis, while
they do improve the results of the traditional binding-time analysis.

In the remainder of the article, we evaluate the effect of introducing continua-
tions (Section 2.5) over the result of control-flow analysis (Section 2.6), binding-
time analysis for traditional partial evaluation (Sections 2.7.1 to 2.7.3) and
binding-time analysis for continuation-based partial evaluation (Section 2.7.4).
In Section 2.8 we review related work. In Section 2.9 we conclude and discuss
further issues.

2.2 Constraint-based analyses for a computation-

al metalanguage

We introduce the language of input programs and the individual transformations
performed by the CPS transformation. We then present the three program
analyses: CFA, BTA and BTA?.

2.2.1 The language Λ

We consider that programs are given in an untyped λ-language Λ. The terms of
the language are expressions given by the grammar of Figure 2.2. The language
includes literals, λ-abstractions, recursive function definitions, conditionals and
base-type operators (for simplicity, we only consider unary operators here). We
focus on call by value. Since the evaluation of terms in the language may
not terminate, programs in Λ may exhibit non-termination as a computational
effect.

A program p is a closed expression.
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e ∈ Exp ::= x | n | λx.e | rec f(x).e | e0 e1 | op(e) | if0 e e0 e1

x, f ∈ Ide (identifiers)
n ∈ Int (integers)

op ∈ (an unspecified set of base-type operators)

Figure 2.2: The language Λ

V [[x]] = unit x
V [[n]] = unit n

V [[λx.e]] = unit λx.V [[e]]
V [[rec f(x).e]] = unit rec f(x).e

V [[e0 e1]] = let x0 = V [[e0]]
in let x1 = V [[e1]]

in let x2 = x0 x1

in unit x2

V [[op(e)]] = let x0 = V [[e]] in let x1 = op(x0) in unit x1

V [[if0 e e0 e1]] = let x0 = V [[e]]
in let x1 = if0 x0 V [[e0]] V [[e1]]

in unit x1

(where the xi are fresh)

Figure 2.3: Call-by-value encoding into the computational metalanguage

2.2.2 The computational metalanguage

The computational metalanguage Λml [49] enforces the order of evaluation by
introducing a let construct for naming intermediate computations and a unit
construct for lifting a value into a computation.

e ::= . . . | let x = e1 in e2 | unit e

The computational metalanguage comes with a set of sound reasoning prin-
ciples about programs which may have computational effects, such as non-
termination. Such principles can be used to validate program transformations
performed, for instance, inside a compiler. They can also be used to validate,
for instance, a partial evaluator [50].

In order to make use of such principles, an input program in the language Λ is
encoded into the computational metalanguage, enforcing its order of evaluation.
For call by value, the encoding into the monadic metalanguage is defined in
Figure 2.3.

Notice that, in addition to other known call-by-value encodings [10, 49, 107],
we name the result of the application of two values (x1 and x2 in the translation
of an application). This cosmetic change (indeed, it is only a let .η expansion
in the computational metalanguage) is part of our development of the CPS
transformation of flow information.
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let x = unit t in e →let.β e[t/x]
let x = e in unit x →let.η e

let x2 = let x1 = e1 in e2 in e →let.assoc let x1 = e1 in let x2 = e2 in e

Figure 2.4: The monadic let reductions

2.2.3 The monadic let reductions

The call-by-value encoding leads to a separation of terms into two categories:
trivial terms (noted with t) and serious terms (noted with s). Trivial terms
represent values: constants, variables, λ-abstractions and recursive function def-
initions. Serious terms represent computations: applications, basic operations,
conditionals, nesting of computations by naming intermediate results.

We recall the monadic let-reductions. Normalization under the let-reduc-
tions is the first step in a staged CPS transformation [49]. The let-β reduction,
let-η reduction and the let flattening reduction are presented in Figure 2.4.

2.2.4 Λv : a call-by-value subset of the computational met-
alanguage

In this paper, we focus on the call-by-value embedding. Therefore, we restrict
ourselves to the subset of Λml that forms the image of the call-by-value embed-
ding of Λ. The language Λv of labeled terms is defined in Figure 2.5. Indeed,
the call-by-value embedding produces either trivial terms (t ∈ Triv ) or let-
expressions. All serious terms (s ∈ Step) are named. Since for the call-by-value
embedding the occurrences of the unit construct can be deduced from the con-
text, we omit them in Λv terms.

Note that the language is such that the final result of a computation is
also named. We no longer perform let .η reductions in Λv before introducing
continuations. This aspect is part of our development of the CPS transformation
of flow information, and will be illustrated further in Section 2.6.

For the purpose of program analysis, terms are labeled with labels ` taken
from a countable set Lab. In addition, λ-abstractions and recursive functions are
identified by labels π from another set Lam, so that, for example, in (λπx.e`1)`0 ,
`0 and `1 belong to Lab and π belongs to Lam .

Definition 1. A properly labeled expression is a labeled expression in which
all labels are distinct and all variables are distinct.

We should note that, for the purpose of control-flow analysis or binding-time
analysis, it is not essential that the input program is properly labeled. But the
precision of the analysis is increased if distinct program points have distinct
labels, and distinct variables have distinct names. Since we want to compare
the absolute precision of an analysis before and after program transformation,
we consider the best results that the analysis can give over the program. For this
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p ∈ Pgm ::= e`

e ∈ Exp ::= t | let x = s in e`

s ∈ Step ::= t` | t`00 t`11 | op(t`) | if0 t` e`0
0 e`1

1 | (let x = s in e`1)`2

t ∈ Triv ::= n | x | λπx.e` | recπf(x).e`

x ∈ Ide (identifiers)
n ∈ Int (integers)
` ∈ Lab (term labels)
π ∈ Lam (λ-abstraction labels)

op ∈ an unspecified set of base-type operators

Figure 2.5: Λv : The call-by-value subset of the computational metalanguage

reason, we consider only properly labeled programs and only transformations
that lead to properly labeled programs.

2.2.5 Control-flow analysis for Λv

We consider a constraint-based, monovariant control-flow analysis (CFA) over
programs in Λv . The constraint-based version [47, 61, 89, 93] is known to
be equivalent to other versions, based on different methods such as set-based
analysis [52] and type inference [94]; it is also known to be an instance of abstract
interpretation [24]. For uniformity, we adopt the same definition and notation
as in Nielson, Nielson and Hankin’s recent textbook on program analysis [90].3

The flow information computed by the analysis is a pair consisting of an ab-
stract cache Ĉcf mapping terms to abstract values and an abstract environment
ρ̂cf mapping variables to abstract values. Abstract values are sets of labels of λ-
abstractions to which a term can be reduced and a variable can be bound. The
constraint-based control-flow analysis is specified as a relation �cf on caches,
environments and terms. Given a term e, (Ĉcf , ρ̂cf) �cf e means that (Ĉcf , ρ̂cf)
is a result of the control-flow analysis of e.4

In this work we use the syntax-directed variant of the analysis [90, Chap-
ter 3], and we restrict its analysis relation to a relation �p

cf associated to each
program p being analyzed. Given a properly labeled program p ∈ Λml , the
functionality of the associated relation �p

cf is defined in Figure 2.6. The analysis
relation is defined in Figure 2.7 by induction over the syntax of the program.

Any solution (Ĉcf , ρ̂cf) accepted by the relation �p
cf (i.e., such that the state-

ment (Ĉcf , ρ̂cf) �p
cf p holds) is a conservative approximation of the exact flow

information [90, Chapter 3]. Furthermore, the analysis relation �p
cf has a model-

intersection property, i.e., the set of solutions accepted by �p
cf is closed under

intersection. The model-intersection property ensures the existence of a least
solution of the analysis, i.e., a most precise one. (Here, the order relation is given

3Nielson, Nielson and Hankin’s CFA is developed for a call-by-value language with recursion
and let-constructs. It is thus compatible with the language considered here.

4In the notation of Nielson, Nielson, and Hankin [90], �cf is simply �.
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Lamp The set of λ-abstraction labels in p
Varp The set of identifiers in p
Labp The set of term labels in p

Valpcf = P(Lamp) Abstract values
Ĉcf ∈ Cachep

cf = Labp → Valpcf Abstract cache
ρ̂cf ∈ Envp

cf = Varp → Valpcf Abstract environment

�p
cf ⊆ (Cachep

cf × Envp
cf) × Labp

Figure 2.6: CFA relation for a program p

by the pointwise ordering of functions induced by set inclusion.) In practice, a
work-list based algorithm computes the least solution.

2.2.6 Binding-time analysis for Λv and traditional partial
evaluation

We consider a constraint-based binding-time analysis (BTA) for the call-by-
value subset Λv of the computational metalanguage. The analysis is an adap-
tation of Hatcliff and Danvy’s BTA for the computational metalanguage [50],
presented in constraint form [92, 93, 96]. The analysis determines binding times
of program points and program variables. The binding-time information is used
in offline partial evaluation [22, 66, 92]. The result of the analysis determines
the static computations performed at specialization time.

The constraint-based BTA uses flow information to determine the binding
times of the operators and operands of applications. Alternatively, we could
have considered an analysis computing both flow and binding-time information
at the same time, which is known to give equivalent results [93]. We have chosen
to separate the flow analysis from the binding-time analysis in order to reuse
results on preservation of flow.

The formal definition of the analysis is similar to the definition of the CFA of
Section 2.2.5. The analysis is a relation defined on essentially the same domains
(Figure 2.8); the difference is that the domain of abstract values is now the
standard lattice {S v D} of static and dynamic annotations. The analysis
relation is defined inductively over the syntax (Figure 2.9). At application
points, the definition of the BTA refers to the flow information (Ĉcf , ρ̂cf), which
is considered to be the least solution of the control-flow analysis of Section 2.2.5.

In contrast to the CFA of Section 2.2.5, the BTA accepts non-closed terms.
Following the tradition, we consider the program to be dynamic and its free
variables to be dynamic as well. The flow information for the free variables is
considered to be empty, which is the result of applying the CFA to the pro-
gram closed by abstraction over the free variables. Another difference with the
CFA of Section 2.2.5 is that the constraints generated by the BTA are equality
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(Ĉcf , ρ̂cf) �p
cf n` ⇐⇒ true

(Ĉcf , ρ̂cf) �p
cf x` ⇐⇒ ρ̂cf(x) ⊆ Ĉcf(`)

(Ĉcf , ρ̂cf) �p
cf (λπx.e`1)` ⇐⇒ {π} ⊆ Ĉcf(`) ∧ (Ĉcf , ρ̂cf) �p

cf e`1

(Ĉcf , ρ̂cf) �p
cf (recπf(x).e`1)` ⇐⇒ {π} ⊆ Ĉcf(`) ∧ {π} ⊆ ρ̂cf(f) ∧

(Ĉcf , ρ̂cf) �p
cf e`1

(Ĉcf , ρ̂cf) �p
cf (let x = t` in e`1)`2 ⇐⇒ (Ĉcf , ρ̂cf) �p

cf t` ∧ (Ĉcf , ρ̂cf) �p
cf e`1 ∧

Ĉcf(`) ⊆ ρ̂cf(x) ∧ Ĉcf(`1) ⊆ Ĉcf(`2)
(Ĉcf , ρ̂cf) �p

cf (let x = t`00 t`11
in e`2)`3

⇐⇒ (Ĉcf , ρ̂cf) �p
cf t`00 ∧ (Ĉcf , ρ̂cf) �p

cf t`11 ∧
(Ĉcf , ρ̂cf) �p

cf e`2 ∧ Ĉcf(`2) ⊆ Ĉcf(`3) ∧
∀(λπy.e`

1) ∈ Ĉcf(`0).
(Ĉcf(`1) ⊆ ρ̂cf(y) ∧ Ĉcf(`) ⊆ ρ̂cf(x))

(Ĉcf , ρ̂cf) �p
cf (let x = op(t`)

in e`1)`2

⇐⇒ (Ĉcf , ρ̂cf) �p
cf t` ∧ (Ĉcf , ρ̂cf) �p

cf e`1 ∧
Ĉcf(`1) ⊆ Ĉcf(`2)

(Ĉcf , ρ̂cf) �p
cf (let x =

if0 t` e`0
0 e`1

1

in e`2)`3

⇐⇒ (Ĉcf , ρ̂cf) �p
cf t` ∧ (Ĉcf , ρ̂cf) �p

cf e`0
0 ∧

(Ĉcf , ρ̂cf) �p
cf e`1

1 ∧ (Ĉcf , ρ̂cf) �p
cf e`2 ∧

Ĉcf(`0) ⊆ ρ̂cf(x) ∧ Ĉcf(`1) ⊆ ρ̂cf(x) ∧
Ĉcf(`2) ⊆ Ĉcf(`3)

(Ĉcf , ρ̂cf) �p
cf (let x = (let x1 = s

in e`1
1 )`2

in e`3)`4

⇐⇒ (Ĉcf , ρ̂cf) �p
cf (let x1 = s in e`1

1 )`2 ∧
(Ĉcf , ρ̂cf) �p

cf e`3 ∧ Ĉcf(`2) ⊆ ρ̂cf(x) ∧
Ĉcf(`3) ⊆ Ĉcf(`4)

Figure 2.7: Control-flow analysis (CFA)

constraints.
Finally, additional constraints are generated for λ-abstractions, conditionals

and let-expressions. For example, the argument and body of an abstraction are
dynamic if the abstraction itself is dynamic. As mentioned in Section 2.1.2,
the following binding-time constraints ensure contextual coherence. In each let
expression, the body is constrained to be dynamic if the header is dynamic. In
each conditional expression, both branches are constrained to be dynamic if the
test is dynamic. Note that we allow static operations in dynamic contexts so
that static computations can take place at partial-evaluation time. A proof of
correctness of a specializer using the annotations obtained by this traditional
BTA can be found in Hatcliff and Danvy’s work [50].

2.2.7 Binding-time analysis for Λv and continuation-based
partial evaluation

As mentioned in Section 2.1.2, the traditional binding-time analysis from Sec-
tion 2.2.6 is overly conservative because of the context coherence constraint
imposed in the let rule. The constraint reflects the concern about which reduc-
tions can be safely performed by the specializer. Indeed, in the computational
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Valbt = {S,D} Abstract values
Ĉbt ∈ Cachep

bt = Labp → Valbt Abstract cache
ρ̂bt ∈ Envp

bt = Varp → Valbt Abstract environment

�p
bt ⊆ (Cachep

bt × Envp
bt) × Labp

Figure 2.8: BTA relation for a program p

metalanguage [50], a named dynamic computation cannot be discarded due to
possible computational effects. Similarly, the contextual coherence constraint
over the conditional branches is introduced because one cannot decide stati-
cally which conditional branch should be selected. We will show in Sections 2.4
and 2.7 that these context coherence constraints are the source of binding-time
improvements by CPS transformation.

The context coherence constraint on the body of a let-expression can be
relaxed if one uses a continuation-based program specializer [13, 50, 76]. The
context coherence constraint connecting the conditional branches with the test
can be relaxed as well if one allows the same continuation-based specializer to
lift the test above the context, either by duplicating the context or by naming
the continuation with a let-expression.

We consider a binding-time analysis which takes into account a continuation-
based specializer. More formally, we consider the BTA of Figure 2.9, without the
context coherence constraints mentioned above. The functionality of the new
relation �p

bt? is defined in Figure 2.10, and it is identical to the functionality of
the traditional BTA relation �p

bt (Figure 2.8). To define the new BTA relation,
we replace the rules for let-expressions and conditional expressions as specified
in Figure 2.11. The result is BTA?.

2.3 Comparing analysis results across program
transformations

How do we compare the results of a program analysis before and after a program
transformation? The result of an analysis is a function mapping labels and
program variables to analysis information. For simplicity, we expect that the
transformation preserves some of the labels and variables of the initial program.
Under this assumption, we relate the results of the analysis by comparing the
analysis information associated with the labels and variables preserved by the
transformation.

Let us say that the program p is transformed into the program p′. Let us
assume that the points (labels and variables) common to p and p′ are identified
as a set L. Let S be an arbitrary solution of the analysis of p and S′ be an
arbitrary solution of the analysis of p′. We consider that the solutions S and S′

are equivalent if S′|L = S|L, where S|L is the restriction of the mapping S to
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(Ĉbt, ρ̂bt) �p
bt n` ⇐⇒ true

(Ĉbt, ρ̂bt) �p
bt x` ⇐⇒ ρ̂bt(x) = Ĉbt(`)

(Ĉbt, ρ̂bt) �p
bt (λπx.e`1)` ⇐⇒ (Ĉbt, ρ̂bt) �p

bt e`1 ∧
(Ĉbt(`) = D ⇒ Ĉbt(`1) = ρ̂bt(x) = D)

(Ĉbt, ρ̂bt) �p
bt (recπf(x).e`1)` ⇐⇒ (Ĉbt, ρ̂bt) �p

bt e`1 ∧ Ĉbt(`) = ρ̂bt(f) ∧
(Ĉbt(`) = D ⇒ Ĉbt(`1) = ρ̂bt(x) = D)

(Ĉbt, ρ̂bt) �p
bt (let x = t`

in e`1)`2

⇐⇒ (Ĉbt, ρ̂bt) �p
bt t` ∧ (Ĉbt, ρ̂bt) �p

bt e`1 ∧
Ĉbt(`) = ρ̂bt(x) ∧ Ĉbt(`1) = Ĉbt(`2) ∧
ρ̂bt(x) = D ⇒ Ĉbt(`1) = D

(Ĉbt, ρ̂bt) �p
bt (let x = t`00 t`11

in e`2)`3

⇐⇒ (Ĉbt, ρ̂bt) �p
bt t`00 ∧ (Ĉbt, ρ̂bt) �p

bt t`11 ∧
(Ĉbt, ρ̂bt) �p

bt e`2 ∧ Ĉbt(`2) = Ĉbt(`3) ∧
(Ĉbt(`0) = D ⇒ Ĉbt(`1) = ρ̂bt(x) = D) ∧
(ρ̂bt(x) = D ⇒ Ĉbt(`2) = D) ∧
∀(λπy.e`

1) ∈ Ĉcf(`0).(Ĉbt(`1) = ρ̂bt(y) ∧
Ĉbt(`) = ρ̂bt(x))

(Ĉbt, ρ̂bt) �p
bt (let x = op(t`)

in e`1)`2

⇐⇒ (Ĉbt, ρ̂bt) �p
bt t` ∧ (Ĉbt, ρ̂bt) �p

bt e`1 ∧
Ĉbt(`) v ρ̂bt(x) ∧ Ĉbt(`1) = Ĉbt(`2) ∧
(ρ̂bt(x) = D ⇒ Ĉbt(`1) = D)

(Ĉbt, ρ̂bt) �p
bt (let x =

if0 t` e`0
0 e`1

1

in e`2)`3

⇐⇒ (Ĉbt, ρ̂bt) �p
bt t` ∧ (Ĉbt, ρ̂bt) �p

bt e`0
0 ∧

(Ĉbt, ρ̂bt) �p
bt e`1

1 ∧ (Ĉbt, ρ̂bt) �p
bt e`2 ∧

Ĉbt(`0) = Ĉbt(`1) = ρ̂bt(x) ∧
(Ĉbt(`) = D ⇒ Ĉbt(`0) = Ĉbt(`1) = D) ∧
(ρ̂bt(x) = D ⇒ Ĉbt(`2) = D) ∧
Ĉbt(`2) = Ĉbt(`3)

(Ĉbt, ρ̂bt) �p
bt (let x =

(let x1 = s

in e`1
1 )`2

in e`3)`4

⇐⇒ (Ĉbt, ρ̂bt) �p
bt (let x1 = s in e`1

1 )`2 ∧
(Ĉbt, ρ̂bt) �p

bt e`3 ∧ Ĉbt(`2) = ρ̂bt(x) ∧
(ρ̂bt(x) = D ⇒ Ĉbt(`1) = D) ∧
Ĉbt(`3) = Ĉbt(`4)

(Ĉbt, ρ̂bt) �p
bt p ⇐⇒ (∀x.x free in p ⇒ ρ̂bt(x) = D) ∧

(p = e` ⇒ Ĉbt(`) = D)

Figure 2.9: Binding-time analysis for traditional partial evaluation (BTA)

the set L of common program points.

To establish a relationship between the two best analysis results we use a
constructive technique. Given an arbitrary solution S of a constraint-based
analysis of a program p, we show how to construct an equivalent solution S′ of
the analysis of the transformed program p′. We then show that the construction
is valid, i.e., that S′ is a valid solution of the analysis. Our construction induces
a monotone mapping Φ between the two spaces of solutions. From the model-
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Valbt = {S,D} Abstract values
Ĉbt ∈ Cachep

bt = Labp → Valbt Abstract cache
ρ̂bt ∈ Envp

bt = Varp → Valbt Abstract environment

�p
bt? ⊆ (Cachep

bt × Envp
bt) × Labp

Figure 2.10: BTA? relation for a program p

(Ĉbt, ρ̂bt) �p
bt? n` ⇐⇒ true

(Ĉbt, ρ̂bt) �p
bt? x` ⇐⇒ ρ̂bt(x) = Ĉbt(`)

(Ĉbt, ρ̂bt) �p
bt? (λπx.e`1)` ⇐⇒ (Ĉbt, ρ̂bt) �p

bt? e`1 ∧
(Ĉbt(`) = D ⇒ Ĉbt(`1) = ρ̂bt(x) = D)

(Ĉbt, ρ̂bt) �p
bt? (recπf(x).e`1)` ⇐⇒ (Ĉbt, ρ̂bt) �p

bt? e`1 ∧ Ĉbt(`) = ρ̂bt(f) ∧
(Ĉbt(`) = D ⇒ Ĉbt(`1) = ρ̂bt(x) = D)

(Ĉbt, ρ̂bt) �p
bt? (let x = t`

in e`1)`2

⇐⇒ (Ĉbt, ρ̂bt) �p
bt? t` ∧ (Ĉbt, ρ̂bt) �p

bt? e`1 ∧
Ĉbt(`) = ρ̂bt(x) ∧ Ĉbt(`1) = Ĉbt(`2)

(Ĉbt, ρ̂bt) �p
bt? (let x = t`00 t`11

in e`2)`3

⇐⇒ (Ĉbt, ρ̂bt) �p
bt? t`00 ∧ (Ĉbt, ρ̂bt) �p

bt? t`11 ∧
(Ĉbt, ρ̂bt) �p

bt? e`2 ∧ Ĉbt(`2) = Ĉbt(`3) ∧
(Ĉbt(`0) = D ⇒ Ĉbt(`1) = ρ̂bt(x) = D) ∧
∀(λπy.e`

1) ∈ Ĉcf(`0).(Ĉbt(`1) = ρ̂bt(y) ∧
Ĉbt(`) = ρ̂bt(x))

(Ĉbt, ρ̂bt) �p
bt? (let x = op(t`)

in e`1)`2

⇐⇒ (Ĉbt, ρ̂bt) �p
bt? t` ∧ (Ĉbt, ρ̂bt) �p

bt? e`1 ∧
Ĉbt(`) v ρ̂bt(x) ∧ Ĉbt(`1) = Ĉbt(`2)

(Ĉbt, ρ̂bt) �p
bt? (let x =

if0 t` e`0
0 e`1

1

in e`2)`3

⇐⇒ (Ĉbt, ρ̂bt) �p
bt? t` ∧ (Ĉbt, ρ̂bt) �p

bt? e`0
0 ∧

(Ĉbt, ρ̂bt) �p
bt? e`1

1 ∧ (Ĉbt, ρ̂bt) �p
bt? e`2 ∧

Ĉbt(`0) = Ĉbt(`1) = ρ̂bt(x) ∧
Ĉbt(`2) = Ĉbt(`3)

(Ĉbt, ρ̂bt) �p
bt? (let x =

(let x1 = s

in e`1
1 )`2

in e`3)`4

⇐⇒ (Ĉbt, ρ̂bt) �p
bt? (let x1 = s in e`1

1 )`2 ∧
(Ĉbt, ρ̂bt) �p

bt? e`3 ∧ Ĉbt(`2) = ρ̂bt(x) ∧
Ĉbt(`3) = Ĉbt(`4)

(Ĉbt, ρ̂bt) �p
bt? p ⇐⇒ (∀x.x free in p ⇒ ρ̂bt(x) = D) ∧

(p = e` ⇒ Ĉbt(`) = D)

Figure 2.11: Binding-time analysis for continuation-based partial evaluation
(BTA?)

(Compared to Figure 2.9, we disabled the context coherence constraints in the 5th,
6th, 7th, 8th and 9th case.)
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Figure 2.12: Comparing results of constraint-based analyses

intersection property of the constraint-based analyses we conclude that the best
result of the analysis of p′ is at least as good as the results of the analysis of p.
This situation is pictured in Figure 2.12.

In some cases, given a solution of the analysis of p′, we are also able to
construct an equivalent solution of the analysis of p, inducing an inverse mapping
Ψ. When Φ and Ψ are both monotone and their composition in both ways leads
to contractions (similarly to a Galois connection), we are able to show that the
best result of the analysis of p is equivalent to the best result of the analysis of
p′. In such cases we conclude that the specific program transformation has no
impact on the result of the analysis.

2.4 Control-flow analysis, binding-time analysis

and monadic let reductions

In order to avoid generating administrative redexes when introducing continu-
ations, Λml -programs need to be normalized with respect to the monadic let-
reductions [49]. The Λv language is closed under the let .β and let .assoc reduc-
tions. In this section, we investigate the effect of each of the two reductions over
the constraint-based analyses defined in Section 2.2.

Concerning preservation of analysis results, the subject-reduction property
of the control-flow or binding-time analyses shows that a result of an analysis will
be a result of the analysis after a let-reduction. What it is not clear, however,
is whether such reductions may strictly improve the results of the analysis. We
rely on the linearity of the transformations to show that flow information is
not improved. We also show that strict binding-time improvements may be the
result of let reduction; we also show that the context coherence constraints are
the cause of such improvements: disabling them leads to no improvements after
a let reduction.

The let-expressions introduced by the call-by-value embedding of Figure 2.3
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are linear: they do not duplicate or throw away code. Moreover, their linearity
is preserved by the let .β and let .assoc reductions. In the following sections,
we formalize the notion of linearity (Section 2.4.1), and use it to character-
ize the effect of the let .β and let .assoc reductions over CFA, BTA and BTA?

(Sections 2.4.1.1 through 2.4.2.3).

2.4.1 Linear let-reduction

We formalize the notion of linear let-reduction as a let .β reduction such that
the let body contains a unique occurrence of the variable named in the let
header. The key observation, which we will prove in Section 2.4.1.1, is that
linear reductions have no effect on the flow analysis. Linearity is essential: it is
simple to show that non-linear (code-duplicating) reductions may improve the
result of the flow analysis.

Definition 2. A linear context is an expression with a unique hole [·]. Linear
contexts are defined by the following grammar:

E ::= T | (let x = S in e`1)` | (let x = s in E)`

S ::= T | T t`11 | t`00 T | op(T ) | if0 T e`0
0 e`1

1 | if0 t` E e`1
1 | if0 t` e`0

0 E |
(let x = S in e`1)` | (let x = s in E)`

T ::= [·] | (λπx.E)` | (recπf(x).E)`

We use linear contexts to identify contexts which are filled as the result of
a let .β reduction. Note that linear contexts as defined in Definition 2 are more
expressive than contexts that may result from the call-by-value embedding: the
CPS transformation does not extract terms from inside lambda-expressions and
conditional branches. Nevertheless, the results we are presenting hold in this
enlarged setting.

We also formalize the notion of a let-context as a context where a let-
reduction might take place.

Definition 3. A let context is an expression which contains a unique hole [·] in
the place of a let-expression. Let-contexts are defined by the following grammar:

E ::= [·] | T | (let x = S in e`1)` | (let x = s in E)`

S ::= [·] | T | T t`11 | t`00 T | op(T ) | if0 T e`0
0 e`1

1 | if0 t` E e`1
1 |

if0 t` e`0
0 E | (let x = S in e`1)` | (let x = s in E)`

T ::= (λπx.E)` | (recπf(x).E)`

Given a linear context E and a trivial term t` , we use E[t` ] to denote the
context E with the hole [·] replaced with t` . It is trivial to see that E[t` ] is
a well-formed expression. We use the same notation for plugging a labeled
let-expression into a let context. Again, the operation is well defined.

We use FV (e) to denote the set of free variables of the expression e. This
notation naturally extends to contexts, by considering the hole [·] to contain
no free variables. We also use L as the function extracting the label of an
expression. By definition, for any labeled expression e` , L(e`) = `.
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Definition 4. A linear let is an expression of the form let x = s in e` such
that e` contains a unique free occurrence of x.

It is immediate to see that if a let-expression let x = s in e` is linear, then
there exists a linear context E and a label `1 such that e` = E[x`1 ].

Definition 5. A linear let .β reduction is a let .β reduction of a linear let.

It is relevant to notice that all the let .β redexes introduced by the call-by-
value embedding are linear and that reducing any of these redexes does not
change this property.

2.4.1.1 Linear let .β reduction and CFA

Let us show that a linear let .β reduction does not alter the results of the CFA.
Let p be a properly labeled program such that there exist a let context E and
a linear context E1 such that

p = E[(let x = t` in E1[x`1 ])`2 ]

Let p′ be the program p after performing the linear let .β reduction:

p′ = E[E1[t` ]]

It is immediate to see that p′ is a properly labeled program.
We show that the least solution of the flow analysis of p is equivalent to the

least solution of the analysis of p′. In fact, the least solution for p′ is obtained
from the least solution for p by projection on the labels and variables preserved
by the transformation.

We define the following functions:

• Φlet.β
cf : (Cachep

cf × Envp
cf) → (Cachep′

cf × Envp′
cf) such that

Φlet.β
cf (Ĉcf , ρ̂cf) = (Ĉcf |Labp′ , ρ̂′cf |Varp′ )

• Ψlet.β
cf : (Cachep′

cf×Envp′
cf ) → (Cachep

cf×Envp
cf) such that, if Ψlet.β

cf (Ĉ′
cf , ρ̂

′
cf) =

(Ĉcf , ρ̂cf), then

– Ĉcf = Ĉ′
cf t [`1 7→ Ĉ′

cf(`), `2 7→ Ĉ′
cf(L(E1[t` ]))]

– ρ̂cf = ρ̂′cf t [x 7→ Ĉ ′
cf(`)].

The two functions mediate between solutions for p and p′.

Lemma 2.4.1. If (Ĉcf , ρ̂cf) �p
cf p then Φlet.β

cf (Ĉcf , ρ̂cf) �p′
cf p′, and if (Ĉ′

cf , ρ̂
′
cf) �p′

cf

p′ then Ψlet.β
cf (Ĉ′

cf , ρ̂
′
cf) �p

cf p.

It is immediate to show that Φlet.β
cf and Ψlet.β

cf form an embedding/projection
pair. The following lemma is a direct consequence.

Lemma 2.4.2. If (Ĉcf , ρ̂cf) is the least solution of the CFA of p and (Ĉ′
cf , ρ̂

′
cf)

is the least solution of the CFA of p′, then Φlet.β
cf (Ĉcf , ρ̂cf) = (Ĉ′

cf , ρ̂
′
cf) and

Ψlet.β
cf (Ĉ′

cf , ρ̂
′
cf) = (Ĉcf , ρ̂cf).

Lemma 2.4.2 says that the result of the CFA is preserved by a linear let .β
reduction.
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2.4.1.2 Linear let .β reduction and BTA

We show that a linear let .β reduction may improve the results of the BTA. Let
p and p′ be as defined in the previous section. We show that the least binding
times of p are as good and possibly better than the binding times of p′.

We define the function Φlet.β
bt : (Cachep

bt × Envp
bt) → (Cachep′

bt × Envp′
bt) as

Φlet.β
bt (Ĉbt, ρ̂bt) = (Ĉbt|Labp′ , ρ̂′bt|Varp′ )

Lemma 2.4.3. If (Ĉbt, ρ̂bt) �p
cf p then Φlet.β

bt (Ĉbt, ρ̂bt) �p′
cf p′.

Lemma 2.4.3 says that the binding times are not worsened by a linear let .β
reduction. Yet the analysis can yield strictly better results after a linear let .β
reduction. In some cases, the binding times of the reduced program are strictly
better than the binding times of the initial program.

For example, the call-by-value embedding of the term (λx.2) z followed by
one linear let .β reduction yields the term:

let x1 = z in
let x2 = (λx.2) x1 in x2

Considering z to be dynamic, the let-rule forces the variable x2 to be dynamic.
Therefore, the constant 2 has to be dynamic as well, and, consequently, it will
be residualized at specialization time. In contrast, after one more (linear) let .β
reduction we obtain the term

let x2 = (λx.2) z in x2

and we can see that, in a global static context, the value 2 is no longer coerced
to be dynamic.

The context coherence constraint seems unjustified in the above case since
evaluating the variable z has no side effects. But it is the call-by-value embed-
ding which forces the variable z into a computation. The BTA has to impose
the constraint in such cases as well [50]. At any rate, this initial loss of precision
is avoided by performing the second let .β reduction.

In the next section we show that disabling the context coherence constraints
leads to no loss or gain in the precision of the binding times.

2.4.1.3 Linear let .β reduction and BTA?

Let us show that the context coherence constraints from the standard BTA are
the source of the benefit obtained by a linear let .β reduction. To do so, we show
that a linear let .β reduction does not alter the results of the binding-time anal-
ysis for continuation-based partial evaluation, BTA?. We use the constructive
technique outlined in Section 2.3. The function Φlet.β

bt? : (Cachep
bt × Envp

bt) →
(Cachep′

bt × Envp′
bt) is identical to the one from Section 2.4.1.2. The func-

tion Ψlet.β
bt? : (Cachep′

bt × Envp′
bt) → (Cachep

bt × Envp
bt) is defined similarly to

Ψlet.β
cf in Section 2.4.1.1. It is immediate to show that Ψlet.β

bt? ◦ Φlet.β
bt? = id and

Φlet.β
bt? ◦ Ψlet.β

bt? = id. The following lemma is a direct consequence:
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Lemma 2.4.4. If (Ĉbt, ρ̂bt) is the least solution of the BTA? of p and (Ĉ′
bt, ρ̂

′
bt)

is the least solution of the BTA? of p′, then Φlet.β
bt? (Ĉbt, ρ̂bt) = (Ĉ′

bt, ρ̂
′
bt) and

Ψlet.β
bt? (Ĉ′

bt, ρ̂
′
bt) = (Ĉbt, ρ̂bt).

Lemma 2.4.4 says that the binding times obtained with BTA? are preserved
by a linear let .β reduction.

2.4.2 Let flattening

We show that a let .assoc reduction has no effect on the CFA and on BTA?, and
that it can improve and will not degrade the results of the standard BTA.

2.4.2.1 Let flattening and CFA

Let us show that a let .assoc reduction does not alter the results of the CFA.
Let p be a properly labeled program as a let context E such that

p = E[(let x1 = (let x = s in e`1
1 )` in e`2

2 )`3 ]

Let p′ be the program p after reassociating the let constructs:

p′ = E[(let x = s in (let x1 = e`1
1 in e`2

2 )`4)`3 ]

It is immediate to see that p′ is a properly labeled program.
Again, we show that the least solution of the flow analysis of p is equivalent

to the least solution of the analysis of p′. The least solution for p′ is obtained
from the least solution for p by projection on the labels and variables preserved
by the transformation.

As in Section 2.4.1.1, we define the following functions:

• Φlet.assoc
cf : (Cachep

cf × Envp
cf) → (Cachep′

cf × Envp′
cf) such that

Φlet.assoc
cf (Ĉcf , ρ̂cf) = (Ĉcf |Labp\{`} t [`4 7→ Ĉcf(`2)], ρ̂cf).

• Ψlet.assoc
cf : (Cachep′

cf × Envp′
cf ) → (Cachep

cf × Envp′
cf ) such that

Ψlet.assoc
cf (Ĉ′

cf , ρ̂
′
cf) = (Ĉ′

cf |Labp′\{`4} t [` 7→ Ĉ′
cf(`1)], ρ̂′cf).

The two functions mediate between solutions of the analysis of p and p′.

Lemma 2.4.5. If (Ĉcf , ρ̂cf) �p
cf p then Φlet.assoc

cf (Ĉcf , ρ̂cf) �p′
cf p′, and if (Ĉ′

cf , ρ̂
′
cf) �p′

cf

p′ then Ψlet.assoc
cf (Ĉ′

cf , ρ̂
′
cf) �p

cf p.

Following the constructive technique from Section 2.3, we can easily prove
the following lemma.

Lemma 2.4.6. If (Ĉcf , ρ̂cf) is the least solution of the CFA of p and (Ĉ′
cf , ρ̂

′
cf)

is the least solution of the CFA of p′, then Φlet.assoc
cf (Ĉcf , ρ̂cf) = (Ĉ′

cf , ρ̂
′
cf) and

Ψlet.assoc
cf (Ĉ′

cf , ρ̂′cf) = (Ĉcf , ρ̂cf).

Lemma 2.4.6 says that the result of the CFA is preserved by let flattening.
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2.4.2.2 Let flattening and BTA

Let us show that an isolated let flattening may improve the results of the BTA.
Let p and p′ be as defined in Section 2.4.2.1.

Again, we show that any binding times of p have their equivalent in p′. We
define the function Φlet.assoc

bt : (Cachep
bt × Envp

bt) → (Cachep
bt × Envp

bt) such
that

Φlet.assoc
bt (Ĉbt, ρ̂bt) = (Ĉbt|Labp\{`} t [`4 7→ Ĉbt(`2)], ρ̂bt).

Obviously Φlet.assoc
bt (Ĉbt, ρ̂bt) is the equivalent of (Ĉbt, ρ̂bt). The following lem-

ma shows that Φlet.assoc
bt constructs valid solutions.

Lemma 2.4.7. If (Ĉbt, ρ̂bt) �p
bt p then Φlet.assoc

bt (Ĉbt, ρ̂bt) �p′
bt p′.

Since Φlet.assoc
bt constructs valid equivalent solutions, by the considerations

of Section 2.3, it follows that the binding times are not worsened by a let-
flattening. The analysis, however, can yield strictly better results. In some
cases, the binding times after a let-flattening are strictly better than the binding
times of the initial program.

For example, the call-by-value embedding of the program succ((λx.2) (pred(z))),
after a few let .β and one let .assoc reductions, leads to:

let x1 = let x2 = pred(z)
in let x3 = (λx.2) x2 in x3

in let x4 = succ(x1) in x4

The program above reassociates to:

let x2 = pred(z)
in let x1 = let x3 = (λx.2) x2 in x3

in let x4 = succ(x1) in x4

In the first program, the let rule forces x1 to be dynamic and the succ(x1)
computation is dynamic. In the second program x1 can be static, and the
succ(x1) computation may be performed statically, and only its result (3) will
be residualized.

2.4.2.3 Let flattening and BTA?

Let us show that for the let .assoc reduction (similarly to the let .β reduction in
Section 2.4.1.3), all binding-time improvements come from the context coherence
constraints. To do so, we show that a let .assoc reduction has no effect on the
binding-time analysis for continuation-based partial evaluation BTA?.

Taking p and p′ as defined in Section 2.4.2.1, we define two functions Φlet.assoc
bt? :

(Cachep
bt × Envp

bt) → (Cachep′
bt × Envp′

bt) and Ψlet.assoc
bt? : (Cachep′

bt × Envp′
bt) →

(Cachep
bt × Envp

bt) which map solutions of BTA? for p into solutions of BTA?

for p′ and vice-versa. The functions are essentially defined as in Section 2.4.2.1.
One can show that Φlet.assoc

bt? ◦Ψlet.assoc
bt? = id and Φlet.assoc

bt? ◦Ψlet.assoc
bt? = id. The

following lemma is an immediate consequence:



2.5 Introducing continuations 33

p ∈ Pgm ::= e`

e ∈ Exp ::= t | let x = s in e`

s ∈ Step ::= t`00 t`11 | op(t`) | if0 t` e`0
0 e`1

1

t ∈ Triv ::= n | x | λπx.e` | recπf(x).e`

Figure 2.13: Λmnf : The subset of Λv normalized with respect to let .β and
let .assoc

Lemma 2.4.8. If (Ĉbt, ρ̂bt) is the least solution of the BTA? of p and (Ĉ′
bt, ρ̂

′
bt)

is the least solution of the BTA? of p′, then Φlet.assoc
bt? (Ĉbt, ρ̂bt) = (Ĉ′

bt, ρ̂
′
bt) and

Ψlet.assoc
bt? (Ĉ′

bt, ρ̂
′
bt) = (Ĉbt, ρ̂bt).

2.4.3 Summary and conclusions

We have shown that, once the input program is embedded into the computa-
tional metalanguage, let .β and let .assoc-normalization can yield binding-time
improvements. At the same time linear let .β and let .assoc preserve the qual-
ity of flow information. This property confirms that monadic normal forms
are a valuable intermediate representation in a program transformer and in an
optimizing compiler.

2.5 Introducing continuations

The language resulting from normalizing terms in Λv under the let .β and let .assoc
reductions is the language Λmnf defined in Figure 2.13. The effect of the nor-
malization is to eliminate naming of trivial values and to flatten all nested
computations. Therefore, in Λmnf a computational step can no longer be a
trivial value or a nested computation.

The language Λmnf is the support for introducing continuations by the trans-
formation shown in Figure 2.14. Introducing continuations leads to terms in a
CPS language.5 CPS is a restriction of direct style. In order to use the same
program analysis, we therefore embed the CPS language into the Λv language.
For example, applications are transformed into let-expressions that name par-
tially applied CPS λ-abstractions and intermediate computations. Figure 2.15
displays the corresponding CPS transformation and embedding.6 (We have
omitted the labels, because they only matter in the following sections. Suffice it
to say that we label each CPS trivial term with the same label as its direct-style
counterpart.)

We can apply now the constraint-based analyses of Section 2.2 on both the
(let .β + let .assoc)-normalized program and on its CPS counterpart given by the

5In Figure 2.14, õp is the CPS counterpart of op, to ensure evaluation-order indepen-
dence [98].

6In Figure 2.15, we use op instead of õp since the direct-style language is call-by-value.
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[[e]]Pgm = λk.[[e]]Expk where k is fresh

[[n]]Triv = n
[[x]]Triv = x

[[λx.e]]Triv = λx.λk.[[e]]Expk where k is fresh
[[rec f(x).e]]Triv = rec f(x).λk.[[e]]Expk where k is fresh

[[t]]Expk = k [[t]]Triv

[[let x = t0 t1 in e]]Expk = [[t0]]Triv [[t1]]Triv λx.[[e]]Expk
[[let x = op(t) in e]]Expk = õp [[t]]Triv λx.[[e]]Expk

[[let x = if0 t e0 e1 in e]]Expk = let k1 = λx.[[e]]Expk
in if0 [[t]]Triv ([[e0]]Expk1) ([[e1]]Expk1)

where k1 is fresh

Figure 2.14: Introducing continuations

transformation of Figure 2.15.

2.6 Control-flow analysis and the introduction

of continuations

In order to compare the results of the CFA before and after introducing continu-
ations, we follow the constructive technique outlined in Section 2.3. Therefore,
the rest of this section is organized as follows. First, we show how to CPS-
transform control-flow information (Section 2.6.1). Given a direct-style program
p and an arbitrary solution of its associated analysis (Ĉcf , ρ̂cf), we construct a
solution (Ĉ′

cf , ρ̂
′
cf) of the analysis associated to p′, the CPS counterpart of p. We

ensure that the construction ΦCPS
cf builds a valid solution (Section 2.6.2). We

present a converse transformation, ΨCPS
cf (Section 2.6.3), which we also prove to

be correct (Section 2.6.4). We then show that the two constructions preserve
leastness (Section 2.6.5).

2.6.1 CPS transformation of control flow

Given a solution (Ĉcf , ρ̂cf) of the analysis of a program p (i.e., a cache-environ-
ment pair such that (Ĉcf , ρ̂cf) �p

cf p holds), we now construct in linear time a
solution (Ĉ′

cf , ρ̂
′
cf) of the analysis of p′ = [[p]]Pgm , the CPS counterpart of p (i.e.,

such that (Ĉ ′
cf , ρ̂

′
cf) �p′

cf p′ holds). By analogy, we refer to the construction of
(Ĉ′

cf , ρ̂
′
cf) out of (Ĉcf , ρ̂cf) as the CPS transformation of (Ĉcf , ρ̂cf) into (Ĉ′

cf , ρ̂
′
cf).

As mentioned in Section 2.2.1, we have designed the CPS transformation on
labeled terms so that it preserves the labels of each trivial term. In addition,
each direct-style λ-abstraction is annotated with the same label as its CPS
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[[e]]Pgm = λk.[[e]]Expk where k is fresh

[[n]]Triv = n
[[x]]Triv = x

[[λx.e]]Triv = λx.λk.[[e]]Expk where k is fresh
[[rec f(x).e]]Triv = rec f(x).λk.[[e]]Expk where k is fresh

[[t]]Expk = let x = k [[t]]Triv in x where x is fresh

[[let x = t0 t1 in e]]Expk = let x0 = [[t0]]Triv [[t1]]Triv

in let x1 = x0 λx.[[e]]Expk in x1

where x0 and x1 are fresh

[[let x = op(t) in e]]Expk = let x = op([[t]]Triv ) in [[e]]Expk

[[let x = if0 t e0 e1 in e]]Expk = let k1 = λx.[[e]]Expk in
let x1 = if0 [[t]]Triv ([[e0]]Expk1) ([[e1]]Expk1)
in x1

where k1 and x1 are fresh

Figure 2.15: Introducing continuations and embedding into the Λv language

counterpart. As a consequence, the abstract values in direct style are included
into the abstract values in CPS, i.e., Lamp ⊆ Lamp′

and Valpcf ⊆ Valp
′

cf . When
introducing continuations, all the variables defined in the original direct-style
program are preserved. Therefore Varp ⊆ Varp′

. In essence, we construct a
solution for the CPS program such that the flow information assigned to the
variables and to the trivial terms preserved by the transformation is identical
to the information found in the direct-style solution.

We also assign flow information to the newly introduced terms and variables,
in particular to continuation abstractions and continuation identifiers. To this
end, we use two auxiliary functions γ and ξ.

• γ extracts the labels of partially applied CPS λ-abstractions. Formally,
given A a set of λ-abstractions from the program p′, γ(A) is defined as
the set of λ-abstractions λπ1

k.e` such that λπx.λπ1
k.e` ∈ A or such that

recπf(x).λπ1
k.e` ∈ A.

• ξ assigns flow information to each continuation identifier k introduced by
the CPS transformation of p (at λ-abstractions and recursive function def-
initions). This information can be obtained from the direct-style flow in-
formation, since we can syntactically identify the continuation of the CPS
counterpart of any direct-style application.

Given p, Ĉcf , ρ̂cf , and a continuation identifier k introduced by the trans-
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[[e` ]]Pgm = (λπk.[[e` ]]Expk)`0 Ĉ′
cf(`0) = {π} ρ̂′cf(k) = ∅

[[n` ]]Triv = n` Ĉ′
cf(`) = Ĉcf(`)

[[x` ]]Triv = x` Ĉ′
cf(`) = Ĉcf(`)

[[(λπx.e`0)` ]]Triv = (λπx.(λπ1k.[[e`0 ]]Expk)`2)`

Ĉ′
cf(`) = Ĉcf(`) Ĉ′

cf(`2) = {π1}
ρ̂′cf(x) = ρ̂cf(x) ρ̂′cf(k) = ξ(k)

[[(recπf(x).e`0)` ]]Triv = (recπf(x).(λπ1k.[[e`0 ]]Expk)`2)`

Ĉ′
cf(`) = Ĉcf(`) Ĉ′

cf(`2) = {π1}
ρ̂′cf(x) = ρ̂cf(x) ρ̂′cf(f) = ρ̂cf(f) ρ̂′cf(k) = ξ(k)

[[t` ]]Expk = (let x = k`0 [[t` ]]Triv in x`1)`2

Ĉ′
cf(`0) = ρ̂′cf(k)

Ĉ′
cf(`2) = Ĉ′

cf(`1) = ρ̂′cf(x) = ∅

[[
(let x = t`00 t`11
in e`)`2

]]Exp

k =
(let x0 = [[t`00 ]]Triv [[t`11 ]]Triv in
(let x1 = x`3

0 (λπx.[[e` ]]Expk)`4 in x`5
1 )`6)`7

Ĉ′
cf(`3) = ρ̂′cf(x0) = γ(Ĉcf(`0))

Ĉ′
cf(`4) = {π} ρ̂′cf(x) = ρ̂cf(x)

Ĉ′
cf(`7) = Ĉ′

cf(`6) = Ĉ′
cf(`5) = ρ̂′cf(x1) = ∅

[[
(let x = op(t`)
in e`0)`1

]]Exp

k = (let x = op([[t` ]]Triv ) in [[e`0 ]]Expk)`2

ρ̂′cf(x) = ρ̂cf(x) Ĉ′
cf(`2) = ∅




(let x =

if0 t` e`0
0 e`1

1

in e`2)`3






Exp

k =
(let k1 = (λπx.[[e`2 ]]Expk)`4 in
(let x1 = if0 [[t` ]]Triv ([[e`0

0 ]]Expk1) ([[e`1
1 ]]Expk1)

in x`5
1 )`6)`7

ρ̂′cf(k1) = Ĉ′
cf(`4) = {π} ρ̂′cf(x) = ρ̂cf(x)

Ĉ′
cf(`7) = Ĉ′

cf(`6) = Ĉ′
cf(`5) = ρ̂′cf(x1) = ∅

Figure 2.16: Transformation of control flow from direct style to CPS

formation of a λ-abstraction from p:

[[λπ1x.e]]Triv = λπ1x.λk.[[e]]Expk

we gather in ξ(k) all the continuations that are passed at the program
points where λπ1x.e can be applied. Formally, ξ(k) is defined as the set of
all labels π such that in the CPS transformation of p into p′ there exists a
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transformation step

[[let x = t`00 t1 in e]]Expk1 = let x0 = [[t`00 ]]Triv [[t1]]Triv

in let x1 = x0 λπx.[[e]]Expk1 in x1

such that π1 ∈ Ĉcf(`0). We make a similar definition for the continuation
identifiers introduced at recursive function definitions.

Using γ and ξ, we define (Ĉ′
cf , ρ̂

′
cf) inductively, following Figure 2.16. In the

right part, for each CPS-transformation step, we assign flow values into Ĉ′
cf and

ρ̂′cf using previously defined values.
The construction of flow information defines a function

ΦCPS
cf : (Cachep

cf × Envp
cf) → (Cachep

cf × Envp
cf).

It is easy to show that ΦCPS
cf is monotone.

2.6.2 Correctness of the transformation

Let us show that the cache-environment pair constructed by ΦCPS
cf is indeed a

valid solution of the analysis of the CPS counterpart of p.

Theorem 2.6.1. Given a direct-style program p and its CPS counterpart p′ =
[[p]]Pgm , let (Ĉcf , ρ̂cf) be a solution of the CFA of p (i.e., such that (Ĉcf , ρ̂cf) �p

cf p

holds) and let (Ĉ′
cf , ρ̂

′
cf) = ΦCPS

cf (Ĉcf , ρ̂cf). Then (Ĉ′
cf , ρ̂

′
cf) �p′

cf p′ holds.

Under the assumptions of the theorem, we start by observing three immedi-
ate properties of the flow transformation.

Lemma 2.6.2. For all variables x in p, ρ̂′cf(x) = ρ̂cf(x); for all trivial terms t`

in p, Ĉ′
cf(`) = Ĉcf(`); and for all expressions e` in p′, Ĉ′

cf(`) = ∅.

For an arbitrary expression, we define the notion of return label to capture
the return point from which CFA collects flow information, as shown just below
in Lemma 2.6.3.

Definition 6. Given a labeled expression e` ∈ Exp, we define the return label
R[[e` ]] of e` by structural induction as follows:

R[[t` ]] = `
R[[(let x = s in e`1)` ]] = R[[e`1 ]]

Lemma 2.6.3. Let e` be an arbitrary subexpression of p. Then Ĉcf(R[[e` ]]) ⊆
Ĉcf(`).

A return label identifies the point where a continuation is called in the CPS-
transformed program. Return labels thus provide a syntactic connection be-
tween the points where flow information is collected in direct style and the
points where flow information is sent to continuations in CPS.
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[[e` ]]Pgm =(λπk.[[e` ]]Expk)`0

[[n` ]]Triv = n` Ĉcf(`) = Ĉ′
cf(`) ∩ Lamp

[[x` ]]Triv = x` Ĉcf(`) = Ĉ′
cf(`) ∩ Lamp

[[(λπx.e`0)` ]]Triv =(λπx.(λπ1k.[[e`0 ]]Expk)`2)`

Ĉcf(`) = Ĉ′
cf(`) ∩ Lamp ρ̂cf(x) = ρ̂′cf(x) ∩ Lamp

[[(recπf(x).e`0)` ]]Triv =(recπf(x).(λπ1k.[[e`0 ]]Expk)`2)`

Ĉcf(`) = Ĉ′
cf(`) ∩ Lamp ρ̂cf(x) = ρ̂′cf(x) ∩ Lamp

ρ̂cf(f) = ρ̂′cf(f) ∩ Lamp

[[t` ]]Expk =(let x = k`0 [[t` ]]Triv in x`1)`2

[[
(let x = t`00 t`11
in e`)`2

]]Exp

k =
(let x0 = [[t`00 ]]Triv [[t`11 ]]Triv in
(let x1 = x`3

0 (λπx.[[e` ]]Expk)`4 in x`5
1 )`6)`7

Ĉcf(`2) = Ĉcf(`) ρ̂cf(x) = ρ̂′cf(x) ∩ Lamp

[[
(let x = op(t`)
in e`0)`1

]]Exp

k =(let x = op([[t` ]]Triv ) in [[e`0 ]]Expk)`2

Ĉcf(`1) = Ĉcf(`0) ρ̂cf(x) = ρ̂′cf(x) ∩ Lamp




(let x =

if0 t` e`0
0 e`1

1

in e`2)`3






Exp

k =
(let k1 = (λπx.[[e`2 ]]Expk)`4 in
(let x1 = if0 [[t` ]]Triv ([[e`0

0 ]]Expk1) ([[e`1
1 ]]Expk1)

in x`5
1 )`6)`7

Ĉcf(`3) = Ĉcf(`2) ρ̂cf(x) = ρ̂′cf(x) ∩ Lamp

Figure 2.17: Transformation of control flow from CPS to direct style

Lemma 2.6.4. Let k be a continuation identifier introduced by the CPS trans-
formation of a λ-abstraction from p:

[[λπ1x1.e
`0 ]]Triv = λπ1x1.λk.[[e`0 ]]Expk

Then, for each λπx.e`1 ∈ ρ̂′cf(k), Ĉcf(R[[e`0 ]]) ⊆ ρ̂′cf(x). Let k be a continuation
identifier introduced by the CPS transformation of a recursive function definition
from p:

[[recπ1f(x1).e`0 ]]Triv = recπ1f(x1).λk.[[e`0 ]]Expk

Then, for each λπx.e`1 ∈ ρ̂′cf(k), Ĉcf(R[[e`0 ]]) ⊆ ρ̂′cf(x).

Let us consider the first case. By the definition of ξ, the only possibility such
that λπx.e`1 ∈ ρ̂′cf(k) is that the function is the continuation of an application
point where λπ1x1.e

`0 is applied. Focusing on the application point, we show
that Ĉcf(`0) ⊆ ρ̂cf(x) = ρ̂′cf(x). From Lemma 2.6.3, Ĉcf(R[[e`0 ]]) ⊆ Ĉcf(`0).

The proof of Theorem 2.6.1 is sketched in Appendix 2.A.
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2.6.3 Reversing the transformation

In the previous section we have shown that direct-style flow information can
be transformed into CPS flow information. We can also show that any result
of the analysis of a CPS-transformed program can be matched by a result of
the analysis of its direct-style counterpart. Using again the structure given by
the CPS transformation, we exhibit a direct-style flow transformation. Given a
direct-style program p and its CPS counterpart p′, and given (Ĉ′

cf , ρ̂
′
cf) a valid

solution of the analysis on p′, we recover in linear time a valid solution (Ĉcf , ρ̂cf)
of the analysis of p.

Recovering a direct-style solution is straightforward. For variables and trivial
terms in p, we are only “filtering out” the labels of continuations from the results
of the analysis of p′. We define the direct-style solution by induction on the
CPS transformation, following Figure 2.17. In the right part, for each CPS-
transformation step, we assign flow values into Ĉcf and ρ̂cf . The left parts of
Figures 2.16 and 2.17 are identical.

We can show that Figure 2.17 defines another function

ΨCPS
cf : (Cachep

cf × Envp
cf) → (Cachep

cf × Envp
cf).

It is also easy to show that, like ΦCPS
cf in Section 2.6.2, ΨCPS

cf is monotone.

2.6.4 Correctness of the reverse transformation

Let us show that the reverse transformation indeed yields a valid solution of the
analysis of the original program.

Theorem 2.6.5. Given a direct-style program p and its CPS counterpart p′ =
[[p]]Pgm , let (Ĉ′

cf , ρ̂
′
cf) be a solution of the CFA of p′ (i.e., such that (Ĉ′

cf , ρ̂
′
cf) �p′

cf

p′ holds) and let (Ĉcf , ρ̂cf) = ΨCPS
cf (Ĉ′

cf , ρ̂
′
cf). Then (Ĉcf , ρ̂cf) �p

cf p holds.

As in Section 2.6.2, we use intermediate results to prove Theorem 2.6.5.
Working under the assumptions of the theorem, we observe two immediate prop-
erties of the reverse transformation:

Lemma 2.6.6. For all x ∈ Varp, ρ̂cf(x) = ρ̂′cf(x) ∩ Lamp; and for all trivial
terms t` in p, Ĉcf(`) = Ĉ′

cf(`) ∩ Lamp.

For an arbitrary expression, the new solution collects all the flow information
from the return point of the expression.

Lemma 2.6.7. Let e` be an expression in p. Then Ĉcf(`) = Ĉcf(R[[e` ]]).

As a parallel of Lemma 2.6.4, the following lemma connects the flow at the
return points of functions with the flow collected for the variables declared by
continuations.
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Lemma 2.6.8. Let k be a continuation identifier introduced by the transforma-
tion of a λ-abstraction from p:

[[λπ1x1.e
`0 ]]Triv = λπ1x1.λk.[[e`0 ]]Expk

Then, for each λπx.e`1 ∈ ρ̂′cf(k), Ĉcf(R[[e`0 ]]) ⊆ ρ̂′cf(x). Let k be a continuation
identifier introduced by the transformation of a recursive function definition from
p:

[[recπ1f(x1).e`0 ]]Triv = recπ1f(x1).λk.[[e`0 ]]Expk

Then, for each λπx.e`1 ∈ ρ̂′cf(k), Ĉcf(R[[e`0 ]]) ⊆ ρ̂′cf(x).

The proof of Theorem 2.6.5 is sketched in Appendix 2.A.

2.6.5 Equivalence of flow

Let p be an arbitrary direct-style program and p′ = [[p]]Pgm its CPS counterpart.
It is a matter of tedious calculations to prove the following lemma.

Lemma 2.6.9. Given (Ĉcf , ρ̂cf) a solution of the CFA of p (i.e., such that
(Ĉcf , ρ̂cf) �p

cf p holds), ΨCPS
cf (ΦCPS

cf (Ĉcf , ρ̂cf)) ⊆ (Ĉcf , ρ̂cf). Given (Ĉ′
cf , ρ̂

′
cf) a

solution of the CFA of p′, (i.e., such that (Ĉ′
cf , ρ̂

′
cf) �p′

cf p′ holds), then it holds
that ΦCPS

cf (ΨCPS
cf (Ĉ′

cf , ρ̂
′
cf)) ⊆ (Ĉ′

cf , ρ̂
′
cf).

From these two properties the following main theorem follows directly.

Theorem 2.6.10 (Equivalence of flow). Given a direct-style program p and
its CPS counterpart p′ = [[p]]Pgm , let (Ĉcf , ρ̂cf) be the least solution of the CFA of
p and let (Ĉ′

cf , ρ̂
′
cf) be the least solution of the CFA of p′. Then ΦCPS

cf (Ĉcf , ρ̂cf) =
(Ĉ′

cf , ρ̂
′
cf) and ΨCPS

cf (Ĉ′
cf , ρ̂

′
cf) = (Ĉcf , ρ̂cf).

2.6.6 Summary and conclusions

Theorem 2.6.10 shows that the best flow information obtained by a constraint-
based analysis on a direct-style program is transformed into the best flow infor-
mation obtainable by the same analysis on the CPS counterpart of this program
and vice versa. Lemma 2.6.2 and Lemma 2.6.6 show that the two solutions are
equal on the variables and program points common to the two programs. We
conclude that, for CFA as defined in Figure 2.7, no information is lost or gained
by the CPS transformation.

2.7 Binding-time analysis and the introduction
of continuations

We describe the effect of the introduction of continuations on the result of the
BTA of a program in Λmnf . First, we define a CPS transformation of binding
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times (Section 2.7.1), which we show to be correct and to preserve the qual-
ity of the binding times (Section 2.7.2). Unlike for CFA, however, we show
examples where BTA on CPS terms gives more precise results than on the
corresponding direct-style terms, thus showing that introducing continuations
may lead to more specialization opportunities (Section 2.7.3). Finally (Sec-
tion 2.7.4) we show that if we relax the constraints of the BTA to take into
account continuation-based partial evaluation, then, just like CFA, no loss and
no gain of information can be observed after the introduction of continuations.

2.7.1 CPS transformation of binding times

We show that the binding times obtained by analyzing the CPS counterpart of
a program are at least as good as the ones obtained by analyzing the original
program. We construct in linear time a solution of the BTA over the CPS-
transformed program from a solution of the BTA over the original program,
such that the quality of the binding times is preserved.

Given the program p and (Ĉbt, ρ̂bt) a solution of the BTA over p, we define
(Ĉ′

bt, ρ̂
′
bt) as a solution of the BTA over p′, the CPS counterpart of p. The

definition is by induction on the introduction of continuations and is given in
Figure 2.18, where the left parts are identical to the left parts of Figures 2.16
and 2.17. In the right part, we assign binding times into Ĉ′

bt and ρ̂′bt. As in
Section 2.6, we use ΦCPS

bt to denote the function induced by the transformation.

ΦCPS
bt : (Cachep

bt × Envp
bt) → (Cachep′

bt × Envp′
bt).

2.7.2 Correctness of the transformation

Let us show that the solution defined in Figure 2.18 is indeed a valid solution
of the BTA. We follow the same technique as in Section 2.6.2. The correctness
of the transformation is established by the following theorem.

Theorem 2.7.1. Given a direct-style program p and its CPS counterpart p′ =
[[p]]Pgm , let (Ĉbt, ρ̂bt) be an arbitrary solution of the BTA of p (i.e., such that
(Ĉbt, ρ̂bt) �p

bt p holds). If (Ĉ′
bt, ρ̂

′
bt) = ΦCPS

bt (Ĉbt, ρ̂bt) then (Ĉ′
bt, ρ̂

′
bt) �p′

bt p′

holds.

Under the assumption of the theorem, we first observe immediate proper-
ties of the CPS transformation of binding times, similar to the ones stated in
Lemma 2.6.2. For instance, the binding time for expressions in CPS is equal
to the binding time of the result of the program, which, as mentioned in Sec-
tion 2.2.6, is dynamic.

Lemma 2.7.2. For all variables x in p, ρ̂′bt(x) = ρ̂bt(x); for all trivial terms
t` in p, Ĉ′

bt(`) = Ĉbt(`); and for all expressions e in p′, Ĉ′
bt(e) = D.

The binding time of an expression in p is equal to the binding time of its
return point.
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[[e` ]]Pgm =(λπk.[[e` ]]Expk)`0 Ĉ′
bt(`0) = ρ̂′bt(k) = D

[[n` ]]Triv =n` Ĉ′
bt(`) = Ĉbt(`)

[[x` ]]Triv =x` Ĉ′
bt(`) = Ĉbt(`)

[[(λπx.e`0)` ]]Triv =(λπx.(λπ1k.[[e`0 ]]Expk)`2)`

Ĉ′
bt(`2) = Ĉbt(`) Ĉ′

bt(`) = Ĉbt(`)
ρ̂′bt(x) = ρ̂bt(x) ρ̂′bt(k) = Ĉbt(`)

[[(recπf(x).e`0)` ]]Triv =(λπx.(recπ1f(k).[[e`0 ]]Expk)`2)`

Ĉ′
bt(`2) = Ĉbt(`) Ĉ′

bt(`) = Ĉbt(`)
ρ̂′bt(f) = ρ̂bt(f) ρ̂′bt(x) = ρ̂bt(x) ρ̂′bt(k) = Ĉbt(`)

[[t` ]]Expk =(let x = k`0 [[t` ]]Triv in x`1)`2

Ĉ′
bt(`0) = ρ̂′bt(k)

Ĉ ′
bt(`2) = Ĉ′

bt(`1) = ρ̂bt(x) = D

[[
(let x = t`00 t`11
in e`)`2

]]Exp

k =(let x0 = [[t`00 ]]Triv [[t`11 ]]Triv in
(let x1 = x`3

0 (λπx.[[e` ]]Expk)`4 in x`5
1 )`6)`7

Ĉ′
bt(`4) = Ĉ′

bt(`3) = ρ̂′bt(x0) = Ĉbt(`0)
ρ̂′bt(x) = ρ̂bt(x) ρ̂′bt(x1) = D

Ĉ ′
bt(`7) = Ĉ′

bt(`6) = Ĉ′
bt(`5) = D

[[
(let x = op(t`)
in e`0)`1

]]Exp

k =(let x = op([[t` ]]Triv ) in [[e`0 ]]Expk)`2

ρ̂′bt(x) = ρ̂bt(x) Ĉ′
bt(`2) = D




(let x =

if0 t` e`0
0 e`1

1

in e`2)`3






Exp

k =
(let k1 = (λπx.[[e`2 ]]Expk)`4 in
(let x1 = if0 [[t` ]]Triv ([[e`0

0 ]]Expk1) ([[e`1
1 ]]Expk1)

in x`5
1 )`6)`7

ρ̂′bt(k1) = Ĉ′
bt(`4) = ρ̂′bt(x) = ρ̂bt(x)

Ĉ ′
bt(`7) = Ĉ′

bt(`6) = Ĉ′
bt(`5) = ρ̂′bt(x1) = D

Figure 2.18: Transformation of binding times from direct style to CPS

Lemma 2.7.3. Let e` be an arbitrary subexpression of p. Then Ĉbt(R[[e` ]]) =
Ĉbt(`).

The flow of the continuation abstractions connects the binding times of the
return point of expressions and continuation variables. The binding time of the
value abstracted by a continuation is equal to the binding time of any expression
that the continuation can be passed to.

Lemma 2.7.4. Let k be a continuation identifier introduced by the transforma-
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tion of a λ-abstraction from p:

[[λπ1x1.e
`0 ]]Triv = λπ1x1.λk.[[e`0 ]]Expk

Then, for each λπx.e`1 ∈ ρ̂′cf(k), Ĉbt(R[[e`0 ]]) = ρ̂′bt(x). Let k be a continuation
identifier introduced by the transformation of a recursive function definition from
p:

[[recπ1f(x1).e`0 ]]Triv = recπ1f(x1).λk.[[e`0 ]]Expk

Then, for each λπx.e`1 ∈ ρ̂′cf(k), Ĉbt(R[[e`0 ]]) = ρ̂′bt(x).

The proof of Theorem 2.7.1 is sketched in Appendix 2.A.
Theorem 2.7.1 and Lemma 2.7.2 show that we can transform any binding-

time solution of a direct-style program into a solution of its CPS counterpart in
such a way that the binding times of variables and trivial terms are preserved.
This preservation implies that no values are forced to be dynamic just by intro-
ducing continuations. It also implies that the static computations (applications,
tests or base-type operations) in a direct-style program remain static as well in
its CPS counterpart. We thus conclude that the same amount of specialization
of the input program can be achieved after introducing continuations.

2.7.3 Reversing the transformation

We show that it is not always possible to reverse the CPS transformation of
binding times. There are cases when the least analysis of a CPS-transformed
program produces strictly more static annotations than the least analysis of its
direct-style counterpart. Here is a canonical example [50], where succ is the
successor function, and the free variable f and z are considered to be dynamic
(f might denote a potentially diverging function):

let r = (λπy.let v = f z in 2) 1 in let r1 = succ(r) in r1

In the least solution of the BTA on this term, even if the application of λπ to 1
is classified as static, its result is classified as dynamic because of the dynamic
application in the header of its inner let-expression. Thus r is dynamic. Since
the second increment operation depends on r, it is dynamic as well. Simply
discarding the dynamic computation f z is not meaning-preserving since the
computation may diverge.

The CPS counterpart of the canonical example above reads as follows (with-
out embedding it into direct style, for readability):

λk.(λπy.λk1.f z (λv.k1 2)) 1 (λr.let r1 = succ(r) in k r1)

The continuation denoted by k1 is static, and thus the application k1 2 is
performed statically (even if its result is dynamic). Thus, r is static as well, and
further computation based on r can be performed at specialization time.
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Other binding-time improvements can be obtained when a dynamic test
disables further computations based on its result. The canonical example is as
follows:

let v = if0 z 0 1 in let v1 = succ(v) in v1

It is true that one benefits from such an improvement only by allowing code
duplication. But the code duplication takes place at specialization time, not
at BTA time. Thus in contrast to Sabry and Felleisen’s analysis [106], the
improvement in precision is not due to duplicating the analysis on the two
branches.

2.7.4 Continuation-based partial evaluation

In the two examples above the binding-time improvements come from the con-
text coherence constraints in the specification of the BTA (Figure 2.9): the
body of a let-expression has to be dynamic if the header is dynamic, and both
branches of a conditional have to be dynamic if the test is dynamic.

In this section, we show that these contextual coherence constraints are
the only ones leading to binding-time improvements. Using the same proof
technique as in Section 2.6, we can formally show that introducing continuations
has no effect on BTA?, i.e., it entails no local increase and also no loss of precision
elsewhere in the program: the best binding times in direct style are the best
binding times in CPS as well.

More precisely, we can define ΦCPS
bt? , the CPS transformation of the bind-

ing times obtained by BTA?. The definition is only a slight modification of
the definition of ΦCPS

bt in Section 2.7.1. Given the program p and a solution
(Ĉbt? , ρ̂bt?) of BTA? (i.e., such that (Ĉbt? , ρ̂bt?) �p

bt? p holds), we can show that
ΦCPS

bt? (Ĉbt? , ρ̂bt?) �p′
bt? p′ holds. We can also define the reverse binding-time

transformation ΨCPS
bt? , which is essentially the same as the reverse flow trans-

formation of Section 2.6.3 and also operates in linear time: for each term we
just extract the binding time of its CPS counterpart. We can show that given
a solution (Ĉ′

bt? , ρ̂′bt?) of BTA? for p′ (i.e., such that (Ĉ′
bt? , ρ̂′bt?) �p′

bt? p′ holds),
ΨCPS

bt? (Ĉ′
bt? , ρ̂′bt?) �p

bt? p holds too.
We are now in position to connect the binding times in direct style and in

CPS as obtained by BTA?:

Theorem 2.7.5. Given a direct-style program p and its CPS counterpart p′ =
[[p]]Pgm , let (Ĉbt? , ρ̂bt?) be the least solution of BTA? for p and let (Ĉ′

bt? , ρ̂′bt?) be
the least solution of BTA? for p′. Then for all variables x in p, ρ̂bt?(x) = ρ̂′bt?(x)
and for all trivial terms t` in p, Ĉbt?(`) = Ĉ′

bt?(`).

We thus conclude that introducing continuations has no effect on the amount
of specialization that can be performed when using continuation-based partial
evaluation.
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2.7.5 Summary and conclusions

We have shown that, given an input program as a call-by-value encoding of a
Λ-program, introducing continuations does not degrade and may improve the re-
sults of the BTA for traditional partial-evaluation. We have also shown that in-
troducing continuations does not affect the results of the BTA for continuation-
based partial evaluation.

We therefore conclude that, unless one is willing to use continuation-based
partial evaluation, a complete CPS transformation of the program is beneficial
to the quality of the results of the BTA.

2.8 Related work

2.8.1 Program analysis in general

Even though the issue of syntactic accidents is not treated in textbooks and
tutorials on program analysis, it appears to be folklore in the program-analysis
community. An outstanding recent example is region inference (Section 2.8.1.1).
To some extent, a similar situation occurs in programming practice: who has
never modified a program with the sole purpose of improving its performance?

We are only aware of three other studies of the effect of continuations on
program analysis: an early work by Nielson [87], Sabry and Felleisen’s PLDI’94
paper [106], and a recent unpublished work by Palsberg and Wand [97].

Nielson’s work compares the precision of two data-flow analyses: one based
on a direct-style semantics and the other on a continuation semantics. In con-
trast, we compare the precision of the (same) analysis of a program and of
its CPS counterpart. Sabry and Felleisen’s work shows that a CPS transfor-
mation leads to incomparable results for a constant propagation analysis (Sec-
tion 2.8.1.2). Palsberg and Wand’s work is similar to ours since it involves a
CPS transformation of flow information (Section 2.8.1.3).

2.8.1.1 Region inference and the CPS transformation

Region inference [117] aims at detecting program points where run-time storage
can be deallocated—typically at exit points for blocks and at return points
for functions. To overcome syntactic accidents, a programming discipline has
therefore been developed to make region inference yield better results.

We note that region improvements and binding-time improvements may
come at cross purpose. For example, consider let reassociation:

let x2 = let x1 = e`1

in e`2

in e`3

let flattening // let x1 = e`1

in let x2 = e`2

in e`3

let “deepening”
oo
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Let flattening allows the region for x1 to be released after the region for x2.
Let deepening allows the region for x1 to be released earlier and requires the
region for x2 to be allocated earlier. Therefore, let deepening provides a region
improvement, especially if e`3 contains a recursive call. But on the other hand,
and as pointed out by an anonymous reviewer, if e`1 contains a recursive call,
it is let flattening that provides a region improvement. Similarly, for functions,
the CPS transformation yields a binding-time improvement whereas the direct-
style transformation yields a region improvement (since in CPS, functions “never
return”).

2.8.1.2 Data-flow analysis and the CPS transformation

In their PLDI’94 paper [106], Sabry and Felleisen have shown that after a CPS
transformation, a data-flow analysis may confuse the continuations used at re-
turn points. An example of confusion of return points is given by the term

let x1 = f 1
in let x2 = f 2

in x1

and its CPS counterpart

λk.f 1 (λπ1x1.f 2 (λπ2x2.k x1))

analyzed in contexts where f is bound to λx.x and to its CPS counterpart
λx.λk1.k1 x, respectively. The analysis of the direct-style term starts by ex-
amining the first application and detects that x and afterwards x1 evaluate to
the constant 1. Then, by analyzing the second application, the analysis approx-
imates that the value of x is not constant (it can evaluate to both 1 and 2).
The value of x2 is also considered unknown. Nevertheless, x1 is still considered
constant, and the analysis is able to deduce that the whole expression evaluates
to the constant 1.

In the CPS program, the analysis of the first application determines that the
continuation k1 evaluates to π1, and, afterwards, that x1 evaluates to 1. After
the analysis of the second application, the continuation k1 evaluates to both
π1 and π2. The variable x evaluates to both 1 and 2 and is approximated as
unknown. The approximation is passed by the application k1 x, into both x1

and x2. Therefore, a loss of precision occurs: the result of the whole expression
is no longer detected as being a constant.

One can observe, however, that in a constant-propagation analysis the chro-
nological order of the two applications may affect the result. In direct style,
the first application of the function f is analyzed in a different context than
the second application. Switching the order of the two applications leads to a
different result of the analysis, for an essentially equivalent program. Therefore a
limited form of context dependency is built in the constant-propagation analysis
that Sabry and Felleisen considered. In contrast, the constraint-based analyses
(in the monovariant case) propagate the result of a function at once to all the
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application sites of this function. These analyses do not exhibit the sequentiality
dependency of the constant propagation, and therefore, no precision is lost after
a source CPS transformation.

Sabry and Felleisen also present examples where the analysis of a program is
improved after the CPS transformation, reflecting that the constant-propagation
analysis is not distributive [72, 87]. The improvements are attributed to the fact
that the constant-propagation analysis is duplicated over conditional branches
(and their corresponding continuations). In contrast, the constraint-based anal-
yses propagate results from one branch of a conditional to another, and there-
fore, no precision is gained by the CPS transformation.

To summarize, Sabry and Felleisen’s analysis depends on the order in which
the source program is traversed and it is duplicated over conditional branches.
These two properties led Sabry and Felleisen to conclude that the CPS trans-
formation does not preserve the result of constant propagation. In contrast, our
monovariant constraint-based analyses do not depend on the order in which con-
straints are solved and the analyses are not duplicated over conditional branches.
These two properties led us to conclude that the CPS transformation does pre-
serve the results of CFA and of BTA?.

2.8.1.3 CPS transformation of flow information

Recently, Palsberg and Wand have conducted a study of CFA [97], supporting
Sabry and Felleisen’s conclusion that the extra precision enabled by the CPS
transformation is due to the duplication of the analysis. They developed a CPS
transformation of flow information comparable to the one of Figure 2.16, but
independently and prior to us. Palsberg and Wand also mention that least
solutions may or may not be preserved by administrative reductions of CPS-
transformed programs. In that, they implicitly share our concern about syn-
tactic accidents, even though their primary goal was to transfer Wand’s pioneer
results on the CPS transformation of types [77, 119] to the CPS transformation
of flow types.

2.8.2 Binding-time analysis and the CPS transformation

Binding-time improvements have always been customary for users of binding-
time analysis [66, 88]. One of them amounts to considering source programs
in CPS [21, 29], which suggests that source programs should be systematically
CPS-transformed [20]. (Muylaert-Filho and Burn take the same stand for strict-
ness analysis and the call-by-name CPS transformation [84].)

Essentially, the CPS transformation relocates potentially static contexts in-
side definitely dynamic contexts (let expressions and conditionals), thereby pro-
viding a binding-time improvement. To this end, the CPS transformation itself
is continuation-based [30], which paved the way to continuation-based partial
evaluation [13, 76].

Hatcliff and Danvy have characterized the full effect of continuation-based
partial evaluation as online let flattening in Moggi’s computational metalan-
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guage [50]. This characterization justifies why offline let flattening is also, par-
tially, a binding-time improvement [58]. In any case, offline let flattening is
known to be part of the CPS transformation [49].

What had not been shown before, however, and what we have addressed here,
is whether such “improvements” worsen binding times elsewhere in a source
program.

2.9 Conclusion and issues

Observing that program analyses are vulnerable to syntactic accidents, we have
considered a radical syntactic change: a transformation into CPS. We have stud-
ied the interaction between a non-duplicating CPS transformation and two pro-
gram analyses: control-flow analysis (CFA) and binding-time analysis. Through
a systematic construction of the CPS counterpart of flow information, we have
found that constraint-based CFA is insensitive to continuation-passing, and that
the CPS transformation does improve binding times for traditional partial eval-
uation. Using the same technique, we have also found that the binding-time
analysis for continuation-based partial evaluation is insensitive to the CPS trans-
formation.

These results suggest two further avenues of study:

• In BTA, the beneficial effect of the CPS transformation can be accounted
for by disabling the context coherence constraints for let expressions (and
for conditionals as well, if one is willing to duplicate static contexts at
specialization time). The price of this change, however, is that the corre-
sponding program specializer has to be made continuation-based [50]. We
conjecture that the situation is similar, e.g., for security analysis, which has
similar let and case rules. Just like BTA, a security analysis thus ought to
yield more precise results over CPS-transformed programs. We therefore
also conjecture that the beneficial effect of the CPS transformation can be
accounted for by disabling the context coherence constraints in the let and
case rules, if one is willing to develop a corresponding continuation-based
processor of security information.

• More generally, as a step towards more robust program analyses that are
less vulnerable to syntactic accidents, we need to understand better the
program-analysis perspective over syntactic landscapes. Two key questions
arise which may be general to program analysis or specific to individual
program analyses: which program transformations affect precision? And
among those that do, which ones affect precision monotonically? Answer-
ing these questions would enable one to develop more reliable program
analyses, possibly with some kind of subject-reduction property or with
some kind of intermediate language for program analysis. Henglein’s in-
variance properties of polymorphic typing judgments with respect to let
unfolding and folding and η-reduction [57] is a step in this direction.
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2.A Proofs

Proof of Theorem 2.6.1. The proof proceeds by induction on the transformation
of p into p′. We sketch the induction steps.

We show that (Ĉ′
cf , ρ̂

′
cf) �p′

cf (let x = k`0 [[t` ]]Triv in x`1)`2 holds. For an
arbitrary continuation λπy.e`3 in the set Ĉ′

cf(`0) = ρ̂′cf(k), we show that two
flow constraints are satisfied.

The first constraint is Ĉ′
cf(`) ⊆ ρ̂′cf(y). By Lemma 2.6.2, Ĉ′

cf(`) = Ĉcf(`).
We make a case analysis on the introduction of k by the CPS transformation.

If k is the top-level continuation, then the constraints are vacuously satisfied.
If k is introduced by the transformation of a named conditional, then ` is the
return point of one of the two branches of the test. Obviously Ĉcf(`) ⊆ ρ̂′cf(y).
Otherwise, k comes from the transformation of a λ-abstraction λπ1x1.e

`4 from
p, such that ` = R[[e`4 ]]. We apply Lemma 2.6.4.

The second constraint is Ĉ′
cf(`3) ⊆ ρ̂′cf(x). Following Lemma 2.6.2, it amounts

to ∅ ⊆ ∅.
For the rest of the induction steps, the induction hypotheses and the defini-

tion of γ suffice to show that the constraints are satisfied.

Proof of Theorem 2.6.5. The proof is by induction on the transformation of p
into p′. We sketch the induction steps.

For the transformation step [[t` ]]Triv , the constraints follow from the induc-
tion hypothesis. The same applies for the transformation step [[t` ]]Expk.

For the transformation of a named application:

[[let x = t`30 t1 in e2]]Expk = let x0 = [[t`30 ]]Triv [[t1]]Triv

in let x1 = x0 λπx.e`2 in x1

let λπ1y.e`4
1 be an arbitrary λ-abstraction from p such that π1 ∈ Ĉcf(`3). Let

the CPS transformation of the λ-abstraction be λπ1y.λk1.e2. Then π ∈ ρ̂′cf(k1).
From Lemma 2.6.7 and Lemma 2.6.8 we obtain that Ĉcf(`4) ⊆ ρ̂cf(x).

Proof of Theorem 2.7.1. The proof is an adaptation of the proof of Theorem 2.6.1
to equality constraints. In addition, we need to prove the satisfaction of the ad-
ditional constraints introduced by BTA. We sketch the induction steps.

We show that (Ĉ′
cf , ρ̂

′
cf) �p′

cf (let x = k`0 [[t` ]]Triv in x`1)`2 holds. For this pur-
pose, given an arbitrary λπx.e`3 ∈ Ĉ′

cf(`0) = ρ̂′cf(k) we must show that two equal-
ity constraints are satisfied. Similarly to the proof of Theorem 2.6.10, we make
a case analysis on the introduction of k, using Lemma 2.7.3 and Lemma 2.7.4
to prove the satisfaction of the constraints.

We also need to show that Ĉ′
bt(`0) = D ⇒ Ĉ′

bt(`) = D. Again, we make a
case analysis on the introduction of k. The top-level case is trivial. The case
where k is introduced by the transformation of a function (λy.e`5

1 )`4 implies that
Ĉbt(`4) = D. Thus Ĉbt(`5) = D and then Ĉ′

bt(`) = D, since ` = R[[e`5
1 ]]. The

same reasoning follows for the case where k comes from the transformation of
a named conditional.
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The remaining cases follow directly from the induction hypotheses and the
definition of Ĉ′

bt, ρ̂′bt, Ĉcf and γ.



Chapter 3

CPS Transformation of
Flow Information, Part II:
Administrative Reductions

Abstract1

We characterize the impact of a linear β-reduction on the result of
a control-flow analysis. (By “a linear β-reduction” we mean the β-
reduction of a linear λ-abstraction, i.e., of a λ-abstraction whose pa-
rameter occurs exactly once in its body.)

As a corollary, we consider the administrative reductions of a Plotkin-
style transformation into continuation-passing style (CPS), and how
they affect the result of a constraint-based control-flow analysis and
in particular the least element in the space of solutions. We show that
administrative reductions preserve the least solution. Since we know
how to construct least solutions, preservation of least solutions solves
a problem that was left open in Palsberg and Wand’s paper “CPS
Transformation of Flow Information.”

Therefore, together, Palsberg and Wand’s article “CPS Transforma-
tion of Flow Information” and the present article show how to map, in
linear time, the least solution of the flow constraints of a program into
the least solution of the flow constraints of the CPS counterpart of
this program, after administrative reductions. Furthermore, we show
how to CPS transform control-flow information in one pass.

1This chapter is joint work with Olivier Danvy.
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3.1 Background and introduction

Since their inception, over thirty years ago [102], continuations and the trans-
formation into continuation-passing style (CPS) have been the topic of much
study, ranging from semantics and logic to implementations of sequential, con-
current, and distributed programming languages and systems. Fifteen years
ago [77, 119], Meyer and Wand noticed that the CPS transformation preserves
types and constructed a CPS transformation of types.

type CPS transformation
of types

//_______________ type

direct-style program

type
inference

OO

CPS transformation
of terms

// CPS program

type
inference

OO

Over the last couple of years, Palsberg and Wand have extended this observation
to flow types and the flow information gathered by a control-flow analysis [97],
designing a CPS transformation of flow information.

flow
information

CPS transformation
of flow

//____________ flow
information

direct-style program

flow
analysis

OO

CPS transformation
of terms

// CPS program

flow
analysis

OO

Independently, and with a different motivation, we have also designed a CPS
transformation of flow information for control flow and binding times [26]. The
two CPS transformations of flow information correspond to two different takes
on the CPS transformation of λ-terms:

CPS with
administrative redexes administrative

reductions
**TTTTTTTTTT

direct style

CPS
transformation

55lllllllllll

transformation into
monadic style

))RRRRRRRRRRR
CPS without

administrative redexes

monadic
normal form

introduction of
continuations

44jjjjjjjjjjjj

The CPS transformation is Plotkin’s [98]. It is a first-order, compositional
rewriting system generating numerous administrative redexes that need to be
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post-reduced in practice [113]. Alternatively [49, 107], the CPS transformation
can be staged into a transformation into monadic normal form followed by an
introduction of continuations.

The two CPS transformations of flow information can be depicted as follows.

CPS with
administrative redexes

this chapter
**TTTTTTTTTT

direct style

Palsberg & Wand,
unpublished

55lllllllllll

Chapter 2 ))RRRRRRRRRRR
CPS without

administrative redexes

monadic
normal form

Damian & Danvy,
ICFP’00

44jjjjjjjjjjjj

Palsberg and Wand show how to construct, in linear time, the flow infor-
mation corresponding to a CPS program obtained through a Plotkin-style CPS
transformation [97, 98]. The resulting programs contain all administrative re-
dexes induced by Plotkin’s transformation. Therefore, the corresponding CPS
information of flow also contains spurious information which accounts for the
extraneous λ-abstractions and their flow. The problem of eliminating this spu-
rious information is open.

Damian and Danvy show how to construct, in linear time, the flow informa-
tion corresponding to the introduction of continuations, starting from monadic
normal forms [26, 49]. Damian shows how to construct, in linear time, the flow
information corresponding to the transformation into monadic normal forms (as
done in Chapter 2).

In this work, we complete the picture above by showing how to perform,
in linear time, administrative reductions on CPS transformed programs (Sec-
tion 3.4). Our result hinges on linear reductions (Section 3.3). But first, we
present the source language and a constraint-based control-flow analysis (Sec-
tion 3.2).

3.2 Preliminaries

3.2.1 The source language

We consider that input terms are given by the grammar in Figure 3.1. Terms
are annotated with distinct labels taken from a countable set Lab. Each λ-
abstraction is annotated with a distinct label π from a set Lam, and we consider
that there exists a bijection between λ-abstractions and their labels.

We consider that the language has a standard call-by-value semantics, which
is left unspecified. A program p is a closed labeled expression e` .

Definition 7. A properly labeled expression is a labeled expression in which
all labels are distinct and all variables are distinct.
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e ∈ Exp ::= x | n | e`1
1 e`2

2 | if0 e` e`0
0 e`1

1 | λπx.e`

π ∈ Lam (λ-abstraction labels)
` ∈ Lab (term labels)
n ∈ Lit (integer literals)

Figure 3.1: The language of labeled λ-terms

Lamp The set of λ-abstraction labels in p
Varp The set of identifiers in p
Labp The set of term labels in p

Valp = P(Lamp) Abstract values
Ĉ ∈ Cachep = Labp → Valp Abstract cache
ρ̂ ∈ Envp = Varp → Valp Abstract environment

�p ⊆ (Cachep × Envp) × Labp

Figure 3.2: Control-flow analysis relation for a program p: functionality

3.2.2 Control-flow analysis

We consider a constraint-based control-flow analysis. We use the same notations
and definitions as in Nielson, Nielson and Hankin’s recent textbook on program
analysis [90].

Given a program p, the control-flow analysis is defined as a relation �p whose
functionality is displayed in Figure 3.2.

A solution of the analysis of p is a pair (Ĉ, ρ̂) such that (Ĉ, ρ̂) � p. The
set of solutions of the analysis is ordered by the natural pointwise ordering of
functions, and has a least element. This property ensures the existence of a
least solution of the analysis of p. The analysis relation is defined inductively
on the syntax as defined in Figure 3.3.

3.3 Linear reductions

We observed that linear reductions preserve flow information. A linear reduction
is a β-reduction in which the λ-abstraction in the function position is linear, i.e.,
such that its argument occurs free once and only once inside the body. Let us
formalize the notion of linear reduction using linear contexts.

Definition 8. A linear context is a labeled expression with a unique hole [·].



3.3 Linear reductions 55

(Ĉ, ρ̂) �p n` ⇐⇒ true
(Ĉ, ρ̂) �p x` ⇐⇒ ρ̂(x) v Ĉ(`)
(Ĉ, ρ̂) �p (λπx.e`)`1 ⇐⇒ π ∈ Ĉ(`1) ∧ (Ĉ, ρ̂) �p e`

(Ĉ, ρ̂) �p (e`1
1 e`2

2 )` ⇐⇒ (Ĉ, ρ̂) �p e`1
1 ∧ (Ĉ, ρ̂) �p e`2

2 ∧
∀λπx.e`0

0 ∈ Ĉ(`1).Ĉ(`2) ⊆ ρ̂(x) ∧
Ĉ(`0) ⊆ Ĉ(`)

(Ĉ, ρ̂) �p (if0 e` e`0
0 e`1

1 )`2 ⇐⇒ (Ĉ, ρ̂) �p e` ∧ (Ĉ, ρ̂) �p e`0
0 ∧ (Ĉ, ρ̂) �p e`1

1 ∧
Ĉ(`0) ⊆ Ĉ(`2) ∧ Ĉ(`1) ⊆ Ĉ(`2)

Figure 3.3: Control-flow analysis relation for a program p: definition

Linear contexts are defined by the grammar:

E ::= [·] | x` | n` | (E e`2
2 )` | (e`1

1 E)` |
(if0 E e`0

0 e`1
1 )` | (if0 e` E e`1

1 )`0 | (if0 e` e`0
0 E)`1 |

(λπx.E)`

Given a linear context E and a labeled expression e` , we use E[e` ] to denote
the context E with the hole [·] replaced with e` . It is trivial to see that E[e` ] is
a well-formed expression.

We also use FV (e) to denote the set of free variables of the expression e.
This notation naturally extends to contexts: given the context E, by definition
FV (E) = FV (E[n]), where n is an arbitrary literal. We use L as the function
extracting the label of an expression. By definition, for any labeled expression
e` , L(e`) = `.

Definition 9. A λ-abstraction λπx.e` is linear if and only if it is properly labeled
and e` contains a unique free occurrence of x, i.e., if there exists a linear context
E such that x 6∈ FV (E) and e = E[x`1 ] for some label `1.

Definition 10. A linear redex is a β-redex (λx.e1) e2 such that λx.e1 is a linear
λ-abstraction.

Definition 11. A linear reduction is the β-reduction of a linear redex.

Example:

((λπx.E[x` ])`1 e`2)`3 → E[e`2 ]

where E is a linear context where x does not occur free. Note that such a
reduction might not necessarily be sound with respect to call-by-value semantics.
Nevertheless, we show that it does not affect the result of the monovariant
control-flow analysis. In any case, we treat linear reductions in CPS, which is
evaluation-order independent [98].



56 CPS Transformation of Flow Information, Part II

3.4 Control-flow analysis and linear reduction

We show that performing a linear reduction does not alter the results of the
analysis of a properly labeled program. More precisely, we show that, given a
properly labeled program which contains a linear β-redex, control-flow analysis
yields strictly equivalent results before and after performing a linear β-reduction.

We are given a program that contains a linear redex and the least solution
of its analysis. The goal of this section is to construct the least solution of the
analysis of this program after a linear β-reduction.

Let p be a properly labeled program containing a linear β-redex. Therefore,
there exists two linear contexts E and E1, an expression e, a fresh variable x,
and labels π, `0, `1, `2 and `3 such that

p = E[((λπx.E1[x`0 ])`1 e`2)`3 ]

and x 6∈ FV (E). Let then
p′ = E[E1[e`2 ]]

be the program p with the linear redex above reduced. It is immediate to see
that p′ is also a properly labeled program.

In the rest of this section, we define a monotone function Fp which, given a
solution of the analysis of p, constructs a solution of the analysis of p′. We then
define a reverse function Gp, monotone as well, which, given a solution of the
analysis of p′, constructs a solution of the analysis of p. Using the two functions
and their monotonicity, we show that the best solution for p is transformed into
the best solution for p′. We then show how to construct, in linear time, the
least solution of the analysis of p′ from the least solution of the analysis of p.

3.4.1 Flow constructions

For the programs p and p′ defined as above, by construction,

• Labp = Labp′
∪ {`0, `1, `3},

• Lamp = Lamp′
∪ {π}, and

• Varp = Varp′
∪ {x}.

We define a function Fp : (Cachep×Envp) → (Cachep′×Envp′) as Fp(Ĉ, ρ̂) =
(Ĉ|Lamp′ , ρ̂|Lamp′ ). Obviously, Fp is a projection function and it is monotone
with respect to the ordering of solutions.

We define a reverse function Gp : (Cachep′ × Envp′) → (Cachep × Envp) as
follows. If Gp(Ĉ′, ρ̂′) = (Ĉ, ρ̂) then:

• for all ` ∈ Labp′
, Ĉ(`) = Ĉ′(`); Ĉ(`3) = Ĉ′(L(E1[e`2 ])); Ĉ(`0) = ρ̂(x) =

Ĉ ′(`2); Ĉ(`1) = {π}; and

• for all y ∈ Varp′
, ρ̂(y) = ρ̂′(y).

Obviously, Gp is an embedding function and it is monotone as well.
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Lemma 3.4.1. Let (Ĉ, ρ̂) ∈ (Cachep × Envp) such that (Ĉ, ρ̂) �p p. Then
Fp(Ĉ, ρ̂) �p′ p′.

Proof. Let (Ĉ′, ρ̂′) = Fp(Ĉ, ρ̂). We show that (Ĉ′, ρ̂′) �p′ p′. The proof has two
steps:

i) A proof of the fact that (Ĉ′, ρ̂′) �p′ E1[e`2 ]. The proof is by structural
induction on the context E1, using the assumption that (Ĉ, ρ̂) �p E1[x`0 ].

ii) A proof of the fact that (Ĉ′, ρ̂′) �p′ E[E1[e`2 ]]. The proof is by structural
induction on the context E.

Lemma 3.4.2. Let (Ĉ′, ρ̂′) ∈ (Cachep′ ×Envp′) such that (Ĉ′, ρ̂′) �p′ p′. Then
Gp(Ĉ′, ρ̂′) �p p.

Proof. Let (Ĉ, ρ̂) = Gp(Ĉ′, ρ̂′). We show that (Ĉ, ρ̂) �p p. The proof has two
steps:

i) A proof of the fact that (Ĉ, ρ̂) �p E1[x`0 ]. The proof is by structural
induction on the context E1, using the assumption that (Ĉ′, ρ̂′) �p′ E1[e`2 ].

ii) A proof of the fact that (Ĉ, ρ̂) �p ((λπx.E1[x`0 ])`1 e`2)`3 . Using i), the
proof amounts to showing that a small set of constraints are satisfied.

iii) A proof of the fact that (Ĉ, ρ̂) �p E[((λπx.E1[x`0 ])`1 e`2)`3 ]. The proof is
by structural induction on the context E.

Lemma 3.4.3. Let (Ĉ, ρ̂) be the least solution of the analysis of p. Let (Ĉ′, ρ̂′) be
the least solution of the analysis of p′. Then Fp(Ĉ, ρ̂) = (Ĉ′, ρ̂′) and Gp(Ĉ′, ρ̂′) =
(Ĉ, ρ̂).

Proof. We can immediately see that Fp(Gp(Ĉ′, ρ̂′)) = (Ĉ′, ρ̂′) and that Gp(Fp(Ĉ, ρ̂))
v (Ĉ, ρ̂). Therefore, Gp and Fp form an embedding/projection pair. Using
the monotonicity of the two functions, we obtain that Fp(Ĉ, ρ̂) = (Ĉ′, ρ̂′) and
Gp(Ĉ′, ρ̂′) = (Ĉ, ρ̂).

3.4.2 CPS transformation of flow information and admin-
istrative reductions

Lemma 3.4.3 says that the least analysis after a linear β-reduction is a restriction
of the least analysis of the initial term. From this, we can infer that any linear
β-reduction does not alter the results of the CFA. We use this result to show that
administrative reductions after Plotkin’s CPS transformation do not change the
result of the flow analysis.
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Theorem 3.4.4. Let p be a program, p1 be its CPS counterpart without adminis-
trative reductions, and p2 be its CPS counterpart after administrative reduction.
Let (Ĉ1, ρ̂1) be the least solution of the analysis of p1. The least solution (Ĉ2, ρ̂2)
of the analysis of p2 can be obtained in linear time from (Ĉ1, ρ̂1), by restricting
(Ĉ1, ρ̂1) to the program points preserved by the administrative reductions.

Proof. All administrative reductions are linear, and furthermore, administrative
reduction is known to terminate [31]. We apply Lemma 3.4.3.

Corollary 3.4.5. Let p be a program, p1 be its CPS counterpart without ad-
ministrative reductions, and p2 be its CPS counterpart after administrative re-
duction. Let (Ĉ, ρ̂) be the least solution of the analysis of p. The least solution
(Ĉ2, ρ̂2) of the analysis of p2 can be obtained in linear time from (Ĉ, ρ̂).

Proof. We compose the construction given by Theorem 3.4.4 with Palsberg and
Wand’s CPS transformation of flow information [97], which also works in linear
time.

3.5 Conclusion and issues

We have shown how to complement Palsberg and Wand’s CPS transformation of
flow information with administrative reductions, while preserving its linear-time
complexity. Our extension hinges on the linearity of administrative redexes.

Let us now show how to integrate administrative reductions in Palsberg and
Wand’s CPS transformation, therefore making it operate in one pass, still in
linear time. As shown in “Representing Control” [31], at CPS-transformation
time, one can segregate the administrative lambdas and applications and the
residual ones. (The residual lambdas and applications are the ones preserved by
the administrative reductions.) Therefore, in Palsberg and Wand’s CPS trans-
formation of flow information, we can segregate the labels of the administrative
lambdas and applications and the labels of the residual ones as well. In practice,
the solution after administrative reduction is thus obtained simply by restrict-
ing Palsberg and Wand’s solution to the residual labels. In the overall process
of (1) CPS transformation and (2) administrative reduction, the administrative
labels are used transitorily, just as in the one-pass CPS transformation, which
is conceptually fitting.



Chapter 4

A Simple CPS
Transformation of
Control-Flow Information

Abstract1

We show how to compute control-flow information for CPS-trans-
formed programs from control-flow information for direct-style pro-
grams and vice-versa. As a corollary, we obtain a known result that
CPS transformation has no effect on the control-flow information ob-
tained by constraint-based control-flow analysis.
Compared to previous work by Palsberg and Wand, we compute con-
trol-flow information for CPS programs after administrative reduc-
tions. Compared to previous work by Damian and Danvy, our input
programs need not be in monadic normal form. We use Danvy and
Nielsen’s recent compositional CPS transformation. The CPS trans-
formation of control flow is therefore simpler. The transformation has
immediate applications in assessing the effect of the CPS transforma-
tion over other analyses as, for instance, binding-time analysis.

4.1 Introduction

The continuation-passing-style (CPS) transformation is a source-to-source pro-
gram transformation of λ-terms which makes explicit the continuation [114] of
each λ-expression. The call-by-value and call-by-name CPS transformations due
to Plotkin [98] yield λ-terms which are independent on the order of evaluation.
The CPS transformation has been extended to types [77, 119], which led to dis-

1This chapter is joint work with Olivier Danvy.
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covering its logical content [48, 83]. Recently, Danvy and Nielsen have presented
a new and simpler CPS transformation [34].

Recently, Damian and Danvy [26] have discovered a CPS transformation of
control flow and used it to shown that a CPS transformation does not affect the
control-flow information collected by a monovariant constraint-based control-
flow analysis; a similar work has been done by Palsberg and Wand [97]. In
this article, we build on Danvy and Nielsen’s new and simpler CPS transfor-
mation and we present a new and simpler CPS transformation of control-flow
information.

4.1.1 Formulating the CPS transformation

The CPS transformation has motivated a long line of research. Plotkin [98]
observed that introducing continuations over λ-terms gives rise to large terms.
A set of so-called administrative redexes is identified: a practically useful CPS
transformation need not contain these redexes. Plotkin interleaves administra-
tive and essential reductions: Steele [113] performs all administrative reductions
immediately after the CPS transformation.

Administrative redexes may be avoided altogether by using a one-pass CPS
transformation [3, 31, 120]. The one-pass CPS transformation is defined through
a higher-order accumulator. This accumulator expects a term and yields a CPS
transformed term.

Alternatively, a first-order CPS transformation based on evaluation contexts
such as the one by Sabry and Felleisen [105] and by Sabry and Wadler [107] also
yields administratively reduced terms. Compact CPS programs also can be
obtained by bringing the source program into monadic normal form [49] and
then introducing continuations.

Recently, Danvy and Nielsen [34] have discovered a first-order, compositional
one-pass CPS transformation. The transformation directly yields terms without
administrative redexes, without the need of an intermediate form.

4.1.2 Reasoning on a CPS transformation

A CPS transformation introducing administrative redexes complicates a simu-
lation proof: Plotkin had to devise a so-called colon translation [98]. Admin-
istrative redexes are not a problem for proving a CPS transformation of types
due to the subject-reduction property.

Palsberg and Wand’s original CPS transformation of flow does not address
administrative reductions. In turn, Damian and Danvy [26] explore a similar
transformation by considering the introduction of continuations over terms in
monadic normal form [49]. The transformation of λ-terms into monadic normal
form is an additional step on which further reasoning needs to be projected, as
in Chapter 2.

Reasoning on a higher-order, one-pass CPS transformation becomes even
more difficult since a higher-order argument is necessary. At the same time,
adapting the control-flow transformation to either Sabry and Felleisen’s or Sabry
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and Wadler’s CPS transformations appears to be difficult due their non-composi-
tional formulation. In the first case, evaluation contexts need to be characterized
and control-flow preservation needs to be established. In the later case, the non-
compositional definition of the transformation makes the flow of procedures
unclear, even if a compositional reformulation is actually possible [34].

Indeed, proving predicates defined by structural induction on a CPS trans-
formed term appears to be most natural to be done using a compositionally-
defined CPS transformation. In this respect, Danvy and Nielsen’s recent com-
positional, first-order, and one-pass CPS transformation [34] appears to be most
suitable to prove results the preservation of the results obtained by control-flow
analysis.

4.1.3 This work

In a previous work [26], the authors have considered only a step of the CPS
transformation, namely the introduction of continuations on terms in monadic
normal form [49]. Showing that reducing source terms to monadic normal form
in turn does not affect the flow analysis requires additional reasoning, and the
results may not be immediately predictable, as shown in Chapter 2.

In a related work [97], Palsberg and Wand have shown how to compute
flow information for a CPS-transformed program. The work addresses CPS
programs obtained through a Plotkin-style CPS transformation and does not
addresses the issue of administrative reductions. For practical applications,
performing administrative reductions requires further reasoning at the level of
flow information.

In this work we show how to directly construct control-flow information
for a CPS program after administrative reductions, without the need of an
intermediate form. As a syntactic support, we use a recent compositional CPS
transformation by Danvy and Nielsen [34]. Our construction confirms that the
CPS transformation does not affect the result of a monovariant constraint-based
control-flow analysis [26]. In the same time, it opens the way to investigating the
effect of the CPS transformation on other analyses, as for instance, binding-time
analysis.
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Our CPS transformation of control flow is simpler than previous versions
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and addresses the λ-calculus without the need of an intermediate form or ad-
ministrative reductions. The proofs of correctness are similar to the ones in our
earlier work [26], but here source terms need not be in monadic normal form.
The proofs are slightly simpler than Palsberg and Wand’s [97], due to the lack
of administrative redexes.

4.2 Control-flow analysis for λ-terms

4.2.1 The language of λ-terms

We consider a language of labeled λ-terms, defined in Figure 4.1. Following
Reynolds [103] and Moggi [82], we distinguish among trivial terms t which
denote values and serious terms s which may denote computations. Expres-
sions are annotated with distinct labels ` from a countable set Lab. Each λ-
abstraction has a unique associated label π. A program p is a closed labeled
expression e` .

4.2.2 Control-flow analysis

We consider a standard constraint-based control-flow analysis (CFA) on λ-
terms [24, 47, 52, 56, 61, 89, 90, 95], specifically, we consider the CFA specified
in Nielson, Nielson and Hankin’s textbook [90]. Given an input program p, the
functionality of the syntax-directed control-flow analysis relation �p is defined
in Figure 4.2. The analysis relation is defined inductively in Figure 4.3.

The relation is defined on a pair of a tuple (Ĉ, ρ̂) and a labeled expression
e` . In the relation, (Ĉ, ρ̂) is a cache mapping each expression label to a set of
λ-abstractions that the expression might evaluate to, while ρ̂ is an environment
mapping each program variable to a set of λ-abstractions that the variable
might denote. It is known [90, Chapter 3] that a pair (Ĉ, ρ̂) satisfying the
relation (Ĉ, ρ̂) �p p is a safe analysis of the program p.

Given a source program p, solutions of the analysis of p always exist. The
set of solutions of the analysis of p is closed under intersection: the pointwise
intersection of two solutions always exists. Therefore, there exists a least solu-
tion of the analysis of p. The least solution can be computed with a standard
work-list based algorithm [90, Chapter 3]. Through the rest of this article we
use “the result of the analysis of p” to refer to the least analysis result.

4.3 CPS transformation and control-flow analy-
sis

We show that the CPS transformation preserves the result of the control-flow
analysis defined in Section 4.2.2. To this end, we define a transformation from
control-flow information for a direct-style program into control-flow information
for the CPS counterpart of this program. We also define a transformation of
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e ∈ Expr (terms) e ::= s | t

s ∈ Comp (serious terms, i.e., computations) s ::= e`0
0 e`1

1

t, K ∈ Triv (trivial terms, i.e., values) t ::= x | λπx.e`

x ∈ Ide (identifiers)
` ∈ Lab (term labels)
π ∈ Lam (λ-abstraction labels)

Figure 4.1: The language of labeled λ-terms

Lamp The set of λ-abstraction labels in p
Varp The set of identifiers in p
Labp The set of term labels in p

Trivp = P(Lamp) Abstract values
Ĉ ∈ Cachep = Labp → Trivp Abstract cache
ρ̂ ∈ Envp = Varp → Trivp Abstract environment

�p ⊆ (Cachep × Envp) × Labp

Figure 4.2: Control-flow analysis relation for a program p

(Ĉ, ρ̂) �p x` ⇐⇒ ρ̂(x) ⊆ Ĉ(`)
(Ĉ, ρ̂) �p (λπx.e`)`1 ⇐⇒ (Ĉ, ρ̂) �p e` ∧ π ∈ Ĉ(`1)
(Ĉ, ρ̂) �p (e`0

0 e`1
1 )`2 ⇐⇒ (Ĉ, ρ̂) �p e`0

0 ∧ (Ĉ, ρ̂) �p e`1
1 ∧

∀λπx.e` ∈ Ĉ(`0).Ĉ(`1) ⊆ ρ̂(x) ∧
Ĉ(`) ⊆ Ĉ(`2)

Figure 4.3: Control-flow analysis
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E : Expr × Ide → Comp × Lab
E [[t]]k = k T [[t]]
E [[s]]k = S[[s]](λx.k x)

S : Comp × Triv → Comp
S[[t0 t1]]K = T [[t0]] T [[t1]] K
S[[t0 s1]]K = S[[s1]](λx1.T [[t0]] x1 K)
S[[s0 t1]]K = S[[s0]](λx0.x0 T [[t1]] K)
S[[s0 s1]]K = S[[s0]](λx0.S[[s1]](λx1.x0 x1 K))

T : Triv → Triv
T [[x]] = x

T [[λx.e]] = λx.λk.E [[e]]k
Figure 4.4: First-order one-pass CPS transformation (labels omitted)

control-flow information for a CPS-transformed program into control-flow infor-
mation for the direct-style counterpart of the program. Using the monotonicity
of the two transformations, we show that the least analysis of a direct-style pro-
gram is equivalent with the least analysis of its CPS counterpart and vice-versa.

Graphically:

(Ĉ, ρ̂)
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4.3.1 CPS transformation

In this article CPS programs are obtained using Danvy and Nielsen’s first-
order CPS transformation [34]. The CPS transformation for (unlabeled) λ-
terms is defined in Figure 4.4. As in our earlier work [26, 27], we consider a
transformation with η-expanded tail calls: the continuation passed at a function
call is always a syntactic λ-abstraction.

Danvy and Nielsen’s one-pass CPS transformation yields CPS terms without
administrative redexes. In Section 4.3.2, using this CPS transformation as a
syntactic support, we are able to define the CPS transformation of control-flow
information for CPS programs without administrative redexes.
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E : Expr × Lab × Ide → Comp × Lab
E [[t` ]]k = (k`0 (T [[t]])`)`1 Ĉ′(`0) = ρ̂′(k)

Ĉ′(`) = Ĉ′(`) Ĉ′(`1) = ∅
E [[s` ]]k = (S[[s]](λπx.(k`0 x`1)`2)`3)`4

Ĉ′(`0) = ρ̂′(k) Ĉ′(`1) = ρ̂′(x) = Ĉ(`)
Ĉ ′(`3) = {π} Ĉ′(`4) = Ĉ′(`2) = ∅

S : Comp × Triv × Lab → Comp
S[[t`00 t`11 ]]K` = ((T [[t0]])`0 (T [[t1]])`1)`2 K`

Ĉ′(`0) = Ĉ(`0) Ĉ′(`1) = Ĉ(`1)
Ĉ′(`2) = γ(Ĉ(`0))

S[[t`00 s`1
1 ]]K` = S[[s1]](λπx1.(((T [[t0]])`0 x`1

1 )`2 K`)`3)`4

Ĉ′(`0) = Ĉ(`0) Ĉ′(`1) = ρ̂′(x1) = Ĉ(`1)
Ĉ′(`2) = γ(Ĉ(`0))

Ĉ′(`3) = ∅ Ĉ′(`4) = {π}
S[[s`0

0 t`11 ]]K` = S[[s0]](λπx0.((x`0
0 (T [[t1]])`1)`2 K`)`3)`4

Ĉ′(`0) = ρ̂′(x0) = Ĉ(`0) Ĉ′(`1) = Ĉ(`1)
Ĉ′(`2) = γ(Ĉ(`0))

Ĉ′(`3) = ∅ Ĉ′(`4) = {π}
S[[s`0

0 s`1
1 ]]K` = S[[s0]](λπx0.(S[[s1]](λπ1x1.((x`0

0 x`1
1 )`2 K`)`3)`4)`5)`6

Ĉ′(`0) = ρ̂′(x0) = Ĉ(`0)
Ĉ ′(`1) = ρ̂′(x1) = Ĉ(`1) Ĉ′(`2) = γ(Ĉ(`0))

Ĉ′(`3) = ∅ Ĉ′(`4) = {π1}
Ĉ′(`5) = ∅ Ĉ′(`6) = {π}

T : Triv → Triv
T [[x]] = x

T [[λπx.e` ]] = λπx.(λπ1k.E [[e` ]]k)`0 Ĉ′(`0) = {π1} ρ̂′(k) = ξ(k)
Figure 4.5: Transformation of control flow from direct style to CPS

4.3.2 CPS transformation of control flow

We define a CPS transformation of control-flow information following the CPS
transformation of Figure 4.4. We show how control-flow information for a direct-
style term can be used to compute control-flow information for the CPS trans-
formed program.

To transformation relies on two auxiliary functions:

• γ extracts the labels of partially applied CPS λ-abstractions. Formally,
considering A to be a set of CPS λ-abstractions {λπi

xi.λ
πi
1ki.ei|1 ≤ i ≤ n},

for some n, then γ(A) = {πi
1|1 ≤ i ≤ n}.

• ξ assigns flow information to each continuation identifier k introduced by
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the CPS transformation of a λ-abstraction from p. This information can
be obtained from the direct-style flow information, since we can syntacti-
cally identify the continuation of the CPS counterpart of any direct-style
application.
Given p, Ĉ, ρ̂, and a continuation identifier k introduced by the transfor-
mation of a λ-abstraction from p:

T [[λπx.e` ]] = λπx.λk.E [[e]]k

we define ξ(k) as the union of all sets Ĉ ′(`) such that in the CPS transfor-
mation of p into p′ there exists a transformation step

S[[e`0
0 e`1

1 ]]K` = . . .

such that π ∈ Ĉ(`0).

We construct the CPS control-flow information in two steps. First, in a a
recursive descent on the tree of the transformation, we compute Ĉ′(`) for each
label ` attached on the newly introduced λ-abstractions (continuations) and we
construct the function ξ.

The second step consists of another recursive descent on the tree of the
transformation. We assign control-flow information recursively, as defined for
each step in Figure 4.5. At each transformation step, on the right-hand side, we
construct the labeled CPS term corresponding to the left-hand side. We then
assign flow information for each fresh label or variable. Trivial terms preserve
their label and their flow information. Flow information for serious terms is
transferred through calls to continuations. Fresh continuation identifiers are
assigned flow information as computed by the ξ function.

Note that in contrast to the CPS transformation of unlabeled terms of Fig-
ure 4.4, the transformation of labeled serious terms takes an extra argument,
namely the label of the syntactic continuation being passed as an argument. At
each case in Figure 4.5, we do not make the label explicit: we rather place it
directly over the constructed continuation. Similarly, the CPS transformation
of a labeled expression returns a serious term and its enclosing label.

The CPS transformation of control flow is therefore defined as a monotone
function:

ΦCPS
cf : (Cachep × Envp) → (Cachep′

× Envp′
).

Theorem 4.3.1. Let p = e` be a uniquely labeled program. If (Ĉ, ρ̂) �p e` then
(ΦCPS

cf (Ĉ, ρ̂)) �p′
λπk.E [[e` ]]k.

Proof. By structural induction on the resulting CPS program. We prove a
predicate stating that a CPS-transformed serious term satisfies the relation when
the term passed as a continuation is also satisfying the relation.

The proof of the theorem is similar to the proof of Theorem 1 of our earlier
work [26] and Theorem 2.6.1 of Chapter 2, which addressed terms in monadic
normal forms. The proof is slightly less complex than Palsberg and Wand’s
proof [97], due to the lack of administrative redexes.
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E : Expr × Ide → Comp × Lab
E [[t` ]]k = (k`0 (T [[t]])`)`1 Ĉ(`) = Ĉ′(`) Ĉ(`1) = ∅
E [[s` ]]k = (S[[s]](λπx.(k`0 x`1)`2)`3)`4 Ĉ(`) = ρ̂′(x)

S : Comp × Triv × Lab → Comp
S[[t`00 t`11 ]]K` = ((T [[t0]])`0 (T [[t1]])`1)`2 K`

Ĉ(`0) = Ĉ′(`0) Ĉ(`1) = Ĉ′(`1)
S[[t`00 s`1

1 ]]K` = S[[s1]](λπx1.(((T [[t0]])`0 x`1
1 )`2 K`)`3)`4

Ĉ(`0) = Ĉ′(`0) Ĉ(`1) = ρ̂′(x1)
S[[s`0

0 t`11 ]]K` = S[[s0]](λπx0.((x`0
0 (T [[t1]])`1)`2 K`)`3)`4

Ĉ(`0) = ρ̂′(x0) Ĉ(`1) = Ĉ′(`1)
S[[s`0

0 s`1
1 ]]K` = S[[s0]](λπx0.(S[[s1]](λπ1x1.((x`0

0 x`1
1 )`2 K`)`3)`4)`5)`6

Ĉ(`0) = ρ̂′(x0) Ĉ(`1) = ρ̂′(x1)

T : Triv → Triv
T [[x]] = x

T [[λπx.e` ]] = λπx.(λπ1k.E [[e` ]]k)`0

Figure 4.6: Transformation of control flow from CPS into direct style

4.3.3 Direct-style transformation of control flow

The CPS transformation of flow from Figure 4.5 shows that the analysis of a
CPS-transformed term can be at least as good as the analysis of the direct-style
original term. The resulting CPS solution is the equivalent of the direct-style
one, but may not be the best. We show that the direct-style and CPS analysis
results are equivalent by exhibiting a direct-style transformation of flow.

We define a direct-style transformation of control-flow information. In other
words, we transform control-flow information for the CPS-transformed term into
control-flow information for the original direct-style term. The transformation
is defined recursively in Figure 4.6. At each transformation step, on the right-
hand side we construct flow information (Ĉ, ρ̂) for the direct-style program from
the flow information (Ĉ′, ρ̂′) for the CPS program.

Since at each function call the continuation is an explicit syntactic contin-
uation, we are able to determine the control-flow information returned by each
expression. In particular, at a transformation step

E [[s` ]]k = (S[[s]](λπx.(k`0 x`1)`2)`3)`4

we are able to assign control-flow information for the return label ` from the
control-flow information collected by the continuation λπx.(k`0 x`1)`2 .

Control-flow information can therefore be constructed bottom-up. The di-
rect-style transformation of control flow is therefore defined as a monotone func-
tion:

ΨCPS
cf : (Cachep′

× Envp′
) → (Cachep × Envp)
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Theorem 4.3.2. Let p = e` be a uniquely labeled program. If (Ĉ′, ρ̂′) �p

λπk.E [[e` ]]k and ρ̂′(k) = ∅, then ΨCPS
cf (Ĉ′, ρ̂′) �p′

e`.

Proof. By structural induction on the direct-style source program. We prove a
predicate stating that the constructed solution satisfies the flow constraints for
any serious sub-term together with its enclosing label.

Again, the proof is similar to the proof of Theorem 2 of our earlier work [26]
and with the proof of Theorem 2.6.5 of Chapter 2.

4.3.4 Preservation of flow

Following the construction of the CPS control-flow information in Figure 4.5, it
is immediate to see that the flow information assigned to the program’s original
variables in CPS is identical to the one extracted from the direct-style original.
The same is valid for the reverse transformation of Figure 4.6: the control-flow
information assigned to direct-style variables is identical to the one extracted
from the CPS program.

This following theorem follows from the monotonicity of the two transfor-
mations of control flow.

Theorem 4.3.3. Let p be a direct-style program and p′ its CPS counterpart.

i) Let (Ĉ, ρ̂) be the solution of the control-flow analysis of p. Then
ΨCPS

cf (ΦCPS
cf (Ĉ, ρ̂)) = (Ĉ, ρ̂).

ii) Let (Ĉ′, ρ̂′) be the solution of the control-flow analysis of p′. Then
ΦCPS

cf (ΨCPS
cf (Ĉ′, ρ̂′)) = (Ĉ′, ρ̂′).

4.4 Conclusions and future work

The complete CPS transformation of control flow can be used to assess the
impact of the CPS transformation on the result of binding-times analysis. In a
previous work [26], the authors have shown that introducing continuations may
improve the binding-times obtained by the standard binding-time analysis for
traditional partial evaluation. Translating programs into monadic normal form
may lead to further binding-time improvements [50], also in Chapter 2. Our
inital investigations show that the current transformation of control-flow can be
used to fully characterize the binding-time improvements obtained by the CPS
transformation.

An interesting further aspect is the issue of tail-call optimization and control-
flow analysis. In the CPS transformation of Figure 4.4, the η-expansion of tail
calls has the benefit of providing an explicit continuation for each function call
for which we can extract control-flow information. More precisely, the CPS
transformation of an expression introduces an explicit continuation:

E [[s]]k = S[[s]](λx.k x)
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The presence of an explicit continuation facilitates the definition of the CPS
transformation of control flow. We are currently investigating the observation
that reducing the tail-call η-redexes also preserves the control-flow information
assigned to the original program points in the program.
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Chapter 5

Time Stamps for
Fixed-Point Approximation

Abstract1

Time stamps were introduced in Shivers’s PhD thesis for approxi-
mating the result of a control-flow analysis. We show them to be
suitable for computing program analyses where the space of results
(e.g., control-flow graphs) is large. We formalize time-stamping as
a top-down, fixed-point approximation algorithm which maintains a
single copy of intermediate results. We then prove the correctness of
this algorithm.

5.1 Introduction

5.1.1 Abstract interpretation and fixed-point computation

Abstract interpretation [23, 67] is a framework for systematic derivation of pro-
gram analyses. In this framework, the standard semantics of a program is
approximated by an abstract semantics. The abstract semantics simulates the
standard semantics and is used to extract properties of the actual run-time
behavior of the program.

Abstract interpretation often yields program analyses specified by a set of
recursive equations. Formally, the analysis is defined as the least fixed point
of a functional over a specific lattice. Analyzing a program then amounts to
computing such a least fixed point. The design and analysis of algorithms for
computing least fixed points has thus become a classic research topic.

This article presents a top-down algorithm that computes an approximate
solution for a specific class of program analyses. This class includes analyses

1This chapter is an extended version of [25].

71
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of programs with dynamic control-flow, namely programs whose control-flow is
determined by the run-time values of program variables. Such programs are
common, for instance, in higher-order and object-oriented languages.

The common problem of analyzing programs with dynamic control flow is
to compute a static approximation of the dynamic control-flow graph. The flow
information is usually represented as a table mapping each program point to the
set of points that form possible outgoing edges from that point. The analysis
may compute flow information either as a separate phase, or as an integral
component of the abstract interpretation. In any case, flow information is itself
computed as a least fixed point of a functional.

An algorithm for computing a solution of such an analysis is met with a
difficult practical constraint: due to the potential size of the control-flow graph
embedded in the result of the analysis, one cannot afford to maintain multiple
intermediate results. The time-stamps-based algorithm considered here only
needs to maintain a single intermediate analysis result throughout the compu-
tation.

5.1.2 The time-stamping technique

The time-stamping technique has been previously introduced in Shivers’s PhD
thesis [112] on control-flow analysis for Scheme, based on ideas from Hudak
and Young’s “memoized pending analysis” [126]. Using time stamps Shivers
implements a top-down algorithm which computes an approximation of the
semantic specification of the analysis and which does not maintain multiple
intermediate results. The termination of the algorithm relies on the required
monotonicity of the abstract semantics and on the use of time stamps on abstract
environments. The algorithm yields an approximation by using increasingly
approximate environments on the sequential analysis of program paths.

To our knowledge, Shivers’s thesis contains the only description of the time-
stamping technique. The thesis provides a formal account of some of the trans-
formations performed on the abstract control-flow semantics in order to obtain
an efficient implementation (as, for instance, the “aggressive cutoff” approach).
The introduction of time stamps, however, remains only informally described.
In particular, his account of the time-stamps algorithm [112, Chapter 6] relies
on the property that the recursion sets computed by the modified algorithm are
included in the recursion sets computed by the basic algorithm. Such property
relies on the monotonicity of the original semantics, and the relationship with
the algorithm modified to use a single-threaded environment remains unclear.

Our work: We formalize the time-stamps-based approximation algorithm as
a generic fixed-point approximation algorithm, and we prove its correctness.

5.1.3 Overview

The rest of the article is organized as follows: In Section 5.2 we describe the
time-stamps-based approximation algorithm. In Section 5.2.1 we define the class
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of recursive equations on which the algorithm is applicable. In Section 5.2.2 we
describe the intuition behind the time stamps. We proceed in Section 5.3 to for-
malize the time-stamps-based algorithm (Section 5.3.1) and prove its correctness
(Section 5.3.2). In Section 5.3.3 we estimate the complexity of the algorithm.
In Section 5.4 we show how to extend the algorithm to a wider class of analyses.
In Section 5.5 we review related work and in Section 5.6 we conclude.

5.2 The time-stamps-based approximation algo-

rithm

5.2.1 A class of recursive equations

We consider a class of recursive equations that model a program analysis by
abstract interpretation. The analysis gathers information about a program by
simulating its execution. Abstracting the details, we consider that a given pro-
gram p induces a finite set of program points Lab. Transitions from a program
point to another are modeled as directed edges in the graph. The analysis col-
lects information as an element ρ̂ of a complete lattice A (we assume that A
has finite height). Typically, such analysis information is in the form of a cache
collecting information about program points and variables.

In our setting, at a program point ` ∈ Lab, with intermediate analysis infor-
mation ρ̂, the result of the analysis is computed from local analysis information
together with the union of the results obtained by analyzing all possible outgo-
ing paths. For instance, the analysis of a branching statement, when the result
of the boolean condition is unknown, may be obtained as the union of the anal-
ysis of both branches. In higher-order languages, the analysis of a function call
(e0 e1) may be obtained as the union of the analysis of calls to all functions that
the expression e0 can evaluate to.

The choice of a specific outgoing edge may determine a specific update of the
analysis information. For instance, after choosing one of the functions that may
be called at an application point, one updates the information associated to the
formal parameter with the information associated to the actual parameter.

We consider therefore that local analysis information is defined by a mono-
tone function B : (Lab×A) → A. We also consider that the analysis information
associated with the transition from a program point to another is defined by a
monotone function V : (Lab × Lab × A) → A. Such functions can model, for
instance, Sagiv, Reps and Horowitz’s environment transformers [108], but they
can also model monotone frameworks [71, 90]. Transition information is added
into the already computed analysis information, in a collecting analysis [23, 110]
fashion.

To model dynamic control flow, we consider that, at a specific node ` and
in the presence of already computed analysis information ρ̂, the set of possible
future nodes is described by a monotone function R : (Lab × A) → P(Lab):
transitions are obtained from the current node ` and the elements of R(`, ρ̂). A
generic analysis function F : (Lab × A) → A may therefore be defined by the
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following recursive equation:

F (`, ρ̂) = B(`, ρ̂) t
⊔

`′∈R(`,ρ̂)

F (`′, ρ̂ t V (`, `′, ρ̂)), (∗)

If the functions B, R and V are monotone on ρ̂ (Lab is essentially a flat
domain), it can be easily shown that Equation (∗) has solutions. Given the
starting point of the program `0 and some initial (possibly empty) analysis
information ρ̂0, we are interested in computing a value F (`0, ρ̂0), where F is the
least solution of Equation (∗).

It is usually more expensive to compute the entire function F as the least
solution of Equation (∗). Naturally, we only want to implement a program
that computes the value of F (`0, ρ̂0). Naturally, in order to compute a value
F (`, ρ̂), one needs to control termination (repeating sequences of pairs (̀ , ρ̂)
might appear) and one also needs to save intermediate copies of the current
analysis information ρ̂ when the current node ` has multiple outgoing edges.

Memoization is a solution for controlling termination. When the space of
analysis results is large, however, the cost of maintaining the memoization table,
coupled with the cost of saving intermediate results, leads to a prohibitively
expensive implementation. We can use Shivers’s time-stamping technique [112]
to solve these two problems, as long as we are satisfied with an approximation
of F (`0, ρ̂0).

5.2.2 The intuition behind time stamps

We present a pseudo-code formulation of the algorithm which informally de-
scribes the time-stamping technique. We will properly formalize the algorithm
and prove its correctness in Section 5.3.

We assume that we are given an instance of the analysis specified by the
functions B, R and V (which we assume are computable). The pseudo-code
of the time-stamps-based approximation algorithm is given in Figure 5.1. The
time-stamps-based algorithm uses a time counter t (initialized with 0) and a
table τ which associates to each program point ` a time stamp τ [`], initialized
with 0. We compute the result of the analysis into a global variable ρ̂, initialized
with ρ̂0. In essence, the function F ′ is obtained by lifting the ρ̂ parameter out
of the F function.

The time counter t and the time-stamps table τ (modeled as an array of inte-
gers) are also global variables. The function U updates the global analysis with
fresh information: if new results are obtained, the time counter is incremented
before they are added in the global analysis. The function F ′ implements the
time-stamps-based approximation. To approximate the value of F (`), we first
compute the local information B(`, ρ̂) and add the result into the global anal-
ysis. We then compute the set of future nodes R(`, ρ̂). For each future node
`′ ∈ R(`, ρ̂), sequentially, we compute the execution information V (`, `′, ρ̂) along
the edge (`, `′), we add its result to ρ̂ and we then call F ′(`′). Because all the
calls to F ′ on the second or later branches are made with a possibly larger ρ̂,
an approximation may occur.
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global ρ̂:A, t:N, τ :N array
proc U (ρ̂1) = if ρ̂1 6v ρ̂ then t := t + 1; ρ̂ := ρ̂ t ρ̂1

proc F ′(`) = if τ [`] 6= t then
τ [`] := t;
U (B(`, ρ̂));
foreach `′ in R(`, ρ̂)

U (V (`, `′, ρ̂)); F ′(`′)

Figure 5.1: Time-stamps-based approximation algorithm

Each time ρ̂ is increased by addition of new information, we increment the
time counter. Each time we call F ′ on a program point `, we record the current
value of the time counter in the time-stamps table at `’s slot, i.e., τ [`] := t.
We use the time-stamps table to control the termination. If the function F ′

is called on a point ` such that τ [`] = t, then there has already been a call to
F ′ on `, and the environment has not been updated since. Therefore, no fresh
information is going to be added to the environment by this call, and we can
simply return without performing any computation.

Such correctness argument is only informal, though. In his thesis, Shiv-
ers [112] makes a detailed description of the time-stamps technique in the con-
text of a control-flow analysis for Scheme. He proves that memoization (the
so-called “aggressive cutoff” method) preserves the results of the analysis. The
introduction of time-stamps and the approximation obtained by collecting re-
sults in a global variable remain only informally justified. In the next section we
provide a formal description of the time-stamps-based approximation algorithm
and we prove its correctness.

5.3 A formalization of the time-stamps-based al-

gorithm

5.3.1 State-passing recursive equations

We formalize the algorithm and the time-stamping technique as a new set of
recursive equations. The equations describe precisely the computational steps
of the algorithm. They are designed such that their solution can be immedi-
ately related with the semantics of an implementation of the algorithm from
Figure 5.1 in a standard programming language. At the same time, they define
an approximate solution of Equation (∗) on the preceding page. We prove that
the solution of the new equations is indeed an approximation of the original
form.

The equations are modeling a state-passing computation. The global state
of the computation contains the analysis information ρ̂, the time-stamps table
τ and the time counter t. The time-stamps table is modeled by a function
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F ′(`, (ρ̂, τ, t))= if τ(`) = t then (ρ̂, τ, t)
else let

{`1, ..., `n} = R(`, ρ̂)
(ρ̂0, τ0, t0)=U (B(`, ρ̂), (ρ̂, τ [` 7→ t], t))
(ρ̂1, τ1, t1)=F ′(`1,U (V (`, `1, ρ̂0), (ρ̂0, τ0, t0)))

...
(ρ̂n, τn, tn)=F ′(`n,U (V (`, `n, ρ̂n−1), (ρ̂n−1, τn−1, tn−1)))
in (ρ̂n, τn, tn)

U (ρ̂1, (ρ̂, τ, t))= if ρ̂1 6v ρ̂ then (ρ̂ t ρ̂1, τ, t + 1) else (ρ̂, τ, t)

Figure 5.2: Time-stamps-based approximation equation

τ ∈ Lab → N:
(ρ̂, τ, t) ∈ States = (A × (Lab → N) × N)

In contrast to the standard denotational semantics, we consider N with the usual
ordering on natural numbers. Therefore States is an infinite domain containing
infinite ascending chains. To limit the height of ascending chains, we restrict
the space to reflect more precisely the set of possible states in the computation:

States = {(ρ̂, τ, t) ∈ (A × (Lab → N) × N) | t ≤ h(ρ̂) ∧ ∀` ∈ Lab.τ(`) ≤ t}

Here the function h(ρ̂) defines “the length of the longest chain of elements of A
below ρ̂”.

Informally, the restriction accounts for the fact that we increment t each
time we add information into ρ̂. Starting from ρ̂ = ⊥ and t = 0, t is always
smaller than the longest ascending path from bottom to ρ̂ in A. The second
condition accounts for the fact that the time-stamps table records time stamps
smaller than or equal to the value of the time counter.

The recursive equations that define the time-stamps approximation are stat-
ed in Figure 5.2. They define a function F ′ : (Lab×States) → States that models
a state-passing computation. It is easy to show that U : (A × States) → States
is well-defined (on the restricted space of states). The existence of solutions
for the equations from Figure 5.2 can then be easily established, due to the
monotonicity of B, V and R.

Note that the order in which the elements of the set of future nodes R(`, ρ̂)
are processed remains unspecified. This aspect does not affect our further de-
velopment, while leaving room for improving the evaluation strategy.

The main reason for the restriction on the states and for the non-standard
semantics is that we restrict the definition of the function to the strictly termi-
nating instances. It is easy to show that F ′ terminates on any initial program
point and initial state. In fact, such initial configuration determines a trace of
states which we use to show that the function F ′ computes a safe approximation
of the analysis.
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5.3.2 Correctness

The correctness of the time-stamps-based algorithm, i.e., the fact that it com-
putes an approximation of the function defined by Equation (∗) on page 74, is
established by the following theorem.

Theorem 5.3.1. For any ` ∈ Lab and ρ̂ ∈ A:

F (`, ρ̂) v π1(F ′(`, (ρ̂, λ`.0, 1)))

where π1 is the projection of the first element of the tuple.

The theorem is proven in two steps. First, we show that using time stamps
to control recursion does not change the result of the analysis. In this sense, we
consider an intermediate equation defining a function F ′′ : (Lab × States) → A.

F ′′(`, (ρ̂, τ, t)) = if τ(`) = t then ⊥
else B(`, ρ̂) t

⊔
`′∈R(`,ρ̂)

F ′′(`′,U (V (`, `′, ρ̂), (ρ̂, τ [` 7→ t], t)))

We show that the function F ′′ computes the same analysis as the function
defined by Equation (∗).

Lemma 5.3.2. Let ` ∈ Lab be a program point and (ρ̂, τ, t) ∈ States. Let
S = {`′ ∈ Lab|τ(`′) = t}. Then we have:

F ′′(`, (ρ̂, τ, t)) t
⊔

`′∈S

F (`′, ρ̂) = F (`, ρ̂) t
⊔

`′∈S

F (`′, ρ̂)

Lemma 5.3.2 is proved using a well-founded induction on states, based on
the observation that F ′′ calls itself on arguments strictly above the original (in
the space of states). As an instance of the Lemma 5.3.2 we obtain:

Corollary 5.3.3.

∀` ∈ Lab, ρ̂ ∈ A . F (`, ρ̂) = F ′′(`, (ρ̂, λ`.0, 1))

We show that the time-stamps algorithm computes an approximation of the
function F ′′.

Lemma 5.3.4.

∀ (ρ̂, τ, t) ∈ States, ` ∈ Lab . F ′′(`, (ρ̂, τ, t)) v π1(F ′(`, (ρ̂, τ, t)))

The proof of Lemma 5.3.4 relates the recursion tree from the definition of
function F ′′ and the trace of states in the computation of F ′. In essence, the
value of F ′′(`, (ρ̂, τ, t)) is defined as the union of a tree of values of the form
B(`i, ρ̂i). We show by induction on the depth of the tree that each of these
values is accumulated in the final result at some point on the trace of states
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in the computation of F ′. The complete proof of Lemma 5.3.4 is presented in
Appendix 5.A.

Combining the two lemmas we obtain the statement of Theorem 5.3.1.
Despite the non-standard ordering and domains used when defining the so-

lutions of the equations in Figure 5.2, showing that the function F ′ agrees on
the starting configuration with a standard semantic definition of the algorithm
in Figure 5.1 is trivial and is not part of the current presentation.

5.3.3 Complexity estimates

Let us assume that computing the function U takes m time units, and that
B, R and V can be computed in constant time (one time unit). The time-
counter can be incremented at most h(A) times, where the function h defines
the height (given by the longest ascending chain) of the lattice A. In the worst
case, between two increments, each edge in the graph may be explored, and for
each edge we might spend m time units in computing the U function. Thus,
computing F ′(`, (ρ̂, λ`.0, 1)) has a worst-case complexity of O(|Lab|2 ·m ·h(A)).

Space-wise, it is immediate to see that at most two elements of A are in
memory at any given time: the global value ρ̂ and one temporary value created
at each call of B or V . The temporary value is not of a concern though: in most
usual cases, the size of the results of B or V is at least one order of magnitude
smaller than the size of ρ̂.

The worst-case space complexity is also driven by the exploration of edges.
It is immediate to see that each edge might be put aside between two updates
of the global environment. Denoting with S(A) the size of an element in A,
the worst-case space complexity might be O(S(A) + |Lab|2 · h(A)). It seems
apparent, however, that many of the edges put aside are redundant. We are
currently exploring possibilities of avoiding some of these redundancies.

5.4 An extension

The time-stamps method has originally been presented in the setting of flow
analysis of Scheme programs in continuation-passing style (CPS) [112]. Indeed,
the formulation of Equation (∗) on page 74 facilitates the analysis of a compu-
tation that “never returns” or, otherwise said, of an analysis function that has
a tail-recursive formulation.

There is no particular reason for which the time-stamps technique may not
be extended to non-tail-recursive analyses. We show how the time-stamps tech-
nique can be extended to a flow analysis of higher-order languages which has a
non-tail-recursive formulation.

In their paper on CPS versus direct style in program analysis [106], Sabry and
Felleisen also suggest using a memoization technique for computing the result
of their constant propagation for a higher-order language in direct style. The
constant-propagation analysis has a non-compositional, non-tail recursive defi-
nition. Indeed, in order to model the analysis of a term like let x = V1 V2 in M ,
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Sabry and Felleisen’s analysis explores all possible functions that can be called
in the header of the let, joins the results and, afterwards, analyzes the term M .

We can apply the time-stamps technique to Sabry and Felleisen’s analysis
in order to compute an approximate solution more efficiently. We consider
equations of the following form:

F (`, ρ̂) = let ρ̂1 = B(`, ρ̂) t
⊔

`′∈R(`,ρ̂)
F (`′, ρ̂ t V (`, `′, ρ̂))

in B′(`, ρ̂1) t
⊔

`′∈R′(`,ρ̂1)
F (`′, ρ̂1 t V ′(`, `′, ρ̂1))

The algorithm is straightforwardly extended to account for the second call
with another iteration over R′(`, ρ̂1). The proof of correctness extends as well.
It is remarkable that despite the more complicated formulation of the equations,
the complexity of the algorithm remains the same, due to the bounds imposed
by the time-stamps.

Applying the time-stamps-based algorithm to Sabry and Felleisen’s analysis
yields a more efficient algorithm than their proposed memoization-based im-
plementation (for the reasons outlined in Section 5.2.1). The approximation
obtained using time stamps is still precise enough. In particular, the time-
stamps-based analysis is able to distinguish returns. Consider for instance the
following example (also due to Sabry and Felleisen):

let f = λx.x
x1 = f 1
x2 = f 2

in x1

The time-stamps-based analysis computes a solution in which x1 (and, therefore,
the result of the entire expression) is bound to 1, and x2 is bound to >. In
contrast, a monovariant constraint-based data-flow analysis [90] computes a
solution in which both x1 and x2 are bound to >.

Formally, it is relatively easy to show that the time-stamps-based constant
propagation always computes a result at least as good as a standard monovariant
constraint-based data-flow analysis. The details are omitted from this article.
Note that the improvement in the quality over the constraint-based analysis
comes at a price in the worst-case time and space complexity.

5.5 Related work

A number of authors describe algorithms for computing least fixed points as
solutions to program analyses using chaotic iteration, which are also adapted to
compute approximation using widenings or narrowings [23]. O’Keefe’s bottom-
up algorithm [91] has inspired a significant number of articles, where the conver-
gence speed is improved using refined strategies on choosing the next iteration,
or exploiting locality properties of the specifications [15, 69, 104].

Such algorithms have also been applied to languages with dynamic control
flow. Chen, Harrison and Yi [18] developed advanced techniques such as “wait-
ing for all successors”, “leading edge first”, “suspend evaluation”, which improve
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the behavior of the bottom-up algorithm when applied to such languages. In
a subsequent work [17], the authors use reachability information to implement
a technique called “context projection” which reduces the amount of abstract
information associated to each program point. In contrast, time stamps ap-
proximate the solution, by maintaining only one global context common to all
program points.

Other algorithms that address languages with dynamic flow have been de-
veloped in the context of strictness analysis. Clack and Peyton-Jones [19] have
introduced the frontier-based algorithm. The algorithm reduces space usage
by representing the solution only with a subset of relevant values. The tech-
nique has been developed for binary lattices. Hunt’s PhD thesis [60] contains a
generalization to distributive lattices.

The top-down vs. bottom-up aspects of fixed-point algorithms for abstract
interpretation of logic programs have been investigated by Le Charlier and Van
Hentenryck. The two authors have developed a generic top-down fixed-point
algorithm [16], and have compared it with the alternative bottom-up strategy.
The evaluation strategy of their algorithm is similar to the time-stamps-based
one in this article. In contrast, however, since their algorithm precisely computes
the least fixed point, it also maintains multiple values from the lattice of results.

Fecht and Seidl [40] design the time-stamps solver “WRT” which combines
the benefits of both the top-down and bottom-up approaches. The algorithm
also uses time stamps, in a different manner though: The time stamps are used
to interpret the algorithm’s worklist as a priority queue. Our technique uses
time stamps simply to control the termination of the computation. In a sequel
paper [41], the authors derive a fixed-point algorithm for distributive constraint
systems and use it, for instance, to compute a flow graph expressed as a set of
constraints.

5.6 Conclusion

We have presented a polynomial-time algorithm for approximating the least
fixed point of a certain class of recursive equations. The algorithm uses time
stamps to control recursion and avoids duplication of analysis information over
program branches by reusing intermediate results. The time-stamping tech-
nique has originally been introduced by Shivers in his PhD thesis [112]. To the
best of our knowledge, the idea has not been pursued. We have presented a
formalization of the technique and we have proven its correctness.

Several issues regarding the time-stamps-based algorithm might be worth
further investigation. For instance, it is noticeable that the order in which the
outgoing edges are processed at a certain node might affect the result of the
analysis. Designing an improved strategy for selecting the next node to be
processed is worth investigating. Also, as we observed in Section 5.3.3, an edge
might be processed several times independently, each time with a larger analysis
information. This suggests that some of the processing might be redundant. We
are currently investigating such a possible improvement of the algorithm, and
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its correctness proof.

5.A Operational specification

We give an an operational specification of the time-stamp algorithm. Configu-
rations are triples formed by a global state and two stacks. The global state is
defined as:

States = {(ρ̂, τ, t) ∈ (A × (Lab → N) × N) | t ≤ h(ρ̂) ∧ ∀` ∈ Lab.τ(`) ≤ t}

Configurations are then defined as:

σ ∈ Conf = States × (Lab × (Lab∗))∗

where we use Lab∗ to denote the domain of finite lists of program points from
of Lab. Final configurations are configurations of the form

〈(ρ̂, τ, t) , []〉A

We distinguish two types of configurations. A-configurations are reached in the
middle of the for-loop of Figure 5.1. B-configurations are reached at the entry
point of the main function.

The transition judgments are defined in Figure 5.3. Updates in the anal-
ysis result are modeled by `U judgments. Time-stamps for nodes are verified
in B-states and analysis transitions occur at A-states. It is easy to prove that
from any initial configuration 〈(ρ̂, τ, t) , ls ,L〉, the transition reaches a final con-
figuration 〈(ρ̂, τ, t) , [], []〉 in a finite number of steps. We use ⇒∗ to denote the
transitive closure of the relation ⇒.

By definition, the time-stamp based analysis starting from the initial pro-
gram point `0 and analysis information ρ̂0 is the element ρ̂ such that

` 〈(ρ̂0, λ`.0, 1) , (`0, `0::[])::[]〉B ⇒∗ 〈(ρ̂, τ, t) , []〉A

We also define the trace of an analysis to be the set of states σ such that σ0 ⇒∗ σ.
Given a configuration 〈(ρ̂, τ, t) ,L〉A, we say that a node ` is on the stack if

there exist a pair (`′, ls) in the list L such that ` belongs to the list ls .

Lemma 5.A.1 (Termination). Given `0 and ρ̂0 there exists a unique final
configuration 〈(ρ̂, τ, t) , []〉A such that

` 〈(ρ̂0, λ`.0, 1) , (`0, `0::[])::[]〉B ⇒∗ 〈(ρ̂, τ, t) , []〉A

Proof. First we show that in successive configurations, the environment al-
ways increases. We then show that there can not be an infinite number of
B-configurations, due to the finite height of the lattice of results and the con-
nection between time stamps and environment established by the `U judgments.
It follows that there can not be an infinite nuber of configurations and thus ter-
mination. Since the rules are deterministic, uniqueness follows.
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Tracking updates :

ρ̂1 6v ρ̂
`U 〈(ρ̂, τ, t) , ρ̂1〉 → (ρ̂ t ρ̂1, τ, t + 1)

ρ̂1 v ρ̂
`U 〈(ρ̂, τ, t) , ρ̂1〉 → (ρ̂, τ, t)

Node handling:

`U 〈(ρ̂, τ [` 7→ t], t) , B(`1, ρ̂)〉 → (ρ̂1, τ1, t1)
τ(`) 6= t

` 〈(ρ̂, τ, t) , (`, `1::ls1)::L〉B ⇒ 〈(ρ̂1, τ1, t1) , (`1, R(`1, ρ̂))::(`, ls1)::L〉A

τ(`) = t
` 〈(ρ̂, τ, t) , (`, `1::ls1)::L〉B ⇒ 〈(ρ̂, τ, t) , (`, ls1)::L〉A

Edge handling:

`U 〈(ρ̂, τ, t) , V (`1, `2, ρ̂)〉 → (ρ̂1, τ1, t1)

` 〈(ρ̂, τ, t) , (`1, `2::ls2)::L〉A ⇒ 〈(ρ̂1, τ1, t1) , (`1, `2::ls2)::L〉B

` 〈(ρ̂, τ, t) , (`1, [])::L〉A ⇒ 〈(ρ̂, τ, t) ,L〉A

Figure 5.3: Operational specification of the time-stamps-based algorithm

In the following, we assume that we are given a finite trace of the analysis
starting from `0 and ρ̂0.

Lemma 5.A.2 (Progress). Let 〈(ρ̂, τ, t) ,L〉A be a A-configuration in the trace
of the time-stamp-based algorithm applied to `0 and ρ̂0 and ` a node such that
` is in the stack L. Then ` is eventually processed, namely there exists a later
B-configuration 〈(ρ̂1, τ1, t1) , (`′, `::ls1)::L〉B in the trace.

Proof. By induction on the depth of the position of ` in the list L. We use the
fact that the trace of states is finite.

Lemma 5.A.3 (Time-stamp control). Let 〈(ρ̂1, τ1, t) , (`1, `::ls1)::L1〉B be a
B-configuration in the trace such that τ1(`) = t. Then there exists a previous
B-configuration 〈(ρ̂2, τ2, t) , (`2, `::ls2)::L2〉B such that ρ̂1 = ρ̂2 and τ2(`) < t.

Proof. By reduction to absurd. The only possiblity that τ1(`) = t is that there
has been a previous B-configuration at which τ1(`) has been assigned to t, and
since then, the environment has not changed.

The above lemmas are used to show that the analysis information collected
by the F ′′ function modeling the time-stamp based control of recursion is also
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collected by the time-stamp based algorithm. Let us recall the equations defining
the F ′′ function:

F ′′(`, (ρ̂, τ, t)) = if τ(`) = t then ⊥
else B(`, ρ̂) t

⊔
`′∈R(`,ρ̂)

F ′′(`′,U (V (`, `′, ρ̂), (ρ̂, τ [` 7→ t], t)))

Given an initial point `0 and initial analysis information ρ̂0, computing the value
of F ′′(`0, ρ̂0) gives rise to a tree of recursive calls F ′′(`, (ρ̂, τ, t)). The value of
F ′′(`0, ρ̂0) is thus computed as the union of B(`, ρ̂) values for the (`, (ρ̂, τ, t))
pairs in the tree such that τ(`) < t.

Lemma 5.A.4 (Approximative simulation). Let (`, (ρ̂, τ, t)) be a tuple in
the tree of calls to F ′′(`0, ρ̂0) such that τ(`) < t. Then, in the trace of config-
urations of the time-stamp-based algorithm applied to `0 and ρ̂0, there exists a
configuration 〈(ρ̂1, τ1, t1) , (`′, `::ls1)::L〉B such that ρ̂ v ρ̂1 and τ1(`) < t1.

Proof. By induction on the tree of calls to F ′′(`0, ρ̂0). The starting node is
trivial. Let us take a call (`, (ρ̂, τ, t)) such that τ(`) < t. Since this is not the top-
level call, there must exist a previous call (`2, (ρ̂2, τ2, t2)) such that ` ∈ R(`2, ρ̂2).
By I.H, there exists also a previous state 〈(ρ̂3, τ3, t3) , (`3, `2::ls3)::L3〉B such
that ρ̂2 v ρ̂3. We make a case distinction on whether τ2(`2) = t2 or not. If
not, then using Lemma 5.A.3 we obtain a similar state in which the above
is true. If yes, then the outgoing nodes R(`2, ρ̂3) have been pushed on the
stack, and, among them, `. From Lemma 5.A.2 we obtain that there is a later
configuration 〈(ρ̂4, τ4, t4) , (`4, `::ls4)::L4〉B . More importanttly, ρ̂3 v ρ̂4. If
τ4(`) < t4, then we are done. Otherwise, we use Lemma 5.A.3 to obtain the
desired configuration.

From Lemma 5.A.4 it is easy to show that each value B(`, ρ̂) collected by
the function F ′′ is also collected by the time-stamp-based algorithm. We obtain
the following theorem:

Theorem 5.A.5 (Correctness of time-stamp approximation). Let (ρ̂1, τ1, t1) =
F ′′(`0, (ρ̂0, λ`.0, 1)) and (ρ̂2, τ2, t2) such that

` 〈(ρ̂0, λ`.0, 1) , (`0, `0::[])::[]〉B ⇒∗ 〈(ρ̂2, τ2, t2) , []〉A

Then ρ̂1 v ρ̂2.

Proof. By induction on the unfolding of F ′′(`0, (ρ̂0, λ`.0, 1)).

All that remains to be shown is the following theorem:

Theorem 5.A.6 (Accuracy). Let (ρ̂1, τ1, t1) = F ′(`0, (ρ̂0, λ`.0, 1)) and (ρ̂2, τ2, t2)
such that

` 〈(ρ̂0, λ`.0, 1) , (`0, `0::[])::[]〉B ⇒∗ 〈(ρ̂2, τ2, t2) , []〉A

Then ρ̂1 = ρ̂2.

Proof. By induction on the unfolding of F ′(`0, (ρ̂0, λ`.0, 1)).
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Chapter 6

Static Transition
Compression

Abstract1

Starting from an operational specification of a translation from a
structured to an unstructured imperative language, we point out how
a compositional and context-insensitive translation gives rise to static
chains of jumps. Taking an inspiration from the notion of continua-
tion, we state a new compositional and context-sensitive specification
that provably gives rise to no static chains of jumps, no redundant
labels, and no unused labels. It is defined with one inference rule per
syntactic construct and operates in linear time and space on the size
of the source program (indeed it operates in one pass).

6.1 Introduction

The art of writing a compiler partly amounts to resolving the tensions between
its various phases. For example, should each phase be simple, but generate
redundancies that equally simple later phases would eliminate? Or should each
phase avoid redundancies in order to avoid a later phase and save the resources
spent processing the redundancies in between? Picturesquely, Richard Gabriel
nicknamed this kind of choices “worse is better” and “the right thing” [46].
Worse is better yields results sooner, at the risk of never ending with the right
thing. The right thing is the right thing, but takes longer to achieve, at the
risk of funding running out. Resolving the tensions between these choices in a
compiler is anything but easy due to its many circular dependencies.

In this article, we consider transition compression, i.e., collapsing chains of
jumps into unique jumps. To this end, we formalize the translation of structured

1This chapter has been published as [28]. The chapter is joint work with Olivier Danvy.
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programs into unstructured programs with jumps (Section 6.2). We show how
a compositional and context-insensitive translation naturally generates chains
of jumps (Section 6.3). We then specify a compositional and context-sensitive
translation that is parameterized by the labels of the current command and of
the next command, and we prove that it generates no chains of jumps, no redun-
dant labels and no unused labels (Section 6.4 and 6.5). It therefore compresses
transitions at translation time—hence the title of this article.

The issue of transition compression is standard [2] [66, Section 4.4], but we
are not aware of any other formalized characterization of generating chains of
jumps and avoiding them. Since we wrote this article, however, we became
aware of Dybvig, Hieb, and Butler’s work on destination-driven code genera-
tion [38], which shares the same goal as static transition compression and has
been implemented as part of the back-end of an optimizing Scheme compiler.

6.2 Source and target languages

We consider the translation of structured programs that use conditional com-
mands and while loops into unstructured programs that use labels and jumps.

6.2.1 An unstructured target language

Our target language is defined in Figure 6.1. Unstructured commands can
be (unspecified) atomic commands, skip commands, sequences of commands,
conditional jumps, and unconditional jumps. Commands can be labeled, and
labels are used as targets of jumps. Conditional jumps are triggered by either
the truth (if) or the falsity (ifn) of a boolean expression. A program is an
unstructured command ending with a stop instruction, optionally labeled.

u ∈ UCom ::= a | skip | u1; u2 | ` : u | if b goto ` | ifn b goto ` | goto `
a ∈ ACom (atomic commands, omitted)
b ∈ BExp (boolean expressions, omitted)
` ∈ Lab (code labels, unspecified)

Figure 6.1: An unstructured target language

Valid programs are commands where labels are unique and targets of jumps
always exist. Their semantics is state-based and straightforward. (We define
it as a trace semantics since we omit the specification of atomic commands. A
state is thus the series of atomic commands executed in the course of a program.)

6.2.2 A structured source language

Our source language is defined in Figure 6.2. Structured commands can be
atomic commands, sequences of commands, conditional commands, and while
loops. Again, their (trace) semantics is state-based and straightforward [124].
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s ∈ SCom ::= a | s1; s2 | if b then s1 else s2 end | while b do s end
a ∈ ACom (atomic commands, same as in Figure 6.1)
b ∈ BExp (boolean expressions, same as in Figure 6.1)

Figure 6.2: A structured source language

Implementing a compiler for such a language requires one to translate struc-
tured commands into unstructured commands in a language such as the one in
Figure 6.1. This translation is the topic of the next section.

6.3 A context-insensitive translation

We start with a compositional and context-insensitive translation. For each
compound structured command, the translation generates code for all subcom-
ponents, and combines them together with explicit conditional/unconditional
jumps implementing the required flow of control. The translation is canoni-
cal [123, Section 2.8].

6.3.1 The translation

The judgment
` s −→ u

holds whenever the structured command s translates into the unstructured com-
mand u. Fresh labels may be generated during the translation. Label generation
can be modeled, e.g., by threading a counter through the derivation tree.

At the top level, a structured program s is translated into an unstructured
program u; stop if ` s −→ u holds.

The inference rules are displayed in Figure 6.3. Let us describe each of them
in words.

Atomic commands: An atomic command is translated into the same atomic
command.

Sequences of commands: A sequence of commands is translated into the
sequence of the translated commands.

Conditional commands: A conditional command is translated into a condi-
tional jump determining whether to execute the translated then branch or
the translated else branch. The translated branches merge into a labeled
skip instruction. One branch jumps to it and the other one flows into it.

While loops: A while loop is translated into a labeled conditional jump deter-
mining whether to execute the translated body of the loop or to exit the
loop. The translated body is followed by an unconditional jump to close
the loop. A labeled skip instruction follows as the exit point of the loop.
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` a −→ a

` s1 −→ u1 ` s2 −→ u2

` s1; s2 −→ u1; u2

` s1 −→ u1 ` s2 −→ u2
where `1 and `2 are fresh

` if b
then s1

else s2

end

−→ if b goto `1;
u2;
goto `2;

`1: u1;
`2: skip

` s −→ u
where `1 and `2 are fresh

` while b
do s
end

−→ `1: ifn b goto `2;
u;
goto `1;

`2: skip

Figure 6.3: A compositional and context-insensitive translation

In Figure 6.3, the translation judgments are deterministic and therefore the
translation of a program always exists and is unique. Using rule induction [124]
one can show that the translated program is valid and also that its semantics
agrees with the semantics of the source program.

6.3.2 Variations

The translation defined in Figure 6.3 is only one among many in the range of
choices for translating conditional commands and while loops. Let us take three
examples.

• For conditional commands, the conditional branches could be swapped.

• For while loops, the translation starts with a conditional jump and finishes
with an unconditional jump. More compact programs can be obtained by
starting with an unconditional jump and finishing with a conditional jump:

` s −→ u
where `1 and `2 are fresh

` while b
do s
end

−→ goto `2;
`1: u;
`2: if b goto `1

The two translations differ in the number of steps executed at run-time by
the resulting programs.
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• For while loops, one could also choose Baskett’s technique [9], which du-
plicates b and mixes the two previous translations:

` s −→ u
where `1 and `2 are fresh

` while b
do s
end

−→ ifn b goto `2;
`1: u;

if b goto `1;
`2: skip

These alternatives embody tradeoffs between the size and the speed of the re-
sulting code. A compiler could decide among them based on compile-time in-
formation or on profiling information.

6.3.3 Analysis

A compositional and context-insensitive translation is simple to write and to
reason about. By its very nature, however, it does not take into account the
contexts of the translated terms and therefore, it gives rise to redundancies, e.g.,
when sequencing conditional commands and while loops, as illustrated next.

Example 6.3.1 (Sequencing).

` if b1

then a1

else a2

end;
while b2

do a3

end

−→ if b1 goto 1;
a2;
goto 2;

1: a1;
2: skip;
3: ifn b2 goto 4;

a3;
goto 3;

4: skip

Sequencing a conditional command and a while loop gives rise to a skip instruc-
tion (the one labeled by 2) that could be eliminated and to labels (2 and 3) that
could be merged. 2

The translation also gives rise to further spurious skip instructions, e.g., for
nested conditional commands, as illustrated next.

Example 6.3.2 (Then-nested conditional commands).

` if b1

then if b2

then a1

else a2

end
else a3

end

−→ if b1 goto 1;
a3;
goto 2;

1: if b2 goto 3;
a2;
goto 4;

3: a1;
4: skip;
2: skip
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Nesting a conditional command in the then branch of a conditional command
gives rise to a spurious skip instruction (here, the one labeled with 4). 2

Given n then-nested conditional commands, the direct translation generates a
chain of n consecutive skip instructions. It can also give rise to chains of jumps,
as illustrated next.

Example 6.3.3 (Else-nested conditional commands).

` if b1

then a1

else if b2

then a2

else a3

end
end

−→ if b1 goto 1;
if b2 goto 3;
a3;
goto 4;

3: a2;
4: skip;

goto 2;
1: a1;
2: skip

Nesting a conditional command in the else branch of a conditional command
gives rise to a chain of skip instructions and unconditional jumps (label 4 is
part of the chain here). 2

Given n else-nested conditional commands, the direct translation generates a
chain of n successive jumps.

Chains of jumps also arise when translating nested while loops, as illustrated
next.

Example 6.3.4 (Nested while loops).

` while b1

do while b2

do while b3

do a
end

end
end

−→ 1: ifn b1 goto 2;
3: ifn b2 goto 4;
5: ifn b3 goto 6;

a;
goto 5;

6: skip;
goto 3;

4: skip;
goto 1;

2: skip

Nesting a while loop in a while loop gives rise to a chain of skip instructions
and unconditional jumps (labels 6 and 4 are part of the chain here). 2

Given n nested while loops, the direct translation generates a chain of n suc-
cessive jumps. The alternative translations for while loops mentioned in Sec-
tion 6.3.1 share the same problem.

The redundancies add up when translating more complex code structures,
as illustrated next.
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Example 6.3.5 (Nested heterogeneous commands).

` while b1

do a1;
if b2

then while b3

do a2

end
else a3

end
end

−→ 1: ifn b1 goto 2;
a1;
if b2 goto 3;
a3;
goto 4;

3:
5: ifn b3 goto 6;

a2;
goto 5;

6: skip;
4: skip;

goto 1;
2: skip

This example illustrates overlapping chains of jumps (the skip instruction labeled
with 4 can both be flowed into and jumped to) and redundant aliased labels (3
and 5). 2

Finding a proper strategy to eliminate overlapping chains of jumps increases the
requirements on the post-processing phase. An extra phase is also necessary to
eliminate redundant aliased labels.

6.3.4 Chains of jumps

Chains of jumps are a classical issue. Compiler textbooks list two choices:

1. use backpatching [2, Chapter 8]; and

2. have a simple code-generation scheme and eliminate chains of jumps in a
post-processing phase, e.g., peephole optimization [2, Chapter 9] or block
reordering [100].

Post-unfolding chains of jumps is also known as transition compression in partial
evaluation [66, Section 4.4].

On one hand, a simple code-generation scheme is easy to maintain and to
extend. On the other hand, a post-processing phase is likely to be an expensive
part of the compiler, since it requires one to identify the chains of jumps. As
for backpatching, it requires one to maintain an additional list structure in
the memory, potentially linear in the size of the source program. Ensuring
correctness also becomes more difficult.

Other authors [4] propose using code blocks, exploring code traces and
reshuffling blocks in order to minimize the amount of redundant jumps. On
one hand, such an approach often leads to better code by optimizing the redun-
dancies in the original code. On the other hand, it requires one to design and
implement a code-reshuffling strategy.

In the following sections we present and prove a simple translation scheme
that avoids generating redundant labels and chains of jumps, does not introduce
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additional computational steps, does not require allocation of additional space,
and operates in one pass. Furthermore, the generated code is still amenable to
code reshuffling and dynamic transition compression, as in Erosa and Hendren’s
work [39]. Our solution is not unique in the sense that it can be adapted to
other translation rules.

6.4 Context awareness

Examining Figure 6.3 makes it clear where chains of jumps can arise. For exam-
ple, a conditional command is always punctuated with a labeled skip instruction,
in order to establish a program point where the conditional branches can join.
Therefore, as illustrated by Example 6.3.3, else-nested conditional commands
give rise to chains of jumps—one for each joining program point.

6.4.1 Continuations and duplication

To prevent these chains of jumps, and in the spirit of continuations [114], one
can parameterize the translation with the label of the next instruction and
generate explicit jumps to this label. The resulting translation, however, is not
optimal because sequenced atomic commands yield redundant jumps to the next
instruction. The problem is reminiscent of administrative redexes introduced
by a Plotkin-style CPS transformation [31, 98].

One could then duplicate the translation judgment. A first judgment would
hold when the translated command ends with an explicit jump to the label of its
next command, and a second would hold when the translated command flows
into the next instruction. Duplication, however, is a slippery road because it
leads one to uncomfortably large specifications. Alternatively, the translation
judgment could be parameterized with an inherited attribute, and this is the
topic of the next section.

6.4.2 Towards the right thing

We parameterize the translation judgment with attributes. The judgment re-
lates a structured command s and an unstructured command u.

• Both conditional commands and while loops need a label for the next
instruction. We therefore parameterize the judgment with an inherited
label for the instruction following u (the ‘next’ label). On the other hand,
atomic commands do not need a next label. We therefore parameterize the
judgment with an inherited flag indicating whether u can flow into the next
label or whether it must jump to it, and with a synthesized flag indicating
whether or not the next label is used in u.

• While loops need a label for the current instruction, but other commands
do not. We therefore parameterize the judgment with an inherited label
for u (the ‘current’ label) and with a synthesized flag indicating whether
or not the current label is used in u.
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Thus equipped, we can specify a translation by combinatorially enumerating all
the possible values of the flags. The next labels make it possible to short-cut
static chains of jumps and the inherited flags to only declare the labels that are
actually used. The translation avoids both chains of jumps and unused labels
in translated programs, works in one pass, and is simple to prove correct.

On the other hand, the combinatorial enumeration gives rise to a large num-
ber of inference rules. We would rather have a solution with one inference rule
per syntactic construct. Such a solution is the topic of the next section.

6.5 A context-sensitive translation

We present a compositional and context-sensitive translation that has one in-
ference rule per syntactic construct and that avoids generating chains of jumps
as well as redundant or unused labels.

6.5.1 The translation

Compared to Section 6.4.2, our insight is to combine inherited flags and inherited
labels into qualified labels, and to reduce the two synthesized flags to one, for
the next label.

The qualified current label, qcl , for a translated command u: qcl is in-
herited. It is either MAY ` or MUST `, for some label `. The label ` is
associated to the entry point of u. If ` is qualified as MUST , the translation
must declare it at the entry point of u. Otherwise, ` is qualified as MAY
and, unless necessary (e.g., for a while loop), the translation can ignore `.
Qualified current labels are attached (or not) to translated commands ac-
cording to the judgment

`def 〈qcl , u〉 −→ u′

where qcl is a qualified current label and u and u′ are unstructured com-
mands. If the qualifier is MUST , u is labeled in the result u′. Otherwise,
the qualifier is MAY and u is not labeled in u′. This auxiliary judgment
thus concerns the definition of labels for commands. It is defined in Fig-
ure 6.4.

The qualified next label, qnl, for a translated command u: qnl is inher-
ited. It is either FLOW ` or JUMP `, for some label `. The label ` is
associated to the instruction following u. If ` is qualified as JUMP , the
translation must generate an explicit jump to it. Otherwise, ` is qualified
as FLOW and, unless it needs it (e.g., for a conditional command or for a
while loop), the translation can let u flow into the next instruction.

The result flag, r , for a translated command u: r is synthesized. It is ei-
ther USED or UNUSED . If it is USED , then the command following u
must be labeled with the next label.
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Qualified next labels are jumped to (or not) in translated commands ac-
cording to the judgment

`use 〈qnl , u〉 −→ 〈u′, r〉

where qnl is a qualified next label, u and u′ are unstructured commands,
and r is a result flag. If the qualification is FLOW , then u′ = u and r
is UNUSED . Otherwise, the qualification is JUMP , a jump to the next
label is generated, and r is USED . This second auxiliary judgment thus
concerns the use of a label after a command. It is defined in Figure 6.4.

Our translation is compositional, uses one inference rule per syntactic con-
struct, and relates a structured command s into an unstructured command u. It
is parameterized with two inherited attributes, qcl and qnl , and one synthesized
attribute, r , and reads as follows:

` 〈qcl , s, qnl〉 −→ 〈u, r〉

The judgment is satisfied whenever s translates into u. It uses the two auxiliary
judgments defined above.

At the top level, a structured program s is translated into an unstructured
program u; u′ as follows:

` 〈MAY `1, s,FLOW `0〉 −→ 〈u, r〉
`def 〈qcl , stop〉 −→ u′

where `0 and `1 are fresh
and qcl = transfer r `0

` s −→ u; u′

where transfer is defined just below.
N.B.: u′ is either stop or `0 : stop, depending on whether r is UNUSED or
USED .

We use the following auxiliary functions (project is overloaded):

transfer : result-flag× Lab → qualified-current-label
transfer UNUSED ` = MAY `
transfer USED ` = MUST `

project : qualified-current-label → Lab
project (MAY `) = `
project (MUST `) = `

project : qualified-next-label → Lab
project (FLOW `) = `
project (JUMP `) = `

N.B.: In an implementation, since there is no ambiguity, one would probably
represent qualified labels as pairs of tags and labels, and overload MAY , FLOW
and UNUSED into one tag and MUST , JUMP and USED into another tag, at
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`def 〈MAY `, u〉 −→ u `def 〈MUST `, u〉 −→ ` : u

`use 〈FLOW `, u〉 −→ 〈u,UNUSED〉

`use 〈JUMP `, u〉 −→ 〈(u; goto `),USED〉

`def 〈qcl , a〉 −→ u `use 〈qnl , u〉 −→ 〈u′, r〉
` 〈qcl , a, qnl〉 −→ 〈u′, r〉

` 〈qcl , s1,FLOW `1〉 −→ 〈u1, r1〉
` 〈qcl2, s2, qnl〉 −→ 〈u2, r2〉 where `1 is fresh

and qcl2 = transfer r1 `1
` 〈qcl , (s1; s2), qnl〉 −→ 〈(u1; u2), r2〉

` 〈MUST `1, s1, qnl〉 −→ 〈u1, r1〉
` 〈MAY `2, s2, JUMP `〉 −→ 〈u2, r2〉
`def 〈qcl , (if b goto `1; u2; u1)〉 −→ u

where ` = project qnl
and `1 and `2

are fresh

` 〈qcl , if b then s1 else s2 end, qnl〉 −→ 〈u,USED〉

` 〈MAY `3, s, JUMP `1〉 −→ 〈u, r〉
`def 〈MUST `1, (ifn b goto `2; u)〉 −→ u′

where `1 = project qcl
`2 = project qnl

and `3 is fresh

` 〈qcl , while b do s end, qnl〉 −→ 〈u′,USED〉

Figure 6.4: A compositional and context-sensitive translation

the price of clarity. Then transfer would be the identity function and project
would be the second projection function.

The inference rules are displayed in Figure 6.4. We describe each of them in
words next.

Atomic commands: An atomic command is translated into the same atomic
command. Depending on the qualified current label, the resulting atomic
command might be labeled. Depending on the qualified next label, it might
be followed by a jump to the next label and gives rise to the corresponding
synthesized result flag.

Sequences of commands: A sequence of commands is translated into the se-
quence of the translated commands. The qualified current label is inherited
by the translation of the first command, and the qualified next label by
the translation of the second command. In the translation of the first com-
mand, to reflect sequencing, the qualification of the next label is FLOW .
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The result flag synthesized from the translation of the first command is
transferred to the translation of the second command as an inherited at-
tribute. The final result flag is inherited from the translation of the second
command.

Conditional commands: A conditional command is translated into a condi-
tional jump determining whether to execute the translated then branch or
the translated else branch. The translated branches merge into the next
label (the else branch must jump to it), and thus their result flags are not
used.

While loops: A while loop is translated into a conditional jump labeled by
the current label of the translation and determining whether to execute
the translated body of the loop or to exit the loop. The current label
serves as a next label to translate the body, to close the loop. The next
label of the translation serves as the exit point of the loop.

In contrast to the context-insensitive translation of Figure 6.3, the context-
sensitive translation of Figure 6.4 does not introduce any skip commands. More-
over, none of the generated unconditional jumps are labeled. The following
theorem is straightforward to prove by rule induction [124].

Theorem 6.5.1 (No chains). Let s be a program in SCom such that ` s −→ u
is satisfied. Then,

1. there exist no commands goto ` and ` : goto `′ in u;

2. there exist no commands if b goto ` and ` : goto `′ in u; and

3. there exist no commands ifn b goto ` and ` : goto `′ in u.

Furthermore, the translation of Figure 6.4 generates no unused labels, as
stated by the following theorem, which is also straightforward to prove.

Theorem 6.5.2 (All labels are used). Let s be a program in SCom such that
` s −→ u is satisfied. Then, for any label ` in u, at least one of the following
conditions is true:

1. There exists a command goto ` in u.

2. There exists a command if b goto ` in u.

3. There exists a command ifn b goto ` in u.

Finally, the translation of Figure 6.4 does not generate redundant aliased
labels, as stated by the following theorem, which is also straightforward to
prove.

Theorem 6.5.3 (No redundant labels). Let s be a program in SCom such
that ` s −→ u is satisfied. Then there exist no labels `1 and `2 such that there
exists a command `1 : `2 : u′ in u.
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6.5.2 Variations

The translation defined in Figure 6.4 is only one among many in the range of
choices for translating conditional commands and while loops. For instance,
Baskett’s translation of while loops [9] can be adapted as follows.

`def 〈qcl , ifn b goto `2〉 −→ u0

` 〈MUST `1, s,FLOW `3〉 −→ 〈u1, r3〉
`def 〈qcl3, if b goto `1〉 −→ u2 where `2 = project qnl

`1, `3 are fresh
and qcl3 = transfer r3 `3

` 〈qcl , while b do s end, qnl〉 −→ 〈(u0; u1; u2),USED〉

The alternative translation of while loops from Section 6.3.2, however, does
not blend as directly in the present context-sensitive translation. The guilty
part is its opening unconditional jump.

6.5.3 Analysis

Let us revisit the examples of Section 6.3.3 and show that no redundancies
occur.

Example 6.5.1 (Sequencing, revisited).

` if b1

then a1

else a2

end;
while b2

do a3

end

−→ if b1 goto 3;
a2;
goto 2;

3: a1;
2: ifn b2 goto 0;

a3;
goto 2;

0: stop

In contrast to Example 6.3.1, the translated code contains no additional labels
or spurious skip instructions. 2

Example 6.5.2 (Then-nested conditional commands, revisited).

` if b1

then if b2

then a1

else a2

end
else a3

end

−→ if b1 goto 2;
a3;
goto 0;

2: if b2 goto 4;
a2;
goto 0;

4: a1;
0: stop

In contrast to Example 6.3.2, no spurious skip instructions have been generated.
2
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Example 6.5.3 (Else-nested conditional commands, revisited).

` if b1

then a1

else if b2

then a2

else a3

end
end

−→ if b1 goto 2;
if b2 goto 4;
a3;
goto 0;

4: a2;
goto 0;

2: a1;
0: stop

In contrast to Example 6.3.3, all jumps to 0 are now direct, and the last state-
ment flows directly to 0. 2

Example 6.5.4 (Nested while loops, revisited).

` while b1

do while b2

do while b3

do a
end

end
end

−→ 1: ifn b1 goto 0;
2: ifn b2 goto 1;
3: ifn b3 goto 2;

a;
goto 3;

0: stop

In contrast to Example 6.3.4, no additional labels or spurious skip instructions
have been generated. 2

Example 6.5.5 (Nested heterogeneous commands, revisited).

` while b1

do a1;
if b2

then while b3

do a2

end
else a3

end
end

−→ 1: ifn b1 goto 0;
a1;
if b2 goto 4;
a3;
goto 1;

4: ifn b3 goto 1;
a2;
goto 4;

0: stop

In contrast to Example 6.3.5, no chains of jumps, no useless labels, and no
redundant aliased labels have been generated. 2

6.6 Conclusions

We have presented a context-sensitive translation from a language with struc-
tured control-flow constructs into a language with unstructured control-flow
constructs. The translation is compositional and operates in linear time and
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space on the size of the input program. It is defined with one inference rule per
syntactic construct and operates in one pass. The resulting program is seman-
tically equivalent to the original program, contains the same atomic commands,
and contains no chains of jumps, no unused labels, and no redundant labels. The
translation should thus be useful in a JIT compiler for a structured language.

Compiling nested conditional commands naturally gives rise to chains of
jumps to join their control flow if the translation is context-insensitive. We have
pointed out how to avoid generating these chains of jumps. In SSA terms [5,
74, 122], our translation naturally yields fewer merge points without duplicating
contexts. It also generates fewer basic blocks and thus makes it faster to compute
an SSA form.

Turning to the CPS transformation [31, 113], we observe that the issue of
chains of jumps arises there in the form of spurious η-redexes such as λv.k v,
where k denotes a continuation. These η-redexes appear in the translation of
tail calls and for nested conditional expressions, just like here for while loops
and nested conditional commands. This coincidence should not come as a sur-
prise since CPS and, more generally, functional programming are known to be
connected to SSA [5, 74].

Our closest related work is Dybvig, Hieb, and Butler’s destination-driven
code generation [38], where commands are also translated based on their con-
text. While destination-driven code generation is not formalized and yields
both redundant labels and unreferenced labels, it is defined for a richer source
language and has been implemented in the back-end of a Scheme optimizing
compiler, where it has been found very effective.
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