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Abstract

Over the last ten years, there have been numerous applications of evolutionary al-
gorithms to a variety of scheduling problems. Like most other research on heuris-
tic scheduling, the primary aim of the research has been on deterministic formula-
tions of the problems. This is in contrast to real world scheduling problems which
are usually not deterministic. Usually at the time the schedule is made some in-
formation about the problem and processing environment is available, but this
information is uncertain and likely to change during schedule execution. Changes
frequently encountered in scheduling environments include machine breakdowns,
uncertain processing times, workers getting sick, materials being delayed and the
appearance of new jobs. These possible environmental changes mean that a sched-
ule which was optimal for the information available at the time of scheduling can
end up being highly suboptimal when it is implemented and subjected to the un-
certainty of the real world. For this reason it is very important to find methods
capable of creating robust schedules (schedules expected to perform well after a
minimal amount of modification when the environment changes) or flexible sched-
ules (schedules expected to perform well after some degree of modification when
the environment changes).

This thesis presents two fundamentally different approaches for scheduling
job shops facing machine breakdowns. The first method is called neighbourhood
based robustness and is based on an idea of minimising the cost of a neighbour-
hood of schedules. The scheduling algorithm attempts to find a small set of sched-
ules with an acceptable level of performance. The approach is demonstrated to
significantly improve the robustness and flexibility of the schedules while at the
same time producing schedules with a low implementation cost if no breakdown
occurs. The method is compared to a state of the art method for stochastic sche-
duling and concluded to have the same level of performance, but a wider area of
applicability. The current implementation of the method is based on an evolution-
ary algorithm, but since the real contribution of the method is a new performance
measure, other implementations could be based on tabu search, simulated anneal-
ing or other powerful “blind” optimisation heuristics.

The other method for stochastic scheduling uses the idea of coevolution to
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create schedules with a guaranteed worst case performance for a known set of
scenarios. The method is demonstrated to improve worst case performance of the
schedules when compared to ordinary scheduling; it substantially reduces pro-
gram running times when compared to a more standard approach explicitly con-
sidering all scenarios. Schedules based on worst case performance measures often
have suboptimal performance if no disruption happens, so the coevolutionary al-
gorithm is combined with a multi-objective algorithm which optimises worst case
performance as well as performance without disruptions.

The coevolutionary worst case algorithm is also combined with another algo-
rithm to create schedules with a guaranteed level of worst deviation performance.
In worst deviation performance the objective is to minimise the highest possible
performance difference from the schedule optimal for the scenario that actually
takes place. Minimising this kind of performance measure involves solving a
large number of related scheduling problems in one run, so a new evolutionary
algorithm for this kind of problem is suggested.

Other contributions of the thesis include a new coevolutionary algorithm for
minimax problems. The new algorithm is capable of solving problems with an
asymmetric property that causes previously published algorithms to fail. Also,
a new algorithm to solve the economic lot and delivery scheduling problem is
presented. The new algorithm is guaranteed to solve the problem to optimality in
polynomial time, something previously published algorithms have not been able
to do.
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Chapter 1

Motivation and Introduction

Over the last ten years there has been a surge of research activity in the field of
Evolutionary Computation. There have been advances in many areas, and evolu-
tionary computation has been applied to quite a few real world problems. How-
ever, most of the research in the field has been focused on various aspects of opti-
misation and problem solving in static forms. Most of the optimisation problems
treated - both artificial benchmarks and real world problems - have been viewed
as static and deterministic problem instances. It has been assumed that complete
knowledge of the problem was available when it was to be solved. There would
be no changes to the problem or in the environment later, which would require
the solution to be modified or updated. In short most of the research has largely
ignored the fact that often optimisation is a process of sustained pursuit, trying to
hold on to an optimum solution which changes over time.

These shortcomings have also been present in the area of scheduling. This may
seem surprising, since in scheduling it seems very obvious that as the environment
changes the solution may need adaptation. Most scheduling problems in the real
world face the possibility of disruptive events such as machines breaking down,
workers getting sick or new jobs appearing. When and how these events will occur
is not known beforehand, but the possibility that they may happen is known. Since
many real world scheduling applications involve huge amounts of money, even a
slight improvement of efficiency when handling these events can translate into
substantial savings and a competitive edge for the company involved.

In most scheduling problems, the solution found is not implemented all at
once, but in a step by step manner. A consequence of the noise and uncertainty
present in the real world is that the occurrence of some breakdown or failure
part way through the implementation of the schedule can call for a change to
the schedule. The process of changing a schedule to accommodate a change in
the environment is usually called rescheduling. Since the presence of noise and
uncertainty is known at the time of scheduling, it seems natural to take possible
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2 CHAPTER 1. MOTIVATION AND INTRODUCTION

future events into consideration before they happen, in order to create schedules
that allow adaptation to changes. In this way, stochastic scheduling can be seen
as a task in which the objective is to create low cost schedules, but at the same
time avoiding painting oneself into a corner by making decisions that do not al-
low changes to be made to the schedule in the future. Depending on the way the
schedules are adapted to changes, schedules prepared for uncertain future events
are called robust or flexible.

The measurement of schedule robustness or flexibility can be done in a variety
of ways. The simplest way of measuring schedule performance is by implement-
ing it in the scheduling environment, and noting what the cost of implementing
the schedule turned out to be. This ex post evaluation is of course useless when
it comes to choosing the best schedule, so a more clever kind of evaluation is
needed. More clever ways of measuring schedule performance usually involve
some kind of simulation or reasoning about the schedule and the possible future
events. Knowledge about the kind of events to be expected is needed, since if
no knowledge is available, there is no way of reasoning about the possible future
outcomes if the schedule is implemented. The formulation of schedule quality
in mathematical terms can be done in a number of different ways. In some sit-
uations, a good measure of quality will be the average cost of implementing the
schedule (average performance). For more critical applications worst case per-
formance, in which the costs of the worst possible conditions are to be minimised,
are more relevant. Other ways of measuring schedule performance are worst devi-
ation performance and worst relative deviation performance, both of which try to
minimise the highest cost difference between the implemented schedule and the
optimal schedule for all scenarios possible.

How to optimise the stochastic performance of a schedule depends on the way
schedule quality is measured. If average performance is used, the probabilities of
future scenarios need to be known, since without them it is impossible to evaluate
schedule performance. If worst case performance is used, knowledge of scenario
probabilities is not needed, only the set of possible future scenarios needs to be
known. Worst deviation and relative worst deviation performance do not require
knowledge of scenario probabilities either, but they require knowledge of the op-
timal schedules for all possible scenarios. Finding these optimal schedules for all
of the scenarios is a very difficult task, since it requires the solution of a huge
number of scheduling problems, each of which will usually be NP-complete.

Very few generally applicable methods for creating robust or flexible sched-
ules exist today. The main topic of the present thesis is the development of novel
algorithms and methods to create job shop schedules which are flexible or ro-
bust when measured using the performance measures listed above. Many of the
techniques used have previously been applied successfully to static scheduling
problems, and are primarily from the field of evolutionary computation.
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A problem arising when working with worst case, worst deviation and relative
worst deviation performance measures is the minimax problem. Besides schedu-
ling, the minimax problem is relevant to research areas such as mechanical en-
gineering, constrained optimisation, network design and function approximation.
The problem is an optimisation problem that can be viewed as an antagonistic
game between to players. One player tries to minimise a cost, while the other tries
to maximise it. Since the search-spaces of the two players can be huge, a coevo-
lutionary approach in which each player is represented by a population of choices
seems a promising approach. Previously published coevolutionary algorithms for
minimax problems require the problems to have a certain symmetric property. In
this thesis a new algorithm which removes the need for this symmetric property is
presented.

The economic lot delivery and scheduling problem (ELDSP) is a problem in
which a supplier produces a number of products which are stored in an inventory
and shipped to a single costumer in batches. This situation often arises in e.g.
the automotive industry. The objective of the ELDSP is to minimise the com-
bined costs of production, inventory and shipping. Prior to the development of
the algorithm presented in this thesis, no polynomial time algorithm was known
to optimally solve this problem.

1.1 List of publications

Most of the results presented in this thesis have been published (or are about to be
published) in the following papers:

• M. T. Jensen and T. K. Hansen: Robust Solutions to Job Shop Problems, In
P. J. Angeline et al. , editors, Proceedings of the 1999 Congress on Evolu-
tionary Computation, volume 2, pages 1138-1144, 1999.

• M. T. Jensen: Neighbourhood based Robustness Applied to Tardiness and
Total Flowtime Job Shops, In M. Schoenauer et al. , editors, Parallel Prob-
lem Solving from Nature - PPSN VI proceedings, pages 283-292, Springer
LNCS volume 1917, 2000.

• M. T. Jensen: Improving Robustness and Flexibility of Tardiness and Total
Flowtime Job Shops using Robustness Measures, Journal of Applied Soft
Computing, volume 1, number 1, 2001.

• M. T. Jensen: Finding Worst-Case Flexible Schedules using Coevolution,
In L. Spector et al. , editors, GECCO 2001 - Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1144-1151, 2001.
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• M. T. Jensen: A New Look at Solving Minimax Problems with Coevolution,
presented at MIC2001, submitted to the conference book.

• M. T. Jensen: Generating Robust and Flexible Job Shop Schedules using
Genetic Algorithms. In submission.

• M. T. Jensen and M. Khouja, An Optimal Polynomial Time Algorithm for
the Common Cycle Economic Lot and Delivery Scheduling Problem. In
submission.

1.2 How to read this thesis

Care has been taken to make this thesis as self-contained as possible. Because
of this, there is a fair amount of pages concerned with the introduction of con-
cepts and problems such as evolutionary computation, deterministic and stochas-
tic scheduling. The reader already familiar with these concepts can skip these
parts of the thesis and go directly to the more interesting parts. The original work
in this thesis is contained in section 2.4 of chapter 2, sections 4.3, 4.5.1 and 4.6 of
chapter 4 and all of chapters 5, 6 and 7.

The outline of the thesis is the following:
Evolutionary algorithms are introduced in chapter 2. The chapter introduces

the algorithmic ideas used throughout the thesis, most notably genetic algorithms
and evolutionary strategies, multi-objective optimisation and coevolution. The
most important section of the chapter from a research point of view is section
2.4, since this section describes and tests the new coevolutionary algorithm for
minimax optimisation.

Chapter 3 introduces the static formulation of the job shop problem, and in-
troduces the disjunctive graph formulation of job shop problems and schedules.
Mattfeld’s genetic algorithm for static job shop scheduling (which is used as a
starting point for some of the algorithms later in the thesis) is described in detail,
along with a brief summary of other static scheduling methods.

Basic concepts and definitions used in stochastic scheduling are presented in
chapter 4. The chapter defines the fundamental concepts of robustness and flex-
ibility as well as the stochastic performance measures. The types of scenarios
and events usually considered in stochastic scheduling are presented, and the al-
gorithmic complexity of various problems in stochastic scheduling is discussed.
The chapter gives a summary of the most interesting approaches for stochastic
scheduling published so far.

Chapter 5 presents the idea of neighbourhood based robustness for job shop
scheduling. First, the neighbourhood based robustness measures are defined, and
a genetic algorithm for minimising the makespan based robustness measure is
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presented. The schedules produced by this algorithm are compared to schedules
produced by a standard static scheduling algorithm, and found to be superior to
these in terms of average performance. The average performance of the schedules
is also compared to schedules produced by minimising a previously published
slack based robustness measure [72], and found to produce schedules of a com-
parable level of robustness and flexibility. The neighbourhood based robustness
approach is also applied to worst tardiness, summed tardiness and total flowtime
problems. The chapter ends with a discussion on how and why the neighbourhood
based robustness measures work.

Worst case and worst deviation performance schedules are considered in chap-
ter 6. The same core algorithm is used for the optimisation of both performance
measures. This algorithm is based on the coevolutionary minimax algorithm de-
veloped in chapter 2. The basic idea in the approach is to use a population of
future scenarios (machine breakdowns) to obtain an estimate of the performances
of schedules in the schedule population. The performances of the algorithms are
compared to the performances of an algorithm optimising the static performance
of the schedules and an algorithm using an exact evaluation approach to optimise
stochastic performance. The coevolutionary algorithms are shown to outperform
the static algorithms in terms of schedule flexibility, while outperforming the ex-
act evaluation approaches in terms of running times. In order to work with worst
deviation performance, two algorithms for the simultaneous solution of a large
number of related NP-complete problems are developed. One of these algorithms
is implemented and tested, and found to outperform a more standard approach.
However, even though the new algorithm is found to perform reasonably well, it
is deemed inappropriate for use as a “front end” for the worst deviation algorithms,
since the solutions found are sometimes too far from optimality.

The economic delivery scheduling problem is treated in chapter 7. The chapter
starts out by defining the problem and describing a previously proposed heuristic
for solving the problem, Hahm and Yano’s heuristic [54]. Following this, a novel
polynomial time algorithm for solving the problem is developed. The new algo-
rithm and the heuristic are compared in a computational study.

The thesis ends with chapter 8, in which the main results of the thesis are
summarised.
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Chapter 2

Evolutionary Computation

This chapter is meant as an introduction to the types of algorithms used later in
the thesis.

The first section introduces different evolutionary algorithms (EAs). The focus
in the first section is on evolutionary algorithms in general. It focuses on genetic
algorithms and to a smaller extent evolution strategies, since these are the algo-
rithmic templates used later. The second section describes the use of evolutionary
computation for multi-objective optimisation. Sections 2.3 and 2.4 introduce the
idea of coevolution for problem solving and demonstrate a new approach to how
coevolution can be used to solve minimax problems. This new approach is shown
to outperform previously proposed methods on problems that do not have a sym-
metric property.

The presentation is biased towards the application on optimisation problems,
although some of it is more general.

2.1 Evolutionary algorithms

Evolutionary Algorithms are computational models for problem solving, optimi-
sation or simulation inspired by the evolution of species in nature and the Dar-
winian principles. Common for all evolutionary algorithms is that they work on
one or more sets of potential solutions to a problem. Because of the biological
inspiration, each solution in an EA is often termed an individual, while a set of
individuals is called a population. The population is manipulated using a cycle
of selection of good individuals followed by the generation of new individuals by
variational operators such as mutation and recombination.

The basic idea in an evolutionary algorithm is to assign each individual a fit-
ness, measuring how well it solves the problem at hand. Individuals which are
known to be good or promising (have a high fitness score) are then selected for

7
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set t = 0
initialise Pop(t) with random solutions
evaluate Pop(t)
while(not done) do

set t = t + 1
select parents from Pop(t − 1)
generate children from parents using

variational operators
evaluate children
select Pop(t) from children and Pop(t − 1)

od.

Figure 2.1: A simple evolutionary algorithm.

reproduction, and new individuals which are related to them are generated. The
new individuals are inserted in the population if they are acceptable, while inferior
individuals are discarded. By constantly creating variations of the best solutions
known, the algorithm gradually improves the solution quality. Every iteration of
this cycle is called a generation.

The way new individuals are generated is usually stochastic. Because of this,
evolutionary algorithms are stochastic search algorithms, in which previously
sampled points are used to guide the selection of future sampling points. Most
evolutionary algorithms today are based on Genetic Algorithms (GAs), Evolution
Strategies (ESs) and Evolutionary Programming (EP).

A simple template for an evolutionary algorithm is shown in figure 2.1. This
template leaves many details undecided, which is why it can be fitted to all of the
arch-typical EAs (ES, GA, and EP).

2.1.1 Evolution strategies

Evolution Strategies were developed by Rechenberg and Schwefel in the sixties.
They introduced ES to solve continuous optimisation problems in engineering. A
survey of evolution strategies can be found in [103].

The goal in a standard ES is to optimise a function of a number of real vari-
ables, f : R

n → R. Every individual is usually represented by a vector of real
variables v ∈ V ⊆ R

n, where V denotes the search-space. Usually the ES is run
for a predefined number of generations, after which the best solution is returned.
In evolutionary strategies in their cleanest form, reproduction is done exclusively
by mutation, which is done by adding a zero mean Gaussian distributed vector to
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the vector representing the individual,

vchild = vparent + σz, z ∼ N(0, In). (2.1)

The severity of the mutation is governed by the parameter σ. Several schemes to
adjust the mutation severity while the algorithm is running have been proposed,
including adjusting σ based on the success rate of mutation, and auto-adaptive
methods making details of the mutation part of the search-space. In a more ad-
vanced ES, the mutation vector z can be taken from distributions in which the
mutations of the coordinates are correlated, that is z ∼ N(0,C), where the co-
variance matrix C is not necessarily diagonal.

The breeding and replacement strategy of an evolution strategy is usually de-
scribed in the (µ +, λ)-notation. The population size is µ while the number of
offspring per generation is λ. An ES in which the next population is taken as the
best individuals among the µ parents and the λ offspring is denoted a (µ + λ)-ES.
If the µ parents are discarded and the new population is taken from the offspring
exclusively, it is termed a (µ, λ)-ES.

A number of theoretical results exist on the properties of evolution strategies
as optimisers, a brief overview of these are given in [104].

2.1.2 Genetic algorithms

Genetic algorithms were introduced by Holland [60] in the mid-seventies. Holland
was inspired by the principles of genetics, so genetic algorithms place a stronger
emphasis on the distinction between the genetic representation of an individual
(the genotype) and the actual expression of the individual (the phenotype ) than
evolution strategies. Good introductions to genetic algorithms can be found in
[80, 81].

The principal variational operator is recombination, also termed crossover:
the combination of two or more parents to produce offspring. This combination is
usually performed by taking part of the genotype of each parent, and combining
the two parts to obtain a new genotype sharing characteristics of both parents.
Mutation operators are also used in genetic algorithms, but mostly to make sure
genetic material lost early in the search process can be reintroduced later. This is
necessary since usually crossover cannot introduce new genetic material; it merely
recombines material already present in the population. Thus, without a mutation
operator genetic material not present in the population can never appear.

The heavy use of recombination in genetic algorithms is based on what is
known as the building block hypothesis. It is assumed that it is possible to take
(approximately) half of one genotype, half of another genotype, and produce a
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child that shares characteristics of both parents. In this way, if two different indi-
viduals are good, crossover can take the good parts from each of them and com-
bine them to form an even better individual. This assumes the two good genotype
parts to be compatible. Since there is no way of knowing which part of each geno-
type is good and which is bad, the combination of parents can only take place in a
random fashion, thus the recombination of two good parents can also lead to the
combination of two bad parts of the genotype.

Genetic algorithms in their original form use genetic representations based on
strings. Suppose binary strings of length L are used, meaning that each individual
is a string of length L over the alphabet “0” and “1”. The effect of the crossover
operator can be analysed using schemata. A schema is a string of length L made
from the alphabet “0”, “1” and “*”. A genetic string is said to instantiate or
match a schema if the schema and the genetic string have the same characters in
all string positions in which the schema holds a “0” or a “1”, while the asterisks
work as “match all” symbols. For instance, the string “010101” instantiates the
schema “01**0*”, as well as many others. Since the search-space of genetic
strings can be visualised as an L-dimensional hypercube, a schema can be seen as
a hyperplane. All genetic strings matching the schema will be on one side of the
hyperplane, while all strings not matching it will be on the other side.

Using the schema formulation, a GA can be said to start with a wide range
of different schemata present in the population. A schema is said to be present
in the population if it is matched by any of the individuals present in the popu-
lation. Because of the fitness based selection cycle, schemata representing good
building blocks will become more and more predominant in the population as
the search progresses. If the recombination operator is respectful (meaning that
traits shared by the parents will be present in the children, i.e. if the parents both
instantiate a schema, so will the children), the building blocks present in the pop-
ulation will gradually combine to form larger and larger building blocks. Another
way of seeing this process is to realize that a randomly initialised population of
individuals corresponds to a number of schemata much larger than the number
of individuals. Evaluating the fitness of the population corresponds to estimat-
ing the average fitness of individuals matching these schemata (estimate based
on the samples matching the schemata present in the population). High average
fitness schemata will tend to have more offspring than those with a low average
fitness. As the high average fitness schemata become prevalent in the popula-
tion, the probability that they are combined by recombination to form even higher
average fitness schemata increases.

The role of selection in a genetic algorithm and the implicit estimation of
schema fitness have been formally analysed under a number of assumptions. De-
note by n(H, t) the number of individuals in the population P (t) matching schema
H at generation t. If fitness proportional selection is used, and ignoring the ef-
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fects of crossover and mutation, the expected number of individuals matching H
at generation t + 1 should be

E(n(H, t + 1)) =
∑

i∈P (t)∩H

f(i)

f(t)
,

where P (t) ∩ H denotes the individuals in P (t) matching H , f(i) denotes the
fitness of i and f(t) denotes the average fitness of the population at time t. This
can be rewritten

E(n(H, t + 1)) =
u(H, t)

f(t)
n(H, t), u(H, t) =

∑

i∈P (t)∩H

f(i)

n(H, t)
,

where u(H, t) is the average fitness of individuals matching H at time t.
If we denote by Dc(H) and Dm(H) the probability that an individual matching

H at generation t will be disrupted by crossover or mutation and not match H at
generation t + 1, and assume crossover and mutation to work independently of
each other, a lower bound on E(n(H, t + 1)) is

E(n(H, t + 1)) ≥ u(H, t)

f(t)
n(H, t)(1 − Dc(H))(1 − Dm(H)), (2.2)

where we are ignoring the beneficial effects of crossover and mutation. The dis-
ruption probabilities Dc(H) and Dm(H) depend on the details of the operators
used, but for the classical choice of one-point crossover, Dc(H) will increase with
the defining length of H , the longest distance between two non “*” symbols in
H . Assuming the mutation to mutate the individual bits with equal probability,
Dm(H) will increase with the order of H , the number of non “*” symbols in H .
Equation (2.2) is known as the schema theorem. An often seen interpretation of
the theorem is that the number of schemata for which Dc and Dm are low and
which will keep on having an above average fitness will increase exponentially in
the population increasing their numbers by a factor of u(H,t)

f(t)
for every generation

(up to a certain point). However, this is no guarantee that a GA used for optimisa-
tion will find a good solution. First of all there is no guarantee that the optimum
solution can be decomposed into a number of schemata which are of low order,
have a short defining length and a high average fitness. For a misleading problem
the optimum solution could be only decomposable to low order schemata having
a low average fitness. Also, even if the optimum solution can be decomposed
into short above average fitness schemata, the fitness of these schemata is implic-
itly estimated based on the individuals in the population, meaning that estimates
may deviate significantly from the “real” fitness of the schemata. More in-depth
discussions of the schema theorem as well as other theoretical approaches to evo-
lutionary computation can be found in [8, 81].
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2.1.3 Epistasis

As stated above, the prime beneficial effect of the use of the recombination oper-
ator is the assembly of large above average fitness building blocks from smaller
ones. This is only possible if the fitness contribution of building blocks are not af-
fected too much by the presence of other building blocks in the genotype. A prob-
lem or problem representation in which the phenotypical effect of the presence
of one building block depends on the presence of other building blocks is called
epistatic. The presence of epistasis is known to be able to cause serious trouble to
GAs [12, 85]. The degree of epistasis of a problem is dependent on the choice of
genetic representation; an optimisation problem which is highly epistatic for one
genetic representation may be low-epistatic in another, [12]. For these reasons,
the choice of representation is crucial for the success of a GA.

Another reason why the choice of representation is crucial in the design of
an evolutionary algorithm is that the size of the search-space is determined by
the representation. In some cases infeasible solutions can be excluded from the
search-space by a clever representation, greatly reducing the size of the search-
space. A prime example of this is the job shop scheduling problem, see section
3.2.1.

The application of genetic algorithms on e.g. combinatorial optimisation prob-
lems has led to the use of genetic representations which are not based on simple
strings in which phenotypic traits are coded by independent genes. It has been
found that for some problems the use of a recombination operator does not im-
prove the optimisation performance [52]. In many cases this is due to epistatic
effects; if the recombination of two individuals produces an individual which has
nothing in common with the parents, the use of recombination has degenerated to
random search.

2.1.4 Applying evolutionary algorithms

When an optimisation problem is to be solved with an evolutionary algorithm,
many choices have to be made. The choice of genetic representation is usually the
first and probably most important single decision, but many other decisions also
profoundly affect the effectiveness of the algorithm.

When choosing a set of genetic operators (mutation, crossover) the roles of the
different operators should be considered. A mutation operator should be strong
enough to ensure sufficient genetic diversity in the population, but at the same
time weak enough to support local search and small improvements in a hillclimb-
ing like manner. Crossover operators should be respectful [97], that is able to
combine building blocks to form larger building blocks which share the pheno-
typical traits of the smaller building blocks. On the other hand, it has sometimes
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been found that crossover operators which are not respectful can perform better
than respectful ones, [77].

Once a suitable overall structure for the evolutionary algorithm has been found
(ES, GA), and genetic representation and operators have been decided, there are
still many open issues. The following is a short list of issues to be decided every
time an evolutionary algorithm is designed:

• Selection. How do you select the individuals to be used for reproduction?
A number of different selection methods like proportional selection, tour-
nament selection and rank based selection [9] have been proposed.

• Replacement. How are the new individuals incorporated into the population
after reproduction? In a simple generational genetic algorithm often the off-
spring simply replaces the parents, but sometimes it is helpful to keep some
of the parents in the population. This is usually done by elitism: making sure
a certain number of the best individuals never leave the population. Another
option is having a steady state algorithm, in which only a very small part of
the population is replaced in every generation.

• Crossover and mutation rate. When and how much are the different genetic
operators to be used? Often fixed values are used for these parameters, but
what should these values be? Other choices include making these parame-
ters adaptive or auto-adaptive.

• Population size, number of generations. Generally, the larger these pa-
rameters are, the better the algorithm will perform, but at the expense of
longer run-times, since more fitness evaluations will be involved. For a
fixed allowed number of fitness evaluations, the choice of these parame-
ters becomes a tradeoff. A large population size means a better exploration
of the search-space, while a large number of generations allows for better
exploitation of the promising solutions found.

Besides the above mentioned parameters, a number of other possibilities are
open when applying an evolutionary algorithm. It is often found that a genetic
algorithm gets caught in a local optimum, and that all or most of the population
concentrates on a small part of the search space located around the local optimum.
This is usually termed premature convergence. Often this problem is solved using
structured populations: by dividing the population into smaller subparts that tend
to breed more amongst themselves, the dispersion of genetic material is slowed
down, giving the algorithm more time to settle on the most promising part of
the search-space. The two most prominent kinds of structured populations are
island models [76] and diffusion models [93]. Other ways to accomplish a better
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exploration of the search-space are niching methods such as sharing, crowding
[75], tagging [38] and multinational genetic algorithms [110].

It has been found in many studies that evolutionary algorithms benefit from
hybridisation with other methods. Generally, the performance of evolutionary
algorithms can be improved considerably by applying problem specific knowledge
in the EA. This is often done by using problem specific hillclimbers in decoding
procedures or to improve the solutions found by the EA. Another possibility is the
use of problem specific knowledge in the design of genetic operators [74].

Since there is no theory adequately describing how genetic algorithms work,
some of these decisions are largely up to experience and taste of the person de-
signing the algorithm. Due to the large number of design decisions, the interde-
pendence between these and the lack of mathematical understanding of both the
evolutionary algorithms and the search-spaces of the problems they are applied to,
it is usually infeasible to find the optimal set of parameters for a given problem.
This is particularly so since the optimal set of parameters can also be expected to
vary from problem instance to problem instance. Usually the parameters are fixed
in a trial and error fashion in which a number of possibilities are tried out, and the
one observed to work best is used.

2.1.5 Advantages of evolutionary computation

Evolutionary algorithms have been applied to a large number of academic and real
world problems over the last fifteen years. These applications have proven the
worth of evolutionary algorithms, particularly for problems which are intractable
for more traditional methods (NP-hard problems). Since EC can be used as a
blind heuristic search method to most problems, it can almost always be applied.
The fact that EAs can at the same time be hybridised with problem specific tech-
niques such as hillclimbers for improved performance makes them very flexible
tools, since usually a “quick and dirty” EA can be implemented. Later more effort
can be put into this algorithm in the form of problem specific knowledge for im-
proved performance. Other modern search methods have these properties as well;
Simulated Annealing and Tabu Search [99] are both generally applicable optimi-
sation methods, and have also been demonstrated to perform really well in many
applications.

However, for some types of problems EAs have at least two huge advantages
over simulated annealing, tabu search and most other methods.

• There is increasing interest in applying contemporary search heuristics to
dynamic problems. Simulated annealing and tabu search both work on a
single solution which is constantly improved. In a dynamic environment
which is constantly changing, an EA has the advantage of a population of
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solutions. If an environment change makes the current best solution un-
acceptable, chances are there is another solution in the population with a
better performance. To cite an old cliché, when using an EA in a dynamic
environment, one may avoid “having all of ones eggs in one basket”.

• Many optimisation problems in the real world are multi-objective problems.
What is sought is not a solution optimising one single objective, but rather
a solution which is a compromise between many different objectives. Often
it is desirable to find not just one solution, but a number of different non-
dominated solutions, from which a human expert can make a choice. In this
situation, EAs have the advantage of already working with a set of solutions,
while simulated annealing and tabu search both work on one solution.

2.2 Multi-objective evolutionary algorithms

Standard instances of evolutionary algorithms are designed for optimising one
performance measure only. For many optimisation problems this is insufficient,
since real world problems often involve tradeoffs between different criteria. As
an example, consider the problem of designing a communication network. At
least three different objectives are relevant to such a problem: 1) Communication
capacity. Between any two points in the network the bandwidth should be as high
as possible (or above some threshold value). 2) Cost. The investment of building
the network should be as low as possible. 3) Robustness. The network should be
robust to failures; even if a connection or node fails, the rest of the network should
stay connected and functional to some degree.

Given a number of objectives instead of just one, the ordering of two different
solutions is not always straightforward. If network s1 has lower cost than network
s2, but s2 has better capacity, which one is preferable? Usually multi-objective
solutions are ranked based on the Pareto domination criterion: Given an optimi-
sation problem of n objectives p1, p2, . . . , pn to be minimised, solution s1 is said
to Pareto dominate solution s2 if

∀i ∈ {1 . . . n} : pi(s1) ≤ pi(s2) ∧ ∃j ∈ {1 . . . n} : pj(s1) < pj(s2).

The set of solutions sought by a multi-objective optimisation algorithm is known
as the Pareto optimal front or Pareto optimal set. The Pareto optimal front is
the set of solutions in the search-space which are not dominated by any other
solutions. If the Pareto optimal set is infinite or very large, what is sought is a
number of solutions with a reasonable spread, such that a large number of diverse
solutions is returned by the algorithm.
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A number of different approaches for multi-objective evolutionary algorithms
(MOEAs) exist of which the most prominent are probably aggregation methods
and Pareto based methods. For surveys of MOEA algorithms see [29, 34].

The most straight-forward approach is to use aggregation of the n objectives
to one scalar objective by generating a fitness measure as a weighted sum of the
objectives F = w1p1 + . . . + wnpn. Multiple points on the Pareto front can be
found by running the algorithm with different values for the weights wi. Two
fundamental problems arise with this approach. Due to the definition of F , algo-
rithms of this kind are unable to find non-convex parts of the Pareto optimal set.
Furthermore, one run of the algorithm will only return one solution on the Pareto
front. Examples of this approach can be found in [21, 66, 72].

Contemporary MOEAs use selection and replacement based on the multi-
objective domination criterion defined above. Examples of this approach are Fon-
seca and Fleming’s MOGA [44], Horn et al.’s NPGA [61], Corne, et al. ’s PESA
[31], Zitzler and Thiele’s SPEA [116] and Deb et al. ’s NSGA-II [35, 36]. All of
these algorithms use niching (usually a variant of sharing or niche counting) to
ensure that a diverse Pareto set is found, and all except one (the NPGA) use elite
methods or an external storage to keep the best individuals found so far. There has
been no comparative study to reveal which of these algorithms generally performs
best, but recent studies, [31, 36] indicate that the NSGA-II or PESA algorithms
are probably the best overall performers. In the following, a description of the
NSGA-II will be given.

2.2.1 The non-dominated sorting GA, NSGA-II

The NSGA-II [35, 36] is an extension of the NSGA algorithm, which was also
published by Deb [34]. The algorithm is based on an idea of transforming the
n objectives to a single fitness measure by the creation of a number of fronts,
sorted according to non-domination. During fitness assignment, the first front is
created as the set of solutions not dominated by any solutions in the population.
These solutions are given the highest fitness and are temporarily removed from the
population. After this, a second non-dominated front consisting of the solutions
which are now non-dominated is built, assigned the second-highest fitness etc.
This is repeated until all of the solutions have been assigned a fitness. After each
front has been created, its members are assigned density estimates (distance to
closest neighbours in the front in objective space, as illustrated in figure 2.2) later
to be used for niching.

Selection in the algorithm is performed in size two tournaments: The solution
with the lowest front number wins. If the solutions come from the same front,
the solution with the highest distance to the closest neighbours wins. Breeding
occurs in generations. In each generation N new individuals are bred, where N
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Figure 2.2: Niching in the NSGA-II is done by assigning each solution a niche
measure, Idistance, which is its distance to the closest neighbours in its front, mea-
sured along the objective axis. In this example, solution i is assigned the distance
I[i]distance = |p1(i − 1) − p1(i + 1)| + |p2(i − 1) − p2(i + 1)|. Solutions with an
extremal position in one of the objectives are assigned the niching distance ∞.

is the population size. Of the 2N individuals, the N best individuals are kept
for the next generation. In this way a huge elite can be kept from generation to
generation.

The overall structure of the NSGA-II algorithm can be seen in figure 2.3. The
Non-dominated-sort procedure sorts the population into a number of fronts
as described above. This can be done in O(MN 2) time, where M is the number of
objectives and N is the population size. The overall running time is O(GMN 2),
where G is the total number of generations. This is a high running time, since
most traditional evolutionary algorithms have running times proportional to N ,
not N2. This makes the application of the NSGA-II with large populations slow.
Most other contemporary MOEAs including PESA, MOGA and SPEA also have
running times proportional to N 2, since they require every member of the pop-
ulation to be compared to every other member at every generation step. For the
scheduling problems solved using NSGA-II later in this thesis (see chapter 6) the
N2 running time is not a real concern, since the time spent calculating the objec-
tives is far greater than the time spent sorting the population.

In a recent study, [36], the NSGA-II has been demonstrated to be superior
to the SPEA algorithm and another MOEA algorithm. Furthermore, it has been
shown to perform well on a number of realistic mechanical design problems [37].

2.3 Coevolutionary algorithms

The evolutionary algorithms described in the previous sections mostly dealt with
optimisation on a well-defined static fitness landscape. Ideally, individuals gradu-
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Generate P0 at random.
P0 = (F1,F2, . . .) =Non-dominated-sort(P0)
for all Fi ∈ P0

Crowding-distance-assign(Fi)
t = 0
while(not done) do

Generate child population Qt from Pt

Rt = Pt ∪ Qt

F = (F1,F2, . . .) =Non-dominated-sort(Rt)
Pt+1 = ∅
i = 1
while |Pt+1| < N do

crowding-distance-assign(Fi)
Pt+1 = Pt+1 ∪ Fi

i = i + 1
od
sort(Pt+1)
Pt+1 = Pt+1[0 : N ]
t = t + 1

od

Figure 2.3: The NSGA-II algorithm.
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Figure 2.4: Example sorting network. This network takes eight inputs
(x1, . . . , x8), which are fed into the network along the lines on the left. The
network is to be read from left to right. Each vertical arrow represents a compar-
ison and possible swap of values; at the position of the arrow, the two values are
compared, and if they are in the wrong order they are swapped. If the network is
correct, for every possible input the values coming out on the right of the network
will be ordered according to magnitude.

ally approach the fitness optimum, and once the population is concentrated there,
evolution comes to a standstill; no further improvement is possible. This is not
the case in most biological evolutionary systems, where the fitness of one indivi-
dual or species is closely coupled to other individuals or species by interactions.
If lions evolve sharper claws this directly affects the fitness of the zebra, since
this gives the lions an advantage when they are hunting the zebra. The zebra will
be pressed to develop thicker skin, better camouflage or another suitable answer
to the increased threat of lions. In the same way, when the zebra evolves a new
trait to avoid getting eating by lions, the lions are pushed to find a suitable coun-
termeasure. This coupling of fitnesses between individuals is known to lead to
coevolutionary arms races in which two or more interacting species try to outdo
each other. These arms races may go on forever or gradually approach some stable
optimum.

Coevolution has been applied a number of times in optimisation and artifi-
cial life contexts. One of the first coevolutionary algorithms published was the
pioneering work of Hillis on sorting networks [59], first published in 1990.

Hillis was interested in finding the minimum number of comparisons sorting
network for sorting 16 numbers (see figure 2.4). Since most (random) sorting
networks are not correct i.e., they will not sort all test cases correctly, the first
task is to evolve networks that do the sorting correctly. For this reason the net-
works were assigned fitness by letting each individual sort a number of random
test cases, and measuring how many outputs were correctly sorted. The networks
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were not explicitly rewarded for being small, but a diploid (and fairly complex)
representation made sure there was a drive towards short networks, see [59, 81]
for details. It was found that the GA converged on suboptimal networks of 65
comparisons or more. This is quite far from the smallest known network, which
uses 60 comparisons. Hillis found that the GA got caught in local optima because
the random test cases were not challenging enough. He conceived the idea of hav-
ing a population of sets of test cases coevolving with the network population. The
test case population would be rewarded if the networks were unable to sort them
correctly, which should make it converge on particularly difficult instances. This
kind of fitness interaction is often termed host-parasite interaction or predator-
prey interaction, since the success of one species adversely affects the success of
the other. In this example the test case instances can be seen as parasites exploiting
the weaknesses of the networks, the hosts. After implementing the coevolutionary
algorithm, Hillis found that the algorithm was no longer as prone to getting stuck
in local optima. As the networks got better and better the test cases would get
harder and harder, forcing the network population to keep changing. The best net-
works found with the coevolutionary approach had 61 comparisons, a substantial
improvement over the standard GA approach.

Hillis’ sorting networks used a host-parasite fitness interaction, in which the
two populations were constantly competing and in which success for one species
meant failure for the other. Another possibility observed in nature and also used
in artificial coevolutionary systems is a symbiotic or cooperative relationship in
which several individuals try to accomplish some task, and are all rewarded if
they succeed.

During the 90’s, a large number of applications of coevolution were published.
Noteworthy areas and applications include artificial life [100, 105], games such as
backgammon [95] and the prisoner’s dilemma [32], constraint satisfaction [90]
and design and training of artificial neural networks [82, 91]. The wide variety
of problems coevolution have been applied to, the ability of coevolution to speed
convergence [90, 91] and the potential of dividing problems into smaller subprob-
lems in symbiotic coevolution indicate that coevolutionary algorithms are proba-
bly among the most promising directions of research in evolutionary algorithms.
However, one must also bear in mind that the inner workings of coevolution-
ary algorithms are more complicated and even less understood from a theoretical
viewpoint than standard evolutionary algorithms. Coevolutionary dynamics can
lead to unexpected and surprising results of Red Queen effects combined with ge-
netic drift or lack of genetic diversity leading to mediocre solutions taking over a
population, see [32, 92] and the next section.
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2.4 Minimax problems

A minimax problem is an optimisation problem in which the task is to find the
solution x ∈ X with the minimum worst cost F , where some problem parameter
s ∈ S is chosen by an adversary. The minimax problem is often formulated:
Minimise

ϕ(x) = max
s∈S

F (x, s) subject to x ∈ X (2.3)

or simply: find
min
x∈X

max
s∈S

F (x, s). (2.4)

The minimax problem was originally formulated by game theorists, and can be
seen as an antagonist game in which each of two players has a set of options. The
player trying to find the solution, x, tries to minimise the cost, while the player
determining the scenario, s, tries to maximise the cost. The minimax problem
can be exemplified by a mechanical engineer designing a structure, which is to
withstand the possible “attacks” of e.g. the weather while deforming as little as
possible. At the same time, the design may have to satisfy a set of constraints (e.g.
a budget). Minimax problems are found in many different areas and are known to
be relevant to research in scheduling, [58, 68], network design [68], mechanical
engineering [6, 94], constrained optimisation [5, 7] and function approximation
[40].

Minimax problems seem well suited for coevolutionary algorithms, since the
two different search spaces can be searched with two different populations. A
predator-prey interaction can take place between the two populations: the solution
population (PX) needs to find solutions which evaluate to low F values with the
scenario population (PS), which needs to find scenarios s which evaluate to high
values of F with the solution population.

This approach was used by Herrmann [58] on a simple parallel machine sche-
duling problem, where the solution space was the assignment of tasks to machines
and the scenario space was the processing time of the tasks. The objective of the
algorithm was to minimise the worst case makespan of the schedule. The genetic
algorithm was demonstrated to converge to the most robust schedule (the schedule
with the best worst case performance) and the worst case processing time scenario,
which was trivially known beforehand. Barbosa [6] used an equivalent approach
to design mechanical structures facing external forces. A system coevolving de-
sign and the external forces was used to find structures with the minimal worst
case deformation given the possible forces. The structures evolved were found to
be similar to the known optimal designs. In another paper [7], constrained optimi-
sation problems were solved using coevolution by transforming them to minimax
problems using a Lagrangian formulation.
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create initial populations PX(0) and PS(0)
set t = 0
while(t < tmax) do

for each x ∈ PX(t) set h[x] = maxs∈PS(t) F (x, s) (*)
for each s ∈ PS(t) set g[s] = minx∈PX(t) F (x, s) (*)
generate new population PX(t + 1) from PX(t) basing
selection on −h[x]

generate new population PS(t + 1) from PS(t) basing
selection on g[s]

set t = t + 1
od
for each x ∈ PX(t) set h[x] = maxs∈PS(t) F (x, s) (*)
for each s ∈ PS(t) set g[s] = minx∈PX(t) F (x, s) (*)
return x0 ∈ PX(t) minimising h[x] and

s0 ∈ Ps(t) maximising g[s]

Figure 2.5: Herrmann’s algorithm for solving minimax problems. The last three
lines were not present in Herrmann’s formulation [58], since he only published
the main loop of the algorithm.

When solving minimax problems, it is often required of the problem that the
solution (x∗, s∗) satisfies

F (x∗, s) ≤ F (x∗, s∗) ≤ F (x, s∗) ∀x ∈ X, s ∈ S. (2.5)

which can be shown (see appendix A) to be equivalent to

min
x∈X

max
s∈S

F (x, s) = max
s∈S

min
x∈X

F (x, s). (2.6)

The problems treated in [6, 7, 58] satisfy (2.6). However, not all minimax
problems satisfy this constraint. In the next sections it will be demonstrated that
the algorithms proposed in [6, 7, 58] are likely to fail if (2.6) is not satisfied. The
problem in the existing algorithms is demonstrated to be located in the fitness
evaluation, and an algorithm with a new kind of fitness evaluation is proposed.
The new algorithm is demonstrated to solve the problem.

2.4.1 Previously proposed algorithms

The algorithm proposed by Herrmann [58] is displayed in figure 2.5. The algo-
rithm used by Barbosa [6, 7] is slightly different from the algorithm of figure 2.5,
since it has sub-cycles in which the scenario population is fixed and a number of
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solution generations are bred and vice versa. This means that in Barbosa’s al-
gorithm, each population takes turns, evolving on a “frozen” image of the other
population. It also means that the Barbosa algorithm uses twice as many evalua-
tions of the objective function F (x, s) to evaluate the same number of individuals
as Herrmann’s algorithm. Barbosa’s algorithm can be seen in appendix B. The fit-
ness evaluation, which is in focus here, is identical to the one used in Herrmann’s
algorithm.

In terms of the fitness evaluation, the two populations are treated symmetri-
cally in the algorithm, since both kinds of individuals get their fitness assigned
based on the extremal values found when evaluating them against the other popu-
lation. In the following, algorithms with this kind of fitness evaluation are termed
symmetric evaluation algorithms. The symmetric evaluation is reasonable if the
solution to the problem satisfies (2.6). If this is not the case, the two populations
are not symmetrical in the search-space, and treating them symmetrically in the
algorithm can cause serious problems. To realize this, consider the very simple
function of x and s:

F (x, s) s = 1 s = 2 maxs∈S F (x, s)
x = 1 3 2 3
x = 2 1 4 4
minx∈X F (x, s) 1 2

The function can take two values for x, represented by two rows, and two values
for s, represented by two columns. In addition to the function values F (x, s), the
values of maxs∈S F (x, s) for each x and minx∈X F (x, s) for each s have been
printed. The function does not satisfy (2.6). Running a symmetric evaluation
algorithm on this function will put an evolutionary pressure on the x population
to converge to the solution x = 1, since this minimises maxs∈S F (x, s). It will
also put pressure on the s population to converge to the scenario s = 2, since
this maximises minx∈X F (x, s). However, the solution F (1, 2) = 2 does not
correspond to minx∈X maxs∈S F (x, s), which is F (1, 1) = 3.

Another way of seeing this, is to realize that when the populations PX and PS

are diverse enough, the evolutionary pressure on PX will be in accordance with
a game in which the solution x is picked first, and the scenario s is picked after-
wards to maximise the cost (this game corresponds to the minx∈X maxs∈S F (x, s)
problem). The evolutionary pressure on PS will be in accordance with a game in
which the scenario s is picked first and the solution x is picked afterwards to min-
imise the cost (this game corresponds to the maxs∈S minx∈X F (x, s) problem).
This is illustrated in figure 2.6.

The difficulty stems from the fact that for a problem not satisfying (2.6), the
fitness of a scenario s cannot be found only by considering the performance of
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Figure 2.6: Illustration of the significance of the picking order of x and s. The
function is related to the function on page 23, and equal to the two-planes function
used in the experiments. Left: x is picked first and s is picked afterwards to
maximise the cost. The optimal choices of s have been indicated for a range of x
values. Clearly the best choice of x is x = 0, as the arrow indicates. Right: s is
picked first and x is picked afterwards to minimise the cost. The optimal choices
of x have been indicated for a range of s values. The best choice of s is s = 10 as
indicated by the arrow.

s on PX . A scenario which has a low minx∈X F (x, s) value may deserve a high
fitness if it causes a solution to get a high maxs∈S F (x, s) value. For this reason,
when assigning fitness to the scenarios, it has to be taken into account how well
the other scenarios perform against the solutions. If there is a solution in the
population for which the scenario is the worst possible (or if it is close to being
the worst possible), then the scenario should be given a high fitness.

More generally, consider a problem for which the solution and scenario cor-
responding to minx∈X maxs∈S F (x, s) is found at x0, s0, while the solution and
scenario corresponding to maxs∈S minx∈X F (x, s) is located at x1, s1. Let us ex-
amine the behaviour of a symmetric fitness evaluation algorithm on this kind of
problem.

While the scenario population PS is diverse enough, the solution population
PX will converge to x = x0, attempting to minimise maxs∈PS

F (x, s). When PX

converges to x = x0, PS will begin to converge to the corresponding worst case
scenario s = s0.

However, at the same time provided the solution population PX is diverse
enough, the scenario population PS will try to maximise minx∈PX

F (x, s) by con-
verging to s = s1. This will cause the solution population PX to converge to the
corresponding best case solution x = x1.

In other words, the coevolutionary algorithm will have at least two different
attractors, x0, s0 and x1, s1. If the solutions x0, s0 and x1, s1 are stable, the coevo-
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for all x ∈ PX(t) set h[x] = −∞
for all s ∈ PS(t) set g[s] = −∞
for all x ∈ PX(t) do

for all s ∈ PS(t) do
set h[x] = max(h[x], F (x, s))
set k[s] = F (x, s)

od
sort PS(t) on k[s] in ascending order
for all s ∈ PS(t)

if bg[s]c 6= (index of s in PS(t)) then
set g[s] = max(g[s],index of s in PS(t))

else
set g[s] = g[s] + 1

|PX(t)|+1

od

Figure 2.7: The asymmetric fitness evaluation for minimax problems.

lutionary algorithm may find either one. However, there is no guarantee that this
will happen, since coevolutionary dynamics can also cause the algorithm to never
converge.

2.4.2 The asymmetric fitness evaluation

A fitness evaluation capable of solving the problems described above is displayed
in figure 2.7. It can be inserted in the algorithm of figure 2.5, replacing the lines
marked (*).

The use of the h[x] array is unchanged; it simply holds the worst performance
found for each solution. The array g[s] still holds the fitness of the scenarios,
but the calculation of g[s] has been changed. First, the arrays h[x] and g[s] are
initialised.

In each step of the outer loop, a solution x ∈ PX(t) is tested against all scenar-
ios in PS(t). The performance of each s against x is recorded in k[s], while h[x]
is updated to always hold the worst performance of x found so far. After this, the
scenario population PS(t) is sorted on k[s] in such a way that the scenario which
caused the highest F (x, s) value for the solution x is located at the last position of
PS(t).

At the end of the outer loop, the fitness g[s] of each scenario s is set to the
highest index seen so far for s. Every time s is observed to have the highest index
observed so far for s in PS(t), g[s] is increased slightly (by 1

|PX(t)|+1
) in order to
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reward scenarios which several times get the same position in the sorting of PS(t).

After the evaluation is complete the list g[s] contains the best index observed
of each scenario s, modified slightly for multiple occurrences of the same index.
The scenario that was found to be the worst for the most solutions will have the
highest possible fitness, followed by the other scenarios which were found to be
the worst for at least one solution. The scenario found to be the second-worst for
the highest number of solutions will be ranked immediately after these, etc.

Consider the use of this fitness evaluation on the simple problem of section
2.4.1. Assume only one of each phenotype is present in the populations. The
solution x = 1 is tested against both scenarios, and s = 1 is found to be the
worst, setting g[1] = 2 and g[2] = 1. h[1] is set to the worst performance found,
F (1, 1) = 3. After this, the solution x = 2 is tested against both scenarios, and
s = 2 is found to be the worst, updating g[2] = 2, while still g[1] = 2. h[2] is set
to F (2, 2) = 4. After this, the solution x = 1 will be preferred in the reproductive
step of the algorithm since h[1] = 3 < h[2] = 4, while neither s = 1 nor s = 2
are preferred over the other, since g[1] = g[2] = 1. The scenarios s = 1 and s = 2
will be assigned the same fitness as long as both x = 1 and x = 2 are present in
the PX population. Had more than one of the same kind of solution been present
in PX , the scenario which was worst to the dominant kind of solution would have
been assigned the highest fitness, since the else part of the if statement would
be reached.

This fitness evaluation ensures that scenarios which are very bad (relative to
the other scenarios) for at least one solution will be kept in the population, while
scenarios which may be “quite bad” to all solutions but not “very bad” to at least
one will be removed. This is opposed to the symmetric fitness evaluation, which
prefers scenarios which are “quite bad” for all solutions, but removes solutions
which are “not so bad” to some solutions, even if they are “very bad” to others.

In order to reflect the change of the fitness evaluation, the return step of the
algorithm in figure 2.5 should be changed to

return the x0 ∈ PX(t) with minimum h[x0], and the s0 ∈ PS(t)
which maximises F (x0, s).

Because of the use of sorting in step 3, the asymmetric fitness evaluation
needs more processing time than the symmetric evaluation used in section 2.4.1;
in fact the running time of the fitness evaluation increases from O(|PX| |PS|) to
O(|PX| |PS| log |PS|).
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2.4.3 Experiments

A genetic algorithm based on the algorithm of section 2.4.1 was implemented
both with the symmetric fitness evaluation and the asymmetric evaluation of sec-
tion 2.4.2. The implementation was programmed to work on functions of real
variables, using a real valued encoding. Details of this genetic algorithm were as
follows:

• A linear ranking based selection scheme was used.

• A crossover rate of 0.8 was used, crossover placing the offspring at a uni-
formly distributed point between the parents. Offspring created by cross-
over were subject to mutation with probability 0.2.

• Offspring not created by crossover were made using a mutation operator
adding a uniformly distributed value in the range (−1, 1) to the genotype.

• A population size of 50 was used for both populations.

• The algorithm was run for 100 generations.

The crossover rate was decided by trying out the values 0.0, 0.6, 0.8 and 1.0
on the problems later in this section and picking the one that worked best. At
each generation after reproduction, 10% of each population was set to completely
random individuals, except in the last two generations, where this feature was
disabled in order to help the populations converge. The random individuals were
added since in some experiments it turned out to be necessary to keep the diversity
of the populations at a high level. As the populations converged, coevolutionary
dynamics would go rampant and drive both populations away from the optimum,
see [92] and the experiment on the damped cosine function in this section.

The errors given in the following are mean square errors (MSE), defined as

MSE(x) =
1

n

n
∑

i=1

(xi − x∗)2, MSE(s) =
1

n

n
∑

i=1

(si − s∗)2, (2.7)

where (xi, si) is the solution and scenario found in the ith experiment, and (x∗, s∗)
are the optimal values.

In the problem with two optima (x∗
1, s

∗
1) and (x∗

2, s
∗
2), the MSE is calculated as

MSE(x) =
1

n

n
∑

i=1

(xi − x∗
(i))

2, MSE(s) =
1

n

n
∑

i=1

(si − s∗(i))
2, (2.8)

where (x∗
(i), s

∗
(i))) is the optimum ((x∗

1, s
∗
1) or (x∗

2, s
∗
2)) minimising (xi − x∗

(i))
2 +

(si − s∗(i))
2.
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Figure 2.8: Surface plot of the saddle-point function.

Symmetric algorithm Asymmetric algorithm
Function Satisfies (2.6) MSE(x) MSE(s) MSE(x) MSE(s)
Saddle-point yes 2.15 E−12 2.04 E−12 2.05 E−12 2.03 E−12
Two-plane no 0.0000 10.987 0.0036576 0.017004
Sine no 6.2345 37.724 0.35056 0.78844
Cosine no 14.386 0.15923 0.037081 0.21164

Table 2.1: Summarised results of the experiments. For each problem the mean
square error (MSE) on solutions (x) and scenarios (s) for the symmetric evaluation
and asymmetric evaluation algorithm are reported.

For every function of the next subsections the minx∈X maxs∈S F (x, s) was
solved using the symmetric evaluation algorithm and the asymmetric evaluation
algorithm. For all experiments, the mean square errors were calculated based on
1000 runs of each algorithm.

A saddle-point function

The first experiment was made on a function satisfying (2.6), simply to observe
that both algorithms worked on that kind of problem, and to observe any kind of
difference in the performance of the two algorithms. The function was

F (x, s) = (x − 5)2 − (s − 5)2, x ∈ [0; 10], s ∈ [0; 10] (2.9)

A plot of the function can be seen in figure 2.8. The optimal minimax solution
is known to be x = 5, s = 5. As can be seen in table 2.1, the experiments showed
that both the symmetric and the asymmetric algorithm solved the problem to a
very high average precision. In both cases the mean square error was found to be
less than 10−11 on both x and s. There did not seem to be a performance difference
between the two algorithms for this problem.
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Figure 2.9: Left: Surface plot of the two-plane function. Middle: The solutions
found by the symmetric evaluation algorithm. Right: The solutions found by the
asymmetric evaluation algorithm. The optimum is located at (0, 0).

A two-plane function

The function

F (x, s) = min(3− 2

10
x +

3

10
s, 3 +

2

10
x − 1

10
s), x ∈ [0; 10], s ∈ [0; 10] (2.10)

has been constructed from two planes in such a way that the corners (0, 0), (10, 0),
(0, 10), (10, 10) have the same values as the function from the table of section
2.4.1. As argued in section 2.4.1, the function can be expected to cause trouble for
the symmetric algorithm, since there is an evolutionary pressure on the scenario
population to move away from the minimax optimum at (0, 0) towards s = 10. A
surface plot of the function can be seen on the left-hand-side of figure 2.9. The
first 500 solutions found by each algorithm have been plotted in the middle and
right-hand parts of the figure. As can be seen, the asymmetric algorithm comes
very close to the optimum every time, while the symmetric algorithm consistently
finds the optimum solution but fails to find the optimum scenario. This is also
evident from the mean square errors of table 2.1.

A damped sinus function

The function

F (x, s) =
sin(x − s)√

x2 + s2
, x ∈ (0; 10], s ∈ (0; 10] (2.11)

is antisymmetric around the line x = s. It has been designed in such a way that
the solution to minx∈X maxs∈S F (x, s) is located at x = 10, s = 2.125683, while
the solution to maxs∈S minx∈X F (x, s) is located at x = 2.125683, s = 10. As
suggested in section 2.4.1, the problem causes serious trouble for the symmetric
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Figure 2.10: Left: Surface plot of the antisymmetric sine function. Middle: The
solutions found by the symmetric evaluation algorithm. Right: The solutions
found by the asymmetric evaluation algorithm. Most of the solutions of the asym-
metric algorithm are located at the optimum point (10, 2.125683).

algorithm. As can be seen from table 2.1 and the middle plot of figure 2.10, the
algorithm rarely comes close to the optimum solution. The asymmetric algorithm
comes close to the optimum in more than 90% of the cases (all of these runs are
located at a single point of the right hand side of figure 2.10), but also fails in
some cases.

A damped cosine wave

An experiment was made on the function

F (x, s) =
cos(

√
x2 + s2)√

x2 + s2 + 10
, x ∈ [0; 10], s ∈ [0; 10]. (2.12)

This function does not satisfy (2.6). A surface plot can be seen on the left hand
side of figure 2.11. The function is known to have two optimal minimax solutions,
one at x = 7.04414634, s = 10 and one at x = 7.04414634, s = 0.

The performance of the symmetric evaluation algorithm is displayed in table
2.1 and the middle of figure 2.11. In general the solutions found are far from the
optimum, while usually an optimum scenario is found. The asymmetric evaluation
algorithm is observed to perform somewhat better. The solutions are usually quite
close to the optimum, while the scenarios are sometimes a bit off. The plots show
two part-circle shapes, rooted in each of the two optima.

The problem is difficult to solve, since both optima are needed in the scenario
population in order to keep coevolutionary dynamics from generating suboptimal
solutions. Consider what happens if x = 7.04 and s = 10 are present in the
populations, but s = 0 is not. It will be favourable for the solution x = 7.04 to
decrease, since this minimises the observed worst cost. The observed best solution



2.4. MINIMAX PROBLEMS 31

0 2 4 6 8 10 0
2

4
6

8
10

-0.1

0

0.1

x s

0

2

4

6

8

10

0 2 4 6 8 10

s

x

0

2

4

6

8

10

0 2 4 6 8 10

s

x

Figure 2.11: Left: Surface plot of the cosine-wave function. Middle: The solu-
tions found by the symmetric evaluation algorithm. Right: The solutions found
by the asymmetric evaluation algorithm.

x may continue to decrease for a while, until a suitable low value (e.g. s = 1.0)
appears in the scenario population. In the same way, if s = 10 is not present
in the population, the observed optimal value for x may start to increase, until
a high value appears in the scenario population. These problems indicate that
maintaining population diversity can be crucial for the success of coevolutionary
algorithms applied to minimax problems.

Keeping both optima in the population is made difficult by the heavy use of
recombination in the algorithm. Consider what happens if the scenario population
is divided such that half the population is located on the s = 0 peak, and half of
it is at s = 10. Assume that the solution population is such that both peaks are
equally good, so the s = 0 and s = 10 individuals will all be assigned (roughly)
the same fitness. Since almost all of the new individuals are generated using
crossover, nearly half the new individuals will be generated with one s = 0 parent
and one s = 10 parent. All of these new individuals will be located uniformly
between 0 and 10 because of the crossover operator used. For this reason, there
is a strong drive in the scenario population away from the two optima towards the
middle of the search-space. This is illustrated in figure 2.12. This problem could
probably be avoided using some kind of speciation method, which could increase
the performance significantly. Another possibility would be to use an algorithm
based on mutation as the predominant operator.

Conclusions drawn from the experiments

The experiments of this section have clearly shown that the coevolutionary ap-
proach to minimax problems of Herrmann [58] fails on problems where the two
search-spaces do not share the symmetric property (2.6). A similar set of ex-
periments were conducted for the very similar algorithm presented by Barbosa
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Figure 2.12: An illustration of crossover breaking moving the scenario population
away from the two peaks. Left: Population concentrated on the two peaks (the
ideal situation). Middle: Crossover “averaging out” two individuals. Right: The
population as it may look one generation later.

[5, 7] (the MSE errors can be found in appendix B). These experiments indicated
that in terms of mean square errors this algorithm performed slightly better than
Herrmann’s algorithm, but that the fundamental problem remained unsolved; the
algorithm had severe difficulties converging to the right solution and scenario.

The experiments have also demonstrated that the new asymmetric fitness eval-
uation is able to solve the problems of the fitness evaluation used in [5, 6, 7, 58].
The algorithm based on this fitness evaluation clearly outperforms the other algo-
rithms on the three benchmarks not satisfying (2.6).

Another lesson learned from the experiments is that keeping the diversity of
the populations high can be crucial for coevolution to work when solving minimax
problems. If the diversity of the scenario population gets too low, suboptimal
solutions can be able to take over in the solution population, or coevolutionary
dynamics can lead the search away from the optimum. For this reason, diversity
maintaining measures such as crowding, tagging or structured populations [10,
102] seem like a good idea to combine with the ideas presented here.



Chapter 3

Deterministic Scheduling

Following Błazewicz et al., [18], scheduling problems can be broadly defined as
“the problems of the allocation of resources over time to perform a set of tasks”.
The scheduling literature is full of very diverse scheduling problems [23, 45]. In
this chapter, a definition of and an introduction to the job shop scheduling problem
will be given. For reasons of brevity and in order to make the presentation con-
crete, production specific terms will be used, but in fact the job shop scheduling
problem is relevant also to non production problems, e.g. aircraft queueing up to
land, taxi, and getting service at an airport or nurses and doctors taking care of pa-
tients at a hospital. The chapter is not meant to be a thorough description of static
job shop scheduling (for good introductions to static scheduling see [18, 45]), it
is rather meant as a necessary introduction to the concepts used in the chapters on
stochastic scheduling, along with a brief overview of static scheduling techniques.

3.1 Introduction to job shop scheduling

In this section, the deterministic job shop problem will be introduced, and a few
of its fundamental properties discussed.

3.1.1 Definition of the problem

A job shop problem P of size n × m consists of n jobs {J1, J2, . . . , Jn} and
m machines {M1, M2, . . . , Mm}. For each job Ji, a sequence of ki operations
Oi = (oi1, oi2, · · · , oiki

) describing the processing order of the operations of Ji is
given. The processing orders of the jobs are sometimes called the technological
constraints. The operation oij is the jth operation of job i, and is to be processed
on a specific machine Moij

and has a processing time τoij
. The set of all operations

in P is denoted T .

33
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Figure 3.1: Example Gantt-chart.

Each job can have an associated release time ri before which no processing
of the job can take place, and each machine an associated initial setup time ui

before which no processing can be done on the machine. It is customary to work
with discrete time in job shop scheduling, meaning that processing times, release
times and initial setup times are all integer. When the operations are processed
on the machines, each machine can process only one operation at a time, only
one operation from each job can be processed at a time and no preemption can
take place (that is, once an operation has started it cannot be stopped until it has
finished).

A schedule is a description of when to process each of the operations satisfying
the constraints. A schedule is often visualised using a Gantt-chart, an example of
which can be found in figure 3.1. Each row in the Gantt-chart represents a machine
and each box represents an operation. The boxes have been labelled with the job
number they belong to, and the timetabling information of each operation can be
read on the time-axis.

Two other classical scheduling problems are closely related to job shop sche-
duling. The flow shop problem is a special case of the job shop problem in which
the machine processing orders Oi are the same for all the jobs. This does not
mean the jobs need to be identical, since the operation processing times may vary
from job to job. A special flow shop is the permutation flow shop, in which the
same processing sequence must be used on all the machines. The open shop prob-
lem is equivalent of the job shop problem except that there are no technological
constraints; the operations of a job need not be processed in any particular order.

For the job shop formulation to apply to a given problem, the processing envi-
ronment must satisfy a number of assumptions:

• No identical machines. Each machine is unique; no choice is allowed as to
which machine an operation is to be processed on.



3.1. INTRODUCTION TO JOB SHOP SCHEDULING 35

• Schedule independent processing times. The processing times are required
to be independent of the schedule. This means that the processing times are
independent of the processing orders of the machines. In some problems,
machine setup times may be dependent on the sequence. Fixed transporta-
tion costs from machine to machine is also required.

• No two operations of the same job can be processed simultaneously. This
excludes problems in which a job is composed by a number of indepen-
dently produced components to be assembled into one product.

• In process inventory is allowed. Jobs are allowed to wait for their next
machine in the processing line for as long as they need. This excludes pro-
cessing environments in which there is limited room to hold the in process
inventory as well as environments in which for some reason jobs must keep
on running, once processing has been started (e.g. in a steel plant in which
you literally have to work while the iron is hot).

• All of the problem is known before scheduling takes place. In particular, no
new jobs arrive over time.

• Nothing unforeseen ever happens. Unforeseen events include the break-
down of a machine or the processing of an operation getting delayed.

Furthermore, in classical job shop scheduling it is usually required that for each
job Ji the sequence of operations Oi contains exactly one operation to be pro-
cessed on each of the machines. The problems treated in this chapter will be
satisfying all of these constraints, while in the chapters 4, 5, and 6 on stochastic
scheduling the assumption of no unforeseen events will be removed.

Many different performance measures exist for job shop problems, but before
these can be defined some notation needs to be introduced:

• Ci. The completion time of the last operation of job Ji. Often referred to as
the completion time of Ji.

• Fi. The flow-time of job Ji, defined as the time elapsed from Ji becomes
ready for processing until it has finished. Fi = Ci − ri.

• di. Some problems specify a due date di for each job. di is the deadline for
Ji, the time at which the processing must be finished.

• Li. The lateness of Ji, Li = Ci − di. The lateness measures how much
later than the deadline the job finishes. If the job finished earlier than di, it
is assigned a negative lateness.
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• Ti. The tardiness of Ji, Ti = max(Li, 0).

• Ei. The earliness of Ji, Ei = max(−Li, 0).

Frequently used performance measures for job shop problems are:

• makespan Cmax = maxi∈{1...n} Ci. The maximum completion time. Some
authors refer to this measure as the length of the schedule.

• total flow-time F∑ =
∑

i∈{1...n} Fi. The total time spent on all the jobs.

• total lateness L∑ =
∑

i∈{1...n} Li. The summed lateness of all the jobs.

• total tardiness T∑ =
∑

i∈{1...n} Ti. The summed tardiness of all the jobs.

• total earliness E∑ =
∑

i∈{1...n} Ei. The summed earliness of all the jobs.

• maximum lateness Lmax = maxi∈{1...n} Li. The lateness of the latest job.
Sometimes called the worst lateness.

• Maximum Tardiness Tmax = maxi∈{1...n} Ti. The tardiness of the tardiest
job. Sometimes called the worst tardiness.

All of these performance measures are to be minimised. Usually the total earliness
E∑ is not used as a performance measure on its own. It is used in conjunction
with another performance measure (e.g. T∑) to form a composite performance
measure (e.g. αT∑+ βE∑). This is done for problems in which it is important to
minimise inventory costs by processing jobs as close to the due date as possible.

3.1.2 Complexity of static job shop problems

Most variants of the job shop problem except a few formulations with the number
of machines or jobs limited to 1 or 2 are known to be NP-hard [23, 45]. In par-
ticular, job shop problems with the number of machines m fixed (m ≥ 2) using
the Cmax and F∑ performance criteria are NP-hard in the strong sense [46, 47].
Since Cmax problems can trivially be reduced to Tmax and Lmax problems, and
F∑ problems can trivially be reduced to T∑ and L∑ problems, these problems
are NP-hard in the strong sense as well.

According to [45] theorem 11.6 and [46] theorem 1, strong NP-hardness of a
problem implies that it is impossible to create a search heuristic which guarantees
to find a solution for which the relative error is bounded by

performance measure of found solution
performance measure of optimum solution

≤ 1 + ε
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and which runs in polynomial time both in the problem size and 1
ε
. This re-

sult is very important, since it indicates that efficient approximation algorithms
with guaranteed performances should not be expected for these problems unless
P = NP . For this reason, most research focused on finding (near) optimal sched-
ules has been turned towards implicit enumeration algorithms (branch and bound
techniques), local improvement methods (shifting bottleneck) and heuristic search
methods such as genetic algorithms, tabu search and simulated annealing.

Experience has shown job shop problems not just to be NP-hard, but to be
very difficult to solve heuristically even for problems in this complexity class.
The 10 × 10 instance ft10 of [43] was first published in 1963, and remained
open until the optimal solution was published by Adams et al. in 1988 [2]. Recent
results, [96], indicate that the open shop problem (which is not as well researched
as the job shop problem) is even more difficult than the job shop problem. In
[96] this extraordinary problem hardness is attributed in part to the larger search-
space of the open shop for problems of the same size, and in part to smaller gaps
between the performance of optimal schedules and lower bounds.

3.1.3 Regular measures and classes of schedules

Performance measures for which the performance cannot be worsened by chang-
ing a schedule such that an operation finishes earlier are called regular. The per-
formance measures Cmax, F∑, Tmax, T∑, Lmax and L∑ are all regular, [45], since
Ci, Fi and Li can never increase by finishing an operation earlier. Measures based
on earliness are irregular. Schedules are often categorised in the following classes:

• A schedule in which no operation can be started earlier without changing the
processing order or violating the technological constraints is termed semi-
active.

• A schedule in which no operation can be started earlier without delaying at
least one other operation or violating the technological constraints is termed
active.

• A schedule in which no machine is ever idle if an operation is ready to be
processed on it is called non-delay.

Examples illustrating semi-active, active and non-delay schedules can be found
in figure 3.2. The set of non-delay schedules is a subset of the active schedules,
which is a subset of the semi-active schedules. For regular performance measures
it can be shown that for any problem an optimal active schedule exists, [45]. How-
ever, it has also been demonstrated that for some problems no non-delay schedule
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Figure 3.2: Left: Semi-active schedule. The schedule is semi-active since no
operation can be started earlier by sliding it to the left. The schedule is not active,
since the operation marked by the circle can be started earlier by leap-frogging it
past the operation in front of it, which does not cause any operation to be delayed.
Middle: Active schedule. The schedule is active since no operation can be started
earlier without delaying another operation. The operation marked by the circle
can be leapfrogged to start earlier, but this will delay the operation of job 1; note
the conflict between the leapfrogged operation (dashed) and the operation of job
1. The schedule is not non-delay, since the operation marked by the circle is ready
for processing at the time marked by the arrow, yet machine 3 is kept idle. Right:
Non-delay schedule. The schedule is non-delay since no machine is ever kept idle
if an operation is ready for processing on it.

non-delay optimal

semi-active

feasible schedules

active

Figure 3.3: The hierarchy of the schedule classes for regular performance mea-
sures. The set of non-delay schedules is a subset of the active schedules, which is
a subset of the semi-active schedules. For regular performance measures, the opti-
mal schedules is a subset of the active schedules, but not a subset of the non-delay
schedules.
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is optimal. The relationship between these classes of schedules and optimal sched-
ules is illustrated in figure 3.3. For this reason, when solving scheduling problems
involving regular performance measures, usually only the set of active (or some-
times semi-active) schedules are searched, since this brings a huge reduction of
the size of the search-space while still guaranteeing that an optimal schedule can
be found.

For many problems the average performance (when sampling schedules at ran-
dom) of non-delay schedules is significantly higher than the average performance
of active schedules. Many scheduling problems are so hard that with present day
techniques it is not realistic to find the globally optimal solution. Experiments
have shown that restricting the schedules searched by the scheduler to incorporate
only non-delay schedules or a set of schedules somewhere between active and
non-delay schedules can sometimes improve scheduling performance, [16]. This
effectively guarantees that the optimal solution will never be found for a number
of problems, since the optimal solution is not in the search-space of the algorithm,
but it has been observed to increase average performance.

Searching only semi-active, active or non-delay schedules has the added ad-
vantage that a schedule is completely described by the the processing sequence,
the processing orders on the machines. When a schedule is represented in a search
algorithm, it often suffices to hold a representation of the processing sequence in-
stead of holding the timetabling information. For this reason, sometimes the term
schedule (a schedule includes timetabling information) is used interchangeably
with the term processing sequence (which holds not explicit timetabling informa-
tion).

3.1.4 The graph representation

A very useful representation of schedules and scheduling problems is the graph
representation. Much reasoning about scheduling is based on this representation,
including hillclimbing and branch and bound techniques. This section begins with
a description of the graph representation for schedules, followed by a description
of how to represent scheduling problems.

Representing schedules

For regular performance measures it suffices to represent a schedule by the pro-
cessing sequence. The processing sequence can be thought of as a number of
“process before” relations between the operations. These “process before” rela-
tions can be represented by a directed graph G = (V, A∪Es) in which each node
in the node set V represents an operation and each arc in the conjunctive arc set A
and the disjunctive arc set Es represents a relation. In figure 3.4, the Gantt-chart
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Figure 3.5: Graph representing the schedule of figure 3.4, augmented with source
and drain nodes and weights representing processing times.

of a schedule has been drawn along with its graph-representation. The nodes in
the figure have been organised so that each row of nodes represents a job. Each
node has been labelled with its machine number. The solid arcs in the graph are in
the conjunctive arc set A. They represent technological constraints and are fixed
by the problem instance. The dashed arcs are in the disjunctive arc set Es. They
represent the processing orders of the machines and were decided by the sched-
uler. Note that there are a number of arcs not explicitly drawn on the graph. For
job 1, the first operation is on machine 1, the second on machine 3, and the third
on machine 2. Yet no arc has been drawn from the operation on machine 1 to
the operation on machine 2. This relation is implicitly there, since there are arcs
from the operation on machine 1 to the operation on machine 3 to the operation on
machine 2. When drawing the graph in this way, each node o will have out-degree
at most two, one arc leading to the job successor, denoted SJ(o), and one to the
machine successor, denoted SM(o). The in-degree will also be at most two, one
arc coming from the job predecessor, denoted PJ(o), and one coming from the
machine predecessor, denoted PM(o).

This representation can be further enhanced by adding two dummy nodes, a
source node (marked S in figure 3.5) connected to each node representing the first
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operation in a job and a drain node (marked D), that all operations last in a job
are connected to. The arcs can be augmented with weights equal to the processing
times of the operations (nodes) in which they originate. The arcs leading out of the
source node are assigned the weight zero (we are assuming that the problem has
zero release and initial setup-times, removing this assumption is straight-forward).
The makespan of the semi-active schedule can now be calculated as the heaviest
path from the source to the drain.

Given the processing order of machines in a semi-active schedule, the graph
representing the semi-active schedule can easily be constructed by connecting
nodes representing operations on the same machine with arcs reflecting the pro-
cessing sequence. The timetabling information of the schedule can then be calcu-
lated in the following way.

The completion time c of an operation o can be calculated as

c(o) = τo + h(o),

where h(o) is the starting time of o, often called the head of o. The head of an
operation can be calculated as

h(o) = max(c(PM(o)), c(PJ(o))),

where c(PM(o)) is set to zero if PM(o) is undefined, and c(PJ(o)) is set to zero
if PJ(o) is undefined.

In the same way, the minimum time elapsed from the end of processing oper-
ation o until all the operations following it are finished is termed the tail of o, t(o).
The tail of o can be calculated as

t(o) = max(τSM(o) + t(SM(o)), τSJ(o) + t(SJ(o))),

where again t(SM(o)) and τSM(o) are set to zero if SM(o) is undefined, and the
same is done for SJ(o).

An operation is termed critical if it cannot be delayed without worsening the
performance of the schedule. For the makespan criterion, an operation is critical
if

Cmax = h(o) + τo + t(o). (3.1)

The critical operations in a schedule form one or more critical paths. A critical
path is a sequence of critical operations o1, o2, . . . , ol, such that SM(oi) = oi+1

or SJ(oi) = oi+1 for all 0 ≤ i < l. A critical block is a subsequence of a critical
path oa, oa+1, . . . , ob, such that SM(oi) = oi+1 for all a ≤ i < b, and such that
neither PM(oa) nor SM(ob) are critical. Informally, a critical block is a sequence
of consecutive critical operations on the same machine.
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Figure 3.6: Graph-representation of the problem of figures 3.4 and 3.5.

Critical paths and critical blocks are important, since they form the basis of
many iterative improvement heuristics on scheduling problems. From equation
(3.1), it is clear that for makespan problems, a local change cannot improve sched-
ule makespan if it does not change the head h(o) or tail t(o) of all critical oper-
ations. It can be shown [39] that a local change involving only small changes
cannot improve makespan if it does not include changes at the beginning or end
of a critical block. Considerations like these form the basis for tabu search ap-
proaches such as [39, 86] and the hillclimber used in [77], described in section
3.2.2.

Representing scheduling problems

A graph representing a job shop problem is created by making a graph G =
(V, A ∪ E) where the disjunctive arc set E holds all possible machine processing
relations, see figure 3.6. In the problem graph, every pair of nodes representing
operations on the same machine are connected by an arc pair, one arc going in
each direction. The minimum makespan problem can be formulated as a graph
problem in which to choose a subset Es ⊂ E such that all operations on the same
machine are connected by a Hamiltonian path, minimising the heaviest path from
source to drain. In order to transform the graph into a graph representing a sched-
ule, for each of the arc pairs in E one arc will have to be chosen. A feasible
schedule has been generated when there are no cycles in the graph and when all
operations on the same machine are connected by a Hamiltonian path.

Graph representations of problems based on other measures than makespan
can be made in similar ways.
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The Hamming distance measures on schedules

A distance measure on job shop schedules will now be defined. The distance
measure is due to Mattfeld [77], and will later be useful for describing hillclimbers
and the neighbourhood based robustness technique presented in chapter 5.

Consider a scheduling problem P represented by the graph GP = (V, A ∪ E)
and two schedules solving P , s1 and s2 represented by G1 = (V, A ∪ Es1) and
G2 = (V, A ∪ Es2). The absolute Hamming distance D(s1, s2) is defined

D(s1, s2) =
1

2

∑

(o1,o2)∈E

((o1, o2) ∈ Es1) ⊕ ((o1, o2) ∈ Es2), (3.2)

where ⊕ represents logical exclusive-or, such that the term under the summation
is 1 if (o1, o2) is in Es1 but not in Es2 or vice versa. The 1

2
factor in front of the sum

is there since the pair (o1, o2) is present in E in the form (o2, o1) as well, meaning
that every pair of operations is counted twice in the summation. The absolute
Hamming distance D(s1, s2) is equal to the number of precedence relations that
differ from s1 to s2.

Based on the absolute Hamming distance, the Nk-neighbourhoods on sched-
ules can now be defined. The Nk-neighbourhood of the schedule s is the set of
feasible schedules that have an absolute Hamming distance to s of k or shorter:

Nk(s) = {s′ ∈ S | D(s, s′) ≤ k}. (3.3)

The relative Hamming distance d(s1, s2) between two schedules is defined as
their absolute Hamming distance divided by the total number of operation pairs
on the same machine:

d(s1, s2) =
2D(s1, s2)

|E| . (3.4)

For problems where every job is to be processed once on each machine, this is
equal to

d(s1, s2) =
D(s1, s2)

mn(n − 1)
. (3.5)

3.1.5 Schedule generation

The classical algorithm for active schedule generation is known as the Giffler-
Thompson algorithm, [48], and was first published in 1960. The original algo-
rithm generates active schedules, but can easily be modified to generate semi-
active or non-delay schedules instead. The Giffler-Thompson algorithm can be
seen in figure 3.7.
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set s to the empty schedule
set A = {oi1|1 ≤ i ≤ n}, the set of operations that

are first in a job
while (A is not empty) do

find the operation o ∈ A with the earliest
potential completion time σ (if two or more
operations are tied, pick one at random)

set M∗ to the machine that is to process o
set Q to the set of operations from A that are
to be processed on M∗ and have possible
starting times earlier than σ

pick operation o∗ = Φ(Q) from Q, remove o∗ from A
add o∗ to s with starting time h(o∗)
if a job successor SJ(o∗) of o∗ exists add it to A

od

Figure 3.7: The Giffler-Thompson algorithm

In the following, an operation o is said to be schedulable if it has not been
scheduled, but all of the operations of the same job that must precede it have been
scheduled.

The set A is used to hold the set of schedulable operations. s is the schedule
being constructed. Initially A is set to the operations to be processed first in each
job, and s is set to the empty schedule. After the initialisation the schedule s
is iteratively built operation by operation, while making sure no “holes” large
enough to accommodate an operation are left in the schedule. In the main loop,
this is done by locating in A the operation o with the earliest possible completion
time σ. The machine on which this operation is to be processed is called M ∗.
The set of operations of A which are to be processed on M ∗ and have potential
starting times earlier than σ is stored in Q. An operation o∗ is then picked from
Q according to some scheduling policy Φ. Φ is a procedure determining which of
the schedulable operations to schedule first. It can be a simple dispatching rule,
a procedure inspecting a genetic string or just a procedure returning a random
operation in Q. o∗ is added to the schedule and if the job successor SJ(o∗) exists,
it is added to A. This cycle is repeated until there are no operations left in A.

The fact that this algorithm can only generate active schedules is easily re-
alised. When scheduling an operation from Q on machine M ∗, we are choosing
from the set of operations which have potential starting times earlier than the ear-
liest potential completion time of the operations in A. Since all operations later to
be added to A will have potential completion times later than σ, there is no way
a hole large enough to process an operation from start to finish can be left in the
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schedule.
Given a set of processing sequences (one sequence for each machine) describ-

ing an active schedule, the algorithm can be used to construct the schedule. This
is done simply by letting the choice of o∗ from Q be decided by the processing
sequence of M ∗. The algorithm can be shown to be able to generate any active
schedule for a given problem, see [48].

It is instructive to visualise how the Giffler-Thompson algorithm works on
the graph representation of a scheduling problem. Consider the problem graph
of figure 3.6. Each step in the following is visualised in figure 3.8, where the
operations in A have been marked by dashed circles on the graph representing the
problem. Operations included in the set Q have been marked by squares. The arcs
in the arc pairs have only been drawn after they are resolved to improve readability
of the figure. The Gantt-charts representing the schedule as it looks at each step
have also been drawn.

After the initial step of the algorithm, the set of schedulable operations A holds
the three nodes which the source S is connected to. Inspecting the weights of the
arcs we see that the operation with earliest possible completion time σ = 2 is to
be processed on machine 3. Since this is the only operation in A to be processed
on machine 3, it is scheduled for processing, removed from the set A and the
second operation of job 3 (to be processed on machine 1) is added to A. This
resolves the arc pairs involving the operation, the resolved arcs can be seen in the
graph. After this similar events set the first operation of job 2 to be processed
first on machine 2 (no other choice is possible), which adds the second operation
of job 2 (on machine 3) to A. For the third operation to be scheduled machine
1 holds the earliest possible completion time of σ = 4 (the second operation of
job 3). In this case there are two possible choices of which operation to schedule:
the first operation of job 1 or the second operation of job 3. In the figure the
second operation of job 3 has been chosen. This step is the last in the figure, but
the algorithm will keep running until all of the operations have been added to the
schedule and A is empty.

The Giffler-Thompson algorithm can be modified to generate non-delay sche-
dules. Figure 3.9 shows a version of the algorithm capable of generating non-
delay and active schedules. The algorithm contains the parameter δ, that decides
which set of schedules the algorithm is capable of generating. For δ = 0, the
algorithm produces non-delay schedules, while δ = 1 indicates that all active
schedules can be produced (for suitable Φ). For values 0 < δ < 1, the algorithm
produces active schedules with a bias towards non-delay schedules; the smaller δ
is, the less idle time is allowed on the machines before they have to start process-
ing.

The algorithm works in a way very similar to the original Giffler-Thompson
algorithm, but a few steps have been changed. The most important difference is
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set s to the empty schedule
set A = {oi1|1 ≤ i ≤ n}, the set of operations that are

first in a job
while (A is not empty) do

find the operation o ∈ A with the earliest
potential completion time σ (if two or more
operations are tied, pick one at random)

set M∗ to the machine that is to process o
find the earliest possible starting time h(o′) of
an operation o′ ∈ A to be processed on M ∗

set Q to the set of operations from A to be
processed on M∗ with potential starting times
min(h(o′) + δ(σ − h(o′)), σ − 1) or earlier

pick o∗ = Φ(Q) from Q and remove it from A
add operation o∗ to s with starting time h(o∗)
if a job successor SJ(o∗) of o∗ exists add it to A

od

Figure 3.9: The modified Giffler-Thompson algorithm for active/non-delay sched-
ule generation. The lines that are different from the ordinary Giffler-Thompson
algorithm (figure 3.7) have been printed in bold.

the construction of Q, which is has been changed so that operations which require
M∗ to wait for too long are excluded.

3.2 Evolutionary scheduling

This section contains a short introduction to evolutionary methods applied to job
shop scheduling in general, followed by a detailed description of the genetic al-
gorithm used for some of the experiments in chapter 5. Reviews on evolutionary
approaches to scheduling can be found in [24, 30, 55]. The section also has a
very brief introduction to the application of other search heuristics to job shop
scheduling.

3.2.1 EAs and job shop scheduling

The first attempt at solving the job shop problem using evolutionary methods was
published in 1985 by Davis, [33]. Since then a substantial number of papers
have appeared on the subject. Finding a suitable genetic representation for the
schedules is not straight-forward so many of the papers focus on the development
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of an efficient representation.
One of the earlier attempts at solving job shop problems with evolutionary

methods was done by Nakano and Yamada, [84]. They used a standard binary
string representation with a binary variable for each pair of operations o1, o2 to be
processed on the same machine. This binary variable would be 1 if o1 preceeded
o2 in the processing order, and 0 if o2 preceeded o1. This representation allows for
the use of standard binary genetic operators, but causes several other problems.
First of all, the size of the representation (number of bits) for a n × m problem
is given as 1

2
mn(n − 1). The fact that the representation size scales quadratically

with the number of jobs makes it very poor for large problem instances. Further-
more, the representation contains infeasible schedules, meaning that every new
individual needs to go through a repair algorithm in order to guarantee feasibil-
ity. A new concept introduced in [84] is the idea of forcing; after a genotype g
has gone through the repair step of the algorithm, it is replaced by g ′, its feasi-
ble counterpart. This is a kind of Lamarckian learning, and Nakano and Yamada
demonstrate it to improve both the solution quality and the convergence speed of
the algorithm.

In a later paper, [115], Yamada and Nakano do experiments with a different
representation. In this representation there is a position in the chromosome for
every operation, in which the end of processing time of the operation is recorded.
This representation has the advantage of being very direct; the gene practically
is the schedule, very little decoding is needed. Yamada and Nakano develop a
crossover operation called the GA/GT crossover, which is based on the Giffler-
Thompson algorithm. Their experiments indicate that the proposed algorithm out-
performs their previous approach, [84], and that the use of the crossover operation
is very helpful; it improves convergence speed and reduces the variability of final
solution quality.

The similarity between the Travelling Sales Person (TSP) problem and the job
shop problem has been exploited by several authors. Permutation based repre-
sentations used for the TSP have been used as inspiration for JSP representations
[28, 53, 113]. An example of this is the work by Fang et al. [41, 42], in which a
schedule is represented by a sequence of numbers from {1, .., n}. During decod-
ing the sequence is read from left to right, and the numbers in the sequence are
used as indexes in a circular list of uncompleted jobs. If the number present at
the ith position in the gene is a, the ith operation scheduled will be the first un-
processed operation of the job at position a mod l in the list of uncompleted jobs,
where l is the current length of the list. This representation can only represent
feasible schedules. A problem in this representation is that the meaning of genes
located late in the genetic string depends on the contents of the genes earlier in
the string. This implies that the convergence rates are different for different parts
of the chromosome; early in the run of the algorithm, the first part of the genetic



3.2. EVOLUTIONARY SCHEDULING 49

string will begin to converge, while the rest of the string will not converge, since
the meaning of the rest of the string is not clear until the first part of the gene has
converged. In the later stages of the run, the first part of the string will be con-
verged, and the later parts will begin converging as well. In this representation, the
dependency of the later parts of the string depending on the earlier parts can also
be seen as a false competition or a competing conventions problem in the GA. The
same building block (or forma, [97]) can be represented in several different ways.
A problem arises when two genotypes both holding the same building block, but
represented in different ways, are recombined to form a new genotype. Chances
are that the building block will not be present in the offspring, since if the earlier
parts of the parents strings do not agree, the schema that decoded to the building
block in a parent will decode to something different in the child.

The most commonly used genetic representations for jobs shop like problems
currently are probably permutation with repetition representations (see [14, 77]
and the next section) or more direct representations based on start or ending times
of operations, used as operation priorities during decoding. These representations
cannot represent infeasible schedules, so no repair procedures are necessary. Usu-
ally, the representations are redundant, one schedule can be represented in many
different ways. Furthermore, the representations are often biased; some schedules
have only a small number of representations, while other schedules have a huge
number of representations. This situation is not ideal; usually an unbiased repre-
sentation is preferable to a biased one, but for these problems bias is probably the
price to pay for avoiding infeasibility. Very often variants of the Giffler-Thompson
algorithm (section 3.1.5) are used for decoding these representations, [55]. The
crossover operators used are often designed to work on the schedule level to com-
bine parents in a respectful way (like the THX operator [74], or the PPX operator
[17]).

More recent work on GAs and static job shop scheduling focuses more on
performance enhancing measures and less on the development of representations.
Typically these articles present methods that include hillclimbers (these algo-
rithms are sometimes called genetic local search or memetic algorithms) [1, 77],
the application of problem specific knowledge [16, 25], or they use more advanced
evolutionary models such as spatial populations to avoid premature convergence
and local optima [22, 74, 77]. An example of the latter is presented by Lin, Good-
man and Punch in [74]. The algorithm presented in this paper seems inspired by
the one presented in [115]; the genetic representation is done by recording opera-
tion starting times, and the genetic operators are akin to those presented in [115].
In [74] it is demonstrated that clever use of population structures can improve the
performance of the algorithm, especially when huge population sizes and long
running times are allowed. The authors do experiments with island based and
diffusion based distributed genetic algorithms, as well as combinations of these.
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3.2.2 Mattfeld’s GA3

One of the most successful GAs for job shop scheduling is the algorithm presented
by Mattfeld in [77]. The performance of Mattfeld’s GA is compared to some
other heuristic job shop scheduling methods in [111]. It is concluded to be the
most efficient genetic algorithm for job shop scheduling, while in some situations
it is inferior to the tabu search algorithm due to Nowicki and Smutnicki [86], see
section 3.3.2.

In his Ph.D thesis, [77], Mattfeld presents three different GAs. They are la-
belled GA1, GA2 and GA3, where the algorithms with a higher label number have
a better performance and are more complicated than the algorithms with a lower
label number. Only GA3 will be presented here.

GA3 uses a permutation-based representation which has the advantage over
some other job shop representations that it cannot represent infeasible schedules.
The decoding used in the algorithm is a very simple procedure producing semi-
active schedules. After the decoding step, the schedule is improved by a hill-
climber. A structured population in the form of a diffusion model is used, and
the rates of crossover and mutation are adapted using a behavioural model. Mat-
tfeld’s GA3 is a fairly complex GA. The main reasons for its success are probably
the use of problem specific knowledge in the hillclimber, and the diffusion model
combined with the behavioural model, which counter premature convergence and
makes the algorithm search a larger part of the search-space before convergence.

Mattfeld’s algorithm forms the basis for some of the experiments in chapter 5,
so it will be treated in detail in this section.

Representation

A semi-active schedule is uniquely determined by its graph-representation, as dis-
cussed in section 3.1.4. Since the graph representation is an acyclic directed
graph in which we know which nodes are to be connected, the graph can be
determined from a topological sorting of the nodes. Since each node is an op-
eration that can be determined by a job number and the number of the operation
in the processing sequence of the job, such a sorting can be written as a sequence
((j1, b1), (j2, b2), . . . , (jk, bk)), where ji and bi are the job number and number in
the processing sequence of operation i respectively. If the graph represents a fea-
sible schedule, clearly (ji, l) must precede (ji, l + 1) in the sorting, otherwise the
technological constraints of the problem are violated. Obviously, the first occur-
rence of (ji, l) must be (ji, 1), the second must be (ji, 2) and so forth. Thus, the
topological sorting of the graph (and the schedule) can be uniquely determined
from a sequence of job numbers g = (j1, j2, j3, . . . , jk). Since this sequence must
contain just as many occurrences of Ji as there are operations in job Ji, the repre-



3.2. EVOLUTIONARY SCHEDULING 51

sentation is called permutation with repetition.
A very intuitive way of decoding this kind of representation is by reading the

representation from left to right and constructing the Gantt-chart of the schedule
operation by operation. The gene g = (1, 3, 1, 2 . . .) would be decoded by saying
“First schedule the first operation of job 1, then the first operation of job 3, then the
second operation of job 1, then the first operation of job 2,. . . .”. In the following,
this kind of decoding is called semi-active decoding. This is the kind of decoding
used in GA3.

There are other ways of decoding genes of this kind as well. The gene can
be used as input to the scheduling policy Φ in a schedule builder such as the
algorithms of figures 3.7 and 3.9. When Φ picks an operation from Q, the leftmost
operation of g that has not yet been scheduled will be selected.

The permutation with repetition representation has the advantage that it cannot
represent infeasible schedules. It is easy to realise that any feasible semi-active
schedule can be represented, since such schedules can be described by the topo-
logical sorting of their graph representation. Using this representation also has the
advantage that genetic operators developed for permutation representations of the
TSP can be modified to work on it.

Hillclimbing

It is often found that the use of problem specific knowledge can greatly improve
the performance of a GA. Mattfeld’s GA3 uses problem specific knowledge in the
form of a hillclimber designed to improve the schedules created by semi-active
decoding by decreasing the schedule makespan. The GA uses forcing; after the
hillclimber has completed, the improved schedule is written back to the gene so
that a subsequent semi-active decoding of the gene will yield the improved sched-
ule.

The hillclimber is best described using two neighbourhoods, Nhc,feasible and
Nhc. The neighbourhood Nhc includes moves that can render the schedule infea-
sible, so the moves in Nhc are considered candidates for Nhc,feasible, which is a
subset of Nhc that contains only feasible moves. The Nhc and Nhc,feasible neigh-
bourhoods were originally developed by Dell’Amico and Trubian [39]1 who used
them in a tabu search algorithm. Mattfeld chooses them after comparing to three
hillclimbers based on other neighbourhoods in a computational study. We shall
start by defining the Nhc neighbourhood; how Nhc,feasible is found from Nhc will
be made clear later.

1Neither Dell’Amico and Trubian [39] nor Mattfeld [77] make an explicit distinction between
Nhc and Nhc,feasible. However, in our opinion the distinction improves the readability of the
method.
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block structure small block block begin block end
(o1, o2) (o1, o2, SM(o2)) (PM(o1), o1, o2)

permutations (o2, o1)
♥ (o2, o1, SM(o2))

♥ (PM(o1), o2, o1)
♥

(o2, SM(o2), o1)
† (o2, PM(o1), o1)

†

(SM(o2), o2, o1)
† (o2, o1, PM(o1))

†

Figure 3.10: The moves in Nhc. For critical blocks of length two only the move
labelled “small block” is tried, while for blocks of length three or more all the
moves labelled “block begin” and “block end” are tried in the beginning and end
of the block. Moves that can lead to infeasible schedules are marked †, while safe
moves are marked ♥.

Nhc is made up of moves at the beginning or end of critical blocks in the
schedule. It can be proven, [77], that a hillclimbing move reversing one arc in the
schedule graph can only improve makespan if it is made at the beginning or end
of a critical block. If o1 and o2 are two consecutive operations in a critical block,
Nhc includes all permutations of (PM(o1), o1, o2) and (o1, o2, SM(o2)) in which
o1 and o2 are reversed. Since a move can only improve makespan if it takes place
at the beginning or end of a critical block, it is safe to disregard moves in which
PM(o1) and SM(o2) are both critical. This leads to the moves shown in figures
3.10 and 3.11.

Depending on the structure of the critical block, two cases exist. Blocks of
length two are too short for the moves labelled “block begin” and “block end”, so
only the move labelled “short block” is performed on them. For blocks of length
three or more, the moves labelled “block begin” are tried at the beginning of the
block, while the moves labelled “block end” are tried at the end of it.

The makespan after a move can be estimated using local considerations in the
schedule graph by calculating the length of the longest path from S to D going
through the nodes affected by the move. In the following, unprimed variables
represent values as they are before the move, while primed variables represent
values after the move. In order to avoid confusion, the names of the nodes are not
changed in the following, so e.g. the node called SM(o2) before the move is also
called SM(o2) after the move, despite of it no longer being the machine successor
of o2.

The length of the longest path found will be a lower bound on makespan after
the move. Consider the “small block” move of figure 3.11, (o1, o2) → (o2, o1).
After the move, the head of o2 can be calculated

h′(o2) = max(h(PM(o1)) + τPM(o1), h(PJ(o2)) + τPJ(o2)).
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block endsmall blockoriginal block begin

1

SM(o  )

PM(o  )

2

o

1o

2

Figure 3.11: Graph drawings of the moves in Nhc. Machine sequences have been
drawn, while job sequences have been left out for clarity. The nodes taking part
in the move are shaded.

In the same way, the head of o1 after the move will be

h′(o1) = max(h′(o2) + τo2 , h(PJ(o1)) + τPJ(o1)).

The tails of o1 and o2 after the move can be calculated

t′(o1) = max(t(SM(o2)) + τSM(o2), t(SJ(o1) + τSJ(o1)))

t′(o2) = max(t′(o1)) + τo1 , t(SJ(o2) + τSJ(o2))).

After the move, the schedule makespan is bounded from below by

C ′
max ≥ Cmax,est = max(h′(o1) + τo1 + t′(o1), h

′(o2) + τo2 + t′(o2)). (3.6)

Estimates for the other moves can be made in the same way.
It can be shown [77], that reversing one critical arc in a schedule can never lead

to an infeasible schedule. For this reason, the moves marked ♥ in figure 3.10 are
safe; they always generate feasible solutions. The moves involving the reversal of
more than one arc are not safe in this way. Consider the move (PM(o1), o1, o2) →
(o2, PM(o1), o1). If a path from SJ(PM(o1)) to PJ(o2) exists, a cycle will
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2SM(o  )

PJ(o  )

SJ(PM(o  ))1
PM(o  )

2

1

o2
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Figure 3.12: An example of a move including two arc-reversals leading to an
infeasible schedule. The left schedule (before the move) is feasible, but after the
move (PM(o1), o1, o2) → (o2, PM(o1), o1), the right schedule contains a cycle
because of the path from SJ(PM(o1)) to PJ(o2).

appear in the graph representation, and the schedule will be infeasible, see figure
3.12. Moves that are “unsafe” in this way have been marked with a † in figure
3.10. It has been shown by Dell’Amico and Trubian, [39], that if one of the
moves marked † does lead to an infeasible move, the makespan estimate for that
move cannot be smaller than the makespan estimate for the corresponding “small
block” move. This means that if we always prefer the move with the smallest
estimated makespan and prefer the “small block” move when there is tie, we avoid
the infeasible moves. In some cases this procedure will also exclude feasible
moves from being considered.

The neighbourhood Nhc,feasible guaranteed to be feasible is constructed from
Nhc following the procedure outlined above; for every critical block of length two,
the small block move of Nhc is included in Nhc,feasible. For every critical block
longer than two, the Nhc move in the beginning of the block which is estimated
to improve makespan the most is included in Nhc,feasible, and the same is done for
the end of the block.

It has been shown, [39], that the Nhc,feasible neighbourhood does not have the
connectivity property; there is no guarantee that the optimum schedule can be
reached from a given schedule using moves in Nhc,feasible. Other neighbourhoods
exist that have this property, but these are much larger than Nhc,feasible (implying
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calculate performance Cmax(s) of current schedule s
set continue to true
while (continue) do

set the priority queue Q to empty
for s′ ∈ Nhc,feasible(s) do

if Cmax,est(s
′) < Cmax(s) then

insert s′ in Q with priority Cmax,est(s
′)

od
set continue to false
while s not updated and Q not empty do

delete s′ in Q with lowest priority
calculate Cmax(s

′)
if Cmax(s

′) < Cmax(s) then
update s by setting s = s′, set continue to true

od
od

Figure 3.13: Pseudo-code for the Cmax hillclimber based on Nhc,feasible.

more computational effort). The Nhc,feasible neighbourhood has been designed to
include the most promising moves and exclude moves that may be necessary to
guarantee connectivity, but which hold little promise for immediate improvement.
Besides, even for a neighbourhood with the connectivity property it is highly un-
likely that a random schedule will be taken to the global optimum by a hillclimber,
given the complexity of the job shop problem.

The hillclimber used in Mattfeld’s GA3 uses a steepest descent strategy, an
algorithmic template for it can be seen in figure 3.13.

Operators

The genetic operators used in GA3 are called Generalised Order Crossover, GOX,
and Position Based Mutation, PBM.

The GOX operator was first presented by Bierwirth in [14]. It is inspired by
the Order Crossover (OX) operator used on the TSP. The idea in GOX is to transfer
the relative order of operations in the parents to the offspring. The operator does
not treat the parents symmetrically; one parent is called the donator, the other
is called the receiver. During crossover, a substring is chosen from the donator,
randomly located in the string and of length between one third and half of the
total length of the genotype. The operations in the receiver that correspond to the
substring are located and deleted, and the child is created by making a cut in the
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donator 3 1 2 1 2 3 2 3 1
receiver 3 2× 1 2× 1× 1 3× 3 2
child 3 2 1 2 3 1 1 3 2

Figure 3.14: GOX example, the substring does not wrap around the end-points.

receiver at the position where the first operation of the substring used to be and
inserting the donator substring there. This has been exemplified in figure 3.14 for
two genes for a 3 × 3 problem. The chosen substring has been underlined in the
donator and the child, and the operations deleted in the receiver have been marked.

In case the donator substring wraps around the end-points of the donator ge-
netic string, a different procedure is followed. The operations in the receiver that
correspond to the operations in the donator substring are still deleted, and the do-
nator substring is inserted in the receiver in the same positions it occupies in the
donator (at the ends). The procedure is exemplified in figure 3.15.

donator 3 2 2 1 1 3 2 3 1
receiver 2× 3× 1 3 1 1× 3× 2 2
child 3 2 1 3 1 2 2 3 1

Figure 3.15: GOX example, the substring wraps around the end-points.

The GOX operator includes an implicit mutation. Consider the relative posi-
tioning of the second “3” and the second “1” in the two parent chromosomes of
figure 3.14. In both cases the second “1” precedes the second “3”. In the child this
is not the case, there the second occurrence “3” precedes the second occurrence
of “1”. If o12 and o32 are to be processed on the same machine, this reversal of
ordering means that despite of o12 getting processed before o32 in both parents,
o32 will be processed before o12 in the child. In this way, the GOX operator is dis-
respectful, since traits present in both parents need not be present in the children.

Mattfeld chooses the GOX operator for crossover after comparing it to two
other operators, termed Generalised Position Crossover, GPX, and Precedence
Preserving Crossover, PPX2. The PPX operator has been designed to respect the
processing order of operations as much as possible. If oa precedes ob in both par-
ents this will always be the case in offspring as well. In this sense, PPX is the most
respectful crossover operator conceivable for this problem. The GPX operator is
very similar to the GOX operator, but it is designed to respect the absolute posi-
tions of the genes to a higher degree than GOX does. The operators are compared

2In [77], Mattfeld uses the name Generalised Uniform Crossover, GUX instead of PPX. Here
the name PPX will be used, since this name is better established in literature.
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in terms of how well they convey phenotypical traits (precedence relations among
operations) in the parents to the offspring, and how well the fitness of offspring
correlates to the fitness of parents. In terms of conveying phenotypical traits, the
PPX operator is found to be superior to the two other operators, while in terms of
fitness correlation the GOX and GPX operators are found to perform equally well,
while the PPX operator seems inferior. This is surprising, since fitness is expected
to follow the phenotypical traits. In an experiment involving a simple GA and the
ft10 problem, Mattfeld [77] concludes that the GOX and GPX operators find
solutions of comparable quality, while the PPX operator is inferior. Since GOX at
the same time manages to keep population diversity at a higher level than GPX,
GOX is concluded to be the superior operator.

Because theoretical considerations [97] imply that generally a crossover oper-
ator should be as respectful as possible, it is quite surprising that GOX is found to
be superior to PPX. In a study by Bierwirth, Mattfeld, and Kopfer [17] the PPX
operator is also compared to GOX and GPX. In this study it is concluded that PPX
is superior to GOX in terms of the achieved fitness if easy problems and simple
decoders are used. However, this result does not contradict the finding that for
difficult problems GOX performs better than PPX.

The superiority of GOX over PPX on hard problems has also been confirmed
by us. This was done by replacing GOX with PPX in GA3. The result holds even
if parameters are changed to allow mutation to influence the search more when
PPX is used. For easy problems it is the other way around; on these problems the
experiments indicated that the algorithm using PPX was able to find the optimum
faster than the algorithm using GOX.

The unexpected success of the GOX operator is probably due to the fact that
for difficult problems, GAs often have problems with premature convergence on
local optima. Apparently the implicit mutation of GOX is capable of avoiding
this problem to a higher extent than PPX. Intuitively, the same effect should be
achievable by using PPX with a higher mutation-rate, or a more severe mutation,
but the experiments done for this thesis have not been able to confirm this.

The mutation operator used in GA3, Position Based Mutation, PBM, works by
deleting a randomly picked position, and inserting its value at a random position
in the gene. This mutation operator is chosen after comparing it to the operators
Order Based Mutation, OBM, which swaps the values of two random positions,
and Swap Based Mutation, SBM, which swaps the values of two random adja-
cent positions. In the comparison it is found that the SBM operator does very
little change to the schedules, OBM does quite substantial changes, while PBM is
somewhere in between. Mattfeld argues that PBM is probably preferable, since it
does a significant amount of change to the schedules, while the mutated schedules
are still highly correlated to the original schedules.
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Figure 3.16: Local neighbourhood in the grid structured population. When the
individual marked “x” breeds by crossover, the other parent is selected among the
four individuals surrounding it.

Population structure and selection

In order to avoid premature convergence, GA3 uses the diffusion model, where the
population is arranged in a toroidal grid structure. Individuals are only allowed to
breed locally, which slows down the spread of genetic material in the population.
The grid size used in the experiments is 10 × 10.

Breeding takes place in generations. Except for offspring that are not accepted
and individuals that are “sleeping” (see the next section), the entire population is
replaced. When an individual breeds by sexual reproduction, the other parent is
found between the four nearest neighbours in the grid, see figure 3.16. The least
fit individual among the four neighbours is located, and the other parent is chosen
randomly where the probability of each individual is proportional to the objective
function value of the worst individual in the neighbourhood minus the objective
value of the individual (recall that the objective function is to be minimised). This
excludes the worst individual among the neighbours from being a parent, except if
all the neighbours have the same objective value, and makes the selection favour
the best individual even if all the individuals in the neighbourhood are very close
to the same objective value. The individual created in this way is inserted in the
next generation, where it is placed in the grid in the centre of the neighbourhood.

A new individual is only accepted into the new population if it is not very
bad compared to the individual it replaces. A new individual with makespan
Cmax(child) is allowed to replace its parent with makespan Cmax(parent) if

Cmax(child) < Cmax(parent) + 0.1(Cmax(parent) − LB),

where LB is a lower bound on the optimal makespan for the problem. The lower
bound is found by calculating the total processing time on each machine and of
each job. The largest value found can be used as a lower bound on makespan.
This bound is improved by calculating for each machine the earliest starting time
and smallest tail possible for the last operation on the machine.
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Figure 3.17: Schematic drawing of the behavioural model of GA3.

Behavioural model

The grid structured population and local mating scheme counters global premature
convergence at the expense of increased inbreeding in the algorithm. In GA3
the local loss of genetic diversity following inbreeding is prevented by adaptive
control of crossover and mutation. This is done using a behavioural model in
which every position in the grid has a state that reflects the history of that position.
If a position has a history of successful crossovers, it will tend to prefer breeding
by crossover, if it does not have a history of successful crossover it will tend to
prefer breeding by mutation. A schematic drawing of the model is shown in figure
3.17.

The model uses a state in the form of a threshold value in the range [0; 1] for
every position in the grid. A high threshold value indicates an individual with a
preference for breeding by crossover, while a low value indicates a preference for
mutation. Every time an individual needs to breed, it is compared to the four in-
dividuals in its neighbourhood. If the individual is better than all of them it is put
to sleep in order to preserve its valuable genetic material. It is copied unchanged
to the next generation, and its threshold is increased “a little” (indicated by the ↑
symbol in figure 3.17). If the individual is not superior to all of its neighbours,
a random number is drawn uniformly from the range [0; 1]. If the number drawn
is smaller than the threshold of the individual, it has chosen to breed by cross-
over. Next, it finds an individual to mate with from the local neighbourhood as
described in the previous section. It evaluates the relative Hamming distance to
this individual, and if the distance is too small (less than 0.01), the crossover is
not performed. The threshold of the individual is lowered “somewhat” (as indi-
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cated by the � in the figure), since the small distance between the individuals can
be taken as an indication of very low genetic diversity. If the relative Hamming
distance is not too small crossover is performed, and if the child does not perform
much worse than the parent, the child replaces the parent. If the child is better than
the parent, the threshold is increased “somewhat” (indicated by the �). If it is not
better than the parent but still accepted, the threshold is increased “a little”. The
threshold is lowered “a little” (indicated by the ↓) if the child is rejected. If muta-
tion is selected when the random number is drawn, the individual is subjected to
the mutation operator and depending on the performance of the child the threshold
is unchanged (→), increased “a little” (↑), or increased “somewhat” (�).

Every time a threshold is increased “somewhat” (�), its value is increased by
0.15. If it is increased “a little” (↑), its value is increased by 0.05. If a value is
decreased “a little”, its value is decreased by 0.05, while decreasing it “somewhat”
(�) means decreasing it by 0.15.

The thresholds in the model are initialised to 1, meaning that all individuals
will breed by crossover in the beginning of the run. Later in the run the genetic
diversity falls because of convergence and spread of genetic material. As the
unsuccessful crossovers start to happen the rate of crossover falls, and mutations
become more common.

3.2.3 Re-implementing GA3

Mattfeld’s GA3 was implemented for the experiments presented in chapter 5. The
implementation was done in regular C. During experiments with the implemen-
tation it became clear that the algorithm could not reproduce the results reported
in [77]. In most situations, there was a small but significant difference between
the results reported by Mattfeld and those achieved with the new implementation,
usually such that the results reported by Mattfeld were slightly better than those of
the new implementation. This caused much checking of code, but no errors were
found.

The original implementation of GA3 was obtained from Mattfeld in order to
do a rerun of the experiments and inspect the code directly. Because of changes to
the gcc compiler and the LEDA software library that the original implementation
makes heavy use of, it was impossible to make the original implementation run.
The difference between the original and the new implementation was never found.

During experiments it was found that the performance of the new implemen-
tation of GA3 could be improved by using a hillclimber climbing the N1 neigh-
bourhood, which was working “on top” of the Nhc hillclimber used after decoding.
The Nhc-hillclimber was run on every N1-neighbour of the schedule, until no fur-
ther improvement could be made. This new hillclimber was only used on the best
individual of the last generation of the GA. Static scheduling results for the new
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implementation of GA3 can be seen in appendix G, where for each problem the
makespan is found in the row labelled “active” and the column labelled “P”.

3.3 Other kinds of scheduling algorithms

In this section other scheduling methods than evolutionary algorithms will be out-
lined. Since these methods are not the focus of this thesis, only a very brief intro-
duction will be given for each method.

Good introductions to heuristic scheduling algorithms can be found in [23, 62,
83].

3.3.1 Branch and bound algorithms

Branch and bound algorithms are enumerative search procedures based on the
construction of a tree of partial solutions. The tree contains the entire set of feasi-
ble solutions in the leaves, while nodes inside the tree represent partial solutions.
How the algorithm traverses the search tree is governed by a branching scheme
and a bounding scheme. The branching scheme of the algorithm decides which
operations can follow a given node, while the bounding scheme is used to limit the
search by pruning large parts of the tree before they are searched explicitly. The
bounding scheme uses a global upper bound on the best solution possible (usually
an initial upper bound is constructed using a heuristic before the search begins),
and for each node a local lower bound on the quality of solutions in the subtree
of the node. All nodes with a lower bound higher than the current upper bound
are disregarded in the search, since their subtrees cannot contain a solution better
than the current best. Once the search reaches a leaf with a better solution quality
than the current upper bound, the upper bound is updated and the search continues
elsewhere in the tree. This process continues until all leaves in the tree have been
visited or pruned.

The construction of good upper bounds for the nodes is crucial for the effi-
ciency of branch and bound methods, since this is what keeps the algorithm from
having to traverse the entire search tree. Usually this is done using graph-theoretic
considerations and by calculating upper bounds on one-machine problems derived
from the partial solutions. Branching is usually performed on the graph represen-
tation of the schedule/problem, in which a branching operation consists of select-
ing a disjunctive arc pair from E and generating two new partial solutions, one for
each possible orientation of the arc in Es. Often the branching schemes involve
complicated reasoning about the partial schedule to identify the best choice for
the next branch. For examples of this kind of branch and bound algorithms, see
[23, 26].
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Branch and bound algorithms have proven very useful for small to medium
sized problems, especially since they guarantee finding the global optimum and
provide proofs of optimality. According to [62] they are not useful for large prob-
lem instances because of the excessive running time.

3.3.2 Tabu search

The tabu search meta-heuristic is an iterative search procedure, usually attributed
to Fred Glover [49]. The basic idea in tabu search in combinatorial optimisation is
to let a solution move around in the search-space, picking the next solution from
a neighbourhood. The algorithm keeps a memory of previously visited solutions,
and the search is usually not allowed to revisit solutions already in the memory.
Often this is implemented by having a tabu list of forbidden moves. Every time
a move is made, the inverse move is added to the tabu list, where it stays for a
number of moves. When a move is made, usually the best solution in the neigh-
bourhood not forbidden by memory is picked. Since the tabu list stores moves and
not solutions, it is usually necessary to allow the algorithm to implement moves in
the tabu list, if they satisfy an aspiration criterion. This search strategy often leads
to the solution “rolling” from one local optimum to the next in the search-space.
Tabu search has proven very efficient for a number of combinatorial optimisation
problems.

Tabu search methods have been applied to scheduling problems by many au-
thors, see e.g. [23, 39, 86, 87, 88]. A particularly efficient algorithm for makespan
job shop problems was published by Nowicki and Smutnicki in [86]. Their algo-
rithm uses a simple and small neighbourhood, containing the moves reversing two
critical operations at the beginning or end of a critical block in the schedule (the
moves marked by ♥ in figure 3.10), except that only moves belonging to one criti-
cal path are considered. This neighbourhood is not connected, meaning that given
a feasible solution, there is no guarantee that an optimal solution can be reached
by a sequence of moves from the neighbourhood. It is much smaller than neigh-
bourhoods used in many other tabu search algorithms for the job shop problem,
meaning that moves can be applied much faster. The algorithm employs an algo-
rithm working on the graph representation for fast evaluation of makespans after
moves. The authors also propose a method termed back jump tracking, in which
good solutions found during the run are stored along with their tabu lists. The
algorithm later returns to these solutions and uses them for starting points in new
runs of the search. In experiments, the authors demonstrate the algorithm to be
very fast and at the same time produce very good solutions. In a recent study,
[111], the Nowicki and Smutnicki algorithm was concluded to still be state-of-
the-art.
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3.3.3 The shifting bottleneck heuristic

The shifting bottleneck heuristic was first published by Adams et al. in [2]. The
heuristic takes advantage of the fact that a one machine scheduling problem with
release dates and due dates (despite being NP-hard) can be solved to optimal-
ity very quickly using the algorithm published by Carlier in 1982. The shifting
bottleneck heuristic works by relaxing the problem into a number of one machine
subproblems that are solved one at a time. In its basic form, the shifting bottleneck
heuristic uses the cycle

1. Bottleneck identification.

2. Optimising the processing order of the bottleneck machine while keeping
processing orders on the other machines fixed.

3. Re-optimising the processing orders of critical machines previously sequ-
enced, one at a time.

4. If there are any unsequenced machines, go to 1.

The bottleneck identification in step one is done by considering each unsequenced
machine subproblem and calculating a lower bound on the solution to the problem
for each subproblem. The unsequenced machine leading to the highest lower
bound is then picked as the most important remaining bottleneck. The cycle keeps
un running until all machines have been sequenced and no further re-optimisation
of individual machines is possible. In the most basic form, the above procedure is
carried out once. In more advanced and time-consuming variants, the procedure
outlined above is incorporated into a partial enumeration scheme, in which the
choice of the next bottleneck (step 1 above) is incorporated into a beam search-
like tree.

The shifting bottleneck heuristic was among the first really efficient approx-
imation algorithms published for the job shop problem, since at the time it was
published research was focused on priority dispatch rules and complete enumer-
ation methods. It was also the first algorithm published to optimally solve the
ft10 problem, which had remained unsolved for more than 20 years.

3.3.4 Other heuristics

A multitude of other heuristics have been applied to the JSP with varying degrees
of success.

The first approximation algorithms proposed for job shop scheduling were
priority dispatch rules (PDRS), in which the basic idea is to assign priorities to
the jobs or operations in the problem and to construct the schedule based on a
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greedy schedule builder such as the algorithms of figures 3.7 or 3.9. Systems of
this kind are probably the most prevalent kind found in real applications today.
PDRS are easy to implement and have a very low computational cost, but often
produce highly suboptimal solutions.

Other heuristic scheduling algorithms include simulated annealing [18], ant
systems [79] and others.

3.4 Benchmark Problems

The benchmarks used in this thesis come from [43], [69], [107] and [108]. They
are all well established benchmarks, studied intensely in scheduling research. The
problems are the following:

• ft10,ft20: Published by Fisher and Thompson in [43]. The ft10 and
ft20 are difficult, small to medium-sized problems. The ft10 problem
is the most widely used single job shop benchmark problem; virtually all
published algorithms have been tested on this problem. Fisher and Thomp-
son also published a problem called ft06, but it has not been used in the
experiments for this thesis, since the operation processing times come from
another interval than all the other problems used.

• la01-la40: Published by Lawrence in [69]. The problems come in eight
different sizes, ranging from 10 × 5 to 30 × 10. Most of the problems are
not difficult, while some of the larger instances are quite hard.

• swv01-10: Published by Storer et al. in [107]. The original test suite
consists of 20 problems, but in the experiments used in this thesis, only the
first 10 have been used because the last 10 are quite large leading to large
computation times for the algorithms proposed in chapter 5. The problems
swv01-10 are of two different sizes and considered hard.

• ta01-40: Published by Taillard in [108]. The original test suite consists
of 80 problems, some of which are very large, but again the large problem
instances were too time-consuming for the algorithms proposed in chapter
5, so only the first 40 problems were used.

The benchmarks span a wide range of problem difficulties and sizes. The prob-
lem sizes are listed in table 3.1. For all the benchmarks the processing times of the
operations are integer and fall in the range {1, . . . , 100}. The problems are down-
loadable from the OR-library at http://www.ms.ic.ac.uk/info.html.

None of the benchmarks have due dates, so in order to do the experiments in-
volving tardiness of chapter 5, the ft and la problems were augmented with due
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problem size
ft10 10×10
ft20 20×5
la01-05 10×5
la06-10 15×5
la11-15 20×5
la16-20 10×10
la21-25 15×10
la26-30 20×10

problem size
la31-35 30×10
la36-40 15×15
swv01-05 20×10
swv06-10 20×15
ta01-10 15×15
ta11-20 20×15
ta21-30 20×20
ta31-40 30×15

Table 3.1: The sizes (number of jobs×number of machines) of the benchmark
problems.

dates. This was done by for each problem generating a random active schedule,
and setting the due date of each job to its completion time minus 5% (loose prob-
lems, labelled σ = 0.95), 10% (medium problems, labelled σ = 0.90) and 15%
(tight problems, labelled σ = 0.85).

Since no standard benchmarks for stochastic job shop scheduling are avail-
able, the static benchmarks discussed here were used as starting points for the
experiments on stochastic scheduling presented in chapters 5 and 6.
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Chapter 4

Introduction to Stochastic
Scheduling

The previous chapter was on deterministic scheduling problems. It was assumed
that every aspect of the problem was known when the schedule was made. Real
world scheduling problems are not like that. In the real world things go wrong:
Machines break down, deliveries get delayed, and workers get sick. Furthermore,
real world scheduling usually is a process of sustained pursuit; jobs arrive con-
tinuously over time, and from time to time the schedule has to be modified to
accommodate new jobs.

It is very important that real world scheduling systems are able to properly
handle these stochastic aspects of scheduling. This not only means being able
to handle the events once they have happened. A good scheduling system for a
stochastic environment should also be able to generate schedules that are prepared
for the events; robust or flexible schedules.

The focus of this chapter and chapters 5 and 6 is on generating robust and
flexible schedules, mainly for schedules facing breakdowns. The present chap-
ter will introduce terminology, discuss the important question of how to measure
stochastic performance, and present previous work.

4.1 Introduction

A stochastic scheduling problem usually holds a set of possible scenarios, of
which only one will come true. It is the task of the scheduler to create a schedule
which will perform well for the scenario that comes true. Only when it has turned
out which scenario came true can the true merit of the schedule be evaluated. The
problem is of course, that at the time processing is to begin the scheduler does not
know which scenario will come true.

67
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Before processing can begin, the scheduler has to make some sort of decision,
despite the uncertainty of the environment. At the very least, he1 has to decide
which operations are to start running at the beginning of processing; he has to
create the initial schedule. In most cases he will make a more detailed initial
schedule than just which operations are to be processed first. Usually (but not
always, see section 4.7.3 and [114]), the scheduler starts by creating an initial
schedule (or initial processing order), which covers processing of all jobs known
to the scheduler. This initial schedule can later be modified if need be.

When the scheduler has created the initial schedule, processing can begin.
Usually, processing will keep on following the initial schedule or processing order
until an incident that calls for a change of schedule happens. Often the scheduling
problem is made up in such a way that there is a “normal” mode of operation
in which processing carries on the way it is supposed to. This “normal” mode
of operation stretches intervals of time that are punctuated by incidents such as
the appearance of new jobs, breakdowns or unknown operation processing times
becoming known. These incidents reflect changes to the processing environment
the scheduler was considering when he made the schedule. In the following, such
changes in the scheduling environment are called events. An event occurs at a
specific time during the execution of a schedule. A scenario consists of a number
of events happening while processing a schedule. A special scenario is when
no events happen, that is the environment remains unchanged during the entire
schedule execution.

Whenever an event changes the environment, the scheduler is faced with a
rescheduling problem. Solving a rescheduling problem means changing the part of
the schedule not yet implemented to incorporate the change, while respecting the
part of the schedule already implemented. The schedule as it looked prior to the
event is termed the preschedule. The preschedule includes the part of the schedule
that will not be implemented due to the event; it is the schedule the scheduler was
going to implement if the environment did not change. In the following, a solution
to a rescheduling problem is called a new schedule. The concepts of preschedules,
new schedules, events and scenarios are exemplified in figure 4.1.

When solving a rescheduling problem, the scheduler is often trying to find a
schedule of the optimal quality (minimal cost), but there may be other goals to
consider:

• Sometimes the new schedule should be as similar to the preschedule as
possible. This can be the case if schedule nervousness is to be kept at a
low level. A schedule is called nervous if it is experiencing frequent, large
changes. Reasons to keep schedule nervousness at a low level could be to

1In this thesis, the word he will be used for people of unspecified gender. This is shorter and
sounds better than the more politically correct she or he.
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avoid upsetting workers by changing their hours constantly, avoid costs of
recalling workers from vacation and avoid costs of ordering new raw mate-
rials at short notice.

• In some cases it is important to solve the rescheduling problem quickly. If
a machine has suddenly broken down, the whole processing floor may be
idle, waiting for the new schedule.

• The robustness or flexibility quality of the new schedule may be important.

Rescheduling can be done in several ways. Since a job shop rescheduling problem
is also a job shop problem, it can be done by a standard scheduling algorithm,
solving the rescheduling problem from scratch as proposed in [15, 42]. Another
approach is to use the preschedule as a guide. In the case of a breakdown, the
processing order of the preschedule can be used in the new schedule, generating
a new schedule which is a replica of the preschedule in which operations affected
by the breakdown have been delayed to accommodate the breakdown. This kind
of rescheduling is usually termed right-shifting. The preschedule processing order
can also be used as a starting point for more sophisticated rescheduling methods,
such as hillclimbing. In this thesis rescheduling methods trying to find the best
new schedule from a set of schedules are said to do rescheduling using search.

Another aspect of rescheduling is how to generate the preschedule. The qual-
ity of the best new schedule and the hardness of the rescheduling problem depends
on the preschedule as well as on the nature of the unexpected event. For this rea-
son is seems natural to take into consideration the possibility of unexpected events
already when the preschedule is generated. One preschedule may generate a re-
scheduling problem that is easy to solve and has a low cost optimal new schedule,
while the same breakdown for another preschedule may generate a hard reschedu-
ling problem with a high cost optimal new schedule. A preschedule that generates
easy rescheduling problems with low cost solutions is clearly preferable to a pre-
schedule that leads to hard rescheduling problems with high cost solutions, all
other things being equal.

4.2 Measuring stochastic performance

How to measure the stochastic performance P (s) of a schedule s depends on
what the scheduler wants to achieve. In the following a number of performance
measures will be defined. Every performance measure P (s) reflects some aspect
of the cost of implementing schedule s, meaning that a low performance measure
indicates a good schedule.
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In some cases the scheduler wants to minimise the average cost of implement-
ing the schedule, where the average is taken over all the scenarios. This has the
drawback that the probability distribution of scenarios needs to be known. This
kind of performance is defined

Paverage(s) =
∑

b∈B

p(b)C(s, b), (4.1)

where B is the set of possible future scenarios, p(b) is the probability of scenario
b, and C(s, b) is the cost if scenario b happens when implementing schedule s.
This kind of performance is called average performance or expected performance.
Average performance should be used in situations where the scheduler is not very
concerned with avoiding the consequences of a very serious breakdown, but wants
to minimise the average cost of the processing plant over some period of time.

In some cases, the scheduler wants to minimise the consequences of the worst
case scenario. This is the case for very critical applications such as the scheduling
of aircraft queueing to land in an airport. The performance measure is defined as

Pworst case(s) = max
b∈B

C(s, b). (4.2)

This kind of performance is termed worst case performance. As remarked in
[68], worst case scheduling tends to generate very conservative schedules, since
the schedules must guard against every possible contingency.

A way of dealing with the worst case scenario in a less conservative fashion is
worst deviation performance. The performance measure is defined

Pdeviation(s) = max
b∈B

[C(s, b) − C∗(b)], (4.3)

where C∗(b) = mins∈S C(s, b) is the cost of implementing the schedule which
is optimal for scenario b. The idea in worst deviation performance is to create
a schedule which is close to the optimal performance for every scenario in B.
In order to calculate Pdeviation(s), the best possible performance C∗(b) must be
known for all scenarios b ∈ B, which makes this performance measure quite
difficult to work with.

A related measure is relative worst deviation performance, which measures
the maximum percentage distance to the optimum

Prelative(s) = max
b∈B

[

C(s, b) − C∗(b)

C∗(b)

]

. (4.4)

As for worst deviation performance, knowledge of C∗(b) is needed for all b ∈ B.
Note that since C(s,b)−C∗(b)

C∗(b)
= C(s,b)

C∗(b)
− 1, minimising Prelative(s) is the same as

minimising maxb∈B
C(s,b)
C∗(b)

.
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4.2.1 Relations between the performance measures

A result due to Kouvelis and Yu, [68] states that if an optimal worst case schedule
swc, worst deviation schedule sdev, or relative worst deviation schedule srel is
known, a limit on how much the expected performance of this schedule deviates
from the expected performance of the optimal average case schedule savg can be
found.

For an optimal deviation performance schedule the argument is as follows. Let
sdev denote a schedule that minimises Pdeviation(s) and savg denote a schedule that
minimises Paverage(s). A bound on Paverage(sdev) can be established as follows:

Paverage(sdev) =
∑

b∈B

p(b) C(sdev, b)

≤
∑

b∈B

p(b)(Pdeviation(sdev) + C∗(b))

= Pdeviation(sdev) +
∑

b∈B

p(b)C∗(b)

≤ Pdeviation(sdev) + Paverage(savg), (4.5)

where the last inequality holds because
∑

b∈B p(b)C∗(b) is a trivial lower bound
on Paverage(savg). In the same way, for schedules srel minimising Prelative(s) and
swc minimising Pworst case(s), the bounds

Paverage(srel) ≤ (1 + Prelative(srel))Paverage(savg) (4.6)

and

Paverage(swc) ≤ Pworst case(swc)

≤ Pworst case(swc) − min
b∈B

C∗(b) + Paverage(savg) (4.7)

can be established.

4.3 Robustness and flexibility

The concepts of robustness and flexibility are central to this thesis. Most of this
chapter and the following two chapters are dedicated to algorithms for robust or
flexible schedule generation. The definitions used here for these concepts are the
following:

• Robustness of a schedule. A schedule expected to perform well (have a
low cost) relative to other schedules, when facing some set of scenarios and
when right-shifting is used for rescheduling is said to be robust.
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Figure 4.2: Example of schedule robustness. For the breakdown indicated by the
triangles, schedule A is more robust than schedule B.

• Flexibility of a schedule. A schedule expected to perform well (have a low
cost) relative to other schedules, when facing some set of scenarios and
when some rescheduling method using search is used is said to be flexible
with regard to that rescheduling method.

An example of schedule robustness can be found in figure 4.2. In the figure,
Gantt-charts of two schedules have been drawn on the left. On the right, they have
both been subjected to the same breakdown (indicated by the black triangles), and
right-shifting rescheduling has been performed. Since schedule A has a shorter
makespan after right-shifting than schedule B, schedule A can be said to be more
robust than schedule B when facing the breakdown.

An example of schedule flexibility can be found in figure 4.3. The only dif-
ference between schedules A (top left) and B (bottom left) is the ordering of the
first operations on machine M1. The schedules have both been subjected to the
same breakdown. If rescheduling using complete reordering of the processing se-
quence is used, schedule A can be rescheduled to a schedule with makespan 20
(top right of the figure). For schedule B, reordering the processing order creates a
new schedule of makespan 23 (bottom right of the figure). Thus, when facing the
breakdown indicated on the figure, schedule A is more flexible than schedule B
with regard to rescheduling using complete reordering of the processing sequence.
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Figure 4.3: Example of schedule flexibility. For the breakdown indicated by the
triangles, schedule A is more flexible than schedule B with regard to a reschedu-
ling method allowing complete reoptimisation of the processing sequence.

The term ”robust” seems to be well established in literature, while flexibil-
ity was introduced in [21, 63]. Despite of many authors using the term ”robust”,
the meaning of the word is somewhat diffuse and changes from author to author.
In literature focused on stochastic or dynamic problems, the term “robust” usu-
ally refers to a solution that is somehow prepared for changes in the environment
(robust or flexible in the terms of this thesis). Literature focused on more stan-
dard optimisation using meta-heuristics uses the term to denote an algorithm that
performs well on a broad range of problems.

Most authors agree that a robust solution is a solution prepared for the un-
certainty of unknown future events. In some problems the uncertainty lies in the
fact that the problem instance may change, (e.g., [68, 72]), while for other prob-
lems the uncertainty may come from an imprecise implementation of the solution
found (due to imprecision in e.g. machinery [13, 20, 109]). In this thesis, robust-
ness refers to changes in the problem instance.

Sometimes “robust” has been used to describe a solution which does not
change its performance much if a change happens in the environment. This defi-
nition of robustness is not very useful, since it is very easy to generate a schedule
being “robust” in this way; simply create a schedule with lots of idle-time. The
idle-time can act as a buffer to absorb delays in processing. Such a schedule will
have a very poor performance, and will in fact be completely useless. For this
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reason, the definitions of robustness and flexibility used here are based on the
absolute performance of the schedules, not the change in performance.

The distinction used in this thesis between robust and flexible solutions is rel-
atively new. In some literature (e.g. [56, 70]), no distinction is made between
robust and flexible schedules; the term “robust” is used to indicate a solution
which is prepared for future events using some kind of rescheduling (not nec-
essarily right-shifting). In our opinion, the distinction between robustness and the
different kinds of flexibility is important. A schedule that performs well relative to
other schedules after an unexpected event and one kind of rescheduling need not
perform well relative to other schedules if another kind of rescheduling is used.
Consider the schedules of figure 4.3. Schedule A is more flexible than schedule
B for complete rescheduling. However, there is no difference between the two
schedules in terms of robustness; if right-shifting rescheduling is used, they will
both end up with a makespan of 23. Since the notions of a schedule being robust,
and flexible with regard to various rescheduling methods may be independent,
different concepts are needed in order be able to make an adequate description.

4.4 Events and rescheduling problems

In this chapter, stochastic scheduling problems with three different kinds of events
are treated. An event can be the breakdown of a machine, rendering the machine
unable to do processing for a certain amount of time (due to the definition of
the job shop problem, the machine needs to become operational again, otherwise
the problem may be unsolvable), the appearance of new jobs, or the fixation of
an uncertain operation processing time. In real world scheduling, a scheduling
problem will often be prone to several different kinds of events (e.g. appearance
of new jobs and breakdowns), but the scheduling problems here will all be subject
to only one type of event.

In a problem with uncertain operation processing times, usually the processing
time of an operation o is known to fall in a certain interval τo ∈ {τmin

o . . . τmax
o }. In

this case, an event happens every time the actual value of an operation processing
time becomes known (e.g. when the operation finishes processing). In order to
make this kind of problem fit the framework presented in this section, we will
allow release times and initial setup times in this kind of problem to also vary in
time intervals ri ∈ {rmin

i . . . rmax
i } and uj ∈ {umin

i . . . umax
i }.

Whenever an event happens, something has occurred in the scheduling envi-
ronment that calls for the attention of the scheduler. A breakdown has occurred,
an uncertain operation processing time has been fixed, or new jobs have appeared.
When the event has happened, the scheduler is free to change the part of the sched-
ule not yet implemented to adapt it to the new environment. If the event happens
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at time t, the scheduler is free to reschedule any operation o that has not started
strictly earlier than t. A rescheduling problem P ′ is generated from the original
problem P and the preschedule s in the following way (primed variables refer to
P ′, unprimed variables refer to P ):

1. The rescheduling problem P ′ has the same number of machines m and jobs
n as the original problem P . The number of jobs may later be increased.

2. The time the event happens is denoted t.

3. For each machine Mk, the initial setup time of machine M ′
k is set to u′

k =
max(t, c, uk), where c is the completion time of the latest operation com-
menced on Mk prior to time t (c is −∞ if no such operation exists). In the
case of a problem with uncertain operation times, u′

k is set to a time interval
{umin

k
′
. . . umax

k
′} by taking into account that c is not a known value, but a

range of values.

4. For each job Ji, a job J ′
i is constructed by setting the release time to r′i =

max(t, c, ri), where c denotes the completion time of the latest operation
of Ji to begin processing prior to t (c is −∞ if no such operation exists).
In the case of a problem with uncertain operation times, r′i is set to a time
interval {rmin

i
′
. . . rmax

i
′} by taking into account that c is not a known value,

but a range of values. For each operation oij in Ji, the same operation
exists in J ′

i if the starting time of oij in s is equal to or greater than t. The
technological constraints of J ′

i are equal to the technological constraints of
the corresponding operations in Ji, and the due date of Ji is set to D′

i = Di.

5. If we are dealing with uncertain operation times, we are done. If we are
dealing with breakdowns or arriving jobs, P ′ now corresponds to P , except
that part of s has been implemented and cannot be changed. The relevant
part of P ′ can now be changed to reflect the change in the environment.

4.4.1 Machine breakdowns

If the event happening is a machine breakdown, step 5 above consists in updating
the initial setup time of the broken down machine Mbroke. This is done according
to the characteristics of the breakdown: the breakdown time (the time the break-
down occurs), the breakdown duration and the machine affected by the break-
down. If the breakdown happens while the machine is processing an operation
o, there are two different interpretations of how the breakdown affects the oper-
ation being processed. The two interpretations, in this thesis called preemptive
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and non-preemptive breakdowns, are not equivalent, since they lead to different
rescheduling problems.

Some authors have used the assumption that the operation has to restart pro-
cessing from scratch; the processing done prior to the breakdown is wasted. In
this case, the initial setup time of the broken machine is set to u′

k = t+ τbreakdown,
where τbreakdown denotes the duration of the breakdown. Since the operation o dis-
rupted by the breakdown needs to restart processing from scratch, the scheduler is
free to reschedule it, so an operation o′ equal to o is added to the beginning of the
job J ′

i that corresponds to the job Ji to which o belongs. This kind of breakdown
is denoted a preemptive breakdown.

Other authors use the assumption that the processing of the operation is de-
layed by the duration of the breakdown, but that the processing done prior to the
breakdown is not wasted. In this case, the initial setup time of the broken machine
is set to u′

k = τbreakdown + co, where co is the end of processing time the opera-
tion has in the preschedule. With respect to the calculation of tardiness, flow-times
etc., the end of processing time of the operation is considered to be τbreakdown +co.
Since the operation continues processing on the broken machine immediately af-
ter the breakdown, there is no need to add o to P ′. The release time of job J ′

i , is
set to r′i = τbreakdown + co. This kind of breakdown is denoted a non-preemptive
breakdown.

For preemptive as well as non-preemptive breakdowns, if a machine breaks
down while it is not processing any operation, the initial setup time is set to u′

k =
t + τbreakdown.

These ways of creating a rescheduling problem following a breakdown are
based on an assumption that at the time the breakdown happens, the scheduler
knows exactly when the broken machine will become operational again. This is
probably not the case in most real world situations; in real problems the scheduler
will probably have some idea about when the machine will become operational
again, but he will not know the precise time. Also, in real world problems the
estimate of when the machine will become operational again will probably be
more and more precise as time progresses; right after the breakdown the estimate
may be very imprecise (it may be “anywhere from 20 minutes to 2 days”), while
at a later stage when the problem has been located it may be more precise (“be-
tween 4 and 5 hours”). These aspects of the problem are ignored in the present
formulation.

4.4.2 The appearance of new jobs

If the event happening is the appearance of new jobs, these are added to P ′ in step
5, while the rest of P ′ remains unchanged.
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4.4.3 Calculation of flow-times

The calculation of flow-times after a rescheduling problem has been generated
and solved does not follow the formulation of section 3.1.1 completely. Instead
of using the release times r′i of the rescheduling problem P ′, the release times ri

of the original problem P need to be used, since the release times in P ′ are not
the true release times of the jobs, but artificial release times designed to make the
rescheduling problem reflect the breakdown.

4.5 Complexity of stochastic job shops

It was argued in section 3.1.2, that the deterministic job shop problem is NP-hard
in the strong sense for the number of machines m ≥ 2. The robust or flexible
stochastic counterpart of the problem should be expected to be at least as hard: on
top of the combinatorial explosion involved in solving the deterministic problems,
there is the added complexity of handling the possible future scenarios. Except
for very small and simple stochastic problem formulations, any hope of finding
(provably) optimal robust or flexible schedules seems very optimistic.

It has been shown that some problems which are polynomially solvable for
deterministic job shops are NP-hard when viewed as stochastic problems. In [68]
it is shown that the single machine robust summed flow-time job shop problem is
NP-hard for uncertain processing times, right-shifting rescheduling for optimality
criteria Pworst case(s), Pdeviation(s) and Prelative(s), even if there are only two sce-
narios. The deterministic counterpart of this problem is polynomially solvable by
the shortest processing time rule, [4].

The stochastic two machine permutation flow-shop problem with makespan
criterion has also been demonstrated to be NP-hard. The problems are known to
be polynomially solvable in the deterministic case [45], while in [68] a variant
of the problem with uncertain processing times and right-shifting rescheduling is
shown to be NP-hard for the Prelative(s) and Pworst case(s) performance criteria.

4.5.1 Complexity of rescheduling

Since a rescheduling problem is a job shop problem, its complexity could be ex-
pected to be in the NP-class, since standard job shop problems are NP-hard. This
turns out to be correct, but the result is not as straight-forward as it might seem
at first. A rescheduling problem Presch is a slightly perturbed version of another
(possibly larger) job shop problem Poriginal. If we make the assumption that an
optimal preschedule soriginal is known for Poriginal, maybe soriginal can be used to
locate the optimal solution sresch to Presch.
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It can be shown that finding the makespan optimal solution to a breakdown
rescheduling problem Presch generated from the original problem P is NP-hard,
even if the makespan optimal solution to P is known, if the number of machines
m is greater than or equal to 3. This statement holds for preemptive as well as
non-preemptive breakdowns.

The proof of this statement is by reduction of the 0-1 knapsack problem to a
rescheduling problem, and can be found in appendix C. The result is shown to
also hold for the maximum tardiness, summed tardiness and number of tardy jobs
optimality criteria, and for rescheduling problems created by adding a new job to
the problem.

The complexity of rescheduling problems with fewer than three machines is
currently unknown. If we extend the job shop problem and allow a job to have
several operations on the same machine, the proof of appendix C can easily be
modified to cover problems with two machines. If this extension is not made, the
complexity of the rescheduling problems is uncertain at this stage.

4.6 Similarity between schedules

In some situations it is desirable for the new schedule after rescheduling to be
as similar to the preschedule as possible. This is the case when there is a cost
associated with a high schedule nervousness. For instance, it may upset workers
if their working hours are often changed at short notice.

In order to be able to compare schedules, several distance measures have been
defined. In [57] Hart et al. define a distance measure based on a Hamming dis-
tance calculation on the processing sequences of the machines. Each position in
the processing sequences contributes a 0 if the two sequences agree, 1 if they dis-
agree. The contributions from all the positions are summed to get the distance
between the two schedules. Other distance measures on schedules found in lit-
erature are the measure introduced in [22], the absolute and relative Hamming
distance measures of section 3.1.4 (originally introduced in [77]), and measures
based on differences between start-times of operations [70].

Most of the previously proposed distance measures work on the processing
sequence level. They consider the processing sequence of the operations, while
ignoring the timetabling information of the schedules. The overlap measure de-
fined below is an attempt to measure the likeness between two schedules as seen
on the processing floor. The measure is defined such that two identical schedules
will have an overlap measure of one, while two completely different schedules
will have an overlap measure of zero.

For two job shop schedules s1 solving P1 and s2 solving P2, where P1 and
P2 are identical problems except that the availability of machines need not be the
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Figure 4.4: Example of schedule overlap calculation. The different patterns rep-
resent different jobs.

same, the schedule overlap O(s1, s2) is defined to be

O(s1, s2) =

∑

o∈T oo(s1, s2, o)
∑

o∈T τo
, (4.8)

where T is the set of operations present in the problems. The operation overlap
oo(s1, s2, o) for the operation of job j on machine m between the schedules s1 and
s2 is

oo(s1, s2, o) = max
(

min(tend(s1, o), tend(s2, o))−
max

(

tstart(s1, o), tstart(s2, o)), 0
)

,

and tstart(s, o), tend(s, o) and τo denote the starting time, ending time and process-
ing time of the operation o in schedule s.

The idea in the schedule overlap measure is to measure the amount of overlap
between the processing of operations on the shop floor. If O(s1, s2) is 0.5, it
means that for half the total processing time of all the operations, the machines on
the shop floor are operating on the same operations in s1 and s2. An example of
the calculation of the overlap measure can be found in figure 4.4.

4.7 Previous work

In this section previous work on robust and flexible job shop scheduling will be
described. The first four subsections contain brief descriptions of the most impor-
tant results, the work by Kouvelis and Yu [68], Leon, Wu and Storer [72], Wu,
Byeon and Storer, [114], and Branke and Mattfeld [21]. The last subsection holds
approaches by a number of other authors.
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4.7.1 Robust discrete optimisation

Kouvelis and Yu [68] describe robust decision making for a number of discrete
optimisation problems, including a few scheduling problems.

The book concentrates on worst case, worst deviation and relative worst de-
viation performance. The scheduling problems treated are all of the uncertain
operation processing time type.

Besides the theoretical results presented earlier in section 4.2.1 and in the be-
ginning of section 4.5, Kouvelis and Yu present branch and bound algorithms and
a few heuristic approaches for generation worst deviation robust schedules for a
single machine problem with total flow-time criterion and a two machine flow
shop with makespan criterion.

The authors manage to show that for the worst deviation formulation of ro-
bustness, for any schedule there will be a scenario which belongs to the set of
extreme point scenarios, which will maximise the deviation from optimality for
that schedule. An extreme point scenario is a scenario, where the processing time
of each operation is equal to the minimum or maximum value attainable for that
operation. This drastically reduces the number of scenarios that need to be con-
sidered in the algorithms.

For the single machine problem, the foundation of the branch and bound al-
gorithm presented is the fact that for the deterministic variant of the problem
(in which the operation processing times are known), the optimal processing se-
quence can be easily found using the SPT (shortest processing time) rule, [45].
This fact is used along with a simple rule that can determine the optimal process-
ing order of two operations in certain cases to limit the space searched by a branch
and bound algorithm. The algorithm also uses an efficient way of calculating the
worst deviation from optimality for a given schedule.

The branch and bound algorithm for the two machine flow-shop problem,
bases the calculation of bounds on Johnson’s algorithm, [45], which solves to
optimality the deterministic version of the problem. This algorithm also uses an
efficient way of calculating the worst deviation from optimality for a given sched-
ule.

For both problems, a number of heuristic algorithms to generate robust sched-
ules are demonstrated. Experiments on a large number of relatively small ran-
domly generated problems demonstrate that the branch and bound algorithms have
reasonable running times, and that some of the heuristics generate solutions which
are very close to optimality. Compared to schedules produced by standard sche-
duling algorithms, the schedules generated by the heuristics and the branch and
bound algorithms are clearly superior, both in terms of worst deviation perfor-
mance and average performance.

The results presented by Kouvelis and Yu are very impressive, but unfortu-
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nately they only apply to one and two machine problems. The catch in the algo-
rithms presented, branch and bound algorithms as well as heuristics, is the use of
polynomially solvable deterministic versions of the problems (the SPT rule and
Johnson’s algorithm), which is clearly not an option in more general formulations
in which the deterministic versions of the problems will be NP-hard. Also, the
efficient calculation of worst deviation performance and the application of simple
rules to infer relations between some of the operations will be much harder in a
more general setting.

4.7.2 A slack-based approach

In [72], Leon, Wu and Storer develop a robustness measure for a makespan job
shop which is experiencing frequent disruptions in the form of breakdowns. The
authors are interested in improving average performance when right-shifting re-
scheduling is used. They also do experiments to investigate whether the method
they propose can improve average performance when no breakdown happens but
noise is imposed on operation processing times.

Schedules facing one breakdown

Call the makespan of schedule s after a number of breakdowns and rescheduling
C ′

max(s). According to [72], the average makespan E[C ′
max(s)] of schedule s after

a number of disruptions can be calculated

E[C ′
max(s)] = E[δ(s)] + Cmax(s), (4.9)

where Cmax(s) is the makespan of s without disruptions, and δ(s) is the make-
span increase caused by the breakdowns. Based on this, Leon et al. state that a
robustness measure R(s) can be defined

R(s) = r E[C ′
max(s)] + (1 − r) E[δ(s)], (4.10)

where r ∈ [0; 1] is a parameter used to tune the robustness measure.
The authors state an exact expression for E[δ(s)], which holds under the as-

sumption that (i) only one breakdown happens, (ii) breakdowns happen on a spe-
cific machine, (iii) the density functions g(d) and f(T ) of breakdown duration d
and breakdown arrival time T are known, (iv) right-shifting is used for reschedu-
ling.

The slack w(o) of an operation o in a schedule s is defined as the time by which
the operation can be delayed without worsening the makespan of the schedule if
the processing order is kept. The slack of operation o can be calculated as

w(o) = Cmax − h(o) − τ(o) − t(o), (4.11)
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where h(o), t(o) and τ(o) are the head, tail and processing time of o in the sched-
ule. In [72] preemptive breakdowns are used, which means that the makespan
delay resulting from a breakdown at time T with duration d can be calculated

D(T, d) = max(0, max(0, T + d − h(o)) − w(o)) =

max(0, T + d − h(o) − w(o)), (4.12)

where o is the operation affected by the breakdown. The average makespan delay
can then be calculated

E[δ(s)] =

∫ ∞

T=0

∫ ∞

d=0

D(t, d)f(T )g(d) dT dd, (4.13)

which is relatively easy to do2.

Schedules facing a number of breakdowns

Removing the assumption that all breakdowns happen at a specific machine is
straightforward. Unfortunately, removing the assumption that only one break-
down happens is very difficult. Instead of doing this, Leon, Wu and Storer state
three different expressions expected to correlate to δ(s) after a number of break-
downs. All of the expressions are based on the slack of operations in the schedules,
equation (4.11).

The breakdowns simulated in the experiments reported in [72] are defined
to happen with exponentially distributed inter-arrival times with mean 400 time-
units, while breakdown duration d is fixed at 50 time-units. After a correlation
study, the expression found to correlate best to δ(s) for ten 20 × 5 problem in-
stances is the average operation slack

RD3(s) =

∑

o∈O w(o)

|O| . (4.14)

Since RD3(s) is correlated to δ(s), the authors expect

RM3(s) = Cmax(s) − RD3(s) (4.15)

to correlate to C ′
max(s). The minus in equation (4.15) is due to a negative correla-

tion between δ(s) and RD3(s).

2In [72] equation (4.13) is stated using integrals, since Leon, Wu and Storer are using a defini-
tion of breakdowns that can lead to non-integer breakdown times. This formulation has been kept
here, but for equation (4.13) to fit the framework of this thesis properly, it should be reformulated
using sums.
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Based on equation (4.9) the robustness measure is defined:

Zr(s) = r RM3(s) + (1 − r) RD3(s). (4.16)

The authors construct a GA capable of minimising Zr(s) or Cmax(s). For each
problem they do experiments in which the GA minimises Cmax(s) and experi-
ments in which it minimises Zr(s) for values r = 1, r = 0.85 and r = 0. The
performances after a series of breakdowns C ′

max(s) are compared.

r = 1 : The experiments show a significant decrease in average makespan after a
series of breakdowns C ′

max(s) if Zr=1(s) is minimised rather than Cmax(s).

r = 0.85 : Minimising Zr=0.85(s) leads to schedules with a lower C ′
max(s) than

if Cmax is minimised, but a higher C ′
max(s) than if Zr=1(s) is minimised.

The performance variability δ(s) is lower than when Zr=1(s) is minimised.
This is to be expected from the definition of Zr(s), since decreasing r puts
more weight on RD3(s), which is known to correlate to δ(s).

r = 0 : Schedules found by minimising Zr=0(s) show very poor performance af-
ter a series of breakdowns. This is to be expected since setting r = 0 places
no significance on Cmax(s) or C ′

max(s) in the objective. The performance
variability δ(s) is lower than in the Zr=1(s) and Zr=0.85(s) experiments.

The experiments show that using the Zr(s) robustness measure can improve per-
formance significantly when the schedules are facing breakdowns. They also in-
dicate that if the minimisation of makespan variability is very important, values
of r less than 1 can be helpful, but this comes at the cost of increasing makespan
C ′

max(s).
Comparing the raw makespan performance Cmax(s) (without breakdowns) of

Zr=1(s) optimised schedules and Cmax(s) schedules the authors find that the in-
creased robustness of the Zr=1(s) schedules comes at a cost of a slightly increased
raw makespan.

Imposing noise on processing times

The authors also do experiments where no breakdowns happen, but in which noise
is added to operation processing times according to a uniform distribution. After
creating the schedule the processing time of each operation is set to

τ ′
o = τo + 2 τo d (uo − 0.5),

where the uo are drawn from a uniform (0, 1) distribution and d is a parame-
ter determining the amplitude of the noise. The makespan of the schedule with



4.7. PREVIOUS WORK 85

the new processing times but the processing order found for the unperturbed
processing times is calculated. Leon, Wu and Storer do experiments for d =
0, 0.1, 0.25, 0.5, 1.0. They find that for d ≥ 0.25, Zr=1(s) optimised schedules
are significantly better than Cmax(s) schedules, while for very low d values the
opposite is true, due to the superior initial makespan of the Cmax(s) optimised
schedules.

4.7.3 Preprocess first schedule later

A fundamentally different approach for stochastic scheduling is developed by Wu,
Byeon and Storer in [114]. In this paper, it is argued that since the exact condi-
tions on the shop floor are not known a priori, it makes sense to postpone the
actual scheduling until the conditions are known. In other words, the position of
an operation in the processing sequence is not decided until the operation starts
processing. The authors work on a weighted tardiness job shop problem and de-
velop a scheduling heuristic they term preprocess first schedule later (PFSL), in
which a small critical set of decisions are made in a preprocessing step, and the
actual scheduling is done later using a dispatching heuristic.

The preprocessing is done on the graph representation of the scheduling prob-
lem, which is decomposed into a series of subproblems to be solved during sched-
ule execution. The decomposition is done by dividing the schedule operations
into sequentially ordered subsets. During processing the operations belonging to
subset i subset must precede operations belonging to subset i + 1, so the prepro-
cessing step fixes a number of disjunctive arcs in the graph representation of the
problem. This process is exemplified in figure 4.5.

The problem decomposition is done using a branch and bound approach, in
which a tree of partial decompositions is searched. In the search, lower and up-
per bounds on the best performance achievable with the partial decompositions
are calculated. The upper bounds are calculated using a dispatching heuristic to
generate processing orders for the schedule subproblems, while lower bounds are
made using graph-theoretic considerations. When working on deterministic prob-
lems, the algorithm returns the schedule with the lowest cost found during the
run. In the stochastic experiments, the algorithm returns the problem decomposi-
tion with the lowest robustness measure, where the robustness measure is defined
as a weighted average of lower and upper bounds.

In experiments the authors demonstrate that for a number of small determin-
istic problems, the proposed approach using decomposition to two subproblems
generates better schedules than a well-performing iterative improvement heuristic.

For stochastic shop conditions in which the processing times of operations
are perturbed by small to moderate levels of noise, the authors demonstrate that
when considering average schedule cost, the PFSL heuristic performs much better
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Figure 4.5: Example of decomposing a job shop problem into two subproblems.
The problem of figure 3.6 has been decomposed into two subproblems. This has
resolved a large number of disjunctive arcs. For a larger problem instance more
disjunctive arcs will be left undecided by the decomposition.

than generating a fixed schedule using the iterative improvement heuristic and
somewhat better than using a dynamic dispatch scheduler to decide the processing
sequences during schedule execution. When a very high level of noise is added to
the processing times, the PFSL heuristic seems inferior to the dynamic dispatch
scheduler. The fact that the dynamic dispatching scheduler beats the PFSL in very
chaotic conditions is not surprising, since if the noise gets large enough, the actual
operation processing times have very little correlation to the processing times on
which the decomposition was based.

The ideas and algorithms presented in [114] are very interesting and seem to
work really well on small problems. However, they may not be applicable on
large scale problems, since they are based on a branch and bound algorithm. Fur-
thermore, the branch and bound algorithm working on the problem decomposition
may be even more susceptible to problem sizes than ordinary branch and bound
algorithms working on schedules, since in the latter great care is often taken to cre-
ate branching schemes that lead to tight bounds on schedule performance. This
idea is probably harder to implement on an algorithm working at the decomposi-
tion level, since the set of allowable branches is limited.

4.7.4 A flexibility measure for new arriving jobs

In [21] Branke and Mattfeld study a job shop problem with new random jobs
arriving continuously over time. The authors consider the known part of the prob-
lem fixed and deterministic and solve it using a GA. When new jobs arrive, the
part of the schedule already implemented is removed and the new jobs are added
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to the problem, which is solved again using the GA. In this way the problem is
decomposed into a series of deterministic subproblems. This strategy was first
proposed by Raman and Talbot [98]. It has been used by a number of authors,
[15, 16, 27, 73, 101, 112], and is usually called a rolling time horizon approach.

In [21] it is argued that when a rolling time horizon approach is used it is
important to avoid idle machines early in the schedules. This is because idle-time
placed early in a schedule is likely to be implemented as idle-time (meaning that
more work will have to be done later), while idle-time placed late in the schedule
is an asset that can be utilised later for accommodating new jobs.

The authors work on mean tardiness job shops, and define a flexibility mea-
sure which is a linear combination of the tardiness and a penalising term for idle-
time early in the schedule. Since early idle times can also be avoided by using
non-delay schedules, a tunable decoder similar to the modified Giffler-Thompson
algorithm of figure 3.9 is used. Thus, the idle-time in the schedules is controlled
by two parameters: the weighting of the idle-time punishment in the fitness eval-
uation, and the idle-time allowed by the schedule builder.

The interdependency between the two parameters is studied in experiments.
In the study both parameters are observed to influence the mean tardiness of the
schedules, and the level of interdependency between them is found to be low.
The experiments demonstrate that the flexibility of the schedules can be improved
substantially by explicitly taking early idle-times into account in the fitness eval-
uation.

The approach in [21] is remarkable because it is almost directly transferable
to real world scheduling, and because it shows that in some cases substantial im-
provements can be reached using very simple ideas. It also emphasises the rele-
vance of “blind” meta-heuristics such as genetic algorithms and tabu search in the
scheduling domain. The objective function used is not complicated, but because
it is composed of several independent terms it will be very difficult to construct a
more problem specific algorithm (i.e. a bottleneck heuristic or a branch and bound
algorithm) for it.

4.7.5 Other approaches

Other approaches on robust and flexible scheduling include the work by Al’Har-
kan [3], in which it is found that for total tardiness job shops facing uncertain
processing times with known distributions, average performance can be improved
considerably by estimating the performance of each schedule using simulation.
The scheduling is done in a genetic algorithm in which fitness evaluation is done
by sampling the processing times repeatedly until the average performance is
known with a predefined certainty. The method is compared to a method called
probability Gantt charting, in which fitness evaluation is done in a deterministic
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way by replacing the processing time of each operation by a pessimistic estimate.
The latter method is found not to work well. A related approach is followed by
Ventouris in [112], in which fitness evaluation by sampling operation times is
compared to deterministic scheduling and found to decrease the tardiness under
stochastic conditions.

An approach to generate robust schedules is given by Hart and Ross in [56],
where an artificial immune system (AIS) is evolved to solve tardiness job shop
problems. The solutions produced by the AIS are observed to be robust in the
sense that schedules produced by the AIS to solve a set of similar problems are
more similar to each other than schedules produced by a GA scheduler.

In [106], Sotskov et al. consider the problem of calculating stability radii for
makespan and total flow-time job shops. The stability radius of an optimal sched-
ule is the largest perturbation of operation processing times for which the schedule
is guaranteed to remain optimal. The problem studied is interesting because it can
reveal the conditions under which an optimal schedule can be expected to be op-
timal not just for the theoretical problem considered when making the schedule,
but also in its practical realization. There are several problems associated with the
method. First of all, a globally optimal solution to the scheduling problem needs to
be found. This is known to be NP-hard, and very difficult for large problems. Sec-
ondly, a very large number of schedules need to be considered when calculating
the stability radius of the schedule, making this calculation very time-consuming.
Thirdly, the method only specifies how to calculate the stability radius of a given
schedule, not how to find a schedule with a high stability radius. This means that
in order to use the method in practise, a number of different optimal schedules
need to be found. The stability radii of these schedules can then be calculated,
and the most stable schedule selected.

Based on studies of real world scheduling systems, McKay et al. [78] argue
that when considering disruptions such as breakdowns or preventive maintenance
in production systems, the actual disruption (called the primary event in [78]) is
not the only thing to consider. Since there is a high risk of a secondary event hap-
pening at the same machine shortly after the first one, scheduling on the machine
should give high priority to operations which are not very sensitive to a secondary
event. The secondary event could be another breakdown, or it could be inefficient
processing for some time after the disruption. The idea of avoiding scheduling
sensitive jobs on the machine immediately after a breakdown is termed aversion
dynamics. The authors model a one machine production system and compare the
performance of a priority dispatch rule using the idea of aversion dynamics to a
number of standard priority dispatch rules.

In [70, 71] Leon, Wu and Storer use a game-like approach to the problem of
rescheduling after a machine breakdown. This is done in order to create a resche-
duling method creating flexible new schedules. A game tree is constructed to eval-
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uate the consequences of various choices of new schedules on future performance.
The game tree holds two kinds of nodes: nodes representing possible future dis-
ruptions on the shop floor (called “chance nodes”) and nodes representing possi-
bilities for rescheduling (called “decision nodes”). The disruptions considered are
machine breakdowns, while the rescheduling method used in the decision nodes
is a branch and bound algorithm changing the processing order of the disrupted
machine. The tree constructed does not represent all possible contingencies (this
would be intractable), but rather a sample of contingencies. The rescheduling
decisions in the tree are evaluated to identify the decision leading to the lowest
expected makespan, while also considering the degree of schedule disruption. In
[71] the approach is compared to a system using right-shifting rescheduling and
one using complete rescheduling (generation of a new schedule from scratch after
the disruption). The game-like approach is found to compare favourably to both of
these in terms of schedule quality (makespan) after a number of disruptions and
also to the complete rescheduling approach in terms of the amount of schedule
disruption done in rescheduling.

A different kind of rescheduling is suggested by Bean et al. in [11], in which
breakdowns are considered for a problem taken from the car manufacturing in-
dustry. It is proposed after a breakdown to reconstruct part of the schedule to later
match up with the preschedule. This match up is done by gradually considering
a larger and larger subproblem of the rescheduling problem until a match up is
found.
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Chapter 5

Neighbourhood Based Robustness
for Scheduling

In this chapter, the neighbourhood based robustness approach for job shop sche-
duling will be presented. First, a few results on robust solutions for continuous
function optimisation will be presented, since they form the inspiration for the
work presented in this chapter. In section 5.2, the neighbourhood based robust-
ness measures for job shop scheduling will be defined. In section 5.3 it is inves-
tigated if the neighbourhood based robustness measure improves robustness and
flexibility for job shop schedules under the makespan criterion. Schedules pro-
duced by minimising the robustness measure are compared to schedules produced
by two standard schedulers, and to schedules produced by minimising the robust-
ness measure defined in [72]. The usefulness of neighbourhood based robustness
measures on maximum tardiness, summed tardiness and total flow-time job shops
is investigated in sections 5.4-5.6.

The chapter ends in section 5.7, in which it is discussed how and why the
neighbourhood based robustness approach works.

5.1 Inspiration from continuous function optimisa-
tion

The neighbourhood based robustness approach is inspired by recent work on con-
tinuous function optimisation, [13, 20, 109]. In engineering applications there is
an imprecision when going from the “ideal” solution calculated by the engineer
to the actual implementation of the solution. The imprecision comes from the un-
certainty inherent when doing things in the real world. For instance, a steel rod
supposed to be 1 meter long may only be 99.9cm in reality, a resistor supposed to
have a 1000Ω resistance could be 1023Ω etc. Because of this imprecision, often
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the solution actually implemented will not be the solution found by the engineer,
but a solution close to it. For this reason, it is desirable for a solution to a prob-
lem with this kind of uncertainty to be located on a broad peak in the objective
landscape. If this is the case, the solution actually implemented in the real world
will still be acceptable, even if it is not exactly equal to the solution the engineer
was “aiming for”. When deciding which solution to “aim for”, a tradeoff arises
between the height and the broadness of the peaks. The measurement of peak
broadness can be done in a number of ways. For some problems, it is known
how much the actual solution can deviate from the ideal one, or the distribution of
noise present in the implementation is known. Usually the broadness of the peak
is not explicitly calculated, instead the performance is evaluated in a worst case
or average case manner, see section 4.2. For worst case performance a method
termed robust convex optimisation is developed in [13] for certain kinds of con-
vex programs.

Evolutionary algorithms for finding broad peaks are developed independently
by Tsutsui and Ghosh in [109] and Branke in [20]. The basic idea in both algo-
rithms is to perturb solutions slightly according to some distribution of noise prior
to fitness evaluation. Tsutsui and Ghosh use a genetic algorithm in which after
decoding, each phenotype x is perturbed once to x′ = x + δ where δ is sampled
from the noise distribution. The fitness of x is calculated from f(x′), where f is
the objective function. This way of evaluating fitness means that a solution lo-
cated on a narrow high peak will often be inferior to a solution located on a lower
broad peak, since the noise imposed on the phenotype will take the solution from
the narrow high peak to a low fitness area, while the solution located on the broad
low peak will still be acceptable. An illustration of this kind of fitness evaluation
is shown in figure 5.1. Using the schema theorem (see section 2.1.2), Tsutsui and
Ghosh are able to show that such an algorithm evolves as if the objective function
was

F (x) =

∫ ∞

−∞

f(x + δ) q(δ) dδ, (5.1)

where f(x) is objective function used to evaluate the perturbed phenotypes and
q(δ) is the density function of the noise. F (x) is termed the effective objective
function in such an algorithm. The fact that the genetic algorithm behaves as if
F (x) was the objective function is also demonstrated in experiments. In [20],
Branke demonstrates that if the fitness of an individual is calculated as an average
of a number of independent perturbations of the phenotype, the average robustness
quality of the solutions F (x) is improved.
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Figure 5.1: The idea in neighbourhood based robustness. If for some reason the
solution is changed, the broad peak may do much better than the narrow peak,
since the solutions close to the broad peak are still reasonable solutions (compare
f(x′) to f(y′), and note that x′ and y′ were produced using the same perturbation:
x′ = x + δ, y′ = y + δ).

5.2 Robustness measures for scheduling

Finding robust or flexible solutions as broad peaks in the objective landscape can
also be applied to scheduling. The idea in doing this is that if a small set of
schedules close to the preschedule is known to be good before an unexpected
event, then perhaps one of the schedules can work (partly) around an event that
makes the preschedule unacceptable.

The most natural way to proceed is to define a robustness measure which has
its minimum on broad peaks in the search-space. Since the search-space of job
shop scheduling problems is very different from the continuous functions dealt
with in the previous section, equation (5.1) cannot be used right away. Because
the focus is on job shops with regular performance measures, the schedules can be
considered sequences of operations. Since the space of sequences is discrete, the
integral of equation (5.1) must be replaced with a sum. Furthermore, a proximity
relation for schedules is needed. The Nk-neighbourhood of section 3.1.4 is a
natural choice, so

R(s) =
∑

s′∈Nk(s)

φ(s, s′) C(s′) (5.2)

is a candidate for a robustness measure for job shop scheduling. In equation (5.2)
C(s′) is the cost of schedule s′ and φ(s, s′) is the weight or probability of schedule
s′ given schedule s.

The definition of R above contains a few free parameters. First of all the cost
function C needs to be decided, but also the size of the neighbourhood k and the
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weighting φ(s, s′) must be determined. Since the size of Nk increases sharply with
k, and since evaluating R takes more time the larger Nk is, so far only robustness
measures with k = 1 have been tested. Regarding the weighting φ(s, s′), the
simple choice of φ(s, s′) = 1

|N1(s)|
has been used.

5.3 Experiments on makespan

For makespan problems, the neighbourhood based robustness measure

RCmax
(s) =

∑

s′∈N1(s)

1

N1(s)
Cmax(s

′) (5.3)

is used. A number of questions regarding the measure arise:

1. Is there any difference between optimising this robustness measure and sim-
ply optimising the makespan? Maybe the best way of optimising the robust-
ness measure would be to optimise the makespan. This could be the case for
a function of local minima in which all of the minima had the same shape.

2. If the robustness measure is optimised, how does the makespan of the solu-
tion compare to the makespan of a solution found by optimising makespan?
Can solutions that are good in the ordinary sense (they have a low make-
span) and have a low robustness measure be found?

3. When faced with machine breakdowns, are schedules optimised for the
robustness measure more robust or flexible than schedules optimised for
makespan?

The first question is relevant since if there is no difference between minimis-
ing Cmax and RCmax

, there is no need to do any further work on RCmax
-minimal

schedules. In that case minimising RCmax
will be equivalent to ordinary schedu-

ling.
Question two is relevant because if something can be gained from minimising

RCmax
instead of Cmax, it is relevant to ask if something else is lost. If RCmax

turns out to improve the robustness or flexibility of the schedules in case of a
breakdown, we also need to know if this improvement comes at a cost of de-
creased performance in case no breakdown is encountered. If question two can
be answered with a yes for all problems, it means that we can minimise RCmax

instead of Cmax without any cost in the static performance of the schedules.
The last question is probably the most interesting one; the whole idea in min-

imising RCmax
is to achieve robust or flexible schedules.
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It is hard to answer these questions in an analytical fashion. Doing that re-
quires profound knowledge and understanding of the shape of the makespan land-
scape, knowledge which is currently not available. Instead, we shall resort to
experiments in an attempt to answer the questions. Questions one and two are an-
swered in section 5.3.3, while question three is answered in sections 5.3.6-5.3.12.

5.3.1 Minimising RCmax

In order to answer the questions in the previous section, algorithms for minimising
Cmax and RCmax

are needed. For minimising Cmax, the re-implementation of
Mattfeld’s genetic algorithm was used. The algorithm was described in details
in section 3.2.2. In what follows, this algorithm is called the Cmax-GA or the
makespan GA.

The same genetic algorithm was modified to minimise RCmax
. This algorithm

is called the RCmax
-GA or the robustness GA. Minimising RCmax

should be ex-
pected to be more time consuming than minimising Cmax. When evaluating a
schedule for Cmax just a single schedule needs to be examined. When evaluat-
ing a schedule for RCmax

, the makespan Cmax of a set of schedules needs to be
calculated.

In order to be able to compare the results produced by the robustness GA and
the makespan GA, the two algorithms need to be of comparable efficiency. If the
results of a very good makespan GA were to be compared to the results of a very
poor robustness GA, the most likely conclusion would be that minimising RCmax

produces inferior results when compared to minimising Cmax. The same would
probably be true the other way around. In order to make sure the two algorithms
are of comparable efficiency, for every Cmax-specific part of the makespan GA,
a comparable RCmax

-specific part needs to be created for the robustness GA. The
Cmax-specific parts of the makespan algorithm are the following:

• The fitness evaluation.

• The calculation of a lower bound. Recall that lower bounds are used in the
acceptance criterion for new individuals.

• The Cmax hillclimber.

For the fitness evaluation, the calculation of Cmax was simply replaced by a cal-
culation of RCmax

. The lower bound calculation of the Cmax algorithm was used
unmodified in the RCmax

-GA. This works because the lower bound on the mini-
mal Cmax value is also a lower bound on the minimal RCmax

value. It is difficult to
come up with a simple method for calculating a better bound on RCmax

. The ap-
proach is acceptable since the exact parameters for the acceptance criterion were
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calculate robustness measure RCmax
(s)

and makespan Cmax(s) of current schedule s
set continue to true
while (continue) do

set the priority queue Q to empty
for s′ ∈ Nhc,feasible(s) do

if Cmax,est(s
′) < Cmax(s) then

insert s′ in Q with priority Cmax,est(s
′)

od
set continue to false
while s not updated and Q not empty do

delete s′ in Q with lowest priority
calculate RCmax,est(s

′) ≈ RCmax
(s′)

if RCmax,est(s
′) < RCmax

(s) then
update s by setting s = s′

calculate RCmax
(s) and Cmax(s)

set continue to true
od

od

Figure 5.2: Pseudo-code for the RCmax
hillclimber.

set somewhat arbitrarily, indicating that a small imprecision in the lower bound
may not change the behaviour of the algorithm profoundly. The Cmax hillclimber
was replaced by a RCmax

hillclimber. The details of this hillclimber are in the next
section.

5.3.2 A hillclimber for RCmax

The RCmax
hillclimber is a modified version of the Cmax hillclimber. It searches

the same neighbourhood and picks the moves it makes in a way very similar to
the Cmax hillclimber. While considering the moves in Nhc, it makes the same
estimates on Cmax as the Cmax hillclimber, and constructs Nhc,feasible in exactly
the same way. Adapting the use of Nhc and Nhc,feasible from the Cmax hillclimber
makes sense, since the minima of RCmax

can be expected to coincide with min-
ima of Cmax, which the Cmax hillclimber has previously demonstrated to find
efficiently.

Pseudo-code for the RCmax
hillclimber can be seen in figure 5.2. The pseudo-

code closely resembles the code of the Cmax hillclimber of figure 3.13. The major
difference between the Cmax hillclimber and the RCmax

hillclimber is in the if



5.3. EXPERIMENTS ON MAKESPAN 97

statement at the end of the loop. In the Cmax hillclimber the makespan of the
new schedule s′ is evaluated, and the schedule is kept if it improves makespan.
In the RCmax

hillclimber, an estimate RCmax,est(s
′) of RCmax

(s′) is made, and if
the estimate is seen to improve the robustness measure the new schedule is kept.
The estimate RCmax,est(s

′) is an upper bound on RCmax
(s′), so every move made

is known to improve the robustness measure of the schedule.

Estimating RCmax

Given a schedule s, what is needed in order to evaluate RCmax
(s) is the make-

span of all schedules in N1(s). Constructing all these schedules is very time-
consuming, especially if it needs to be done many times inside a hillclimber.
Fortunately, given the graph representation of s, estimating the makespan of all
schedules in N1(s) is straight-forward.

An estimate of the makespan after a N1-move was made in equation (3.6).
Note that although the calculation of Cmax,est does not hold for infeasible sched-
ules, it is safe to use on N1-moves, since N1 only includes feasible moves. This
estimate is used for the RCmax

estimate.
After the N1-move, the critical path in the schedule s′ is either going through

one of the nodes that were interchanged in the move, or it is elsewhere in the
schedule. In the first case Cmax,est(s

′) of (3.6) is equal to Cmax(s
′). In the second

case the makespan of the original schedule is an upper bound on the makespan
of the schedule after the move, since the critical path in the schedule after the
move is also in the schedule before the move (it need not be critical in the original
schedule). For these reasons

Cmax,ub(s
′) = max(Cmax,est(s

′), Cmax(s)) (5.4)

is an upper bound on the makespan Cmax(s
′) after the move.

The estimate of the robustness measure can the be calculated

RCmax,est(s) =
Cmax(s) +

∑

s′∈N1(s)\{s}
Cmax,ub(s

′)

|N1(s)|
. (5.5)

Since Cmax,ub(s
′) is an upper bound on Cmax(s

′), clearly RCmax,est(s) is an upper
bound on RCmax

(s). Furthermore, if s is a locally makespan optimal schedule, all
of the N1 neighbours will have a makespan of Cmax(s) or higher, in which case
RCmax,est(s) becomes equal to RCmax

(s). Thus, if RCmax
-optimal schedules are

coincidental with locally Cmax-optimal schedules located on broad peaks in the
makespan landscape, for RCmax

-optimal schedules the RCmax,est estimate can be
expected to be exact.
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prob- semiactive run active run robust run
lem best mean best mean best mean
la01 688.7 696.6 678.4 695.3 674.4 674.5
la02 684.7 697.1 685.5 696.3 682.7 684.5
la06 932.9 943.5 927.2 938.5 926.0 926.0
la07 899.6 911.2 896.5 908.3 890.9 892.6
la26 1244.4 1256.8 1243.9 1256.0 1231.7 1240.4
la27 1299.2 1313.1 1297.1 1311.6 1282.6 1296.2
la31 1793.2 1802.9 1790.1 1797.4 1784.1 1784.7
la36 1336.3 1358.0 1339.1 1356.3 1327.8 1342.9
ft10 987.7 1005.0 987.3 1004.4 987.2 998.6
ft20 1197.7 1225.6 1197.1 1223.8 1184.7 1203.4

Table 5.1: The robustness measures of the solutions found in the semiactive, active
and robust runs. The averages have been taken over 400 runs.

5.3.3 Preliminary experiments on RCmax

The genetic algorithm for minimising Cmax described in section 3.2.2 produces
semi-active schedules. Since the robustness of a schedule may be improved by
producing active schedules rather than semi-active ones, a modified version of
the algorithm that produces active schedules was made. It works by putting the
final schedule through a procedure that leap-frogs operations to make the schedule
active. The procedure is the same as the one used for schedule generation in
[14]. In what follows, experiments with this algorithm are labelled “active”, while
experiments with the unmodified algorithm are labelled “semi-active”.

In order to answer the first two questions posed in section 5.3, a number of
selected problems were solved using the RCmax

-GA and both variants of the Cmax-
GA. For each problem, the algorithms were run 400 times and the values of Cmax

and RCmax
recorded. The problems used were la01, la02, la06, la07, la26,

la27, la31, la36, ft10, and ft20 (see section 3.4). These problems were
used since they span a wide range of problem sizes and difficulties. The average
robustness measures found in the experiments can be seen in table 5.1.

From table 5.1 it is evident that for all the problems on average the algorithm
minimising RCmax

produces schedules with a lower robustness measure than the
semi-active and active algorithms minimising Cmax.

Since the distribution of the observations is unknown, it is difficult to do sta-
tistical testing of this. The average standard deviation of the observations in the
experiments minimising RCmax

is 3.3, while for the active and semi-active exper-
iments it is slightly more than 6. The distributions of RCmax

were investigated by
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problem size optimum semiactive active robust
la01 10×5 666 666.0 666.0 666.0
la02 10×5 655 655.1 655.1 655.6
la06 15×5 926 926.0 926.0 926.0
la07 15×5 890 890.0 890.0 890.0
la26 20×10 1218 1221.2 1221.2 1219.5
la27 20×10 1235 1276.9 1276.6 1272.4
la31 30×10 1784 1784.0 1784.0 1784.0
la36 15×15 1268 1297.0 1297.0 1299.7
ft10 10×10 930 947.8 947.7 950.6
ft20 20×5 1165 1198.6 1197.7 1189.8

Table 5.2: The mean makespan of the solutions found in the experiment.

plotting empirical distribution functions, and it was found that in approximately
75% of the experiments the distribution functions were quite close to a Gaussian
distribution. In the rest of the experiments the distributions were not Gaussian.
Assuming that the robustness measures are Gaussian distributed the observations
can be compared using a t-test. This has been done and for all problems the
observed robustness measure averages for the robust runs turned out to be sig-
nificantly different from the active and semiactive results at a significance level
of 95%. Because of the non-Gaussian distribution for some of the experiments,
this conclusion should be taken with a grain of salt. However, given the relatively
large difference between the numbers and the consistency from problem to prob-
lem, there is little doubt that the result holds. From this can be concluded that
the answer to the first question in the beginning of section 5.3 is yes; there is dif-
ference between minimising Cmax and minimising RCmax

, and the lowest RCmax

values are obtained by minimising RCmax
.

Comparing the results of the semi-active and active algorithms, there is not
much difference, but in all cases the robustness measures are slightly lower for
the active schedules than for the semi-active schedules. The difference was tested
using a t-test, assuming Gaussian distributions. The difference turned out to be
significant for all the problems except ft10 and ft20.

Turning to the makespan performance of the schedules, it seems clear from
table 5.2, that in most cases schedules found by minimising the robustness mea-
sure have a makespan comparable to schedules found by minimising makespan.
In three cases (la02, la36 and ft10) the average makespan of schedules found
in the robust experiments are higher than the average makespan in the active or
semi-active experiments. This indicates that for some problems there may be a
tradeoff between the robustness measure of a schedule and the raw makespan.
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Figure 5.3: The neighbourhood evaluation seen by the RCmax
hillclimber working

as a lookahead for Cmax minimisation.

This question can be further explored by considering the makespan and robust-
ness measure of every schedule produced in the experiments. For each of the ten
problems, the Pareto non-dominated solutions in the set of solutions found in the
experiments were identified. For the problems la01, la06, la07, la26, la27,
la31 and ft10 it was found that there was no tradeoff; among the schedules
found in the experiments, the RCmax

-minimal schedule was also Cmax-minimal.
For the problems la02, la36 and ft20 a tradeoff was identified; these prob-
lems all had two or more Pareto-optimal schedules. Note that this experiment
provides just an indication of whether a tradeoff exists or not; since the schedules
have been found by using a heuristic, we have no guarantee that the solutions we
are considering are the real Pareto-front.

In conclusion, question two of section 5.3 cannot be answered with an uncon-
ditional yes. For some of the problems we have identified a tradeoff between the
optimal Cmax and RCmax

values, and the average performances of the algorithms
support this. We can, however, answer question three with a conditional yes; for
the majority of the problems no tradeoff was identified, neither in the optimal
values found nor the averages reported in tables 5.1 and 5.2. For most problems
it is possible to find schedules with a low robustness measure as well as a low
makespan.

For three of the problems (la26, la27 and ft20), the average makespan
found for the RCmax

minimised schedules is lower than for the Cmax minimised
schedules. This is probably because the minimisation of the RCmax

-estimate in the
hillclimber used after decoding can in some cases work as a kind of “look-ahead”
for the minimisation of Cmax. Consider a hillclimber when it has the choice of two
different steps, both leading to the same objective function value, in a situation
exemplified in figure 5.3. The initial position of the hillclimber is A, and it has the
choice of moving to the points B or C. A hillclimber evaluating the raw objective
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function (Cmax) will consider only the values at the points labelled B and C. Since
the values are identical, the hillclimber will make an arbitrary choice, meaning
that it may well get trapped in the local optimum at C. A hillclimber minimising
a neighbourhood based robustness measure (RCmax

) will consider all the points in
a neighbourhood around B and C (as indicated by the dashed lines1), and prefer
B over C. In the next move, this hillclimber will take one more step from B to
the global optimum at D, while a hillclimber preferring C over B will be trapped
at C forever. However, when comparing the makespan performance of the Cmax-
and RCmax

-hillclimbers, it should be remembered that the RCmax
-hillclimber uses

more processing time. Thus, if makespan is to be minimised, it is probably better
to use the Cmax-hillclimber, since more solutions can be tested in the same time.

5.3.4 Breakdown generation

The breakdowns used in the experiments of this chapter are machine breakdowns.
They are generated as described in section 4.4 in such a way that all operations
have an equal probability of being affected by a breakdown. A breakdown is
generated by uniformly choosing an operation oX in the schedule and letting the
breakdown occur at the time the operation was supposed to start processing. This
time is called the breakdown time. Since oX has not yet started processing at the
breakdown time, the scheduler is free to reschedule oX , as well as all other op-
erations supposed to start processing at the breakdown time or later. Once the
breakdown has happened and rescheduling has been performed, the schedule is
allowed to run until all operations have finished processing; each experiment sim-
ulates exactly one breakdown.

The processing time of operations in all the problems used are in the interval
{1, . . . , 100}, so it is natural to use a breakdown duration in that range. Unless
otherwise indicated, the breakdown duration used in the experiments is 80.

5.3.5 Rescheduling

There has not been much previous work addressing the rescheduling problem,
although several people have remarked that it can be solved in the same way as
a standard job shop problem, since a job shop rescheduling problem is also a job
shop problem [16, 42]. For most authors actually doing experiments with robust
scheduling and rescheduling, right-shifting rescheduling is the method of choice
[3, 68, 72].

1Since the RCmax
-hillclimber minimises the estimate RCmax,est instead of RCmax

, what is
actually seen by the RCmax

-hillclimber in the neighbourhood around B is never lower than the
objective level at the point B, but this does not change the situation significantly.
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When solving a rescheduling problem it is possible to make use of the pre-
schedule. Due to the breakdown, it is not possible to implement the preschedule
anymore, but as the preschedule is known to be an acceptable solution to a prob-
lem closely related to the rescheduling problem it makes sense to use it as a start-
ing point for the rescheduling procedure. This may decrease computational costs
considerably, and it may also increase the similarity between the preschedule and
the new schedule.

In the experiments, a rescheduling problem in the form of a non-preemptive
machine breakdown is made, and rescheduling done in five different ways:

1. Right-shifting. Simply wait for the breakdown to be repaired and use the
scheduling order of the preschedule. This is expected to yield low quality
results compared to other methods, but at a very low computational cost.

2. N1-based rescheduling. All N1-neighbours of the right-shifted preschedule
are generated, and the one best solving the rescheduling problem is used.
This is the most simple kind of search based rescheduling used, and is ex-
pected to yield better results than right-shifting, still at low computational
cost.

3. Hillclimbing rescheduling. The right-shifted preschedule is used as a start-
ing point for a hillclimber, which finds a locally optimal solution to the re-
scheduling problem. In experiments minimising Cmax, the Cmax hillclimber
of section 3.2.2 was used. In experiments minimising RCmax

, the RCmax

hillclimber of section 5.3.2 was used.

4. Reduced rescheduling. Generate a reduced rescheduling problem as de-
scribed in [41] by removing all operations not affected by the breakdown
from the problem. An operation is affected by a breakdown if it succeeds
the operation hit by the breakdown in the graph representation of the pre-
schedule, or equivalently, if an increase in the breakdown duration can lead
to a delay of the operation if a right-shifting rescheduling method is used.
The reduced problem is solved from scratch using the GA. Generation of a
reduced rescheduling problem is illustrated in figure 5.4.

5. Complete rescheduling. Solve the rescheduling problem described above
from scratch using the GA. This is expected to give a high schedule quality
at a high computational cost.

In the experiments involving robustness measures rescheduling using methods
3-5 minimised the robustness measures, not the “raw” performance measures.

The search based methods may be augmented by turning the problem into a
multi-objective optimisation problem, optimising schedule quality and similarity
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Figure 5.4: Gantt-chart example of the generation of a reduced rescheduling
problem. The operations have been labelled with their job numbers. Left: Pre-
schedule. Right: Schedule at breakdown. The breakdown happens at machine
M3 and has been marked by the black triangles (the schedule is infeasible, since
it processes operations during the breakdown; it has not been rescheduled). The
dashed operations will not be in the reduced rescheduling problem, while the solid
operations will be. The operations marked by ’X’ commence processing after the
breakdown but will not be in the reduced rescheduling problem since they are not
affected by the breakdown. After rescheduling these operations will be scheduled
in the same way as they were in the preschedule.

to the preschedule. This changes the problem completely, since there will not be a
single best solution but rather a Pareto front of non-dominated solutions. Treating
rescheduling as a multi-objective optimisation problem will not be treated further
here.

The performance of methods 4 and 5 may be improved (both in terms of com-
putational cost and in terms of similarity to the preschedule) by seeding the initial
population of a GA with individuals produced from the population that solved the
original problem. This was proposed in [15] and will be investigated in section
5.3.8.

The search-spaces of the five rescheduling methods have been visualised in
figure 5.5. Since for this problem a large search-space can be expected to mean
a higher solution quality (and a longer running time), complete rescheduling can
be expected to outperform all the other rescheduling methods. In the figure, nei-
ther the search-space of hillclimbing nor N1 rescheduling are shown to contain
the other. In reality, the part of the N1 search-space not contained in the hill-
climbing search-space is very small, while the part of the hillclimbing search-
space not contained in the N1 search-space is large. Furthermore, because of the
construction of hillclimbing moves, for every schedule s in the N1 search-space
not in the hillclimbing search-space, there will be a schedule in the hillclimbing
search-space estimated to do better than s. For these reasons hillclimbing can be
expected to outperform N1 rescheduling in most cases. Since the search-space



104 CHAPTER 5. NEIGHBOURHOOD BASED ROBUSTNESS

Hillclimbing
Reduced

Complete

Right-shifting
N -based1

Figure 5.5: The relationship between the search-spaces of the five rescheduling
methods.

of right-shifting is just a single point contained in all the other search-spaces,
right-shifting can be expected to be the poorest (and fastest) of the rescheduling
procedures. Reduced rescheduling can be expected to perform worse than com-
plete rescheduling. Its relationship to the other rescheduling methods cannot be
determined from the figure, since the reduced search-space is not contained in and
does not contain the other search-spaces. The sizes of the sets are a bit misleading
in the figure; for many rescheduling problems the search-spaces of complete and
reduced rescheduling will be much larger than the other search-spaces.

5.3.6 The first rescheduling experiments

A set of experiments was conducted on the 10 problems of section 5.3.3. Each
experiment consisted of a run of the scheduling GA to create a preschedule, the
simulation of a breakdown and rescheduling using each of the five rescheduling
methods. For every experiment the makespan of the preschedule and the make-
span of the new schedules were recorded, as was the overlap between the new
schedule and the preschedule. Scheduling was done using either the semi-active
or active version of the Cmax-GA (labelled “semi-active” and “active” experi-
ments) or the RCmax

-GA (labelled “robust” experiments). In the following, the
averages were taken over 400 runs of each algorithm.

Makespan results

The average makespans for each combination of problem, scheduling algorithm
and rescheduling method can be seen in table 5.3. There is a subtable for ev-
ery problem instance, and each subtable has three rows, reporting results for the
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la01
method P 1 2 3 4 5
semiactive 666.0 719.7 712.2 709.2 704.2 702.6
active 666.0 721.6 714.7 711.1 706.0 704.4
robust 666.0 707.3 701.7 700.9 699.8 699.1
la02
method P 1 2 3 4 5
semiactive 655.1 716.8 711.3 708.6 700.6 698.0
active 655.2 717.5 713.1 710.9 702.2 699.5
robust 656.0 713.9 710.3 710.1 701.8 699.7

la06
method P 1 2 3 4 5
semiactive 926.0 978.5 971.3 966.3 962.5 962.3
active 926.0 966.8 959.3 954.5 951.5 951.3
robust 926.0 946.1 945.3 945.3 945.1 945.1
la07
method P 1 2 3 4 5
semiactive 890.0 946.3 941.2 936.3 931.3 930.0
active 890.0 940.0 933.4 928.5 923.0 921.8
robust 890.0 920.5 918.0 917.2 916.3 916.1
la26
method P 1 2 3 4 5
semiactive 1221.2 1282.7 1277.0 1272.1 1258.5 1255.8
active 1221.4 1280.4 1275.2 1270.4 1257.5 1254.9
robust 1219.2 1271.1 1266.8 1264.0 1255.1 1252.2
la27
method P 1 2 3 4 5
semiactive 1276.8 1338.8 1333.3 1329.5 1311.7 1308.8
active 1276.5 1337.3 1331.8 1326.9 1309.6 1307.5
robust 1272.2 1323.0 1318.5 1314.9 1301.5 1298.3
la31
method P 1 2 3 4 5
semiactive 1784.0 1833.3 1824.6 1815.7 1805.5 1804.8
active 1784.0 1823.7 1815.3 1806.6 1799.2 1798.8
robust 1784.0 1795.6 1793.9 1793.3 1792.8 1792.7

Table 5.3: Part 1: Makespan results from the first rescheduling experiments. Typ-
ically, the standard deviations of the observations (an observation is the makespan
after a single run of the algorithm) are in the range 25-35, while standard devia-
tions on the averages are between 1 and 2.
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la36
method P 1 2 3 4 5
semiactive 1297.3 1347.8 1340.0 1336.4 1328.7 1325.4
active 1296.6 1346.0 1338.6 1334.9 1326.4 1323.4
robust 1299.6 1340.1 1335.1 1333.5 1328.6 1325.9

ft10
method P 1 2 3 4 5
semiactive 948.5 1013.1 1007.5 1004.3 992.9 991.2
active 947.5 1011.8 1006.1 1002.7 991.8 989.4
robust 950.6 1007.8 1002.2 1001.1 992.8 989.9

ft20
method P 1 2 3 4 5
semiactive 1196.9 1265.6 1261.8 1257.2 1236.3 1234.2
active 1198.0 1267.1 1262.8 1258.3 1239.1 1236.5
robust 1188.7 1249.1 1243.9 1239.5 1228.0 1226.4

Table 5.3: Part 2: Makespan results from the first rescheduling experi-
ments.Typically, the standard deviations of the observations (an observation is
the makespan after a single run of the algorithm) are in the range 25-35, while
standard deviations on the averages are between 1 and 2.

semi-active, active, and robust runs respectively. Every subtable has six columns.
The column labelled “P” reports the average preschedule makespan in the exper-
iments. The columns labelled “1”-”5” report the average makespan of the sched-
ules after a breakdown and rescheduling using the rescheduling method indicated
by the column, see section 5.3.5. Recall that the methods are labelled according to
their computational effort; rescheduling method “1” (right-shifting) has the low-
est computational effort, method “5” (complete rescheduling) has the highest. In
every column the best performance (lowest number) has been printed in bold.

As can be seen, in many cases the schedules labelled “robust” clearly out-
perform the other schedules. For seven out of the ten problems, the best perfor-
mance for all of the rescheduling methods as well as the preschedule makespan
is found by the RCmax

-GA. In some of these cases the performance difference is
quite large. For the problems la06, la07 and la31 the average makespan is
decreased by 19 or more for right-shifting rescheduling when using the RCmax

-
minimised schedules instead of the ordinary schedules. For the same problems
the rescheduling method expected to have the worst performance (right-shifting)
for RCmax

-minimised schedules outperforms the rescheduling method expected to
have the best performance (complete rescheduling) for Cmax-minimised sched-
ules.
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Going through the table column by column, we see that for right-shifting re-
scheduling (1) and N1-based rescheduling (2), the RCmax

-minimised schedules are
superior to the other schedules in all cases. This means that for all the ten prob-
lems the robustness and flexibility with respect to N1-rescheduling is improved by
using these schedules. Considering hillclimbing rescheduling (3), reduced resche-
duling (4), and complete rescheduling (5), the RCmax

-minimised schedules are
outperformed by active or semi-active scheduling for the problems la02, la36,
and ft10. In all the cases the performance difference is small and could be due
to random variations. For the other problems, the RCmax

-minimised schedules
outperform the ordinary schedules. It seems that the more sophisticated the re-
scheduling method, the smaller the difference between the performance of RCmax

-
minimised schedules and the ordinary schedules.

Comparing the performance of semi-active and active schedules, it is evident
that for some problems (la06, la07 and la31) active schedules perform much
better than semi-active schedules. For the other problems, the performance seems
to be on the same level; in some cases active schedules are slightly better than
semi-active ones, in other cases it is the other way around. Judging from the
experiments of table 5.3, active schedules are preferable to semi-active schedules.

Comparing the rescheduling methods to each other, the expectations from
section 5.3.5 are confirmed. Generally right-shifting is the poorest rescheduling
method, followed by N1-based rescheduling. Hillclimbing rescheduling performs
better than these two methods, while being outperformed by reduced and complete
rescheduling. Complete rescheduling can be seen to have the best performance in
all cases.

Since the distributions of makespans are not known, it is difficult to do statis-
tical comparisons of the numbers in table 5.3. Empirical distribution functions for
the makespans after rescheduling were plotted for the ten problems. A minority
of these were found to resemble Gaussian distributions, but most of them do not
look like any known distributions, so no classical statistical tests were performed.

Instead of doing statistical testing, the performances of the algorithms can be
compared by comparing the distribution functions for each of the experiments. In
figures 5.6 and 5.7, empirical distribution functions for makespan after reschedu-
ling have been plotted for the la06 and la26 problems for each of the resche-
duling methods. Each plot has three distribution functions, one for semi-active,
one for active, and one for robust schedules. The number of experiments needed
to reach an acceptable level of uncertainty was much higher than the experiments
used to construct table 5.3; the plots are the result of 2800 runs of each algorithm.

Since the plots are distribution functions, they can be used to read the proba-
bility of ending up with a makespan lower than a given value for a rescheduling
method and schedule type. For example for the la06, right-shifting reschedu-
ling and active schedules, the probability of ending up with a makespan of 970 or
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Figure 5.6: Part 1: Observed distribution functions for makespan after rescheduling for the la06 problem. The error bars
on the plots are 95% confidence intervals on the percentiles.
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Figure 5.6: Part 2: Observed distribution functions for makespan after resche-
duling for the la06 problem. The error bars on the plots are 95% confidence
intervals on the percentiles.
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Figure 5.7: Part 1: Observed distribution functions for makespan after resche-
duling for the la26 problem. The error bars on the plots are 95% confidence
intervals on the percentiles.
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Figure 5.7: Part 2: Observed distribution functions for makespan after rescheduling for the la26 problem. The error bars
on the plots are 95% confidence intervals on the percentiles.
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less can be seen to be 50%. On all the plots, the graphs for robust schedules are
located above and to the left of the graphs for semi-active and active schedules,
indicating that for these schedules, there is a higher probability of ending up with
a low makespan schedule after rescheduling. The error bars on the plots indicate
95% confidence intervals on the percentiles (how these are calculated is explained
in appendix E), so for both problems, they indicate that the difference between
RCmax

-minimised schedules and Cmax-minimised schedules is statistically signif-
icant for all rescheduling methods. From the plots it is also evident that in some
cases the use of RCmax

-minimised schedules decreases the probability of ending
up with a very high makespan schedule considerably. Consider the la06 problem
with hillclimbing rescheduling. For RCmax

-minimised schedules, approximately
75% of the schedules end up with a makespan of 945 or less. For active schedules,
75% of the schedules end up with a makespan of 991 or less.

All the plots for the la06 problem have a sharp increase at the 80% per-
centile, because breakdowns happening on one of the machines (one fifth of the
breakdowns) cannot be countered in any way. The machine is critical during the
entire period of processing so breakdowns happening at this machine will always
increase the makespan by the breakdown duration.

Plots similar to the ones of figures 5.6 and 5.7 were also made for the problems
la01, la02, la07, la27, la31, la36, ft10 and ft20. They were quali-
tatively equivalent to the plots for the la06 and la26 problems, except la02,
la36 and ft10 for hillclimbing, reduced and complete rescheduling, where no
significant differences between the three scheduling methods were found.

From these experiments can be concluded that for this kind of breakdown, if
makespan is to be kept minimal after rescheduling (regardless of the rescheduling
method) RCmax

-minimised schedules are preferable to Cmax-minimised sched-
ules. In a majority of the experiments of this section, RCmax

-minimised schedules
outperformed the other schedules, and while a few cases were found in which
Cmax-minimised schedules were slightly better than RCmax

-minimised schedules,
these differences did not turn out to be statistically significant.

Overlap results

As argued in section 4.6, it is sometimes desirable for new schedules to be as sim-
ilar to the preschedule as possible. The similarity between the preschedule and
the new schedule can be measured using the overlap measure defined in section
4.6. The average schedule overlaps between the part of the preschedule not im-
plemented and the new schedule can be seen in table 5.4. The table has been
arranged in the same way as table 5.3. The reader is reminded that the reschedu-
ling algorithms do not consider the overlap in any explicit way; they simply min-
imise makespan (or the robustness measure, depending on the algorithm). Thus,
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la01
method 1 2 3 4 5
semiactive 0.593 0.642 0.632 0.617 0.465
active 0.562 0.611 0.600 0.594 0.464
robust 0.623 0.649 0.625 0.630 0.562
la02
method 1 2 3 4 5
semiactive 0.519 0.568 0.560 0.590 0.479
active 0.490 0.538 0.523 0.572 0.477
robust 0.525 0.565 0.547 0.609 0.536
la06
method 1 2 3 4 5
semiactive 0.602 0.661 0.654 0.547 0.328
active 0.609 0.667 0.653 0.553 0.331
robust 0.640 0.691 0.646 0.600 0.385
la07
method 1 2 3 4 5
semiactive 0.551 0.606 0.597 0.551 0.320
active 0.567 0.619 0.614 0.569 0.358
robust 0.612 0.652 0.631 0.597 0.427
la26
method 1 2 3 4 5
semiactive 0.588 0.634 0.635 0.606 0.419
active 0.607 0.657 0.650 0.624 0.423
robust 0.636 0.677 0.670 0.657 0.511
la27
method 1 2 3 4 5
semiactive 0.590 0.637 0.635 0.614 0.439
active 0.586 0.637 0.652 0.615 0.435
robust 0.624 0.666 0.666 0.641 0.491
la31
method 1 2 3 4 5
semiactive 0.658 0.718 0.747 0.517 0.278
active 0.640 0.693 0.721 0.510 0.278
robust 0.715 0.762 0.728 0.565 0.346

Table 5.4: Part 1: Overlap results from the first rescheduling experiments.
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la36
method 1 2 3 4 5
semiactive 0.632 0.691 0.700 0.680 0.571
active 0.624 0.677 0.688 0.687 0.593
robust 0.666 0.713 0.711 0.696 0.621
ft10
method 1 2 3 4 5
semiactive 0.477 0.518 0.516 0.587 0.504
active 0.478 0.525 0.523 0.592 0.513
robust 0.500 0.543 0.538 0.602 0.546
ft20
method 1 2 3 4 5
semiactive 0.445 0.493 0.481 0.476 0.268
active 0.439 0.489 0.474 0.474 0.271
robust 0.499 0.548 0.535 0.511 0.326

Table 5.4: Part 2: Overlap results from the first rescheduling experiments.

if one kind of schedule on average ends up having a higher preschedule overlap
than another kind of schedule, the reason is to be found in the search-spaces of
the rescheduling problems.

The results in the table indicate that for most problems the overlap is larger for
the RCmax

-minimised schedules than for the ordinary schedules. For all ten prob-
lems in the table this is always the case for right-shifting, reduced and complete
rescheduling, while it does not hold in one case for N1-based rescheduling and in
four cases for hillclimbing rescheduling. In some cases the differences between
the overlaps are very small and may be insignificant, while in other cases they
are substantial. On average the difference is largest for complete rescheduling,
where the average overlap for the RCmax

-minimised schedules is 0.478, while for
semi-active and active schedules it is 0.406 and 0.412 respectively.

Since the distribution of overlaps after rescheduling is unknown, no statistical
testing has been performed to compare the overlap measures. Instead, empiri-
cal distribution functions have been drawn in the same ways as they were for the
makespan results. The plots for the la06 and la26 problems are displayed in
figures 5.8 and 5.9. For the la06 problem the confidence intervals (see appendix
E for an explanation of these) on the graph clearly demonstrate that the differ-
ence between Cmax- and RCmax

-minimised schedules is statistically significant
for right-shifting, N1-based, reduced and complete rescheduling. For these plots,
the graphs for RCmax

-minimised schedules are located to the right and below of
the other graphs, indicating a higher probability for a high overlap. No significant
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difference can be observed for hillclimbing rescheduling for la06. The graphs of
la26 show that for this problem there is a statistically significant difference for
all rescheduling methods.

Plots similar to the ones of figures 5.8 and 5.9 were drawn for the other eight
problems. They showed that for all of the problems, the differences in overlap
were significant for right-shifting and complete rescheduling. In all these cases,
the difference was in favour of the RCmax

-minimised schedules. For N1-based
rescheduling, the plots showed a significant difference for seven of the problems,
while for the remaining three there was no difference. For hillclimbing reschedu-
ling for three problems, there was a significant difference, and for reduced resche-
duling for seven problems. In all cases where a significant difference was found,
the difference was in favour of the RCmax

-minimised schedules, showing them to
have a higher overlap to the preschedule than the Cmax-minimised schedules.

All in all the overlap results on these ten problems indicate, that if overlap is
to be high after rescheduling, the RCmax

-minimised schedules are preferable to
Cmax-minimised schedules. In all the cases where a significant difference was
found in the plots (37 cases all in all), it was in favour of the RCmax

-minimised
schedules, while some cases were also identified (13, all found for N1-based, hill-
climbing and reduced rescheduling) in which there was no significant difference
between the overlaps for RCmax

and Cmax-minimised schedules. This indicates
that in terms of overlap, for some problems there is something to gain by using
RCmax

-minimised schedules, while nothing ever seems to be lost.

5.3.7 Correlation study

The correlation between the robustness measure (RCmax
) and makespan after re-

scheduling was investigated for the problems la06, la26 and ft10. This was
done in order to further investigate the connection between low robustness mea-
sures and low after-rescheduling-makespan found in previous sections. The corre-
lations study was done by creating 150 schedules for each problem, 50 minimis-
ing RCmax

, 50 minimising Cmax using the active GA, and 50 minimising Cmax

using the semi-active GA. For every schedule, all the breakdowns possible al-
lowed by the definition of section 5.3.4 were generated (i.e. one breakdown per
operation), and rescheduling was carried out using the five rescheduling methods.
After rescheduling, the makespan and preschedule overlap of the new schedule
were recorded, and averages calculated. For the deterministic rescheduling meth-
ods (right-shifting, N1-based and hillclimbing) the averages found in this way are
accurate, while for the stochastic rescheduling methods (reduced and complete)
some uncertainty is present.

The results for right-shifting rescheduling and the la26 and ft10 problems
have been plotted in figure 5.10. In the top left diagram, the average after re-
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Figure 5.8: Observed distribution functions for preschedule overlap after rescheduling for the la06 problem. The error bars
on the plots are 95% confidence intervals on the percentiles.
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Figure 5.8: Part 2: Observed distribution functions for preschedule overlap after
rescheduling for the la06 problem. The error bars on the plots are 95% confi-
dence intervals on the percentiles.
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Figure 5.9: Part 1: Observed distribution functions for preschedule overlap after
rescheduling for the la26 problem. The error bars on the plots are 95% confi-
dence intervals on the percentiles.
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Figure 5.9: Part 2: Observed distribution functions for preschedule overlap after rescheduling for the la26 problem. The
error bars on the plots are 95% confidence intervals on the percentiles.
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Figure 5.10: 1 and 2: Observed average makespan after breakdown and rescheduling as a function of preschedule RCmax
for

la26 (1) and ft10 (2) and right-shifting rescheduling. 3 and 4: Same as a function of preschedule makespan.
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Figure 5.11: 1 and 2: Observed average makespan after breakdown and rescheduling as a function of preschedule RCmax
for

la26 (1) and ft10 (2) and complete rescheduling. 3 and 4: Same as a function of preschedule makespan.
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scheduling performance has been plotted as a function of preschedule robustness
measure for the la26 problem. The points indicate an almost linear relationship;
a low robustness measure on average means a low after rescheduling makespan,
while a high robustness measure means a high after rescheduling makespan. The
corresponding plot for the ft10 problem (top right) is qualitatively equivalent.

The two plots in the top row of the figure can be compared to the plots in the
bottom row, in which the after rescheduling performance has been plotted as a
function of preschedule makespan, for the same sets of experiments on la26 and
ft10. These plots also show some correlation, but it is evident that while low
robustness measure is almost a guarantee of a low after rescheduling makespan,
the same can not be said about low makespan schedules; in many cases a low
preschedule makespan can be seen to lead to a high after rescheduling makespan.

The plots for N1-based and hillclimbing rescheduling were qualitatively the
same as the plots for right-shifting, although for hillclimbing rescheduling the
linear relationships between the robustness measure and after rescheduling make-
span was not as clear cut as for right-shifting.

The results for complete rescheduling and the la26 and ft10 problems can
be seen in figure 5.11. For the la26, problem there is a clear correlation between
low robustness measures and low after rescheduling makespans. The relationship
seems to be more or less linear for schedules found in the semiactive and active
Cmax-GAs, while the points found by the RCmax

-GA form a cluster of their own
in the plot, most of them being far to the left, without being any lower (better after
rescheduling performance) than the best schedules found by the Cmax-GAs. This
indicates that for this kind of rescheduling using only the robustness measure to
predict after rescheduling performance is too simplistic. This statement is even
more true for the plot for ft10 at the top right of figure 5.11. Again, a corre-
lation between the robustness measure and the after rescheduling performance is
evident, but the points corresponding to schedules found by minimising RCmax

are generally located above the points found by minimising Cmax. For this par-
ticular combination of problem and rescheduling method, the schedules found by
minimising RCmax

perform worse than the Cmax-minimised schedules, see table
5.3. The plots at the bottom row of figure 5.11 show after rescheduling make-
span as a function of before breakdown makespan for the same experiments. The
plots suggest that for this kind of rescheduling, the after rescheduling performance
correlates almost as strongly to the preschedule performance as to the robustness
measure. However, from the results of table 5.3, the after rescheduling perfor-
mance should still be expected to correlate more to the robustness measure than
to the preschedule makespan.

The plots for reduced rescheduling were found to be equivalent to the plots for
complete rescheduling.
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5.3.8 Reusing the population in rescheduling

Since the problem we are solving when facing a rescheduling problem is often
quite similar to the original scheduling problem, a straight-forward idea is to reuse
the population from the last generation of scheduling (in the following termed the
reused population) as the initial population for rescheduling when using complete
or reduced rescheduling. The idea behind this would be to decrease the number of
generations necessary to achieve a given solution quality, thus decreasing the time
required for rescheduling, and to increase the similarity between the preschedule
and the rescheduled schedule. Similar approaches were used recently in [16, 21,
73] for stochastic dynamic job shop problems solved on a rolling time horizon
basis.

Since the population in the late stages of a GA can sometimes degenerate (very
low genetic diversity), it may be a good idea to mutate some of the individuals
in the reused population before starting the rescheduling GA. In order to find a
suitable level of mutation, a set of experiments were conducted in which each
individual was mutated using position based mutation with a probability of 0.0,
0.2, 0.4, 0.6, 0.8 and 1.0. The experiment was done on the la26 problem, using
100 generations for scheduling and 100 generations for rescheduling. The robust
searching scheme was used. The mutation rate was found only to have a small
impact on the makespan after rescheduling, and almost no impact on similarity.
Since makespan performance was slightly superior for values 0.4 and 0.6, the
value 0.4 was used for the rest of the experiments.

The effect of reusing the population in the RCmax
-GA can be studied for the

la26 and ft10 problems in figure 5.12. In the two plots at the top of the fig-
ure, the average makespan after rescheduling has been plotted as a function of the
number of generations in the complete rescheduling algorithm with reuse of the
population and without reuse. The two plots at the bottom of the figure are equiv-
alent to the plots at the top, except the bottom plots show the average preschedule
overlap after rescheduling. The averages in the plots have been calculated based
on 2500 runs of each algorithm. The error-bars on the plots are 95% confidence
intervals on the averages2. Considering makespan performance it is clear from the
plot that if only little time (fewer than approximately 3500 fitness evaluations for
these problems) is available to do the rescheduling, makespan performance can
be improved by reusing the population. If many fitness evaluations are available
for rescheduling, no performance gain is present. In fact, the plots of figure 5.12
suggest that for a large number of generations, the makespan performance can be
slightly worse when reusing the population. However, comparing the empirical

2The intervals have been created assuming the individual observations to be normally dis-
tributed. In fact the distribution functions are unknown, so the confidence intervals should be
taken as no more than guidelines on the uncertainty of the averages.
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Figure 5.12: Observed averages for makespan after rescheduling (top row), and for preschedule overlap with and without
reuse of the population (bottom row). The plots were made for complete rescheduling of the la26 and ft10 problems.
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distribution functions for makespans after 10000 generations using the same kind
of plots used in figure 5.6 revealed no statistically significant difference for any of
the problems.

Considering overlap performance it is clear from the plots that reusing the
population significantly increases overlap in all the experiments. Using empirical
distribution function plots, the preschedule overlaps after 10000 generations of
the reusing and non-reusing algorithms were compared for both problems. In
both cases the difference turned out to be statistically significant. It is interesting
that when not reusing the population, the overlap performance starts off very low
and then increases, while when reusing the population the overlap starts off quite
high and stays at more or less the same level, regardless of the number of fitness
evaluations. This difference in behaviour probably corresponds to the solution
of the non-reusing GA in the early stages of the run being more or less random,
not having much similarity with the preschedule, later the overlap increases to a
certain point, indicating that the GA settles on a peak having some similarity with
the preschedule. On the other hand, the reusing GA starts with a solution very
close to the preschedule. The constant level of preschedule overlap indicates that
the algorithm stays close to this solution, even for a large number of generations.

The overlap to preschedule increase caused by reusing the population was
also observed in experiments on the problems la01, la02, la06, la07, la26,
la27, la31, la36 and ft20.

Since the experiments clearly showed that reusing the population increases the
similarity to the preschedule, while no significant drop in makespan performance
was found, it was decided to reuse the population in rescheduling for the rest of
the experiments.

5.3.9 The effect of the breakdown duration

The effect of the breakdown duration has been investigated for the la06, la26,
ft10 and ft20 problems by varying the duration over nine values in the range
0 to 180 time units, and for each combination of scheduling and rescheduling
method noting the makespan average after rescheduling. The results for the la06
problem have been visualised in figure 5.13. The plots are qualitatively equivalent
for all the rescheduling methods. For breakdown durations longer than 40 the
RCmax

-minimised schedules clearly outperform the Cmax-minimised schedules.
The difference in makespan average between the two kinds of schedules increases
with the duration until a duration of around 140, from where the difference appears
to be constant. For breakdown durations of 0 or 20, there does not seem to be any
difference between the two kinds of schedules.

The results for the ft20 and la26 were of a similar nature, except that for
these problems there was also a clear performance difference in favour of the
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Figure 5.13: Part 1: The effect of the breakdown duration on average makespan after rescheduling for the la06 problem.
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Figure 5.13: Part 2:The effect of the breakdown duration on average makespan
after rescheduling for the la06 problem.

RCmax
-minimised schedules for breakdown durations of 20. This was the case for

all the rescheduling methods. For ft10, there was a small improvement from
using the RCmax

-minimised schedules for right-shifting and N1-based reschedu-
ling for all breakdown durations. For hillclimbing rescheduling, the RCmax

- and
Cmax-minimised schedules performed equally well. For reduced and complete
rescheduling, the two kinds of schedules seem to perform on the same level for
breakdown durations in the range 20-80, while for longer durations the Cmax-
minimised schedules were slightly superior.

For three of the four problems studied, there was a performance improvement
from using the RCmax

-minimised schedules regardless of the breakdown duration
and rescheduling method (except for the la06 problem breakdown duration 20,
where the two methods performed equally well). For the fourth problem there was
a small loss in rescheduling performance for some combinations of breakdown du-
ration and rescheduling method. The performance of the RCmax

-minimised sched-
ules when compared to Cmax-minimised schedules is highly dependent on the
problem instance, the breakdown duration and the rescheduling methods. How-
ever, since the performance gains found are substantial, and since for the problems
studied they are much more frequent than the performance losses, this study in-
dicates that in many cases there is a lot to gain from using the RCmax

-minimised
schedules, while in a few cases there is a little to lose.

5.3.10 Comparing to slack based robustness

Since the neighbourhood based robustness approach deals with a problem closely
related to the problem studied by Leon et al. in [72] (see section 4.7.2), it is natural
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Problem size Cmax-GA RCmax
-GA RCmax,est-GA Zr-GA

ft10 10×10 3.2 19.1 6.6 3.6
ft20 20×5 5.2 25.1 10.7 5.9
la01 10×5 1.4 5.7 1.6 1.4
la02 10×5 1.6 6.3 2.3 1.6
la06 15×5 2.3 10.8 3.2 2.4
la07 15×5 2.5 12.0 4.1 2.7
la26 20×10 11.9 91.3 27.2 13.8
la27 20×10 11.7 92.6 27.4 14.5
la31 30×10 22.8 212.8 49.5 34.7
la36 15×15 10.2 79.7 22.7 11.3

Table 5.5: CPU-time used in seconds on running the Cmax-GA or the RCmax
-GA

on some of the problems.

to compare the achievements of the two methods. Recall that [72] describes a
robustness measure Zr(s) based on the slack of the schedules to improve average
makespan after a number of breakdowns. The two methods were not developed to
cope with exactly the same problem, since Leon et al. studies schedules facing a
series of preemptive breakdowns, while the experiments described in this chapter
are on schedules facing one non-preemptive breakdown. Furthermore, Leon et al.
use only right-shifting rescheduling, for which the Zr(s) robustness measure is
specifically designed. However, as it is not inconceivable that increasing the slack
in schedules can also be beneficial for more sophisticated rescheduling techniques,
Zr(s)-minimised schedules are subject to all five kinds of rescheduling in the
experiments presented here.

In the next section, the methods will be compared using the same kind of
breakdowns used earlier in this chapter, with a breakdown duration of 80.

The genetic algorithm described in section 3.2.2 was modified to minimise the
Zr=1(s) robustness measure by simply changing the objective function to Zr=1(s).
No other part of the algorithm was modified. In the following this algorithm will
be called the Zr-GA.

5.3.11 Using the robustness estimate in fitness evaluation

The exact evaluation of RCmax
in the fitness evaluation of the RCmax

-GA is very
time consuming. This is because all the N1-neighbours of every schedule need
to be created. For this reason, runs of the RCmax

-GA are much slower than runs
of the Cmax-GA. The running times of the two algorithms can be seen in the first
two columns of table 5.5 for the ten problems. Instead of evaluating the exact
value of RCmax

, it is possible to use RCmax,est in the fitness evaluation. RCmax,est
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is calculated by the RCmax
-hillclimber used after decoding, and for the reasons

explained in section 5.3.2, we expect RCmax,est to be a good estimate of RCmax
.

The running time of a variant of the GA using RCmax,est in the fitness evaluation
can be seen in the third column of table 5.5. It is evident that the RCmax,est-
GA is much faster than the RCmax

-GA; for the larger problems the running time
is typically decreased by 50% to 75%. The RCmax,est-GA is still significantly
slower than the Cmax-GA. The reason for the long running times of the RCmax

-
and RCmax,est-GAs is the evaluation of makespan of a large number of schedules in
N1(s) for every fitness evaluation. The exact number of neighbours of a schedule
depends on the schedule as well as the problem, but as a rule of thumb, the number
of neighbours of a schedule is approximately 9 times the number of operations.
This means that for a 10 × 10 problem, approximately 90 schedules need to be
evaluated in every fitness evaluation.

Comparing the running time of the Zr-GA to the other GAs, it turns out to be
quite fast. It is almost as fast as the Cmax-GA on most problems, and sometimes
requires only half the CPU-time of the RCmax,est-GA on a given problem. The
running time difference between the Zr-GA and the RCmax,est-GA comes from
the use of the RCmax

-hillclimber in the RCmax,est-GA; it is significantly slower
than the Cmax-hillclimber. The algorithms were implemented in C and ran on a
250 Mhz SGI O2 computer.

Turning to the quality of the solutions found by the RCmax,est-GA compared to
the solutions found by the RCmax

-GA, experiments on the ten problems indicated
that the RCmax

values found by the RCmax,est-GA were slightly higher than the
values found by the RCmax

-GA, see table 5.6.
The experiments with the RCmax,est-GA indicate that substantial amounts of

CPU-time can be saved by using RCmax,est in the fitness evaluation of the GA
instead of calculating the exact value of RCmax

. This comes at a small cost in
solution quality. It may be possible to create an algorithm combining the speed
of the RCmax,est-GA with the precision of the RCmax

-GA by using RCmax,est for
fitness evaluation in the early stages of the algorithm and calculating the exact
value of RCmax

in the later stages. This idea is akin to the algorithms presented in
[20, 65] and will not be pursued further in this thesis.

In order to further quantify the difference between schedules produced by min-
imising RCmax

and RCmax,est, both algorithms will be used in the experiments later
in the thesis.

5.3.12 Experiments on more problems

For each of the problems la01-40, swv01-10 and ta01-40, a series of ex-
periments were made. For each problem 400 schedules were created using each
of the following algorithms:
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problem RCmax
-GA RCmax,est-GA

best mean best mean
la01 674.4 674.5 675.6 676.0
la02 682.7 684.5 683.3 687.8
la06 926.0 926.0 926.0 926.1
la07 890.9 892.6 891.2 893.3
la26 1231.7 1240.4 1231.9 1241.3
la27 1282.6 1296.2 1281.3 1297.1
la31 1784.1 1784.7 1784.2 1785.2
la36 1327.8 1342.9 1331.1 1349.4
ft10 987.2 998.6 988.0 999.8
ft20 1184.7 1203.4 1181.3 1203.2

Table 5.6: The robustness measures of the solutions found in runs of the RCmax

and RCmax,est-GAs. Averages of 400 runs.

• The active Cmax-GA - ordinary scheduling. In the following schedules pro-
duced by this algorithm will be called ’active’ or Cmax-minimised.

• The RCmax
-GA - scheduling based on the neighbourhood based robustness

measure. Schedules produced by this algorithm will be called ’robust’ or
RCmax

-minimised.

• The RCmax,est-GA - scheduling based on the estimate of the neighbourhood
based robustness measure. Schedules produced by this algorithm will be
called ’fast robust’ or RCmax,est-minimised.

• The Zr(s)-GA - scheduling with the slack-based robustness measure. Sche-
dules produced by this algorithm will be called ’slack based’ or Zr-mini-
mised.

Each schedule was subjected to a random breakdown of the kind described in
section 5.3.4 with duration 80, and rescheduled using each of the five rescheduling
methods. For each problem, each of the above algorithms were run 400 times and
average makespan performances and average overlaps to the preschedule were
calculated. The makespan results are reported for each problem in appendix G.

In the following tables, average performances are presented for groups of
problems. The problem groups have been formed from problems from the same
test-suite having the same size. Thus, the problems la01-40 have been split into
eight groups of five problems, the swv01-10 problems have been split into two
groups of five problems, and the ta01-40 problems have been split into four
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groups of ten problems. The problems ft10 and ft20 have not been used in
this study, since they would each constitute a group of just one problem.

In the table, there is a subtable for every problem group. Every subtable has
four rows of entries, one for each scheduling algorithm. The row has been labelled
“active” for the Cmax-GA, “slack” for the Zr-GA, “fast robust” for the RCmax,est-
GA and “robust” for the RCmax

-GA. The columns labelled by a number represents
a rescheduling method, the numbers are equal to the numbers they were given in
section 5.3.5. The column labelled ’P’ represents preschedule makespan before
the breakdown.

In the tables, for every combination of problem group and rescheduling me-
thod (i.e. in every column), the lowest average has been printed in bold.

la01-la05, size: 10 × 5
method P 1 2 3 4 5
active 620.41 677.76 672.80 670.11 665.22 663.94
slack 624.81 667.64 665.74 664.77 662.15 661.12
fast robust 621.47 669.18 665.42 664.56 662.14 660.99
robust 621.37 669.43 666.36 665.67 663.22 661.98

la06-la10, size: 15 × 5
method P 1 2 3 4 5
active 917.60 964.50 958.11 954.03 949.78 949.36
slack 917.60 941.38 940.68 940.25 939.77 939.70
fast robust 917.60 941.45 940.03 939.62 938.94 938.82
robust 917.60 942.14 940.62 940.09 939.45 939.36

la11-la15, size: 20 × 5
method P 1 2 3 4 5
active 1182.00 1225.95 1220.25 1215.48 1212.28 1211.97
slack 1182.00 1206.45 1205.92 1205.77 1205.42 1205.35
fast robust 1182.00 1206.64 1205.55 1205.16 1204.90 1204.89
robust 1182.00 1208.77 1207.54 1207.08 1206.83 1206.81

la16-la20, size: 10 × 10
method P 1 2 3 4 5
active 867.49 922.83 916.04 913.28 902.99 900.28
slack 876.83 917.61 913.63 912.16 907.25 906.37
fast robust 873.44 919.40 914.76 912.91 906.23 904.25
robust 874.13 919.43 915.36 914.17 907.41 905.40
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la21-la25, size: 15 × 10
method P 1 2 3 4 5
active 996.08 1052.83 1046.52 1042.26 1029.83 1026.73
slack 998.33 1044.06 1039.73 1037.57 1031.13 1028.84
fast robust 996.43 1044.54 1039.44 1037.00 1028.67 1026.24
robust 996.69 1044.63 1039.76 1037.58 1029.27 1027.15

la26-la30, size: 20 × 10
method P 1 2 3 4 5
active 1265.55 1322.17 1315.49 1310.37 1295.72 1292.41
slack 1268.24 1311.41 1307.84 1305.33 1295.97 1293.94
fast robust 1261.70 1308.23 1303.18 1299.85 1289.97 1287.62
robust 1261.88 1309.40 1304.80 1301.71 1291.42 1289.15

la31-la35, size: 30 × 10
method P 1 2 3 4 5
active 1792.40 1834.81 1826.68 1819.23 1811.94 1811.56
slack 1792.65 1811.19 1809.37 1808.05 1806.65 1806.49
fast robust 1792.40 1809.43 1807.05 1805.60 1804.75 1804.69
robust 1792.40 1810.13 1807.85 1806.61 1805.80 1805.73

la36-la40, size: 15 × 15
method P 1 2 3 4 5
active 1300.49 1351.63 1343.74 1339.19 1325.61 1322.09
slack 1305.94 1345.40 1340.33 1337.59 1329.86 1326.43
fast robust 1300.51 1342.67 1335.71 1332.56 1323.16 1320.50
robust 1301.50 1342.18 1336.75 1334.51 1325.57 1322.53

swv01-swv05, size 20 × 10
method P 1 2 3 4 5
active 1655.73 1712.67 1705.27 1698.56 1671.96 1667.69
slack 1646.56 1695.76 1691.23 1687.61 1665.30 1661.60
fast robust 1628.66 1680.07 1673.58 1668.44 1646.54 1642.41
robust 1632.12 1685.25 1680.04 1675.97 1652.85 1649.25

swv06-swv10, size 20 × 15
method P 1 2 3 4 5
active 1959.61 2014.51 2007.57 2001.02 1968.21 1963.11
slack 1949.19 1997.02 1992.16 1988.26 1961.58 1956.99
fast robust 1929.36 1980.78 1974.27 1969.82 1943.61 1938.99
robust 1932.83 1984.32 1978.22 1973.95 1947.15 1941.96
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ta01-ta10, size: 15 × 15
method P 1 2 3 4 5
active 1268.59 1322.54 1314.81 1310.39 1295.86 1291.74
slack 1272.49 1315.31 1309.88 1306.94 1299.19 1295.90
fast robust 1267.20 1314.07 1307.46 1304.47 1293.99 1290.38
robust 1268.40 1314.41 1308.51 1305.96 1295.77 1292.27

ta11-ta20, size: 20 × 15
method P 1 2 3 4 5
active 1456.74 1508.10 1500.34 1494.61 1475.55 1471.20
slack 1457.31 1497.65 1492.61 1489.02 1477.07 1473.13
fast robust 1443.36 1487.91 1481.54 1477.33 1463.67 1460.14
robust 1445.80 1489.39 1483.55 1480.10 1466.54 1462.88

ta21-ta30, size: 20 × 20
method P 1 2 3 4 5
active 1725.12 1774.07 1764.99 1759.09 1737.38 1732.98
slack 1722.26 1762.43 1756.33 1752.34 1738.16 1733.96
fastrob 1708.36 1751.31 1745.23 1741.55 1726.68 1722.86
robust 1711.56 1754.13 1747.84 1744.03 1728.56 1724.68

ta31-ta40, size: 30 × 15
method P 1 2 3 4 5
active 1970.04 2014.72 2006.51 1998.87 1974.86 1969.55
slack 1962.49 1997.10 1992.53 1988.46 1971.12 1966.39
fastrob 1926.80 1967.05 1961.60 1956.99 1939.54 1935.22
robust 1930.09 1970.41 1965.00 1960.38 1942.80 1938.15

When inspecting the tables, it becomes clear at once that when considering
averages over several problems, the slack-based, robust, and fast robust scheduling
methods generally outperform the ’ordinary’ active schedules when breakdowns
happen. The only exception from this is the 10 × 10 group of the Lawrence
test-suite, where active schedules outperform the other schedules for reduced and
complete rescheduling. There is a tendency that for problems with a high job to
machine ratio (15× 5, 20× 5, 20× 10 and 30× 10), the difference between active
schedules and the other schedules is largest, while for problems with a moderate
job to machine ratio (10×10, 15×10, 15×15) the difference is not so large. This
observation is interesting because in static job shop scheduling it has been found
that problems with a high job to machine ratio are generally easier to solve than
other problems, [62]. The same effect seems to be present in stochastic job shop
scheduling; it is easier to prepare problems with a high job to machine ratio for
future events.
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Inspecting the preschedule performance without breakdowns it is clear that
for some of the problem groups the Cmax-minimised schedules are superior to
the others. This particularly seems to be the case for problems with a low job
to machine ratio. For other problem groups (mostly smallish problems from the
Lawrence suite), all the algorithms manage to find a minimal makespan schedule
every time. In some of the groups (swv01-05, swv06-10, ta11-20, ta21-
30 and ta31-ta40), the preschedule makespans produced by the robust and fast
robust algorithms are significantly lower than for the slack and active algorithms.
This is probably because of the “look-ahead” effect of the robustness measure as
discussed in section 5.3.3.

Comparing the slack-based, robust, and fast robust schedules, generally the
fast robust schedules have the best performance for rescheduling methods 2-5
(the search based methods). For method 1 (right-shifting) the slack-based sched-
ules have the best performance for smaller sized problems (up to 150 operations),
while fast robust or robust schedules are a little better for the larger problems. In
most cases in these experiments, the performance difference between slack-based,
fast robust and robust schedules is quite small, and inspecting the results for in-
dividual problems in appendix G it becomes clear that what algorithm performs
best often depends on the problem instance; the small differences in averages re-
ported in the tables in this section cover a wide range of variation from problem
to problem. Within each problem group, each of the slack-based, fast robust and
robust scheduling methods are often found to be superior to the others on some
of the problems. Thus, despite of the differences in averages reported above it
seems premature to conclude that either of the slack-based, robust or fast robust
scheduling methods are superior to the other in terms of schedule quality after
rescheduling.

The only cases in which any of the three algorithms substantially outperform
each other are the swv01-05, swv06-10, ta11-20, ta21-30 and ta31-
40 groups, where the slack-based method performs significantly worse than the
other two algorithms. However, the cause for this difference may be the better
preschedule makespan of the robust and fast robust schedules. Also, for a number
of the other problems and problem groups the robust and fast robust schedules
outperform the slack-based schedules in terms of preschedule makespan.

Turning to the overlap performance after rescheduling, averages for the prob-
lem groups can be seen in the tables at the end of appendix G. The tables indicate
that for right-shifting rescheduling, the slack-based, robust and fast robust sched-
ules produce higher overlaps than the active schedules. It also seems the slack-
based schedules may produce a marginally higher overlap than the robust and fast
robust schedules. The same statements may hold for N1-based and hillclimbing
rescheduling, although the differences from method to method are very small. For
reduced and complete rescheduling the results found in section 5.3.6 do not al-
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ways hold. In section 5.3.6 the robust schedules were found to never produce a
lower overlap than active schedules in reduced and complete rescheduling. This
is contradicted by the averages in section G, in which for several problem groups
the highest overlap results for reduced and complete rescheduling are produced by
active schedules. Inspecting the individual problems (not listed in the appendix),
it becomes clear that also for the problem groups in which on average the robust
schedules produce the highest overlap there are problem instances for which the
opposite is true. The difference between the experiments used here and in sec-
tion 5.3.6 is that in section 5.3.6 the population was not reused in reduced and
complete rescheduling, while here it is. In section 5.3.8 reusing the population
was found to increase the overlap after rescheduling, and the experimental results
here indicate that the overlap is increased even more for active schedules than for
robust schedules.

The conclusion on the experiments for overlap must be that for right-shifting,
N1-based, and hillclimbing rescheduling the slack-based, robust and fast robust
schedules are better than the active schedules. As for the makespan, it is premature
to make any conclusion when comparing the slack-based, robust and fast-robust
schedules, since the variations from problem to problem are large. Concerning
reduced and complete rescheduling it seems difficult to conclude anything based
on the experiments; there is much variation in the averages from problem group
to problem group, and even more from problem instance to problem instance.

Comparing the five rescheduling methods to each other the expectations from
section 5.3.5 turn out to be right. In terms of schedule makespan after resche-
duling, the methods with higher indexes (larger search-spaces) generally produce
lower makespans. In terms of preschedule overlap, it seems that generally speak-
ing the best rescheduling methods are N1-based rescheduling (2), hillclimbing
rescheduling (3), and reduced rescheduling (4), while right-shifting (1) and com-
plete rescheduling (5) seem inferior in this respect. However, in applications
where similarity to the preschedule is very important, it may make more sense to
use rescheduling methods that explicitly consider preschedule similarity as well
as schedule cost.

5.4 Experiments on maximum tardiness

In this section it is investigated if the neighbourhood based robustness approach
can be used on maximum tardiness problems. The tightness of the scheduling
problems may influence the usefulness of the robustness measures, so this influ-
ence of problem tightness is also investigated.

Section 5.4.1 discusses how to achieve robust and flexible schedules for tar-
diness problems and describes the algorithms used. The results are presented in
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sections 5.4.2-5.4.4.

5.4.1 Algorithms for maximum tardiness

When creating schedules for tardiness problems facing breakdowns, it may be
worthwhile to minimise the lateness of the schedules instead of the tardiness (re-
call that Ti = max(Li, 0), so minimising lateness will always minimise tardiness
too). If Tmax is minimised, the minimisation process will stop once Tmax = 0 is
reached. If Lmax is minimised, Lmax will be minimised even if Lmax < 0. This is
likely to improve dynamic performance of the schedule, since minimising Lmax

beyond Lmax < 0 will add more slack to the schedule. This slack can be thought
of as a “buffer time”; if the schedule has e.g. Lmax < −20, then every part of the
schedule can be delayed by 20 time-units while still achieving the best possible
tardiness performance, Tmax = 0. Note that this approach can only be expected to
improve dynamic performance for loose problems; if no solution exists for which
Lmax < 0, minimising Lmax is equivalent to minimising Tmax.

For this reason three kinds of schedules will be compared in this section:
schedules produced by minimising Tmax, Lmax and RLmax

(s), where

RLmax
(s) =

∑

s′∈N1(s)

1

N1(s)
Lmax(s

′). (5.6)

Note that for the same reasons stated above the robustness measure is based on
Lmax instead of Tmax. It should be relatively straight-forward to define a slack-
based robustness measure like the one defined for makespan in [72] (see section
4.7.2) for maximum tardiness problems, but so far this has not been done.

The program used for makespan problems were modified to minimise the three
performance measures. The implementation was unchanged except for the follow-
ing details:

• Instead of the grid-like population structure (diffusion model), a simple un-
structured population was used. Thus, the behavioural model was aban-
doned as well. The algorithm used a simple unstructured population with
tournament selection, tournament size two. Generational replacement of
the entire population was used. This change was made because in prelim-
inary experiments it was found to outperform the diffusion based GA for
some problems. It was later found that for other problems the diffusion GA
was superior to the simple GA. For hard problems the diffusion GA pro-
duces the better performance, while for easier problems the basic GA more
consistently finds the optimum.

• All new individuals were generated using GOX crossover and mutated using
PBM with a probability of 0.1.
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• Elitism was not used, but the all time best individual was recorded and re-
turned at the end of the run.

• The Cmax- and RCmax
-hillclimbers were modified to work on Lmax and

RLmax
as described in appendix F.

As with the algorithms working on makespan, the result returned by the tar-
diness algorithms were improved by a N1-hillclimber working “on top of” the
decoding hillclimber. The schedules returned by the algorithms minimising Tmax

and Lmax were transformed into active schedules in the way described in section
5.3.3.

5.4.2 Running the experiments

The experiments were carried out on the Lawrence test-suite (la01-40). This
test suite was preferred because it was found to give the most valuable results
for the makespan experiments, since the results were not distorted by superior
makespan performance of the robust schedules, as was the case for some of the
other test-suites. Since the Lawrence test-suite does not have due-dates, these
were added as described in section 3.4.

The experiments were carried out on two versions of the generated problems:
the loose problems (σ = 0.95) and the tight problems (σ = 0.85). For each
problem, 400 preschedules were made using each of the three algorithms, and
rescheduling was done using the five rescheduling methods. For each problem
average performance after rescheduling was calculated for each combination of
scheduling algorithm and rescheduling method. The averages for each problem
are reported in appendix H.

5.4.3 The loose problems σ = 0.95

As in the makespan experiments, the problems were grouped according to size.
The following table is organised in the same way as the table in section 5.3.12. The
algorithm minimising Tmax has been labelled “naive”, the algorithm minimising
Lmax “active” and the algorithm minimising RLmax

“robust”.

la01-la05, size: 10 × 5
method P 1 2 3 4 5
naive 6.00 56.50 51.40 48.49 41.51 40.39
active 6.00 47.48 42.87 40.34 36.00 35.49
robust 6.00 44.52 40.49 39.76 37.21 35.91
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la06-la10, size: 15 × 5
method P 1 2 3 4 5
naive 18.20 66.80 60.45 55.27 44.42 43.96
active 18.20 52.80 48.82 45.96 40.38 40.08
robust 18.28 41.48 39.60 39.48 37.83 37.16
la11-la15, size: 20 × 5
method P 1 2 3 4 5
naive 21.20 76.63 71.38 67.01 53.35 52.95
active 21.20 67.83 63.88 60.08 50.69 50.46
robust 21.30 50.95 47.90 46.63 43.99 43.81
la16-la20, size: 10 × 10
method P 1 2 3 4 5
naive 0.03 44.93 38.65 35.72 27.45 26.26
active 0.03 32.61 28.28 26.07 20.62 19.59
robust 0.04 29.58 25.81 24.73 22.93 21.19

la21-la25, size: 15 × 10
method P 1 2 3 4 5
naive 0.00 36.83 29.71 25.07 13.03 12.47
active 0.00 6.50 5.21 4.52 2.59 2.52
robust 0.00 5.17 4.05 3.71 2.47 2.25
la26-la30, size: 20 × 10
method P 1 2 3 4 5
naive 0.00 35.66 28.17 22.51 9.35 8.98
active 0.00 0.47 0.37 0.33 0.19 0.18
robust 0.00 0.29 0.21 0.21 0.21 0.19

la31-la35, size 30 × 10
method P 1 2 3 4 5
naive 0.00 33.35 26.47 20.72 8.21 8.15
active 0.00 6.05 4.67 3.94 2.42 2.55
robust 0.00 2.17 1.94 1.84 1.38 1.38
la36-la40, size 15 × 15
method P 1 2 3 4 5
naive 0.10 38.16 30.09 25.06 12.27 11.80
active 0.08 10.46 8.15 7.03 4.29 4.13
robust 0.23 9.32 7.51 6.93 5.24 4.87

When inspecting the tables it becomes clear that for all of the loose problems
(σ = 0.95), the standard scheduling method optimising Tmax is outperformed by
the other two methods for all rescheduling methods. From the single problem
averages of appendix H this can be seen to hold not only for the averages over
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problem groups, but for every single problem instance.
Comparing the performance of the neighbourhood based robustness measure

RLmax
to the performance of the simple robustness measure Lmax, it seems that

for the simple rescheduling methods (labelled 1-3), the neighbourhood based ro-
bustness measure generally performs best, although there are a few exceptions,
especially for the problem sizes 10 × 5 and 15 × 15. The performance difference
is largest for the problems with a high job to machine ratio; for problem sizes
15 × 5, 20 × 5, 20 × 10, and 30 × 10 there are substantial differences between
the two methods. Considering the complex rescheduling methods 4 and 5, the
neighbourhood based robustness measure slightly outperforms the Lmax measure
for problem sizes 15 × 5 and 20 × 5, while for the other problems, the Lmax

and RLmax
methods do equally well. With respect to preschedule performance,

the Tmax and Lmax methods seem to do equally well, while the RLmax
method

performs slightly worse than these.

5.4.4 The tight problems σ = 0.85

The following table holds the results for the tight problems.

la01-la05, size 10 × 5
method P 1 2 3 4 5
naive 50.83 111.15 106.54 103.98 99.03 97.94
active 50.79 112.75 108.32 105.61 99.74 98.68
robust 53.63 106.74 102.80 102.02 99.58 98.22

la06-la10, size 15 × 5
method P 1 2 3 4 5
naive 84.84 138.88 133.21 128.88 118.71 118.05
active 84.83 133.12 127.71 124.22 115.91 115.34
robust 85.81 114.73 112.49 112.15 110.56 109.64

la11-la15, size 20 × 5
method P 1 2 3 4 5
naive 129.86 187.55 182.33 177.93 166.30 165.92
active 129.68 185.97 180.87 176.72 165.15 164.77
robust 130.44 169.53 165.80 163.86 160.28 159.80

la16-la20, size 10 × 10
method P 1 2 3 4 5
naive 59.40 113.43 107.11 104.43 97.60 95.72
active 59.40 113.83 108.20 105.38 98.79 97.02
robust 64.78 111.47 106.85 105.02 102.08 99.72
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la21-la25, size 15 × 10
method P 1 2 3 4 5
naive 26.27 80.67 74.25 70.52 59.15 56.90
active 26.18 76.34 70.78 67.14 57.35 55.60
robust 27.43 69.18 65.17 63.41 57.24 55.09

la26-la30, size 20 × 10
method P 1 2 3 4 5
naive 28.77 84.54 77.97 73.19 61.17 59.21
active 28.68 83.69 77.19 72.29 60.17 57.86
robust 28.72 72.64 67.63 65.41 59.39 57.17

la31-la35, size 30 × 10
method P 1 2 3 4 5
naive 103.99 154.09 147.11 140.63 127.07 126.04
active 104.11 153.82 146.32 139.97 126.10 126.05
robust 97.27 129.08 125.80 123.90 116.30 115.82

la36-la40, size 15 × 15
method P 1 2 3 4 5
naive 74.86 126.81 119.39 114.72 103.71 101.92
active 74.79 127.11 119.33 114.55 103.80 102.00
robust 80.49 120.32 115.10 113.16 107.84 105.59

When comparing the Tmax and Lmax methods on the tight problems, there is
still a small performance advantage of the Lmax method in a few cases, but by and
large the two methods perform equally well. The RLmax

method can be seen to
outperform the other methods in most cases for the simple rescheduling methods
1-3. With regard to rescheduling methods 4 and 5, for the problems with a high
job to machine ratio it usually outperforms the other methods, demonstrating an
improved flexibility of the schedules. For problems with a low job to machine
ratio the RLmax

method is outperformed by the other methods in a few cases.

5.5 Experiments on total tardiness

For the total tardiness experiments, the performance measures T∑, L∑ and RL∑

were used. The summed tardiness T∑ is what would be minimised by a stan-
dard algorithm working on a problem like this. Minimising the total lateness L∑

does not necessarily mean minimising T∑, but like in the maximum tardiness ex-
periments it may make sense to minimise lateness rather than tardiness, since it
may increase the schedule slack. The RL∑ measure is the neighbourhood based
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robustness measure defined for summed lateness,

RL∑(s) =
∑

s′∈N1(s)

1

N1(s)
T∑(s′). (5.7)

The algorithms used in the total tardiness experiments were identical to the
ones used on the maximum tardiness experiments, except for the objective func-
tions. Since no suitable hillclimber for rescheduling total tardiness problems was
available, no hillclimbing rescheduling was performed in the experiments.

Experiments were done with algorithms using the active/non-delay schedule
builder of figure 3.9, since this seems more reasonable than using the hillclimbing
decoder minimising maximum lateness used in the maximum tardiness experi-
ments. However, it was found that the algorithm using the hillclimbing decoder
produced better schedules than the algorithm using the active/non-delay decoder,
so the hillclimbing decoder was used in the experiments. This is remarkable, since
the hillclimbing decoder minimises a different (but related) performance measure.

5.5.1 Loose problems σ = 0.95

The results of the total tardiness experiments for individual problems can be found
in appendix I. The total tardiness averages for problem groups are in the following
table. It has been organised like the table of section 5.3.12. The algorithms have
been labelled “naive” for the T∑-GA, “active” for the L∑-GA and “robust” for
the RL∑-GA.

la01-la05, size 10 × 5
method P 1 2 4 5
naive 16.46 200.27 155.62 102.98 98.63
active 16.45 161.92 127.23 88.43 85.15
robust 17.13 148.12 119.48 91.44 87.93
la06-la10, size 15 × 5
method P 1 2 4 5
naive 55.57 250.32 202.63 126.77 124.70
active 55.05 204.79 173.47 122.03 120.23
robust 59.42 160.52 142.69 117.00 115.43
la11-la15, size 20 × 5
method P 1 2 4 5
naive 61.67 340.16 279.36 160.21 157.79
active 61.72 284.55 238.67 151.33 149.25
robust 62.48 217.68 188.45 140.52 140.01
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la16-la20, size 10 × 10
method P 1 2 4 5
naive 0.01 167.32 121.22 54.66 50.38
active 0.01 93.51 71.92 36.03 33.32
robust 1.04 89.94 69.77 44.18 42.10

la21-la25, size 15 × 10
method P 1 2 4 5
naive 0.00 152.94 105.52 23.60 21.35
active 0.01 26.41 17.46 4.36 4.03
robust 0.00 18.69 12.84 5.36 5.22

la26-la30, size 20 × 10
method P 1 2 4 5
naive 0.00 167.59 114.47 16.97 16.02
active 0.00 6.10 4.12 0.58 0.58
robust 0.00 2.04 1.37 0.39 0.32

la31-la35, size 30 × 10
method P 1 2 4 5
naive 0.01 189.21 126.54 14.67 14.23
active 0.01 20.34 13.20 4.10 4.26
robust 0.00 8.39 6.66 3.24 3.56

la36-la40, size 15 × 15
method P 1 2 4 5
naive 0.43 156.45 103.74 22.45 18.89
active 0.23 48.85 32.72 8.84 7.77
robust 1.10 39.71 28.44 13.44 11.39

For the loose problems, the results of the summed tardiness problems are
resemblant of the maximum tardiness problems. The RL∑ robustness measure
seems to improve the performance of rescheduling methods 1 and 2 more than
the L∑ measure on all problems, and for problems with a high job/machine ratio,
RL∑ often outperforms L∑ on the performance of rescheduling methods 4 and 5
as well. In some cases this comes at a cost of a slight increase in preschedule cost.
The L∑ measure outperforms the standard T∑ measure as well, but not as much
as RL∑ .

The similarity in behaviour between loose summed tardiness problems and
maximum tardiness problems does not come as a surprise; in a loose summed tar-
diness problem often only one or a few jobs will be tardy. In this case minimising
maximum tardiness and summed tardiness are almost the same.
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5.5.2 Tight problems σ = 0.85

The following table holds the results of the summed tardiness experiments on tight
problems.

la01-la05, size 10 × 5
method P 1 2 4 5
naive 201.67 493.76 431.79 356.45 346.60
active 201.28 497.38 434.39 354.54 346.08
robust 218.36 472.83 420.95 364.32 356.43

la06-la10, size 15 × 5
method P 1 2 4 5
naive 372.76 674.76 614.95 504.12 493.16
active 371.92 649.19 596.55 499.86 490.04
robust 380.50 605.49 567.11 501.38 493.88

la11-la15, size 20 × 5
method P 1 2 4 5
naive 679.62 1127.66 1051.29 862.61 848.10
active 679.30 1109.58 1036.06 861.15 843.78
robust 679.20 1059.72 1000.89 863.39 852.24

la16-la20, size 10 × 10
method P 1 2 4 5
naive 273.61 555.18 504.39 412.51 396.08
active 269.91 565.29 509.84 412.24 398.68
robust 302.30 548.48 505.65 439.16 426.47

la21-la25, size 15 × 10
method P 1 2 4 5
naive 138.26 499.22 422.97 268.51 256.31
active 132.50 457.60 390.96 259.38 245.35
robust 144.01 410.93 363.26 265.80 253.96

la26-la30, size 20 × 10
method P 1 2 4 5
naive 168.61 658.64 554.98 307.46 288.49
active 167.30 663.01 563.55 313.80 293.42
robust 166.93 560.41 489.56 310.42 293.67

la31-la35, size 30 × 10
method P 1 2 4 5
naive 946.47 1648.58 1483.74 1048.71 1015.21
active 945.33 1647.68 1489.25 1046.61 1021.07
robust 744.32 1209.72 1112.03 862.58 846.74
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la36-la40, size 15 × 15
method P 1 2 4 5
naive 448.17 876.32 785.94 600.21 576.84
active 449.21 869.33 779.75 606.21 581.87
robust 490.73 824.72 758.34 633.21 605.42

The results for the tight problems differ qualitatively from the results on the
loose problems. For rescheduling methods 1 and 2, the schedules produced by
using RL∑ still seem superior to those produced using L∑. For rescheduling
methods 4 and 5 there is only little difference between the performances of the
L∑ schedules and the T∑ schedules, while in several instances the RL∑ sched-
ules perform substantially worse than the other schedules, indicating that for tight
summed tardiness problems, flexibility can be worsened by using this robustness
measure.

In the experiments, the use of the L∑ performance measure did not degrade
the preschedule cost when compared to the T∑ experiments. For the tight prob-
lems, the use of the RL∑ measure increased preschedule cost in many cases,
although there were a few intriguing exceptions in which the preschedule costs
found by using RL∑ were much lower than the preschedule costs found using the
other performance measures.

5.6 Experiments on total flow-time

For the experiments on total flow-time schedules produced by minimising the total
flow-time F were compared to schedules produced by minimising the neighbour-
hood based robustness measure

RF∑(s) =
∑

s′∈N1(s)

1

N1(s)
F (s′). (5.8)

The algorithms used were similar to those used for the maximum tardiness
experiments, except that the active/non-delay schedule builder of figure 3.9 was
used for decoding with the parameter δ = 0.5, since this value was found to give
good results in [16]. Because no suitable hillclimber for rescheduling total flow-
time problems was available, no hillclimbing rescheduling was performed in the
experiments.

The following tables report averages over problem groups for the Lawrence
test-suite. The table has been constructed in the same way as the table in section
5.3.12. The results for individual problems are reported in appendix J. The label
“active” has been used for the algorithm minimising F , while “robust” has been
used for the algorithm minimising RF∑ .



5.6. EXPERIMENTS ON TOTAL FLOW-TIME 143

la01-05, size 10 × 5
method P 1 2 4 5
active 4572.5 4947.6 4896.0 4783.0 4766.7
robust 4591.2 4933.0 4886.4 4797.8 4784.9

la06-10, size 15 × 5
method P 1 2 4 5
active 9453.3 10012.3 9931.7 9702.8 9674.7
robust 9481.1 9991.2 9916.7 9728.7 9705.6

la11-15, size 20 × 5
method P 1 2 4 5
active 15590.4 16344.8 16231.0 15818.1 15758.1
robust 15538.5 16196.7 16099.1 15782.1 15744.6

la16-20, size 10 × 10
method P 1 2 4 5
active 7451.5 7842.4 7774.4 7638.9 7616.0
robust 7461.0 7826.3 7764.4 7650.5 7631.7

la21-25, size 15 × 10
method P 1 2 4 5
active 12925.0 13513.1 13414.3 13170.9 13127.9
robust 12945.6 13455.7 13370.7 13180.3 13145.8

la26-la30, size 20 × 10
method P 1 2 4 5
active 21243.8 22027.2 21885.6 21476.6 21382.5
robust 21230.9 21885.9 21772.9 21448.5 21376.5

la31-35, size 30 × 10
method P 1 2 4 5
active 42390.9 43501.1 43300.3 42493.3 42366.6
robust 42353.1 43097.5 42938.2 42320.0 42200.9

la36-40, size 15 × 15
method P 1 2 4 5
active 17067.9 17657.9 17545.3 17280.8 17238.7
robust 17096.2 17617.1 17522.4 17308.4 17265.5

Qualitatively, the results of the total flow-time experiments are similar to the
results for the tight summed tardiness problems. For rescheduling using methods
1 and 2, the RF∑ runs are slightly superior, while in many cases they are inferior
when methods 4 and 5 are used. With respect to preschedule performance, the
two methods had comparable performances. For some problem sizes F seems to
be better, while on others RF∑ seems to do best.
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5.7 Discussion

In section 5.2 it was stated that the idea behind the neighbourhood based robust-
ness measure was that when a set of schedules close to the preschedule are known
to have a good performance, maybe when a breakdown happens one of them can
work around the breakdown, facilitating rescheduling. This explanation may ac-
count for the relatively good performance of the robust schedules when N1-based
rescheduling is used, since a move in N1 made “downstream” from the breakdown
may in some cases alleviate the effects of the breakdown by rushing a critical part
of the schedule while delaying a non-critical part. This explanation may also hold
in part for hillclimbing rescheduling. Since the N1-neighbourhood is a part of the
neighbourhood used by the hillclimber, a set of moves in N1 known not to be too
bad before a disruption may have a higher chance of turning into good starting
moves for the hillclimber after a disruption than a set of very poor N1 moves.

However, this “probably one good move in N1” argument does not explain the
good performance achieved for right-shifting, reduced, and complete rescheduling
on makespan and loose tardiness problems.

The slack hypothesis

When comparing a schedule obtained by minimising a neighbourhood based ro-
bustness measure to an “ordinary” schedule, the robust schedule can be expected
to have more slack than the ordinary schedule, since the operation swaps consid-
ered in the robustness measure lead to small delays in the schedule. In order to
have a low robustness measure, the schedule is required to still have a good per-
formance despite these delays, which translates into saying that the schedule must
have slack.

When turning to the good performance of reduced and complete rescheduling,
the increased slack in the schedules may account for some of the improvement
over ordinary schedules (since the slack-based schedules also perform well for
these rescheduling methods), but probably not all of it. It is hard to decide how
much of a factor the increased slack in the schedule is for the complex resche-
duling methods, since the location of slack in the schedules probably means just
as much as the amount. However, by inspecting the results of individual problem
instances in the appendixes it can be seen that very often if a scheduling method is
superior to the other scheduling methods for right-shifting, the same is the case for
the other rescheduling methods. Since the explanation for the good performance
of the schedule in right-shifting can only be slack, these schedules must have a
high amount of well-placed slack. These observations support a hypothesis that
the improved flexibility of the schedules could be due to slack. In the following
this hypothesis will be termed the slack hypothesis.
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The conflicting arcs hypothesis

Another possible explanation for the good performance for reduced and complete
rescheduling could be that the neighbourhood based robustness approach reduces
the number of potentially conflicting arcs in the solutions. A set of conflicting
arcs is a choice of orientations for some of the disjunctive arcs in the graph repre-
sentation that will always lead to a poor schedule, regardless of the orientation of
the other disjunctive arcs. A simple example of conflicting arcs can be found in
figure 5.14. The four schedules in the figure are all solutions to the same problem.
The four schedules are the only active schedules possible for this problem. The
low makespan schedules A and B have no conflicting arcs, while the schedules C
and D have a high makespan, because the arcs in these schedules are in conflict. It
is interesting to note that the disjunctive arcs of the bad schedules are also present
in the good schedules (e.g. the disjunctive arc pointing up in schedule D is present
in schedule A). For this problem the quality of the schedule is not determined by
the presence of individual arcs alone, but by the combination of several arcs.

In figure 5.15, a more complex example of conflicting arcs is presented. The
figure has two graph representations and four schedules. Each of the graph rep-
resentations has an undecided disjunctive arc (in what follows, this arc will be
referred to as arc v), and thus represents both the schedules in its row. The three
first schedules (A, B and C) have no conflicting arcs, and they all have the optimal
makespan for this problem. Schedule D has a conflict between the arcs of ma-
chines 3 and 4, and has a suboptimal makespan. From a makespan point of view,
schedules A, B and C are equally good. However, if we consider how flexible
the schedules are with respect to changing the orientation of the disjunctive arc
left undecided in the graphs, it seems clear that A and B are preferable to C. If
the orientation of arc v is changed partway through the processing of schedule A,
the result will be schedule B, which is still optimal. In the same way, schedule B
can easily be changed into schedule A partway through processing. However, if
for some reason arc v needs to be reversed partway through processing schedule
C, the result will be the suboptimal schedule D. Thus, schedule C can be said to
have a potential conflict between arc v and the disjunctive arc oriented upwards
of machine 4. This indicates that schedule C is in some sense less flexible than
schedules A and B. For this simple example, the ability to reverse arc v without
increasing makespan does not lead to improved rescheduling performance. Larger
examples in which this is the case can be constructed.

Since the robustness measure reverses the orientation of every disjunctive arc
in the graph representation of the solution, the number of potentially conflicting
arcs will be minimised when the robustness measure is minimised. Because the
presence of all but one of the arcs of a conflicting arc set will lead to a set of con-
flicting arcs (and thus a bad schedule) when the robustness measure is evaluated
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the presence of sets of potentially conflicting arcs will be minimised. Since the
rescheduling problem is derived from the original problem and the preschedule,
this probably means the rescheduling problems end up having fewer potentially
conflicting arc sets, meaning they are easier to solve. Below this hypothesis will
be termed the conflicting arcs hypothesis3. The hypothesis is supported by the fact
that when the population is not reused, the new schedules found after reduced or
complete rescheduling end up being more similar to the preschedule when RCmax

is minimised than when Cmax is minimised. A good solution close to the presche-
dule processing order probably has a larger basin of attraction, if the preschedule
processing order has few conflicting arcs, than if it has many.

The conflicting arcs hypothesis is related to the PFSL approach presented in
[114] (see section 4.7.3). In this approach a few critical decisions are made in
a preprocessing step, and detailed scheduling is done by dispatching rules while
the schedule is being executed. The basis for this approach is a conjecture that
the flexibility of a schedule depends on a few critical decisions (arcs) while the
rest of the schedule is less important in this respect. The notion of trying to avoid
potentially conflicting arcs in the schedules in some sense is exactly the same;
avoiding potentially conflicting arcs means trying not to make the decisions that
impose unnecessary constraints on the rest of the solution.

Why does neighbourhood based robustness work?

For tight summed tardiness and total flow-time problems, the neighbourhood bas-
ed approach has been found not to improve the performance of reduced and com-
plete rescheduling. Starting from the conflicting arcs hypothesis, the reason for
this may be that problems of this kind have more conflicting arcs, making it impos-
sible to find a solution with few conflicting arcs. Problems of this kind probably
contain more conflicting arcs than makespan and maximum tardiness problems,
since it is very hard to change anything in a total flow-time or tight summed tar-
diness schedule without changing the performance.

Regarding the slack hypothesis, it can be argued that since it is very hard
to change anything in a tight summed tardiness or total flow-time problem, it
should be nearly impossible to create schedules with slack (indeed, even how to
make a reasonable definition of slack for these problems is not straight-forward).
This statement is disproved by the superior performance of the RL∑- and RF∑-
minimised schedules when right-shifting rescheduling is used. The superior per-
formance clearly indicates that some kind of slack is present in these schedules.
Despite this the RL∑- and RF∑-minimised schedules often turn out to be inferior

3The conflicting arcs hypothesis was originally suggested in a different form by an anonymous
reviewer at IEEE Transactions on Evolutionary Computation.
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to ordinary schedules when reduced or complete rescheduling is used, indicating
that the slack is not helpful for rescheduling in this case.

Based on the above considerations, we feel that the most probable explanations
for the good performance of the neighbourhood based approach are

• For right-shifting: increased slack in the schedules.

• For N1-based and hillclimbing rescheduling: The increased probability of
good moves in N1.

• For reduced and complete rescheduling: The conflicting arcs hypothesis.

It is also worthwhile to keep in mind that the different explanations need not ex-
clude each other. The conflicting arcs hypothesis and the slack hypothesis can
both be true, and probably the increased slack has some effect for all of the com-
plex rescheduling methods.

When comparing the neighbourhood based approach to the slack-based ap-
proach from [72], the experiments indicate that they have more or less equal lev-
els of performance on makespan problems for all the rescheduling methods, while
the neighbourhood based approach was found to often outperform the slack-based
approach in terms of preschedule makespan. The slack-based approach is ex-
tendable to maximum tardiness problems, and could be expected to have more
or less the same level of performance on these problems as the neighbourhood
based approach. The running time of the slack-based algorithm is substantially
lower than the neighbourhood based algorithm, so in the choice between these
two approaches the choice basically comes down to preferring lower running time
or better preschedule performance4. An argument in favour of the slack-based
algorithm is the fact that it is better understood than the neighbourhood based
approach.

When considering problems for which the notion of slack is difficult to define
and work with (e.g. summed tardiness and total flow-time problems), the neigh-
bourhood based approach is highly relevant, since it has been demonstrated to
improve robustness and to some extent flexibility for this kind of problem over
standard scheduling, and since to my best knowledge no other approach has been
published.

Based on the experiments of this chapter and the above considerations, the
neighbourhood based robustness approach can be expected to generally improve
the robustness quality of schedules, while flexibility with respect to search-based
rescheduling methods is not always improved. The flexibility can be conjectured
to improve for problems in which the solutions contain few critical parts, parts of

4If the slack-based algorithm is allowed to run for more generations, it may reach the level of
preschedule performance of the neighbourhood based algorithm.
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the solution that are essential for the quality. In problems with few critical parts it
will often be possible to make small changes to non-critical parts of the solution
without ruining the solution. This property is probably necessary if potentially
conflicting arcs are to be removed from the solutions.

Possible future work

If the conflicting arcs hypothesis is the reason for the improved rescheduling per-
formance observed in this chapter, it may be an indication that more clever ways
of creating flexible schedules can be conceived. The neighbourhood based ro-
bustness approach does not consider the temporal relationships between the po-
tentially conflicting arcs. If a disjunctive arc v will conflict with a set of other dis-
junctive arcs W if v is reversed, the implications for schedule flexibility depends
on the time at which v is implemented in the schedule relative to the implementa-
tion times of the arcs in W . If v is implemented earlier than or at the same time as
the arcs in W , the implications on schedule flexibility may not be as severe as they
will be if the arcs in W are implemented before v. The size of the conflicting arc
set W may also be important; if W is large, there are many arcs of which maybe
just one needs to be reversed in order to allow a reversal of v. If W is small, fewer
possibilities exist for allowing v to be reversed.

A scheduling method taking into account temporal relationships and sizes of
conflict sets will probably have to consider the conflict sets in an explicit way,
rather than in the implicit way of the neighbourhood based robustness approach.
If conflicting arcs are to be considered explicitly, probably a completely different
kind of algorithm is needed. A branch and bound algorithm could be useful, since
traditional branch and bound algorithms for scheduling are working with partial
schedules and establish lower bounds on these, something which is closely related
to finding conflicting sets of arcs.



Chapter 6

Worst Case Performance Scheduling
with Coevolution

In chapter 5, job shop scheduling facing disruptions was considered from an av-
erage performance point of view. In this chapter the same problem will be treated
from a worst case and worst deviation point of view. Recall that in worst case per-
formance the scheduler is interested in minimising the consequences of the worst
possible conditions, while worst deviation performance minimises the maximum
distance to optimal performance.

The outline of this chapter is as follows. In sections 6.1 and 6.2 a scheduling
system based on the coevolutionary minimax algorithm developed in section 2.4
is presented. The algorithm is compared to two other approaches. The worst case
scheduling approach is found to improve the worst case performance but at the
same time to degrade the ordinary preschedule performance. Section 6.3 consid-
ers an extension of the algorithm of section 6.1 in which worst case performance
and ordinary preschedule performance are simultaneously optimised in a multi-
objective approach. Section 6.4 describes how an evolutionary algorithm can be
used to simultaneously solve many closely related problems in one program run.
This is necessary for the worst deviation performance algorithm presented in sec-
tion 6.5.

6.1 Worst case performance

Minimising the worst case cost of a schedule facing a number of scenarios can be
formulated as a minimax problem. The problem is to minimise

ϕ(s) = max
b∈B

C(s, b) subject to s ∈ S, (6.1)
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where S is the set of feasible schedules and B is the set of likely future scenarios.
C(s, b) is the cost of scenario b happening when implementing schedule s. In the
following, B will be a set of possible future machine breakdowns, at most one
breakdown happening in every scenario. More generally each scenario could also
be a sequence of breakdowns, new jobs arriving etc.

Since equation (6.1) matches the problem formulation of section 2.4, the con-
siderations from that section apply here. A schedule minimising (6.1) can be
found using a standard optimisation algorithm if maxb∈B C(s, b) is evaluated for
every schedule considered. If the set of scenarios B is large, this can be expected
to be quite time-consuming because of the large number of evaluations. A coevo-
lutionary approach to limit the number of evaluations by limiting the number of
scenarios considered seems like a good idea.

It can be shown (see appendix D), that the job shop scheduling problem facing
breakdowns does not satisfy the symmetric property of equation (2.6). This means
that the coevolutionary minimax algorithms of [7] and [58] should not be expected
to work, while the new minimax algorithm of section 2.4 could work.

6.1.1 Rescheduling and breakdown sets

A very important decision in scheduling systems like these is how to do resche-
duling. When a real world scheduling system encounters a breakdown, it makes
sense to run the entire scheduling algorithm again, the way it was done in chapter
5 with reduced and complete rescheduling. However, this is not possible when
the preschedule has to be found, since rescheduling has to be performed a huge
number of times during a single run of the algorithm. Rescheduling must be fast.
One choice is to use right-shifting, but this is not a good choice when worst case
performance is considered; whenever a breakdown strikes at a critical operation
the makespan of the schedule will always be increased by the breakdown dura-
tion. A possible solution to these problems is to use a local search technique for
rescheduling: it is reasonably fast, and it can be able to improve on schedules that
are broken in critical places. In all experiments in this chapter the rescheduling is
done by the hillclimber used for decoding in Mattfeld’s GA3, see section 3.2.2.
Other reasonable choices for rescheduling in a system like this could be running
a tabu search for a very limited number of iterations, or fixing the processing se-
quences for all machines but one and calculating an optimal processing sequence
for this one machine, as proposed in [71].

When working with worst case performance and job shop problems, there are
certain breakdowns that cannot be countered in a clever way. For this reason,
limited breakdown sets will be used in the experiments. These breakdowns will
be designed to hold only breakdowns that can be countered by clever scheduling,
while breakdowns which are impossible to hedge against will be left out.
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Figure 6.1: A breakdown very late in the schedule can be countered optimally by
right-shifting.

If a breakdown strikes an operation which is very late in the schedule no re-
scheduling will be able to improve the schedule. To realize this, consider the
schedule in figure 6.1. To the left is a schedule for a 3 × 4 problem. To the
right, the schedule has met with a breakdown (indicated by the dashed block and
the triangles). Since the breakdown occurs very late, most of the schedule has
already been executed, and there are no choices for the rescheduler. No matter
what kind of rescheduling method is employed, the result can never be better than
the right-shifted schedule (as shown on the figure), and since the operation hit by
the breakdown is critical the makespan is increased by the breakdown duration.
Considering this kind of breakdown when working with worst case performance
will lead to minimal makespan schedules being optimal, meaning that the search
will find the same schedules as an ordinary static scheduling algorithm. For this
reason breakdowns happening late in the schedules will not be included in the
breakdown sets defined later. Not considering breakdowns happening very late in
the schedules may also make sense in real scheduling environments. In systems
with new jobs appearing over time handled on a rolling time horizon basis, it can
be reasonable only to consider breakdowns falling within the part of the sched-
ule expected to be implemented before the next batch of jobs are included in the
schedule.

There is another kind of breakdown which also needs to be excluded from
the breakdown sets. Consider figure 6.2. The schedule is the same as in figure
6.1, but this time the breakdown happens almost at the beginning of processing.
This breakdown is handled optimally by right-shifting too, since the part of the
schedule hit by the breakdown is critical, and will be critical in any acceptable
schedule. Breakdowns of this kind will be disregarded in the breakdown sets,
since again they will lead to minimal makespan schedule being optimal. Exclud-
ing certain machines from consideration with regard to breakdowns may also in
some cases make sense in real scheduling systems, since some machines may be
known to often break down while others almost never do.
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Figure 6.2: A breakdown striking at a place which is critical in all reasonable
schedules can be countered optimally by right-shifting.

In theory a breakdown set for a scheduling problem can hold any subset of the
breakdowns possible for the problem. The breakdown sets used in the experiments
were all generated in an ad hoc way, and are all representable by a subset BM of
the machines in the problem and a time interval BT = {tmin . . . tmax} stretching
from the beginning of processing (tmin = 0) until some specified time tmax. The
breakdowns in the set are allowed to take place on the machines in the machine
subset and start within the time interval. They all have the same duration τB .

6.1.2 The scheduling algorithms

Three scheduling algorithms were used in the experiments. All of the systems use
a variant of the same genetic algorithm.

The first GA simply minimises the preschedule cost (makespan). This GA is
referred to as the preschedule performance GA. It is used mostly to verify that the
worst case performance after rescheduling is improved when using the other two
algorithms. The second GA optimises the after rescheduling performance of the
schedules. The fitness evaluation is done in an exact way, making sure the worst
case breakdown is tested by trying a large number of breakdowns. This algorithm,
termed the exact evaluation GA, is quite slow. The third GA also optimises after
breakdown and rescheduling performance, but this is done by letting the schedule
population coevolve with a population of breakdowns. In this way time can be
saved compared to the exact evaluation GA, at the expense of having some degree
of noise in the fitness evaluation. The breakdown population size µ and number
of progeny λ are important parameters in these algorithms, so they are termed
coevolutionary (µ + λ) algorithms.

The following details hold for the scheduling part of all the genetic algorithms.

• Evolution occurs as in a standard generational GA with complete replace-
ment in every generation, except for an elite of one.
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• The schedule representation and decoding used is the permutation with rep-
etition representation and the hillclimbing decoder of section 3.2.2.

• All new schedule individuals were created using crossover. The crossover
used is the Generalised Order Crossover (GOX). Each new individual was
mutated with a probability of 0.1. The mutation operator is Position Based
Crossover (PBM).

• Tournament selection with a tournament size of two is used.

• A population size of 100 schedules is used, and the algorithms run for 100
generations.

In the preschedule performance GA, the objective function is the makespan of
the preschedule, Cmax(s). In the exact evaluation GA it is maxb∈B Cmax(s, b). In
the coevolutionary algorithm a schedule population PS and a breakdown popula-
tion PB coevolve. For the schedules, the objective function is maxb∈PB

Cmax(s, b).
For the breakdowns, the fitness evaluation is the asymmetric fitness evaluation of
section 2.4.2.

The exact evaluation algorithm

Due to the nature of job shop schedules, it is not necessary to consider all break-
downs in B in order to calculate the exact worst case performance of a schedule.
Consider the breakdown during processing of the operation marked “X” in figure
6.3. Any solution to the rescheduling problem for the breakdown time marked
by “b” is bound to also by a solution to the breakdown with the breakdown time
marked “a”, since the breakdown marked “b” constrains new schedules more than
the breakdown marked “a”, while the processing of operation “X” will finish at
the same time for both breakdown times (the preschedule finishing time plus the
duration, since non-preemptive breakdowns are used). On the other hand, there
exists solutions to the rescheduling problem of “a” that are not solutions to “b”
(since the operation “Y” can be rescheduled for “a”, but not for “b”). For these
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reasons the best possible solution to the rescheduling problem “b” will never be
better than the best possible solution to the rescheduling problem “a”. Generally,
a breakdown can never be worsened (meaning that Cmax(s, b) can never be de-
creased) by rounding up the breakdown time to the time just prior to the finishing
time of an operation being processed at the breakdown time.

Therefore, when evaluating the worst case performance for a given schedule in
the exact evaluation GA, only breakdown times that are immediately prior to the
end of processing of an operation need to be considered, along with breakdowns
at time tmax.

The coevolutionary algorithm

In the coevolutionary algorithm, the breakdown population evolves in a (µ + λ)-
evolutionary strategy. The population size is µ, and in each generation λ new
individuals are generated. The new individuals compete with their parents and in
every generation the λ worst individuals are discarded.

Each breakdown is represented by a breakdown time t ∈ BT and the machine
breaking down w ∈ BM . Remember that the downtime τB is fixed by the break-
down set. No crossover is used on the breakdowns; they only breed by mutation.
For the breakdowns, selection for breeding is done on a linear ranking basis.

When a breakdown is mutated, in 50% of the cases only the breakdown time
is changed. The breakdown time is perturbed by adding a Gaussian distributed
value with zero mean and standard deviation 1

4
(tmax − tmin). In 25% of the cases

only the machine is changed and set to a random machine in BM . In the last 25%
of the cases, the individual is a completely random individual drawn uniformly
from B.

In the coevolutionary GA, when evaluating Cmax(s, b) for a given schedule
s ∈ PS and breakdown b ∈ PB, the breakdown time of b is rounded up to the time
just before the end of processing of the current operation, or to tmax. Because
of the additional constraints introduced by rounding, rounding makes the fitness
evaluation focus on the hardest breakdowns, which means that the reliability of the
worst case performance estimate maxb∈B Cmax(s, b) is increased. The rounded
breakdown time is not transferred to the breakdown gene; it is only used in the
evaluation of b against the schedule s.

6.2 Experiments

For the experiments, the ten problems la01, la02, la06, la07, la26, la27,
la31, la36, ft10 and ft20 were selected.
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Problem Opt. presch. Breakdown Machines BM Best w.c.
makespan times BT makespan

la01 666 0-299 1,2,3,4 691
la02 655 0-299 1,2,3,5 726
la06 926 0-299 2,3,4,5 926
la07 890 0-299 2,3,4,5 890
la26 1218 0-599 2,3,4,6,7,8,9 1261
la27 1235 0-599 1,2,3,5,6,8,9,10 1305
la31 1784 0-599 2,3,4,5,6,8,9 1784
la36 1268 0-599 1,2,3,4,6,7,8,9,10 1318
ft10 930 0-299 3,4,5,6,7,8,9,10 994
ft20 1165 0-599 1,2 1227

Table 6.1: The breakdown sets used in the experiments. The last column lists the
lowest worst case makespan found in the runs of section 6.2.1.

For each scheduling problem a breakdown set was created. This was done by
inspecting a number of near-optimal schedules and selecting machines and times
for each problem in such a way that late breakdowns and parts of the schedules
that would always be (near) critical were not included in the breakdown sets. The
breakdown duration of τB = 80 was used in all the experiments, as it was felt that
the breakdown duration should be comparable to the operation processing times,
which are in the range {1, . . . , 100}. The details of the breakdown sets can be
seen in table 6.1.

For each scheduling problem, six different sets of runs were performed: Four
runs with the coevolutionary (µ + λ)-algorithm with (µ + λ) taking the values
(4 + 2), (8 + 4), (12 + 6) and (16 + 8) to determine the effect of the breakdown
population size, one run of the preschedule performance algorithm to determine
the worst case breakdown performance improvement of the coevolutionary algo-
rithms, and one run of the exact evaluation GA to determine the effect of the noise
present in the fitness evaluation of the coevolutionary GA.

6.2.1 Results relevant to scheduling

The average worst case makespan after a breakdown and rescheduling can be seen
in table 6.2. The averages have been calculated over 400 runs. The averages in
table 6.2 and the rest of the tables in section 6.2 differ slightly from the num-
bers previously published in [64]. This is because after the publication of [64],
a programming error in the implementation of the algorithms was found, and the
experiments had to be redone.
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Problem (4+2) (8+4) (12+6) (16+8) Presch. perf. Exact eval.
la01 707.9 701.1 699.4 698.6 731.2 696.9
la02 737.6 736.2 735.1 734.6 737.7 734.4
la06 927.4 926.5 926.2 926.2 949.7 926.0
la07 896.8 893.2 892.2 892.1 946.9 891.9
la26 1287.9 1281.8 1279.3 1278.9 1293.4 1278.2
la27 1343.5 1335.5 1332.5 1331.9 1344.0 1330.2
la31 1800.6 1794.0 1790.8 1788.8 1830.0 1784.0
la36 1357.9 1346.9 1343.2 1342.2 1371.3 1340.8
ft10 1022.5 1020.8 1020.8 1018.6 1037.6 1018.9
ft20 1267.8 1264.9 1267.0 1265.3 1271.2 1264.5
Average 1134.6 1130.1 1128.7 1127.7 1151.3 1126.6

Table 6.2: Average worst case performances.

In all of the experiments, there is an improvement in the worst case perfor-
mance when using the coevolutionary algorithm instead of the preschedule perfor-
mance algorithm. In some cases the improvement is substantial (problems la01,
la07, la31 and la36), while in other cases it is modest (la02). Generally, the
coevolutionary algorithm performs better for high values of (µ + λ).

Considering the makespan performance of the preschedules without break-
down and rescheduling (table 6.3), it is evident that for some of the problems the
increased flexibility observed in table 6.2 comes at a cost in preschedule perfor-
mance. For la27, la36 and ft10, the preschedule makespan is increased by
10 or more by using the (16 + 8) coevolutionary GA instead of the preschedule
performance GA. In other cases, la06, la07 and la31 there is no increase in
preschedule makespan at all.

The variation in after breakdown performance and preschedule performance
from problem to problem indicates that for some problems and breakdown sets
optimising worst case performance after breakdowns using a coevolutionary GA
seems to perform very well. Consider la07 and la31, where a substantial im-
provement in worst case performance comes at no cost in preschedule perfor-
mance. For other problems the performance is quite poor. For la02 and la27 a
small or modest performance increase after rescheduling comes at a high price in
preschedule performance. These observations indicate that if a scheduling system
like the coevolutionary GA is to be used in the real world, great care will have
to be taken. A way of circumventing this problem is to create a multi-objective
version of the algorithm that optimises preschedule performance as well as worst
case performance. This kind of system is considered in section 6.3.
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Problem (4+2) (8+4) (12+6) (16+8) Presch. perf. Exact eval.
la01 666.5 666.6 666.9 666.5 666.0 667.0
la02 663.7 663.5 662.7 662.3 658.0 662.8
la06 926.1 926.0 926.0 926.0 926.0 926.0
la07 890.1 890.0 890.0 890.0 890.0 890.0
la26 1224.7 1223.7 1222.4 1223.0 1218.4 1222.7
la27 1284.9 1282.8 1281.2 1281.0 1267.5 1281.5
la31 1784.1 1784.0 1784.0 1784.0 1784.0 1784.0
la36 1315.7 1315.1 1314.8 1314.7 1297.5 1314.8
ft10 984.4 986.4 987.0 985.8 959.7 986.4
ft20 1199.4 1198.2 1199.4 1197.4 1192.2 1197.9
Average 1093.9 1093.7 1093.4 1093.1 1085.9 1093.3

Table 6.3: Average preschedule performance without breakdown.

6.2.2 Results relevant to evolutionary computation

From table 6.2 it is evident that the noise present in the fitness evaluation of the
coevolutionary GA can have a negative effect on performance. For the small val-
ues of (µ + λ), in most cases the performance is a bit worse than the performance
of the exact evaluation GA. For the higher values of (µ+λ), the fitness evaluation
noise is smaller due to better sampling of the breakdown search-space, and the
performance seems to be almost as good as that of the exact evaluation GA.

The effect of the population size µ on the noise in the fitness evaluation of
the final individual has been investigated for the la07 problem in the top plot of
figure 6.4. In the plot it is evident, that there is a significant drop in noise when
increasing µ from 4 to 8, while smaller drops arise when increasing µ to 12 and 16.
The effect of the population size on worst case performance has been plotted in the
middle plot of figure 6.4. In the plot it is evident that as the breakdown population
size increases, the worst case cost drops. In the bottom part of the figure the CPU-
time spent has been plotted as a function of µ. The CPU-time seems to increase
linearly with µ. The computation time is really O((µ + λ) log(µ + λ)) because
of the asymmetric fitness evaluation, but since the time spent in the hillclimber is
far greater than the other contributions to processing time, it increases linearly for
reasonable values of (µ + λ). Similar plots were made for the other problems as
well, and they were all qualitatively equivalent to the ones of figure 6.4.

The average processing times for one run of each algorithm can be seen in
table 6.4. The experiments were run on a 250MHz SGI O2 computer. It is evident
that even for small values of (µ + λ), the coevolutionary GAs are much slower
than the preschedule performance GA. This is due to the processing time spent
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Figure 6.4: Plots for the coevolutionary runs on the la07 problem. Top: The
average error on the fitness evaluation of the final individual for various values
of µ (λ = 1

2
µ). The error bars indicate 95% confidence intervals on the average.

Middle: Average worst case makespan. Bottom: Average CPU-time used in
seconds. The “standard algorithm” is the algorithm of section 6.1.2, while the
“improved algorithm” is the algorithm of section 6.2.3.
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Problem (4+2) (8+4) (12+6) (16+8) Presch perf. Exact eval.
la01 13.9 27.6 40.5 54.1 1.5 47.7
la02 13.9 25.5 37.3 48.4 1.3 49.2
la06 22.1 38.1 55.6 73.2 3.1 68.7
la07 22.2 39.7 57.0 75.3 3.2 75.1
la26 72.0 128.2 185.3 244.3 13.6 686.2
la27 86.1 141.0 199.7 262.0 13.9 755.0
la31 159.0 278.9 395.5 521.2 30.9 1427.9
la36 74.6 136.1 194.1 258.2 10.9 627.4
ft10 31.9 63.6 89.9 123.8 3.5 70.1
ft20 42.5 70.3 100.6 128.7 5.6 139.7
Average 53.8 94.9 135.6 178.9 8.8 394.7

Table 6.4: Average processing time in CPU-seconds.

doing rescheduling and evolving the breakdown population.
Comparing the processing times of the exact evaluation GA and the coevolu-

tionary GA, it seems that for the smaller problems (la01, la02, la06, la07,
ft10 and ft20) only a modest amount of processing time is saved, and only if
a small breakdown population size µ is used. In some cases with breakdown pop-
ulation sizes µ = 16 the coevolutionary GA is slower than the exact evaluation
GA. For the small values of µ some processing time is saved (typically 50%-70%
for µ = 4 and 7%-50% for µ = 8). Given the slightly superior quality of the
solutions found by the exact evaluation GA it seems that for small problems the
exact evaluation GA should be preferred unless time is very critical.

For the larger problems la26, la27, la31 and la36, more time can be
saved. For the smallest breakdown population size µ = 4 around 90% of the
processing time is saved. For the largest breakdown population size µ = 16, ap-
proximately 65% of the processing time is saved. These are substantial savings,
since the processing time for a run of the exact evaluation GA is more than 10
CPU-minutes for all of these problems. For larger problems more time is ex-
pected to be saved. Which population size to use is a tradeoff, since the quality of
schedules improves with larger µ.

6.2.3 Further investigations

Comparing coevolution to a random sample GA

In order to further investigate the benefit of using a coevolutionary approach to
estimate schedule worst case performance, the performance of the coevolutionary
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algorithm was compared to a genetic algorithm in which the worst case perfor-
mance of every schedule is estimated by testing it on a set of randomly sampled
breakdowns (called the random sample GA). In this algorithm the objective func-
tion of the schedule is set to maxb∈BR

Cmax(s, b), where BR is a set of random
breakdowns, sampled uniformly and independently for every schedule. Since the
time used to evolve the breakdown population in the coevolutionary GA is negli-
gible compared to the time spent in the makespan hillclimber, the two algorithms
have the same running times for the same number of schedule × scenario evalua-
tions. The average worst case makespans of this algorithm can be compared to the
performance of the coevolutionary GA in table 6.5. The averages have been taken
over 400 runs. There is a subtable for each problem, and each of the algorithms
corresponds to a row in the table. Each column refers to a (µ + λ)-setting for the
coevolutionary GA. The random sample GA used µ + λ scenario-evaluations for
each schedule.

From the table, it is evident that the coevolutionary approach outperforms the
random sample approach on all the problems when the same number of sched-
ule × scenario evaluations are used. In some cases the coevolutionary approach
outperforms the random sample approach by far. For the problems la02, la06,
ft10 and ft20, the coevolutionary approach with the lowest number of eval-
uations (4 + 2) outperforms the random sample approach with the highest num-
ber of evaluations (16 + 8), meaning that better solutions are found while sav-
ing 75% of the CPU-time. In other cases the random sample approach produces
almost the same level of performance (average difference less than 1, la01,
(µ + λ) = (4 + 2)). The difference in performance between the two approaches
probably depends on the difficulty of the breakdown search-space. If only few
breakdowns produce the worst possible performance, or if several breakdowns
are needed at the same time to guarantee the worst case, the coevolutionary ap-
proach should be expected to have an edge when compared to the random sample
approach.

Improving runtime

The algorithm used for the experiments of section 6.2 performed rescheduling
every time a schedule encountered a breakdown. This is not always necessary.
Because of the rounding up of breakdown times (see section 6.1.2), it will some-
times happen that two or more breakdowns in the breakdown population decode
to the same machine and breakdown time for a given schedule. If the results of
previous evaluations are kept for each schedule and reused if the schedule meets
the same breakdown again, computational effort can be saved. A variant of the
algorithm using this trick was implemented. The rescheduling results are stored in
a datastructure associated with each individual in the schedule population. Since
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Algorithm (4+2) (8+4) (12+6) (16+8)
la01: (µ + λ)-coev. GA 707.9 701.1 699.4 698.6

random sample GA 708.6 704.2 704.0 702.8

Algorithm (4+2) (8+4) (12+6) (16+8)
la02: (µ + λ)-coev. GA 737.6 736.2 735.1 734.6

random sample GA 743.2 740.6 738.7 737.9

Algorithm (4+2) (8+4) (12+6) (16+8)
la06: (µ + λ)-coev. GA 927.4 926.5 926.2 926.2

random sample GA 932.0 930.2 929.3 927.6

Algorithm (4+2) (8+4) (12+6) (16+8)
la07: (µ + λ)-coev. GA 896.8 893.2 892.2 892.1

random sample GA 907.3 899.8 896.1 895.7

Algorithm (4+2) (8+4) (12+6) (16+8)
la26: (µ + λ)-coev. GA 1287.9 1281.8 1279.3 1278.9

random sample GA 1298.1 1292.6 1288.5 1286.4

Algorithm (4+2) (8+4) (12+6) (16+8)
la27: (µ + λ)-coev. GA 1343.5 1335.5 1332.5 1331.9

random sample GA 1352.2 1347.8 1343.2 1342.0

Algorithm (4+2) (8+4) (12+6) (16+8)
la31: (µ + λ)-coev. GA 1800.6 1794.0 1790.8 1788.8

random sample GA 1806.1 1798.2 1796.1 1793.1

Algorithm (4+2) (8+4) (12+6) (16+8)
la36: (µ + λ)-coev. GA 1357.9 1346.9 1343.2 1342.2

random sample GA 1368.5 1363.1 1359.2 1356.6

Algorithm (4+2) (8+4) (12+6) (16+8)
ft10: (µ + λ)-coev. GA 1022.5 1020.8 1020.8 1018.6

random sample GA 1045.6 1036.9 1032.4 1028.7

Algorithm (4+2) (8+4) (12+6) (16+8)
ft20: (µ + λ)-coev. GA 1267.8 1264.9 1267.0 1265.3

random sample GA 1280.7 1278.5 1276.0 1277.1

Table 6.5: Average worst case performances of the coevolutionary GA and the
random sample GA using the same amount of schedule × scenario evaluations.
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Problem (4+2) (8+4) (12+6) (16+8) Exact eval.
la01 11.3 16.9 20.6 25.8 47.7
la02 11.2 16.5 20.7 24.3 49.2
la06 16.8 25.3 30.1 33.3 68.7
la07 18.0 27.4 33.9 38.6 75.1
la26 65.9 104.9 140.5 171.3 686.2
la27 71.9 113.3 148.7 184.5 755.0
la31 140.9 235.7 313.0 389.4 1427.9
la36 66.0 104.5 135.9 166.3 627.4
ft10 23.8 33.5 40.4 42.7 70.1
ft20 31.0 46.1 58.1 67.1 139.7
Average 45.7 72.4 94.2 114.3 394.7

Table 6.6: Average processing time in CPU-seconds for the improved algorithm.
The processing times of the exact evaluation algorithm have also been included.

the entire schedule population (except for an elite of one) are replaced in every
generation, these datastructures are cleared in every generation. The average run-
ning times of the improved algorithm for different problems and (µ + λ)-settings
can be seen in table 6.6.

Comparing the running times of table 6.6 to the running times of the standard
algorithm (table 6.4), it is evident that in every single experiment, the average
running time is lower than the standard algorithm. For small (µ + λ) values,
only a little processing time is saved, but for large (µ + λ)-values the savings are
substantial, especially for small and medium sized problems. For problem ft10
and the (16 + 8)-algorithm, the running time is reduced to one third of that of
the standard algorithm. For the (16 + 8)-algorithm, the average relative reduction
over all the problems is 47%.

Because of the decreased computational demand of the improved algorithm,
it was used as the starting point for the algorithms in the next subsection and in
section 6.3.

Time needed to reach a certain level of performance

The performance improvement of the coevolutionary approach over the exact eval-
uation GA is in its running time. Another way of comparing the running times of
the algorithms is by measuring how much time is needed to reach a specific level
of performance. To this end, new formulations of the exact evaluation GA and the
coevolutionary GA were created.

The exact evaluation GA was changed to accept as a parameter a desired level
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Problem (4 + 2)-coev. (8 + 4)-coev. Exact eval.
la01 39 28 26
la02 9 8 2
la06 100 100 100
la07 100 100 100
la26 13 7 0
la27 15 10 0
la31 100 100 99
la36 59 44 2
ft10 6 6 1
ft20 8 4 2

Table 6.7: Percentage of successful runs.

of worst case performance and stop running when a schedule meeting the re-
quirement was found. The coevolutionary GA was changed in the same way,
except that since worst case performance is not evaluated in an exact way in the
algorithm, the performance of schedules estimated to meet the requirement was
evaluated in an exact way, and the algorithm was allowed to keep running if the
schedule did not meet the requirement.

Both algorithms are prone to get stuck in local minima, so they were pro-
grammed to reinitialise the schedule population at random if there was no im-
provement in the best individuals’ worst case performance for 100 generations.
The best observed worst case performances of table 6.1 were used as the required
performance levels. Since for some of the problems it turned out to be really dif-
ficult to find the best worst case performance, each algorithm run was terminated
after 10 CPU-minutes. Some of the runs ran for a few seconds more than this,
since the time-consumption of the algorithms was checked between generations,
meaning that it was possible for the algorithms to exceed the 10 CPU-minutes by
one generation. Runs that succeeded to meet the requirement within this allowed
processing time will be called successful in the following, while runs failing to do
so will be called unsuccessful.

The experiments involved the exact evaluation algorithm and the coevolution-
ary algorithm with the parameter settings (µ + λ) = (4 + 2) and (8 + 4). Each
algorithm was run 100 times on 10 problems, and for each algorithm and prob-
lem combination the success-rate (percentage of successful runs) and the average
number of CPU-seconds used were recorded. The results are displayed in tables
6.7 and 6.8.

Inspecting the success-rates of table 6.7, it becomes clear that there is a big
variation in difficulty for these problems. The problems la06, la07 and la31
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Problem (4 + 2)-coev. (8 + 4)-coev. Exact eval.
la01 473.1 509.0 512.3
la02 572.5 571.7 594.3
la06 0.6 0.8 1.9
la07 20.4 32.1 79.3
la26 558.5 582.2 603.7
la27 544.6 576.3 603.3
la31 52.2 81.4 445.4
la36 402.8 462.6 600.2
ft10 584.8 590.0 594.8
ft20 581.1 588.9 591.3

Table 6.8: Average number of CPU-seconds in the experiments.

are relatively easy; for these problems the runs are always successful. Some of the
other problems must be quite hard; for the problems la02, ft10 and ft20 the
success-rates are close to zero for all three algorithms. It is quite surprising that
la02 turns out to be so difficult. The problem is very little (50 operations), and
finding the optimal preschedule makespan is easy.

Comparing the success-rates of the three algorithms, it becomes clear that
the coevolutionary approach is superior to the exact evaluation approach. On the
problems not always solved successfully, the (4+2)-coevolutionary approach al-
ways (except for ft10 where the success-rates are equal) outperforms the (8+4)-
coevolutionary approach, which again outperforms the exact approach. For some
of the problems (la26, la27, la36, ft10 and la20) the difference is quite
high; consider the la36 problem which is solved successfully in 59% of the runs
of the (4+2)-coevolutionary algorithm, and only 2% for the exact evaluation ap-
proach.

Inspecting table 6.8 of average numbers of CPU-seconds, it is difficult to
compare the average running times for the hard problems, since the processing
times reflect a mixture of successful and unsuccessful runs. For the easy prob-
lems (la06, la07 and la31) it is clear that there is a significant performance
improvement when using the coevolutionary approach. For la06 the running
times are very small, but the (4+2)-coevolutionary approach saves approximately
two thirds of the running when comparing to the exact evaluation algorithm. For
la07 and la31 both the running times and the relative improvement are larger.
For la31, the (4+2)-coevolutionary approach saves 88% of the average running
time.

In conclusion, these experiments indicate that the coevolutionary approach is
never inferior to the exact evaluation approach, while in some cases it is clearly su-
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perior to it. For the difficult problems, the coevolutionary approach has a markedly
higher success-rate than the exact evaluation approach, while for easier problems
the average time needed to reach a specific level of performance is substantially
smaller.

6.3 Multi-Objective algorithm

In section 6.2.1 it was found that for some problems the improved worst case
makespan produced by the coevolutionary system comes at a cost of increased
preschedule makespan. This increase in preschedule makespan indicates, that
for some of the problems there may be a tradeoff between the worst case make-
span and the preschedule makespan; minimising the worst case makespan and the
preschedule makespan may be conflicting objectives. On the other hand, these
objectives need not be conflicting. The increased preschedule makespan observed
in section 6.2.1 could also be caused by a lack of selection pressure to minimise
preschedule makespan.

If preschedule cost and worst case cost are conflicting objectives, in many real
world scheduling systems it will not suffice to use an algorithm minimising only
worst case performance. If the guaranteed worst case performance comes at a
price of increased cost if no breakdown happens, the tradeoff between worst case
performance and preschedule cost may need to be considered every time a new
schedule is created. In these cases it will be beneficial if the scheduling system
produces a number of non-dominated solutions, from which one solution can be
selected by a human expert.

6.3.1 The algorithm

In this section, the coevolutionary scheduling system presented in section 6.1
and 6.2 will be combined with a multi-objective genetic algorithm to minimise
preschedule makespan and worst case makespan at the same time. The multi-
objective algorithm used is the Pareto-based NSGA-II introduced in section 2.2.1,
developed by Deb et al. [35, 36]. Although the NSGA-II and the coevolution-
ary system from the last sections are both fairly advanced systems, combining
them into one algorithm is not difficult. It can be done by simply letting the
NSGA-II take over the evolution of schedules in the coevolutionary system, while
keeping the part of the algorithm controlling the breakdowns unchanged. The
overall structure of the combined system has been visualised in figure 6.5. At the
top of the figure two boxes representing the schedule population and the break-
down population have been drawn. The dashed arrows on the figure represent
fitness evaluations, while the solid arrows represent transfer of genetic material.
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Figure 6.5: Schematic drawing of the multi-objective coevolutionary scheduling
system.

Since the coevolutionary system and the NSGA-II are both generational, the com-
bined algorithm works in a generational manner; first all individuals are assigned
a fitness, then new individuals are bred, and these new individuals are then in-
corporated into the old populations. For the breakdown population, the breeding
happens using the same evolutionary strategy described in section 6.1.2. For the
schedule part, the breeding happens as in the NSGA-II; for a population size of
N , N new individuals are bred in every generation, and of the 2N individuals the
N best are kept. This replacement scheme effectively means that an elite size of
N is used.

Because of the replacement scheme used in the schedule part of the algorithm,
potentially a lot of individuals are kept from generation to generation. Since the
most time-consuming part of the algorithm is the evaluation of the worst case
makespan, it makes sense to remember the result of previous evaluations from
generation to generation. However, since the breakdown population changes from
generation to generation, it would be unfair to simply keep the worst case perfor-
mance of old individuals and reuse it in the next generation. Doing this would
mean that a “lucky” schedule-individual evaluated against a weak population of
breakdowns could have an artificially high fitness for the rest of the program run.
Instead, a different approach is taken. Every time a schedule is evaluated against a
breakdown, a datastructure associated with the schedule records the result. If the
schedule ever encounters the same breakdown, the result is found in the datastruc-
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ture and there is no need to do the computation again. Because of the rounding up
of breakdown times described in section 6.1.2 a substantial number of evaluations
are saved in this way (preliminary experiments indicated that often more than 50%
of the evaluations are saved). The worst case makespan used in fitness calcula-
tions is the worst performance ever produced by the schedule in the evaluation of
the current generation, as well as previous ones. This means that good schedules
that have stayed in the population for several generations have a better worst case
performance estimate (and thus a more accurate fitness evaluation) than new in-
dividuals, since their worst case performance is based on evaluations over several
generations rather than just the current one.

These ideas are related to the idea of life time fitness evaluation (LTFE) [91],
in which good individuals are tested more often than bad individuals, and in which
a history of past evaluations is kept. The main difference between LTFE as de-
scribed in [91] and the approach used in the scheduling system is that in LTFE
the evaluations are remembered on a limited time-scale; when the evaluations
become too old they are thrown out of the memory. In the scheduling system
the evaluations are remembered on an unlimited time-scale and never forgotten.
In LTFE good solutions are tested more frequently than bad ones, which is not
the case in the scheduling system. However, almost the same effect is probably
achieved by storing previous evaluations on an infinite time-scale; old (meaning
good) individuals have been tested against a larger number of breakdowns than
new individuals.

Since it was felt that an accurate fitness estimation would be necessary for the
results of the experiments to be trustworthy, the breakdown part of the algorithm
was run using a (µ + λ) = (16 + 8) setting. The breakdown part of the algorithm
was exactly the same as described in section 6.1.2. For the schedule part of the
system, a population size of N = 100 was used. The schedules were bred as
described in section 6.1.2, except a mutation rate of 0.2 was used after crossover,
since in preliminary experiments it seemed to perform slightly better than the
setting used in section 6.1.2.

6.3.2 Experiments

The experiments had two purposes: to investigate if the objectives of minimising
preschedule makespan and worst case makespan are really conflicting, and to see
how well the system outlined in the previous section works. Since there is no
guarantee that the algorithm actually finds the globally optimal solutions, the first
question cannot really be answered based on the experiments of this section; the
experiments can only be taken as a hint to what the answer may be.

The multi-objective algorithm was run 400 times for each of the ten problems.
For every problem, the average number of solutions returned by the algorithm
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Problem Non-dominated solutions
la01 (689,666)
la02 (726,655)
la06 (926,926)
la07 (890,890)
la26 (1260,1218)
la27 (1303,1270), (1308,1269), (1314,1256), (1335,1255)
la31 (1784,1784)
la36 (1318,1315), (1324,1297), (1335,1296), (1339,1291),

(1341,1281), (1348,1278)
ft10 (999,960), (1004,930)
ft20 (1224,1178), (1253,1173)

Table 6.9: The best known non-dominated solutions (worst case makespan, pre-
schedule makespan).

was calculated, and all the solutions returned were recorded and compared in an
attempt to identify the true Pareto-optimal set.

For the problems la01, la02, la06, la07, la26 and la31 the algorithm
almost always returned only one solution, and the best solution returned during
all the runs dominated all other solutions. This indicates that for these problems
minimising preschedule cost and worst case cost are probably not conflicting ob-
jectives. The best known non-dominated solutions found in all the multi-objective
runs can be found in table 6.9. For the problems la06, la07 and la31, the
Pareto optimal solution is known, since for these problems, the best observed
worst case performance is equal to the minimum preschedule makespan.

The average smallest preschedule makespan and the average smallest worst
case makespan of the returned solutions, the success-rate (percentage of the so-
lutions returned identical to the solutions of table 6.9) and the average number of
non-dominated solutions returned can be found in table 6.10.

For the problems la27, la36, ft10 and ft20, the program often returned
more than one solution, and none of the solutions returned were able to dominate
all the other solutions. Figure 6.6 shows plots of the preschedule makespan and
worst case makespan of all the solutions returned during the program runs. The
solutions not dominated by any other solutions found in the multi-objective runs
have been plotted larger than the others. As the plots indicate, most of the so-
lutions returned by the multi-objective system are inferior to the best solutions.
This is not surprising, since the experiments of section 6.2.3 indicated that these
problems are all hard.

For la27, la31, ft10 and ft20, the success-rates (in table 6.10) are very
low. For these problems most of the best known solutions were found only once.
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Figure 6.6: The performances of the solutions returned by the multi-objective algorithm. The solutions not dominated by
any other solutions have been plotted larger.
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Problem Avg. Cmax Avg. wc. perf Success-rate #sol. avg
la01 666.0 696.3 0.5 1.08
la02 655.4 731.0 10.7 1.08
la06 926.0 926.0 100.0 1.00
la07 890.0 891.5 68.3 1.00
la26 1219.6 1282.1 0.3 1.32
la27 1268.9 1331.5 0.6 1.58
la31 1784.0 1784.1 100.0 1.00
la36 1298.5 1344.4 1.3 1.98
ft10 953.4 1015.6 0.9 2.33
ft20 1188.1 1259.7 0.7 1.39
Average 1085.0 1126.2

Table 6.10: Summarised results of the multi-objective experiments.

This means that the non-dominated solutions listed in table 6.9 should not be
trusted too much. There may be other solutions dominating the solutions found
in the runs, and the Pareto sets listed are probably incomplete. For the problems
la27, la36 and ft20, the minimal preschedule makespans were not found in
any of the runs (the minimal makespans are listed in table 6.1). The same was the
case for ft10 and the best observed worst case makespan.

For some of the problems, the results indicated that finding a schedule guaran-
teeing worst case performance can be significantly harder than finding a minimal
makespan preschedule. In the ft10 experiment, the minimal makespan presche-
dule was found seven times, while the best known worst case performance (ta-
ble 6.1) was not found once. For the la01 problem, the minimum preschedule
makespan was found in every single run, while the best known worst case cost
was found twice in 400 runs.

The average performance of the multi-objective algorithm is listed in columns
two and three of table 6.10. The average performances can be compared to the
averages for the preschedule performance GA and the coevolutionary (16+8) GA
in tables 6.2 and 6.3. Comparing the numbers it seems that on average the multi-
objective algorithm is just as good at minimising preschedule makespan as the
preschedule performance GA, and just as good at minimising worst case cost as
the coevolutionary (16+8) GA. The averages indicate that the multi-objective al-
gorithms may actually be slightly better than both of the other algorithms. Com-
paring the multi-objective algorithm to the preschedule GA and the coevolution-
ary (16+8) GA is fair, since the algorithms breed the same number of schedules,
and since the multi-objective algorithm uses roughly the same number of calls to
the schedule hillclimber (the most time-consuming part of the algorithm) as the
coevolutionary (16+8) GA.
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When comparing the average performances of table 6.10 to the averages in
tables 6.2 and 6.3, the average performance of the multi-objective system is some-
times substantially better than the performances of the best of the other algorithms,
while the opposite is rarely the case. This may be an indication that for solutions
not in the true Pareto-optimal set (most of the solutions returned for these prob-
lems are not optimal), minimising preschedule makespan and worst case cost are
not conflicting objectives. On the contrary, working on two objectives may help
the algorithm escape local optima, since it needs to get stuck in both objectives in
order to really be trapped.

6.3.3 Discussion

The average performances achieved by the multi-objective algorithm compare
favourably to the average performances of the algorithms presented previously
in this chapter, so in this respect the algorithm performs well.

For the easy problems (la01, la02, la06, la07, la26 and la31) no
tradeoff between worst case cost and preschedule cost was identified.

For the hard problems (la27, la36, ft10 and ft20), the number of best
known non-dominated solutions indicate that for some problems, there may be
a tradeoff between preschedule cost and worst case cost. For these problems the
algorithm was unable to find solutions from the best known set of solutions in most
of the runs. Usually, only around two solutions were returned by the algorithm,
despite the best known non-dominated solution set for some of the problems being
larger. Although the algorithm can be said to outperform the algorithms from the
previous sections of this chapter, there is clearly room for improvement, both in
terms of the quality of the solutions found and the ability of the algorithm to cover
a wide part of the front of Pareto-optimal solutions.

6.4 Solving many problems at once

In order to work with the worst deviation performance of equation (4.3), knowl-
edge of C∗(b) is needed for all possible breakdowns b ∈ B. This requirement
makes a very high computational demand, since B can be large, and since find-
ing C∗(b) involves finding the optimal preschedule for scenario b. For a fixed
breakdown duration, working with one breakdown occurrence and integer break-
down times requires the generation of approximately mCmax(P ) schedules, where
Cmax(P ) is the minimal makespan for the problem and m is the number of ma-
chines. For the 10 × 10 sized problem ft10, this requires the solution of some
10000 job shop problems.
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Figure 6.7: A standard diffusion GA. The fitness evaluation is the same every-
where in the grid. Two positions are neighbours (and can mate, using the cross-
over operator) if they are connected with an arrow.

Solving several thousand NP-complete problems of even a moderate size to
guaranteed optimality is intractable, and will not be attempted here. Instead, two
approaches for approximating C∗(b) for all b will be given. The idea of section
6.4.1 is based on a diffusion GA, and has not been implemented or tested. In
section 6.4.2 an idea of reusing populations in a GA from problem to problem is
presented. This approach has been implemented and compared to a more standard
approach.

In section 6.5, the algorithm presented in section 6.4.2 is used to create worst
deviation performance schedules.

In the following sections, the notation C∗(w, t) is sometimes used to denote
C∗(b), where b is a breakdown happening at machine w, and time t. In these cases,
the breakdown duration τB is fixed, and does not need to be explicitly stated.

6.4.1 A diffusion genetic algorithm approach

It seems reasonable that the optimal preschedule for a breakdown happening at
machine w at time t is closely related to the optimal preschedule for a breakdown
happening at w at time t + 1. If the solution to one of the problems is known,
maybe it can be exploited in the search for the other solution. This can be used
in a diffusion based GA, searching for the optimal preschedules for all possible
breakdowns happening at a specific machine at the same time.

A standard diffusion model has a grid-structured population, in which mating
and selection take place in small neighbourhoods of the grid (illustrated in figure
6.7). The idea behind this structuring of the population is to slow down the dis-
semination of genetic material, and allow different parts of the population to focus
on different parts of the search-space. Usually, the grid is constructed in a toroidal
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x = breakdown time

y

Figure 6.8: The proposed diffusion GA in which the fitness evaluation depends
on the x-coordinate in the grid. The grid connectivity no longer “wraps around”
in the x direction.

fashion in order to avoid having a number of individuals on the edge of the grid.
In the standard diffusion models, the same fitness evaluation is used all over the
grid.

Since the preschedules optimal for breakdown times very close to each other
can be expected to be related to each other, it may make sense to vary the break-
down time used in fitness evaluation as a function of one of the grid coordinates,
e.g. x. A straightforward way of doing this could be simply to set the breakdown
time to x, which will be assumed in the rest of this section. The grid is illustrated
in figure 6.8. The idea in using this kind of population is to have a large popula-
tion in which different parts of the population focus on different breakdown times.
The individuals all interact and compete with each other, and hopefully C ∗(b) can
be found for all breakdowns happening on a specific machine in a single program
run.

The fitness evaluation is independent of the y-coordinate, so it makes sense to
“wrap around” the connectivity of the individuals in the y direction. It does not
make sense to wrap around in the x direction, since this would mean that sched-
ules supposed to be optimal for the lowest breakdown time would be connected
to schedules supposed to be optimal for the highest breakdown time. Since it is
probably a good idea to avoid individuals positioned on the edge as much as pos-
sible, it may make sense to add a few extra columns of individuals as “padding” at
the ends of the grid. The fitness evaluation of this padding should use the minimal
breakdown time at one end of the grid, and the maximal breakdown time at the
other end. Doing this will not avoid having individuals at the edge of the grid, but
it will avoid having all of the individuals of certain breakdown times at the edge.

The size needed for the grid depends on the problem being solved. Clearly
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there is no need to make the grid longer than the minimal makespan of the prob-
lem, since a breakdown happening after schedule completion can never affect the
schedule. In order to get a proper size of the grid, a good makespan schedule is
needed before the diffusion GA can be started. Since the range of possible break-
down times is large, a grid of this kind will have to be much larger than the grids
used in more standard applications of diffusion models. If a grid height of 10 is
used, for a problem with minimum makespan 1000, the population will consist of
10000 individuals.

The selection scheme used in an algorithm like this can be a crucial choice. In
diffusion models selection is done locally. In Mattfeld’s GA3 explained in section
3.2.2, an individual I chooses its mate from the four individuals surrounding it
(see figure 3.16). Assume the same is done in the proposed algorithm. In this al-
gorithm, the individuals above and below individual I will have a fitness based on
the same breakdown time as I , call this breakdown time x, while the individuals
to the left and right will have a fitness based on x − 1 and x + 1. This means
that individuals are not compared on an equal basis, since C∗(w, x− 1), C∗(w, x)
and C∗(w, x + 1) (and thus the best possible objective function value) may have
different values. This is potentially a serious problem. Consider what can happen
if C∗(w, x − 1) has a low value, while C∗(w, x) and C∗(w, x + 1) have high val-
ues. Assume that the individuals located at x-coordinates x − 1 and x + 1 have
all converged to their optimal solutions, while the individuals at x-coordinate x
are all suboptimal. When an individual with x-coordinate x chooses at mate from
its neighbours, it may be favourable to pick one with x-coordinate x or x + 1.
However, since the objective function value at x− 1 is better, the individuals with
this x-coordinate will always be favoured in selection. If the optimal schedule
for breakdown time x − 1 is very different from the optimal schedule for x, the
individuals at coordinate x may experience a constant influx of unsuitable genetic
material via crossovers with neighbours at x − 1.

This effect of distorted selection due to the slight differences in fitness evalua-
tion may mean that individuals located at positions in the grid where C∗(w, t) and
the optimal schedule change may not converge to the right schedule. A way of
solving this problem would be to reevaluate the objective function values of indi-
viduals during selection, but this could significantly increase the running times of
the algorithms. Another way of solving the selection distortion problem could be
to use a behavioural scheme like the one used in GA3 (page 59). Each individual
(or alternatively, each x-coordinate) could have a threshold setting the probability
of making a crossover with selection from a neighbourhood subset including the
neighbour to the left, and another threshold setting the probability of making a
crossover with selection from a neighbourhood subset including the neighbour to
the right. These thresholds should be adapted based on the history of previous
crossovers, such that e.g. an individual with a history of many previous unsuc-
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cessful crossovers with an individual on the left would tend not to make that kind
of crossovers. This kind of adaptiveness could lead to the formation of many al-
most non-interbreeding subpopulations positioned in bands over the length of the
grid.

The idea of letting the breakdown time depend on the position in the popula-
tion grid is related to the Terrain-Based Genetic Algorithm investigated by Gordon
et al. in [50], in which parameter values of a diffusion GA (mutation rates and de-
tails of the crossover operator) are allowed to depend on the position in the grid.
The objective of Gordon et al.’s approach is to let the algorithm itself find good
parameter values.

Assume that the proposed algorithm could be implemented without reevalu-
ation of objective functions to avoid distorted selection. A quick estimate of the
number of fitness evaluations needed to solve a 1000 makespan 10 × 10 problem
would be the following. In the proposed approach, 10 runs (one for each ma-
chine) of the algorithm are run. Assume a grid height of 10 is used (as in GA3),
meaning that the population size becomes 10000. Assume the algorithm is run for
100 generations, this means 106 fitness evaluations per run, a total of 107 fitness
evaluations. In addition to this, a conventional GA will need to be run to find the
makespan of the problem, but assuming this GA will need 104 fitness evaluations,
the running time contribution is negligible compared to the contribution of the
other part of the algorithm.

Assume the same problem is solved using a standard GA finding each C∗(b)
separately. Using a population size 100 GA, running 100 generations, since there
are approximately 10000 possible breakdowns, this will require 108 fitness eval-
uations. The proposed approach promises a running time improvement of ap-
proximately 90% in this example. An interesting question is, how the quality of
the solutions found compares in the two different algorithms, but this will not be
investigated in this thesis.

Alternatively, the standard GAs can each be run for 10 generations, letting the
standard GA approach use the same number of fitness evaluations as the diffusion-
based approach. But since 10 generations are usually not enough for a GA to
converge on a good optimum, the diffusion-based approach could be expected to
return better solutions.

6.4.2 A “population reuse” approach

In section 5.3.8, it was found that reusing the population when a GA was used for
rescheduling after a breakdown could decrease the number of fitness evaluations
needed to reach a certain level of performance. The idea of reusing the population
is applicable to the problem of finding C∗(b) for all b ∈ B as well. For breakdowns
happening on the same machine we expect the optimal schedule for breakdown
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Initialise(pop)
set breakdowntime = 0
EvaluateFitness(pop)

for(gen = 1;gen <PRE GENERATIONS;gen = gen + 1) do
Evolve(pop)
EvaluateFitness(pop)

od
set C(breakdowntime)=BestObjectiveValue(pop)

set breakdowntime = breakdowntime + 1
while(breakdowntime < minimal makespan) do

EvaluateFitness(pop)
for(gen = 0;gen <CYCLE GENERATIONS;gen = gen + 1) do

Evolve(pop)
EvaluateFitness(pop)

od
set C(breakdowntime)=BestObjectiveValue(pop)
set breakdowntime = breakdowntime + 1

od

set C(minimal makespan)=minimal makespan

Figure 6.9: The algorithm for finding C∗(b) for all b ∈ B on a specific machine
by reusing the population in an evolutionary algorithm.

time x to be related to the optimal schedule for x + 1. Therefore, it may be
beneficial to use a GA to find the schedule for x, and then reuse the population to
find a schedule for x + 1. After finding the schedule for x + 1, the population can
be used as a starting point to find the schedule for x + 2 etc. This process should
keep on running until x is higher than the minimal makespan of the schedule.

The algorithm has been stated in more detail in figure 6.9. The algorithm is
intended to find C∗(b) for all breakdowns in B happening at a specific machine.
The algorithm of the figure starts by using a pre-specified number of generations
(PRE GENERATIONS) for finding the schedule for breakdown time 0. After
the for-loop, the value found for C∗(b) is stored in C(breakdowntime), the
breakdown time is increased and the main loop entered. In the main loop the
fitness of the population is reevaluated (since we are now working on a differ-
ent breakdown), and the population is evolved for a number of generations (CY-
CLE GENERATIONS). At the end of the main loop, C(breakdowntime) is set
and breakdowntime increased. The main loop keeps running until breakdown-
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time reaches the minimal known makespan for the problem.
The minimal makespan for the problem can be pre-calculated by another al-

gorithm, but it can also be found during the run of the algorithm. During fitness
evaluation, the makespan of every schedule is calculated during schedule con-
struction. If the variable minimal makespan is updated during fitness evaluation
to always hold the lowest makespan found so far, at the end of the algorithm run
it should hold the minimum makespan for the current problem. This is so since
when the breakdown-time has increased beyond the completion of the final op-
eration on the machine affected by the breakdown, the selection pressure in the
algorithm will favour low makespan schedules.

The above algorithm has been implemented with the addition that before the
algorithm starts, a lower bound on after rescheduling performance is calculated
for all breakdown times. This is done using a simple bottleneck consideration for
each machine as done in GA3, but also considering the breakdown. The two for-
loops have been changed to also stop if the best performing individual in pop has
reached the lower bound. This should save some computational effort.

In what follows, this algorithm will be referred to as the reusing algorithm.
The details of the evolutionary part of the algorithm were as follows. The rep-
resentation was permutation with repetition. A crossover rate of 0.8 was used,
using GOX as the crossover operator. Individuals generated by crossover were
subject to mutation with probability 0.2. The mutation operator used was PBM,
and individuals not generated by crossover were generated by mutation. Every
generation the entire population was replaced except for an elite of one. Selection
was tournament based selection with a tournament size of two. Decoding was
the hillclimbing decoder of GA3. For rescheduling after a breakdown the same
hillclimber was used.

For comparison reasons, a GA finding each C∗(b) from scratch was also made.
This algorithm is termed the reinitialising algorithm. The details of the reinitial-
ising algorithm were exactly the same as described for the reusing algorithm, ex-
cept that the population was initialised at random every time a new breakdown
was considered.

Experiments

The algorithms were run on the problems la01, la02, la06, la07, la11,
la12, la16, la17, ft10 and ft20. The problems la26, la27, la31 and
la36 were not used in the experiments, since already for the smaller problems
the running times were excessive. The set of breakdowns B included breakdowns
on all machines with breakdown times in the range {0 . . . Cmax}, where Cmax is
the minimal makespan of the problem, and duration τB = 80.

Both algorithms were run 100 times on each problem. Each algorithm run



180 CHAPTER 6. WORST CASE PERFORMANCE

was allowed to run for the same number of generations; 100 to find the very first
schedule for each machine, and 10 generations for each breakdown. In an attempt
to estimate the true values of C∗(w, t), the lowest estimates found for C∗(w, t) in
all runs were identified as

G(w, t) = min
(

Areuse
1 (w, t) . . . Areuse

n (w, t),

Areinit
1 (w, t) . . . Areinit

n (w, t)
)

. (6.2)

Areuse
i (w, t) denotes the estimate of C∗(w, t) found in the ith run of the reusing

algorithm, and Areinit
i (w, t) denotes the corresponding estimate found by the reini-

tialising algorithm. The notation G(b) will sometimes be used instead of G(w, t)
to denote the best known makespan for breakdown b.

The behaviour of the two algorithms can be compared for four runs of each
algorithm for the ft10 and ft20 problems in figure 6.10. In each plot, the
makespans Areuse

1 (w, t) and Areinit
1 (w, t) found in one run of each of the algo-

rithms have been plotted as a function of the breakdown time t. The best known
values G(w, t) have also been plotted. From these plots it is clear, that the reini-
tialising algorithm has a quite erratic behaviour. In many cases the plot moves up
and down in a unpredictable fashion, often being quite far from the best known
makespan. This is probably because the reinitialising algorithm does not have
enough time to converge (recall that it is only allowed to run for 10 generations),
and because it starts converging on different optima in the different runs. The
performance of the reusing algorithm seems much more stable. The makespans
found for breakdown times close to each other seem highly correlated; usually
there is little or no difference between two adjacent breakdown times. Generally,
the reusing algorithm performs better than the reinitialising algorithm, since it
usually produces lower makespans. However, it is clear from the plots that the
reusing GA is prone to get trapped in local minima, as it often finds makespans
that are somewhat higher than the best known performance. For the easier prob-
lems (la01, la06, la07, la11, la12 and la07), the reusing algorithm more
consistently finds the best known solution. For these problems, the reinitialising
algorithm also generally comes closer to the best known solutions, but in many
cases it still performs worse than the reusing algorithm.

In order to do a better comparison of the two algorithms, the average estimates
of C∗(w, t) found by the two algorithms can be compared. The average estimate
of C∗(w, t) of algorithm x (where x is reuse or reinit) for a breakdown at machine
w and time t is

Ax(w, t) =
1

n

n
∑

i=0

Ax
i (w, t).

Plots of Ax(w, t) as a function of t for the problems and machines displayed in
figure 6.10 can be seen in figure 6.11. Plots for a few other problems are in fig-
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Figure 6.10: Typical plots of Areuse
i and Areinit

i , the results of individual runs on the ft10 and ft20 problems. The best
known makespans G(w, t) have also been plotted. The legend on the plots for ft20 is the same as on the ft10 plots.
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ure 6.12. The plots of figure 6.11 confirm the impression from figure 6.10, that
generally the reusing algorithm performs better than the reinitialising algorithm.
On the plots of figure 6.11, the average for the reusing algorithm is always sub-
stantially lower than the reinitialising algorithm. This also holds for the plots for
ft10 and la07 of figure 6.12, but it does not hold for the two plots for the la02
problem. In parts of these plots, the reinitialising algorithm has lower makespan
averages than the reusing algorithm, while in other parts of the same plots it is
the other way around. These plots are very atypical, but they can be taken as an
indication that sometimes it is better for the algorithm to start from scratch with a
new population, instead of having to find the way out of a local optimum from an
already converged population.

Inspecting the plots of G(w, t) in figures 6.11 and 6.12, it seems that in some
cases G(w, t) is relatively constant over t. This is the case for the plots for ft20
and la07. For other problems, G(w, t) exhibits a lot of variation over t, even
though usually it remains relatively constant within small ranges. From the plots
for all the problems and all the machines (not shown), it seems that for problems
with a job to machine ratio of three or higher (la06, la07, la11, la12 and
ft20), the G(w, t) functions are relatively constant over t, while for problems
with a job to machine ratio of one (la16, la17 and ft10) the G(w, t) plots are
more complex. For the la01 and la02 problems with a job to machine ratio
of two, one problem (la02) has complex G(w, t) plots, while the other problem
(la01) has relatively constant G(w, t) plots. This observation is probably related
to an observation often made in static scheduling: Generally problems with a high
job to machine machine ratio are much easier to solve than problems with a low
job to machine ratio [62].

It is hard to judge how different the true plots of C∗(b) are from the G(w, t)
estimates. The extremely rugged shape of G(w, t) within small intervals on the
la02 plots can be taken as an indication that in these intervals, G(w, t) is proba-
bly not equal to C∗(b). For some of the problems and some values of t and w, the
G(w, t) values are equal to the lower bounds calculated by the algorithm, or to the
optimal makespans for the problems without any breakdown. In these cases, the
G(w, t) estimates are known to be equal to C∗(b), but for other values of t and w,
the accuracy is unknown.

In order to allow a systematic comparison of the two algorithms for all the
problems and machines, the average makespans taken over the range of possible
breakdown times have been calculated for every machine and problem. These
averages are calculated as

Ax(w) =
1

Cmax

Cmax−1
∑

t=0

Ax(w, t),
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Figure 6.11: Plots of Ax(w, t), the average estimates of C∗(b) from the two algorithms for two machines of the ft10 and
ft20 problems (same problems as in figure 6.10). The legend on the plots for ft20 is the same as on the ft10 plots.
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Figure 6.12: Plots of Ax(w, t), the average estimates of C∗(b) from the two algorithms for a few problem/machine combi-
nations. The legend on the plot for ft10 is the same as on the other figures.
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where again x stands for reuse or reinit. In a similar way, the average best found
makespan can be calculated

G(w) =
1

Cmax

Cmax−1
∑

t=0

G(w, t).

The relative error on a specific problem and machine over all the runs of algorithm
x can now be defined

rx(w) =
Ax(w) − G(w)

G(w)

In the following table, the r values for the reusing and the reinitialising algo-
rithms can be compared. There is a subtable for every problem (the ten-machine
problems la16, la17 and ft10 each have two subtables). The subtables have
a column for every machine. The bottom row of each subtable reports the average
best makespan G(w), while the middle rows report the rx(w) values for the two
algorithms.

la01 M1 M2 M3 M4 M5

reusing 0.00% 0.27% 0.03% 0.21% 0.00%
reinitialising 0.00% 0.28% 0.51% 0.24% 0.00%
avg.best.makespan 687.03 666.00 667.57 666.19 746.00
la02 M1 M2 M3 M4 M5

reusing 0.86% 0.35% 0.92% 0.15% 0.96%
reinitialising 1.05% 1.21% 1.23% 0.18% 1.63%
avg.best.makespan 682.28 665.30 658.23 734.68 659.33
la06 M1 M2 M3 M4 M5

reusing 0.00% 0.00% 0.00% 0.00% 0.00%
reinitialising 0.00% 0.00% 0.00% 0.01% 0.00%
avg.best.makespan 1006.00 926.00 926.00 926.00 926.00
la07 M1 M2 M3 M4 M5

reusing 0.00% 0.01% 0.00% 0.08% 0.01%
reinitialising 0.00% 0.07% 0.10% 2.32% 0.01%
avg.best.makespan 968.11 890.44 890.00 890.00 890.18
la11 M1 M2 M3 M4 M5

reusing 0.00% 0.00% 0.00% 0.00% 0.00%
reinitialising 0.00% 0.00% 0.00% 0.26% 0.00%
avg.best.makespan 1302.00 1222.00 1222.00 1222.00 1222.00
la12 M1 M2 M3 M4 M5

reusing 0.00% 0.00% 0.00% 0.00% 0.00%
reinitialising 0.00% 0.00% 0.00% 0.00% 0.00%
avg.best.makespan 1106.21 1119.00 1039.00 1039.92 1039.00
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la16 M1 M2 M3 M4 M5

reusing 1.18% 1.56% 1.13% 2.38% 1.62%
reinitialising 3.00% 2.93% 3.17% 2.88% 2.89%
avg.best.makespan 959.94 948.73 979.74 950.82 950.17

la16 M6 M7 M8 M9 M10

reusing 1.37% 1.46% 1.26% 1.39% 1.23%
reinitialising 3.04% 3.24% 2.91% 2.75% 2.92%
avg.best.makespan 962.55 957.12 951.44 950.72 952.09

la17 M1 M2 M3 M4 M5

reusing 0.60% 0.42% 0.50% 0.76% 0.33%
reinitialising 0.95% 1.11% 0.88% 0.98% 0.82%
avg.best.makespan 791.28 792.95 786.46 827.33 788.36

la17 M6 M7 M8 M9 M10

reusing 0.92% 0.92% 0.41% 0.46% 0.72%
reinitialising 1.07% 1.43% 0.64% 0.75% 1.54%
avg.best.makespan 789.08 798.60 790.12 786.14 792.42

ft10 M1 M2 M3 M4 M5

reusing 2.06% 1.95% 2.45% 2.19% 2.21%
reinitialising 6.45% 6.33% 6.70% 6.38% 6.30%
avg.best.makespan 942.21 956.90 948.81 946.95 946.92

ft10 M6 M7 M8 M9 M10

reusing 1.87% 2.38% 1.71% 1.73% 2.20%
reinitialising 6.47% 6.53% 5.29% 6.18% 6.47%
avg.best.makespan 941.04 951.93 964.19 949.34 941.91

ft20 M1 M2 M3 M4 M5

reusing 1.10% 2.23% 0.17% 0.99% 2.95%
reinitialising 13.91% 15.34% 11.08% 9.50% 16.28%
avg.best.makespan 1174.16 1166.84 1197.97 1243.38 1174.71

Inspecting the numbers in the table, it becomes clear that there is a large vari-
ation from problem to problem. For the easiest problems, la01, la02, la06,
la07, la11 and la12, the relative errors are very low for both algorithms. For
the somewhat harder problems la16 and la17 (these problems are not really
hard, just a little harder than the previous problems), the relative errors are a little
higher than for the easiest problems, and there is a clear difference in the per-
formance of the two algorithms. For la16 and la17, the relative error of the
reinitialising algorithm is usually around twice as large as for the reusing algo-
rithm. Turning to the hard problems of ft10 and ft20, the relative errors are
much larger than they are for the other problems, and the performance difference
between the two algorithms is substantial. For ft10, the relative error of the
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reinitialising algorithm is typically 6%, while the error of the reusing algorithm is
always less than one third of this. For ft20, the relative error of the reinitialising
algorithm is in the range 9%-17%. The error of the reusing algorithm is often ten
times smaller than this.

For these experiments, the relative error of the reusing algorithm is never
higher than the relative error of the reinitialising algorithm, while the opposite
is often true. For easy problems there is only a small difference between the aver-
age performances of the algorithms, while for hard problems, the difference can
be large.

From the point of view of optimising worst deviation performance, the maxi-
mum difference between the C∗(w, t) estimates A(w, t) returned by the algorithm
and the true C∗(w, t) values may be of more interest than the average difference.
This is so, since in a worst deviation algorithm any error in A(w, t) will result
in lack of selection pressure on the schedules to minimise schedule cost for the
breakdown of machine w at time t. An error in the estimation of C∗(w, t) by ∆
can potentially lead to errors in the objective function evaluation Pdeviation(s) of
∆. Thus, it seems reasonable to expect a worst deviation algorithm working with
a C∗(b) estimate faulty by a value of ∆ to return solutions suboptimal by at least
∆.

For one run of either the reusing or the reinitialising algorithm on all the
machines of a problem, the maximum difference between the estimated values
A(w, t) and the best known values G(w, t) can be calculated

∆x
i = max

w∈{1...m}
max

t∈{0...Cmax−1}
Ax

i (w, t) − G(w, t),

where x is reuse or reinit. Note that as was done for relative errors, we are using
G(w, t) instead of C∗(w, t), since the latter is unknown. The average maximum
error over the experiments can be calculated

∆
x

=
1

n

n
∑

i=1

∆x
i .

∆
x

has been calculated for every combination of problem and algorithm, the re-
sults are in table 6.11 The table confirms the results found for relative errors, that
in some cases the reusing algorithm performs much better than the reinitialising
algorithm. However, it also seems clear that even though the average relative er-
rors reported earlier in this section seemed modest for the reusing algorithm, the
maximum errors are substantial for most of the problems.

Even though the reusing algorithm clearly performs better than the reinitial-
ising algorithm, there is room for improvement. The plots of figures 6.10-6.12
show that often the reusing algorithm gets stuck in local optima when t changes,
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la01 la02 la06 la07 la11
reusing 21.0 45.2 0.0 15.0 0.0
reinitialising 48.0 45.2 11.3 64.5 0.0

la12 la16 la17 ft10 ft20
reusing 0.0 75.3 51.0 84.7 71.9
reinitialising 37.8 105.3 76.2 140.3 283.1

Table 6.11: The ∆
x

values for the eight problems and the two algorithms.

which is probably the reason for the high ∆ values found. Overcoming this prob-
lem seems an interesting direction of research. When t changes, there must be a
tradeoff between reusing the knowledge present in the population and at the same
time allowing new solutions to be found by exploring other parts of the search-
space. Maybe adaptive control of mutation rates or speciation mechanisms can
help solve this problem.

6.5 Worst deviation performance

In order to minimise the worst deviation performance

Pdeviation(s) = max
b∈B

[C(s, b) − C∗(b)], C∗(b) = min
s∈S

C(s, b),

knowledge is needed of C∗(b) for every b ∈ B. This knowledge can be approx-
imated using the methods of the last section. Once the C∗(b) values have been
found, Pdeviation(s) can be minimised in the same way Pworst case(s) was min-
imised in section 6.1. In this section, the estimates of C∗(b) from the last section
will be used in coevolutionary and exact evaluation approaches similar to the ones
of section 6.1 to minimise worst deviation performance Pdeviation(s).

6.5.1 Performance of Cmax-minimised schedules

There is an upper limit on the worst deviation performance of a schedule produced
by minimising Cmax(s). Since the hillclimber used for rescheduling is guaranteed
to find a schedule which is at least as good as the schedule found using right-
shifting, we must have

Cmax(s, b) ≤ Cmax(s) + τB,
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where τB is the breakdown duration. Assuming s to be minimal with respect to
Cmax(s), this gives us

Pdeviation(s) = max
b∈B

(Cmax(s, b) − C∗(b))

≤ max
b∈B

(Cmax(s) + τB − C∗(b))

≤ τB (since C∗(b) ≥ Cmax(s)).

Inspecting table 6.11 of average highest estimation errors on C∗(b) for the reusing
algorithm, it becomes clear that an algorithm minimising Pdeviation(s), basing
the evaluation of Pdeviation(s) on the estimates returned by the reusing algorithm,
should not be expected to perform much better than an algorithm simply minimis-
ing Cmax, since in many cases the average highest estimation errors are of a size
comparable to the highest expected error of a Cmax-minimal schedule, τB = 80.

6.5.2 The algorithm

An algorithm for minimising Pdeviation(s) needs two steps:

Step 1: Identify (or approximate) C∗(b) for all b ∈ B.

Step 2: Locate a schedule minimising Pdeviation(s), using the C∗(b) values found
in step 1 to evaluate Pdeviation(s).

The two steps are independent, so any algorithm finding C∗(b) can be used in
step 1, and any algorithm minimising Pdeviation(s) using knowledge of C∗(b) can
be used in step 2. Note that an algorithm for minimising Prelative(s) can be con-
structed in exactly the same way; the only difference would be the minimisation
of Prelative(s) instead of Pdeviation(s) in step 2.

For step 1, the reusing algorithm of section 6.4.2 can be used, but the ∆ values
of table 6.11 indicate that if this is done, for many of the problems the schedule
returned by step 2 of the algorithm should not be expected to have a worst devi-
ation better than can be expected from an algorithm minimising Cmax, since ∆
and τB are of comparable magnitudes. Instead of having a “real” step 1, the al-
gorithm of this section will use as input for step 2 the G(w, t) values identified in
section 6.4.2. This estimate is probably reasonably accurate, and even if some of
the G(w, t) values are not accurate, the approach will still be useful for evaluating
the performance of the algorithm proposed for step 2.

The worst deviation performance of the schedules found by the algorithm
needs to be evaluated. Since exact knowledge of C∗(b) is not available, the per-
formance of the final schedule will be estimated as

Pdeviation(s)
.
= max

b∈B
(Cmax(s, b) − G(b)). (6.3)
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In this way, the same G(b) values used for minimisation are used for evaluating
the final solution. Clearly, a true evaluation of Pdeviation(s) would be preferable to
this, but unfortunately it is not possible at this stage. An advantage of evaluating
Pdeviation(s) as in (6.3) is that the performance of step 2 of the algorithm can be
more accurately evaluated, since the error introduced in step 1 is ignored.

Two algorithms will be tested for step 2. The coevolutionary and exact eval-
uation approaches of section 6.1.2 will be changed to work with worst deviation
performance. The performance of these algorithms will be compared to the worst
deviation performance of a standard algorithm minimising makespan.

The coevolutionary algorithm used in step 2 is similar to the algorithm of sec-
tion 6.1.2, except for three small changes. Firstly, the objective function for sched-
ules is changed to maxb∈PB

[Cmax(s, b) − G(b)] instead of maxb∈PB
Cmax(s, b).

Secondly, the asymmetric fitness evaluation is still used for the breakdowns, but
the assignment is based on the values of Cmax(s, b) − G(b) instead of Cmax(s, b).
Thirdly, the rounding of breakdown times is changed. For two breakdowns b1

happening at machine w at time t and b2 happening at the same machine at time
t + 1 and affecting the same operation, we know that Cmax(s, b2) ≥ Cmax(s, b1)
because of the argument on page 155. Thus provided that G(b2) ≤ G(b1), we can
increase the breakdown time from t to t + 1, since we must have

Cmax(s, b2) − G(b2) ≥ Cmax(s, b1) − G(b1).

In the algorithm this rounding is repeated iteratively until no further rounding is
possible. The rounding of breakdown times increases the precision of the objec-
tive function evaluation in the algorithm, since it makes the evaluations focus on
harder breakdowns. The rounded value for t is only used in the evaluation against
the schedule s; it is not written back in the breakdown gene.

The exact evaluation algorithm used in step 2 is similar to exact evaluation al-
gorithm of section 6.1.2, except that the objective function maxb∈B [Cmax(s, b) −
G(b)] is used instead of maxb∈B Cmax(s, b). The selection of breakdowns to be
tested against a specific schedule is changed such that only breakdowns that can-
not be rounded up (by increasing t to t + 1) are used.

All other details of the algorithms, such as rescheduling, representation, de-
coding, genetic operators and parameter values were exactly as described in sec-
tion 6.1.2. The algorithm minimising Cmax was identical to the preschedule per-
formance GA used in section 6.1.2.

6.5.3 Experiments

Since the limitations of worst case performance stated in section 6.1 do not ap-
ply to worst deviation performance, the experiments were conducted allowing the
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Problem (12+6) (16+8) (20+10) (24+12) Presch. perf. Exact eval.
la01 55.3 54.5 53.7 52.5 71.0 48.7
la02 74.9 73.9 72.4 72.0 75.1 66.3
la06 27.9 23.5 15.5 13.0 68.4 0.2
la07 77.2 77.1 77.1 76.8 76.8 76.0
la11 35.9 27.9 22.3 15.4 70.0 0.1
la12 24.7 16.9 12.1 13.3 66.3 0.0
la16 105.7 103.8 101.5 101.5 93.0 92.9
la17 89.0 88.2 87.5 87.7 83.3 82.9
ft10 117.2 115.7 115.6 115.2 107.6 106.0
ft20 105.3 104.0 102.8 103.4 104.4 97.9
Average 71.3 68.5 66.1 65.1 81.8 57.1

Table 6.12: Average worst deviation performances.

breakdowns to happen on all machines and at all times prior to the minimal make-
span for the given problem.

The coevolutionary algorithm was run using the parameter values (µ + λ) =
(12 + 6), (16 + 8), (20 + 10) and (24 + 12). The maximum values of µ and λ
were increased when comparing to the experiments on worst case performance,
since the breakdown sets used in the experiments on worst deviation performance
are larger, meaning that a larger search-space has to be covered by the breakdown
population.

Each of the coevolutionary, exact evaluation and preschedule performance
GAs were run 400 times on the problems, and the average worst deviation per-
formance was calculated for every combination of algorithm and problem.

The average worst deviation performances are in table 6.12. Inspecting the
table it becomes clear, that there is a huge variation from problem to problem. For
some of the problems, the best worst deviations are very low; the average worst
deviations of la06, la11 and la12 using the exact evaluation algorithm are
all very close to zero. For other problems the average worst deviations are quite
high, consider la16, la17, ft10 and ft20, in which the average worst case
deviations for all the algorithms are higher than the theoretical upper bound for
a makespan minimal schedule (τB = 80). Comparing the average performances
of the preschedule performance and exact evaluation GAs, it seems that for the
problems in which the exact evaluation GA finds a high worst deviation value
(la02, la07, la16, la17, ft10 and ft20), the preschedule performance
GA finds a value which is a slightly higher. For the problems in which the exact
evaluation algorithm finds low values (la01, la06, la11 and la12), the exact
evaluation GA clearly outperforms the preschedule performance GA, which finds
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Problem la01 la02 la06 la07 la11
Best performance 45 60 0 76 0
Problem la12 la16 la17 ft10 ft20
Best performance 0 75 80 65 62

Table 6.13: The lowest worst deviation performances found for the ten problems.

substantially higher worst deviation performances. The high worst deviation per-
formances returned by all of the algorithms for some of the problems may be an
indication that for these problems it is not possible to find schedules with a worst
deviation performance much better than what is always attainable by minimising
Cmax.

Comparing the performance of the coevolutionary GA to the exact evalua-
tion GA, the coevolutionary GA can be seen to yield substantially higher worst
deviation performances than the exact evaluation algorithm, even for the highest
settings of (µ + λ). The performance difference between the two algorithms is
much larger than it was for the worst case performance experiments of section
6.2.1. The reason for this is probably two-fold. The sizes of breakdown sets B
are much larger in the worst deviation performance experiments than they were in
the worst case performance experiments. Even though the breakdown population
sizes have been increased in the worst deviation experiments, they have not been
scaled up as much as the B search-spaces. Besides of this, the rounding up of
breakdown times possible for worst deviation performance does not always allow
as much rounding up as worst case performance does, meaning that a better sam-
pling of the breakdown times may be necessary. Comparing the worst deviation
performance of the coevolutionary GA to the performance of the preschedule per-
formance GA, the experiments indicate that for the problems for which the exact
evaluation GA finds low worst deviation schedules the coevolutionary algorithm is
also capable of outperforming the preschedule performance GA. For the problems
for which the exact evaluation algorithm and the preschedule performance algo-
rithm perform equally well, in some cases the coevolutionary algorithms return
schedules that perform a little worse than the preschedule performance algorithm.

Considering the best found worst deviations for the ten problems (table 6.13),
there is again a huge variation from problem to problem. For some of the prob-
lems, the lowest worst deviations are remarkably low. For the problems la06,
la11 and 12 the best found worst deviations are 0, which means that for these
problems a schedule which is optimal for all possible breakdowns exists. For
some of the other problems, the lowest worst deviation is equal or very close to
the upper limit of τB = 80.

The average processing times of the algorithms are displayed in table 6.14.
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Problem (12+6) (16+8) (20+10) (24+12) Presch. perf. Exact eval.
la01 27.0 32.7 38.1 43.1 1.5 144.7
la02 37.6 48.3 58.6 47.3 1.3 422.0
la06 40.9 50.4 59.9 68.0 3.2 183.6
la07 42.3 52.7 63.2 75.3 3.3 211.5
la11 57.0 71.4 87.9 98.8 4.7 332.9
la12 55.5 68.4 82.5 94.5 4.3 316.7
la16 57.2 71.8 90.8 104.8 3.4 2394.2
la17 57.3 78.2 97.2 115.5 3.4 2398.9
ft10 62.2 82.4 98.5 118.6 4.0 3060.7
ft20 68.8 87.4 99.8 117.5 5.8 769.1
Average 50.6 64.4 77.7 88.3 3.5 1023.4

Table 6.14: Average processing times (CPU-seconds) in the worst deviation ex-
periments.

The processing times include only the time used in “step 2” of the algorithm, so
the time needed to estimate C∗(b) is not included. Inspecting the running times,
it becomes clear why the performance differences between the exact evaluation
GA and the coevolutionary algorithm are so large; for some of the problems the
(la16, la17 and ft10), the CPU-time consumption of the exact evaluation al-
gorithm is more than twenty times that of the coevolutionary algorithm with the
highest (µ + λ)-setting. Considering this, it may be possible to improve perfor-
mance of the coevolutionary algorithm to the same level as the exact evaluation
algorithm, while still maintaining a lower processing time. By inspecting some of
the individual runs of the coevolutionary GA it was found that the main reason for
failure of the algorithm was when it returned a schedule evaluated to have a low
worst deviation on the breakdown population. Using an exact evaluation (in order
to evaluate the performance of the algorithm) the individual would subsequently
be found to have a higher worst deviation performance. Thus, the performance
of the coevolutionary GA could be improved by improving the precision of the
objective evaluation of the schedules. This could be done by gradually increasing
(µ + λ) during the run, or by simply using exact worst deviation evaluations very
late in the run, or on schedules evaluated to have a low worst deviation perfor-
mance on the breakdown population.

However, it is debatable how much effort it is worth putting into improving
the performance of the coevolutionary algorithm at this stage; the time needed
to create a proper estimate of C∗(b) (“step 1” of the algorithm) will probably be
larger than the time needed to run the exact evaluation algorithm.
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6.6 Conclusion

A minimax formulation of job shop scheduling to minimise worst case and worst
deviation cost has been presented. Two coevolutionary algorithms estimating the
performance of the schedules by evaluating them against an evolving population
of breakdowns has been developed. These algorithm have been compared to al-
gorithms minimising preschedule cost, and algorithms evaluating the exact worst
case or worst deviation cost of the schedules.

For worst case performance, the coevolutionary algorithm was found to create
schedules with a substantially lower worst case cost than the preschedule per-
formance algorithm. The coevolutionary approach was also found to be more
efficient than the exact evaluation approach when considering the time needed to
reach a certain level of performance, or the probability of reaching a certain level
of performance with a given amount of processing time.

For worst deviation performance, the coevolutionary algorithm was not able
to reach the same level of performance as an exact evaluation approach, but it
performed better than the preschedule performance algorithm in most cases. The
coevolutionary algorithm was much faster than the exact evaluation algorithm,
and it can probably be improved to return schedules of the same quality as the
exact evaluation approach, while still using less computational resources.

The tradeoff between worst case cost and preschedule cost has been investi-
gated using a multi-objective approach, which incorporated parts of the coevo-
lutionary algorithm. The experiments indicated that for some problems, there is
a tradeoff between worst case cost and preschedule cost, while for other prob-
lems no tradeoff was found. In terms of average performance, the multi-objective
algorithm was found to be able to compete with the preschedule performance al-
gorithm as well as the coevolutionary algorithm using approximately the same
number of calls to the rescheduler.

Two approaches to estimate the best achievable performance C∗(b) for all
breakdowns b possible for a problem have been presented. One of the approaches,
a genetic algorithm reusing the schedule population from breakdown to break-
down, was implemented and tested. The algorithm was found to clearly outper-
form a more standard approach using the same number of fitness evaluations.
However, the results returned by the population reuse approach were found to
be too imprecise to be useful for minimising the worst deviation performance of
schedules, so instead the best results found in all experiments were used in the
experiments. The approaches for estimating C∗(b) seem an interesting line of
new research, especially since the method may also be useful in other fields than
scheduling. Performance measures such as worst deviation or relative worst devi-
ation may also be used when designing e.g. mechanical structures, in which case
knowledge of a huge number of solutions to closely related problems will also be
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needed. The approaches presented here will probably be extendable to cover that
kind of problem.
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Chapter 7

The Economic Lot and Delivery
Scheduling Problem

The economic lot delivery and scheduling problem, ELDSP, was first defined by
Hahm and Yano in [54]. Consider a production plant supplying components to
an assembly facility. The plant produces several different components that are
used at a constant rate at the assembly facility. The plant has one machine that
produces all of the components one at a time. The components are accumulated
and shipped to the assembly in deliveries. The plant incurs holding costs for the
components waiting to be sent to the assembly, sequence independent setup costs
when changing the production of the machine, production costs when making the
components and delivery costs when sending a batch to the assembly. The task
in the ELDSP is to find a production sequence and a cycle time that minimise the
total costs at the plant.

This problem is relevant in supply chains in industries, such as the car industry.
The problem formulation is based on the idea of minimising holding and trans-
portation costs, as emphasised in just-in-time production. In the present formula-
tion, the supplier plant is captive of the assembly; it only produces components to
one assembly. Such suppliers exist in the car industry as well as other industries
[54].

In this chapter a new polynomial time algorithm guaranteed to find optimal
solutions to the ELDSP will be presented. The algorithm is a significant im-
provement over the previously known best algorithm for the problem, a heuristic
published by Hahm and Yano in [54] that does not guarantee optimal solutions.
The outline of the chapter is as follows. In the first section the problem will be
defined. In the following sections a few basic properties of it will be discussed,
and the heuristic proposed in [54] described. The new algorithm is presented in
section 7.4. In section 7.5 problem properties that make the heuristic of [54] find
suboptimal solutions are discussed, and an experimental comparison between the
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Figure 7.1: Inventory levels for two production cycles. The problem has three
components, labelled 1, 2 and 3. The actions of the machine are indicated on the
time axis. i indicates idle, s indicates setup, px indicates production of compo-
nent x.

two algorithms performed.

7.1 Problem formulation

Since the demand for the different components is constant, it seems natural to
solve the problem by using a cyclic production of the components. Every time the
cycle completes, there will be a delivery to the assembly. Within each cycle, each
component needs to be produced in the amount specified by the demand. Because
of the setup costs and setup times when changing the production it can never
be advantageous to produce the same component twice during the same cycle.
Because of the holding costs, it will always be optimal to start production at the
latest possible time within each cycle. Thus, what is needed to solve a problem
instance is the cycle time and the production sequence within each cycle. Since
the objective is to minimise the total cost, there is a tradeoff between the setup and
transportation costs on one side and the holding costs on the other. Minimising
setup and transportation costs requires production of large batches meaning long
cycle times, while minimising holding costs means keeping inventory levels low,
i.e. short cycle times. The inventory levels of a few components in a schedule
have been visualised in figure 7.1.

The following notation will be used:

J : Number of components.

A: Transportation cost per delivery.
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Dj: Demand for component j per unit time.

Sj: Setup cost for component j.

sj: Setup time for component j.

pj: Production time per unit of component j.

hj: Inventory holding cost of component j per unit per unit time.

T : Time cycle length. A decision variable.

q = (q[1], q[2], . . . , q[J ]): Production sequence vector. q contains a permutation
of the numbers 1, . . . , J . A decision variable.

The ELDSP optimisation problem can be stated: Minimise the total cost per
time TC:

TC =
S + A

T
+ (α + β)T + Z1(q) + Z2(q)T, (7.1)

where

S =

J
∑

j=1

Sj (7.2)

α =
1

2

J
∑

j=1

Djhj(1 − pjDj) (7.3)

β =

J
∑

j=1

D2
jpjhj (7.4)

Z1(q) =

J
∑

i=1

Dq[i]hq[i]

J
∑

j=i+1

sq[j] (7.5)

Z2(q) =
J
∑

i=1

Dq[i]hq[i]

J
∑

j=i+1

Dq[j]pq[j] (7.6)

subject to

T ≥ τmin =

∑J
j=1 sj

1 −∑J
j=1 pjDj

.

The last inequality simply ensures that the cycle time is long enough to meet
the demand. The first term in equation (7.1) reflects the total transportation and
setup costs at the supplier, while the second term ((α + β)T ) reflects the holding
cost at the assembly and the holding costs at the supplier during production. The
remaining terms in the equation reflect the holding costs after production at the
supplier.
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7.2 Basic results

According to [4] and [54], given a production sequence the corresponding optimal
production cycle time T can be found in time O(J), using equation (5) of [54].
This can be shown by taking the derivative of TC with respect to T :

∂TC

∂T
= −S + A

T 2
+ α + β + Z2(q).

Since ∂2TC
∂T 2 can be seen to be positive and T is positive, the minimum of TC with

respect to T for a fixed production sequence q can be found at:

∂TC

∂T
= 0 ⇒ T = T ∗(q) =

√

S + A

α + β + Z2(q)
. (7.7)

In the following, T ∗(q) will be used to denote the optimal cycle time for process-
ing sequence q. The equation also gives a trivial upper bound on the optimal T
value. Since Z2 ≥ 0, any optimal cycle time will satisfy

T ≤ τmax =

√

S + A

α + β
.

Given a cycle time T the corresponding optimal production sequence q can be
calculated in time O(J log J). The only sequence-dependent parts of the TC
definition is Z1(q) + Z2(q)T , so in order to minimise TC, we must minimise this
expression:

Z1(q) + Z2(q)T =
J
∑

i=1

(

Dq[i]hq[i]

J
∑

j=i+1

TDq[j]pq[j] + sq[j]

)

=

J
∑

i=1

(

−Dq[i]hq[i](Fi − T )
)

,

where Fi is the flow time of component i. From the last part of the equation it is
evident, that this problem is equivalent to minimising a weighted flow time prob-
lem with weights wi = −Dihi and processing times ti = TpiDi + si. According
to theorem 2.4 of [4], this problem can be solved to optimality using a processing
sequence satisfying

tq[1]
wq[1]

≤ tq[2]
wq[2]

≤ . . . ≤ tqn

wqn

⇒

Tpq[1]Dq[1] + sq[1]

hq[1]Dq[1]

≥ Tpq[2]Dq[2] + sq[2]

hq[2]Dq[2]

≥ . . . ≥ Tpq[J ]Dq[J ] + sqn

hq[J ]Dq[J ]

. (7.8)
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sort sequence q(0) in non-increasing order of pj

hj

set n = 0
do

set n = n + 1

set T(n) = max
(

τmin,
√

S+A
α+β+Z2(q(n−1))

)

make sequence q(n) from T(n) satisfying eq.(7.8)
while (q(n) 6= q(n−1) ∧ T (n) 6= τmin)
return T(n) and q(n)

Figure 7.2: Hahm and Yano’s heuristic algorithm for the ELDSP.

Given a cycle time T , this sequence can easily be constructed in time O(J log J),
since it requires the sorting of J elements. The optimal processing sequence for
cycle time T found in this way will be denoted q∗(T ) in the following.

7.3 Previous work

Two algorithms have previously been proposed to solve the ELDSP. An iterative
improvement heuristic was developed in [54], while an evolutionary algorithm
was suggested in [67]. Hahm and Yano’s heuristic will be described in the next
section. The evolutionary algorithm will not be dealt with in detail, since for the
formulation of the ELDSP considered here it will be outperformed in terms of
solution quality (and possibly speed as well) by the algorithm presented in section
7.4 and in terms of speed by the heuristic of [54].

7.3.1 Hahm and Yano’s heuristic

Hahm and Yano’s heuristic [54] is displayed in figure 7.2. The heuristic is an
iterative improvement algorithm in which the production sequence and cycle time
are changed alternately until no further improvement is made. The first sequence
q(0) is chosen such that the first cycle time T(1) is known to be higher than the
optimal cycle time. It is shown in [54] that the sequence T(1), T(2), . . . will be
monotonically decreasing, until the algorithm stops in a global or local optimum.
Furthermore, the final value of T(n) cannot be smaller than the optimum T value.

Hahm and Yano also create a modified version of the algorithm, which is sim-
ilar to the one of figure 7.2, except that in the first step the sequence q(0) is ordered
in reverse order; non-decreasing in pj

hj
. This algorithm works in exactly the same

way as the above algorithm, except that it can be shown to approach the optimal
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min τVV i Vm-1 maxτ

0 m-1q2q q1 q

V

qi

1 2 V3

Figure 7.3: The search-space of T is divided into a number of intervals. Inside
each interval a specific processing sequence is optimal.

cycle time T from below. Hahm and Yano show that if both algorithms return the
same T the optimal solution has been found. If they return different T values, a
bound on the error of the solution returned by the algorithm of figure 7.2 can be
calculated.

Hahm and Yano did experiments for 72 randomly generated problem instances
with three, six or nine components. They reported that for all these instances, the
algorithm of figure 7.2 was able to locate the optimal solution.

7.4 The new algorithm

Assume a production cycle time T is given. The corresponding production se-
quence q is easily found using equation (7.8). Suppose the cycle time is changed
to T ′ = T + δ. The optimal production sequence q ′ corresponding to T ′ will be
equal to q if equation (7.8) holds for T ′ and q. Due to the continuous nature of
equation (7.8), this means that for certain intervals [Tmin,i, Tmax,i] of T the optimal
production sequence qopt is fixed. This has been illustrated in figure 7.3.

Due to the structure of equation (7.8), only a small number of intervals on T
can exist. Each interval endpoint Tend corresponds to two lines of equation (7.8)
crossing each other. These interval endpoints can be found by solving a number
of equations of the form

TpiDi + si

hiDi
=

TpjDj + sj

hjDj
.

Since at most 1
2
J(J − 1) different values of T can be found in this way, at most

1
2
J(J − 1) + 1 different intervals can exist. Furthermore, these interval endpoints

can easily be found in time O(J2). Once the endpoints have been found, the
intervals on T can be found by sorting the endpoints. Once the intervals have been
constructed, the optimal production sequence q for each interval [Tmin,i, Tmax,i]
can be found using equation (7.8) with any value t ∈ (Tmin,i, Tmax,i). When the
optimal sequence has been found for the interval [Tmin,i, Tmax,i], the optimal value
of T within the interval will either be Tmin,i, Tmax,i or be given by equation (7.7).
Since the intervals are known to cover the entire search-space of T , we are assured
the global optimum will be found in this way. The algorithm has been written in
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a more structured way in figure 7.4. A similar approach was used by Goyal, [51],
to find an efficient algorithm for the Joint Replenishment Problem.

Time used in steps 4 and 6 is O(1). Time used in step 1 is O(J). Time used
in step 3 is O(J2logJ). Time used inside the loop of step 5 is O(J log J). Time
used in step 2 is O(J2). Time used in step 5 is O(J3 log J). The loop in step 5
runs for O(J2) iterations, each iteration taking O(J log J) time. The time usage
in step 5 is dominant, and the overall time used by the algorithm is O(J 3 log J).

7.4.1 Improving the algorithm runtime

The dominant contribution to the algorithm time usage is the calculation of the
optimal processing sequence inside the main loop (step 5). This calculation can
be improved by a bookkeeping scheme, making it possible to construct the new
optimal processing sequence for the new interval from the processing sequence of
the old interval. In the following, we assume for simplicity that only two com-
ponents are interchanged when going from one interval to another (removing this
assumption is not difficult).

Keep a datastructure E with changes in the processing sequence for each inter-
val endpoint. Ei = (ci,1, ci,2) indicates that when going from interval i to i+1 the
processing order of components ci,1 and ci,2 must be exchanged. The datastructure
E can be initialised in steps 2 and 3 in the algorithm.

Keep a datastructure P with information about the current location of each
component in the processing sequence. If q[i] = c then P [c] = i. With this
information available the optimal processing sequence in interval i + 1 can be
constructed from the optimal processing sequence q of interval i by interchanging
the values of qP [ci,1] and qP [ci,2]. Since at most 1

2
J(J −1) such interchanges can be

done during the entire run of the algorithm, and since the new datastructures can
be initialised in time O(J2), the log J factor vanishes.

After this improvement, the time complexity of the algorithm is O(J 3), and
the dominant contributions to the runtime are the calculations of Z1(q) and Z2(q)
during calculation of optimal cycle time and total cost in the main loop (step 5).
The cost of these calculations is O(J), since each component has to be consid-
ered once in equations (7.5) and (7.6). This can be improved to O(1) in a manner
similar to the one used to improve the calculation of the optimal processing se-
quences. If we denote by q the optimal processing sequence at interval i and by q ′

the optimal processing sequence at interval i+1, the values Z1(q
′) and Z2(q

′) can
be calculated from Z1(q) and Z2(q). Since we assume that only two consecutive
components at positions P [ci,1] = a and P [ci,2] = a + 1 are interchanged when
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1. Calculate minimal allowable cycle time τmin and maximum optimal cycle
time τmax:

τmin =

∑J
i=1 si

1 −∑J
j=1 pjDj

τmax =

√

S + A

α + β
.

2. For each pair of components i, j solve equation

TpiDi + si

hiDi
=

TpjDj + sj

hjDj

to find T . Store the T values larger than τmin and smaller than τmax in V .

3. Insert τmin and τmax in V and sort it in increasing order, removing dupli-
cates. Set n = size(V ). The values in V correspond to Tmin,i and Tmax,i.

4. Set TCbest = ∞.

5. for (i = 1;i < n − 1;i = i + 1) {
• set T = 1

2
(Vi + Vi+1).

• Calculate optimal sequence q∗(T ) corresponding to T , using equation
(7.8). q is guaranteed to be the optimal production sequence for all
cycle times T ∈ [Vi, Vi+1].

• Calculate optimal cycle time T ∗(q) corresponding to q, using equation
(7.7).

• Calculate total costs TCT = TC(q, T ), TCVi
= TC(q, Vi) and

TCVi+1
= TC(q, Vi+1) using equation (7.1).

• if TCT < TCbest ∧ Vi < T < Vi+1 then
set TCbest = TCT , Tbest = T, qbest = q.

• if TCVi
< TCbest then

set TCbest = TCVi
, Tbest = Vi, qbest = q.

• if TCVi+1
< TCbest then

set TCbest = TCVi+1
, Tbest = Vi+1, qbest = q.

}
6. return Tbest and qbest.

Figure 7.4: The polynomial time algorithm to solve the ELDSP.
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going from i to i + 1, the only entries changed in q are qa and qa+1:

Z1(q
′) =

J
∑

i=1

Dq′i
hq′i

J
∑

j=i+1

sq′j

= Z1(q) − Dqa
hqa

J
∑

j=a+1

sq[j] − Dqa+1hqa+1

J
∑

j=a+2

sq[j]

+Dqa+1hqa+1

J
∑

j=a+1

sq[j] + Dqa
hqa

J
∑

j=a+2

sq[j]

= Z1(q) + Dqa+1hqa+1sqa+1 − Dqa
hqa

sqa+1

Z2(q
′) =

J
∑

i=1

Dq′i
hq′i

J
∑

j=i+1

Dq′j
pq′j

= Z1(q) − Dqa
hqa

J
∑

j=a+1

Dq[j]pq[j] − Dqa+1hqa+1

J
∑

j=a+2

Dq[j]pq[j]

+Dqa+1hqa+1

J
∑

j=a+1

Dq[j]pq[j] + Dqa
hqa

J
∑

j=a+2

Dq[j]pq[j]

= Z1(q) + Dqa+1hqa+1Dqa+1pqa+1 − Dqa
hqa

Dqa+1pqa+1

Since each such interchange can be done in time O(1) and since there are at most
O(J2) interchanges, the dominant contribution to time complexity now becomes
step 3, the sorting of the interval endpoints. The time complexity of the final
algorithm is O(J2 log J).

7.5 Comparison to Hahm and Yano’s heuristic

The heuristic presented by Hahm and Yano in [54] is able to solve the majority of
problems to optimality. It does not guarantee optimal solutions, but it was able to
find the optima of all 72 problems investigated by Hahm and Yano. In this section,
insight will be given into how and why the heuristic fails in some cases.

With respect to the cycle time T , the heuristic approaches the optimum from
above. It works by alternately calculating new values for T and q. This process
is illustrated in figure 7.5. The total cost curves of three sequences q1, q2 and q3

have been indicated on the figure, as functions of the cycle time T . The solutions
considered by the algorithm have been marked by crosses, and the moves made
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T

23q q

1q

TC

Figure 7.5: The iterative improvement done by Hahm and Yano’s algorithm. For
this example, the algorithm finds the global optimum.

visualised with dashed arrows. In the example of figure 7.5 the algorithm manages
to find the optimal solution.

Hahm and Yano’s algorithm keeps running until it finds a processing sequence
q′ for which

q′ = q∗(T ∗(q′)). (7.9)

If a suboptimal solution satisfies this, the algorithm may get stuck in it. So, the
algorithm fails if it finds a processing sequence q which is suboptimal, but for
which the optimal choice of cycle time does not lead to a new processing sequence
in the next step of the algorithm. This kind of local optimum is illustrated on figure
7.6, along with the behaviour of the algorithm.

We introduce the following notation

• (T ∗(qg), qg) denotes the global optimum.

• (T ∗(ql), ql) denotes a local optimum if one exists.

• O = {q | ∃T : q = q∗(T )} the set of processing sequences optimal for
some cycle time.

• C1 = {q | ∃T > T ∗(qg) : q = q∗(T )} the set of processing sequences in O
with optimal cycle times greater than the globally optimal cycle time.

In the following, a number of characteristics that make the heuristic fail will
be discussed. Problems that make the heuristic fail but do not satisfy the following
may exist.

The total cost curve of a production sequence q ∈ C1 can basically be posi-
tioned in two different ways relative to the globally optimal production sequence.
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TC

T

q

23q q

1

Figure 7.6: The iterative improvement done by Hahm and Yano’s algorithm. In
this example, the algorithm gets trapped in a local optimum.

T

TC qg

q

T*(q)Th T

TC

q

q i

T*(q)

qg

Figure 7.7: Illustration of the two ways the total cost curve of a production se-
quence q ∈ C1 can be placed relative to the total cost curve of the globally optimal
qg.
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These have been illustrated on figure 7.7. In the left plot, the optimal choice of
T for sequence q places the total cost below the total cost curve for the optimal
sequence qg. It will not be possible for Hahm and Yano’s heuristic to move from
q to qg directly; if the algorithm cannot move to any other production sequence ei-
ther, q may act as a local minimum, trapping the algorithm. Production sequences
placed in this way satisfy

∃Th : T ∗(qg) < Th < T ∗(ql) and TC(Th, qg) = TC(Th, q), (7.10)

that is a local maximum separating the two minima exists at Th, between the cycle
times optimal for the two production sequences.

In the right plot of figure 7.7 the total cost curves of q and qg have been plot-
ted in solid. The optimal choice of T for sequence q places the total cost above
the total cost curve for the optimal sequence qg. Thus, it will be possible for the
heuristic to move directly from q to qg unless there is another production sequence
qi with a total cost curve located below the total cost curve of q at T ∗(q). Such a
total cost curve has been plotted dashed on the plot. In order for a production se-
quence q placed in this way not to allow a direct move to the optimum production
sequence, the following must be satisfied.

∃qi ∈ C1 : TC(T ∗(q), qi) < TC(T ∗(q), qg) < TC(T ∗(q), q). (7.11)

Since Hahm and Yano’s algorithm cannot move directly from any production se-
quence in C1 satisfying (7.10) or (7.11) to the optimal production sequence, the
algorithm is guaranteed to fail on a problem that satisfies (7.10) or (7.11) for all
q ∈ C1, provided that the heuristic does not initialise q(0) to the optimal sequence.
Note that the heuristic may also fail for problems not satisfying (7.10) or (7.11)
for all sequences in C1; the heuristic may also fail if some of the sequences do not
satisfy (7.10) or (7.11), as long as the sequences actually considered during the
algorithm run do.

In order to generate problems for which the heuristic fails we will now focus
on problems for which all the production sequences in C1 are likely to satisfy
(7.10). Requiring (7.10) to hold for all q ∈ C1, solving for Th and using (7.7)
leads to

∀ q ∈ C1 :

√

A + S

α + β + Z2(qg)
<

Z1(qg) − Z1(q)

Z2(q) − Z2(qg)
<

√

A + S

α + β + Z2(q)
. (7.12)

This requires Z1(qg) < Z1(q) and Z2(qg) > Z2(q) for all q ∈ C1, which is the
same as

∀q ∈ C1 :
J
∑

i=1

Dqg [i]hqg [i]

J
∑

j=i+1

sqg [j] <
J
∑

i=1

Dq[i]hq[i]

J
∑

j=i+1

sq[j] (7.13)
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Number of Number of Value of Number of Maximum Average
components problems F problems relative TC relative TC

generated satisfying difference difference
(7.13) (7.14)

2 10000000 10 26525 1.018% 0.226%
2 10000000 60 7295 1.235% 0.289%
3 10000000 2 12194 0.519% 0.061%
3 10000000 30 660 1.040% 0.202%
5 10000000 1 1617 0.191% 0.014%
5 10000000 6 72 0.359% 0.085%
7 10000000 1 99 0.062% 0.009%
7 10000000 4 4 0.113% 0.058%

Table 7.1: Results of the experiments on randomly generated problems.

∀q ∈ C1 :
J
∑

i=1

Dqg [i]hqg [i]

J
∑

j=i+1

Dqg [j]pqg[j] >
J
∑

i=1

Dq[i]hq[i]

J
∑

j=i+1

Dq[j]pq[j]. (7.14)

Inequalities (7.13) and (7.14) are likely to hold if there is a component r for which
sr is much larger than si and pr is much smaller than pi for all i ∈ {1..J} \ {r}.
Component r may end up being scheduled late in the sequence because of the
small pr, while it should be scheduled early because of the large sr.

Problems likely to satisfy (7.13) and (7.14) were generated at random by draw-
ing A from U(0, 5), and for each component but one drawing Si from U(0, 1), si

from U(0, 0.25) and hi from U(0, 1). pi and Di were generated from uniform
distributions with values satisfying 0 < piDi < 1

J
in order to insure feasibil-

ity. For one component r, sr and pr were generated using sr = F
∑

j 6=r sj and
pr = 1

F
minj 6=r pj, where F is a parameter used to increase the probability of gen-

erating problems satisfying (7.13) and (7.14). The problems generated were then
solved using Hahm and Yano’s heuristic and the new algorithm. In the experi-
ments, a number of values in the range {1, .., 100} were tried out for the value of
F . The properties of the problems were found to depend on F , so in the following
results are reported for a few values of F for every problem size.

The experiments revealed that it is quite hard to generate problems for which
the Hahm and Yano heuristic fails, and when it fails the total cost of the solu-
tion found by the heuristic is only slightly higher than the cost of the globally
optimal solution. A summary of the experiments can be found in table 7.1. The
experiments indicated that the probability of generating a problem for which the
heuristic fails decreases as the number of components increase. This is probably
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because the size of the set C1 increases with the number of components, leading
to a more smooth total cost landscape, which is easier searchable for the heuris-
tic. Even for a very small number of components the probability of generating a
problem on which the heuristic fails is very small; for a two component problem
it is less than one percent regardless of the setting of F . The experiments also
indicate that for the problems solved sub-optimally by the heuristic, the distance
to the optimum in terms of total cost is very small. The averages reported in the
last column of table 7.1 were taken over the problems satisfying (7.13) and (7.14)
and hence solved sub-optimally by the heuristic, so the average cost-difference
over all the problems generated is much smaller.

None of the experiments succeeded in generating a problem instance in which
the solution produced by the Hahm and Yano heuristic was suboptimal by more
than 1.3%. This despite a lot of effort was put into trying out different ways
of generating problem parameters. Some of the problems were even used as a
starting point for a simple (1 + 1)-evolutionary strategy to increase the relative
error produced by the heuristic. Based on these experiments it is tempting to
conjecture that something in the structure of the ELDSP makes it impossible to
generate problems with very bad locally optimal solutions.

7.5.1 Which algorithm is preferable?

Comparing the new algorithm to the heuristic, it has been found that for the vast
majority of problems the heuristic manages to find the global optimum. However,
it has also been demonstrated that problems do exist for which the heuristic finds
suboptimal solutions, while the new algorithm is guaranteed to always find the
optimum. In terms of running time there is no reason to prefer the heuristic over
the exact algorithm, since both algorithms are very fast1, and since for real world
problems once a solution to a problem has been found, it can be expected not to
change for some time, meaning that the need to solve problems of this kind will
not be frequent.

1The current implementation of the new algorithm (the O(J 3 log J) version of figure 7.4)
solves around 30000 seven component problems or 3000 thirty component problems in one second
on a 250MHz SGI O2 computer. The heuristic is even faster.
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Conclusion

This thesis has presented work and progress relevant to stochastic scheduling, evo-
lutionary computation, and static scheduling. The main contributions of this work
are in the area of stochastic job shop scheduling, for which we have presented a
number of new ideas.

The neighbourhood based robustness approach has been demonstrated to sig-
nificantly improve the robustness and flexibility of job shop schedules facing ma-
chine breakdowns when average performance is considered. We have shown that
the method works for a range of problem types. It has been demonstrated to
increase schedule robustness and flexibility with regard to four different resche-
duling methods for makespan, maximum tardiness and loose summed tardiness
problems. For tight summed tardiness and total flowtime problems the method
has been shown to improve schedule robustness and to a smaller extent flexibility.
The neighbourhood based robustness approach produces schedules of a quality
equal to the schedules produced by minimising the slack based robustness mea-
sure, a state-of-the-art method for makespan job shops facing breakdowns.

A coevolutionary approach for creating schedules guaranteeing a certain level
of worst case makespan performance for a set of scenarios has been developed.
For medium or large sized problems, the approach is able to reach a specific level
of performance faster and more reliably than a more standard approach. The pos-
sibility of a tradeoff between worst case performance and static schedule perfor-
mance has been investigated using a multi-objective algorithm. The existence
of the tradeoff has been found to be problem dependent; for some of the prob-
lems the worst case optimal schedule was also optimal in terms of static schedule
performance, while for others no single solution simultaneously optimised both
measures.

The coevolutionary algorithm used for worst case performance scheduling is
a special case of a new algorithm generally applicable to minimax optimisation
problems. The algorithm is also applicable on problems from outside the schedu-
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ling domain, and has been demonstrated to be capable of solving problems with-
out a certain symmetric property, something previously published coevolutionary
algorithms for minimax problems have been unable to do.

In order to be able to work with worst deviation performance, we have pre-
sented a genetic algorithm for solving a large number of closely related scheduling
problems. To our best knowledge, no algorithms for doing this have previously
been published. The algorithm has been demonstrated to solve easy problems
well, while it does not perform well on hard problems. The algorithm used for
solving many related scheduling problems is quite general; it can be used for
other applications in which a set of closely related problems need to be solved.
The experiments indicate that the method is prone to get stuck in local minima,
so an interesting line of research is the development of techniques for preventing
this.

The results from the algorithm for solving many related problems simulta-
neously have been used to produce schedules with a good worst deviation per-
formance. The worst deviation was based on the makespan criterion, and a hill-
climber was used for rescheduling. This was done using two algorithms, one
using an exact evaluation approach, and one using the coevolutionary minimax
algorithm. The experiments showed that in many cases the exact evaluation al-
gorithm was able to produce schedules with a much better worst deviation than a
standard scheduling approach, while never being inferior to it. The experiments
also suggested that there is a huge variation in the best achievable worst deviation
performance from problem to problem. For some problems the best worst devia-
tion is only slightly better than what can be achieved using a standard scheduling
algorithm considering only preschedule cost, while for other problems a much
better worst deviation can be achieved. When comparing the performance of the
coevolutionary algorithm to the exact evaluation algorithm, the coevolutionary al-
gorithm was found to be much faster than the exact evaluation algorithm, while
being slightly inferior in terms of schedule quality.

A new algorithm for solving the economic lot and delivery scheduling problem
has been presented. The algorithm runs in polynomial time, and guarantees that
the global optimum of the problem will be found. No previously published algo-
rithm has been able to do this. The algorithm has been compared to a previously
published heuristic in a computational study, and has been found to outperform
the heuristic in some cases.
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[9] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolu-
tionary Computation, chapter C2 - Selection. IOP Publishing and Oxford
University Press, 1997.

[10] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolution-
ary Computation, chapter C6 - population structures. IOP Publishing and
Oxford University Press, 1997.

[11] J. C. Bean, J. R. Birge, J. Mittenthal, and C. E. Noon. Matchup sched-
ules with multiple resources, release dates and disruptions. Operations
Research, 39:470–483, 1991.

[12] D. Beasley, D. R. Bull, and R. R. Martin. Reducing epistasis in combinato-
rial problems by expansive coding. In S. Forrest, editor, The Proceeding of
the Fifth International Conference on Genetic Algorithms, pages 400–407.
Morgan Kaufmann Publishers, 1993.

[13] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics
of Operations Research, 23(4):769–805, November 1998.

[14] C. Bierwirth. A generalized permutation approach to job shop scheduling
with genetic algorithms. OR Spektrum, 17:87–92, 1995.

[15] C. Bierwirth, H. Kopfer, D. C. Mattfeld, and Ivo Rixen. Genetic algorithm
based scheduling in a dynamic manufacturing environment. In Proceedings
of IEEE Conference on Evolutionary Computation, pages 439–443, 1995.

[16] C. Bierwirth and D. C. Mattfeld. Production scheduling and rescheduling
with genetic algorithms. Evolutionary Computation, 7(1):1–17, 1999.

[17] C. Bierwirth, D. C. Mattfeld, and H. Kopfer. Permutation representations
for scheduling problems. In Proceedings of the 4th Conference on Parallel
Problem Solving from Nature. Springer Verlag, 1996.

[18] J. Błazewicz, K. H. Ecker, G. Schmidt, and J. Wȩglarz. Scheduling in
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Z. Michalewicz, editors, Handbook of Evolutionary Computation, chapter
C6.1. IOP Publishing and Oxford University Press, 1997.

[76] W. N. Martin, J. Lienig, and J. P. Cohoon. Island(migration) models: evo-
lutionary algorithms based on punctuated equilibria. In T. Bäck, D. B. Fo-
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Mean Square Error, 27
Memetic algorithm, 49
Minimax Problem, 21, 151

Asymmetric Fitness Evaluation,
25

Symmetric evaluation algorithm,
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Multi-objective optimisation, 15, 167
Mutation, 8, 9

Nervousness, 68
Non-dominated Sorting GA, 16
NSGA-II, see Non-dominated Sort-

ing GA

Open Shop, 34

Pareto Optimality, 15
PDRS, see Priority Dispatch Rules
Performance Measures, 35

Regular, 37
Permutation with repetition, 51
PFSL, see Preprocess First Schedule

Later
Phenotype, 9
Population, 7
Preprocess First Schedule Later, 85
Preschedule , 68
Preschedule Performance GA, 154
Priority Dispatch Rules, 63
Processing Sequence, 39

Random Sample GA, 162
Recombination, 9
Reinitialising algorithm, 179

Relative Worst Deviation Performance,
71

Rescheduling, 101
Using search, 70

Rescheduling Problem, 68
Respectful Genetic Operator, 10
Reusing Algorithm, 179
Right-shifting, 70
Robust Discrete Optimisation, 81
Robustness, 72
Robustness GA, 95
Robustness Measures, 93

RCmax
(s), 94

RCmax,est(s)-estimate, 97
RF∑(s), 142
RLmax

(s), 134
RL∑(s), 139
Slack based, 84

Rolling time horizon, 87

Scenario, 21, 68
Schedule, 34, 39

Active, 37
Flexible, 73
New, 68
Non-delay, 37
Robust, 72
Semi-active, 37

Scheduling, 33, 67
Branch and Bound, 61
Deterministic, 33
Evolutionary, 47
Game-like, 88
Mattfeld’s GA3, 50
PDRS, 63
Shifting Bottleneck, 63
Slack-based, 82
Stochastic, 67
Tabu Search, 62

Schema, 10
Schema Theorem, 11
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Semi-active decoding, 51
Shifting Bottleneck Heuristic, 63
Slack, 82
Slack Hypothesis, 144
Stability Radius, 88
Stochastic Performance, 70

Tabu Search, 62
Tail of an operation, 41
Tardiness, 36
Technological Constraints, 33
Total Flow-time, 36, 142
Total Lateness, 36
Total Tardiness, 36, 138
Transportation cost, 198
Tunable decoder, 45

Worst Case Performance, 71, 151
Worst Deviation Performance, 71, 188
Worst Tardiness, see Maximum Tar-

diness
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Appendix A

Proof of the minimax equivalence

In this appendix the equivalence of the equations

∃x∗ ∈ X, s∗ ∈ S : F (x∗, s) ≤ F (x∗, s∗) ≤ F (x, s∗) ∀x ∈ X, s ∈ S (A.1)

and
min
x∈X

max
s∈S

F (x, s) = max
s∈S

min
x∈X

F (x, s) (A.2)

will be proved.

Assume (A.1) prove (A.2), (A.1) ⇒ (A.2).

Assume (A.1). Consider maxs∈S F (x1, s). We must have

max
s∈S

F (x1, s) ≥ F (x1, s
∗) ≥ F (x∗, s∗).

Since this holds for all x1 ∈ X , and since (A.1) tells us that maxs∈S F (x∗, s) =
F (x∗, s∗), we must have

min
x∈X

max
s∈S

F (x, s) = F (x∗, s∗).

In the same way, it can be shown that

max
s∈S

min
x∈X

F (x, s) = F (x∗, s∗).

Assume (A.2) prove (A.1), (A.2) ⇒ (A.1)

Assume (A.2). This means that the minimax and maximin problems are solvable,
hence we can assume without loss of generality that

• (x1, s1) is the solution to minx∈X maxs∈S F (x, s).
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• (x2, s2) is the solution to maxs∈S minx∈X F (x, s).

Since (x1, s1) solves minx∈X maxs∈S F (x, s), we must have

∀s ∈ S : F (x1, s) ≤ F (x1, s1). (A.3)

Since (x2, s2) solves maxs∈S minx∈X F (x, s), we must have

∀x ∈ X : F (x, s2) ≥ F (x2, s2). (A.4)

Because we are assuming (A.2), we must have F (x1, s1) = F (x2, s2), which with
equations (A.3) and (A.4) leads to

F (x1, s1) = F (x2, s2) = F (x1, s2). (A.5)

Coupling this with (A.3) and (A.4), we see that (x1, s2) also solves both
maxs∈S minx∈X F (x, s) and minx∈X maxs∈S F (x, s), and that (A.1) must hold
for (x1, s2).



Appendix B

Barbosa’s minimax algorithm and
experiments

The coevolutionary minimax algorithm used by Barbosa in [5, 6, 7] is the follow-
ing:

create initial populations PX(0) and PS(0)
for each individual x ∈ PX set h[x] = maxs∈PS

F (x, s)
for each individual s ∈ PS set g[s] = minx∈PX

F (x, s)
for k = 1, 2, . . . , max cycles do

for i = 1, 2, . . . , max gen X do
generate P ′

X from PX based on fitness h[x]
set PX = P ′

X

for each individual x ∈ PX set h[x] = maxs∈PS
F (x, s)

od
for i = 1, 2, . . . , max gen S do

generate P ′
S from PS based on fitness g[s]

set PS = P ′
S

for each individual s ∈ PS set g[s] = minx∈PX
F (x, s)

od
od
return x0 ∈ PX with minimal h[x0]

and s0 ∈ PS with maximal g[s0]

For the experiments the algorithm was implemented with the same details as
the algorithms presented in section 2.4.3. The most notable difference from Bar-
bosa’s implementation is the use of a real-valued encoding; Barbosa used a gray
encoding (thus, the genetic operators are also different). However, this difference
should not be expected to change the behaviour of the algorithm in a profound
way.

231



232 APPENDIX B BARBOSA’S MINIMAX ALGORITHM

The algorithm has been tested on the problems of section 2.4.3 with differ-
ent settings for max cycles, max gen X and max gen S. The parameters were
always so that the total number of individuals tested was equal to the number
of individuals tested in the experiments of section 2.4.3. This means that in the
experiments the Barbosa algorithm used twice as many calls to the objective func-
tion F (x, s) as the Herrmann and the asymmetric algorithms. In the following the
notation max cycles × (max gen X + max gen S) is used to describe the pa-
rameter settings of each run. Averages are over 1000 runs. The results are in the
following tables, along with the average errors of Herrmann’s algorithm and the
asymmetric evaluation algorithm, which have been included to ease comparison.

The saddlepoint function
Parameters MSE(x) MSE(s)
20 × (2 + 8) 68.2416 E-12 0.4696 E-12
20 × (3 + 7) 16.9736 E-12 0.6477 E-12
20 × (4 + 6) 4.8903 E-12 1.3026 E-12
20 × (5 + 5) 2.4300 E-12 2.2293 E-12
50 × (2 + 2) 1.9158 E-12 2.1266 E-12
20 × (6 + 4) 1.2138 E-12 4.9054 E-12
20 × (7 + 3) 0.8869 E-12 17.4306 E-12
20 × (8 + 2) 0.5024 E-12 102.2954 E-12
Herrmann 2.1545 E-12 2.0414 E-12
Asymmetric 2.0540 E-12 2.0262 E-12

The Twoplanes function
Parameters MSE(x) MSE(s)
20 × (2 + 8) 0.1420 3.8116
20 × (3 + 7) 0.2035 2.0667
20 × (4 + 6) 0.1059 1.9008
20 × (5 + 5) 0.0103 2.2645
50 × (2 + 2) 0.2091 11.5237
20 × (6 + 4) 0.0144 1.7771
20 × (7 + 3) 0.0374 2.5138
20 × (8 + 2) 0.3593 3.4261
Herrmann 0.0000 10.9874
Asymmetric 0.0037 0.0170
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The damped sinus function
Parameters MSE(x) MSE(s)
20 × (2 + 8) 0.8725 32.4230
20 × (3 + 7) 1.7462 23.1327
20 × (4 + 6) 1.6672 20.5224
20 × (5 + 5) 2.1443 17.6714
50 × (2 + 2) 2.5375 34.9545
20 × (6 + 4) 2.3374 15.8595
20 × (7 + 3) 3.6256 16.5533
20 × (8 + 2) 5.0788 18.5681
Herrmann 6.2345 37.7239
Asymmetric 0.3506 0.7884

The damped cosine function
Parameters MSE(x) MSE(s)
20 × (2 + 8) 1.7520 0.1107
20 × (3 + 7) 3.0075 0.2942
20 × (4 + 6) 2.2827 0.8826
20 × (5 + 5) 1.9143 2.0342
50 × (2 + 2) 4.8721 0.4976
20 × (6 + 4) 2.1082 2.9088
20 × (7 + 3) 5.3575 4.8862
20 × (8 + 2) 5.3842 4.7691
Herrmann 14.3860 0.1592
Asymmetric 0.0371 0.2116

From the experiments on the simple saddlepoint function it is evident that
in some cases the precision of the return values x and s can be controlled by
max gen X and max gen S; for this function it is clear that the error on x (s)
decreases as max gen X (max gen S) increases. However, for the other prob-
lems this does not seem to be the case. This is probably because in most cases the
Barbosa algorithm fails to converge to the correct solution.

Comparing the performance of the Barbosa algorithm to the other algorithms
it is evident that in many cases the the Barbosa algorithm obtains errors signif-
icantly lower than Herrmann’s algorithm. This indicates that in some cases the
algorithm performance is increased by keeping one population frozen while the
other population evolves.

Comparing the Barbosa algorithm to the asymmetric evaluation algorithm it is
clear that the asymmetric evaluation algorithm outperforms the Barbosa algorithm
by far for all problem but the naive saddlepoint function, in which no performance
difference was expected.
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Appendix C

NP-completeness of rescheduling
problems

In this appendix it will be proven that finding the makespan optimal solution to a
breakdown rescheduling problem Presch generated from the original problem P is
NP-hard, even if the makespan optimal solution to P is known, if the number of
machines m is greater than or equal to 3.

It is outlined that the proof can easily be extended to cover maximum tardiness
or summed tardiness problems, and that it also holds for rescheduling problems
generated by appearing jobs.

C.1 NP-completeness of the makespan rescheduling
problem

The proof is by reduction of the 0-1 knapsack problem (which is known to be
NP-complete, [89]) to a rescheduling problem. The 0-1 knapsack problem is the
following: Given a set of natural numbers A = {a1, a2, . . . , ak} and a natural
number c determine whether there is a subset Z ⊆ A such that c =

∑

ai∈Z ai. If
this is the case, the 0-1 knapsack problems is said to be solvable.

To make the reduction, we first construct an ordinary makespan job shop prob-
lem based on the knapsack problem:

• The problem has three machines, M1, M2 and M3.

• The problem has k + 1 jobs, J1, J2, . . . , Jk, Jk+1, where k is the size of set
A.

• Each of the first k jobs consists of one operation to be processed on machine
M1, with processing time τi1 = ai.
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Figure C.1: Gantt chart of example optimal schedule for a constructed make-
span problem. The problem corresponds to the 0-1 knapsack problem A =
{1, 2, 3, 3}, c = 7. The numbers represent processing times of the operations.
Operations belonging to job Jk+1 have been marked with an x.

• Job Jk+1 consists of three operations, the first ok+1,1 to be processed on M2

with processing time τk+1,1 = 1, the second to be processed on M1 with
processing time τk+1,2 = 1, the third to be processed on machine M3 with
processing time τk+1,3 =

∑

ai∈A ai − c.

An optimal schedule to this problem can be easily constructed by processing
the first operation of job Jk+1 on machine M2 at time 0, processing any operation
of jobs J1 − Jk with processing time less than c − 1 at M1 at time 0 (we assume
without loss of generality that such an operation exists. If this is not the case the
0-1 knapsack problem is trivial), processing ok+1,2 of job Jk+1 and the operations
of the remaining jobs J1 −Jk after this operation has finished. Operation ok+1,3 is
processed on M3 when oi+1,2 has finished. This gives a makespan of

∑

ai∈A ai+1,
which is clearly optimal, since there is no idle time on M1. A schedule of this kind
is illustrated on figure C.1.

A rescheduling problem to solve the 0-1 knapsack problem can now be con-
structed by making a breakdown of machine M2 at time t = 0. The reschedu-
ling problem is constructed in such a way that it has a solution with makespan
∑

ai∈A ai + 1 if and only if the 0-1 knapsack problem can be solved. The break-
down downtime is chosen to be τbreakdown = c − 1. Note that the rescheduling
problem can be constructed using both preemptive and non-preemptive break-
downs, since no operation is being processed at the time of the breakdown. Be-
cause of the construction of the problem the rescheduling problem can still be
solved to makespan

∑

ai∈A ai + 1 if and only if the 0-1 knapsack problem can be
solved.
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Figure C.2: Gantt chart of example optimal schedule for the makespan reschedu-
ling problem corresponding to the problem of figure C.1. The numbers represent
processing times of the operations. Operations belonging to job Jk+1 have been
marked with an x. The black triangles and the dashed box box of M2 represent
the breakdown. Since the makespan of this schedule is the same as the makespan
of the schedule on figure C.1, the 0-1 knapsack problem is solvable.

Suppose the knapsack problem can be solved. This means that a set Z ⊆ A
exists, such that

∑

ai∈Z = c. This means that a set of operations can be found
to be processed on M1 such that there is no idle time prior to the processing of
ok+1,2, which is processed on M1 at time c. After this all the other operations of
jobs J1 − Jk are processed on machine M1, and processing of operation ok+1,3 of
job Jk+1 is started on machine M3 at time c + 1. Machines M1 and M3 complete
at time

∑

ai∈A ai +1, while M2 completes somewhat earlier. The makespan of the
schedule is

∑

ai∈A ai + 1. A schedule of this kind is illustrated on figure C.2.
Suppose there is no solution to the 0-1 knapsack problem. This means no

subset Z can be found such that
∑

ai∈Z ai = c. This means it is impossible to
avoid idle time on M1 if operation ok+1,2 is to be processed on M1 at time c. If
M1 is idle for any length of time the makespan of the schedule will be more than
∑

ai∈A ai +1. If idle time is avoided by starting ok+1,2 later than time c processing
of ok+1,3 on machine M3 will complete later than

∑

ai∈A ai + 1, and again the
makespan will be higher than

∑

ai∈A ai + 1.

C.2 Complexity of other rescheduling problems

The makespan rescheduling problem can easily be reduced to a worst tardiness
rescheduling problem. The problem constructed in the previous section is aug-
mented with due dates of D =

∑

ai∈A ai + 1 for all jobs. The preschedule con-
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structed above is not tardy, and thus optimal. The rescheduling problem can be
solved without tardiness if and only if the 0-1 knapsack problem can be solved,
since a non-tardy schedule is equivalent to a schedule of makespan

∑

ai∈A ai + 1.
Note also that when tardiness problems are considered, the result can be extended
to cover problems with two machines, since machine 3 and the third operation of
Jk+1 are not needed in the NP-completeness proof for a tardiness problem if the
due date of job Jk+1 is set to c + 2. The same argument can be used for summed
tardiness and number of tardy jobs rescheduling problems. Thus, all these differ-
ent kinds of tardiness rescheduling problems are NP-complete, even if the optimal
schedule is known prior to the breakdown.

The result can also be extended to cover rescheduling problems with new jobs.
Instead of a breakdown, at new job Jk+2 can be added. The job should have two
operations: ok+2,1 to be processed on M2 with τk+2,1 = c − 1 and ok+2,2 to be
processed on M3 with τk+2,2 = 2. Since ok+2,1 will play the part of the breakdown
in the previous proof, it is easy to realize that the rescheduling problem can only
be solved to makespan

∑

ai∈A ai + 1 (or without tardiness) if the 0-1 knapsack
problem is solvable.



Appendix D

Proof that the job shop problem
facing breakdowns does not satisfy
the symmetric property

In this appendix it is demonstrated that the job shop scheduling problem facing
preemptive breakdowns does not necessarily satisfy the symmetric property (2.6).
That is

min
s∈S

max
b∈B

C(s, b) = max
b∈B

min
s∈S

C(s, b)

does not necessarily hold. The proof is by counterexample.
Consider a three machines, two jobs job shop scheduling problem under the

makespan criterion. The details of the problem can be deducted from the sched-
ules of figure D.1. The scenario set B is defined to hold the two scenarios

b1: Machine 1 breaks at time 5 for a duration of 4 time-units.

b2: Machine 3 breaks at time 5 for a duration of 4 time-units.

For schedules facing these two breakdowns, the optimal schedules using right-
shifting rescheduling (as well as any other reasonable kind of rescheduling, since
right-shifting provides optimal new schedules for b1 and b2) are the schedules on
figure D.1. Schedule A is optimal for b2 (makespan 11), while schedule B is
optimal for b1 (makespan 10). The makespans for the different combinations of
schedules and breakdowns are listed in the table:

Cmax(s, b) b1 b2 maxb∈B Cmax(s, b)
s =schedule A 12 11 12
s =schedule B 10 13 13
mins∈S Cmax(x, s) 10 11
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Figure D.1: Left: Schedule A, optimal for scenario b2 (a breakdown on machine
M3). Right: Schedule B, optimal for scenario b1 (a breakdown on machine M1).

The table is equivalent to the table in section 2.4.1 except for an additive con-
stant. As can be observed from the table, mins∈S maxb∈B Cmax(s, b) = 12, while
maxb∈B mins∈S Cmax(s, b) = 11, so in this example clearly equation (2.6) does
not hold.



Appendix E

Calculating errors bars on observed
distribution functions

The calculation of error bars on the plots of chapter 5 is used to ensure the statisti-
cal significance of some of the results of that chapter. The error bars are calculated
in the following way.

Consider an experiment that gives a random number as a result. This exper-
iment is repeated N times, each experiment being independent, and the results
are recorded. The number of observations nx being less or equal to some number
x is binomially distributed, call the probability parameter px, so nx ∼ b(N, px).
Clearly, px is equal to the x-percentile of the distribution function of the original
experiment. Thus, if we need to calculate a confidence interval on the x-percentile,
all we need to do is calculate a confidence interval on px.

Calculating a confidence interval [px,min; px,max] on the probability parameter
of a binomial distribution is straightforward. According to [19] a good approxi-
mation of the confidence interval is:

px,min =
1

n + u2
1−α/2

[

(nx − 1
2
) +

u2
1−α/2

2
−

u1−α/2

√

(nx − 1
2
)(N − nx + 1

2
)

N
+

u2
1−α/2

4

]

,

px,max =
1

n + u2
1−α/2

[

(nx − 1
2
) +

u2
1−α/2

2
+

u1−α/2

√

(nx − 1
2
)(N − nx + 1

2
)

N
+

u2
1−α/2

4

]

,
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where u1−α/2 denotes the (1 − α/2)-percentile of the standard Gaussian distribu-
tion and α is the confidence level of the interval. The approximation is acceptable
if N px,min(1− px,min) > 9 and N px,max(1− px,max) > 9. This is the case for all
the error bars calculated in chapter 5.



Appendix F

The maximum lateness hillclimbers

The Lmax- and RLmax
-hillclimbers (in the following called the lateness hillclimb-

ers) work in almost the same way as the Cmax and RCmax
-hillclimbers (the make-

span hillclimbers). As a first step a schedule is produced from the gene using
semi-active decoding. This semi-active schedule is then improved by a hillclimber
using a neighbourhood based on the same ideas as the neighbourhood used by the
makespan hillclimbers.

In order to properly describe the hillclimbers, we need to introduce some no-
tation. Denote the last operation of job Jj as Ej , the maximum lateness and max-
imum tardiness of a schedule can be calculated

Lmax = max
j=1...n

(h(Ej) + τEj
− dj) (F.1)

Tmax = max(Lmax, 0).

In this way, the Lmax (or Tmax) job shop problem can be formulated as a graph
problem in which the task is to choose the Hamiltonian paths (the machine pro-
cessing sequences) such that (F.1) is minimised.

In order to estimate the effect of hillclimbing moves on schedule performance,
the lateness tail l(o) of an operation in a semiactive schedule s will be defined.
l(o) satisfies

Lmax(s
′) ≥ l(o) + σ

where s′ is the schedule which has the same processing orders as s, and which is
semiactive except that h(o) has been increased by σ (the beginning of processing
of o is delayed by σ). For σ large enough, Lmax(s

′) = l(o) + σ holds. The
lateness tail will later be used to estimate the effect of hillclimbing moves in the
schedule. When an operation o is delayed (h(o) is increased), it can affect the
schedule performance in these ways:
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1. Operation o is the last operation of a job Jj (i.e. o = Ej). In this case we
define

lJ(o) = h(o) − τo − dj,

where τo and dj are the processing time of o and the due date of Jj .

2. It is not the last operation of a job. The delay of o may delay the processing
of its job successor SJ(o). In this case define

lJ(o) = l(SJ(o)) + h(SJ(o)) − h(o) − τo.

3. It has a machine successor SM(o). The delay of o may cause SM(o) to be
delayed. Define

lS(o) = l(SM(o)) + h(SM(o)) − h(o) − τo.

4. If the machine successor SM(o) is undefined, lS(o) is set to −∞.

The lateness tail is defined to be

l(o) = max(lJ(o), lS(o)).

As for makespan schedules, an operation is termed critical in a schedule if it can-
not be delayed without worsening schedule performance. Operation o is critical
if l(o) = Lmax. The set of critical operations in a schedule is called the critical
path. A number of consecutive critical operations on the same machine are called
a critical block.

Based on these critical blocks, the neighbourhood described in section 3.2.2
can be used on maximum lateness problems. Using the lateness tails, the estimates
on makespan after a hillclimbing move can easily be changed to cover maximum
lateness. The effect of a “small block” move (figure 3.11) is estimated as follows.
The heads of o1 and o2 after the move can be calculated

h′(o2) = max(h(PM(o1)) + τPM(o1), h(PJ(o2)) + τPJ(o2)),

h′(o1) = max(h′(o2) + τo2 , h(PJ(o1)) + τPJ(o1)).

The lateness tail of o1 and o2 after the move can be calculated

l′(o1) = max(lJ(o1), l(SM(o2)) + h(SM(o2)) − h′(o1) − τo1),

l′(o2) = max(lJ(o2), l
′(o1) + h′(o1) − h′(o2) − τo2).

The maximum lateness of the schedule after the move Lmax(s
′) is bounded by

Lmax(s
′) ≥ Lmax,bound(s

′) = max(l′(o1), l
′(o2))
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If o1 or o2 is still critical after the move, Lmax(s
′) = max(l′(o1), l

′(o2)) will be
the case. Bounds on schedule performance for the other moves can be made in
similar ways.

It is easy to realize that the properties guaranteeing schedule feasibility after
moves made by the makespan hillclimber must also hold for a hillclimber using
the same principle on a maximum lateness problem. In order to realize this, con-
sider that for every critical block in a maximum lateness schedule an equivalent
makespan schedule and problem can be constructed holding the same moves, with
the estimates on makespan after the move being equal to the estimates on maxi-
mum lateness in the lateness problem. Since the chosen move is guaranteed to be
feasible in the makespan schedule, it must be feasible in the maximum lateness
schedule also.

The construction of the RCmax
-hillclimber was made based on the Cmax-hill-

climber, and the same approach can be followed for constructing a RLmax
-hill-

climber based on the Lmax-hillclimber. In the same way the neighbourhood used
in the Cmax-hillclimber is also used in the RCmax

-hillclimber, the neighbourhood
used in the Lmax-hillclimber is also used in the RLmax

- hillclimber. The estimate
on RLmax

after a move is made using the small block move in the same way
described for the RCmax

- hillclimber in section 5.3.2.
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Appendix G

Results of makespan experiments

G.1 Makespans

Average makespans found in the experiments on neighbourhood based robustness
and flexibility of section 5.3.12. There is a subtable for each problem instance, and
four rows in each subtable representing four different scheduling algorithms. The
row labelled “P” represents the preschedule makespan without any breakdowns,
while the columns labelled 1-5 represent the different rescheduling methods after
a breakdown, see section 5.3.5. The averages were calculated after 400 runs of
each algorithm. The breakdown duration was 80.

The best (lowest) makespan achieved for each problem and rescheduling me-
thod has been printed bold.

ft10
method P 1 2 3 4 5
active 948.2 1010.1 1004.2 1000.9 989.9 987.9
slack 949.1 1005.8 1000.4 998.2 989.7 987.3
fastrob 950.4 1008.7 1003.8 1003.1 993.1 990.8
robust 949.6 1007.8 1002.0 1000.3 991.3 989.8

ft20
method P 1 2 3 4 5
active 1196.6 1265.5 1261.2 1256.0 1234.8 1232.1
slack 1196.2 1251.3 1248.6 1246.1 1235.0 1233.3
fastrob 1189.7 1248.6 1243.8 1240.2 1225.7 1224.1
robust 1189.8 1249.6 1244.8 1240.8 1227.6 1225.8

247
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la01
method P 1 2 3 4 5
active 666.0 720.6 714.0 710.6 705.1 704.0
slack 666.1 702.5 700.2 699.0 696.8 695.7
fastrob 666.0 707.6 701.0 700.0 699.9 698.5
robust 666.0 706.0 700.8 700.3 699.7 698.6

la02
method P 1 2 3 4 5
active 655.1 717.7 712.5 710.6 700.8 698.7
slack 660.9 712.9 709.8 708.3 703.0 701.1
fastrob 655.9 713.9 708.6 708.1 701.2 699.0
robust 655.7 713.2 709.8 709.1 704.0 701.5

la03
method P 1 2 3 4 5
active 597.1 664.1 661.1 658.9 654.9 653.8
slack 609.1 661.2 659.8 659.0 656.4 655.2
fastrob 598.3 661.5 659.3 658.1 655.6 654.9
robust 598.3 658.2 656.0 654.8 652.0 651.5

la04
method P 1 2 3 4 5
active 590.8 650.3 648.1 644.5 639.7 638.0
slack 595.0 645.2 643.5 642.4 639.4 638.6
fastrob 594.2 645.7 642.5 641.0 638.5 637.1
robust 593.7 649.8 647.0 646.0 642.8 641.1

la05
method P 1 2 3 4 5
active 593.0 635.8 628.1 625.1 622.7 622.5
slack 593.0 616.5 615.3 615.2 615.1 615.1
fastrob 593.0 617.3 615.8 615.5 615.5 615.5
robust 593.0 615.5 614.3 614.2 614.2 614.2

la06
method P 1 2 3 4 5
active 926.0 967.2 959.7 954.1 950.3 949.9
slack 926.0 943.8 943.8 943.8 943.8 943.8
fastrob 926.0 940.6 939.9 940.0 939.8 939.8
robust 926.0 944.3 943.6 943.5 943.4 943.4
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la07
method P 1 2 3 4 5
active 890.0 944.5 937.5 932.7 928.3 927.6
slack 890.0 919.0 917.6 917.0 916.0 915.8
fastrob 890.0 918.2 915.5 914.7 913.5 913.2
robust 890.0 922.0 919.6 918.7 917.7 917.1

la08
method P 1 2 3 4 5
active 863.0 920.5 915.4 910.0 898.9 898.1
slack 863.0 886.0 884.9 883.8 882.3 882.2
fastrob 863.0 890.4 887.6 886.5 884.5 884.2
robust 863.0 890.1 887.2 885.7 883.6 883.4

la09
method P 1 2 3 4 5
active 951.0 999.3 993.6 990.2 989.0 989.0
slack 951.0 982.9 982.1 981.7 981.7 981.6
fastrob 951.0 984.4 983.8 983.8 983.7 983.7
robust 951.0 983.0 982.2 982.2 982.2 982.2

la10
method P 1 2 3 4 5
active 958.0 995.0 987.8 984.0 982.5 982.4
slack 958.0 975.2 975.0 975.0 975.0 975.1
fastrob 958.0 973.7 973.3 973.2 973.2 973.2
robust 958.0 975.2 974.9 974.8 974.8 974.8

la11
method P 1 2 3 4 5
active 1222.0 1263.6 1257.4 1251.5 1249.2 1249.1
slack 1222.0 1238.7 1238.6 1238.6 1238.6 1238.6
fastrob 1222.0 1241.5 1240.3 1240.2 1240.2 1240.2
robust 1222.0 1244.6 1243.3 1242.9 1242.9 1242.9

la12
method P 1 2 3 4 5
active 1039.0 1086.3 1080.9 1076.6 1074.7 1074.4
slack 1039.0 1070.4 1070.0 1069.9 1069.8 1069.8
fastrob 1039.0 1070.1 1069.5 1069.4 1069.4 1069.4
robust 1039.0 1070.4 1069.7 1069.6 1069.6 1069.6
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la13
method P 1 2 3 4 5
active 1150.0 1199.8 1193.2 1187.4 1183.4 1183.2
slack 1150.0 1176.9 1176.3 1176.1 1176.0 1176.0
fastrob 1150.0 1178.8 1177.7 1177.2 1177.0 1177.0
robust 1150.0 1178.3 1176.4 1175.6 1175.5 1175.5

la14
method P 1 2 3 4 5
active 1292.0 1317.2 1311.9 1308.6 1307.6 1307.6
slack 1292.0 1308.5 1308.4 1308.4 1308.4 1308.4
fastrob 1292.0 1305.4 1305.1 1305.1 1305.1 1305.1
robust 1292.0 1311.8 1311.4 1311.3 1311.4 1311.3

la15
method P 1 2 3 4 5
active 1207.0 1262.9 1257.9 1253.2 1246.5 1245.5
slack 1207.0 1237.7 1236.3 1235.9 1234.3 1233.9
fastrob 1207.0 1237.4 1235.1 1234.0 1232.9 1232.8
robust 1207.0 1238.7 1236.9 1236.1 1234.8 1234.8

la16
method P 1 2 3 4 5
active 949.6 998.8 993.2 991.0 983.6 982.3
slack 966.1 1000.3 997.7 996.8 996.6 995.6
fastrob 958.6 998.9 993.4 990.8 987.9 986.4
robust 957.5 995.0 992.6 992.1 989.6 989.0

la17
method P 1 2 3 4 5
active 785.2 839.5 829.1 825.5 816.7 814.3
slack 793.1 828.7 824.0 822.2 818.8 817.9
fastrob 791.1 830.8 826.2 824.5 817.9 817.0
robust 793.7 833.9 828.9 827.0 821.8 820.4

la18
method P 1 2 3 4 5
active 849.4 908.8 901.7 899.2 886.2 882.4
slack 861.2 902.2 898.7 897.7 890.7 889.2
fastrob 860.1 905.2 900.8 899.5 889.3 887.4
robust 859.8 904.0 899.6 898.4 888.8 886.3
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la19
method P 1 2 3 4 5
active 846.4 909.2 903.0 899.8 889.1 885.4
slack 852.6 903.2 898.3 896.4 890.1 888.2
fastrob 850.4 908.4 902.5 899.6 893.9 890.3
robust 852.5 906.4 901.0 899.1 892.9 889.1

la20
method P 1 2 3 4 5
active 906.9 957.9 953.1 950.8 939.4 937.0
slack 911.2 953.6 949.5 947.7 939.9 940.9
fastrob 907.1 953.7 950.9 950.2 942.1 940.2
robust 907.1 957.8 954.7 954.2 944.1 942.2

la21
method P 1 2 3 4 5
active 1070.0 1128.2 1121.5 1117.2 1102.1 1097.8
slack 1071.4 1121.2 1116.0 1112.4 1104.7 1100.4
fastrob 1068.3 1121.0 1115.2 1111.8 1100.9 1097.4
robust 1069.7 1121.1 1115.0 1112.2 1101.0 1097.7

la22
method P 1 2 3 4 5
active 939.4 997.1 990.4 985.9 974.3 971.3
slack 946.5 990.7 985.9 984.1 976.7 974.7
fastrob 943.5 991.6 986.1 983.0 974.3 972.2
robust 942.8 990.5 985.2 982.4 973.8 971.5

la23
method P 1 2 3 4 5
active 1032.0 1083.9 1076.8 1071.2 1058.9 1056.0
slack 1032.6 1063.2 1058.6 1056.7 1052.6 1051.5
fastrob 1032.2 1063.2 1057.7 1056.1 1051.6 1050.2
robust 1032.2 1062.8 1058.2 1056.6 1050.8 1049.7

la24
method P 1 2 3 4 5
active 947.1 1006.8 1001.2 998.0 986.6 983.9
slack 948.0 1001.7 998.0 996.1 990.0 987.8
fastrob 946.8 1003.9 1000.3 998.7 989.1 986.3
robust 947.2 1005.1 1000.7 998.8 989.8 987.6
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la25
method P 1 2 3 4 5
active 991.8 1048.1 1042.6 1039.0 1027.3 1024.6
slack 993.2 1043.5 1040.2 1038.6 1031.7 1029.7
fastrob 991.4 1043.1 1038.0 1035.5 1027.5 1025.1
robust 991.5 1043.8 1039.6 1037.9 1030.9 1029.3

la26
method P 1 2 3 4 5
active 1221.4 1281.2 1275.9 1272.2 1262.4 1259.3
slack 1222.5 1271.9 1268.6 1266.1 1258.3 1255.8
fastrob 1219.2 1269.8 1265.1 1262.2 1254.8 1252.5
robust 1219.1 1268.8 1264.4 1261.9 1254.2 1251.5

la27
method P 1 2 3 4 5
active 1276.5 1333.1 1326.7 1321.8 1304.7 1301.5
slack 1279.7 1326.1 1322.2 1318.7 1305.8 1304.1
fastrob 1272.8 1322.1 1316.6 1313.5 1300.4 1298.1
robust 1272.0 1324.1 1319.1 1315.7 1301.2 1299.0

la28
method P 1 2 3 4 5
active 1243.1 1299.0 1292.9 1287.3 1274.2 1270.8
slack 1245.8 1284.9 1281.0 1278.5 1269.4 1267.4
fastrob 1240.2 1283.5 1278.9 1275.3 1267.4 1264.9
robust 1240.1 1284.4 1279.2 1276.4 1267.4 1265.3

la29
method P 1 2 3 4 5
active 1229.3 1283.1 1276.2 1270.2 1254.8 1250.9
slack 1234.0 1276.2 1272.3 1270.3 1260.3 1258.0
fastrob 1220.9 1269.5 1264.4 1260.8 1248.2 1245.2
robust 1221.9 1270.8 1265.0 1261.0 1249.7 1246.6

la30
method P 1 2 3 4 5
active 1356.7 1410.1 1402.6 1398.1 1386.7 1384.2
slack 1359.2 1397.9 1395.1 1393.0 1386.1 1384.4
fastrob 1355.4 1396.2 1390.9 1387.4 1379.2 1377.4
robust 1355.5 1396.6 1393.2 1391.1 1382.1 1380.4
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la31
method P 1 2 3 4 5
active 1784.0 1825.5 1816.6 1808.4 1802.4 1802.2
slack 1784.0 1795.7 1793.8 1793.0 1792.6 1792.5
fastrob 1784.0 1797.1 1795.3 1794.3 1794.1 1794.0
robust 1784.0 1800.0 1798.1 1797.3 1796.8 1796.8

la32
method P 1 2 3 4 5
active 1850.0 1895.8 1887.9 1880.7 1871.3 1870.8
slack 1850.0 1864.7 1862.9 1862.1 1861.0 1861.0
fastrob 1850.0 1862.8 1861.3 1860.4 1860.1 1860.1
robust 1850.0 1864.6 1862.7 1861.8 1861.6 1861.5

la33
method P 1 2 3 4 5
active 1719.0 1759.6 1750.1 1742.5 1736.1 1735.9
slack 1719.1 1733.7 1732.7 1731.9 1731.3 1731.3
fastrob 1719.0 1731.3 1729.8 1729.1 1728.7 1728.7
robust 1719.0 1732.8 1731.1 1730.0 1729.4 1729.4

la34
method P 1 2 3 4 5
active 1721.0 1773.9 1766.3 1758.1 1748.5 1747.8
slack 1721.2 1753.9 1751.4 1749.0 1745.5 1745.3
fastrob 1721.0 1749.0 1745.1 1742.1 1739.8 1739.6
robust 1721.0 1749.8 1746.4 1744.3 1742.3 1742.2

la35
method P 1 2 3 4 5
active 1888.0 1922.9 1915.5 1909.5 1904.4 1904.0
slack 1888.9 1907.8 1906.0 1904.2 1902.9 1902.5
fastrob 1888.0 1906.9 1903.7 1902.1 1901.0 1901.0
robust 1888.0 1903.8 1901.3 1899.9 1899.1 1898.9

la36
method P 1 2 3 4 5
active 1297.2 1345.7 1338.1 1334.5 1324.0 1321.0
slack 1303.9 1342.3 1338.4 1336.6 1332.7 1330.3
fastrob 1299.8 1341.2 1334.3 1331.6 1326.3 1324.8
robust 1299.8 1336.6 1331.8 1330.6 1325.3 1323.5
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la37
method P 1 2 3 4 5
active 1440.4 1490.3 1481.1 1476.7 1462.9 1459.7
slack 1447.8 1483.2 1477.6 1474.9 1468.6 1465.4
fastrob 1442.0 1480.5 1472.7 1469.2 1460.7 1458.3
robust 1443.3 1480.8 1475.1 1473.1 1465.3 1462.6

la38
method P 1 2 3 4 5
active 1253.7 1305.3 1298.0 1292.7 1276.0 1270.7
slack 1254.3 1300.9 1295.3 1291.8 1278.8 1273.2
fastrob 1244.5 1293.2 1286.3 1283.4 1267.6 1263.5
robust 1248.2 1293.7 1287.3 1284.1 1270.3 1266.0

la39
method P 1 2 3 4 5
active 1254.1 1307.6 1300.9 1297.0 1285.1 1282.0
slack 1260.2 1300.8 1296.0 1293.3 1286.1 1283.4
fastrob 1256.9 1301.3 1294.1 1290.9 1283.2 1280.6
robust 1256.9 1299.5 1294.0 1291.9 1284.3 1281.5

la40
method P 1 2 3 4 5
active 1257.1 1309.2 1300.6 1295.1 1280.2 1277.1
slack 1263.4 1299.9 1294.4 1291.4 1283.1 1279.8
fastrob 1259.3 1297.1 1291.1 1287.8 1278.0 1275.2
robust 1259.3 1300.3 1295.5 1292.7 1282.6 1279.1

swv01
method P 1 2 3 4 5
active 1645.2 1700.8 1693.6 1686.5 1662.6 1657.7
slack 1637.5 1683.2 1678.7 1675.1 1654.2 1650.4
fastrob 1615.6 1666.2 1659.1 1653.8 1631.1 1626.9
robust 1622.3 1673.2 1667.1 1662.9 1640.6 1636.6

swv02
method P 1 2 3 4 5
active 1675.9 1729.0 1721.0 1714.1 1691.0 1686.5
slack 1665.2 1713.3 1708.7 1703.9 1682.4 1677.9
fastrob 1643.2 1692.0 1684.6 1677.6 1658.8 1654.5
robust 1646.0 1698.5 1692.9 1689.1 1667.6 1664.8
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swv03
method P 1 2 3 4 5
active 1615.6 1676.0 1667.6 1660.6 1627.6 1623.4
slack 1605.7 1657.4 1652.8 1649.8 1624.8 1621.1
fastrob 1587.4 1639.1 1632.8 1628.4 1605.9 1601.1
robust 1589.1 1643.2 1638.3 1634.2 1606.3 1602.8

swv04
method P 1 2 3 4 5
active 1694.7 1749.4 1742.0 1735.1 1708.6 1704.5
slack 1682.6 1733.0 1728.5 1724.6 1701.3 1697.0
fastrob 1668.4 1719.9 1713.6 1708.8 1683.1 1679.1
robust 1671.0 1721.3 1716.2 1712.3 1690.6 1686.5

swv05
method P 1 2 3 4 5
active 1647.2 1708.2 1702.1 1696.6 1669.9 1666.4
slack 1641.8 1691.9 1687.5 1684.7 1663.9 1661.5
fastrob 1628.6 1683.3 1677.8 1673.6 1653.8 1650.4
robust 1632.1 1690.1 1685.7 1681.4 1659.1 1655.6

swv06
method P 1 2 3 4 5
active 1949.1 2004.7 1997.6 1992.5 1958.8 1955.1
slack 1938.7 1984.8 1979.8 1975.2 1948.2 1944.5
fastrob 1918.1 1968.5 1961.1 1956.4 1932.7 1928.4
robust 1923.6 1973.6 1967.0 1962.7 1936.2 1931.3

swv07
method P 1 2 3 4 5
active 1850.8 1906.7 1900.5 1894.7 1866.1 1861.5
slack 1844.6 1895.6 1890.7 1886.8 1862.6 1859.4
fastrob 1827.8 1882.0 1875.4 1871.1 1847.5 1842.5
robust 1828.9 1880.1 1874.6 1870.8 1848.4 1843.1

swv08
method P 1 2 3 4 5
active 2054.8 2109.4 2102.7 2095.7 2062.5 2056.0
slack 2042.4 2090.6 2085.1 2081.4 2054.1 2047.7
fastrob 2019.5 2069.4 2062.9 2058.2 2030.4 2025.2
robust 2027.9 2080.3 2074.6 2070.2 2039.7 2034.1
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swv09
method P 1 2 3 4 5
active 1938.8 1992.3 1985.1 1977.8 1942.6 1937.2
slack 1925.9 1974.1 1969.7 1965.6 1936.6 1931.8
fastrob 1903.1 1954.4 1948.1 1943.8 1916.5 1911.4
robust 1904.0 1957.3 1951.0 1946.3 1917.2 1911.2

swv10
method P 1 2 3 4 5
active 2004.6 2059.5 2052.0 2044.4 2011.2 2005.8
slack 1994.4 2040.0 2035.5 2032.3 2006.4 2001.4
fastrob 1976.6 2029.0 2022.8 2018.8 1992.4 1987.6
robust 1979.7 2030.3 2023.9 2019.7 1994.3 1990.1

ta01
method P 1 2 3 4 5
active 1271.0 1323.4 1315.1 1310.5 1296.2 1292.9
slack 1279.6 1316.5 1310.7 1307.9 1301.9 1297.9
fastrob 1273.6 1312.9 1306.8 1304.2 1296.4 1292.5
robust 1274.1 1316.5 1311.0 1308.1 1299.0 1295.9

ta02
method P 1 2 3 4 5
active 1275.1 1326.7 1318.3 1313.7 1300.5 1296.5
slack 1278.0 1317.2 1310.8 1307.6 1299.5 1297.2
fastrob 1276.2 1315.2 1309.2 1306.6 1295.5 1291.8
robust 1276.2 1317.6 1310.3 1307.6 1297.0 1294.3

ta03
method P 1 2 3 4 5
active 1255.0 1311.5 1304.1 1300.2 1282.0 1278.3
slack 1257.3 1304.7 1298.6 1295.5 1285.1 1282.1
fastrob 1252.4 1301.9 1295.4 1292.1 1279.5 1276.3
robust 1253.5 1305.3 1299.2 1296.3 1284.8 1281.7

ta04
method P 1 2 3 4 5
active 1214.8 1272.4 1264.6 1259.9 1243.0 1238.7
slack 1215.4 1263.9 1257.5 1254.0 1244.3 1240.5
fastrob 1205.7 1260.6 1253.0 1249.1 1238.2 1235.1
robust 1208.4 1258.0 1251.6 1248.4 1235.7 1232.3
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ta05
method P 1 2 3 4 5
active 1257.9 1311.2 1303.4 1297.6 1286.4 1282.0
slack 1260.5 1302.5 1297.6 1293.9 1286.6 1284.0
fastrob 1253.7 1301.2 1293.6 1290.4 1281.8 1278.3
robust 1256.4 1303.2 1296.2 1293.3 1285.2 1282.1

ta06
method P 1 2 3 4 5
active 1271.9 1327.0 1319.3 1314.6 1298.0 1293.6
slack 1274.5 1320.1 1314.8 1311.4 1304.5 1300.2
fastrob 1272.0 1322.5 1314.7 1311.8 1299.6 1294.9
robust 1272.9 1319.9 1313.4 1310.7 1299.5 1294.9

ta07
method P 1 2 3 4 5
active 1264.6 1317.2 1309.6 1305.0 1291.3 1287.3
slack 1267.1 1309.8 1305.4 1302.2 1294.7 1291.4
fastrob 1263.7 1307.5 1302.2 1299.7 1290.0 1286.7
robust 1264.1 1308.3 1302.9 1300.6 1290.6 1287.7

ta08
method P 1 2 3 4 5
active 1256.4 1312.7 1305.4 1301.6 1286.6 1282.8
slack 1261.1 1306.5 1300.8 1298.0 1290.6 1287.4
fastrob 1256.6 1307.3 1300.3 1296.8 1284.2 1280.8
robust 1258.4 1305.7 1299.9 1297.7 1287.1 1282.5

ta09
method P 1 2 3 4 5
active 1330.5 1382.5 1376.1 1372.5 1357.7 1353.2
slack 1336.4 1379.6 1375.2 1373.8 1364.2 1360.9
fastrob 1328.6 1376.4 1370.6 1367.7 1356.8 1353.2
robust 1329.4 1376.9 1372.8 1371.1 1361.4 1357.4

ta10
method P 1 2 3 4 5
active 1288.6 1340.8 1332.2 1328.4 1316.9 1312.1
slack 1294.9 1332.1 1327.4 1325.2 1320.5 1317.5
fastrob 1289.5 1335.1 1328.7 1326.4 1317.9 1314.3
robust 1290.6 1332.7 1327.8 1325.7 1317.4 1313.8
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ta11
method P 1 2 3 4 5
active 1463.8 1514.6 1505.5 1498.9 1479.7 1474.9
slack 1460.6 1504.4 1498.6 1494.8 1479.2 1475.6
fastrob 1444.6 1493.4 1487.4 1482.9 1465.9 1461.9
robust 1448.0 1493.7 1488.6 1484.5 1469.2 1465.2

ta12
method P 1 2 3 4 5
active 1442.6 1495.2 1488.2 1481.6 1463.3 1458.8
slack 1440.6 1481.6 1477.2 1474.0 1461.5 1457.0
fastrob 1429.9 1475.3 1468.9 1463.8 1449.9 1446.8
robust 1431.7 1476.0 1468.4 1464.9 1452.2 1449.5

ta13
method P 1 2 3 4 5
active 1437.8 1490.5 1482.3 1476.5 1454.2 1449.0
slack 1436.0 1480.0 1474.2 1469.9 1455.9 1450.5
fastrob 1420.0 1468.5 1461.2 1456.2 1440.4 1436.6
robust 1423.9 1472.2 1466.2 1462.0 1444.9 1440.5

ta14
method P 1 2 3 4 5
active 1392.5 1445.3 1437.7 1432.8 1412.3 1408.4
slack 1392.5 1430.5 1425.6 1422.0 1412.2 1409.9
fastrob 1383.1 1426.4 1420.3 1416.2 1401.4 1398.5
robust 1384.6 1427.4 1421.9 1418.8 1405.9 1403.7

ta15
method P 1 2 3 4 5
active 1459.1 1510.1 1502.6 1496.6 1474.3 1470.3
slack 1458.4 1499.7 1495.1 1491.8 1479.0 1475.1
fastrob 1445.2 1491.5 1485.4 1481.0 1466.3 1461.9
robust 1448.6 1493.0 1487.0 1483.7 1467.9 1464.2

ta16
method P 1 2 3 4 5
active 1436.1 1490.2 1482.8 1478.4 1460.9 1456.8
slack 1435.6 1480.6 1476.2 1473.3 1462.3 1458.4
fastrob 1426.0 1473.5 1468.1 1465.5 1452.3 1449.2
robust 1428.4 1475.4 1470.7 1468.3 1455.0 1451.1
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ta17
method P 1 2 3 4 5
active 1543.8 1589.3 1582.3 1577.2 1562.7 1559.6
slack 1550.3 1583.9 1579.2 1575.9 1566.2 1562.8
fastrob 1535.6 1571.5 1564.8 1561.4 1552.0 1549.7
robust 1537.3 1573.2 1567.4 1564.4 1554.4 1551.7

ta18
method P 1 2 3 4 5
active 1515.5 1561.3 1553.4 1546.6 1527.9 1523.3
slack 1518.6 1553.5 1547.7 1543.8 1533.4 1529.6
fastrob 1502.0 1543.5 1536.2 1532.6 1518.7 1514.8
robust 1502.6 1542.8 1536.5 1532.4 1519.3 1515.1

ta19
method P 1 2 3 4 5
active 1451.7 1504.0 1495.2 1489.3 1473.0 1468.2
slack 1457.3 1491.9 1487.6 1484.9 1474.9 1470.9
fastrob 1436.9 1477.7 1471.3 1466.8 1455.8 1451.9
robust 1440.6 1481.6 1475.7 1472.4 1462.1 1458.0

ta20
method P 1 2 3 4 5
active 1424.5 1480.4 1473.5 1468.3 1447.1 1442.6
slack 1423.2 1470.4 1464.6 1459.7 1446.2 1441.3
fastrob 1410.3 1457.7 1451.8 1447.0 1434.0 1430.1
robust 1412.2 1458.7 1453.2 1449.6 1434.4 1429.6

ta21
method P 1 2 3 4 5
active 1788.5 1836.4 1826.9 1820.5 1796.4 1792.2
slack 1788.2 1827.9 1820.9 1816.3 1802.5 1797.7
fastrob 1772.6 1813.0 1806.2 1802.2 1787.0 1782.7
robust 1774.7 1813.6 1808.0 1804.5 1788.7 1784.8

ta22
method P 1 2 3 4 5
active 1703.0 1754.1 1745.2 1740.5 1717.2 1712.0
slack 1696.3 1734.5 1728.1 1723.5 1709.3 1703.6
fastrob 1680.0 1726.1 1720.6 1715.7 1697.3 1692.8
robust 1684.0 1728.1 1721.7 1717.8 1701.9 1697.2
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ta23
method P 1 2 3 4 5
active 1656.8 1710.4 1702.1 1694.7 1672.3 1668.2
slack 1653.7 1696.3 1690.2 1685.9 1673.0 1669.1
fastrob 1640.2 1683.2 1676.6 1673.2 1661.5 1657.5
robust 1643.7 1688.7 1682.7 1678.5 1663.1 1659.7

ta24
method P 1 2 3 4 5
active 1745.7 1790.3 1780.5 1773.4 1756.2 1752.5
slack 1746.4 1780.5 1774.8 1771.1 1760.6 1757.2
fastrob 1736.3 1774.2 1769.0 1766.0 1755.5 1751.1
robust 1738.8 1776.3 1769.1 1765.8 1754.8 1751.2

ta25
method P 1 2 3 4 5
active 1700.6 1749.4 1740.0 1734.4 1714.7 1709.8
slack 1699.5 1740.6 1735.0 1731.0 1717.9 1714.7
fastrob 1687.3 1729.2 1723.4 1719.9 1706.4 1703.3
robust 1690.2 1735.8 1729.9 1726.3 1711.7 1707.6

ta26
method P 1 2 3 4 5
active 1752.5 1796.6 1788.0 1782.8 1763.0 1758.9
slack 1751.2 1792.4 1786.6 1783.2 1767.2 1763.3
fastrob 1736.1 1779.2 1773.7 1771.1 1756.8 1753.0
robust 1740.2 1782.2 1776.1 1772.9 1757.9 1754.4

ta27
method P 1 2 3 4 5
active 1820.8 1867.4 1857.7 1851.3 1829.4 1823.7
slack 1817.1 1854.3 1847.9 1844.1 1830.1 1825.2
fastrob 1798.1 1839.5 1832.8 1829.4 1813.4 1809.0
robust 1800.9 1842.1 1835.4 1831.2 1813.7 1809.0

ta28
method P 1 2 3 4 5
active 1713.7 1763.0 1754.6 1749.2 1725.7 1721.4
slack 1709.9 1749.7 1744.1 1740.6 1724.4 1720.0
fastrob 1699.9 1742.4 1736.4 1732.2 1714.3 1711.2
robust 1702.7 1744.1 1738.3 1734.4 1716.9 1712.9
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ta29
method P 1 2 3 4 5
active 1678.6 1731.4 1721.7 1716.5 1695.9 1691.8
slack 1674.1 1715.9 1709.9 1706.8 1695.1 1691.2
fastrob 1660.0 1708.3 1702.1 1698.4 1685.6 1682.3
robust 1663.5 1709.9 1702.8 1699.3 1686.3 1683.9

ta30
method P 1 2 3 4 5
active 1691.1 1741.8 1733.2 1727.6 1702.9 1699.1
slack 1686.1 1732.2 1725.8 1721.0 1701.5 1697.6
fastrob 1673.1 1718.0 1711.6 1707.5 1689.1 1685.8
robust 1676.9 1720.5 1714.4 1709.6 1690.5 1686.0

ta31
method P 1 2 3 4 5
active 1912.9 1959.4 1950.9 1941.8 1921.9 1916.1
slack 1900.4 1939.1 1934.3 1929.5 1915.6 1910.9
fastrob 1864.2 1905.4 1900.5 1895.6 1880.9 1877.1
robust 1866.6 1910.2 1904.5 1899.5 1883.6 1879.4

ta32
method P 1 2 3 4 5
active 2004.5 2049.8 2041.8 2032.8 2013.0 2007.5
slack 1995.9 2028.9 2023.6 2019.3 2000.6 1996.5
fastrob 1959.7 2000.7 1994.3 1989.3 1972.0 1967.2
robust 1962.1 2005.1 1998.3 1993.3 1977.4 1972.2

ta33
method P 1 2 3 4 5
active 1988.3 2036.7 2028.5 2020.1 1995.0 1989.8
slack 1976.7 2016.0 2010.4 2005.0 1991.0 1985.5
fastrob 1941.4 1987.3 1980.9 1975.2 1956.3 1952.1
robust 1944.3 1986.4 1980.9 1976.0 1958.9 1954.8

ta34
method P 1 2 3 4 5
active 2023.4 2065.7 2057.5 2051.4 2027.1 2021.1
slack 2020.6 2051.1 2047.5 2044.4 2025.7 2021.4
fastrob 1983.6 2021.3 2015.7 2011.7 1993.4 1988.2
robust 1987.3 2023.8 2019.4 2015.2 1995.8 1990.1
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ta35
method P 1 2 3 4 5
active 2112.3 2146.1 2138.8 2132.5 2107.5 2102.9
slack 2117.9 2137.0 2134.7 2133.0 2113.5 2110.9
fastrob 2081.7 2105.6 2101.7 2099.3 2083.0 2079.1
robust 2084.0 2110.3 2105.6 2102.8 2085.6 2081.9

ta36
method P 1 2 3 4 5
active 1997.7 2044.1 2035.2 2027.1 1998.1 1992.0
slack 1985.4 2025.6 2019.8 2014.8 1993.0 1988.8
fastrob 1948.6 1994.3 1988.8 1984.2 1963.4 1959.4
robust 1952.5 1997.9 1992.7 1988.4 1964.5 1960.0

ta37
method P 1 2 3 4 5
active 1958.2 2002.6 1993.4 1986.1 1962.0 1956.7
slack 1949.7 1982.6 1977.5 1973.1 1956.9 1950.6
fastrob 1911.9 1954.3 1948.4 1942.8 1925.1 1919.8
robust 1915.0 1955.9 1949.6 1944.4 1927.2 1921.8

ta38
method P 1 2 3 4 5
active 1853.1 1904.0 1896.7 1888.4 1863.5 1858.7
slack 1840.4 1882.1 1876.8 1871.5 1853.7 1848.8
fastrob 1805.4 1851.2 1845.5 1840.3 1821.8 1817.7
robust 1809.1 1853.6 1847.5 1842.1 1826.0 1821.9

ta39
method P 1 2 3 4 5
active 1987.4 2025.8 2017.8 2011.9 1990.2 1985.5
slack 1983.4 2014.3 2010.3 2007.7 1991.8 1986.0
fastrob 1944.2 1981.4 1976.4 1972.5 1957.9 1954.5
robust 1949.5 1987.0 1981.9 1977.7 1962.2 1956.6

ta40
method P 1 2 3 4 5
active 1862.6 1912.9 1904.5 1896.5 1870.1 1865.3
slack 1854.6 1894.3 1890.3 1886.3 1869.4 1864.6
fastrob 1827.2 1869.0 1863.8 1859.2 1841.6 1837.2
robust 1830.8 1875.1 1869.9 1865.0 1846.9 1842.3
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G.2 Overlaps

Average overlaps to the preschedule after rescheduling. The highest overlaps have
been printed bold.

la01-la05
method 1 2 3 4 5
active 0.537 0.582 0.568 0.589 0.541
slack 0.579 0.616 0.591 0.632 0.549
fastrob 0.571 0.609 0.586 0.617 0.554
robust 0.577 0.613 0.590 0.618 0.547

la06-la10
method 1 2 3 4 5
active 0.589 0.647 0.631 0.634 0.575
slack 0.637 0.677 0.642 0.644 0.518
fastrob 0.647 0.694 0.654 0.636 0.487
robust 0.647 0.690 0.653 0.626 0.474

la11-la15
method 1 2 3 4 5
active 0.598 0.653 0.638 0.647 0.617
slack 0.655 0.697 0.657 0.635 0.503
fastrob 0.664 0.711 0.669 0.616 0.433
robust 0.660 0.707 0.666 0.594 0.424

la16-la20
method 1 2 3 4 5
active 0.578 0.623 0.621 0.660 0.589
slack 0.635 0.668 0.660 0.693 0.648
fastrob 0.613 0.649 0.648 0.684 0.630
robust 0.617 0.650 0.643 0.674 0.616

la21-la25
method 1 2 3 4 5
active 0.602 0.647 0.648 0.681 0.585
slack 0.629 0.666 0.659 0.710 0.646
fastrob 0.614 0.652 0.650 0.696 0.636
robust 0.628 0.665 0.661 0.697 0.625
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la26-la30
method 1 2 3 4 5
active 0.603 0.654 0.661 0.644 0.493
slack 0.659 0.696 0.687 0.703 0.600
fastrob 0.646 0.688 0.686 0.698 0.587
robust 0.651 0.691 0.687 0.694 0.582

la31-la35
method 1 2 3 4 5
active 0.662 0.717 0.735 0.702 0.625
slack 0.723 0.761 0.736 0.702 0.623
fastrob 0.711 0.758 0.728 0.679 0.556
robust 0.718 0.763 0.734 0.670 0.550

la36-la40
method 1 2 3 4 5
active 0.601 0.657 0.668 0.693 0.604
slack 0.637 0.680 0.680 0.721 0.662
fastrob 0.630 0.677 0.685 0.725 0.665
robust 0.642 0.687 0.686 0.715 0.647

swv01-swv05
method 1 2 3 4 5
active 0.501 0.562 0.574 0.532 0.382
slack 0.548 0.597 0.591 0.567 0.436
fastrob 0.528 0.583 0.590 0.570 0.444
robust 0.544 0.596 0.596 0.570 0.436

swv06-swv10
method 1 2 3 4 5
active 0.520 0.578 0.599 0.564 0.441
slack 0.561 0.607 0.613 0.607 0.504
fastrob 0.549 0.603 0.612 0.605 0.497
robust 0.547 0.600 0.611 0.598 0.496

ta01-ta10
method 1 2 3 4 5
active 0.595 0.648 0.656 0.689 0.607
slack 0.639 0.679 0.680 0.726 0.671
fastrob 0.617 0.665 0.670 0.720 0.665
robust 0.624 0.668 0.670 0.714 0.654
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ta11-ta20
method 1 2 3 4 5
active 0.605 0.657 0.675 0.667 0.543
slack 0.645 0.687 0.690 0.714 0.625
fastrob 0.626 0.675 0.687 0.713 0.623
robust 0.642 0.686 0.693 0.708 0.612
ta21-ta30
method 1 2 3 4 5
active 0.616 0.677 0.699 0.691 0.582
slack 0.654 0.700 0.711 0.725 0.646
fastrob 0.643 0.689 0.702 0.724 0.649
robust 0.648 0.695 0.708 0.722 0.641
ta31-ta40
method 1 2 3 4 5
active 0.647 0.706 0.733 0.614 0.444
slack 0.711 0.750 0.755 0.679 0.556
fastrob 0.689 0.735 0.747 0.682 0.552
robust 0.691 0.734 0.745 0.671 0.540
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Appendix H

Results of maximum tardiness
experiments

H.1 Loose problems, σ = 0.95

Results for individual problems for the experiments of section 5.4.3.

ft10
method P 1 2 3 4 5
naive 0.0 47.5 40.4 35.8 17.9 16.8
active 0.0 16.7 13.0 12.2 6.6 6.2
robust 0.0 15.6 13.1 12.3 8.0 7.3

ft20
method P 1 2 3 4 5
naive 0.0 45.2 39.3 33.4 12.8 12.3
active 0.0 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0 0.0

la01
method P 1 2 3 4 5
naive 0.0 55.0 49.7 46.5 38.5 37.1
active 0.0 46.7 41.8 37.8 33.1 32.0
robust 0.0 42.5 39.2 38.9 35.5 34.9

la02
method P 1 2 3 4 5
naive 0.0 49.2 44.8 41.9 34.0 32.2
active 0.0 37.1 33.9 32.6 29.5 28.5
robust 0.0 37.5 34.5 32.7 28.5 24.8

267
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la03
method P 1 2 3 4 5
naive 0.0 46.5 42.8 41.6 37.2 36.5
active 0.0 39.1 33.0 32.3 31.2 31.1
robust 0.0 38.9 36.6 36.4 35.9 35.5

la04
method P 1 2 3 4 5
naive 0.0 45.3 38.8 35.1 28.3 27.5
active 0.0 29.1 23.8 21.2 16.8 16.7
robust 0.0 32.6 24.6 23.5 22.2 21.8

la05
method P 1 2 3 4 5
naive 30.0 86.4 80.9 77.3 69.6 68.7
active 30.0 88.0 82.7 79.5 71.2 70.4
robust 30.0 70.8 67.6 66.6 61.4 60.6

la06
method P 1 2 3 4 5
naive 43.0 98.4 92.7 86.9 75.9 75.2
active 43.0 97.5 91.9 87.2 75.2 74.4
robust 43.0 77.0 74.2 73.3 67.3 66.7

la07
method P 1 2 3 4 5
naive 0.0 39.1 32.6 27.2 15.6 15.4
active 0.0 7.7 6.4 6.0 5.5 5.5
robust 0.0 4.4 4.2 4.3 4.8 4.4

la08
method P 1 2 3 4 5
naive 0.0 37.7 31.8 26.6 11.7 11.4
active 0.0 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0 0.0

la09
method P 1 2 3 4 5
naive 16.0 74.9 68.0 63.5 51.3 50.4
active 16.0 75.2 68.1 64.0 52.7 51.7
robust 16.4 57.1 53.3 53.3 48.1 47.4
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la10
method P 1 2 3 4 5
naive 32.0 83.8 77.2 72.2 67.5 67.4
active 32.0 84.5 76.9 71.8 68.7 68.5
robust 32.0 69.3 66.3 66.4 66.9 66.2

la11
method P 1 2 3 4 5
naive 36.0 97.1 93.2 88.9 76.6 76.0
active 36.0 96.2 91.2 86.3 74.4 74.2
robust 36.0 68.7 65.2 63.3 61.1 60.9

la12
method P 1 2 3 4 5
naive 14.0 75.2 69.1 65.6 51.6 51.5
active 14.0 76.7 69.9 64.5 51.5 51.4
robust 14.2 63.4 57.8 54.5 49.3 48.8

la13
method P 1 2 3 4 5
naive 0.0 60.8 57.0 53.5 38.8 38.1
active 0.0 56.7 53.3 49.8 38.9 38.3
robust 0.2 42.1 37.7 36.8 32.0 31.3

la14
method P 1 2 3 4 5
naive 56.0 109.9 102.9 97.5 86.5 86.4
active 56.0 108.2 101.3 96.0 83.8 83.5
robust 56.0 80.3 78.0 76.8 76.5 76.5

la15
method P 1 2 3 4 5
naive 0.0 40.2 34.6 29.6 13.3 12.8
active 0.0 2.0 1.7 1.7 0.7 0.7
robust 0.0 1.8 1.6 1.7 1.2 1.7

la16
method P 1 2 3 4 5
naive 0.0 41.1 34.4 31.6 23.8 22.9
active 0.0 19.9 16.4 14.3 10.2 9.6
robust 0.0 19.9 17.0 16.5 12.8 12.0
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la17
method P 1 2 3 4 5
naive 0.2 48.8 43.2 41.2 36.4 34.4
active 0.2 47.1 43.1 41.1 36.4 34.7
robust 0.1 43.2 39.3 38.4 39.0 34.3

la18
method P 1 2 3 4 5
naive 0.0 48.3 41.7 39.2 27.1 25.4
active 0.0 27.7 23.6 21.5 14.4 13.2
robust 0.0 25.7 21.7 20.4 15.7 14.9

la19
method P 1 2 3 4 5
naive 0.0 48.9 43.1 39.2 28.0 26.8
active 0.0 42.1 36.9 33.7 27.1 26.1
robust 0.1 35.6 31.5 29.9 30.0 27.6

la20
method P 1 2 3 4 5
naive 0.0 37.6 30.8 27.4 21.9 21.8
active 0.0 26.2 21.4 19.7 14.9 14.5
robust 0.0 23.5 19.5 18.4 17.2 17.1

la21
method P 1 2 3 4 5
naive 0.0 32.1 25.5 19.9 10.3 9.8
active 0.0 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0 0.0

la22
method P 1 2 3 4 5
naive 0.0 31.5 24.5 19.7 9.4 9.4
active 0.0 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0 0.0

la23
method P 1 2 3 4 5
naive 0.0 31.9 24.7 20.2 9.4 9.1
active 0.0 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0 0.0
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la24
method P 1 2 3 4 5
naive 0.0 44.9 38.3 34.1 16.6 15.4
active 0.0 5.8 4.4 3.8 2.3 2.3
robust 0.0 6.5 4.9 4.7 3.0 2.5

la25
method P 1 2 3 4 5
naive 0.0 43.7 35.7 31.3 19.4 18.6
active 0.0 26.7 21.6 18.8 10.6 10.3
robust 0.0 19.4 15.3 13.8 9.4 8.8

la26
method P 1 2 3 4 5
naive 0.0 31.0 22.5 16.1 6.2 6.0
active 0.0 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0 0.0

la27
method P 1 2 3 4 5
naive 0.0 35.1 27.9 22.0 7.6 7.3
active 0.0 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0 0.0

la28
method P 1 2 3 4 5
naive 0.0 44.8 36.1 28.7 13.3 12.7
active 0.0 0.2 0.2 0.2 0.0 0.0
robust 0.0 0.2 0.1 0.1 0.3 0.3

la29
method P 1 2 3 4 5
naive 0.0 40.4 34.2 29.8 14.0 13.5
active 0.0 2.1 1.7 1.5 0.9 0.9
robust 0.0 1.2 1.0 0.9 0.8 0.7

la30
method P 1 2 3 4 5
naive 0.0 26.9 20.2 16.0 5.7 5.5
active 0.0 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0 0.0
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la31
method P 1 2 3 4 5
naive 0.0 30.6 24.5 19.3 6.4 6.2
active 0.0 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0 0.0

la32
method P 1 2 3 4 5
naive 0.0 32.1 25.6 18.3 4.9 4.7
active 0.0 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0 0.0

la33
method P 1 2 3 4 5
naive 0.0 39.6 31.8 25.3 8.3 7.8
active 0.0 3.7 2.5 2.0 0.7 0.8
robust 0.0 0.6 0.5 0.5 0.2 0.1

la34
method P 1 2 3 4 5
naive 0.0 38.4 30.6 24.4 11.0 11.6
active 0.0 14.0 10.8 9.0 5.4 5.9
robust 0.0 3.9 3.6 3.4 2.4 2.6

la35
method P 1 2 3 4 5
naive 0.0 26.0 19.8 16.3 10.5 10.4
active 0.0 12.6 10.0 8.7 6.0 6.1
robust 0.0 6.4 5.6 5.3 4.2 4.2

la36
method P 1 2 3 4 5
naive 0.0 34.9 26.9 22.4 12.7 12.6
active 0.0 11.7 8.8 7.6 4.8 4.7
robust 0.0 11.0 9.1 8.3 7.0 6.9

la37
method P 1 2 3 4 5
naive 0.2 39.2 30.3 25.2 10.7 10.4
active 0.3 6.4 4.8 4.2 3.1 2.7
robust 0.4 6.9 5.3 5.2 4.3 3.2
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la38
method P 1 2 3 4 5
naive 0.3 35.8 29.5 25.1 12.6 12.2
active 0.1 4.3 3.6 3.2 1.9 2.0
robust 0.7 3.8 3.5 3.4 2.9 2.5

la39
method P 1 2 3 4 5
naive 0.0 33.3 25.7 20.2 8.0 7.5
active 0.0 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0 0.0
la40
method P 1 2 3 4 5
naive 0.0 47.3 38.9 33.1 18.2 17.1
active 0.0 29.1 22.8 19.5 11.7 11.0
robust 0.0 24.9 19.6 17.8 12.1 11.7

H.2 The tight problems, σ = 0.85

Results for individual problems for the experiments of section 5.4.4
ft10
method P 1 2 3 4 5
naive 47.6 108.6 103.5 100.6 86.5 84.1
active 47.8 104.6 99.4 96.0 81.9 79.6
robust 52.1 105.8 99.7 97.5 88.1 86.2

ft20
method P 1 2 3 4 5
naive 1.9 62.2 56.2 51.7 34.9 33.2
active 2.6 50.7 46.0 43.1 29.3 28.1
robust 2.6 45.5 41.0 39.1 27.0 25.7
la01
method P 1 2 3 4 5
naive 57.0 118.0 112.7 108.8 104.4 101.8
active 57.0 113.9 109.1 105.1 100.8 98.4
robust 57.0 111.6 107.3 106.4 103.5 101.3

la02
method P 1 2 3 4 5
naive 31.0 95.0 92.8 91.9 86.3 85.0
active 31.0 96.1 93.3 92.4 86.5 84.9
robust 31.0 92.5 90.7 89.9 86.5 85.5
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la03
method P 1 2 3 4 5
naive 44.7 101.8 97.8 96.4 93.9 93.0
active 44.6 105.2 101.0 98.8 94.8 93.7
robust 50.2 107.1 103.6 103.7 102.0 101.3

la04
method P 1 2 3 4 5
naive 32.4 94.4 88.9 86.0 80.4 80.4
active 32.4 93.4 88.1 85.1 79.1 79.2
robust 41.0 95.8 88.7 87.0 85.0 84.3

la05
method P 1 2 3 4 5
naive 89.0 146.6 140.5 136.8 130.2 129.5
active 89.0 146.9 140.8 136.7 127.2 126.4
robust 89.0 122.7 119.5 119.1 118.7 117.8

la06
method P 1 2 3 4 5
naive 136.0 190.0 184.0 179.9 170.1 169.6
active 136.0 188.0 180.4 176.1 164.9 164.4
robust 136.0 166.8 164.4 163.9 160.3 159.9

la07
method P 1 2 3 4 5
naive 47.1 102.6 96.3 91.3 83.5 82.8
active 47.1 101.4 94.9 90.1 82.1 81.5
robust 47.2 76.0 73.7 73.3 73.3 73.0

la08
method P 1 2 3 4 5
naive 0.0 51.1 45.8 41.9 29.6 28.6
active 0.0 22.3 20.1 19.2 15.5 14.8
robust 0.0 20.6 19.0 19.0 18.6 16.4

la09
method P 1 2 3 4 5
naive 111.1 168.9 164.5 159.6 142.4 141.5
active 111.1 170.9 165.5 159.8 142.2 141.3
robust 115.9 153.4 149.8 148.8 144.6 143.3
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la10
method P 1 2 3 4 5
naive 130.0 181.7 175.5 171.6 167.9 167.7
active 130.0 178.9 172.3 168.2 164.8 164.7
robust 130.0 165.0 163.4 163.7 163.4 163.0

la11
method P 1 2 3 4 5
naive 161.0 222.7 218.6 213.2 198.3 197.8
active 161.0 224.4 220.1 215.3 198.2 197.7
robust 161.0 193.1 190.0 188.3 185.0 184.5

la12
method P 1 2 3 4 5
naive 121.0 182.3 177.0 173.2 161.8 161.6
active 121.0 182.1 177.1 174.0 164.0 163.9
robust 121.0 174.8 167.7 162.3 158.9 158.2

la13
method P 1 2 3 4 5
naive 118.0 178.9 175.3 172.4 157.9 157.3
active 118.1 179.5 175.9 172.8 158.5 157.6
robust 120.0 164.2 160.9 160.2 152.5 152.0

la14
method P 1 2 3 4 5
naive 186.0 236.1 229.0 223.1 211.7 211.4
active 186.0 233.7 227.1 222.2 211.7 211.6
robust 186.0 209.0 206.4 205.5 205.5 205.4

la15
method P 1 2 3 4 5
naive 63.2 117.8 111.7 107.7 101.8 101.4
active 62.3 113.6 108.4 105.5 99.3 99.0
robust 64.2 104.4 102.3 101.8 99.6 99.0

la16
method P 1 2 3 4 5
naive 52.5 105.6 99.6 97.5 89.9 87.6
active 51.8 108.0 102.6 100.2 93.6 91.3
robust 62.2 111.7 107.1 106.2 103.5 100.0
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la17
method P 1 2 3 4 5
naive 64.3 122.8 117.0 114.0 110.2 107.3
active 65.1 123.4 117.9 115.9 111.9 110.0
robust 67.0 123.2 119.6 118.4 115.2 113.5

la18
method P 1 2 3 4 5
naive 69.6 123.9 117.8 113.7 103.9 101.4
active 69.4 126.2 121.2 117.1 105.9 103.2
robust 73.1 115.0 110.9 107.5 103.3 101.2

la19
method P 1 2 3 4 5
naive 64.2 121.9 114.1 112.0 104.4 103.2
active 64.2 120.2 114.3 111.7 105.5 104.2
robust 70.8 120.9 114.3 112.2 109.6 107.7

la20
method P 1 2 3 4 5
naive 46.4 93.0 86.9 84.9 79.6 79.1
active 46.4 91.4 84.9 82.0 77.0 76.4
robust 50.8 85.3 81.3 80.5 77.5 76.0

la21
method P 1 2 3 4 5
naive 0.5 56.4 51.0 48.4 38.5 35.4
active 0.4 49.8 44.0 41.3 33.3 31.3
robust 0.9 44.6 40.2 38.3 31.6 29.0

la22
method P 1 2 3 4 5
naive 0.0 50.8 43.4 38.8 27.1 25.4
active 0.0 33.9 29.2 26.3 19.0 18.1
robust 0.0 30.9 27.7 26.0 19.9 19.2

la23
method P 1 2 3 4 5
naive 17.0 67.9 60.9 56.8 47.7 45.8
active 16.9 70.9 64.8 59.9 51.4 49.5
robust 17.1 54.8 51.2 49.7 45.6 43.5
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la24
method P 1 2 3 4 5
naive 46.3 104.8 99.5 96.7 83.9 81.3
active 46.9 106.7 101.8 98.4 85.1 82.6
robust 50.0 102.3 97.9 95.9 87.4 84.8

la25
method P 1 2 3 4 5
naive 67.5 123.4 116.4 111.8 98.5 96.6
active 66.7 120.3 114.0 109.8 98.0 96.5
robust 69.2 113.2 108.8 107.1 101.7 99.0

la26
method P 1 2 3 4 5
naive 18.5 73.9 66.8 61.2 47.1 44.9
active 18.6 72.2 65.2 59.5 45.0 43.2
robust 20.2 62.3 56.5 53.7 44.7 43.1

la27
method P 1 2 3 4 5
naive 27.1 87.6 80.7 75.8 61.8 59.8
active 26.5 83.1 76.9 71.8 57.8 55.7
robust 29.2 76.2 71.3 68.3 60.1 57.3

la28
method P 1 2 3 4 5
naive 34.4 92.6 86.5 81.0 68.0 66.0
active 33.7 91.1 84.9 80.1 67.7 65.7
robust 34.2 80.7 75.8 73.8 68.0 65.9

la29
method P 1 2 3 4 5
naive 49.7 104.0 97.7 93.3 82.7 80.6
active 50.3 107.0 100.7 97.0 85.5 83.6
robust 47.7 92.8 88.1 85.9 81.2 80.2

la30
method P 1 2 3 4 5
naive 14.2 64.7 58.1 54.6 46.2 44.7
active 14.3 65.1 58.2 53.0 44.8 41.1
robust 12.4 51.2 46.6 45.3 42.9 39.4
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la31
method P 1 2 3 4 5
naive 78.1 129.1 121.5 114.5 104.3 103.7
active 78.1 127.9 121.4 114.7 106.1 105.6
robust 78.2 105.1 101.6 99.9 96.8 96.6

la32
method P 1 2 3 4 5
naive 32.1 94.1 88.5 82.9 56.0 55.2
active 33.6 94.3 87.8 82.8 55.3 55.5
robust 20.3 70.5 65.8 62.1 40.9 40.1

la33
method P 1 2 3 4 5
naive 103.3 157.0 150.8 145.1 131.2 128.3
active 102.7 154.5 148.0 142.8 125.8 125.4
robust 86.1 127.9 124.6 122.7 114.9 113.5

la34
method P 1 2 3 4 5
naive 145.0 193.4 185.0 176.6 166.5 166.0
active 144.2 193.2 184.4 175.7 167.1 167.9
robust 140.7 166.5 163.6 162.2 158.7 158.7

la35
method P 1 2 3 4 5
naive 161.5 196.9 189.7 184.1 177.4 176.9
active 162.0 199.1 190.0 183.8 176.2 175.9
robust 161.2 175.4 173.3 172.5 170.2 170.2

la36
method P 1 2 3 4 5
naive 86.8 136.7 130.1 125.4 117.1 114.6
active 85.9 135.2 127.6 123.8 114.5 113.8
robust 94.1 128.6 124.0 122.2 119.8 117.6

la37
method P 1 2 3 4 5
naive 95.2 141.7 134.1 130.1 120.2 119.0
active 96.9 142.0 135.0 130.5 122.4 120.7
robust 101.4 137.9 132.9 131.7 129.7 128.8
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la38
method P 1 2 3 4 5
naive 56.3 111.0 104.2 98.7 86.4 85.2
active 56.7 110.9 103.2 98.3 85.6 84.5
robust 59.6 99.7 94.2 92.0 86.6 84.1
la39
method P 1 2 3 4 5
naive 36.5 89.8 83.2 78.5 67.7 65.2
active 35.4 90.4 83.2 78.0 68.7 65.7
robust 41.8 83.5 78.2 76.4 70.4 68.1
la40
method P 1 2 3 4 5
naive 99.5 157.6 148.8 143.4 129.4 126.9
active 99.1 156.9 147.7 142.1 127.9 125.2
robust 105.5 151.9 146.3 143.4 132.7 129.4
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Appendix I

Results of total tardiness
experiments

I.1 Loose problems σ = 0.95

Results for individual problems for the experiments of section 5.5.1.

ft10
method P 1 2 4 5
naive 0.0 162.1 116.7 32.7 29.0
active 0.0 63.5 47.3 11.1 10.1
robust 0.0 48.3 33.4 13.4 11.8

ft20
method P 1 2 4 5
naive 0.0 191.9 144.6 16.8 15.2
active 0.0 0.1 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0

la01
method P 1 2 4 5
naive 0.0 206.8 161.9 100.0 97.0
active 0.0 153.4 114.7 79.0 76.7
robust 0.0 145.1 110.1 81.7 80.0

la02
method P 1 2 4 5
naive 0.0 191.0 141.8 72.7 65.0
active 0.0 124.0 93.3 53.3 47.3
robust 0.0 101.2 74.5 49.4 43.5
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la03
method P 1 2 4 5
naive 0.0 170.7 128.2 79.7 74.5
active 0.0 129.6 102.4 64.9 61.4
robust 0.0 128.0 108.9 82.0 76.7

la04
method P 1 2 4 5
naive 0.0 128.1 95.1 55.5 53.9
active 0.0 91.2 74.2 49.0 47.3
robust 0.0 88.9 70.3 49.0 47.9

la05
method P 1 2 4 5
naive 82.3 304.8 251.1 206.9 202.8
active 82.3 306.2 250.7 199.0 195.5
robust 85.6 285.2 239.6 207.3 206.6

la06
method P 1 2 4 5
naive 133.6 398.6 348.5 251.3 247.0
active 133.4 431.1 368.2 253.7 249.8
robust 139.6 342.5 308.8 252.4 246.4

la07
method P 1 2 4 5
naive 0.0 140.6 98.6 26.7 25.1
active 0.0 22.6 16.7 7.2 7.2
robust 0.0 6.6 5.8 5.5 5.4

la08
method P 1 2 4 5
naive 0.0 145.1 104.2 23.5 22.1
active 0.0 0.1 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0

la09
method P 1 2 4 5
naive 26.4 222.2 176.4 113.6 114.1
active 26.1 238.4 189.1 128.4 126.2
robust 29.4 178.9 149.0 106.8 107.6
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la10
method P 1 2 4 5
naive 117.8 345.1 285.5 218.8 215.2
active 115.7 356.8 304.2 228.9 227.0
robust 128.1 279.6 248.9 217.3 215.1

la11
method P 1 2 4 5
naive 65.7 454.0 384.2 225.5 222.3
active 66.0 439.2 374.7 230.2 223.2
robust 67.3 323.8 274.1 197.4 192.7

la12
method P 1 2 4 5
naive 27.7 307.3 247.9 143.2 141.0
active 27.5 314.8 255.5 143.7 142.4
robust 29.6 243.8 204.6 135.4 135.1

la13
method P 1 2 4 5
naive 0.0 275.9 222.3 89.0 85.2
active 0.0 168.6 134.4 63.3 61.4
robust 0.0 127.8 101.7 55.7 56.4

la14
method P 1 2 4 5
naive 215.0 489.4 419.1 322.4 321.0
active 215.0 491.4 422.9 317.7 317.5
robust 215.4 388.4 358.4 312.9 314.4

la15
method P 1 2 4 5
naive 0.0 174.2 123.2 21.0 19.5
active 0.0 8.8 5.8 1.7 1.7
robust 0.0 4.6 3.5 1.2 1.5

la16
method P 1 2 4 5
naive 0.0 130.7 95.2 40.1 35.7
active 0.0 47.8 32.6 17.8 15.0
robust 0.2 51.7 38.2 26.8 24.8
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la17
method P 1 2 4 5
naive 0.0 196.2 144.9 76.4 70.7
active 0.0 143.3 115.1 65.0 58.2
robust 0.2 149.8 121.6 76.8 72.7

la18
method P 1 2 4 5
naive 0.0 213.9 157.4 60.2 55.1
active 0.0 85.0 63.2 25.7 24.4
robust 4.6 94.0 70.7 42.3 40.9

la19
method P 1 2 4 5
naive 0.0 209.5 152.4 66.4 61.1
active 0.0 134.7 110.5 51.3 49.0
robust 0.1 110.2 88.8 54.9 51.7

la20
method P 1 2 4 5
naive 0.0 86.3 56.2 30.2 29.2
active 0.0 56.9 38.2 20.4 20.1
robust 0.1 44.0 29.5 20.0 20.4

la21
method P 1 2 4 5
naive 0.0 116.1 76.4 14.4 13.5
active 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0

la22
method P 1 2 4 5
naive 0.0 95.3 63.6 9.9 10.4
active 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0

la23
method P 1 2 4 5
naive 0.0 112.2 71.5 17.7 16.4
active 0.0 3.4 1.6 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0
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la24
method P 1 2 4 5
naive 0.0 229.3 165.3 31.4 29.1
active 0.0 48.4 32.0 6.4 5.0
robust 0.0 29.4 18.5 6.8 5.1

la25
method P 1 2 4 5
naive 0.0 211.8 150.9 44.6 37.3
active 0.0 80.2 53.7 15.3 15.1
robust 0.0 64.0 45.7 20.0 21.0

la26
method P 1 2 4 5
naive 0.0 133.5 93.0 10.2 9.6
active 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0

la27
method P 1 2 4 5
naive 0.0 144.5 97.2 12.0 11.6
active 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0

la28
method P 1 2 4 5
naive 0.0 215.4 146.8 22.7 20.5
active 0.0 8.6 5.3 1.0 1.1
robust 0.0 2.0 1.3 0.8 0.6

la29
method P 1 2 4 5
naive 0.0 252.9 175.3 29.2 28.7
active 0.0 21.8 15.2 1.8 1.8
robust 0.0 8.2 5.5 1.2 1.0

la30
method P 1 2 4 5
naive 0.0 91.6 60.1 10.7 9.7
active 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0
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la31
method P 1 2 4 5
naive 0.0 148.6 97.5 7.5 7.3
active 0.0 0.1 0.1 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0

la32
method P 1 2 4 5
naive 0.0 175.7 111.6 6.7 6.2
active 0.0 0.0 0.0 0.0 0.0
robust 0.0 0.0 0.0 0.0 0.0

la33
method P 1 2 4 5
naive 0.0 217.9 154.9 12.3 11.1
active 0.0 10.5 6.6 0.5 0.6
robust 0.0 1.5 1.1 0.3 0.3

la34
method P 1 2 4 5
naive 0.0 251.2 168.4 27.2 26.1
active 0.0 50.5 30.9 7.3 7.4
robust 0.0 17.2 13.2 4.3 4.5

la35
method P 1 2 4 5
naive 0.1 147.5 100.4 18.8 19.8
active 0.1 40.5 28.4 12.7 13.4
robust 0.0 23.2 19.0 11.7 13.0

la36
method P 1 2 4 5
naive 0.0 133.0 85.8 24.9 20.3
active 0.0 43.8 27.9 8.5 7.1
robust 0.6 37.3 26.9 15.1 13.6

la37
method P 1 2 4 5
naive 0.4 136.0 88.2 17.6 13.7
active 0.2 45.8 30.2 6.7 6.0
robust 1.1 24.2 18.7 9.8 7.9
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la38
method P 1 2 4 5
naive 1.4 152.2 104.3 20.3 18.6
active 0.8 23.1 15.1 7.1 7.6
robust 2.0 16.1 10.7 7.5 7.1
la39
method P 1 2 4 5
naive 0.0 110.7 68.4 11.6 10.8
active 0.0 2.1 1.2 0.5 0.5
robust 0.0 0.4 0.2 0.2 0.1
la40
method P 1 2 4 5
naive 0.3 250.4 172.1 37.8 31.0
active 0.2 129.4 89.1 21.3 17.7
robust 1.1 98.8 70.1 27.3 22.0

I.2 The tighter problems σ = 0.85

Results for individual problems for the experiments of section 5.5.2.
ft10
method P 1 2 4 5
naive 184.4 524.5 470.1 319.4 304.9
active 183.2 526.4 462.7 323.8 310.5
robust 215.5 509.7 466.6 356.5 340.9

ft20
method P 1 2 4 5
naive 4.2 296.0 235.5 85.0 78.6
active 5.1 238.1 191.6 76.0 71.0
robust 6.9 177.9 144.6 65.9 65.4
la01
method P 1 2 4 5
naive 239.3 505.7 448.7 399.4 391.2
active 239.3 525.9 459.0 405.9 399.2
robust 265.3 504.7 457.3 411.1 403.7

la02
method P 1 2 4 5
naive 151.9 530.4 434.3 302.9 292.1
active 152.0 517.7 430.6 297.0 286.3
robust 161.3 463.1 391.0 299.1 288.2



288 APPENDIX I. RESULTS OF TOTAL TARDINESS EXPERIMENTS

la03
method P 1 2 4 5
naive 177.0 459.6 409.6 334.7 321.2
active 175.9 443.4 398.6 329.7 317.5
robust 180.2 409.2 370.4 328.5 318.5

la04
method P 1 2 4 5
naive 57.2 320.4 268.5 218.1 211.6
active 57.8 340.2 286.3 224.0 216.4
robust 85.9 340.3 299.0 247.2 241.0

la05
method P 1 2 4 5
naive 383.0 652.6 597.9 527.2 516.9
active 381.4 664.8 606.8 541.9 530.3
robust 399.0 640.4 593.7 544.5 535.1

la06
method P 1 2 4 5
naive 691.6 1038.4 968.8 829.7 812.4
active 686.8 1043.9 976.9 831.1 816.3
robust 702.8 1037.2 979.5 863.9 843.7

la07
method P 1 2 4 5
naive 48.1 298.4 240.2 154.7 153.8
active 48.9 293.4 236.9 155.8 154.4
robust 50.1 224.7 191.7 148.2 148.4

la08
method P 1 2 4 5
naive 0.0 231.6 185.0 81.7 76.9
active 0.0 93.2 73.2 43.5 41.6
robust 0.0 70.1 55.7 43.5 39.6

la09
method P 1 2 4 5
naive 473.8 850.2 791.5 672.4 658.2
active 474.8 866.3 806.5 686.9 675.8
robust 495.5 818.5 770.9 679.4 666.4
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la10
method P 1 2 4 5
naive 650.3 955.1 889.2 782.2 764.5
active 649.1 939.2 879.6 779.6 766.0
robust 654.1 885.3 839.3 784.0 776.0

la11
method P 1 2 4 5
naive 884.0 1368.4 1288.9 1105.5 1085.3
active 886.2 1348.5 1276.9 1107.8 1083.8
robust 876.0 1301.6 1241.9 1105.3 1089.7

la12
method P 1 2 4 5
naive 635.5 1107.9 1036.4 843.5 826.0
active 638.9 1082.4 1010.1 831.6 811.2
robust 646.6 1055.7 999.0 840.6 822.4

la13
method P 1 2 4 5
naive 633.3 1197.8 1125.1 854.8 839.5
active 636.0 1168.1 1094.5 859.4 836.5
robust 627.6 1119.8 1056.1 856.7 845.4

la14
method P 1 2 4 5
naive 1046.3 1423.9 1334.0 1156.2 1147.2
active 1042.2 1406.0 1322.4 1159.2 1151.2
robust 1039.6 1350.1 1284.9 1165.2 1159.3

la15
method P 1 2 4 5
naive 199.0 540.4 472.0 353.0 342.6
active 193.2 542.8 476.4 347.8 336.2
robust 206.2 471.4 422.6 349.2 344.4

la16
method P 1 2 4 5
naive 237.4 490.5 443.5 370.2 357.2
active 232.2 494.8 441.4 366.2 355.2
robust 282.2 479.6 440.2 404.2 396.9
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la17
method P 1 2 4 5
naive 383.3 734.1 683.0 556.4 527.3
active 380.1 741.7 685.7 553.5 532.4
robust 420.3 710.9 658.6 577.5 553.8

la18
method P 1 2 4 5
naive 293.4 587.0 538.4 430.8 409.8
active 284.8 591.6 536.9 421.4 404.4
robust 323.4 605.1 556.8 461.2 444.3

la19
method P 1 2 4 5
naive 323.4 636.5 580.9 480.3 462.4
active 327.5 649.8 592.2 492.6 475.6
robust 341.1 640.3 594.5 512.4 500.4

la20
method P 1 2 4 5
naive 130.6 327.8 276.1 224.9 223.6
active 124.9 348.6 293.0 227.5 225.8
robust 144.5 306.5 278.2 240.5 237.0

la21
method P 1 2 4 5
naive 1.5 274.4 206.9 91.1 76.2
active 1.2 206.2 161.1 72.2 62.2
robust 5.0 180.2 146.3 86.8 76.8

la22
method P 1 2 4 5
naive 0.3 267.9 203.3 65.3 62.9
active 0.1 165.9 128.7 43.3 41.8
robust 1.6 126.4 92.8 40.6 37.8

la23
method P 1 2 4 5
naive 54.7 377.0 303.4 177.1 163.7
active 54.5 391.3 315.7 181.3 165.5
robust 67.7 313.3 271.0 191.3 179.3
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la24
method P 1 2 4 5
naive 323.0 843.0 752.5 518.9 507.8
active 310.2 823.0 733.1 521.2 493.6
robust 338.4 768.6 695.6 520.9 499.8

la25
method P 1 2 4 5
naive 311.9 733.9 648.8 490.2 471.0
active 296.5 701.7 616.2 479.0 463.7
robust 307.3 666.2 610.6 489.5 476.1

la26
method P 1 2 4 5
naive 48.3 481.7 386.2 153.1 139.8
active 50.7 462.1 376.1 146.3 134.5
robust 61.6 356.0 299.3 159.2 143.9

la27
method P 1 2 4 5
naive 88.5 607.6 499.6 241.5 228.3
active 89.6 628.9 525.6 242.5 226.0
robust 98.8 555.4 481.9 257.3 244.2

la28
method P 1 2 4 5
naive 158.0 670.0 574.4 307.0 292.0
active 156.2 666.5 569.3 323.8 300.6
robust 155.1 558.8 484.9 308.2 297.1

la29
method P 1 2 4 5
naive 475.5 1071.4 949.0 635.5 594.9
active 465.5 1079.9 957.1 649.5 614.3
robust 455.5 1008.1 906.5 647.3 608.5

la30
method P 1 2 4 5
naive 72.7 462.5 365.7 200.2 187.5
active 74.5 477.7 389.7 206.9 191.8
robust 63.6 323.7 275.2 180.1 174.7
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la31
method P 1 2 4 5
naive 541.2 1213.9 1053.2 706.7 687.6
active 541.1 1263.3 1105.4 709.3 709.8
robust 433.6 847.5 760.2 588.0 576.0

la32
method P 1 2 4 5
naive 116.0 763.4 630.0 206.5 193.3
active 115.9 759.5 626.9 208.9 190.8
robust 48.6 421.0 345.2 115.5 112.9

la33
method P 1 2 4 5
naive 1135.0 1993.8 1828.8 1327.6 1260.6
active 1140.2 1948.9 1784.7 1322.5 1252.0
robust 805.8 1472.4 1352.3 1012.1 1002.0

la34
method P 1 2 4 5
naive 1597.5 2295.0 2113.2 1626.4 1589.2
active 1575.4 2307.1 2131.6 1622.7 1598.8
robust 1365.7 1838.1 1733.9 1470.9 1443.2

la35
method P 1 2 4 5
naive 1342.7 1976.8 1793.4 1376.3 1345.3
active 1354.0 1959.7 1797.7 1369.7 1353.9
robust 1067.9 1469.6 1368.5 1126.5 1099.6

la36
method P 1 2 4 5
naive 470.2 834.5 752.6 625.3 604.9
active 483.0 851.5 766.7 645.1 622.3
robust 546.3 838.1 775.0 683.2 657.8

la37
method P 1 2 4 5
naive 597.5 949.8 858.1 712.7 683.5
active 602.4 948.0 863.5 717.0 681.3
robust 664.7 915.8 856.9 751.6 718.4
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la38
method P 1 2 4 5
naive 349.1 801.4 706.8 508.3 483.9
active 350.4 774.1 680.4 512.0 482.0
robust 372.1 705.5 642.9 523.8 492.9
la39
method P 1 2 4 5
naive 142.3 527.2 453.2 279.8 258.9
active 130.1 523.8 449.4 276.6 262.3
robust 167.6 477.2 418.1 314.6 288.5
la40
method P 1 2 4 5
naive 681.7 1268.8 1158.9 874.8 852.9
active 680.2 1249.3 1138.7 880.3 861.5
robust 702.9 1192.4 1099.3 903.3 878.2
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Appendix J

Results of total flow-time
experiments

Results for individual problems for the experiments of section 5.6.
ft10
method P 1 2 4 5
active 7866.3 8274.0 8207.5 8061.4 8049.4
robust 7844.8 8241.9 8176.6 8050.6 8033.4
ft20
method P 1 2 4 5
active 15204.0 15968.1 15869.3 15480.1 15427.2
robust 15155.9 15852.5 15755.3 15428.0 15393.2
la01
method P 1 2 4 5
active 5056.5 5415.9 5361.8 5260.3 5256.5
robust 5096.7 5392.2 5345.8 5283.6 5277.9

la02
method P 1 2 4 5
active 4667.7 5053.4 5004.1 4886.1 4864.7
robust 4683.9 5069.1 5016.1 4902.6 4894.4

la03
method P 1 2 4 5
active 4257.6 4621.4 4577.8 4479.3 4462.8
robust 4277.0 4619.2 4575.5 4502.4 4486.6

la04
method P 1 2 4 5
active 4575.6 4950.1 4901.0 4799.5 4772.9
robust 4574.1 4910.1 4868.6 4787.0 4756.7

295
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la05
method P 1 2 4 5
active 4305.1 4704.5 4643.0 4497.6 4484.2
robust 4324.5 4682.1 4633.5 4525.5 4516.1

la06
method P 1 2 4 5
active 9591.3 10119.8 10041.3 9827.6 9801.1
robust 9617.0 10087.9 10012.3 9834.6 9822.8

la07
method P 1 2 4 5
active 8731.3 9273.0 9197.6 9004.2 8979.6
robust 8756.5 9256.7 9197.9 9027.4 9001.9

la08
method P 1 2 4 5
active 8944.9 9503.3 9425.7 9208.3 9184.4
robust 8953.0 9483.1 9409.3 9216.3 9183.6

la09
method P 1 2 4 5
active 10086.4 10679.8 10591.4 10332.9 10294.1
robust 10113.2 10660.9 10576.4 10377.0 10345.1

la10
method P 1 2 4 5
active 9912.7 10493.0 10409.9 10148.4 10121.6
robust 9966.0 10474.9 10395.1 10195.9 10181.9

la11
method P 1 2 4 5
active 16062.1 16792.4 16688.5 16256.4 16216.5
robust 16017.9 16702.7 16597.3 16210.8 16179.1

la12
method P 1 2 4 5
active 13864.4 14624.3 14507.4 14103.6 14070.5
robust 13785.1 14481.6 14384.6 14068.1 14049.6

la13
method P 1 2 4 5
active 15006.2 15783.7 15678.9 15308.2 15233.8
robust 14927.2 15575.2 15486.9 15234.2 15204.6
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la14
method P 1 2 4 5
active 16872.6 17649.3 17517.7 17032.8 16963.0
robust 16836.7 17419.2 17313.2 17041.0 16982.8

la15
method P 1 2 4 5
active 16533.6 17259.8 17133.2 16736.3 16646.7
robust 16508.1 17158.2 17066.5 16719.7 16666.8

la16
method P 1 2 4 5
active 7680.4 8031.5 7968.6 7867.7 7847.2
robust 7699.0 8012.4 7964.3 7889.9 7869.1

la17
method P 1 2 4 5
active 6784.9 7192.1 7116.0 6961.4 6930.6
robust 6804.1 7134.0 7063.1 6964.3 6938.6

la18
method P 1 2 4 5
active 7247.0 7632.9 7572.5 7438.5 7412.7
robust 7261.5 7652.6 7591.9 7464.5 7446.2

la19
method P 1 2 4 5
active 7469.9 7900.5 7823.7 7680.6 7649.7
robust 7474.8 7882.6 7812.0 7693.9 7673.1

la20
method P 1 2 4 5
active 7660.5 8032.6 7966.9 7833.1 7815.7
robust 7682.1 8043.7 7987.4 7849.2 7839.2

la21
method P 1 2 4 5
active 13466.4 14073.3 13969.3 13723.9 13682.0
robust 13492.3 14016.5 13933.0 13724.9 13702.4

la22
method P 1 2 4 5
active 12445.0 13024.4 12920.7 12678.3 12651.6
robust 12453.6 12949.8 12859.6 12700.2 12650.4
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la23
method P 1 2 4 5
active 13331.5 13914.0 13819.2 13588.8 13539.9
robust 13377.4 13863.8 13780.1 13605.4 13580.4

la24
method P 1 2 4 5
active 12806.8 13392.9 13307.9 13032.0 12985.5
robust 12830.3 13337.8 13255.2 13018.5 12983.7

la25
method P 1 2 4 5
active 12575.5 13168.6 13061.8 12838.9 12788.0
robust 12574.2 13077.1 12998.0 12828.2 12800.0

la26
method P 1 2 4 5
active 21128.7 21911.8 21781.6 21373.9 21290.2
robust 21187.1 21820.0 21712.9 21428.5 21361.9

la27
method P 1 2 4 5
active 21580.2 22419.1 22270.9 21801.0 21696.7
robust 21564.1 22231.8 22116.9 21777.4 21710.7

la28
method P 1 2 4 5
active 21460.8 22220.4 22081.2 21682.7 21606.8
robust 21446.2 22121.6 22009.7 21663.9 21607.5

la29
method P 1 2 4 5
active 20283.8 21056.9 20909.2 20537.2 20434.2
robust 20250.9 20889.3 20769.8 20452.6 20376.9

la30
method P 1 2 4 5
active 21765.6 22535.2 22392.5 21995.4 21891.9
robust 21706.4 22374.0 22262.7 21927.6 21832.9

la31
method P 1 2 4 5
active 41242.2 42379.4 42174.6 41392.2 41255.2
robust 41082.1 42021.9 41853.3 41257.2 41139.5
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la32
method P 1 2 4 5
active 44815.5 45910.6 45711.4 44933.0 44822.4
robust 44550.5 45503.2 45340.5 44766.8 44628.3
la33
method P 1 2 4 5
active 40823.4 41973.1 41767.0 40977.0 40880.6
robust 40641.3 41532.8 41380.1 40795.6 40714.8
la34
method P 1 2 4 5
active 42366.6 43487.7 43280.8 42484.3 42373.6
robust 42142.9 43097.7 42933.1 42295.2 42216.6
la35
method P 1 2 4 5
active 42706.5 43762.0 43575.0 42687.4 42508.7
robust 42413.2 43332.9 43184.0 42484.1 42305.1
la36
method P 1 2 4 5
active 17379.7 17931.1 17826.0 17588.8 17541.8
robust 17433.6 17869.1 17791.0 17613.3 17579.2
la37
method P 1 2 4 5
active 18391.5 18970.0 18842.5 18599.8 18551.0
robust 18424.9 18947.8 18847.8 18639.5 18593.9
la38
method P 1 2 4 5
active 16423.2 16985.8 16884.2 16656.1 16627.4
robust 16474.0 17012.3 16912.3 16694.6 16639.1
la39
method P 1 2 4 5
active 16466.9 17083.3 16966.9 16681.0 16646.0
robust 16474.0 17011.7 16922.5 16709.1 16675.6
la40
method P 1 2 4 5
active 16678.4 17326.7 17214.2 16886.1 16834.5
robust 16674.4 17252.1 17145.9 16893.1 16847.1
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