
BRICS
Basic Research in Computer Science

Multiparty Computations

Information-Theoretically Secure Against
an Adaptive Adversary

Stefan Dziembowski

BRICS Dissertation Series DS-01-1

ISSN 1396-7002 January 2001

B
R

IC
S

D
S

-01-1
S

.D
ziem

bow
ski:

M
ultiparty

C
om

putations
—

Inform
ation-T

heoretically
S

ecure
A

gainstan
A

daptive
A

dversary

Copyright c© 2001, Stefan Dziembowski.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/01/1/

Multiparty Computations
Information-Theoretically

Secure Against an Adaptive
Adversary

Stefan Dziembowski

PhD thesis

BRICS
Department of Computer Science

University of Århus
Denmark

December 2000, Revised: January 2002 Supervisor: Ivan Damgård

2

3

Abstract

In this thesis we study a problem of doing Verifiable Secret Sharing (VSS) and
Multiparty Computations (MPC) in a model where private channels between
the players and a broadcast channel is available. The adversary is active, adap-
tive and has an unbounded computing power. The thesis is based on two pa-
pers [CDD00, CDD+99].

In [CDD00] we assume that the adversary can corrupt any set from a given
adversary structure. In this setting we study a problem of doing efficient VSS
and MPC given an access to a secret sharing scheme (SS). For all adversary
structures where VSS is possible at all, we show that, up to a polynomial time
black-box reduction, the complexity of adaptively secure VSS is the same as
that of ordinary secret sharing (SS), where security is only required against a
passive, static adversary. Previously, such a connection was only known for
linear secret sharing and VSS schemes.

We then show an impossibility result indicating that a similar equivalence
does not hold for Multiparty Computation (MPC): we show that even if pro-
tocols are given black-box access for free to an idealized secret sharing scheme
secure for the access structure in question, it is not possible to handle all rele-
vant access structures efficiently, not even if the adversary is passive and static.
In other words, general MPC can only be black-box reduced efficiently to secret
sharing if extra properties of the secret sharing scheme used (such as linearity)
are assumed.

The protocols of [CDD+99] assume that we work against a threshold adver-
sary structure. We propose new VSS and MPC protocols that are substantially
more efficient than the ones previously known.

Another contribution of [CDD+99] is an attack against a Weak Secret Shar-
ing Protocol (WSS) of [RBO89]. The attack exploits the fact that the adversary
is adaptive. We present this attack here and discuss other problems caused by
the adaptiveness (one of the examples are taken from [CDD+01]).

All protocols in the thesis are formally specified and the proofs of their se-
curity are sketched.

4

Contents

1 Introduction 9
1.1 SS, VSS and MPC . 9
1.2 The contribution of [CDD00] . 10

1.2.1 Introduction . 10
1.2.2 A More Detailed View . 11

1.3 The contribution of [CDD+99] . 15
1.3.1 Previous work on the protocols secure for threshold

structures . 15
1.3.2 Contributions . 16

1.4 The role of adaptiveness . 16
1.4.1 The WSS protocol of [RBO89] 17
1.4.2 The example of [CDD+01] 19
1.4.3 Another example . 20

1.5 Overview of the next chapters . 21
1.6 Acknowledgments . 22

2 Definitions and notation 23
2.1 The security of on-line protocols 23

2.1.1 A real life model . 24
2.1.2 An ideal model . 25
2.1.3 Comparing two models 27
2.1.4 The role of the post-execution corruption 28
2.1.5 The hybrid model . 30
2.1.6 Secure composition - zero error case 31
2.1.7 Secure composition - non-zero error case 31
2.1.8 Protocols with many subprotocols 32
2.1.9 Making the definition more specific 32

2.2 The standard simulation . 34
2.2.1 The case with zero error probability 35
2.2.2 The case with non-zero error probability 40
2.2.3 Universal security . 42

5

6 CONTENTS

3 The Information Checking Protocol 43
3.1 The Cons protocol . 43

3.1.1 Lin-consistent vectors . 44
3.1.2 Specification . 44
3.1.3 Implementation . 45
3.1.4 Construction of the simulator 46
3.1.5 Analysis of the simulator 46
3.1.6 Security of the protocol 48
3.1.7 Why two phases are needed 48

3.2 The IC protocol . 48
3.2.1 Specification . 48
3.2.2 Implementation . 50
3.2.3 Construction of the simulator 52
3.2.4 Analysis of the simulation 53
3.2.5 Security of the protocol 55
3.2.6 Complexity of ICReal . 56
3.2.7 More on Step 2. of a verifying phase 56
3.2.8 Some informal terminology 57

4 Constructing VSS from SS 59
4.1 The WSSV protocol . 60

4.1.1 Specification . 60
4.1.2 Implementation . 61
4.1.3 The security proof for WSSV 64

4.2 The WSSZK protocol . 66
4.2.1 Specification . 66
4.2.2 Implementation . 70
4.2.3 Construction of the simulator 74
4.2.4 Analysis of the simulation 76

4.3 The VSS protocol . 77
4.3.1 Specification . 77
4.3.2 Some terminology . 78
4.3.3 The VSSV protocol . 78
4.3.4 Implementation of the VSS protocol. 80
4.3.5 Construction of the simulator 81
4.3.6 Analysis of the simulator 81

4.4 The combinatorial lemmas . 82

5 The MPC protocol 87
5.1 Specification . 87
5.2 Implementation . 88
5.3 Construction of the simulator . 95
5.4 Proof of security . 95
5.5 Putting things together . 97

CONTENTS 7

6 Impossibility of constructing MPC from SS 99
6.1 Proof of Lemma 6.1. 101

7 Error Free Protocols and the Open Problems 105

8 CONTENTS

Chapter 1

Introduction

We consider protocols executed by a group of players. The protocols will be
designed in a secure way. Very informally this means that, even if a certain
players get corrupted, the coalition of them will not be able to learn the secrets
of the honest players, or to influence the result of the protocol (this will hold up
to some limits). We will first (Section 1.1) give an informal introduction to the
types of protocols that we consider (the formal definitions appear in Chapter
1). The thesis is based on two papers [CDD00, CDD+99]. In Section 1.2 we give
an overview of [CDD00]. Then, in Section 1.3 we describe the contribution of
[CDD+99].

1.1 SS, VSS and MPC

We consider three related problems, namely secret sharing (SS), verifiable secret
sharing (VSS) and multiparty computation (MPC).

SS was introduced by Shamir [Sha79] and generalized by Itoh et al.[ISN87]:
a Dealer has a secret s and distributes a set of shares s1, ...sn to n players, such
that s can be reconstructed only by certain qualified subsets of players while
unqualified subsets have no information about s. The collection of qualified
sets is called the access structure. We stress that in [CDD00] we consider secret
sharing for general access structures (while in [CDD+99] we restrict ourselves
to the threshold schemes where the access structure may only consist of all sets
of size larger than some threshold). It is assumed that the dealer computes the
shares correctly, and that players input correct shares for reconstruction.

When these assumptions are dropped, we get the (seemingly) harder prob-
lem of VSS (Chor et al. [CGMA85]): here, some of the players, including the
dealer, may not follow the protocol. It may even be the case that some of them
turn bad dynamically as the protocol proceeds, as long as the total set of bad
players remains unqualified. Still the remaining honest players should be able
to verify that they have shares of a well defined secret, while the cheating play-
ers should get no information about it, if the dealer is honest. Finally, the honest

9

10 CHAPTER 1. INTRODUCTION

players should be able to reconstruct the secret, even against the actions of the
cheating players.

Our final, still more general problem is that of MPC (A. Yao [Yao82], Gol-
dreich, Micali and Wigderson [GMW87]): here, all players have a secret input,
and the goal is to compute an agreed functions of these inputs, while maintain-
ing privacy of the inputs and correctness of the result, again assuming that the
set of bad players at any given time is unqualified.

1.2 The contribution of [CDD00]

1.2.1 Introduction

The classical results in unconditionally secure VSS/MPC by Ben-Or, Gold-
wasser and Wigderson[BOGW88], Chaum, Crépeau and Damgård [CCD88]
and Rabin and Ben-Or [RBO89] can be seen as results that build efficient VSS
and MPC protocols based on Shamir’s threshold secret sharing scheme, in the
model where secure channels are assumed to exist between every pair of play-
ers.

Gennaro [Gen95] was the first to consider VSS secure for general access
structures. Then Hirt and Maurer [HM97] characterized exactly those general
access structures for which VSS and MPC are possible.

Continuing the line of research from [BOGW88, CCD88, RBO89], Cramer,
Damgård and Maurer [CDM00] have shown that VSS and MPC for general
access structures can be built efficiently on top of any linear SS scheme (see
also [CDD+99]). Thus a natural final step is to ask what happens if we start
from an arbitrary SS scheme?

Informally, what we show in this paper is that VSS is as easy to achieve
efficiently as ordinary SS, more precisely, there exists an efficient reduction that
builds a secure VSS protocol from any SS scheme secure for the same access
structure, provided VSS is possible at all for that structure. Since VSS trivially
implies SS, this is an optimal result.

Similarly, showing that MPC in this sense is no harder than SS would be an
optimal result. However, we show an impossibility result indicating that there
is not much hope of proving this. A reduction showing how to do secure MPC
for some access structure given any SS-scheme for that structure cannot make
any assumptions on the way the SS-scheme works. So the natural approach is
to treat the secret sharing as a black box, relying only on the functionality that
follows from the definition of secure SS. We show that if we restrict ourselves to
such reductions, there are access structures that cannot be handled efficiently,
where by ”efficiently”, we mean that protocols run in time polynomial in the
number of players, counting usage of the SS-scheme as only one step.

Thus, general (black-box) reductions building MPC from SS would have to
either depend on the particular kind of SS-scheme being used (such as reduc-
tions depending on linearity of the SS scheme) or be inefficient on some access
structures. This may be seen as an indication that, as far as applicability to un-

1.2. THE CONTRIBUTION OF [CDD00] 11

conditionally secure MPC is concerned, there is a fundamental difference be-
tween linear SS schemes and general ones. By contrast, it is shown in [CDM00]
that general SS does suffice for computationally secure MPC.

1.2.2 A More Detailed View

To explain our results in more detail, we need to describe more precisely the
model we use: we have a set of n players, connected pairwise by private chan-
nels, moreover, a broadcast channel is also available. We are given a monotone
access structure Γ, that is, Γ consists of subsets of the player set, such that A ∈ Γ
and A ⊂ B implies B ∈ Γ. For instance, Γ could consist of all subsets of size n/2
or more. For convenience in the following, we will instead talk about the fam-
ily F of subsets not in Γ. Such a complement of an access structure is known as
an adversary structure, a general notion introduced by Hirt and Maurer[HM97].

Finally we have an adversary who can corrupt any subset A of players, as
long as A ∈ F . This is called an F -adversary. The adversary may be pas-
sive, meaning that he just gets access to all data of corrupted players, or active,
meaning that he takes control over corrupted players and may make them de-
viate from the protocol they were supposed to follow. Orthogonal to this, we
distinguish between static adversaries who must decide before the protocol
execution who to corrupt, and adaptive adversaries [RBO89] who may decide
dynamically throughout the protocol whom to corrupt, as long as the total cor-
rupted set is in F . For more on the role of adaptiveness see Section 1.4.

In this model, security of secret sharing (SS) can be rephrased to the require-
ment that a passive, static adversary gets no information about the secret when
it is distributed. And that the secret can be reconstructed, even if the adversary
can make the corrupted set of players fail to input shares for reconstruction.

In order to talk about the complexity and error probability of an SS scheme,
we will think of it as two probabilistic algorithms DistrSS and ReconSS, where
DistrSS gets as input the secret s, the number of players n, it then computes a set
of n shares as output. Sharing s means that one of the players, the dealer, runs
DistrSS and sends the shares privately to the players. For reconstruction, some
subset of the shares are broadcast, and each player can run ReconSS, which gets
as input the subset of the shares, the number n, and outputs a value s′.

Thus, underlying this, we have not just one, but a family of adversary struc-
tures, one for each n. We will say that (DistrSS, ReconSS) is secure against the
family {Fn}∞n=1 if the following hold for any n and any static, passive Fn-
adversary:

• Assuming the dealer is not corrupted, the adversary gets no (Shannon)
information about the secret after it is shared.

• Sharing s and running ReconSS on input a set of shares not in Fn results
in output s. Running ReconSS on input set of shares of players in Fn

results in output a special symbol ⊥, indicating that the input set was
unqualified.

12 CHAPTER 1. INTRODUCTION

Note that it would not make any essential difference if the behavior of ReconSS

on unqualified sets was left undefined: one can always test, with arbitrarily
small error, if a set is qualified by sharing a random secrets and testing if they
can be reconstructed from the subset in question.

Going to VSS, we will think of this as first a protocol DistrVSS for distribu-
tion, that takes a security parameter k as input, and where one of the players,
the dealer, gets the secret as private input. Secondly, there is a protocol for
reconstruction ReconVSS, where each player starts from his view of the distri-
bution (which we think of as his share), interacts with other players and recon-
structs a value for the secret (for a formal specification see Section 4.3.1). Such
a VSS is secure against the family {Fn}∞n=1 if the following hold for all n and
all adaptive, active Fn-adversaries:

• After distribution, a secret is uniquely defined from the views of the set
of uncorrupted players, except with probability negligible in k.

• If the Dealer remains uncorrupted, the adversary has a negligible (in k)
amount of information about the secret.

• Reconstruction of the secret results in all uncorrupted players reconstru-
cting the secret defined at distribution time, except with negligible prob-
ability in k.

Here, negligible in k means that the quantity converges to 0 as a function of k
faster than any polynomial fraction.

Hirt and Maurer [HM97] show that designing a VSS protocol is possible if
and only if the adversary structure isQ2: for any two sets in the structure, their
union is not the whole player set. The obvious question is therefore: when can
it be done efficiently? – which we here will take to mean in polynomial time in
the number of players. The number of Q2 structures is doubly exponential in
n (see [HM97]) so it follows from a counting argument that we cannot hope to
handle all structures efficiently.

One way we could hope to get upper and lower bounds for VSS is by re-
lating it to the simpler problem of SS. Cramer, Damgård and Maurer [CDM00]
show that any linear secret sharing scheme implies a VSS with polynomially
related efficiency 1. Here, a linear secret sharing scheme is one in which the
shares and the secret are elements in a finite field, and the secret can be ob-
tained as a linear function of the shares. Such schemes can be based on mono-
tone span programs [KW93, Bei96].

Our first main contribution is a similar result, that holds for any secret shar-
ing scheme. Since VSS trivially implies SS without significant loss of efficiency,
this is the best result we can hope for.

1In fact, they worked in a model with no broadcast and zero error but a stronger condition
on the adversary structure. However, the result translates to our model using the techniques of
[CDD+99]

1.2. THE CONTRIBUTION OF [CDD00] 13

Theorem 1.1
Given any secure secret sharing scheme S = (DistrSS, ReconSS), secure against
a familyF ofQ2 adversary structures, there exists a VSS protocol secure against
F with complexity polynomial in n, k and the running time of S.

We show this by combining the information checking idea of [RBO89] and
[CDD+99] with a new technique for upgrading from static to adaptive security.

Note that one way to prove such a result would be to provide a kind of
”efficient compiler” that takes as input the algorithms (DistrSS, ReconSS) and
produces a VSS protocol for the same adversary structure, with polynomially
related efficiency. We prove a slightly stronger result, in that we construct a
single VSS protocol that works when given only black-box access to the algo-
rithms of any SS scheme.

A seemingly even harder problem than VSS is that of MPC, as described
above. For this problem a set of results very similar to those for VSS is known:
In was proved in [HM97] that the Q2 condition on the adversary structure
is necessary and sufficient for MPC to be possible. In [CDM00] it is shown
how to perform secure distributed multiplication efficiently when given a lin-
ear SS scheme, and how efficient MPC follows from this given also a commit-
ment scheme with extra homomorphic properties. Using a VSS construction
from [CDD+99] as commitment and exploiting its linearity, it then follows that
a linear SS scheme for a Q2 adversary structure implies an MPC protocol for
the same structure with polynomially related efficiency, secure against an ac-
tive, adaptive adversary.

So it is natural to ask whether a result similar to Theorem 1.1 holds for
MPC? As for VSS, this is the best result one can hope for in terms of poly-time
efficiency. However, we show a result implying that a reduction of the type we
provided to prove Theorem 1.1 does not exist for MPC, not even if we assume
the adversary is passive and static. Informally, we show that MPC protocols
which get black-box access for free to secret sharing, but do not use any spe-
cial properties of the SS scheme in question, cannot handle all Q2 adversary
structures efficiently.

Since, in both the passive and active models, distributed addition is easily
handled (as we will argue later on), it follows that it is essentially distributed
multiplication, or equivalently, Oblivious Transfer, that prohibits efficient con-
struction of MPC protocols from black-box SS-schemes.

To make this more precise, we first fix (for concreteness) a function which
will turn out to be hard to compute securely for all Q2 structures, namely the
function fAND which is the AND of n input bits, one from each player.

We will allow protocols to be constructed non-uniformly over n, k, this only
makes the impossibility result stronger. Thus for a fixed value of n, k, we can
write down the computing done by each player at each round of the protocol as
a Boolean circuit. Sending of messages translates directly to wires connecting
these circuits, and the view of a player becomes the collection of values that are
handled by his part of the circuit. In the following, we will only be interested
in what happens when both n and k go to infinity, so for simplicity, we only

14 CHAPTER 1. INTRODUCTION

look at cases where n = k.
So we define a protocol for computing fAND for an arbitrary number of

players n as a family of Boolean circuits of this type {Cn| n = 1, 2, ..}, where
Cn specifies the actions of the protocol for n players (and security parameter
k = n). A protocol is polynomial time, if each Cn has size bounded by some
polynomial.

We will say that a protocol computes fAND securely against a family of ad-
versary structures {Fn}∞n=1, if the following two conditions hold for all static,
passive Fn-adversaries 2:

correctness For any set of inputs bits b1, ..., bn, the protocol computes as result
for all players b1 ∧ ... ∧ bn, except with negligible probability (in n = k).

privacy For A ∈ Fn, if the adversary corrupts A, he learns nothing about
inputs bits outside A, beyond what is implied by input bits in A and
b1 ∧ · · · ∧ bn (except for an amount negligible in n = k).

Note that requiring only passive, static security makes the impossibility
result stronger.

Finally, we discuss how to model protocols that are allowed to use SS secure
against the adversary structures in some family {Fn}∞n=1 but without relying
on which particular SS-scheme is used.

Note that it would not work to give the protocol black-box access to the
algorithms (DistrSS, ReconSS) of some scheme. The shares thus produced de-
pend of course on the algorithm, so as a result the protocol might still take
actions depending on the particular scheme used. To avoid this, we give in
stead the protocols access to an idealized secret sharing where the shares are
replaced by a random number that is unrelated to any particular SS scheme.

More precisely, we allow protocols to make use of an extra incorruptible
player T with unbounded computing power called an SS-F -oracle. T will im-
plement an ”ideal” SS w.r.t. Fn whenever there are n players: any player can
send a message ”share s” to T containing a secret s. Then T will remember
s and distribute to all players a randomly chosen but unique number ID(s).
At any later time, the protocol can issue a request to T ”Reconstruct A, ID(s)”
meaning that the players in the subset A would like to reconstruct the secret
identified by ID(s). Now, T computes whether A is in Fn. If not, T will send s
to the players in A. Otherwise T will only say that A is in Fn.

When measuring running time, access to T counts only as one step - the
protocol is not charged for the internal computing done by T 3. A protocol
with such an extra player is called an SS-oracle protocol. Such a protocol is said
to compute a function securely against F if it can do so when given access to
an SS-F -oracle. Our result now is:

2Usually, when defining security of multiparty computation, one cannot separate correctness
and privacy as we do here. However, in our particularly simple case of static and passive security
with deterministic function, this is not a problem

3thus, in our circuit model, a call to T is modeled as a single oracle gate doing internally all T ’s
computation.

1.3. THE CONTRIBUTION OF [CDD+99] 15

Theorem 1.2
There exist families F of Q2 adversary structures, such that no polynomial-
time SS-oracle protocol computes fAND securely against F .

Note that if we were talking about protocols with no oracle access, we
would have a lemma already shown in [HM97] for which a simple counting
argument suffices: Let a maximal Q2 adversary structure be one to which we
cannot add a new subset without loosing the Q2 property. It is then easy to see
that there are doubly exponentially many maximal Q2-adversary structures
on n players. On the other hand, there are only exponentially many different
protocols that can be specified by a number of bits polynomial in n. Thus, if
the result was false, there would exist some protocol that could handle several
different access structures. But the same protocol cannot be secure for two dif-
ferent maximal Q2 structures because it would then be secure for their union,
which is not Q2.

However, in our case this argument breaks down: our protocols have access
to an oracle giving answers that depend on the access structure in question,
thus an oracle protocol may take different actions for different access struc-
tures. The main technical problem we solve is to show that even this is not
sufficient to do MPC efficiently for all structures.

Note that Theorem 1.2 does not rule out that a result similar to Theorem 1
could hold for MPC: it may be the case that for every (class of) SS-scheme(s)
there exist MPC protocols with polynomially related efficiency that depend on
the particular scheme, or class of schemes considered. Only the existence of a
general black-box reduction is ruled out.

1.3 The contribution of [CDD+99]

In [CDD+99] we study the problem of designing efficient VSS and MPC pro-
tocol secure against an active and adaptive adversary. As in Section 1.2.2 we
assume that the players are connected with private authenticated channels and
a broadcast channel is available. The only difference is that we consider only
the threshold adversary structures. More precisely we assume that the adver-
sary can corrupt any minority of the players. In other words the adversary
structure consists of sets of size smaller than n/2 (where n is the number of
players).

1.3.1 Previous work on the protocols secure for threshold
structures

As the first general solution to this problem, [GMW87] presented a protocol
that allows n players to securely compute an arbitrary function even if a cen-
tral adversary actively corrupts any t < n/2 of the players and makes them
misbehave maliciously. However, this protocol assumes that the adversary is
computationally bounded. In a model with secure and authenticated channels

16 CHAPTER 1. INTRODUCTION

between each pair of players (the secure-channels model), [BOGW88, CCD88]
proved that unconditional security is possible if at most t < n/3 of the players
are actively corrupted. This bound was improved in [RBO89, Bea91] to t < n/2
by assuming the existence of a broadcast channel.

1.3.2 Contributions

Rabin and Ben-Or [RBO89, Rab94] proposed VSS and MPC protocols, secure
against an adversary that can actively corrupt any minority of the players. In
[CDD+99], we observe that a subprotocol of theirs, known as weak secret shar-
ing (WSS, a type of unconditionally secure commitment scheme), is not se-
cure against an adaptive adversary, contrary to what was believed earlier (and
claimed in [RBO89, Rab94]). However, the VSS protocol of [RBO89, Rab94] is
in fact adaptively secure. See Section 1.4 for more on adaptiveness.

We propose new and adaptively secure protocols for WSS, VSS and MPC
that are substantially more efficient than the original ones of [RBO89] and later
protocols by Beaver [Bea91]. To obtain error probability 2−k+O(log n) with n
players, the VSS protocols of [RBO89, Bea91] communicate Ω(k3n4) bits. Our
VSS protocol is constant round and uses communication O(kn3) bits, to achieve
the same error probability 2−k+O(log n).

This improvement is based in part on a more efficient implementation of
Information Checking Protocol, a concept introduced in [RBO89] which can be
described very loosely speaking as a kind of unconditionally secure signature
scheme. Our implementation is linear meaning that for two values that can
be verified by the scheme, and linear combination of them can also be verified
with no additional information. When using our VSS in MPC, this means that
linear computations can be done non-interactively, contrary to what the imple-
mentation of [RBO89] (this property was also obtained in [Bea91], but with a
less efficient Information Checking implementation).

An essential tool in MPC (provided in both [RBO89] and [Bea91]) is a pro-
tocol that allows a player who has committed to values a, b, c using WSS, to
show that ab = c without revealing extra information. We provide a protocol
for this purpose giving error probability 2−k which is extremely simple.

1.4 The role of adaptiveness

In this section we discuss the role of the adaptiveness of the adversary. We
show a few examples of the protocols secure against a passive adversary and
insecure against an adaptive one (for other examples the reader may consult
[CFGN96]). In all the examples the adaptive insecurity is non-trivial, and the
protocols may seem adaptively secure at the first sight. The section is mostly
based on [CDD+99] and [CDD+01].

1.4. THE ROLE OF ADAPTIVENESS 17

1.4.1 The WSS protocol of [RBO89]

This example is based on the WSS protocol of [RBO89]. It’s adaptive insecurity
was first observed in [CDD+99]. The original protocol [RBO89, CDD+99] was
designed for the adversary structures of an threshold type. We generalize it
here to general adversary structures.

Informal definition of WSS

Suppose we are working in a setting from Section 1.2.2, i.e. we are given a
group of n players {P1, . . . ,Pn} connected pairwise by secure channels and a
broadcast channel. An adversary can actively corrupt players in some Q2 ad-
versary structure F . An intuitive explanation for a weak secret-sharing (WSS)
scheme is that it is the non-computational analog of a computational commit-
ment. It exhibits the same properties, i.e. it binds the committer to a single
value after the committing phase CommitWSS, yet the committer can choose
not to expose this value in the opening phase OpenWSS. A WSS scheme for
committing to a secret s ∈ K consists of the two protocols CommitWSS and
OpenWSS that satisfy the following properties, with an allowed error probabil-
ity 2−k:

• Secrecy: If the dealer is honest and no honest player has yet started the
protocol OpenWSS, then the adversary has no information about the sha-
red secret s.

• Correctness: Once all currently uncorrupted players complete protocol
CommitWSS, there exists a fixed value, r ∈ K , such that the following
requirements hold:

1. If the dealer is uncorrupted throughout protocols CommitWSS and
OpenWSS then r is the shared secret, i.e. r = s, and each uncorrupted
player will outputs r at the end of protocol OpenWSS.

2. If the dealer is corrupted then each uncorrupted player outputs ei-
ther r or error upon completing protocol OpenWSS.

We can now make the following informal definition (for a formal one see Sec-
tion 4.1.1)

Definition 1.3
A F -secure WSS scheme for committing to a secret s ∈ K is a pair of protocols
(CommitWSS, OpenWSS) of two protocols that satisfy the above properties even
in the presence of an active adversary who can corrupt any set of players in the
adversary structure F .

Implementation

In order to explain the attack we present a simplified version of the [RBO89]
protocol which assumes digital signatures. It is in essence the same protocol

18 CHAPTER 1. INTRODUCTION

but with many complicating (non relevant) details omitted. The same protocol
is presented in Section 4.1.2 (it is called there an SWSS protocol) where we use
it as a building block for adaptively secure WSS. We will assume the existence
of a secret sharing scheme (DistrSS, ReconSS) secure against F .4

CommitWSS

1. Let s be the secret the dealer D wants to commit to. He shares it using
DistrSS to get shares sh1, . . . , shn.

2. For each i he sends shi to Pi with his signature on it.

OpenWSS

1. The dealer broadcasts the secret s and the random input r used by DistrSS

in the previous phase.

2. Every player Pi runs DistrSS on s and r that he received from the dealer.
If the obtained share of player Pi matches shi (that he received in the pre-
vious phase) then he broadcasts an acceptance. Otherwise he complaints
by broadcasting shi together with the dealer’s signature on it.

3. For each properly signed value shi broadcasted in Step 2. every player
Pj checks, if the complaint was justified (by running DistrSS on s and
r and comparing the share of player Pi with shi). If he finds a justified
complaint then he rejects the opening (and outputs error) . Otherwise
he accepts (and outputs s).

Non-adaptive security

Suppose the set A of corrupted players is fixed from the beginning. By the Q2

property the set A of players not in A is qualified. Let s′ ∈ K ∪ {error} be the
value that is reconstructed (by ReconSS) from the shares of the players in A. It
is easy to see that the value opened in the OpenWSS has to be equal either to s
or to error. Thus, after the shares are sent (in Step 2 of CommitWSS), the dealer
is committed to s′.

Adaptive insecurity

We are now going to show an attack on the WSS protocol presented above. We
will show that a corrupted dealer can distribute shares in such a way, that the
correctness condition will be violated.

First, define an adversary structure to be a Q3 structure if for any three sets
in the structure, their union is not the whole player set. The attack works for
every Q2 adversary structure F that is not a Q3 structure. To make the picture

4In [RBO89, CDD+99] the secret sharing scheme was the one of Shamir [Sha79].

1.4. THE ROLE OF ADAPTIVENESS 19

clearer we assume here that the dealer is a separate, always corrupted player
(not belonging to the set {P1, . . . ,Pn}).

Let DistrSS(s, r) denote the set of shares obtained by applying DistrSS to s
with random input r. Take three sets A0, A1, A3 ∈ F such that their union is
the whole player set. Take two secrets s0, s1 ∈ K . Let r0 and r1 be the random
inputs for DistrSS such that for every player Pi ∈ A3 his share in DistrSS(s0, r0)
is equal to his share in DistrSS(s1, r1). It is easy to see that such r0 and r1 always
exist: otherwise an unqualified set A3 of players would get information about
the secret. The corrupted dealer can now send to the players in A0 the shares
from DistrSS(s0, r0) and to the players in A1 the shares from DistrSS(s1, r1).
Now, in the OpenWSS the adversary can make the players output si (for both
i = 0, 1 by applying the following strategy.

1. corrupt the players in A1−i,

2. in Step 1. broadcast si and ri.

Thus the correctness property is not satisfied. It is also easy to see that this
attack does not work if the adversary structure satisfies the Q3 property.

1.4.2 The example of [CDD+01]

This example comes from [CDD+01]. The protocol involves three players: a
dealer D and two receivers R1 and R2, where R1, R2 have no input, and D’s
input consists of two bits s1, s2 ∈ {0, 1}. They want to compute a function fsend

that returns no output for D, the output for R1 is s1, and the output for R2 is
s2. The adversary structure F contains {D, R1} (and its subsets), namely R2

cannot be corrupted. The protocol proceeds as follows.

πsend

1. D sends s1 to R1.

2. D sends s2 to R2.

3. Each Ri outputs the bit that was sent to it by D, and terminates. D outputs
nothing and terminates.

It is easy to see that if the adversary is non-adaptive, then the protocol πsend

securely evaluates fsend (the formal proof appears in [CDD+01]).
We are now going to argue that the protocol is adaptively insecure (see for a

formal proof see [CDD+01]). Suppose the adversary is adaptive. We are going
to show that if the players execute πsend the adversary has more power that
if the players are given an access to an idealized oracle computing fsend (see
Section 2.1 or [Can00] for the formal definitions of this notions). Suppose the
adversary is adaptive. Assume the adversary has some extra knowledge about
the pair (s1, s2), namely he knows that s1 = s2. Suppose his aim is to make R2

always output 0. Moreover assume that he wants to avoid corrupting D, if it is

20 CHAPTER 1. INTRODUCTION

possible. It is easy to see that in the model with an oracle computing fsend the
only way to make R1 output 0 is to corrupt D at the beginning of the protocol.
On the other hand, when the protocol πsend is executed, the adversary can

1. corrupt R1,

2. learn s1 in Step 1., and

3. if s1 = 1 then corrupt D and instruct him to send 0 to R2 in Step 2.,
otherwise do nothing.

In this way R2 always outputs 0, but D is corrupted only if necessary. Thus the
protocol is insecure.

A similar problem appears in a practical implementation of an IC protocol
(see Section 3.1.7 for more).

1.4.3 Another example

In this section we show another example of the same nature as the one in Sec-
tion 1.4.2. We think it is important to present it, since the problems of this type
will appear later (in Sections 4.1 and 4.2).

Suppose we are given a commitment scheme CS1 = (Commit1, Open1) that
allows the dealer D to commit to one bit b ∈ {0, 1}, and we want to construct a
commitment scheme CSn = (Commitn, Openn) that would allow the dealer to
commit to n > 1 bits string (b1, . . . , bn) ∈ {0, 1}n. A natural way to do it is to
define CSn as a sequential composition of n executions of CS1. More precisely
implement it as follows.

Commitn(b1, . . . , bn)

1. For i = 1, . . . , n execute Commit1(bi).

Openn

1. For i = 1, . . . , n execute the corresponding Open1.

2. If all the openings were successful then output the resulting string, oth-
erwise output error.

This protocol is secure if there are only two players: committer and verifier
(and we are working with the standard computationally secure commitments).
If we go to the distributed setting and assume some standard model (for exam-
ple the threshold adversary from Section 1.3, with threshold t > 2), then the
situation is more complicated. It is easy to see that the protocol is secure when
the adversary is non-adaptive. However, if an adaptive adversary can execute
the following attack.

• Corrupt one of the players, P1, say,

1.5. OVERVIEW OF THE NEXT CHAPTERS 21

• In Step 1 listen to the result of the first execution of Openn. If the resulting
bit b1 is equal to 0, then immediately corrupt the dealer and make him
halt. In this way the openings of all the remaining bits fail. Otherwise (if
b1 6= 0), then do nothing.

It is easy to see that if the adversary applies this strategy, then

• the players never open any bit string with the first bit equal to 0, and

• the dealer does not get corrupted if his input bit b1 was equal to 1.

On the other hand this aim impossible to achieve if we specify Commitn as an
idealized oracle which: (1) takes input s from the dealer in the Commitn phase,
and (2) sends s to the players in the Openn phase (if the dealer remains honest).
Thus the implementation is insecure.

1.5 Overview of the next chapters

First (Chapter 2) we introduce the definitions and the notation. The main part
of the thesis is the formal specification and construction of the protocols from
[CDD+99] (Chapter 4) and [CDD00] (Chapter 5). The protocols in both Chapter
4 and 5 will use the IC protocol implemented (and specified) in Chapter 3. The
construction of the protocols is modular. The dependence is shown on Figure
1.1. We stress that the protocols in Chapters 3 and 4 work against a general
Q2 adversary structure, whereas in Chapter 5 we assume that the adversary
structure is of a threshold type. Finally in Chapter 6 we show the impossibility

Cons (Section 3.1)

��
IC (Section 3.2)

uujjjjjjjjjjjjjjj

))SSSSSSSSSSSSSS

WSSV (Section 4.1)

��

MPC (Chapter 5)

WSSZK (Section 4.2)

��
VSS (Section 4.3)

Figure 1.1: The scheme of the dependence between the protocols

result, Theorem 1.2.

22 CHAPTER 1. INTRODUCTION

1.6 Acknowledgments

I would like to express my deep gratitude to my supervisor Ivan Damgård
for introducing me to the area of cryptography, for lots of discussions about
the area of multiparty computations and for many valuable comments on my
work.

I also thank all the other coauthors of the papers on which this thesis is
based, namely Ronald Cramer, Martin Hirt, and Tal Rabin.

I am also grateful to Serge Fehr for his observation improving the efficiency
of the MPC protocol from [CDD+99].

I would also like to thank Ran Canetti for lots valuable of comments on the
earlier version of the thesis.

Chapter 2

Definitions and notation

2.1 The security of on-line protocols

In this section we are going to define the security of the on-line protocols. This
is an extension of the definitions of the secure function evaluation of Canetti
[Can00]. Let us sketch the main difference. In case of the secure function eval-
uation the scenario is as follows:

1. The parties take inputs.

2. The protocol is executed.

3. The parties give outputs.

In case of an (m-phase) on-line protocol the following steps are executed for
i = 1, . . . , m.

1. The parties take the inputs for the ith phase.

2. The protocol for ith phase is executed.

3. The parties give the outputs for the ith phase.

In case of a scenario of the first type the natural way to use a protocol σ as
a sub-protocol of a protocol π is to: (1) suspend the execution of π at some
point asking the parties provide some input values for σ; (2) execute σ on those
values obtaining some output values; (3) resume π providing it with the values
output in (2).

In case of the on-line protocols the situation is more complicated. Here, a
sub-protocol σ is executed in phases that can be interleaved with some other
code. More precisely (for every i = 1, . . . , m− 1) immediately after the parties
return the outputs of ith phase the execution of the sub-protocol is suspended
and some other instructions are executed. Then, after some time the protocol σ
is resumed: the parties produce the input values for the (i+1)st phase and this
phase starts. Note, that this input values may depend on the previous outputs.

23

24 CHAPTER 2. DEFINITIONS AND NOTATION

Also, when the protocol σ was suspended the adversary can get some useful
information.

In Section 2.1.3 we are going to define the security of a multiparty on-line
protocol by comparing it’s real life execution with an ideal one. In the next two
sections we explain these notions. We will assume that we are given n players
and some adversary structure F .

Our definitions are based on the ones of [Can00].

2.1.1 A real life model

An m-phase on-line protocol (where m ∈ N ∪ {∞}) is a collection of n par-
ties P1, . . . ,Pn, each being an interactive randomized Turing machine taking
some random input ri. The parties execute m consecutive phases in a syn-
chronous way (i.e. each phase is divided into a number of rounds executed
synchronously). More precisely, at the beginning of every phase each party ex-
pects to receive a message (later we will specify were this message comes from
- see Step (3a)) containing its input for this phase. Then some code is executed
(probably involving interaction with other parties) and at a specified round the
party answers with a message containing the output of this phase.1

A real life execution of an m-phase on-line protocol P1, . . . ,Pm is defined as
follows. We are given two interactive computationally-unbounded Turing ma-
chines: an environment Z and an adversary A. The environment takes an
auxiliary input z and a random input rZ , the adversary a random input rA.
The execution proceeds according to the following scheme.

1. The environment Z and the adversaryA are initialized. The inputs z and
rZ is passed to Z and the random input rA is passed to A.

2. Each player Pi is started, the random input ri is passed to him.

3. The execution proceeds in m phases. The jth phase goes as follows.

(a) The environment Z sends to every Pi a message containing a jth
phase input value xj

i ∈ {0, 1}∗ and passes some auxiliary message to
A.

(b) The computation is performed in a way identical to the case of the
secure function evaluation (see [Can00] p. 174). Recall that the par-
ties operate in synchronous rounds. At the beginning of each round
the parties produce the messages that they want to send in this
round. Then the adversary can execute a number of mini-rounds.
Each mini-round goes as follows.

i. The adversary may choose a party (say P′) to corrupt (as long
as the set of corrupted parties remains a member of the adver-
sary structure F). He learns the complete internal history (the

1Clearly a corrupted party may not answer at all, but since the model is synchronous we can
safely assume that this counts as sending an empty output.

2.1. THE SECURITY OF ON-LINE PROTOCOLS 25

random input and all the messages ever received) of P′. More-
over the environmentZ learns the identity of P′ and sends some
auxiliary information to A.

ii. Amay activate a party (say P′′). In this case P′′ sends the all the
messages it prepared for this round. A learns the messages sent
to the corrupted parties.

The mini-rounds are iterated until there happened a round in which
the adversary took no action (i.e. he neither corrupted nor activated
any party).

(c) At the end of the computation every player Pi sends to the environ-
ment a message containing a jth phase output value yj

i ∈ {0, 1}∗. The
adversary also produces some output and sends it to the environ-
ment.

(d) The post execution corruption for the ith phase begins. The envi-
ronment Z interacts with the adversary in rounds. In each round
Z sends a message corrupt Pi (for some i ∈ {1, . . . , n}). The ad-
versary answers with some message. A is allowed to corrupt some
parties (as long as the set of the corrupted parties belongs to the
adversary structure) and learn their internal data.

4. Finally Z outputs the real-life output of the environment. Wlog we can as-
sume that it is just the complete history of the execution of Z . Denote it
by EXECπ,A,Z(k, z, r1, . . . , rn, rA, rZ).

Note, that if we assume that r1, . . . , rn, rA and rZ are chosen randomly, we can
view the real-life output of the environment as a random variable. Denote it
EXECπ,A,Z(k, z).

The reader may observe a following difference between our definition of
environment and the original one [Can00]. In our setting the inputs are chosen
dynamically by the environment whereas in case of a secure function evaluation
[Can00] the inputs are chosen in advance (and thus the real-life output has one
more parameter - namely the inputs to the players ~x). Later (Section 2.1.4), we
are going to comment more on this. We will also explain there the role of the
post-execution corruption.

2.1.2 An ideal model

In the ideal scenario we are again given an environmentZ defined as in Section
2.1.1. Recall that n is a number of players. An m-phase on-line protocol is
specified by a sequence of n-party functions F = {f j}m

j=1, where for every i

f j : N× ({0, 1}∗)n × {0, 1}∗ × {0, 1}∗ → ({0, 1}∗)n × {0, 1}∗. (2.1)

Let us comment a bit on the domain and range of each f j . An input of f j is
a tuple (k, (xj

1, . . . , x
j
n), Xj , rj), where k is a security parameter, each xj

i is an

26 CHAPTER 2. DEFINITIONS AND NOTATION

input of Pi, and rj is a random input. The value of X j is called a trusted party
input. An output of f j is a tuple of a form ((yj

1, . . . , y
j
n), Y j). Each yj

i is an output
of Pi. The value of Y j is called a trusted party output. The use of X j and Y j will
become clear later.

We assume an existence of an interactive Turing machine S called a simu-
lator with a random input rS and a security parameter k. We are also given a
trusted party T which is an interactive Turing machine. The execution goes as
follows.

1. The environment Z and the simulator S are initialized. The auxiliary
input z and the random input rZ are passed to Z . The random input rS
is passed to S.

2. The trusted party will have a sequence of internal variables Q0, . . . , Qm,
each Qj ∈ {0, 1}∗. He sets Q0 := ε. The values of the remaining Qj will
be set during the execution.

3. Then execution proceeds in m phases. Each jth phase is executed in
stages similar to the ones in the function evaluation case ([Can00], p. 177).

The input sending stage: The environment Z sends a message to each
Pi containing the jth phase input value xj

i ∈ {0, 1}∗. The simulator
learns the values received by the corrupted players.

First corruption stage: The environment sends some auxiliary message
to S. Then S can corrupt the parties in the adaptive way. More
precisely the corruptions are done in iterations. Once he corrupts a
party he learns all her inputs and outputs from the previous phases
plus her input to the jth phase. Moreover he informs the Z which
party he corrupted and Z answers with some auxiliary message.
Depending on the information received this way adversary may de-
cide to start a new iteration.

Computation stage: The following values are sent to T : every honest
party Pi sends her input value xj

i , every corrupted party sends a
value chosen by the simulator S. Let ~x′ be a vector of values that
T received. Now T chooses a random input rj and computes the
value of f j(k, ~x′, Qj−1, rj). Let ((yj

1, . . . , y
j
n), Y j) be the result. The

simulator sends to each Pi the value yj
i and sets Qj := Y j .

Second corruption stage: The simulator learns the values sent in the pre-
vious stage from T to the corrupted parties. He can then corrupt
some more parties and learn the values they received. He does it in
the similar way as the first corruption phase. The only difference is
that after corrupting Pi he learns additionally the output value yj

i .

Output: Each uncorrupted party outputs yj
i . Corrupted parties output

⊥. The environment learns all the values output by the parties (note:
he does not learn the value of Qj). Moreover S produces some out-
put and sends it to Z .

2.1. THE SECURITY OF ON-LINE PROTOCOLS 27

Post-execution corruption: This phase looks similar to the post-execu-
tion corruption in the real-life model. The environment may send
adaptively chosen requests to the simulator to corrupt a party. In
order to reply to such a request the simulator can corrupt some par-
ties and learn their input and output (as it is in the second corruption
stage).

4. As in the real-life model, the environment Z produces an output (we can
assume that it is just a complete history of the execution of Z). Call it an
ideal output of the environment EXECπ,S,Z(k, z, r1, . . . , rm, rS , rZ).

As in the real-life execution, by choosing randomly the random inputs we get a
random variable EXECπ,S,Z(k, z). Figure 2.1. may be helpful in understanding
how the Qi’s are used. Recall that Q0 = ε. Clearly we can also assume that
Qm = ε. Therefore in all the practical applications we will usually forget about
Q0 and Qm.

P1 x1
1

��

y1
1 x2

1

��

y2
1 x3

1

��

y3
1

...
...

...
...

...
...

...

Pn x1
n

��

y1
n x2

n

��

y2
n x3

n

��

y3
n

f1

$$

88

GG

f2

$$

GG

88

f3

$$

GG

88

Trusted
Party Q0

JJ

Q1

AA

Q2

AA

Q3

Figure 2.1: A scheme of an ideal execution of a 3-phase protocol. For sake of
simplicity we have omitted the random inputs and the security parameter.

2.1.3 Comparing two models

Having introduced the real life model and the ideal model we can now define
the notion of the security of an on-line protocol. Intuitively we will require
that “from the point of view” of the environment the real life execution should
“look the same” as the ideal execution. Formally the definition goes as follows.

28 CHAPTER 2. DEFINITIONS AND NOTATION

Definition 2.1 (Secure evaluation - the zero error case)
Let F = {f j}m

j=1 be a sequence of n-party functions and let π be an m-phase
on-line protocol for n parties. We say that π adaptively F -securely evaluates F if
for any adaptive F -limited adversary A and any environment Z , there exists
a simulator S such that for any auxiliary input z and any security parameter k
we have

IDEALF,S,Z(k, z) d= EXECπ,A,Z(k, z)

(where d= denotes equality of the distributions).

A slightly weaker version of security requires the protocol to be secure ex-
cept some error probability.

Definition 2.2 (Secure evaluation - the non-zero error case)
Let F = {f j}m

j=1 be a sequence of n-party functions and let π be an m-phase on-
line protocol for n parties. Let ε be some function from N to [0, 1]. We say that
π adaptively F -securely evaluates F with an error ε if for any adaptive F -limited
adversary A and any environment Z , there exists a simulator S such that for
any security parameter k there exist random events E1 and E2 such that for
any auxiliary input z we have

PIDEALF,S,Z (k,z)|E1

d= PEXECπ,A,Z (k,z)|E2
(2.2)

(where PX|E denotes a distribution of a random variable X conditioned by the
event E) and for i = 1, 2 we have Pr[Ei] ≥ 1− ε.

An alternative approach (see [Can00]) is to require the statistical distance be-
tween IDEALF,S,Z(k, z) and EXECπ,A,Z(k, z) to be smaller than ε (instead of re-
quiring (2.2). It is not difficult to see that this approach is more general than
ours. It will not matter however in our applications. Observe also that in the
above definitions we do not make any assumptions about the computational
power of the simulator (see Section 2.2.3. for a short discussion of an alternative
approach). The following definition will be useful.

Definition 2.3
A function ε : N → [0, 1] is negligible if for every c there exists n such that

for every i > n ε(i) <
1
ic

.

2.1.4 The role of the post-execution corruption

As remarked before a slightly alternative approach is to quantify also over all
possible inputs ~x for the players in all possible phases (as it is in case of the se-
cure function evaluation of [Can00]), instead of asking Z to produce it dynam-
ically (possibly after getting some extra information during the post-execution
corruption). It is easy to see that this in the zero error case this leads to a def-
inition equivalent to this one (since the auxiliary input z for the environment
can contain the inputs for the players).

2.1. THE SECURITY OF ON-LINE PROTOCOLS 29

In the non-zero error case the situation is different. Here the dynamic choice
of inputs and the post-execution corruption are crucial for the security. Con-
sider the following simple example. We have 2n + 1 players: a dealer D and n
players P1, . . . ,P2n. Player D is incorruptible and the adversary can corrupt at
most n player out of P1, . . . ,P2n. The players execute a protocol π consisting of
two phases specified by functions f1 and f2. Function f1 is defined as follows.

• The input every player is empty.

• The output of D is a randomly chosen set X ⊂ {1, . . . , 2n} such that |X | =
n. The output of every other player and the trusted party is empty.

Function f2 is defined as follows.

• The input of D is a string t ∈ {0, 1}k. The input of the trusted party and
all the other players is empty.

• The output of D is a bit b ∈ {0, 1} equal to 0 for every value of input t.
The output of every other player is empty.

Consider now the following protocol.

Phase 1

1. Player D chooses randomly a set X ⊂ {1, . . . , 2n} such that |X | = n.

2. Player D chooses randomly a string s = {0, 1}n. He shares s among the
players in X = { Pi : i ∈ X }. The sharing is very simple:

(a) he chooses n random strings {si}i∈X such that a componentwise
XOR of all the si’s results in s, and

(b) he sends each si to Pi.

3. Player D outputs X .

Phase 2

1. Player D inputs t. If t 6= s then he outputs 0. Otherwise he outputs 1.

Now, if we do not allow the post-execution corruption, then it is easy to see
that the protocol works securely unless one of the following happened:

1. the adversary guessed X at the end of the first phase — in this case (1) he
corrupts the players in X and learns s (2) he sends s to the environment
(3) the environment chooses t = s to be the input of D in Phase 1 and D
outputs 1,

2. the environment guessed s and sent it as an input to the dealer in Phase
2 — clearly then D outputs 1.

30 CHAPTER 2. DEFINITIONS AND NOTATION

Clearly both case 1. and 2. happen with probability at most 2−n. Thus the
protocol works securely with an error probability negligible in n.

On the other hand, if we allow the post-execution corruption, then the fol-
lowing attack is possible.

1. The environment learns X , the output of D in Phase 1.

2. In the post-execution corruption the environment asks the adversary to
corrupt the players in X . In this way it learns s.

3. The environment chooses t = s as an input of D. Thus D outputs 1.

Therefore the protocol is insecure.

2.1.5 The hybrid model

In this section we are going to define the hybrid model. Informally speaking it is
a real life model in which at some points the protocol is allowed to call a trusted
party to perform some computations. The idea is similar to the one of [Can00]
and will allow us to formally define the use of subprotocols as subroutines. For
simplicity we will focus on the scenario when only one (multi-phase) subpro-
tocol is executed. The idea generalizes easily to the case of many subprotocols
(see Section 2.1.8).

Suppose we are given a sequence of functions F = {f j}m
j=1. An F-hybrid on-

line protocol π is defined similarly to a real life on-line protocol with a follow-
ing difference. At a certain point of the protocol π parties may call the trusted
party T to compute the function f1, later on they may ask T to compute f2, and
so on. Technically it looks as follows. The trusted party will have to remember
the sequence of internal variables Q0, . . . , Qm. Moreover the trusted party has
a variable j determining the index of the next function f j to be computed. At
the beginning it sets j := 1; Q0 := ε and leaves remaining Qj’s undefined.

At a certain round (say round number lj) of π every uncorrupted party Pi

writes his input value x
j
i in some special register. Then the adversary may

corrupt the players in mini-rounds as described in Step (3b) in Section 2.1.1
(and learn the xj

i values of the corrupted players). In the round lj + 1 every
player Pi sends xj

i to the trusted party (the corrupted players send some val-
ues determined by the adversary). The trusted party computes the value of
f j(k, (xj

1, . . . , x
j
n), Qj, rj). Let ((yj1, . . . , y

j
n), Y j) be the result. For every i =

1, . . . , n the trusted party sends xj
i to Pi (if Pi is corrupted then the value sent

to him becomes known to the adversary). Moreover the trusted party sets
Qj := Y j and increases j by 1.

The output of the environment Z after an execution of an F-hybrid on-line
protocol π (against an adversary A, with an auxiliary input z and a security
parameter k) is a random variable denoted by EXECF

π,A,Z(z, k).

2.1. THE SECURITY OF ON-LINE PROTOCOLS 31

2.1.6 Secure composition - zero error case

Having a F-hybrid on-line protocol π and a protocol σ that securely evalu-
ates F we can construct a composed protocol πσ , by replacing the call to the
trusted party with the execution of σ. This is done in a straightforward way.
See [Can00] (p. 163) for details. Later we will refer to π as a sub-protocol of a
super-protocol σ. We would like to stress that we consider only non-concurrent
compositions here, i.e. when the sub-protocol is executed the execution of the
super-protocol is suspended.

Definition 2.4
Let F and G be sequences of n-party functions and let π be an on-line protocol
in a F-hybrid model. We say that π adaptively F -securely evaluates G in the F-
hybrid model if for any adaptive F -limited adversaryA (in the F-hybrid model)
and any environment Z , there exists a simulator S such that for any z and k

IDEALG,S,Z(k, z) d= EXECF
π,A,Z(k, z). (2.3)

The main theorem in this section is the following.

Theorem 2.5 (Secure Composition of On-Line Protocols)
Let F be an adversary structure over the set of players P1, . . . ,Pn. Let π be
an n-party on-line protocol adaptively F -securely evaluating G in an F-hybrid
model. Let σ be an on-line protocol that adaptively F -securely evaluates F.
Then the protocol πσ adaptively F -securely evaluates G.

Theorem 2.5 easily follows from the following claim.

Theorem 2.6 (Modular Composition of the On-Line Protocols)
Let F be an adversary structure over the set of players P1, . . . ,Pn. Let π be
an n-party on-line protocol in the F hybrid model. Let σ be an n party on-line
protocol that adaptively F -securely evaluates F. Then, for any F -limited real-
life adversaryA and for any environment machine Z there exists an adversary
S in the F-hybrid model such that for every k and z we have

EXECF
π,S,Z(k, z) d= EXECπσ,A,Z(k, z). (2.4)

The proof of this theorem is a modification of a proof of Theorem 10 in
[Can00] (page 184.). We will not present it here.

2.1.7 Secure composition - non-zero error case

In this section we discuss the secure composition of the protocol when the secu-
rity holds with some error probability. Suppose σ is an n party on-line protocol
that adaptively F -securely evaluates some F with an error ε. Then Theorem
2.6 still holds, with a following difference. Instead of having (for every k and

32 CHAPTER 2. DEFINITIONS AND NOTATION

z) the equation (2.4) we will have that for every k there exists an event E such
that for every z the following holds

EXECF
π,S,Z(k, z) d= [EXECπσ ,A,Z(k, z)|E].

It is easy to see that this implies Theorem 2.5 with a following modification. If
π is a protocol in F-hybrid model securely evaluating G with an error δ, then
the protocol πσ securely evaluates G with an error at most δ + ε.

2.1.8 Protocols with many subprotocols

In many cases we will construct protocols in a hybrid model, where trusted
parties for more than one sequence of functions are given. An (F1, . . . ,Ft)-
hybrid model and a composition πσ1,...,σt are defined in a straightforward way.
It is also clear that in the zero error case the Theorems 2.6 and 2.5 generalize
easily. In the non-zero error case the error propagates in the following way.
Suppose for each i a protocol σi securely evaluates Fi with an error εi. Let π be
a protocol in (F1, . . . ,Ft)-hybrid model securely evaluating G with an error δ.
Then πσ1,...,σt securely evaluates G with an error δ +

∑t
i=1 εi.

2.1.9 Making the definition more specific

In this section we are going to present some conventions and modifications of
the definitions form the previous sections. The aim is to make those definitions
easier to use in the specific cases that we will encounter later.

The domains of the inputs

First of all recall that in the original definitions we set the inputs for the protocol
(and for the trusted party) to be the elements of {0, 1}∗. In practical cases we
will usually assume that an input of each player Pi (in phase p, say) comes from
some specified domain Dp

i (and then is encoded as a word in {0, 1}∗). Note,
that a corrupted player may submit as an input some word w ∈ {0, 1}∗ that is
not a valid encoding of any element in Dp

i . He can also not send anything. In
both cases we will assume that this counts like sending some default value. A
similar convention applies to the messages exchanged between the players.

Lists

In case of the protocols that do not have a fixed number of rounds we will usu-
ally assume that the input and output of the trusted party carry some informa-
tion about the history of the execution. Therefore the domain of this input and
output will be a list of the elements from some fixed domain D. We will use
following terminology. A list of length l (of elements of D) is a sequence t1 · · · tl
such that each li ∈ D. The set of all lists of elements of D will be denoted D∗.
If L = t1 · · · tl is a list then L with tl+1 attached to it (denoted L · tl+1) is a list

2.1. THE SECURITY OF ON-LINE PROTOCOLS 33

t1 · · · tl · tl+1. We will also say that ti is the ith element of L. An empty list ε is a
list of length 0.

We will usually assume that the trusted party input for the pth phase is a
list L of length p− 1.2. The trusted party output for this phase will be the list L
with some new element attached.

Assumptions about the super-protocol

Observe that in the previous sections, we required security for the environment
sending arbitrary inputs to the players (in Step (3a) in the real life execution,
and in the input sending stage of the ideal one). It turns out that in case of
many protocols this requirement is too strong. More precisely it can be the
case that a protocol π is not secure according to Definition 2.1, but it can be still
safely used as a subprotocol of certain protocols. Suppose for example that π
is a two-phase protocol. Let Pi be one of the players and let x1 and x2 be his
inputs for phase 1 and 2 respectively. Suppose we know that each time we use
π as a subprotocol (of some protocol σ, say) it will be the case that x1 is equal
to x2 if Pi remains honest (until the round in which he sends x2 to the trusted
party). Let Σx1=x2 be the class of all such protocols. It is clear that in this case it
will be enough to require a weaker version of security. Namely, we can modify
the Definition 2.1 by restricting ourselves of the environments Z such that the
input sent to Pi in phase 1 is equal to the one sent in phase 2. Let Zx1=x2 be the
class of all such environments. Now, if we

1. specify π with some pair F of functions f1, f2,

2. prove the security of π restricting ourselves to the environments from
Zx1=x2 ,

3. show that σ ∈ Σx1=x2 and prove its security in the F-hybrid model,

then we can compose σ with π as in Theorem 2.6.
This generalizes in a straightforward way to arbitrary conditions in which

an input xj (of a player Pi in phase j), depends on the inputs and outputs of
player Pi in the previous phases (in some protocol π). Quite often this condi-
tion will not depend on the previous inputs and outputs at all. In this case we
will simply have some two domains D and D′, such that D ⊂ D′. If a player
Pi remains honest then his input is guaranteed to come from D. If Pi gets cor-
rupted he will be allowed to choose from a bigger domain D′. Intuitively this
will mean that using the inputs fromD′ \D we model the extent of the damage
that the corrupted Pi can do the the output of the function.

A dynamical choice of a function

We will also use a following convention. Observe that in the original definition
of the ideal process (Section 2.1.2) the function f j that the trusted party com-
putes in phase j is fixed in advance. It turns out that many practical cases it is

2Thus we will assume that the input for the first phase is an empty list

34 CHAPTER 2. DEFINITIONS AND NOTATION

much more convenient to allow the function to be chosen dynamically by the
super-protocol.

Practically we implement is as follows. Suppose we want to be able to
choose in phase p between functions g1, . . . , ga. We will require each input xj

i

for a player Pi to be a pair from a set {1, . . . , a} × {0, 1}∗. Suppose a super-
protocol π wants the trusted party to compute gl. Then π will instruct each
player Pi to submit to the trusted party a pair (l, wp

i). Therefore, when defin-
ing the security of σ we will assume that the inputs that the environment Z
chooses for the players are pairs with an identical first component l. For in-
puts {(li, wp

i)}n
i=1 the value of the function fp is now defined in the following

way. Let l′ be an index such that there exists a set X ⊆ P of players with the
following properties:

• X is not in the adversary structure and

• for each Pi ∈ X we have li = l′.

(Clearly if the adversary structure is Q2 then there exists exactly one such l′.)
Then the output of fp is defined to be equal to the output of gl′ on the values
wp

i .
In practical cases we will abstract from those technicalities and simply as-

sume that the function gl is chosen dynamically. We will do it both when we
prove the security of the protocol and when we use σ as a subprotocol. For-
mally speaking in the second case we will have to make sure that all the hon-
est players agree on which gl they have chosen. This will usually follow in a
straightforward way from a synchronous design of the protocol.

Finally, observe that if at least one player is corrupted that the simulator
knows which function gl is chosen.

2.2 The standard simulation

In the next sections we are going to specify and implement several protocols
and prove their security. The main part of every such proof will be a construc-
tion (for every adversary A) a simulator S. The simulator that we are going
to construct will have a special form which we will call a standard form. In this
section we are going to sketch it. This will allow us to stay on a more informal
level in the next sections. We believe that this makes the proofs more readable
and more convincing, since we will not need to care about the technical de-
tails, and instead we will be able to concentrate on the real reasons why our
protocols are secure.

We will assume that we are given some adversary structureF . Every adver-
sary that we consider here will be adaptive and F -limited. Let us also assume
that we are given an m phase protocol π specified by a sequence of functions
F = {f j}m

j=1 (see (2.1)). The functions that we will use in our specifications
will always be deterministic. Therefore we will drop the random input and the

2.2. THE STANDARD SIMULATION 35

security parameter and assume that each function f j takes as an input a tuple
((xj

1, . . . , x
j
n), Xj) ∈ ({0, 1}∗)n × ({0, 1}∗) (compare it with (2.1)).

Take some environmentZ and adversaryA some random inputs r1, . . . , rn,
rZ , rA and an input z. Let a history of the (real life) execution of a protocol π
against A with an environment Z be the sequence containing the internal his-
tory of every player and the adversary (including all the messages sent and
received) in some execution of π (against Z andA). For a given mini-round r a
history of the execution until r is defined to be a prefix of the history of the execu-
tion taken until r was completed. Let HIST(π,Z,A, z) denote the probability
space containing the histories of the execution of π againstAwith environment
Z and an auxiliary input z (when r1, . . . , rn, rZ , rA are chosen randomly). Sim-
ilarly let HIST(π,Z,A, z, r) denote the probability space of the histories of the
execution of π until mini-round r.

Let histZ,A,r be a function assigning to each history H ∈ HIST(π,Z,A, r)
the set of messages exchanged during H between the adversaryA (on one side)
and Z and the corrupted players (on the other side). A value of histZ,A,r(H)
will be called the A-view of history H (until mini-round r).

2.2.1 The case with zero error probability

We are going to construct a standard simulator S(·) that simulates each adver-
sary A using it as a black-box. Let Z be the environment. First, S(A) creates
his own copies of the adversary and every party in the protocol. As long as a
party remains honest S will simulate its steps. The main problem during the
simulation is that the simulator does not know the values of the inputs that the
environment sends to the honest players at the beginning of each phase. There-
fore he will choose those inputs in the arbitrary way (up to some constraints
described later). In the sequel we will call those values the simulated inputs. The
input values sent by the environment to the players in the ideal model will be
called the real inputs.

Observe that during the simulation the simulator (and the adversary) can
get some information about the real inputs of the players, basing on the in-
puts and outputs of the corrupted players. Let us make it more precise. Sup-
pose that the simulator is simulating a mini-round r (in some phase l) and un-
til this moment the simulator corrupted some players Pi1 , . . . ,Pia . Therefore
for every phase j = 1, . . . , l he knows the input values zj

i1
, . . . , zj

il
handed to

those players in the input sending stage. The same holds for the output values
wj

i1
, . . . , wj

il
(except of j = l, if the simulator has not yet entered the computa-

tion stage of phase j). A sequence {xj
i}i=1,...,n,j=1,...,l (where each xj

i ∈ {0, 1}∗)
will be called an admissible sequence of inputs if it could be the case that each
xj

i is an input of player Pi in phase j. More precisely the following has to be
satisfied.

• For each corrupted player Pib
and each phase j = 1, . . . , l it is the case

that xj
ib

= zj
ib

.

36 CHAPTER 2. DEFINITIONS AND NOTATION

• There exists a sequence of trusted party outputs T 0, . . . , T l (where T 0 =
ε) and for each phase j = 1, . . . , l (except of phase j = l if the simu-
lator has not yet entered the computation stage) there exists a sequence
yj
1, . . . , y

j
n such that for each corrupted player Pib

it is the case that yj
ib

=
wj

ib
and

f j((xj
1, . . . , x

j
n), T j−1) = ((yj

1, . . . , y
j
n), T j).

The simulator will also simulate the execution of the trusted party com-
puting the functions from F. In order to do it we will use internal variables
Q0, . . . , Qm−1 for storing the output of the trusted party. Call them the simu-
lated outputs of the trusted party. In fact this will not be a part of a real simulation.
It will be useful however for proving the correctness of the simulation.

As a side effect of each such simulation we will obtain some real life execu-
tion of the protocol π (with interaction withZ andA). We will call it a simulated
execution (of π with Z andA). The simulation is constructed in such a way that
S(A) will always have a complete information about the A-view of the history
of the simulated execution (until the current mini-round).

Let us now describe the simulation step by step. First S(A) needs to do
all the necessary bureaucracy: it sends a random input to every party, and it
starts the adversary. He also sets Q0 := ε. The simulation of each phase p is
performed in the following way.

Simulation of phase p

1. The simulator sends to the simulatedA the input values of the corrupted
players (that he learns from Z in the input sending stage).

2. Acting as an environment the simulator guesses for each simulated pla-
yer Pi (that remains honest) an arbitrary input value xp

i from some do-
main D. Usually D will just be the domain of the inputs of player Pi

for phase p. In some cases however he will in advance know (basing on
the inputs and outputs of the corrupted players) some constraints on xp

i ,
and thus he will choose it from some subset D′ of D. This happens when
we made some assumptions about the behavior of the honest players be-
tween the phases (see Section 2.1.9), or if we assume that a type of a phase
is a part of the input (see Section 2.6). In both cases it will be clear how
D′ is defined.

3. The simulator goes to the first corruption stage. He forwards to A an
auxiliary message that he gets from the environment.

4. The simulator simulates the execution of the protocol in a straightfor-
ward way. At the beginning he stays in the first corruption stage. Sup-
pose the simulated protocol is in some mini-round r and the adversary
requests to corrupt a player Pi. Then, the simulator corrupts it in the
ideal model. In this way he learns all the real inputs and the outputs of

2.2. THE STANDARD SIMULATION 37

Pi from the previous phases and an input for this phase. This gives the
simulator information about the admissible inputs of the players (for the
phases 1, . . . , p). It usually turns out that the simulated inputs given by
the simulator to the players so far are not admissible anymore (in par-
ticular the simulated inputs of the player Pi will not be equal to the real
inputs). In this case the simulator has to change the simulated inputs to
the admissible ones, and find such an execution of the protocol that the
A-view of the history is the same as in the original execution. He does it
be executing a following procedure (let h be the A-view of the history of
the simulated execution until mini-round r − 1)

ReRun

(a) The simulator chooses an arbitrary admissible sequence of inputs
x = {xj

i}i=1,...,n,j=1,...,p.

(b) He restarts the parties and simulates the protocol from the begin-
ning with the simulated inputs for each phase determined by x (and
with some fresh random inputs). He also restarts the adversary (the
random input can remain the same). The only differences are that
(1) the simulator will not send any messages to the trusted party (2)
instead of sending a message to Z he will simply compare it with a
message sent in the original execution (which he reads from h). If
it is not equal then he halts and starts Step (4b) again. Otherwise
he continues the simulation. Each time he expects to get a message
fromZ or the trusted party the simulator will use the corresponding
message extracted from h.
This goes as long as the mini-round r is reached. If this procedure
does not terminate (clearly a computationally unbounded simulator
can detect it in a finite time), then the simulator halts.

Then, the adversary sends all the internal history of Pi to the adversary,
informs the environment Z about the fact that Pi was corrupted. The
environment replies with some auxiliary data, which S(A) forwards to
A. Since now the adversary is given a full control over the behavior of Pi.
The simulation continues (with the copies of the parties and the values of
Y j ’s from ReRun replacing the old ones)

5. At some point the simulator will go to the computational stage. Each time
when we construct the simulator for a particular protocol we will specify
the round in which he does it. We will also show how the simulator
determines the values that he chooses to be the inputs of the corrupted
players (that he sends to the trusted party). He will do it basing only on
the A-view of the current history of the simulated execution.

Let zp
1 , . . . , zp

n be defined as follows:

38 CHAPTER 2. DEFINITIONS AND NOTATION

• for each Pi that got corrupted, set zp
i to be the value that the simu-

lator has sent to the trusted party as the input of Pi (for the current
phase), and

• for each Pi that remained honest set zp
i to be the simulated input of

player Pi (for the current phase).

Now set ((wp
1 , . . . , wp

n), Y p+1) := f((zp
1 , . . . , zp

n), Y p).

6. As a result of the previous step the simulator learns the outputs of the
corrupted players in the ideal model. Therefore the inputs that he sent to
the players so far, may not be admissible anymore. Thus he has to make
an update of the internal state of the parties, by the ReRun protocol as
shown in Step 4.

7. The simulator goes to the second corruption stage and continues the sim-
ulation exactly as he did it in Step 4. He does it until the protocol for
this phase halts. The adversary produces some output. The simulator
forwards it to the environment.

Now for each player Pi that remains honest we check whether wp
i (de-

fined in Step 5.) is equal to the value output by Pi in the simulated pro-
tocol. If it is not the case then we say that the simulated execution is
incorrect.

8. Afterwards, the post-corruption stage is performed. This is done in a
straightforward way. Each request from the environment to corrupt some
player Pi is forwarded by S(A) to the adversary. If the adversary cor-
rupts some player then the simulator behaves as in Step 4. The message
output by the adversary is sent back to the environment. Since the func-
tions in F are assumed to be deterministic every post-execution corrup-
tion will be trivial, and we will not focus on it.

We will often say that a player got corrupted if the adversary requested to cor-
rupt him. Observe that each time an adversary makes such a request, the sim-
ulator will immediately corrupt the same party in the ideal model.

Note, that S(A) is not a well defined simulator, since we did not fix any
particular way the simulated inputs are chosen in Step 2. of the simulation
and in Step 6. of the ReRun. Therefore we will assume that S takes one more
parameter, namely an auxiliary string α, that determines that choice, and we
will write S(A, α). More precisely α is a description of a function that, basing
on the entire history of the execution of the simulator, produces a sequence of
inputs.

Definition 2.7
W will say that a standard simulator S(·, ·) works correctly if for each adver-
sary A, each environment Z , each input z for Z , and each α every simulated
execution of S(A, α) is correct (i.e. it was not detected to be incorrect in Step
7.).

2.2. THE STANDARD SIMULATION 39

Definition 2.8
We will say that a standard simulator S(·, ·) works secretly until mini-round r if
for each adversary A, each environment Z and each input z, the A-views of
the histories (of the execution of S(A, α)) until mini-round r are distributed
identically for every choice of α.

We will say that a standard simulator S(·, ·) works secretly if it does so until
the last mini-round of the protocol.

The following lemma is straightforward.

Lemma 2.9 For every standard simulator that works correctly and secretly, at
the end of the simulation the simulated inputs are admissible. The same holds
for the real inputs.

The main invariant that we will have to prove each time we analyse the
standard simulation is that the simulator S(·, ·) works secretly and correctly
until each mini-round r. The following lemmas will be useful in proving it.

Lemma 2.10 Let S(·, ·) be a standard simulator. Assume that we know that
S(·, ·) works secretly until mini-round r. Suppose that while simulating (for
any A,Z, z and α) the mini-round r + 1 the simulator executed the ReRun
procedure. Then with probability 1 he finishes this step in a finite time.

Proof
Let z be the simulated inputs at round r. Clearly the input values x that the
simulator chooses in Step (4a) were admissible before Pi got corrupted. There-
fore the distribution of the histories of adversary is identical for z and for x.
Therefore since the currentA-view of the history happened with simulated in-
puts z it also has to occur with (some probability p) with simulated inputs x.
Thus we are done. �

The idea behind the construction of the ReRun is the following. Suppose we
know that the standard simulator S(·, ·) works secretly until some mini-round
r. Fix some environment Z and an input for it. Take some simulation done
by S(A, α). Let h be the A-view of the history of the simulated execution until
r. Suppose that in mini-round r + 1 the simulator corrupted some player Pi,
and as a result of this a ReRun procedure was executed. Let x be the simulated
inputs chosen in Step (4a) of ReRun and let H be the resulting history of the
execution. Now, take some other auxiliary input β such that the simulated
inputs chosen by S(A, β) are taken from x, as long as the A-view of the history
is a prefix of h.3 Take some simulated execution of S(A, β). Let G be a history
of it. By the construction of the ReRun procedure it is clear that

1. the distribution of the histories H under the condition that

A-view of H until round r is equal to h (2.5)

3Since the functions computed by the trusted party are deterministic, the inputs in x remain
admissible until mini-round r + 1, as long as theA-view of the history is a prefix of h.

40 CHAPTER 2. DEFINITIONS AND NOTATION

and

2. the distribution of the histories G under the condition that

A-view of G until round r is equal to h (2.6)

are equal. By the secrecy of the simulation we know that the probabilities of
(2.5) and (2.6) are equal. Therefore we get that the histories H such that (2.5)
holds and the histories G such that (2.6) holds, are distributed identically. Thus,
if we know that the simulation works secretly until round r, and in some sim-
ulated execution in round r + 1 a corruption occurs, then we will be able to
consider only the cases when the simulator is lucky and there is no need for
executing ReRun. The same applies to the Step 6. (where the ReRun is called
after the simulator learns the outputs of the trusted party).

Lemma 2.11 Let π be a protocol specified by a sequence of functions F. Let
S(·, ·) be a standard simulator for it. Suppose it works correctly and secretly.
Then the protocol π securely evaluates F.

Proof
We need to show that for every environment Z , every auxiliary input z to it,
and every adversaryA there exists α such that

IDEALF,S(A,α),Z(z) d= EXECπ,A,Z(z).

We will show that for each mini-round r the messages received by environment
are distributed in the same way in the simulated execution and in the real one.
First, observe that since the simulation works secretly we can assume that the
simulated inputs (guessed at the beginning of Step 2.) are always equal to the
real ones (as they are both admissible by Lemma 2.9). More precisely we can
assume that the input choosing function described by α will always produce
the same inputs as the environment Z . Clearly since Z is deterministic (for
fixed z and rZ), and so is the the trusted party, such a function exists.

With this assumption it is easy to see the simulated executions are dis-
tributed identically with the real life ones. That is why it is enough to show
that the messages received by Z and A in a real life execution are identical to
the ones received by them in the simulated one. This follows easily from the
construction of the simulator and the assumption that protocol works correctly.
�

2.2.2 The case with non-zero error probability

The protocols that we consider will usually involve some error probability. In-
formally speaking the protocol will remain secure unless some error occurs. In
this section we will make this notion more precise.

Let Hπ be the set of all possible A-views of the history of the execution of
π against any A with any Z until any mini-round. Let ERROR be some subset

2.2. THE STANDARD SIMULATION 41

of Hπ. Call it an error event. Suppose the protocol is in some mini-round r and
the current A-history is h. Then we will say that an error occurs in mini-round r
if h ∈ ERROR.

For a given error event ERROR the error probability will be a maximal proba-
bility (over allZ andA) that an error occurs in some mini-round of a randomly
generated history of the execution.

We modify the standard simulation in the following way. As long as the
history of the simulated execution is not in ERROR the simulation goes as in
Section 2.2.1. If in some mini-round an error occurs then the simulator sends
to the environment some special message “error ” and the simulation halts.
In this case we will say that the simulation caused an ERROR. Let S(·, ·, ERROR)
denote such a simulator. Observe that since the A-view of the history contains
all the messages sent to Z , it will also include the “error ”, message, if the
simulation causes an ERROR. Thus if the error occurs during the ReRun proce-
dure, then the procedure is restarted. Also, the definition of the secrecy of the
simulation can remain unchanged.

Definition 2.12
We will say that a standard simulator S(·, ·, ERROR) works secretly until mini-
round r unless ERROR occurs if for each adversary A, each environment Z and
each input z, the A-views of the histories (of the execution of S(A, α, ERROR))
until mini-round r are distributed identically for every choice of α.

We will say that a standard simulator S(·, ·, ERROR) works secretly unless
ERROR occurs if it does so until the last mini-round of the protocol.

Note, that this definition is rather restrictive. It covers only the cases when
the probability of an error occurring in a given round r is equal for every choice
of simulated inputs. This will be the case in all our protocols, although in
general there exist secure protocols that do not satisfy this condition.

Definition 2.13
For a given error event ERROR we will say that a simulator S(·, ·, ERROR) works
correctly unless ERROR occurs if for each adversary A, each environment Z ,
each input z for Z , and each α, every simulated execution of S(A, α, ERROR)
is correct, unless it caused an ERROR.

Clearly Lemmas 2.9, 2.10 also hold in this case (Lemma 2.10) requires the
error probability to be smaller than 1). Lemma 2.11 has now the following
form.

Lemma 2.14 Let π be a protocol specified by a sequence of functions F. Let
ERROR be an error event and let ε be the error probability. Let S(·, ·, ERROR)
be the standard simulator for π. Suppose it works correctly and secretly unless
ERROR occurs. Then the protocol π securely evaluates F with an error ε.

Proof
For given A and Z let E0 be the event that during the simulated execution of

42 CHAPTER 2. DEFINITIONS AND NOTATION

S(A, ·, ERROR) the environment received an error message, and let E1 be the
event that the ERROR occurs in the real life execution of π.

Clearly, by the assumption that the simulator works secretly, the probabil-
ity of E0 is identical for every choice of the inputs done by S(A, ·, ERROR). As
in the proof of Lemma 2.11 we can assume that the simulated inputs (guessed
at the beginning of Step 2) are always equal to the real ones. Therefore (by the
correctness condition) for each mini-round r all the A-views of the histories of
the simulated executions until r, that do not belong to ERROR are distributed
identically with real-life ones that do not belong to ERROR. Also the probabil-
ity of E0 is equal to the probability that an error occurs in the real life execution
of π (let E1 denote this event). Thus we get that

PIDEALF,S(A,·,ERROR),Z |E0

d= PEXECπ,A,Z |E1
.

�
Here Ei denotes the event that E1 did not happen.

In practical applications we will specify ERROR in an informal language. It
should always be clear how to translate it into a formally defined subset of Hπ

Finally, observe that the standard simulation can be extended in a straight-
forward way to protocols working in a hybrid-model.

2.2.3 Universal security

Another variant of the security definition is to require the simulator to oper-
ate in time polynomial in the complexity of the adversary (see for example
[Can00]). In [CDD+01] it is called a universal security. It is easy to see that the
standard simulation does not work if we choose this definition. This is because
of the ReRun procedure, that can be iterated a big number of times. Never-
theless it will not be difficult to see that the protocols in Chapters 3 and 5 are
universally secure, since the ReRun procedure can be substituted by a more
efficient one.

Chapter 3

The Information Checking
Protocol

In this chapter we are going to present an information checking protocol (IC),
which is a modification of the one introduced by [RBO89]. The protocol works
in a model from Section 1.2.2, i.e. we are given a set of n players {P1, . . . ,Pn},
connected pairwise by private channels, and a broadcast channel. The protocol
is secure against an active and adaptive adversary that can corrupt at any set of
players from aQ2 adversary structureF . Two of the players in P play a special
role: a dealer D and an intermediary INT. The protocol will be executed over
some large field K . The idea is that the IC protocol should provide us with
a similar functionality as the digital signature schemes. Intuitively we want a
dealer to be able to send a signed value s ∈ K to the intermediary in such a
way that (1) the intermediary can check if the signature is correct (2) he can
later broadcast s together with a signature, demonstrating to the other players
that s was indeed the value that he received from the dealer. Moreover the
signature scheme will have a following linearity property: if player INT knows
the signatures of D on some values s1, s2 ∈ K , then he can produce (non-
interactively) a signature on v = c0s0+c1s1 (for some publicly known constants
c0 and c1). He can later present the signed value v to the other players (without
disclosing s0 and s1) in such a way that the players will be convinced that v
was indeed calculated according to the formula v = c0s0 + c1s1.

3.1 The Cons protocol

In this section we introduce a Cons protocol, which is an auxiliary protocol,
that we will later use to build the IC protocol. The Cons protocol is an on-
line protocol consisting of two rounds: a sending round SendCons specified
by a function SendCons and a verifying round AuthCons specified by a function
AuthCons. The protocol involves three players: a dealer D, an intermediary INT
and a receiver R. The other players in P do not take any action. We will assume

43

44 CHAPTER 3. THE INFORMATION CHECKING PROTOCOL

that the adversary structure is such that the adversary can corrupt as many out
of D, INT and R as he wants. Also, since he may corrupt some of the remaining
players in P , he can listen to all the messages that are broadcast. In the next sec-
tions we will write Cons(P1, P2, P3) to denote the Cons protocol, where players
P1, P2 and P3 play the roles of the dealer, the intermediary and the receiver, re-
spectively. A similar convention will be applied to SendCons(P1, P2, P3) and
AuthCons(P1, P2, P3).

3.1.1 Lin-consistent vectors

In this section we introduce a notion a lin-consistent vector (called 1x-consistent
in [CDD+99]), that we will use in the specification of the Cons protocol. We
start we the following definition.

Definition 3.1
A vector (s, t, x, y) ∈ K ×K × (K \ {0})×K is lin-consistent if y = s + tx.

We will need the following notation. Take two vectors w = (s, t, x, y) and
w′ = (s′, t′, x, y′) (both from K4) and a, a′ ∈ K . Then aw +x a′w′ denotes a
vector (as + a′s′, at + a′t′, x, ay + a′y′). The basic properties of lin-consistent
vectors are given in the following lemmas.

Lemma 3.2 For every two lin-consistent vectors v = (s, t, x, y) and v′ = (s′, t′,
x, y′) and every two numbers b, b′ ∈ K a vector bv +x b′v′ is lin-consistent too.

Proof
Straightforward calculation. �

Lemma 3.3 Suppose w and w′ are vectors from K4 and w is not lin-consistent.
Then there exists at most 1 element a ∈ K such that w +x aw′ is lin-consistent.

Proof
Suppose there exist two distinct a0 and a1 such that u0 = w +x a0w′ and u1 =
w +x a1w′ are lin-consistent. We are now going to get a contradiction with the
assumption that w is not lin-consistent. Clearly if a0 or a1 is equal to 0 then we
are done. Otherwise take the vector (1 − a0a

−1
1)−1u0 +x (1 − a1a

−1
0)u1. It is

easy to verify that this vector is equal to w, however by Lemma 3.2, it has to be
lin-consistent. Contradiction. �

3.1.2 Specification

The function SendCons takes as an input a vector (s, t, x, y) ∈ K4 from the dealer.
It outputs:

• a pair (s, t) — to the intermediary, and

• a pair (x, y) — to the receiver.

3.1. THE CONS PROTOCOL 45

The function AuthCons takes as an input a lin-consistent vector (s1, t1, x1, y1)
from the dealer. It outputs:

• a pair (s1, t1) — to the intermediary, and

• a pair (x1, y1) — to the receiver.

We will assume that if the dealer remained honest then (s, t, x, y) is equal to
(s1, t1, x1, y1) (and thus if the dealer remained honest then (s, t, x, y) has to be
lin-consistent).

The reader may ask what is the reason for introducing the SendCons phase.
In Section 3.1.7 we will give an answer for this.

3.1.3 Implementation

The SendCons protocol is implemented in a straightforward way.

SendCons

1. The dealer sends (s, t) to INT and (x, y) to R (he does it in a single round).

2. Players INT and R output what they have received in the previous step.

The AuthCons protocol is implemented in the following way:

AuthCons

1. The player D generates randomly s′, t′ and y′ such that (s′, t′, x, y′) is a
lin-consistent vector. He sends (s′, t′) to INT and y′ to R.

2. The player INT chooses randomly a value a ∈ K (such that a 6= 0). He
broadcasts a and a pair (s + as′, t + at′).

3. Player D checks if the values broadcasted in Step 2. agree with what he
sent to INT previously. If yes then he broadcasts an acceptance. Oth-
erwise he broadcasts (s, t, x, y).1 In this case the protocol ends here and
the broadcasted values will be used in the following: player INT outputs
(s, t) and R outputs (x, y).

4. The player R checks whether a vector (s + as′, t + at′, x, y + ay′) is lin-
consistent.2 If yes then he broadcasts an acceptance and outputs (x, y),
player INT outputs (s, t) and this phase is finished.
Otherwise R broadcasts a complaint. In this case D broadcasts x and y.
The broadcasted values will be used in the following: player R outputs
(x, y). Player INT outputs (s, t′), where t′ is such that (s, t′, x, y) is lin-
consistent.

If players INT and R remained honest and they output (s1, t1) and (x1, y1),
resp., such that (s1, t1, x1, y1) is not lin-consistent, then we say that the dealer
succeeded in cheating.

1Clearly (s, t, x, y) broadcasted at this point needs to be a lin-consistent vector. If it is not then
it is assumed that the D broadcasted some default vector (say (0, 0, 1, 0)).

2Here (s + as′, t + at′) and a are the values that INT broadcasted in Step 2.

46 CHAPTER 3. THE INFORMATION CHECKING PROTOCOL

3.1.4 Construction of the simulator

The proof goes by the standard simulation (see Section 2.2). The SendCons is
easy: the simulator stays in the first corruption stage until the round in which
the dealer sends his messages to INT and R. At this point he moves to the
computation stage. If the dealer got corrupted then let (s, t, x, y) be the values
that the simulated dealer chosen to send in this round. The simulator chooses
(s, t, x, y) to be the input of the dealer that the simulator sends to the trusted
party.

The AuthCons is more involved. The simulator will stay in the first corrup-
tion stage until the simulated AuthCons protocol halts. This works since we
know that if the dealer is honest then (s, t, x, y) = (s1, t1, x1, y1), and thus the
values sent by him to INT in Step 1. are obtained by the simulator by corrupt-
ing INT (the same holds for R).

After the simulated protocol terminates the simulator does the following.
The only non-trivial situation is when the dealer got corrupted. The main point
is to determine the input of the dealer that the simulator will submit to the
trusted party in the computation stage. We consider the following cases.

INT got corrupted and R remained honest In this case the simulator looks at
the pair (x1, y1) output by the simulated R. He starts the computation
stage choosing (y1, 0, x1, y1)3 to be the input of the dealer.

R got corrupted and INT remained honest This case is similar to the previous
one. Let (s1, t1) be the output of the simulated INT. The simulator starts
the computation stage choosing (s1, t1, 1, t1) to be the input of the dealer.

Both INT and R got corrupted In this case the simulator can choose an arbi-
trary lin-consistent vector to be the input of D.

Both INT and R remained honest The simulator he looks at the output (s1, t1)
of the simulated INT and (x1, y1) of the simulated R. If (s1, t1, x1, y1) is
not lin-consistent (i.e. the dealer succeeded in cheating) then the simula-
tor finishes the simulation in an arbitrary way. Otherwise the simulator
chooses (s1, t1, x1, y1) to be the input of the dealer and starts the compu-
tation stage. All the remaining stages are straightforward.

3.1.5 Analysis of the simulator

In this section we prove the correctness of the simulation defined in Section
3.1.4. We will say that an ERROR occurs if the dealer succeeds in cheating. We
now have the following.

Lemma 3.4 For any execution of Cons the probability that the dealer succeeds
in cheating is at most 1/|K|.

3In this place he can choose arbitrary 1-consistent vector whose two last components are
(x1, y1)

3.1. THE CONS PROTOCOL 47

Proof
Let (sc, tc, xc, yc) be the values sent by the dealer to INT and R in the SendCons

phase. Clearly since he is corrupted (sc, tc, xc, yc) may not be lin-consistent.
We will show that whatever are the actions of the corrupted dealer, with a
probability at least 1−1/|K| the values so, to, xo, yo output by INT and R at the
end of AuthCons are lin-consistent. The argument goes as follows. Clearly if the
corrupted dealer decided to broadcast some vector in Step 3. then we are done.
Suppose he did not do it. Clearly if (sc, tc, xc, yc) is lin-consistent then we are
done to. Assume that it is not. Let s′c, t

′
c, y

′
c be the values sent by corrupted D

in Step 1. By Lemma 3.3 there is at most 1/|K| probability that for a randomly
chosen a ∈ K vector (sc + as′c, tc + at′c, xc, yc + ay′c) is lin-consistent. Therefore
with a chance at least 1 − 1/|K| player R will complain in Step 4. It is easy to
see that in this case we are done. �

Lemma 3.5 The simulator constructed in Section 3.1.4 works secretly and cor-
rectly, unless ERROR occurred.

Proof
Assume that ERROR did not occur (i.e. the dealer did not succeed in cheating).
First, observe that the correctness follows easily from the construction of the
simulator. What remains is to consider the secrecy.

It is easy to see that the simulator works secretly for SendCons. Consider
now the AuthCons. Clearly at the moment when D gets corrupted, or both R
and INT get corrupted we are done (since at this moment we know all the
inputs to the protocol). Therefore we need to consider the following cases:

Nobody is corrupted As long as none of D, INT and R is corrupted the only
messages that the adversary receives are the ones broadcasted in Step 2.
i.e. a value a and a pair (s + as′, t + at′). Clearly their joint distribution
does not depend on the input values s, t, x and y. Thus as long as nobody
is corrupted the simulation works secretly.

R gets corrupted first In this case the only nontrivial thing that we need to
prove is, that as long as D and INT remain honest, the information that
comes to a corrupted receiver during AuthCons is independent on s.

More precisely, observe that by corrupting R the adversary learns x and
y. In that way he gets some information about the dealer’s input values s
and t, namely he now knows that t = x−1(y−s). Therefore what we need
to show is that for every value s the distribution of the messages received
by a corrupted R is the same. These messages contain the following val-
ues: y′ (in Step 1.), and a, s + as′, t + at′ (in Step 2.). Set zs := s + as′

and zt := t + at′. It is clear that since the dealer remained honest then
zt = x−1(ay′ + y − zs) (this is actually exactly the property that R checks
in Step 4.). Therefore zt brings no information and we can forget about
it. Thus we remain with variables y′, a, s + as′. It is clear that since y′, a
and s′ are chosen independently and uniformly (and a 6= 0) the tuple

48 CHAPTER 3. THE INFORMATION CHECKING PROTOCOL

(y′, a, s + as′) is also distributed uniformly (in K × (K \ {0}) × K) and
thus it is independent on the value of s.

INT gets corrupted first This case is similar to the previous one. It is simpler
however. This comes from the fact that the only variables that INT gets
in the messages that come to him are s′ and t′ (Step 1). Clearly their
distribution does not depend on (x, y).

�

3.1.6 Security of the protocol

From Lemmas 3.5, 3.4 (and Lemma 2.14 from Section 2.2) we get the following.

Theorem 3.6
Protocol Cons securely evaluates Cons with an error 1/|K|.

3.1.7 Why two phases are needed

The protocols SendCons and AuthCons can be combined in a straightforward
way in a single-round protocol (simply SendCons can become the first round
of AuthCons). One may think that such a protocol will satisfy the specification
given by the AuthCons function. However, this is not true as when we require
the adaptive security. This phenomenon is similar to the one described in Section
1.4.2. Look at the following example. Suppose player INT is corrupted and D is
honest. The adversary does not want to corrupt R, but he wants him to output
some value ((1, 1), say) in case the input value s of the dealer is equal to 0. He
wants to corrupt D only if it is necessary (i.e. when in his input s = 0). Now
observe that in the real life the adversary is able to see s at the beginning of the
protocol. If it is equal to 0 then he can corrupt the dealer and in Step 3. instruct
D to broadcast (1, 0, 1, 1), making the receiver output (1, 1). In an ideal scenario
he does not have this option: he has to decide whether to corrupt D before he
can see s.

3.2 The IC protocol

Now, we are ready to introduce the IC protocol.

3.2.1 Specification

First, we are going to present the specification of the IC protocol. Fix two play-
ers: a dealer D and an intermediary INT. The protocol can have an unbounded
number of phases. In each phase p ∈ N one of the following protocols may be
executed:

3.2. THE IC PROTOCOL 49

1. a Signp
IC phase — specified by a function Signp

IC (every such phase will be
called a signing phase),

2. a Sump
IC(a0, a1, c0, c1) (where a0, a1 ∈ {1, . . . , p − 1} and c0, c1 ∈ K) —

specified by a function Sump
IC(a0, a1, c0, c1) (a summing phase), and

3. a Verifyp
IC(a) (where a ∈ {1, . . . , p − 1}) — specified by Verifyp

IC(a) (a
verifying phase).

We will assume that in the first phase the protocol Sign1
IC is called. The input

and output of the trusted party in each phase will be a list L ∈ (K∪{nothing})∗
(see Section 2.1.9 for more on lists). The idea is that each signing and summing
phase will attach a new element s ∈ K to the list. The verifying phase will
attach a special symbol nothing.

The Signp
IC function

The Signp
IC function takes the following input:

• a list L ∈ (K ∪ {nothing})∗ (of length p − 1) — from the trusted party,
and

• a value s ∈ K — from the dealer D.

The output of INT is s, the output of other players is empty. The output of the
trusted party is L · s.

The Sump
IC(a0, a1, c0, c1) function

The Sump
IC(a0, a1, c0, c1) can be executed only if none of the phases a0 and a1

was a verifying phase. The function takes as an input a list L ∈ (K ∪nothing)∗
(of length p − 1) from the trusted party. For i = 0, 1 let si be the aith element
of L. Set s = a0s0 + a1s1. The output of the trusted party is the list L · s. The
input of all the players is empty. The output of INT is s. The output of each
other player is empty.

The Verifyp
IC(a) function

The Verifyp
IC(a) function can be executed only if a was not a verifying phase. It

takes the following input:

• a list L ∈ (K ∪ {nothing})∗ (of length p− 1) — from the trusted party,

• a value ifcD ∈ K ∪ {error} — from the dealer INT and

• a flag corruptINT ∈ {true, false} — from the intermediary INT.

50 CHAPTER 3. THE INFORMATION CHECKING PROTOCOL

We will assume that if player INT remained honest then corruptINT = false
and if player D remained honest then ifcD = error. Let s be the ath element of
L. The output of the trusted party is L · nothing. The output of every player is
a value x defined as follows.

x :=
{

s if corruptINT = false
ifcD otherwise. (3.1)

Intuitively this means that if INT remains honest (or behaves honestly) then
the players will output s. Otherwise they will output a value chosen by D (if
he is corrupted), or they will output error (if D remains honest). Note, that
this implies that the players output some value that is neither equal to error
nor to s, only if both INT and D are corrupted.

3.2.2 Implementation

In this section we are going to implement the IC protocol satisfying the specifi-
cation from Section 3.2.1. The protocol is going to work in a Cons-hybrid model
(see Section 3.1). As a result of each phase p the players will set their internal
variables to some values. To avoid being too technical we introduce a notion
of a local output. If we say that some player P outputs locally a value x (at the
end of phase p), we will mean that P has a special register (xp, say) in which he
puts the value of x. If we later refer to the local output of P from phase p, we
will mean the value stored in xp.

The local output of each verifying phase is empty. The local output of every
other phase is as follows.

• player D outputs locally a value sD ∈ K ,

• player INT outputs locally a sequence {ti}n
i=1 ∈ Kn,

• each player Pi outputs a pair (xi, yi) ∈ K2.

The Signp
IC protocol

The Signp
IC is implemented as follows.

Signp
IC

1. For i = 1, . . . , n execute the following steps:

(a) If this is the first phase of the protocol (i.e. p = 1) then the dealer D
choses a random value xi ∈ K . If p > 1 then he will use the same xi

which he chosen in the first phase.

(b) The dealer D chooses randomly a value ti ∈ K and computes yi

such that (s, ti, xi, yi) is lin-consistent.

3.2. THE IC PROTOCOL 51

(c) The players call the trusted party to compute SendCons(D, INT, Pi)
and then AuthCons(D, INT, Pi). In both cases the dealer sends (s, ti,
xi, yi) as his input.

2. Note that if the dealer is corrupted then it may be the case that for two
different i’s (i0 and i1, say), he chosen two different secrets (s0 and s1,
say). In this case INT broadcasts a complaint and the dealer has to broad-
cast all the vectors (s, ti, xi, yi) (for i = 1, . . . , n). Clearly the values that
he sends need to be consistent (otherwise the players use some default
values instead).

3. Every player Pi locally outputs (x1, y1), the player INT outputs s and
locally outputs {ti}n

i=1, and the player D outputs locally s.

It is easy to see that if the dealer remains honest then each Pi outputs the same
xi in every phase. Therefore if a player Pi observes that in two phases he has
locally output to different values of xi, then he knows that D is corrupted. In
this situation we will say that Pi decides that the dealer is corrupted. For simplicity
we assume that this will not influence the actions of Pi until a verifying phase.

The Sump
IC(a0, a1, c0, c1) protocol

The Sump
IC(a0, a1, c0, c1) phase is implemented as follows. For j = 0, 1

• let sj
D be the local output of D from phase aj

• let sj be the output of INT from phase aj ,

• let {tji}n
i=1 be the local output of INT from phase aj , and

• let (xj
i , y

j
i) be the local output of each Pi from phase aj .

Then

• player D locally outputs c0s
0
D + c1s

1
D,

• player INT outputs c0s
0 + c1s

1,

• player INT locally outputs {c0t
0
i + c1t

1
i }n

i=1, and

• each player Pi locally outputs (x0
i , c0y

0
i + c1y

1
i).

The Verifyp
IC(a) protocol

The Verifyp
IC(a) protocol is implemented as follows.

• let s be the output of INT from phase a,

• let {ti}n
i=1 be the local output of INT from phase a, and

• let (xi, yi) be the local output of each Pi from phase a.

52 CHAPTER 3. THE INFORMATION CHECKING PROTOCOL

Verifyp
IC(a)

1. First, for technical reasons we assume that if it happened that a player Pi

outputted error in some previous verifying phase he outputs error in
this phase as well and halts. Since the outputs of all the (honest) players
in a verifying phase are equal, this means that if one honest player halts
at this point, then all the other ones do so.

Otherwise we go to the next step.

2. Player INT broadcasts s and for every i = 1, . . . , n sends each ti to Pi. It
is important that he does it in a single round (see Section 3.2.7).

3. Every player Pi that decided (in the signing phase) that a dealer is cor-
rupted broadcasts a complaint against the dealer. Otherwise he checks if
(s, ti, xi, yi) is lin-consistent. If no, then he broadcast a compliant

4. If the set of players that broadcasted the compliant is qualified then every
player outputs error. Otherwise he outputs the value s broadcasted by
INT in Step 2.

If it happened that D remained honest, INT got corrupted and the players have
outputted some value s′ 6= sD (where sD is the local output of D in phase a),
then we say that the adversary managed to forge a signature.

3.2.3 Construction of the simulator

In this section we construct a standard simulator (see Section 2.2) for the IC
protocol. Clearly as long as no player gets corrupted the simulation goes in a
straightforward way. That is why we will assume that at least one player got
corrupted. We start with the signing phase. At the beginning the simulator
stays in the first corruption stage. Clearly as long as none of D and INT gets
corrupted the simulation is straightforward. Consider the following cases.

Player INT gets corrupted first In this case the simulator goes to the compu-
tation stage. From the output of INT he learns the value of the dealer’s
input s (and updates the simulated protocol in a standard way). He fin-
ishes the simulation staying in the second corruption stage.

Player D gets corrupted first In this case the simulator stays in the first cor-
ruption stage until the protocol finishes this phase. Then, he has to de-
termine the value of the dealer’s input s that he will send to the trusted
party in the computation stage. If INT gets corrupted then he sets s′ to
be equal to some arbitrary value (0, say). Otherwise he sets s′ to be the
value of the local output s of the simulated player INT. He then goes to
the computation stage. The second corruption stage is empty.

3.2. THE IC PROTOCOL 53

The simulation of a summing phase is trivial since it involves no interac-
tion. What remains is the verifying phase. First, the simulator stays in the first
corruption stage. Let r1 be the round in which player INT sends the messages
in Step 2. If at the moment when the simulated protocol reaches r1 player INT
remains honest then the simulator goes to the computation stage. In this way
he learns the value of s. Therefore he can update the simulated protocol in a
standard way and finish the simulation in the second corruption stage. Other-
wise (if INT was corrupted when the simulator entered r1) the simulator stays
in the first corruption stage. Then he looks at the output x of the simulated
players (that remained honest). Now:

1. if D got corrupted then he sets ifcD = x and corruptINT = true,

2. if D remained honest then he sets

corruptINT :=
{

true if x = error
false otherwise.

3.2.4 Analysis of the simulation

Let ERROR be the event that the adversary managed to forge a signature. In
this section we prove the following.

Lemma 3.7 The simulator constructed in Section 3.2.3 works secretly and cor-
rectly unless ERROR occurs.

Proof
Assume that the ERROR did not occur. The proof goes by induction over the
number of phases p. Suppose that we know that the simulator works secretly
and correctly (unless ERROR occurs) until some phase p− 1.

We start with the secrecy. Clearly the only interesting situation is when
both D and INT remain honest. In this case we need to show that the messages
received by the corrupted players are distributed independently on the choice
of simulated inputs. It is easy to see that we can consider each player Pi sep-
arately. Suppose ~s = (s1, . . . , sl) be a vector containing the simulated dealer’s
inputs for a signing phase so far. Let ~y = (y1, . . . , yl) be a vector containing the
local outputs of the simulated Pi and let ~t = (t1, . . . , tl) be a vector containing
the local outputs of the simulated INT. From the assumption that the proto-
col works correctly until phase p − 1 we know that by executing the verifying
phases player Pi learns some (publicly known) linear combinations of secrets
in ~s. Let ~c1, . . . , ~cm be those linear combinations (represented as vectors in Kl).
Let C be a matrix whose jth row (for j = 1, . . . , m) is ~cj . What player P has
seen so far are the values sent to the simulator by the environment:

• matrix C,

• vector ~S = C · ~s,

and the values produced by the simulator:

54 CHAPTER 3. THE INFORMATION CHECKING PROTOCOL

• value x = xi from the first phase,

• ~y, and

• ~T = C · ~t.
What we need to show is that for fixed C and ~S the distribution of (x, ~y, ~T) is
the same for each ~s′ ∈ K l such that C · ~s′ = ~S. The crucial observation here is
the following.

Lemma 3.8
~T = (C~y − ~S)x−1 (3.2)

Proof
From the lin-consistency of each vector (sj , tj, x, yj) we get

sj + tjx = yj .

And thus
~s + ~tx = ~y.

And therefore
C · ~s + C · ~tx = C · ~y.

What implies (3.2) �

Thus by Lemma 3.8 (for fixed C and ~S) the value of vector ~T is determined by
x and ~y. Therefore we are done since from the construction of the protocol it is
clear that (x, ~y) are chosen independently from ~s. Thus the secrecy holds.

Consider now the correctness. Observe that the output of the players is
empty in each signing or summing phase. Therefore we can focus on the veri-
fying phase Verifyp

IC(a). Recall that r1 is the round in which player INT sends
the messages in Step 2. Clearly if both INT and D remain honest we are done.
Therefore we need to consider the following cases (let L be the input of the
trusted party for phase p in the ideal model)

Both D and INT got corrupted before r1 In this case the correctness holds eas-
ily since the simulator has a full control over the output of the players in
the ideal model, by manipulating the inputs ifcD and corruptINT (as in
Point 1. on Page 53).

Only D got corrupted before r1 Here the correctness holds by a straightfor-
ward analysis of the protocol. Clearly, the output by the (honest) simu-
lated players is equal to the output of INT from phase a. It is easy to see
that this is equal to the ath element of list L.

Only INT got corrupted before r1 By the assumption that the adversary did
not managed to forge a signature, the simulated players output either
error or the real input of D from phase a. Again, it is easy to see that this
value is equal to the ath element of L. Thus we are done.

3.2. THE IC PROTOCOL 55

�

What remains is to prove the following.

Lemma 3.9 For any execution of IC the probability that the dealer manages to
forge a signature in any verifying phase is at most n/(|K| − 1).

Proof
Let Verifyp

IC(a) be the first phase in which the adversary tries to forge a signa-
ture. Let sa be the ath element of list L (the trusted party input for phase p
in the ideal model). Let s′ 6= s be the value that the corrupted intermediary
broadcasts in Step 2. It is easy to see that the adversary succeeds only if there
exists an honest player Pi such that the adversary manages to produce t′i that
makes vector (s′, t′i, xi, yi) lin-consistent. Clearly the only information that the
adversary has on (xi, yi) is that he knows the pair (sa, t) that makes (sa, t, xi, yi)
lin-consistent. In other words, he knows:

sa + txi = yi (3.3)

and he wants to find (s′, t′) such that s′ 6= sa and

s′ + t′xi = yi. (3.4)

By simple algebraic transformations we get that for any s′ the matching t′ is
equal to ti + x−1

i (sa − s′). Since xi was chosen randomly the only information
that the adversary gets about t′ is that it cannot be equal to ti. Therefore for
any sa his chance of guessing t′ is at most 1/(|K| − 1).

Since the number of players is n, by the union-bound we get that the total
probability that the dealer manages to cheat in this phase is at most n/(|K|−1).
Observe that if the intermediary is caught on cheating (i.e. the players output
error), then he has no more chances of cheating in the next phases (by the
construction of Step 1 of the verifying protocol). �

3.2.5 Security of the protocol

Putting Lemmas 3.7 and 3.9 together we get the following.

Lemma 3.10 Protocol IC securely evaluates IC in a Cons-hybrid model with an
error probability n/(|K| − 1).

Let ICReal denote the composed protocol ICCons. We get.

Theorem 3.11
Protocol ICReal securely evaluates IC with an error at most n(m+1)/(|K|− 1),
where m is the number of phases.

56 CHAPTER 3. THE INFORMATION CHECKING PROTOCOL

Proof
It is easy to see that the Cons oracle is called at most n times in each phase.
Therefore by Theorem 2.5 and remarks in Sections 2.1.7 and 2.1.8 we get that
ICReal securely evaluates IC with an error at most

n

|K| − 1
+

nm

|K|

which is clearly smaller than n(m + 1)/(|K| − 1). Thus we are done. �

3.2.6 Complexity of ICReal

In this section we calculate the complexity of the ICReal protocol.

Lemma 3.12 Let n be the number of players, and let k be equal to log(|K|).
Then the message complexity of each signing or verifying phase ICReal is
O(nk).4 The message complexity of the summing phase is 0.

Proof
It is easy to see that in the signing phase the number of bits transmitted be-
tween INT and D (on one side) and every player Pi (on the other) is linear in k
and the number of bits transmitted between D and INT is linear in nk. There-
fore in total the number of bits transmitted in each signing phase is O(nk). It is
easy to see that the same bound holds for a verifying phase.

The case of summing phase is trivial, since the phase is non-interactive. �

3.2.7 More on Step 2. of a verifying phase

Finally, observe that the proof would not work (and the protocol would be
insecure) if in Step 2. of the verifying phase the values were sent by INT in
separate rounds. The type of problem is similar to the one described in Section
1.4.3 and comes from the adaptiveness of the adversary. For example suppose
that s is broadcasted in some round r and the rest of the messages are sent in
round r+1. Recall that in the simulation of the verifying phase we had a round
r1 in which the simulator had to decide whether to stay in the first corruption
stage (he did it if INT was corrupted), or to go to the computation stage (he did
it otherwise). Suppose INT remains honest during r. If he now chooses to go to
the computation stage when he simulates r then the simulation does not work
correctly (since the adversary can change the outputs of the honest players, if
he corrupts INT). On the other hand if we choose to stay in the first corruption
stage, then the simulation does not work secretly (since the broadcasted value
s clearly depends on the simulated input of INT). It is also easy to see how to
design an appropriate attack.

4We assume here that a message complexity of broadcasting a message of m bits is m.

3.2. THE IC PROTOCOL 57

3.2.8 Some informal terminology

In this section we introduce an informal terminology similar to the one of the
digital signatures that will be useful in presenting the protocols working in a
hybrid model with an access to IC oracles (Section 4.3 and Chapter 5). Usually
we will use many copies of IC at the same time. More precisely we will assume
that for every pair of players (P0, P1) we have an oracle for IC where P0 acts as
a dealer and P1 acts as an intermediary. When say that a player P0 sends a sig-
nature σs(Pi, Pj) to P1 we mean that a signing phase is executed with a dealer
P0 and an intermediary P1. By later saying that P0 broadcasts s together with
σs(Pi, Pj) we will mean that a corresponding verifying phase is executed. Sup-
pose that P1 knows the signatures σs(P0, P1) and σu(P0, P1). By the linearity
property we can assume that he is able to produce a signature σc0s+c1u(P0, P1)
for a value c0s + c1u (where c0 and c1 are publicly known).

58 CHAPTER 3. THE INFORMATION CHECKING PROTOCOL

Chapter 4

Constructing VSS from SS

In this chapter we show the construction of a Verifiable Secret Sharing protocol
(VSS) based on a Secret Sharing scheme (SS), i.e. we prove Theorem 1.1 (see
Section 1.2.2).

The model is as in the previous chapter, namely we have a set of n players
P connected pairwise by private channels, and a broadcast channel is avail-
able. We work over some Q2 adversary structure F . The adversary is ac-
tive and adaptive. We assume that we are given a Secret Sharing scheme
(DistrSS, ReconSS) secure against F (see Section 1.2.2 for the definition). We
are going to construct a VSS protocol. The construction is divided in three
steps (Sections 4.1, 4.2 and 4.3). The protocol VSS that we construct, will allow
sharing of elements in a field Z2. Clearly it can be extended to an arbitrary
domain in a standard way.

A very general overview of the construction is as follows. We start (Sec-
tion 4.1) with constructing a WSS protocol (which can be seen as a distributed
commitment scheme). Then (Section 4.2) , we use a construction of Rudich (see
[CvdGT95]) to transform WSS into a commitment scheme which allows a com-
mitter to prove in zero-knowledge that the sum of committed bits is equal to
some bit. Given such a tool, it is clear that a dealer in a VSS protocol can use the
commitment scheme we just developed to commit to all inputs and outputs of
a run of the DistrSS algorithm in our SS scheme, and prove in zero-knowledge
to the rest of the players that indeed the committed inputs result in the com-
mitted outputs (the shares of some secret). This almost immediately leads to
a VSS protocol. However, apart from the fact that this may result in a huge
loss of efficiency compared to the underlying SS scheme, it would also give
a protocol whose actions depends heavily on which particular secret sharing
scheme is used. In Section 4.3, we give a protocol achieving something slightly
stronger, namely a VSS protocol that works given only black-box access to a
secret sharing scheme and furthermore does not rely on any particular prop-
erties of this scheme. As we shall see, this matches the impossibility result we
prove about MPC later (Chapter 6).

In the security proofs in this chapter we will use some combinatorial lem-

59

60 CHAPTER 4. CONSTRUCTING VSS FROM SS

mas. Their proofs are moved to Section 4.4 at the end of the chapter.

4.1 The WSSV protocol

We start with specifying and implementing a single-verifier weak secret shar-
ing protocol (WSSV). It is a weaker version of a WSS protocol [RBO89] (see
Section 1.4.1 for an informal definition of WSS). For a better understanding,
we first define WSS and then modify it to get the definition of WSSV.

4.1.1 Specification

P1 s1

...
...

Pn s1

D s

��

corruptD

CommitWSS

))

OpenWSS

GG

==

Trusted
Party s

88

Figure 4.1: A scheme of a WSS protocol.

The WSS protocol

The WSS protocol consists of two phases: the commitment phase CommitWSS

and the opening phase OpenWSS, which are specified by functions CommitWSS

and OpenWSS respectively. The protocol involves all players in P , one of them
being a dealer D. The only input that function CommitWSS takes is a value
s ∈ Z2 from player D. The output of every player is empty. Only the trusted
party outputs s. The OpenWSS function takes input s from the trusted party
and a flag corruptD ∈ {true, false} from D. Other players have no input. We

4.1. THE WSSV PROTOCOL 61

will assume that if D remains honest then corruptD = false. The output of
OpenWSS given to every player is a value s1 ∈ Z2 ∪ {error} defined as follows:

s1 =
{

s if corruptD = false
error otherwise.

(4.1)

In what follows we will use a slightly modified version of WSS protocol. Let
a verifier V be one of the players. The correctness of the protocol will de-
pend on the honesty of V. More precisely a V-verifier WSS (WSSV) consists
of three rounds CommitVWSS, PreOpenV

WSS and OpenV
WSS, specified by func-

tions CommitVWSS, PreOpenV
WSS and OpenV

WSS. Function CommitVWSS is identical
to CommitWSS. Function PreOpenV

WSS takes as an input a value s′ ∈ Z2 from
the dealer and outputs s′ to every player. It also takes s from the trusted party
and outputs it back to the trusted party. Function OpenV

WSS takes the following
inputs:

• a flag corruptD ∈ {true, false} — from the dealer D,

• a value ifcV ∈ error ∪ Z2 – from the verifier V, and

• a value s — from the trusted party.

We will assume that if the dealer is honest then corruptD = false and if the
verifier is honest then ifcV = error. Also, if the dealer remained honest then
his input s (to CommitVWSS) is equal to input s′ (to PreOpenV

WSS). The output s1

of every player is defined as

s1 =
{

s if corruptD = false
ifcV otherwise.

(4.2)

The role of PreOpenV
WSS is similar to SendCons (Section 3.1). It is introduced to

avoid an attack similar to the one in Section 1.4.3.

4.1.2 Implementation

In this section we present the implementation of the WSSV protocol. We will
do it in a modular way. First, we introduce a SWSS protocol. This protocol
is another weaker version of WSS, namely it works only when the set of the
corrupted players is fixed after the committing phase is finished (in particular,
this means that it is statically secure). We will not specify the protocol formally.
Instead, we will prove some lemmas concerning it. Later we show how to use
SWSS to construct WSSV and we will use those lemmas in the formal proof of
WSSV security.

The protocols in this section work in an IC-hybrid model. We assume that
the IC-functions are defined over some field K (we will say more about it later).
In order to make the protocols better readable we use the informal terminology
from Section 3.2.8. In this section we do exploit the linearity of the signatures.
The only values that we are going to sign are 0 and 1.

62 CHAPTER 4. CONSTRUCTING VSS FROM SS

SWSS

The SWSS consists of two phases: SCommitWSS and SOpenWSS implemented
the same way as the WSS protocol in Section 1.4.1.

SCommitWSS

1. Let s ∈ Z2 be the secret the dealer D wants to commit to. He shares it
using DistrSS to get shares sh1, . . . , shn.

2. For each i he sends shi to Pi together with a signature σshi(D, Pi).

SOpenWSS

1. The dealer broadcasts the secret s and the random input r used by DistrSS

in the previous phase.

2. Every player Pi runs DistrSS on s and r that he received from the dealer.
If the obtained share of player Pi matches shi (that he received in the pre-
vious phase) then he broadcasts an acceptance. Otherwise he complaints
by broadcasting shi together with σshi

(D, Pi).

3. For each properly signed value shi broadcasted in Step 2. every player
Pj checks, if the complaint was justified (by running DistrSS on s and
r and comparing the share of player Pi with shi). If he finds a justified
complaint then he rejects the opening (and outputs error). Otherwise he
accepts (and outputs s).

As observed in [RBO89] (see Section 1.4.1) this protocol is adaptively insecure.
Now, suppose that the set of corrupted players S is fixed when the phase

SCommitWSS is finished. We will argue that fixing S commits the dealer to
some value. More precisely take an arbitrary real life execution of SCommitWSS.
Let sh′1, . . . , sh

′
n be the values sent by the dealer (in Step 2.) to the players. For

every set of players S ∈ A define a value σ(S) ∈ Z2 ∪ {error} in the following
way. By an exhaustive search try to find an input s′ and a random input r
for DistrSS with a following property: for all players Pi 6∈ A the share of Pi is
equal to sh′i. If such s′ exists then set σ(S) = s′, otherwise set σ(S) = error.
In this way, for every sequence of values sh′1, . . . , sh

′
n we defined a function

σsh′1,...,sh′n : A → Z2 ∪ {error}. Now we claim the following.

Lemma 4.1 Take some real life execution of SWSS. Suppose sh′1, . . . , sh
′
n are

the values sent by the dealer (in Step 2. of SCommitWSS) to the players. Let Q
be the set of players corrupted when the SOpenWSS finished. Then the output
of the players is either σsh′1,...,sh′n(Q), or error.

Proof
Follows easily from the construction of SOpenWSS and the definition of the
function σsh′1,...,sh′n . �
Clearly we also have the following.

4.1. THE WSSV PROTOCOL 63

Lemma 4.2 If the dealer remains honest then executing SCommitWSS and then
(some time later) SOpenWSS results in each (honest) player outputting s.

Lemma 4.3 Let A be a set from the adversary structure, such that D 6∈ A. Let
XA be a random variable all the messages received by the players in A from
other players during the execution of SCommitWSS. Then the distribution of
XA does not depend on the value of s.

Proof
Follows directly from the definition of secret sharing. �

WSSV

In this section we are going to present a WSSV protocol that satisfies the speci-
fication from Section 4.1.1. The CommitVWSS phase goes as follows.

CommitVWSS

1. The dealer D chooses randomly a string of bits a = a1, . . . , a2n+k+1. He
commits to every ai using the SCommitWSS protocol.

2. The verifier V randomly chooses two distinct 2n + k + 1 bit strings v0,v1

and broadcasts them.

3. D computes the string z = vs ⊕ a and broadcasts it.

The PreOpenV
WSS phase is implemented in the following way.

PreOpenV
WSS

1. D broadcasts s.

2. Every player outputs the value broadcasted by D.

The OpenV
WSS phase goes as follows:

OpenV
WSS

1. D opens (using SOpenWSS) all the commitments to ai’s that he made in
Step 1. of the CommitVWSS phase.

2. If any of the openings in the previous step was unsuccessful then the
OpenWSS is also unsuccessful and the players outputs error. Otherwise
each player checks if it indeed holds that z = vs ⊕ a. If yes then he
decides that the opening was successful and outputs s. Otherwise he
outputs error.

64 CHAPTER 4. CONSTRUCTING VSS FROM SS

The intuition behind this protocol is as follows. First, assume the V remains
honest. Then the intuitive idea is that although the dealer may open the com-
mitment to a in many different ways (since it is only statically secure), the
maximum number is at most 2n (except with negligible probability). This is a
negligible fraction of the possible 22n+k+1 strings. This means that right after
having made a, the dealer is effectively committed (in the adaptive sense) to a
negligible size subset of the possible strings1.

4.1.3 The security proof for WSSV

Construction of the simulator

The simulation goes in a standard way (see Section 2.2). For simulating the
phase CommitVWSS the simulator stays in the first corruption stage until the
protocol for this phase halts. The only interesting situation is when the dealer
got corrupted. In this case for i = 1, . . . , 2n+k+1 let shi

1, . . . , sh
i
n be the values

that the dealer sent to the players while committing (using SCommitWSS) to ai

(where ai is the ith element of vector a from Step 1.). Now, for every set S ∈
A let xS be a sequence {σshi

1,...,shi
n
(S)}2n+k+1

i=1 . Let W be the set of sequences
{xS ⊕ z}S∈A.2 Define

s′ :=
{

0 if v0 ∈ W
1 otherwise (4.3)

Finally, the simulator starts the computation stage choosing s′ to be the input
of the dealer. The second corruption stage is empty.

The simulation of PreOpenV
WSS is is easy: it goes along the same lines as the

simulation of SendCons (see Section 3.1.4).
The simulation of the OpenV

WSS phase goes in the following way. If the
dealer remains honest, then the simulator goes to the computation stage in the
round in which the broadcast is done (in Step 1.). In this way he learns the
value of s (since we can assume that at least one player got corrupted), and
the simulation can continue in a standard way. Otherwise (if the dealer got
corrupted before the broadcast round), the simulator will stay in the first cor-
ruption stage until the protocol terminates. Let x be the output of the (honest)
players. If the verifier V got corrupted then the simulator sets corruptD = true
and ifcV = x. Otherwise he sets:

corruptD =
{

true if x = error
false otherwise.

He starts the computations stage with the chosen input values. The second
corruption stage is empty.

1Elements of our proof are reminiscent of a method introduced by M. Naor [Nao91] in the
context of ordinary, computationally secure commitments from pseudo-randomness.

2Here ⊕ denotes the componentwise xor, with a convention that error ⊕ b = error, for every
b

4.1. THE WSSV PROTOCOL 65

Analysis of the simulator

Let us start with some lemmas about the real life execution of WSSV (let W be
defined as in the simulation)

Lemma 4.4 For t ∈ {0, 1} if vt 6∈ W then it can never happen that at the end of
OpenWSS the honest players output t.

Proof
Suppose the contrary. This means that D broadcasts s = t in Step 1 of OpenV

WSS.
Moreover from the construction of OpenWSS (and from Lemma 4.1) there needs
to exist a set A ∈ A such that xA ⊕ vs = z. This implies vs = xA ⊕ z and yields
contradiction. �

Lemma 4.5 Suppose the verifier remains honest. Then the chance that both v0

and v1 belong to W is at most 2−k.

Proof
We have to calculate the chance that there exist w0,w1 ∈ W such that v0 ⊕
v1 = w0 ⊕ w1. Now we argue as follows. The cardinality of W is at most 2n.
Therefore the number of strings w = w0 ⊕ w1 (such that both wi ∈ W) is at
most 22n−1. By the assumption that V is honest v0 ⊕ v1 is a random (non all-
zero) bit string of a length 2n + k + 1. Since there are 22n+k+1 − 1 such strings,
the chance that v0,v1 ∈ W is at most 22n/(22n+k+1 − 1) ≤ 2−k. �

Let ERROR be the event that v0 and v1 belong toW . We are now ready to prove
the following.

Lemma 4.6 The simulator constructed in Section 4.1.3 works secretly and cor-
rectly unless ERROR occurs.

Proof
Clearly, the secrecy is a concern only in the dealer did not get corrupted and
the simulation did not enter the round in which broadcast is done in Step 1. In
this case the secrecy comes from Lemma 4.3 and the fact that in Step 1. the ai’s
are chosen randomly.

For the correctness it is easy to see that the only non-trivial situation is when
the dealer is corrupted and the verifier remains honest. By Lemma 4.5 if the
value output by the players at the end of OpenV

WSS is not equal to error, then
it is equal to s′ (defined in (4.3)), unless v0 and v1 both belong to W . This,
however does not happen, unless ERROR occurs. Thus we are done. �

Putting Lemmas 4.5 and Lemma 4.6 together we get the following.

Lemma 4.7 Protocol WSSV securely evaluates WSSV in an IC-hybrid model
with an error probability at most 2−k.

66 CHAPTER 4. CONSTRUCTING VSS FROM SS

Take an ICReal protocol (from Section 3.2.5) working over a field K = GF(q),

where q > max(n, 2k). Let WSSRealV be the real-life protocol WSSVICReal
.

Combining Lemmas 4.7 with Theorem 3.11 we get the following.

Theorem 4.8
Protocol WSSRealV securely evaluates WSSV with an error negligible in k.

4.2 The WSSZK protocol

In the previous section we implemented a protocol for distributed commit-
ments. What we need for constructing a VSS protocol, is a commitment proto-
col that satisfies some additional properties. Namely, we want the following.

1. Suppose a dealer has committed to two secrets s0 and s1. We want the
dealer to be able to open to the other players the sum s0 ⊕ s1 in a zero-
knowledge way, i.e. the players should not get any extra information
about the values of s0 and s1.

2. Suppose a dealer D0 has committed to some secret s. We want the dealer
to be able to transfer it to some other player D1 in such a way that:

– if both D0 and D1 remained honest, then the adversary gets no in-
formation about s, and

– even if they are both corrupt, it must still be guaranteed that the two
commitments contain the same value.

In the protocol that we are going to construct the security of each commitment
will rely on some verifier V remaining honest. Therefore what we also want is
the following:

3. Suppose a dealer D committed to some secret s, what was verified by a
verifier V0. We want him to be able to make a new commitment to s,
this time verified by some other verifier V1, in such a way that if both V0

and V1 remain honest, then it is guaranteed that both commitments were
made to the same value.

For achieving first goal we will use the method of Rudich (see [CvdGT95]). For
the second and third one we will use a Commitment Transfer Protocol (CTP),
a generalization of an idea from [CDM00]).

In the security proofs we will use the combinatorial lemmas proven in Sec-
tion 4.4.

4.2.1 Specification

The WSSZK protocol consists of several phases. The number of them may not
be fixed. However, we will assume that there exists an upper bound m on it.
In each pth phase (where p = 1, . . . , m) one of the following protocols may be
executed:

4.2. THE WSSZK PROTOCOL 67

• the commitment protocol Commitp
WSSZK(V, D) (where V, D ∈ P) — speci-

fied by a function CommitpWSSZK(V, D),

• the pre-open protocol PreOpenp
WSSZK(D, a) (where a ∈ N and D ∈ P) —

specified by a function PreOpenp
WSSZK(D),

• the open protocol Openp
WSSZK(V, D, a) (where a ∈ N and V, D ∈ P) —

specified by a function Openp
WSSZK(V, D, a),

• the pre-sum-open protocol PreSump
WSSZK(D, a, b) (where a, b ∈ N and D ∈

P) — specified by a function PreSump
WSSZK(D, a, b)

• the sum-open protocol SumOpenp
WSSZK(V, D, a, b) (where a, b ∈ N and V,

D ∈ P) — specified by a function SumOpenp
WSSZK(V, D, a, b),

• the pre-commitment-transfer protocol PreCTPp
WSSZK(D0, D1, a) (where a ∈

N and D0, D1 ∈ P) — specified by a function PreCTPp
WSSZK(D0, D1, a),

and

• the commitment-transfer protocol CTPp
WSSZK(V0, V1, D0, D1, a) (where a,

b ∈ N and D0, D1, V0, V1 ∈ P) — specified by a function CTPp
WSSZK(V0,

V1, D0, D1, a).

The honest party input and output will contain the history of the execution of
the CommitWSSZK protocol. Therefore it will be a list of triples: (a dealer, a bit
and that he committed to, a verifier), or some special value nothing. Formally
we will write DT = (P × Z2 × P ∪ nothing)∗. We will start with an empty
list and attach a new element to it in each phase. See Section 2.1.9 for more
information on lists.

The reason for introducing phases PreOpenWSSZK, PreSumWSSZK and pha-
se PreCTPWSSZK is the same as for introducing PreOpenV

WSS in Section 4.1 and
SendCons in Section 3.1: it is a technical way to avoid an insecurity of the same
type as the example in Section 1.4.3.

If (for some players D0, D1, V0 and V1 and some a ∈ N) a phase p is a
Commitp

WSSZK(V1, D1) phase, or a CTPp
WSSZK(V0, V1, D0, D1, a) phase, then

we will say that player D1 made a commitment number p verified by V1

If the ath element of L is (D, s, V) (for some players D and V and a value
s ∈ Z2) then we will say that the secret of the commitment number a in the list L is
s.

The commitment protocol

The only function that can be called in the first phase is CommitpWSSZK(V, D) (for
some V, D). It takes the following input:

• an input s ∈ Z2 — from player D,

• a list L ∈ DT — from the trusted party (if p = 1 then we assume that L is
an empty list).

68 CHAPTER 4. CONSTRUCTING VSS FROM SS

The output of every player is empty. The output of the trusted party is the list
L · (D, s, V).

The pre-open protocol and the open protocol

The PreOpenp
WSSZK(D, a) function can be called only if player D made the com-

mitment number a. It takes as an input:

• value s ∈ K — from player D,

• a flag corruptD ∈ {true, false} — from D, and

• a list L ∈ DT — from the trusted party.

We will assume that if D remains honest then corruptD = false. Let s0 be the
secret of the commitment number a in the list L. The output x of every player
is a value defined as follows.

x :=
{

s0 if corruptD = false
s otherwise.

The output of the trusted party is L · nothing. As the reader may guess the
implementation of this function will be just an instruction for D to broadcast
s0.

The Openp
WSSZK(V, D, a) can be called only if (1) player D has made the

commitment number a verified by V and (2) in the previous phase a function
PreOpenp−1

WSSZK(D, a) was called. The function takes the following inputs:

• a bit corruptD ∈ {true, false} — from D,

• a value ifcV ∈ {error} ∪ Z2 — from V, and

• a list L ∈ DT — from the trusted party.

We make an assumption that if D remained honest then corruptD = false.
If V remained honest then ifcV = error. The output of the trusted party is
L · nothing. Let s0 be the secret of the commitment number a in the list L. The
output of every player is a value x defined as follows:

x :=
{

s0 if corruptD = false
ifcV otherwise. (4.4)

The pre-sum-open protocol and the sum-open protocol

The PreSump
WSSZK(D, a, b) plays a role similar to PreOpenWSSZK. It can be called

only if player D has made the commitments number a and b. It takes as an
input:

• a value s ∈ K — from player D,

• a flag corruptD ∈ {true, false} — from D, and

4.2. THE WSSZK PROTOCOL 69

• a list L ∈ DT — from the trusted party.

We will assume that if D remains honest then corruptD = false. Let s0 and
s1 be the secrets of the commitments number a and b in the list L, respectively.
The output x of every player is a pair defined as follows

x :=
{

s0 ⊕ s1 if corruptD = false
s otherwise.

The output of the trusted party is L · nothing.
The SumOpenp

WSSZK(V, D, a, b) function can be called only if (1) player D
has made the commitments number a and b, both verified by V and (2) in the
previous phase a function PreSump−1

WSSZK(D, a, b) was called. The function takes
the following inputs:

• a flag corruptD ∈ {true, false} — from D,

• a value ifcV ∈ {error} ∪ Z2 — from V

• a list L ∈ DT — from the trusted party.

We also assume that if D remained honest then corruptD = false and if V
remained honest then ifcV = error. The output of the trusted party is L ·
nothing. Let s0 and s1 be the secrets of the commitments number a and b in
the list L, respectively. The output of every party is a value x ∈ Z2 ∪ error
defined as follows.

x :=
{

s0 ⊕ s1 if corruptD = false
ifcV otherwise.

The pre-commitment-transfer phase and the commitment-transfer protocol

The role of PreCTPp
WSSZK(D0, D1, a) is similar to the role of PreOpenWSSZK and

PreSumWSSZK. It can be called only if player D0 has made the commitment
number a. It takes as an input:

• a value s ∈ Z2 — from player D0,

• a flag corruptD0
∈ {true, false} — from player D0, and

• a list L ∈ DT — from the trusted party.

We will assume that if D0 remained honest then corruptD0
= false. Let s0 be

the secret of the commitment number a in the list L. The output x of player D1

is a value defined as follows:

x :=
{

s0 if corruptD0
= false

s otherwise.

The output of the other players is empty.
The CTPp

WSSZK(V0, V1, D0, D1, a) function can be called only if (1) player
D0 has made the commitment number a (2) in the previous phase a function
PreCTPp−1

WSSZK(D0, D1, a) was called. The function takes the following inputs:

70 CHAPTER 4. CONSTRUCTING VSS FROM SS

• a bit corruptD0
∈ {true, false} — from D0,

• a value ifcV0 ∈ Z2 ∪ {error} — from V0,

• a list L ∈ DT — from the trusted party.

We assume here that if D0 remained honest then corruptD0
= false and if V0

remained honest then ifcV0 = error. Let s0 be the secret of the commitment
number a in the list L. Define x as follows:

x :=
{

s0 if corruptD0
= false

ifcV0 otherwise. (4.5)

If x 6= error then the output of the trusted party is a list L · (D1, s0, V1) and the
output of every player is empty. Otherwise the output of the trusted party is
L · 0 (here 0 is an arbitrary default value) and every player outputs error

4.2.2 Implementation

In this section we are going to present the implementations of the protocols
specified in Section 4.2.1. Formally the protocols that we will describe are im-
plemented in a hybrid model with an access to oracles for computing WSSV. In
order to make the description better readable we will use a more informal ter-
minology. Instead of saying that players call an oracle CommitVWSS, with player
V being a verifier and player D acting as a dealer with some input s, we will
say that D WSSV-commits to the bit s, with verifier V. Later, when we say that
the player D opens the WSSV-commitment we will mean that the players first
call PreOpenV

WSS and then OpenV
WSS. By adding the “WSSV-” prefix we hope

to avoid the confusion between the commitment protocol that we construct
(namely WSSZK) and the one that we start from (WSSV).

In the protocols we will sometimes say that the value of a commitment number
p is publicly known to be equal to some value s. This will happen in the situations
in which the value that the dealer committed to is known to all the players (e.g.
it was set to a default value because the dealer was publicly detected to be cor-
rupted). Note, that we cannot just ask every player to set some default values
of his shares. This is because we work in a hybrid model and the meaning of
share depends on the implementation of the protocols substituting the calls to
the trusted party.

The basic idea is a modification of a method of [CvdGT95]. A commitment
to a bit s will be represented as a sequence of pairs {(ri,L, ri,R)}i such that (1)
for each i we have ri,L⊕ri,R = s and (2) the dealer is WSSV-committed to each
ri,j . To open the commitment the dealer simply broadcasts the pairs and opens
the WSSV-commitments. The players accept the opening if the condition (1) is
satisfied. The idea is that this representation of the commitment will allow the
players to compute in zero-knowledge the sum of two WSSV-committed bits
(see Section 4.2.2). For the technical reasons it will be useful to prepare the a
separate sequence of (ri,L, ri,R) pairs for each phase p (such a sequence will be

4.2. THE WSSZK PROTOCOL 71

called a segment). The reader may observe that we are very generous here and
some optimizations are possible.

The commitment protocol

The Commitp
WSSZK(V, D) protocol is implemented as follows (recall that m is

the upper bound on the total number of phases in the protocol).

Commitp
WSSZK(V, D)

1. Player D inputs s and generates km pairs of random bits: {(ri,L, ri,R)}km
i=1

such that for every i it is the case that ri,L ⊕ ri,R = s.

2. Player D WSSV-commits to the bits {ri,j}i∈{1,...,km},j∈{L,R} with verifier
V.

3. Player V chooses a random permutation π : {1, . . . , km} → {1, . . . , km}
and broadcasts it.

4. The players divide the WSSV-commitments made in Step 2. into m se-
quences {segmentpt }m

t=1 determined by the permutation announced in the
previous step, setting:

segmentp
t = {(rπ(i),L, rπ(i),R)}tk+1

i=(t−1)k+1. (4.6)

The intuition is as follows. Suppose that the dealer got corrupted and the ver-
ifier remained honest. Some of the (ri,L, ri,R) pairs xor to 0 (call them 0-pairs)
and some other ones xor to 1 (call them 1-pairs). The idea is that if k is suffi-
ciently large, then the number of 0-pairs (and thus 1-pairs) in every segment
should be more or less the same. Therefore with large probability there has to
exists at least one b ∈ {0, 1} such that the number of b-pairs is at least k/3 in
each segment. Intuitively if there exists one b satisfying this property then the
(corrupted) dealer has committed to b. Otherwise (when both b = 0, 1 satisfy
it), the dealer has made an invalid commitment (and he will be caught in the
opening or in the sum-opening phase).

Lemma 4.9 For each j = 1, . . . , m and b = 0, 1 let zb
j denote the number of b-

pairs in segmentpj . If the verifier remains honest then, except with probability
m(m− 1) exp(−k/18) there exists a bit b such that for each i we have zb

i ≥ k/3.

Proof
Set bi := ri,L ⊕ ri,R and use Corollary 4.22 (from Section 4.4). �

If it happens otherwise (i.e. such a bit does not exists) we say that the adversary
managed to cheat in the commitment protocol.

72 CHAPTER 4. CONSTRUCTING VSS FROM SS

The pre-open protocol and the open protocol

The PreOpenp
WSSZK(D, a) protocol is implemented in a straightforward way.

PreOpenp
WSSZK(D, a)

1. Player D broadcasts the value that he committed to in phase a.

2. Each player Pi outputs the value broadcasted in Step 1.

The Openp
WSSZK(V, D, a) protocol is implemented as follows (clearly if the

value of the commitment number a is publicly known, then the protocol be-
comes trivial). Let s be the value broadcasted by D in Step 1. of the phase
PreOpenp−1

WSSZK(D, a).

Openp
WSSZK(V, D, a)

1. Player D opens all the WSSV-commitments to the bits in segmentpa. Let
{(ui,L, ui,R)}k

i=1 be the resulting bits.

2. If the openings was successful and for every i = 1, . . . , k it is the case that
ui,L ⊕ ui,R = s then every player outputs s. Otherwise he outputs error.

The pre-sum-open protocol and the sum-open protocol

The PreSump
WSSZK(D, a, b) protocol is implemented as follows.

PreSump
WSSZK(D, a, b)

1. Player D broadcasts the sum of values that he committed to in phases a
and b.

2. Each player Pi outputs the value broadcasted in Step 1.

The SumOpenp
WSSZK(V, D, a, b) protocol is implemented in the following

way (clearly if any of the values of the commitments number a or b is publicly
known then we can use the Openp

WSSZK instead) . First, to simplify the notation
write {(ui,L, ui,R)}k

i=1 = segmentpa and {(vi,L, vi,R)}k
i=1 = segmentpb . Let s be

the value broadcasted by D in Step 1. of PreSump
WSSZK(D, a, b).

SumOpenp
WSSZK(V, D, a, b)

1. Verifier V broadcasts a random permutation ρ : {1, . . . , k} → {1, . . . , k}.3

2. For every i ∈ {1, . . . , k} and j ∈ {L, R} player D broadcasts wi,j := ui,j ⊕
vρ(i),j . If there exists i ∈ {1, . . . , k} such that s 6= wi,L ⊕ wi,R then every
player outputs error and halts.

3In fact this step is not necessary for the correctness of the protocol (i.e. the verifier could choose
for example a trivial permutation ρ(i) = i.). We introduce it for the simplicity of the proof.

4.2. THE WSSZK PROTOCOL 73

3. Otherwise for every i = 1, . . . , k the following is executed:

(a) player V chooses random h ∈ {L, R} and broadcasts it,

(b) players opens the WSSV-commitments to ui,h and to vρ(i),h

(c) if the openings failed or if wi,h 6= ui,h ⊕ vρ(i),h then every player
outputs error and halts.

4. Every player outputs s.

The following lemma should be helpful in understanding the idea of the proto-
col (recall the intuition presented after the implementation of CommitWSSZK).

Lemma 4.10 Suppose the verifier remained honest and sa and sb are such that
there are at least k/3 sa-pairs in segmentp

a and at least k/3 sb-pairs in segmentp
b ,

then the probability that the players output x 6= sa ⊕ sb (and x 6= error) is at
most exp(−k/108) + 2−k/18.

Proof
Let Xa = { i : ui,L ⊕ ui,R = sa } and let Xb = { ρ(i) : vi,L ⊕ vi,R = sb }. Let
X = Xa ∩Xb. From the way sa and sb are chosen we have that |Xa| ≥ k/3 and
|Xb| ≥ k/3. Thus by Lemma 4.23 with probability at least 1 − exp(−k/108) we
have |X | ≥ k/18. Suppose that the players output x 6= sa⊕ sb (and x 6= error).
It is easy to see that this means that for each i ∈ X there exists j ∈ {L, R}
such that a value wi,j (broadcasted by the dealer in Step 2.) is not equal to
ui,j ⊕ vρ(i),j . Therefore the chances of a dealer of not being caught (in Step
3c.) are 2−|X| ≤ 2−k/18. Thus the total probability of the players outputting an
incorrect value is exp(−k/108) + 2−k/18. �
If it happened that the players have output a non-error value x 6= sa ⊕ sb, then
we will say that the adversary managed to cheat in the sum-open phase.

The pre-commitment-transfer protocol and the commitment-transfer proto-
col

The PreCTPp
WSSZK(D0, D1, a) protocol goes as follows.

PreCTPp
WSSZK(D0, D1, a)

1. Player D0 sends to D1 the value that he committed to in phase a.

2. Player D1 outputs the value that he received in Step 1.

The CTPp
WSSZK(V0, V1, D0, D1, a) protocol is implemented in the following

way (we will use a HandleError procedure defined later). Let s0 be the value
that D0 committed to in phase a. Let s1 be the value received by D1 in Step 1.
of PreCTPp

WSSZK(D0, D1, a) (note, that s0 is equal to s1 if both Di’s are honest).

74 CHAPTER 4. CONSTRUCTING VSS FROM SS

CTPp
WSSZK(V0, V1, D0, D1, a)

1. Player D0 sends to D1 all the data that he used when creating the com-
mitment number a (i.e. all the pairs {(ri,L, ri,R)}km

i=1).

2. Player D1 commits to s1 by applying the procedure Commitp
WSSZK(V1,

D1). If the result of the execution is error then players execute procedure
HandleError (introduced below).

3. Player D1 proves that the value he committed to is equal to s0. He does
it by executing SumOpenp

WSSZK(V1, D1, a, p). Recall that this involves
opening the WSSV-commitments in Step (3b). A technical point to note
here is that the WSSV-commitments to ui,j ’s are open by player D0 (be-
cause he made them) and WSSV-commitments to vi,j ’s are open by D1.
At the end every player looks at the output. If it is error or 1 then the
players execute HandleError procedure, otherwise they output nothing
and halt.

The HandleError procedure goes as follows. Player D0 opens the commitment
number a: he broadcasts s0 and the players execute Openp

WSSZK(V0, D0, a).
If the opening is unsuccessful then each player outputs error, otherwise the
commitment number p becomes known to be equal to s.

4.2.3 Construction of the simulator

We are doing it by the standard simulation method (see Section 2.2.). Wlog
we can assume that at least one player got corrupted, and thus the simulator
always knows the function chosen by the environment in a given phase.

The commitment protocol

Suppose the pth phase is a CommitpWSSZK(V, D) phase. The simulator will stay
in the first corruption stage until the simulated protocol for phase p halts. The
only interesting situation is when the dealer D got corrupted. In this case the
simulator analyzes the situation in order to determine the value of s′ that he
will send to the trusted party as the input of D. If the verifier V got corrupted
then he sets s′ to be equal to some arbitrary value 0, say. Let us assume then
that V remains honest. If during the simulation the players decided that D
is corrupted than the simulators sets s′ = 0. Otherwise he looks at the pairs
(ri,L, ri,R) that the dealer has WSSV-committed to in Step 1. Let zb

i (for j =
1, . . . , m and b = 0, 1) be as in Lemma 4.9 If the adversary did not manage to
cheat then there exist a bit b such that for each i we have zb

i ≥ k/3. If this is
the case then the simulator sets s′ = b. Note, that it can be the case that both
b = 0, 1 satisfy this condition — in this case the simulator sets s′ to an arbitrary
value 0, say. Otherwise (if the adversary managed to cheat) the simulator sets
s′ to a default value 0.

4.2. THE WSSZK PROTOCOL 75

The pre-open protocol and the open protocol

The simulation of PreOpenp
WSSZK(D, a) is easy. If the dealer D remains honest

then the simulator will go to the computation stage in a round in which the
broadcast in Step 1. is done. In this way he will learn the value of the secret and
the simulation can go on. If the dealer gets corrupted (before the broadcast in
Step 1.), then the simulator stays in the first corruption stage until the protocol
for this phase halts. Then he looks on the value s′ output by the players. He
sets s = s′ and corruptD = true and sends this values to the trusted party as
the input of D.

In the simulation of a Openp
WSSZK(V, D, a) phase the simulator will stay in

the first corruption stage until the protocol halts. Note, that he can do it because
he already knows the secrets that the dealer will open, if he remained honest
(since we have assumed that in the phase p − 1 the broadcast protocol was
executed). Then, he looks at the result of the simulation. If V got corrupted
then the simulator is done since by setting corruptD = true and setting ifcV

to an arbitrary value s′ we can always make the function OpenWSSZK(V, D, a)
output s′. Therefore the only interesting situation is when D is corrupted and
V remains honest (and the players have not detected in phase a that the dealer
D is corrupted). If in the simulated protocol the players output error then the
simulator sets corruptD := true, otherwise corruptD := false. He then sends
corruptD to the trusted party as the input of D.

The pre-sum-open protocol and the sum-open protocol

The simulation of PreSump
WSSZK(D, a, b) and SumOpenp

WSSZK(V, D, a, b) go in a
very similar way to the simulation of PreOpenp

WSSZK(D, a) and Openp
WSSZK(V,

D, a). We skip the details.

The pre-commitment-transfer protocol and the commitment-transfer proto-
col

The simulation of PreCTPp
WSSZK(D0, D1, a) protocol is similar to the simula-

tion of the PreOpenp
WSSZK(D, a).

The simulation of CTPp
WSSZK(V0, V1, D0, D1, a) goes in the following way.

The simulator stays in the first corruption stage until the protocol finished this
phase. Clearly the only interesting situation is when at least one of D0 and
D1 got corrupted. Let y be equal to error if the players output error at the
end of the simulation. Otherwise let y be equal to the value that player D1

committed to in Step 2. (defined in the same way as s′ in the simulation of
CommitpWSSZK(V, D)). Suppose D0 got corrupted. If V0 also got corrupted then
the simulator sets corruptD0

= true and ifcV0 = y. If V0 remained honest then
the simulator sets

corruptD0
:=
{

true if y = error
false otherwise. (4.7)

76 CHAPTER 4. CONSTRUCTING VSS FROM SS

4.2.4 Analysis of the simulation

Define the error event ERROR to be the sum of all the following events

1. the adversary managed to cheat in any of the commitment protocols (ex-
ecuted as a separate protocol or as a sub-protocol of the commitment
transfer protocol),

2. the adversary managed to cheat in any of the sum-open protocols (ex-
ecuted as a separate protocol or as a sub-protocol of the commitment
transfer protocol)

Lemma 4.11 The probability that ERROR occurs is negligible in k (for a fixed
m).

Proof
Follows Lemmas 4.9 and 4.10. �

Lemma 4.12 The simulator constructed in Section 4.2.3 works correctly and
secretly unless ERROR occurs.

Proof
The proof goes by induction over the number of phases p. Suppose we know
that the simulator works secretly and correctly until p− 1. Consider the phase
p.

Secrecy is easy. The only non-trivial cases are: the sum open protocol (when
the dealer D remains honest) and commitment transfer protocols (when both
dealers D0 and D1 remain honest. Let us focus on the sum open protocol
(the case of commitment transfer protocol is analogous). The secrecy comes
from the fact that for each pair (uL, uR) in segmentpa or in segmentpb the honest
dealer never opens both components ul and uR. Since the pairs in segmentp

a

and segmentp
b are used only in the phase number p we are done.

The correctness is more complicated. First, let us assume that during the
simulation the adversary did not cheat in any of the commitment protocols.
Assume also, that he did not cheat in any of the commitment protocols is used
as sub-routines in the commitment-transfer protocols.

Informally speaking we need to show that in the Openp
WSSZK(V, D, a) and

SumOpenp
WSSZK(V, D, a, b) phases a correct value is opened, and that in the

CTPp
WSSZK(V0, V1, D0, D1, a) phase a correct value is transferred. It is easy to

see that we can assume that the verifiers (V , V0 and V1) remain honest.
Let us first consider Openp

WSSZK(V, D, a). Let sa denote the secret of the
commitment number a in the list L (that is the input of the trusted party for
Openp

WSSZK(V, D, a)). Suppose the output x of the simulated players is not
equal to error. We need to show that it is equal to sa. From the way s was cho-
sen we know that there exists a pair (uL, uR) in segmentpa such that ul⊕uR = sa

(in fact there are even at least k/3 such pairs). Thus it is easy to see that the only
non-error value that the simulated players can output in Step 2 is equal to sa.

4.3. THE VSS PROTOCOL 77

Now, let us consider SumOpenp
WSSZK(V, D, a, b). Let sa and sb be the secrets

of the commitments number a and b (respectively) in the list L. From the as-
sumption that the adversary did not manage to cheat it is easy to see that if the
output x the simulated players is not equal to error, then it has to be equal to
sa ⊕ sb.

The correctness of the simulation of the commitment-transfer protocol fol-
lows easily from the correctness of the sum-opening protocol. �

Combining Lemmas 4.12 and 4.11 we get the following.

Lemma 4.13 Protocol WSSZK securely evaluates WSSZK in an WSSV-hybrid
model with an error negligible in k.

Let WSSZKReal denote protocol WSSZK composed with protocol WSSV (from
Section 4.1). We get the following.

Theorem 4.14
Protocol WSSZKReal securely evaluates WSSZK with an error negligible in k.

4.3 The VSS protocol

4.3.1 Specification

P1 s

...
...

Pn s

D s

��
DistrVSS

))

ReconVSS

FF

;;

Trusted
Party s

<<

Figure 4.2: A scheme of a VSS protocol.

78 CHAPTER 4. CONSTRUCTING VSS FROM SS

The VSS is a stronger primitive than WSS. For an informal definition see
Section 1.2.2. Formally it is defined in the following way. It has two phases:
DistrVSS and ReconVSS specified by functions DistrVSS and ReconVSS respec-
tively. We choose one of the players to be a dealer D. The DistrVSS takes the
input value s ∈ Z2 from the dealer and outputs it to the Trusted Party. The
ReconVSS takes s from the Trusted Party outputs it to every player (see Figure
4.2).

4.3.2 Some terminology

We will implement the VSS protocol in a hybrid model, with a given access to
a trusted party computing WSSZK (see Section 4.2). To make the description
of the protocol clearer we adopt the following convention. First, assume that
the players keep a counter p to count the number of WSSZK phases executed
so far. If we say that a player P has committed to s, what was verified by V we
mean that the players asked the trusted party to compute CommitaWSSZK(V, P),
and s was the value submitted by D. Here a is the current value of p, which
will refer to as the number of the commitment. The value of s will be later called
the secret of the commitment number a. If we later on say that players open the
commitment number a, then we mean that they execute PreOpenp

WSSZK(D, a) and
then Openp+1

WSSZK(V, P, a). The result of the opening is the value output by every
honest player.

Suppose a player P has committed to s0 and s1, what was verified by V.
Let a and b be the respective indices of these commitments. Then, by say-
ing that the players compute in zero-knowledge the sum of the values of the commit-
ments a and b we will mean that they execute PreSump

WSSZK(V, D, a, b) and then
SumOpenp+1

WSSZK(V, P, a, b).
Suppose a player P0 has committed to s0 what was verified by V. Let a be

the number of this commitment. Let P1 be some player. We say that P0 transfers
the commitment a to P1 if PreCTPp

WSSZK(P0, P1, a) and then CTPp+1
WSSZK(V, V, P0,

P1, a) was executed. The value of p + 1 will be the number of the resulting
commitment.

Transferring a commitment from a verifier V0 to another verifier V1 is de-
fined analogously.

Finally, let us recall that we are given (DistrSS, ReconSS), a secret sharing
scheme secure against the adversary structure F (see the remarks at the begin-
ning of this chapter).

4.3.3 The VSSV protocol

We start by constructing a VSSV protocol, a single-verifier version of VSS. It
will consist of two phases DistrVVSS and ReconV

VSS. We will not specify this
protocol formally. Informally speaking VSSV is a VSS protocol, where the cor-
rectness holds only if the verifier V remains honest. The idea is similar to the

4.3. THE VSS PROTOCOL 79

one of WSSV protocol (Section 4.1). Later, we will use VSSV as a building block
for VSS.

In the implementation of DistrVVSS we are going to use the method known
as “a cut & choose technique”. The DistrVVSS protocol is implemented in the
following way.

DistrVVSS

1. Player D takes an input bit s and commits to it. Let commits
D,V be the

number of the commitment.

2. D chooses random bits r1, . . . , r2k and, for each i uses DistrSS to gen-
erate shares si1, . . . , sin where ri is the secret. Next, D makes commit-
ments to all these values, resulting in commitments number commitri

D,V

and commitsij

D,V (for i = 1, . . . , 2k and j = 1, . . . , n).

3. V chooses at random a subset E consisting of half the indices 1, . . . , 2k,
and broadcasts it. Now, for each i ∈ E, all commitments commitri

D,V and
each commitsij

D (for j = 1, . . . , n) are open, and D broadcasts all random
inputs used to generate those shares sij .

4. Every player checks for each i ∈ E, that each set of shares sij consistently
determines ri (he does it by running the DistrSS protocol with the random
input broadcasted in the previous step). If the verification fails then the
dealer is disqualified, every player outputs error and halts. Otherwise
the protocol goes to the next step (all information with i ∈ E can now be
discarded).

5. Write E for {1, . . . , 2k} \ E. For each i ∈ E, the players compute in
zero-knowledge the sum of the commitments number commitri

D,V and
commits

D,V. For every i ∈ E let ci be the result.

6. Finally, for each i ∈ E and each j = 1, . . . , n, the dealer transfers ev-
ery commitment number commitsij

D,V to Pj what results in a commitment
commitsij

Pj
.

The following lemma should be helpful in understanding the intuition behind
the implementation.

Lemma 4.15 Suppose the verifier V remained honest. For every i ∈ {1, . . . ,
2k} and every j ∈ {1, . . . , n} let s′′ij be the secret of the commitment number
commitsij

D,V and let r′′i be the secret of the commitment number commitri

D,V. Let
Bad be the set of all i’s such that the shares {s′′ij}n

j=1 are not valid shares of r′′i . If
|Bad| > k/3 then with probability at least 1− exp(k/18) it in Step 4 the players
output error.

80 CHAPTER 4. CONSTRUCTING VSS FROM SS

Proof
By Lemma 4.20 (Section 4.4) if |Bad| > k/3 then with probability at least 1 −
exp(k/18) it happened that Bad ∩ E 6= ∅. Thus in Step 4. they output error. �
If |Bad| > k/3 and the players did not output error then we will say that the
dealer managed to cheat the verifier V.

The ReconV
VSS goes as follows.

ReconV
VSS

1. For each i ∈ E and j = 1, . . . , n all commitments commitsij

Pj
are opened

by Pj .

2. Every player verifies all openings and discards those sij ’s for which the
commitment was not correctly opened. For those i’s where a qualified
set of shares (supposedly of ri) remains, he reconstructs a value r′i (using
ReconSS).

3. Every player Pi XOR’s r′i with the value for ci (from Step 5. of DistrVVSS).
This gives a set of bits (which will all be equal to s if D has been honest).
Every Pi decides by majority among these bits the final value to output.

4.3.4 Implementation of the VSS protocol.

Using the VSSV introduced in the previous section we will now implement the
VSS protocol.

The DistrVSS protocol

Let s ∈ Z2 is the input for the dealer D. The protocol goes as follows

DistrVSS

1. For every player Pi ∈ P the player execute DistrPi

VSS, with the dealer D
submitting s as his input.

2. Observe that in Step 1 of each DistrPi

VSS (executed in the previous step)
the dealer committed to s by commitment number commitsD,Pi

. For every
pair of players (Pi, Pj) the dealer has now to prove that the secrets of the
commitments number commitsD,Pi

and commits
D,Pj

are equal if Pi and Pj

remain honest. Therefore for every pair (Pi, Pj) the following is executed

Compare(Pi, Pj)

(a) the commitment number commits
D,Pi

is transferred from the verifier
Pi to the verifier Pj (let commits

D,Pj

′ be the number of the resulting
commitment)

4.3. THE VSS PROTOCOL 81

(b) the players compute in zero-knowledge the sum of the secrets of the
commitments number commitsD,Pj

′ and commits
D,Pj

.

If during any of Compare(Pi, Pj) it happens that the players output error
(as a result of some call to the trusted party computing WSSZK), or that
the sum in Step (2b) is equal to 1 then the players decide that the dealer
is corrupted and assume that he shared a default value 0.

The ReconVSS protocol

If in the DistrVSS protocol the players decided that the dealer is corrupted then
the ReconVSS becomes trivial. Otherwise it is implemented as follows:

ReconVSS

1. For every player Pi ∈ P the players execute ReconPi

VSS. The output of Pi

is his output from ReconPi

VSS.

4.3.5 Construction of the simulator

Again, we apply the standard simulation (see Section 2.2). Let us first focus on
the simulation of DistrVSS. The simulator will stay in the first corruption stage
until the protocol finishes this phase. The only non-trivial case is when the
dealer gets corrupted and is not caught (at the end of in Step 2). The simulator
needs to find a value s′ that he will send to the trusted party as the input of the
dealer. He takes some player Pi that remains honest and looks at the execution
of DistrPi

VSS (in Step 1. of DistrVSS). He sets s′ to be the secret of the commitment
number commits

D,V. He starts the computation stage. The second corruption
stage is empty.

The simulation of DistrVSS goes as follows. The simulator goes immedi-
ately to the computation stage. In this way he learns the real value of the
dealer’s secret s and the simulation can continue the simulation in the second
corruption stage.

4.3.6 Analysis of the simulator

Let ERROR be the event that the dealer managed to cheat any verifier (in the
DistrVVSS subprotocol). In this section we are going to show the following
lemma.

Lemma 4.16 The simulator constructed in Section 4.3.5 works correctly and
securely, unless ERROR occurs.

Proof
It is easy to see that the secrecy requirement holds trivially for the ReconVSS

phase. Therefore what remains is the DistrVSS phase. We can also assume that

82 CHAPTER 4. CONSTRUCTING VSS FROM SS

the dealer remains honest. Therefore the only nontrivial part is each DistrVVSS.
It is easy to see that all the values received by any coalition of the players (not
including D) in Steps 1.–5. are independent from the value of s. Also, by the
properties of the secret sharing, the values received in Step 6. by any set of
players A ∈ A are random. Thus we are done.

Let us now assume that the dealer did not manage to cheat any verifier (i.e.
the ERROR did not occur) and argue for the correctness. If the dealer remained
honest until the end of the DistrVSS phase, then the correctness is straightfor-
ward. Therefore let us assume that he got corrupted during DistrVSS phase.
Clearly we can also assume that D was not detected to be corrupted (i.e. the
players did not decide that he shared a default value). Let V be an arbitrary
player that remained honest until the end of DistrVSS. First, we take a look
at the DistrVVSS protocol (executed in Step 1.). What we will now show is that
the value that V outputs at the end of ReconVSS is equal to sV the secret of the
commitment number commitsD,V. By the assumption that the dealer managed
to cheat the verifier V. for at least 2/3 of i’s the value of ci ⊕ r′i is equal to sV.
Therefore sV is in a clear majority (in Step 3. of ReconVSS) and the output of V
at the end of ReconVSS is equal to sV.

Finally observe that from the construction of Step 2. of DistrVSS we can be
sure that for every two verifiers V0, V1 (that remained honest) the value sV0

is equal to sV1 . Therefore they output the same value at the end of ReconVSS.
Moreover this value is equal to the value s′ that the simulator chosen to be the
input of the dealer in the DistrVSS phase. �
Combining Lemmas 4.15 and 4.16 we get the following.

Lemma 4.17 Protocol VSS securely evaluates VSS in a WSSZK-hybrid model,
with an error negligible in k.

Let VSSReal be a composition VSSWSSZKReal (see Section 4.2). Combining
Lemma 4.17 with Theorem 4.14 we get the following.

Theorem 4.18
Protocol VSSReal securely evaluates VSS, with an error negligible in k.

Clearly the complexity of VSSReal is polynomial in n,k and the complexity
of the Secret Sharing scheme (DistrSS, ReconSS). Therefore we get the follow-
ing.

Corollary 4.19 Theorem 1.1 (Page 12) is true.

4.4 The combinatorial lemmas

Hypergeometric distribution

Assume we are given an urn with N balls, M of which are red. Suppose we
draw randomly (without replacement) n balls from this urn. LetH(M, N, n) be

4.4. THE COMBINATORIAL LEMMAS 83

a random variable denoting the number of red balls drawn. The distribution of
H(M, N, n) is called a hypergeometric distribution (see [DP98, Chv79]). By simple
combinatorics we have

Pr[H(M, N, n) = i] =
(

M
i

)(
N −M
n− i

)(
N
n

)
.

Let H(M, N, n, j) denote the probability that the number of red balls drawn is
at least j. Clearly

H(M, N, n, j) =
n∑

i=j

Pr[H(M, N, n) = i] (4.8)

=
n∑

i=j

(
M
i

)(
N −M
n− i

)(
N
n

)
. (4.9)

By the result of [Chv79] we get that

H(M, N, n, j) ≤ exp(−2t2n) (4.10)

where t = j/n−M/N .
Let G(M, N, n, j) denote the probability that the number of red balls drawn

is at most j. Assume that the non-red balls (there are N−M of them) are painted
with green. Clearly G(M, N, n, j) is equal to the probability that the number
of green balls drawn is at least n− j. By the symmetry we get G(M, N, n, j) ≤
exp(−2u2/n) where

u = (n− j)/n− (N −M)/N
= M/N − j/n
= −t.

And therefore we get a bound identical to (4.10), namely

G(M, N, n, j) ≤ exp(−2t2n). (4.11)

The cut and choose lemma

Lemma 4.20 Suppose we are given a set A = {1, . . . , 2k} and a subset Bad of
it, such that |Bad| > k/3. Suppose we choose a random set E ⊂ A of a size k.
Let p be the probability that E ∩ Bad = ∅. Then p is at most exp(−k/18)

Proof
Clearly p is equal to G(|Bad|, 2k, k, 0). Thus it is at most exp(−2(|Bad|/2k)2k)
which is smaller than

exp

(
−2
((

k

3

)
/2k

)2

k

)
. (4.12)

Clearly (4.12) is equal to exp(−k/18) and thus we are done. �

84 CHAPTER 4. CONSTRUCTING VSS FROM SS

The balls and bins lemma

Lemma 4.21 Assume we are given km balls, r of them are red and km − r of
them are green. Suppose we make the following experiment: we divide the
balls randomly into m bins B1, . . . , Bm, of k balls each. For i = 1, . . . , m let ri

be the number of red balls in the ith bin. Let q(k, m, r, w) be the probability that
there exist two bins i′ and i′, such that |ri − ri′ | > w. Then

q(k, m, r, w) ≤ m(m− 1) exp(−w2/(2k)) (4.13)

Observe, that this bound does not depend on the number of red balls.
Proof
First we consider the case m = 2. We give a bound on the probability p that

r1 − r2 > w (4.14)

Clearly by the symmetry we have q(k, 2, r, t) = 2p. Since r1 +r2 = r, then (4.14)
is equivalent to

r1 > (w + r)/2. (4.15)

Now observe that the number of red balls in B1 is distributed with the hyper-
geometric distribution from Section 4.4 (with N = 2k, M = r and n = k). Thus
the probability of (4.15) is equal to H(r, 2k, k, (w + r)/2), which (by (4.10)) is at
most exp(−2t2k), where t = w/(2k). Therefore p is at most exp(−w2/(2k)) and
thus q(k, 2, r, t) ≤ 2 exp(−w2/(2k)).

Now, let us go to the general case m ≥ 2. Fix some two bins Bi and Bi′ .
Let pii′ be the probability that |ri − ri′ | > w. By the bound for m = 2 (and
the fact that it does not depend on the number ri + ri′ of red balls) we get
that pii′ ≤ 2 exp(−w2/(2k)). Since the number of unordered pairs {i, i′} is
m(m− 1)/2, by the union-bound we get

q(k, m, r, w) ≤ m(m− 1)
2

· 2 exp(−w2/(2k))

what implies (4.13). �

Corollary 4.22 Suppose we are given a sequence of km bits b1, . . . , bkm (each
bi ∈ {0, 1}). Take a random permutation π : {1, . . . , km} → {1, . . . , km}. For
each i = 1, . . . , m set segmenti = {bπ(i)}tk+1

i=(t−1)k+1. Let p be the probability that
there exists a bit b ∈ {0, 1} such that for every index i the number of bits b in
segmenti is at least k/3. Then p ≥ 1−m(m− 1) exp(−k/18).

Proof
If such a bit b does not exist, then there exists two indices i and i′ such that

• the number of bits 0 in segmenti is at most k/3 and

• the number of bits 0 in segmenti′ is greater than 2k/3.

4.4. THE COMBINATORIAL LEMMAS 85

Let p = 1 − p be the probability of this event. Paint all the 0 bits in red and
all the 1 bits in green. Call each segmenti a bin Bi. Then p is smaller than
the probability that there exist two bins Bi and Bi′ , such that the number of
green bits in i is by k/3 greater than in i′. Thus, by Lemma 4.21, we get that

p ≤ m(m− 1) exp
(
− (k

3

)2
/(2k)

)
and we are done. �

Lemma 4.23 Suppose we are given two sequences of bits B1 = b1
1, . . . , b

1
k and

B2 = b2
1, . . . , b

2
k (each bj

i ∈ {0, 1}). For j = 1, 2 let bit bj be such that at least k/3
of bits in Bj are equal to bj . Set b = b1 ⊕ b2. Take a random permutation π :
{1, . . . , k} → {1, . . . , k}. Define X1 := { i : b1

i = b1 } and X2 = { π(i) : b2
i = b2 }

and set X = X1 ∩X2. Let q be the probability that |X | ≤ k/18. Then

q ≤ exp(−k/108) (4.16)

Proof
Clearly

|Y1| ≥ k/3 and |Y2| ≥ k/3 (4.17)

If we now say that

• the balls are the indices {1, . . . , k},

• the red balls are the ones in Y1,

• the drawn balls are the ones in Y2,

then it is easy to see that |Y | has a hypergeometric distribution (see Section 4.4)
H(M, N, n) where N = k, M = |Y1| and n = |Y2|. Therefore from (4.11) we get
that

q ≤ exp(−t2|Y2|) (4.18)

where t =
(

k
18

)
/|Y2| − |Y1|/k. By (4.17) we get that

t ≤
(

k

18

)
/

(
k

3

)
−
(

k

3

)
/k (4.19)

= −1/6. (4.20)

Combining (4.17), (4.18) and (4.20) we get (4.16). �

86 CHAPTER 4. CONSTRUCTING VSS FROM SS

Chapter 5

The MPC protocol

The MPC protocol was already informally defined in Section 1.1. In this section
we present it’s formal definition: we define MPC as an on-line protocol. The
protocol works in a model presented in Section 1.3. Note, that here we are
less general than in Chapters 4 and 5, since we work over a threshold adversary
structure, namely the adversary can corrupt at most t < n/2 players (where n
is the total number of players). We will assume that we are given a security
parameter k and that our protocol works over some finite field K = GF(q),
where q > max(n + 1, 2k).

Our definition is a generalization of a standard approach (see for example
[BOGW88]) where MPC is defined as a secure evaluation of a function f given
as an arithmetic circuit.

5.1 Specification

The MPC is an on-line protocol consisting of m > 1 phases (for some m). In
each phase p one of the following protocols can be executed:

• an VSSp
MPC(D) protocol (where D is one of the players) — specified by a

function VSSp
MPC(D) (such a phase will be called a sharing phase),

• an Sump
MPC(a, b, c0, c1) protocol (where a, b ∈ {1, . . . , p− 1}) — specified

by a function MultpMPC(a, b, c0, c1) (a summing phase),

• an Multp
MPC(a, b) protocol (where a, b ∈ {1, . . . , p − 1}) — specified by a

function MultpMPC(a, b) (a multiplication phase), or

• an Openp
MPC(a) protocol (where a ∈ {1, . . . , p− 1}— specified by a func-

tion Openp
MPC (an opening phase).

The input and output of the trusted party is a list L ∈ (K ∪ {nothing})∗. The
VSSp

MPC(D) function takes the following input:

87

88 CHAPTER 5. THE MPC PROTOCOL

• a value s ∈ K — from player D, and

• a list L ∈ (K ∪ {nothing})∗ of a length p− 1 — from the trusted party.

The only output goes to the trusted party: it is a list L · s.
Function Sump

MPC(a, b, c0, c1) can be called only if a and b were not the open-
ing phases. It takes no input and gives no output to the players. It’s only input
comes from the trusted party: it is a list L of a length p − 1. The output of the
trusted party is L with an attached element v defined as follows. Let s and u
be ath and the bth element of L, respectively. Then v = c0s + c1u.

The definition of the function MultpMPC(a, b) is almost identical. The only
difference is that v is defined to be equal to su.

We will assume that the Openp
MPC(a) function can be called only if the ath

phase was a multiplying phase1. It takes no input from the players. It’s only
input is the list L from the trusted party (of a length p−1). Let s be the (p−1)th
element of L. Then s is the output of every player and the output of the trusted
party is L · nothing

5.2 Implementation

We are now going to implement the MPC protocol. We do it in a hybrid model
with an access to a trusted party computing the IC(Pi, Pj) (for every pair of
players Pi, Pj). In order to make the protocol more readable we will describe
it using the terminology presented in Section 3.2.8.

Definition 5.1
For n and t (such that t < n) vector (s1, . . . , sn) is called t-consistent if there
exists a polynomial f of a degree at most t, such that for each i ∈ {1, . . . , n}2

we have f(i) = si. If s = f(0) then we say that s1, . . . , sn interpolate s.

Note that the values of s1, . . . , sn are just the shares of s in the secret sharing of
Shamir [Sha79]. Clearly the interpolation is possible also when less than n− t
values si are missing. We will also use the following two facts about bivariate
polynomials.

Lemma 5.2 Let fs be a random bivariate polynomial of a degree at most t in
each variable, such that fs(0, 0) = s. Let A ⊂ K be such that |A| < t and 0 6∈ A.
Then the values {fs(i, j)}i,j∈A are distributed identically for every s.

Lemma 5.3 Let B ⊂ K be such that |B| ≥ t. Then for every set {sij}i,j∈B there
exists at most one bivariate polynomial f of a degree at most t such that for
every i, j ∈ B we have sij = f(i, j).

1This assumption is technical and made only for the security proof to be less complicated.
2Here 2, . . . , n are some fixed elements of the field K .

5.2. IMPLEMENTATION 89

The sharing phase

We start with VSSp
MPC(D). The protocol is based on the bivariate solution of

Feldman [FM88, BOGW88] (omitting the need for error correcting codes). The
intuition behind the construction is that the secret will be shared using an n×n
matrix of values, where each row and column is t-consistent. The dealer will
commit himself to all these values by signing each value in the matrix. Thus,
if he did not act properly this fact would be exposed using the signatures. The
consistency property will be verified by the players together. Hence we are
guaranteed that all the values held by (yet) uncorrupted players are consistent
and define a single secret3. In order to prevent the adversary from corrupting
the secret at reconstruction time, we also require that each player sign all the
values which he holds in a given row. And thus no new values can be injected
into the computation in the reconstruction.

VSSp
MPC(D)

1. The dealer D chooses a random bivariate polynomial f(x, y) of degree
at most t in each variable, such that f(0, 0) = s. Let sij = f(i, j). The
dealer sends to player Pi the values x1i = s1i, . . . , xni = sni and yi1 =
si1, . . . , yin = sin. To each value xji, yij player D attaches a digital signa-
ture σxji(D, Pi), σyij (D, Pi).4

2. Player Pi checks that the two sets x1i, . . . , xni and yi1, . . . , yin are t-con-
sistent. If they are not t-consistent, Pi broadcasts these values with D’s
signature on them. If a player hears a broadcast of inconsistent values
with the dealer’s signature then D is disqualified and execution is halted.

3. For every pair of players Pi, Pj the following is executed:

Pairwise checking protocol

(a) Pj sends xij and a signature σxij (Pj, Pi) which he generates on xij ,
privately to Pi.

(b) Player Pi compares the value xij which he received from Pj in the
previous step to the value yij received from D. If there is an incon-
sistency then Pi broadcasts a complaint and a pair yij , σyij (D, Pi).

(c) If Pi complained in the previous step then Pj broadcasts a pair xij ,
σxij (D, Pj).

4. If for some pair of players in Step 3. a player hears two broadcasts with
signatures from the dealer on different values, then D is disqualified and
execution is halted.

3So far, this results in a WSS which is secure against an adaptive adversary.
4Remember that (according to the terminology from Section 3.2.8) what we mean by saying this

is that a signing phase of an IC protocol is executed.

90 CHAPTER 5. THE MPC PROTOCOL

For every i the values yi1, . . . , yin and x1i, . . . , xni will be called the shares of
the player Pi. Observe that if D remains honest then the values x1i, . . . , xni

interpolate some value Si and the values S1, . . . , Sn interpolate s. Therefore
each Si will be called an implicit share of a player Pi (of a value s). Moreover
observe that if Pi remained honest and the dealer did not get disqualified then
for every j one of the following holds:

1. Pi knows a signature of Pj on a share yij (= xij), or

2. Player Pi complained in Step (3b) and then in Step (3c)

(a) Pj has broadcasted the value yij with a valid dealer’s signature on
it, or

(b) Pj has not broadcasted a properly signed value.

For simplicity we will assume that if case (2a) happened then this counts the
same as Pj giving to Pi a signature for yij (clearly this signature can be now
verified trivially, since yij is known publicly). If case (2b) occurred then Pj be-
comes publicly known to be corrupted. In this case we can safely assume that
Pi knows the signature of Pj on every value that he wants (i.e. the verification
procedure is void). Therefore later on we will assume that after the sharing
phase for every yij player Pi knows a signature of Pj on it. This leads to the
following definition.

Definition 5.4
A proper sharing of a secret s is a matrix of values {sij}i,j∈{1,...,n}, such that there
exists a bi-variate polynomial f of a degree at most t in each variable, such that
for every i, j ∈ {1, . . . , n} we have f(i, j) = sij and f(0, 0) = s.

We will say that the players received a proper sharing of a secret s, if there exists a
proper sharing {sij}i,j∈{1,...,n}, of a secret s and every honest player Pi received
the values x1i = s1i, . . . , xni = sni and yi1 = si1, . . . , yin = sin (each yij is
signed by a player Pj).

Clearly by Lemma 5.3 every proper sharing defines the secret s uniquely. We
now claim the following.

Lemma 5.5 In every execution of VSSMPC(D), the honest players receive a
proper sharing of some secret s′. If the dealer remained honest then s′ is equal
to his input value s.

Proof
The second claim follows directly from the construction of Step 1. of the proto-
col.

Now suppose that the dealer got corrupted. If the players disqualified the
dealer then we are done. Otherwise we will show that there is a fixed value
s′ defined by the distribution. Define s′ to be the secret which interpolates
through the shares held by the set T of the first t + 1 players who have not

5.2. IMPLEMENTATION 91

been corrupted during the simulation of this phase. Their shares are trivially t-
consistent, and there are correct signatures for their shares, and thus the value
s′ is well defined with an underlying implicit polynomial f′(x, y).

Let us now look at another uncorrupted player outside the set T . He has
corroborated his shares with all these t + 1 players and has not found an in-
consistency with them. Thus, his shares interpolate (at the minimum) through
f ′(x, y) and hence are at least t-consistent. But this player has also verified that
his shares are t-consistent. Hence, when this player’s shares are added to the
initial set of players’ shares the set remains t-consistent, thus defining the same
secret s′. �

The summing phase and the multiplying phase

The general idea behind the implementation of the Sump
MPC(a, b, c0, c1) and

Multp
MPC(a, b) phases is as follows. We assume that the players received proper

sharings in phases a and b of some secrets s and u respectively. We will show
a protocol whose result is a proper sharing of a secret v = c0s + c1u (in case of
Sump

MPC(a, b, c0, c1)), or v = su (in case of Multp
MPC(a, b)). Clearly if in any of

the phases a and b the players decided that the shared secret is equal to 05 then
the protocols become trivial, so we do not need to be concerned about it.

The Sump
MPC(a, b, c0, c1) phase is implemented in a non-interactive way. Let

xa
1i, . . . , x

a
ni, y

a
i1, . . . , y

a
in be the shares of player Pi from phase a and let and

xb
1i, . . . , x

b
ni, y

b
i1, . . . , y

b
in be the shares of player Pi from phase b. The new shares

(for the current phase p) are obtained in the following way. For every j ∈
{1, . . . , n} the player Pi sets yp

ji := c0y
a
ji + c1y

b
ji and xp

ij := c0x
a
ij + c1x

b
ij . By the

linearity property the signatures for the new shares can be obtained from the
signatures of the shares from the phases a and b.

The Multp
MPC(a, b) is slightly more involved. Let S1, . . . , Sn and U1, . . . , Un

be the implicit shares of s and u respectively. Let fs and fu be the respective
polynomials. We apply the method from [GRR98]. This method calls for every
player to multiply his implicit shares of s and u and to share the result of this
using VSS (i.e. a protocol for the sharing phase). This results in proper sharings
of S1U1, . . . , SnUn. Now observe that these values lie on a polynomial fs · fu

(which is of a degree at most 2t). Clearly (fs · fu)(0, 0) = su. Thus a proper
sharing of the result v can be computed as a fixed linear combination of the
sharings of S1U1, . . . , SnUn (i.e. each player computes a linear combination of
his shares from the n VSS’s). Since our sharing protocol is linear, like the one
used in [GRR98], the same method will work for us, provided we can show
that player Pi can share a secret Vi using VSSMPC(Pi), such that it will hold that
Vi = SiUi and to prove that he has done so properly. Later we will show that if
Pi fails to complete this process the players will always be able to reconstruct
Si and Ui and compute SiUi openly.

5Recall that this happens when the dealer gets disqualified in a sharing protocol. It can also
propagate further (for example if the dealer was disqualified in phase a then the result of every
MultpMPC(a, b) is also 0 by default)

92 CHAPTER 5. THE MPC PROTOCOL

In order to eliminate sub-indices let us recap our goal stated from the point
of view of a player Deal = Pi. Let S = Si and U = Ui. For j = 1, . . . , n let sj be
equal to fs(j, i) and let uj be equal to fu(j, i). Recall that each player Pj knows
a signature of Deal on sj and uj . The goal for the player Deal is to share a value
V = SU (using the sharing protocol) and convince the other players that he
did it correctly. He will do it using the ProveMult protocol presented below.

Before we go to the real protocol let us first present informally the main
idea, which is very general and can be applied for an arbitrary linear commit-
ment scheme6 First, the dealer chooses some random value β, commits to it
and to βU (let β and βU be the respective values he actually committed to).
Then the players choose some random value r and ask the dealer to reveal the
value of rS + β and to prove that rV + βU = (rS + β)U (by linearity he can do
it without revealing any further information). We will show later (Lemma 5.7)
that with high probability if the dealer managed to prove it, then V = SU . Let
us now present the protocol ProveMult in detail.

ProveMult

1. First, the dealer shares S. He uses the protocol VSSMPC(Deal) with a fol-
lowing constraint. The bi-variate polynomial fS that he chooses in Step
1. is such that for every i ∈ {1, . . . , n} we have fS(i, 0) = si. If this val-
ues do not agree for some i then (after the VSSMPC(Deal) is completed)
player Pi complaints and broadcasts all the values that he got from Deal
in this phase together with their signatures. Other players look at it and
disqualify Deal if the complaint was justified.

The same procedure applies to the value U .

2. Deal shares the value V = SU using the protocol for an VSSMPC phase.
If he is corrupted then he may share some other value. Denote it by V
(clearly if Deal is honest then V = V).

3. Deal chooses a random β ∈ K and shares β and βU using protocol form
an VSSMPC phase. Let β and βU denote the actual values that he has
shared.

4. The players jointly generate, using standard techniques, a random value
r, and expose it. We will comment more about this point later.

5. Applying the protocol for phase SumMPC the players compute the shar-
ing of rS + β and open it using the protocol for phase OpenMPC (see
Section 5.2.).

6. Applying twice SumMPC the players compute the sharing of rV + βU −
(rS + β)U and open it using OpenMPC. If the opened value is 0 then
players accept. Otherwise they disqualify the dealer.

6The commitment scheme is linear if, whenever the dealer is committed to some values x1, x2,
and x3 then, for arbitrary constant c he is able to prove (without revealing any other information
about x1 and x2) that cx1 + x2 = x3 (if it is true).

5.2. IMPLEMENTATION 93

Lemma 5.6 If the dealer remained honest then he does not get disqualified in
the above procedure.

Proof
Clearly an honest dealer does not get disqualified until Step 6. Observe that
if he remained honest then βU = βU , β = β and V = SU . By the simple
arithmetic the equation checked in Step 6. holds. �

Lemma 5.7 If V 6= SU in the above protocol then, whatever are the actions of
the adversary, the chances that the dealer did not get disqualified is at most
1
|K| .

Proof
If the dealer does not get disqualified in Step 6. then it has to be the case that
r(V − SU) = βU − βU . Suppose V 6= SU . Thus V − SU 6= 0 and we get
r = (βU−βU)(V −SU)−1. Thus before Step 4. there exists exactly one value of
r such that the dealer will not get disqualified in Step 6. Since r ∈ K is chosen
randomly in Step 4. the adversary succeeds with probability at most 1/|K|. �
Let us now say what happens if some Deal = Pi gets disqualified in the above
procedure. Clearly the set of not-disqualified players is of a size at least t + 1.
Now observe that since the procedure is executed for Deal = P1, . . . ,Pn, then
at least t + 1 values out of S1, . . . , Sn and U1, . . . , Un were shared successfully
in Step 1. Thus the value of Si can be obtained as a linear combination of those
shares (since they lie on the polynomial fS of a degree t). Therefore we can
compute it (by applying t − 1 times SumMPC and then OpenMPC). The same
applies to Ui. Thus if Pi refuses to cooperate the players can compute TiUi

openly and some default sharing of TiUi is taken by the players.7

Let us now say a few words about the generation of a challenge r in Step 4.
This is done by a following simple protocol.

Generating a random number

1. Every player Pi chooses a random value r ∈ K and shares it using a
protocol from the phase VSSMPC.

2. The players reconstruct the secrets using a protocol OpenMPC (see Section
5.2.). The output is the sum of the reconstructed secrets.

Clearly the output is a random value. To get a better efficiency of the entire pro-
tocol we will use the following trick. Recall that ProveMult is executed n times
in every invocation of MultMPC. Instead of executing them in a sequential
way, we will execute them in parallel. Thus, instead of generating a challenge
n times, it will be enough to generate it once. As a straightforward extension
of Lemma 5.7. we get that the chances of the adversary to cheat without being
disqualified in any of the invocations of ProveMult is at most n/|K|.

7Originally in [CDD+99] we were using a less efficient solution, namely we were instructing the
players to restart the protocol, and to simulate the corrupted player Pi openly. The more efficient
solution used here was suggested by Serge Fehr [Hir99].

94 CHAPTER 5. THE MPC PROTOCOL

The opening phase

The Openp
MPC(a) is implemented as follows. We assume that in phase a the

players have received a proper sharing of some secret, what resulted in every
player Pi holding the values yi1 = si1, . . . , yin = sin (each yij with a signature
σyij (Pj , Pi) from Pj).

Openp
MPC(a)

1. Each player Pi broadcasts the values yi1, . . . , yin, each yij together with a
signature σyij (Pj , Pi).

2. Each player Pi checks whether player Pj ’s shares broadcasted in the pre-
vious step are t-consistent and all the signatures are valid. If not then Pj

is disqualified. Otherwise let Yi be the value interpolated by the shares
yi1, . . . , yin.

3. All the values Yi reconstructed in Step 2. are taken and interpolated to
compute the secret s. Every player outputs s.

Lemma 5.8 Suppose that in some phases a, b ≤ p − 1 the players received
proper sharings of secrets s and u respectively. Then the following holds.

1. If the pth phase is Multp
MPC(a, b) then in this phase the players receive a

proper sharing of su, unless the adversary succeeded in cheating in one
of the executions of ProveMult.

Moreover the bi-variate polynomial f defined by this shares is chosen
uniformly at random (out of the polynomials of a degree at most t, such
that f(0, 0) = su).

2. If the pth phase is Sump
MPC(a, b, c0, c1) (for some c0, c1 ∈ K) then in this

phase the players receive a proper sharing of c0s + c1u.

3. If the pth phase is OpenMPC(b) then the value output by every (honest)
player at the end of this phase is equal to u.

Proof of Point 1. The first claim follows from the remarks (and Lemmas 5.6
and 5.7) from Section 5.2.

The second claim follows from the fact that f is a sum of n polynomials
out of which at least one was chosen uniformly at random. This is be-
cause at least one (actually, at least t + 1) player always remains honest.

Proof of Point 2. This point follows immediately from the linearity of polyno-
mials: for every two bi-variate polynomials f and g of a degree at most
t in each variable, and every two field elements c0, c1 ∈ K a function
h(x, y) = c0f(x, y) + c1g(x, y) is also a polynomial of a degree at most t
in each variable.

5.3. CONSTRUCTION OF THE SIMULATOR 95

Proof of Point 3. Let fu be the bi-variate polynomial defined by the proper
sharing of u. Clearly for every i the (single-variate) polynomial fu(i, ·)
has to be equal to the one interpolated by the shares yi1, . . . , yin. This is
because the degree of fu(i, ·) is at most t, and for at least t + 1 elements
j = 1, . . . , m (more precisely: for every j such that Pj remains honest)
we have fu(i, j) = yij . Thus we get that for every i such that Pi was not
disqualified in Step 2., it is the case that fu(i, 0) = Yi. Again: since there
are at least t + 1 (the number of honest players) and fu(·, 0) is of a degree
t, the value s interpolated in Step 3. is equal to fu(0, 0) (and thus equal to
u).

�

5.3 Construction of the simulator

Again, we use the standard simulation (see Section 2.2). First, wlog let us as-
sume that at least one player got corrupted.

Let us start with VSSMPC. The simulator will stay in the first corruption
stage until the protocol terminates. If it happened that the dealer D got cor-
rupted then the simulator looks at the shares received by the players. By
Lemma 5.5 they form a proper sharing of some secret s′ (by Lemma 5.3 this se-
cret is uniquely defined). Thus the simulator simply has to examine the shares
of the honest players and interpolate the value of s′. He then goes to the com-
putation stage, submitting s′ as the input of D.

The simulation of MultMPC and SumMPC phases is straightforward since
the input and output of the players is empty. The simulator simply stays in the
first corruption stage until the protocol halts. Then he goes to the computation
stage.

The simulation of VSSMPC goes as follows. The simulator goes immedi-
ately to the computation stage. In this way he learns the value of the secret
s to be reconstructed in this phase (since we assumed that at least one player
is corrupted) and updates the simulated protocol in a standard way. Then, he
continues the simulation in the second corruption stage, until it halts.

5.4 Proof of security

Define ERROR to be the event that the adversary managed to cheat in some
ProveMult subprotocol. By Lemma 5.7 (and the remarks after the implementa-
tion of ProveMult) we know that the probability of ERROR is at most nm/|K|
(where m is the number of phases).

Lemma 5.9 The simulation described in Section 5.3 works secretly and cor-
rectly unless ERROR occurs.

96 CHAPTER 5. THE MPC PROTOCOL

Proof
The proof will go by induction on the number of phases p. We will actually
prove a stronger claim, namely except of the secrecy and the correctness, we
will also prove the following.

Invariant 1 In every phase p (that was not an opening phase), the players received a
proper sharing of some secret sp. Moreover let L be the simulated output of the trusted
party from the last phase. Then the pth element of L is equal to sp.

Now, take some phase p and assume that we know that until the phase p − 1
the simulation works correctly (observe that correctness is a concern only in
the opening phase) and secretly and Invariant 1 holds. Consider the following
cases.

Sharing phase If the pth phase is VSSp
MPC(D) (for some player D) then, if the

dealer D gets corrupted then the secrecy holds trivially. Otherwise the
most important point is that the polynomial f in Step 1. is chosen uni-
formly at random (out of polynomials f such that f(0, 0) = s). Therefore
(by Lemma 5.2) as long as D remains honest the values received by the
players in Step 1. do not depend on s. It is also easy to see that in Steps 2.–
4. the corrupted players do not receive any more information then they
did in Step 1. This finishes the secrecy part. The Invariant 1 follows from
Lemma 5.5.

Summing phase If the pth phase is a summing phase then the secrecy holds
trivially (since the protocol involves no interaction). The Invariant 1 fol-
lows from Lemma 5.8 (Point 2.) and the assumption that it held until
phase p− 1.

Multiplying phase If the pth phase is Sump
MPC(a, b, c0, c1) then the only non-

trivial case is the ProveMult subprotocol when the dealer remained hon-
est. In this case it is not difficult to see that all the values coming to the
corrupted players in Steps 1.—4. are random. In Step 6. the values that
are broadcasted are a random sharing of value 0. Thus the secrecy holds.
The Invariant 1 follows from Lemma 5.8 (Point 3.) and the assumption
that it held until phase p− 1.

Opening phase If the pth phase is Openp
MPC(a) then let s be the value output

by the players in the ideal execution. By Invariant 1 we know that in
phase a the players received a proper sharing of s. Also, since we as-
sumed that a has to be a multiplying phase, we get (by Lemma 5.8, Point
1) that the sharing is chosen randomly (out of all the sharings of s). There-
fore the values broadcasted in Step 1 do not reveal any information other
than the value of s. The correctness follows easily from Invariant 1 and
Lemma 5.8.

�
Therefore we get:

5.5. PUTTING THINGS TOGETHER 97

Lemma 5.10 Protocol MPC securely evaluates MPC in an IC-hybrid model,
with an error probability nm/|K| (where m is the number of phases and n
is the number of players).

5.5 Putting things together

Let MPCReal denote the composed protocol MPCICReal (where ICReal is de-
fined in Section 3.2.5). Recall that we have set K = GF(q) (where q > max(n +
1, 2k)). Thus, we get the following.

Theorem 5.11
For t < n/2 the MPCReal protocol securely evaluates MPC, with an error prob-
ability m2−k+O(log(n)) (where m is the number of phases, n is the number of
players, t is the maximal number of corrupted players, and k is the security
parameter).

Proof
But the remarks from Section 2.1.7 the error probability ξ of MPCReal is at most
equal to δ + ε, where

• δ = nm/|K|,
• ε equal to the error probability of each ICReal times the number of ICReal

phases executed by MPC.

By Lemma 5.10 we have δ = nm/|K|. It is easy to see that the number of IC-
phases executed in each phase of MPC is polynomial in n. Thus, (by Theorem
3.11) we have ε = p(n)m/(|K|−1) (where p is some polynomial). Therefore we
get

ξ ≤ nm/|K|+ p(n)(m/(|K| − 1)).

Since |K| = max(n + 1, k) we get ξ = m2−k+O(log(n)) as desired. �
Let us now calculate the complexity of MPCReal (using the facts about the

complexity of ICReal from Section 3.2.6). Let m be the number of phases, n be
the number of players and k := log(|K|). We get the following.

Sharing phase From Lemma 3.12 it easily follows that for every sij the num-
ber of messages sent during each sharing phase is O(log(|K|)n). There-
fore the total message complexity is O(log(|K|)n3).

Summing phase Clearly the message complexity of each summing phase is 0,
since the phase is non-interactive.

Multiplying phase It is easy to see that for every execution of ProveMult the
message complexity is at most c times the complexity of the sharing pha-
se (where c is some fixed constant) plus the complexity of generating the
random number in Step 4. The complexity of generating this number

98 CHAPTER 5. THE MPC PROTOCOL

is equal to n times the complexity of a sharing phase. As argued be-
fore this can be amortized by executing the ProveMult in parallel. Since
ProveMult is executed n times, the total complexity of each multiplying
phase is O(log(|K|)n4).

Opening phase It is easy to see that the message complexity of each opening
phase is at most O(kn2).

It is easy to see that the complexity of the multiplying phase dominates. There-
fore we get the following.

Theorem 5.12
The message complexity of MPCReal is O(mkn4), where m is the number of
phases, k is the security parameter, and n is the number of players.

Originally in [CDD+99] (Theorem 2.) we had a complexity O(mkn5), instead
of O(mkn4). The improvement here is due the the observation by S. Fehr (see
Footnote 7 on Page 93).

Chapter 6

Impossibility of constructing
MPC from SS

In this section we prove our impossibility result, Theorem 1.2, which states that
there exist families F ofQ2 adversary structures, such that no polynomial-time
SS-oracle protocol computes fAND securely against F .

Before doing so, we first point out, as claimed earlier, that secure computa-
tion of linear functionals can be efficiently handled using black-box SS, both in
the passive and active models. As a consequence, Theorem 1.2 can also be in-
terpreted as an impossibility result essentially regarding secure multiplication,
or equivalently, Oblivious Transfer.

In the passive case, the secure computation of linear functionals is trivial:
each input bit b is split randomly into b = b1 ⊕ b2 ⊕ · · · ⊕ bn, and bi is given
to player Pi. Each player then computes the desired linear function locally on
the bi’s and publish the result. The global result is then the xor of the local
results. Note that the black-box SS-scheme is not needed for this. In the active
model, we can first establish a situation where the input bits and the bi’s are
verifiably secret shared. The players then prove using general techniques that
they performed their local computations correctly (see Section 4.3).

To prove Theorem 1.2, let us first recall the standard argument [HM97]
showing the impossibility result when no SS-oracle is given. As mentioned,
a Q2 adversary structure X is called maximal if there does not exist a Q2 ad-
versary structure X ′ 6= X such that X ⊂ X ′. For the sake of contradiction
suppose that for every maximal adversary structure A there exists a protocol
which runs in time bounded by some polynomial, and which computes fAND

securely against A. Since the number of maximal Q2 adversary structures is
double-exponential and the number of polynomial-time protocols (represented
as polynomial-size circuts) is single exponential then (by a counting argument)
there must exist a protocol π computing fAND securely against two different
maximalQ2 adversary structures X and Y . This means that π is secure against
Z = X ∪ Y . By maximality of X and Y we have that Z is not Q2. Therefore

99

100 CHAPTER 6. IMPOSSIBILITY OF CONSTRUCTING MPC FROM SS

fAND cannot be computed securely against it, and we have a contradiction.
In our case the situation is more difficult because the behavior of the play-

ers may depend on the oracle answers. Observe that when the SS-oracle is
asked by a set of players A to reconstruct some secret then the protocol gets
the information whether A is a member of the adversary structure. Thus we
may assume that together with reconstruction request comes a query about a
membership in the adversary structure and that together with the SS-oracle we
have a membership oracle.

Therefore for two different adversary structures X and Y the same proto-
col may behave in two different ways if it happens to ask a membership query
about a set in a symmetric difference of X and Y . Intuitively the biggest com-
binatorial difficulty of the proof is to show that there always exist two different
maximalQ2 adversary structures AS and AT and a protocol δ working against
both of them, such that δ will, with large probability, not ask a membership
query about any set in a symmetric difference of X and Y .

More precisely, the proof proceeds as follows. It is enough to prove that
for any polynomial p() the collection of oracle protocols of size p(n) cannot
handle all maximal Q2 adversary structures on n players. So for the sake of
contradiction suppose that there is a polynomial p() such that for every set of
players P of size n and every maximal Q2 adversary structure A ⊆ P(P) there
exists an SS-oracle protocol π(A) of size at most p(n) computing fAND securely
against A. All such protocols can be specified by a polynomial number of bits,
and hence the total number of such protocols is at most a single exponential in
n. We will then show (in Section 6.1):

Lemma 6.1 Let π(A) be defined as above. Then for every n large enough there
exist two adversary structures AS , AT ⊆ P(Pn) such that

1. the size of the set of players Pn is 2n + 2,

2. π(AS) = π(AT), and

3. π(AS) asks a membership query about a set in the symmetric difference
of AT and AS with probability at most 2−1.5n. This probability is taken
over all random choices made in the protocol, and over a random choice
of the 2n + 2 input bits. Moreover, AS contains a set A, and AT a set B,
such that |A| = |B| = n + 1 and A ∪B = Pn

Before proving this, let us show how the existence of such AT and AS yields
the contradiction. We will construct from the protocol π0 := π(AS) = π(AT)
a new protocol for two players, Alice and Bob, with input bits bA, bB that will
compute securely (and with negligible error probability) bA ∧ bB . This is well
known to be impossible, even if only passive cheating occurs, and the honest
Alice and Bob are allowed unbounded computing power.

Consider the sets A ∈ AS and B ∈ AT guaranteed by the lemma. We let
Alice and Bob simulate an execution of π0, where Alice controls the players in
A and Bob those in B. Alice selects as input bits for players in A a random set

6.1. PROOF OF LEMMA 6.1. 101

of n + 1 bits such that the AND of all of them equals bA. Similarly for Bob.
Then we execute π0, where Alice (Bob) executes the algorithms of players in A
(B). Every message from a player in A to a player in B causes Alice to send the
message to Bob, and vice versa.

Note that although efficiency of protocols plays a crucial role in proving the
above lemma, we do not need to be concerned about efficiency at this point
anymore, because we are now headed towards establishing a contradiction
by building a protocol for a problem for which no protocol exists, even if un-
bounded computing is allowed. Hence we need no SS-oracle, we can use an
arbitrary (inefficient) secret sharing scheme for AS ∪AT . Also, we may assume
that Alice and Bob each have a list of the sets in AT and AS . They will use it
to answer membership queries as follows: in most cases π0 asks about a set
which is in both AS , AT or in neither of them, so it is clear what the answer
should be. In the unlikely event that the question is about a set in the symmet-
ric difference, the protocol stops, we say it crashes. Alice and Bob use the result
computed by π0 as their output if the protocol finishes; if it crashes they let the
output but be 1.

Observe that in case bA = 0 or bB = 0, the probability of a crash is at most
2−n/2+2: if, say, bA = 0, we choose randomly between a set of at least 2n inputs,
namely all those inputs to players in A, where at least one bit is 0. These cases
constitute at least a fraction 2−n−2 of the overall probability space, so even re-
stricted to this case, the crash probability is at most 2−1.5k/2−n−2 = 2−n/2+2.
This immediately implies that Alice and Bob compute correctly bA ∧ bB except
with negligible probability in n. It also implies that privacy is satisfied: it is
enough to argue that if bA = 0, Alice learns a negligible amount of informa-
tion about bB . To see this, consider an idealized scenario, where there are no
crashes and all membership queries are answered according to AS . Then since
π0 is secure against AS , it follows that whenever the players in A (alias Alice)
have 1 or more zeros in their input, they learn almost no information about the
inputs of players in B. However, the only difference between the actual proto-
col we specified for Alice and Bob and the idealized case is the crashes. And
since crashes occur with negligible probability, it follows that Alice’s view of
the actual protocol is statistically indistinguishable from what she sees in the
idealized case.

This completes the proof that Alice and Bob would be able to compute the
AND function securely, and so we have our contradiction.

6.1 Proof of Lemma 6.1.

Let us now show the existence of AS and AT satisfying the conditions 1.–3. It
will be enough to restrict ourselves to a certain class of maximal Q2 structures.
For a given n we will construct a class Cn of 221.9n

such structures as follows.
Take a set of players Pn such that |Pn| = 2(n + 1). Define split to be a pair
(X, P \ X) such that |X | = |P \ X | = n + 1. Fix in an arbitrary way a set of
splits SPn that has a property that (X, Y) ∈ SPn if and only if (Y, X) 6∈ SPn (for

102 CHAPTER 6. IMPOSSIBILITY OF CONSTRUCTING MPC FROM SS

example: fix a player p0 ∈ Pn and define SPn to be a set of all splits (X, P \X)
such that p0 ∈ X).

For a technical reason we make a further restriction, and choose an arbitrary
subset Rn of SPn of a size 21.9n (we have that |SPn| is Ω(22n/

√
n) by standard

combinatorics, therefore this operation is always possible).
Now observe that every subset S ⊆ Rn determines a unique adversary

structure AS in the following way: a set of players Z ⊆ Pn belongs to AS if and
only if one of the following conditions is satisfied:

• |Z| < n + 1,

• (Z, P \ Z) ∈ S, or

• (P \ Z, Z) 6∈ S.

Such an adversary structure will be called a split structure. We define Cn to be
the set of all split structures AS (where S ⊆ Rn). Clearly every split structure
is a maximal Q2 structure.

To avoid to many subscripts we fix n. From now on we will consider only
protocols running against the split structures (what we can safely assume be-
cause we are proving a negative result). Let prot be the set of all the protocols
assigned to the set of all split structures by π (i.e. prot = π(Cn)). It is easy to
see that now all the membership queries about the sets of a size at smaller than
n + 1 are always answered positively. Similarly all queries about the sets of a
size bigger than n + 1 are always answered negatively. The only queries which
give some information about the adversary structure are the queries about the
sets of the size exactly n + 1. Therefore we can now assume that instead of a
membership oracle for AS every protocol is given a membership oracle for S.
This assumption simplifies a bit the notation and views the problem in a more
abstract way.

Let t be the maximum of the expected number of queries asked by the pro-
tocols from the set prot (more precisely let t = maxA∈Cn(expected number of
queries asked by π(A) when it runs against the structure A)). Let s = 21.7n (the
choice is somewhat arbitrary, what matters is that s is much bigger than t, but
much smaller that |Rn|).

Divide Rn into s blocks of equal size in an arbitrary way (this operation will
always be possible for big enough n). Let B1, . . . , Bs be the resulting blocks.
We will say that a set X is blinking in a block Bj iff there exists a set Y such that
all the following conditions are satisfied:

• the protocols assigned by π to X and Y are the same, i.e. π(X) = π(Y)

• X ∩Bj 6= Y ∩Bj , and

• X ∩ (Rn \Bj) = Y ∩ (Rn \Bj).

The last two conditions mean in other words that X and Y differ on a set Bj

and do not differ elsewhere. The intuition here is that the protocol π(X) may
have some difficulty in deciding if it is running against X or Y , since it must
ask a membership query in Bj to find out.

6.1. PROOF OF LEMMA 6.1. 103

Lemma 6.2 For every big enough n there exists a set blinking everywhere (i.e.
there exists S ⊆ Rn such that S is blinking for every block B1, . . . , Bs).

Proof
For every block Bj let Nj denote the family of sets not blinking for Bj . What
we need to show is that ∪s

j=1Nj 6= P(Rn). We will actually prove a stronger
fact, namely

s∑
j=1

|Nj | < 221.9n

. (6.1)

Fix an arbitrary Bj . Take an arbitrary set Z ⊂ Rn \ Bj . Now take the family
G = { W ⊆ Rn : W \ Bj = Z } (in other words G is a family of all sets
whose projection on Rn \ Bj is equal to Z). If two different sets in G were
assigned the same protocol, then they would both blink in Bj , so it follows
that the size of the family of sets in G that are not blinking in Bj cannot be
bigger than the number |prot| of different protocols. Therefore after summing
over all possible sets Z ⊂ Rn we have that |Nj | ≤ |prot|221.9n(s−1)/s. Since the
choice of Bj was arbitrary we get that the left-hand-side of (6.1) is not bigger
than s|prot|221.9n(s−1)/s. Therefore to prove (6.1) is enough to show that

s|prot|221.9n(s−1)/s < 221.9n

which is equivalent to

s|prot| < 2
21.9n

s = 220.2n

(6.2)

The left hand side of (6.2) is single exponential in n and so for big enough n the
inequality (6.2) (and hence (6.1)) holds. �

Let now n be big enough that the blinking everywhere set exists. Let S ∈ Rn

be such a set. Thus for every block Bj there exists a set blink(Bj) ∈ Cj such that

• π(AS) = π(blink(Bj)),

• S ∩Bj 6= blink(Bj) ∩Bj , and

• S \Bj = blink(Bj) \Bj .

Consider the runs of π(AS) against the adversary structure AS and consider
the probability distribution of these runs over a random choice of the input
bits to the computation as well as the random coins used. For every Bj let
pr(Bj) be the probability that π(S) asks a query about some element in Bj . It is
easy to see that

∑
j pr(Bj) is the expected number of queries asked by π(AS).

Recall that this expected number of queries is polynomial in n, and hence it is,
for all large enough n, smaller than s by a factor of at least 21.5n. Therefore

s∑
j=1

pr(Bj) <
s

21.5n

104 CHAPTER 6. IMPOSSIBILITY OF CONSTRUCTING MPC FROM SS

Thus the average value of pr(Bj) is at most 2−1.5n. Let Bl be such that pr(Bl) ≤
2−1.5n. In other words, with probability at least 1 − 2−1.5n the machine π(AS)
will never ask about any element in Bl. Therefore if we set T = blink(Bl) then
the protocol π(AS) (which is by the way equal to π(AT)) with a probability
1− 2−1.5n will not distinguish between AS and AT .

Chapter 7

Error Free Protocols and the
Open Problems

In this thesis, we have dealt with the situation where a broadcast channel (in
addition to the private ones) is available and access structures are Q2. It is
known [HM97] that if the adversary structure is Q3 (no three sets in the ad-
versary structure covers the player set) and no broadcast is given, then VSS
and MPC with zero error probability is possible. Thus it is natural to ask if in
this model we are given an error free SS scheme, can we build an error free VSS
scheme with polynomially related efficiency?

We sketch here how to build an error-free commitment scheme. The con-
struction requires a broadcast channel, however, such a channel can be simu-
lated, given an efficient way to decide membership in the adversary structure
(see [FM98]), and the secret sharing scheme we assume gives precisely such a
decision procedure.

The commitment scheme works as follows: the committer shares his secret
s to get shares s1, . . . , sn. He further shares each si to get sets of subshares {sij}.
He sends s1j , . . . , snj to Pj and sends si plus the random bits used in sharing
si to Pi. This allows both Pi and Pj to compute sij , so they can privately
compare their values and ask the committer to publicly announce sij if there
is a mismatch. If some Pi realizes that the committer is corrupt, Pi accuses the
committer, who must then make public all data sent to Pi.

In the same way as in the VSS from [BOGW88], this will ensure that the
committer is always either disqualified because there are too many complaints,
or the honest players agree on all subshares they know.

To open the commitment, the committer will make s and the shares {si}
public. Also each Pi will make his share si and the subshares {sij} public.
Each Pj announces if he agrees with sij or not. The share announced by Pi

approved if all players except a non-qualified subset agree with the subshares
he claims. The opening is accepted, if and only if the shares claimed by the
committer are consistent and agree with all approved shares announced by the

105

106 CHAPTER 7. ERROR FREE PROTOCOLS AND THE OPEN PROBLEMS

other players.
Since all players who have remained honest agree on subshare values, all

honest players will always have their shares approved. Therefore, if the honest
players have inconsistent shares, the commitment cannot be opened convinc-
ingly. But if the honest players do have consistent shares, the Q3 property
implies that the commitment can only be opened in one way. On the other
hand, if the dealer remains honest, then the honest players will have consistent
subshares of si, even if Pi is corrupt. Hence Pi can (again by the Q3 property)
only have the correct si approved, so an honest committer can always open
successfully.

Naturally, this commitment scheme can be used to build a VSS scheme
based on zero-knowledge techniques as shown earlier. But this scheme will
have a non-zero error probability. We do not know how to build error free
VSS efficiently from error free SS for this scenario, and leave this as an open
problem.

Bibliography

[Bea91] Donald Beaver. Secure multiparty protocols and zero-knowledge
proof systems tolerating a faulty minority. Journal of Cryptology,
4(2):75–122, 1991.

[Bei96] A. Beimel. Secure Schemes for Secret Sharing and Key Distribution.
Ph.d.-thesis, Technion, Haifa, 1996.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Complete-
ness theorems for non-cryptographic fault-tolerant distributed
computation (extended abstract). In Proceedings of the Twentieth An-
nual ACM Symposium on Theory of Computing, pages 1–10, Chicago,
Illinois, 2–4 May 1988.

[Can00] R. Canetti. Security and composition of multiparty cryptographic
protocols. Journal of Cryptology, 13(1):143–202, 2000.

[CCD88] D. Chaum, C. Crepeau, and I. Damgård. Multiparty uncondition-
ally secure protocols. In Proc. 20th Annual Symp. on the Theory of
Computing, pages 11–19, New York, NY 10036, USA, 1988. ACM
Press.

[CDD+99] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt,
and Tal Rabin. Efficient multiparty computations with dishonest
minority. In Advances in Cryptology — Eurocrypt ’99, volume 1592
of Lecture Notes in Computer Science, pages 311–326, 1999.

[CDD00] Ronald Cramer, Ivan Damgård, and Stefan Dziembowski. On the
complexity of verifiable secret sharing and multiparty computa-
tion. In Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, pages 325–334. ACM, May 2000.

[CDD+01] Ran Canetti, Ivan Damgård, Stefan Dziembowski, Yuval Ishai, and
Tal Malkin. On adaptive vs. non-adaptive security of multiparty
protocols. In Birgit Pfitzmann, editor, Advances in Cryptology - EU-
ROCRYPT ’01, volume 2045 of Lecture Notes in Computer Science,
pages 262–279. Springer-Verlag, May 2001.

107

108 BIBLIOGRAPHY

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. General
secure multi-party computation from any linear secret-sharing
scheme. In Advances in Cryptology — Eurocrypt ’00, volume 1807
of Lecture Notes in Computer Science, pages 316–334, 2000.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adap-
tively secure multi-party computation. In ACM Symposium on The-
ory of Computing, pages 639–648, 1996.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable se-
cret sharing and achieving simultaneity in the presence of faults.
In 26th annual Symposium on Foundations of Computer Science, Octo-
ber 21–23, 1985, Portland, OR, pages 383–395. IEEE Computer Soci-
ety Press, 1985.

[Chv79] V. Chvátal. The tail of the hypergeometric distribution. Discrete
Mathematics, 25(3):285–287, 1979.

[CvdGT95] C. Crépeau, J. van de Graaf, and A. Tapp. Committed oblivi-
ous transfer and private multi-party computations. In D. Cop-
persmith, editor, Advances in Cryptology: Proceedings of Crypto ’95,
volume 963 of LNCS, pages 110–123. Springer Verlag, 1995.

[DP98] Devdatt D. Dubhashi and Alessandro Panconesi. Concentration of
measure for analysis of randomised algorithms. Manuscript avail-
able at http://www.cs.unibo.it/˜pancones/papers.html, October
1998.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for Byzantine
agreement. In Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, pages 148–161, Chicago, Illinois, 2–4 May
1988.

[FM98] M. Fitzi and U. Maurer. Efficient byzantine agreement secure
against general adversaries. In Springer Verlag, editor, Proc. of Dis-
tributed Computing (DISC ’98), volume 1499 of LNCS, pages 134–
148, 1998.

[Gen95] R. Gennaro. Theory and Practice of Verifiable Secret Sharing. Ph.d.-
thesis, Massachusetts Institute of Technology, 1995.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any men-
tal game — A completeness theorem for protocols with honest ma-
jority. In Proc. 19th Annual Symp. on the Theory of Computing, pages
218–229, 1987.

[GRR98] R Gennaro, M. O. Rabin, and T. Rabin. Simplified vss and fact-
track multiparty computations with applications to threshold. In
Seventeenth Annual ACM Symposium on Principles of Distributed

BIBLIOGRAPHY 109

Computing, pages 101–111, Puerto Vallarta, Mexico, June 1998.
ACM.

[Hir99] Martin Hirt. personal communication. Jul 1999.

[HM97] Martin Hirt and Ueli Maurer. Complete characterization of ad-
versaries tolerable in secure multi-party computation (extended
abstract). In Proceedings of the Sixteenth Annual ACM Symposium
on Principles of Distributed Computing, pages 25–34, Santa Barbara,
California, 21–24 August 1997.

[ISN87] M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realiz-
ing general access structures. In IEEE, editor, IEEE/IEICE Global
Telecommunications Conference: conference record, Nov. 15–18, 1987,
Tokyo, Japan [GLOBECOM Tokyo ’87], pages 99–102. IEEE Com-
puter Society Press, 1987.

[KW93] M. Karchmer and A. Wigderson. On span programs. In Proceedings
of the Eighth Annual Structure in Complexity Theory Conference, pages
102–111, San Diego, California, 18–21 May 1993. IEEE Computer
Society Press.

[Nao91] M. Naor. Bit commitment using pseudorandomness. Journal of
Cryptology, 4(2):151–158, 1991.

[Rab94] Tal Rabin. Robust sharing of secrets when the dealer is honest or
cheating. Journal of the ACM, 41(6):1089–1109, November 1994.

[RBO89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority. In ACM, editor, Proceedings of the
Eighth Annual ACM Symposium on Principles of Distributed Comput-
ing: Edmonton, Alberta, Canada, August 14–16, 1989, pages 73–85.
ACM Press, 1989.

[Sha79] Adi Shamir. How to share a secret. Communications of the Associa-
tion for Computing Machinery, 22(11):612–613, November 1979.

[Yao82] A. Yao. Protocols for secure computation. In Proc. 23th Annual
Symp. on Foundations of Computer Science, pages 160–164. IEEE
Computer Society Press, 1982.

Recent BRICS Dissertation Series Publications

DS-01-1 Stefan Dziembowski.Multiparty Computations — Information-
Theoretically Secure Against an Adaptive Adversary. January
2001. PhD thesis. 109 pp.

DS-00-7 Marcin Jurdziński. Games for Verification: Algorithmic Issues.
December 2000. PhD thesis. ii+112 pp.

DS-00-6 Jesper G. Henriksen.Logics and Automata for Verification: Ex-
pressiveness and Decidability Issues. May 2000. PhD thesis.
xiv+229 pp.

DS-00-5 Rune B. Lyngsø.Computational Biology. March 2000. PhD
thesis. xii+173 pp.

DS-00-4 Christian N. S. Pedersen.Algorithms in Computational Biology.
March 2000. PhD thesis. xii+210 pp.

DS-00-3 Theis Rauhe. Complexity of Data Structures (Unrevised).
March 2000. PhD thesis. xii+115 pp.

DS-00-2 Anders B. Sandholm.Programming Languages: Design, Anal-
ysis, and Semantics. February 2000. PhD thesis. xiv+233 pp.

DS-00-1 Thomas Troels Hildebrandt. Categorical Models for Concur-
rency: Independence, Fairness and Dataflow. February 2000.
PhD thesis. x+141 pp.

DS-99-1 Gian Luca Cattani. Presheaf Models for Concurrency (Unre-
vised). April 1999. PhD thesis. xiv+255 pp.

DS-98-3 Kim Sunesen.Reasoning about Reactive Systems. December
1998. PhD thesis. xvi+204 pp.

DS-98-2 Søren B. Lassen.Relational Reasoning about Functions and
Nondeterminism. December 1998. PhD thesis. x+126 pp.

DS-98-1 Ole I. Hougaard. The CLP(OIH) Language. February 1998.
PhD thesis. xii+187 pp.

DS-97-3 Thore Husfeldt.Dynamic Computation. December 1997. PhD
thesis. 90 pp.

DS-97-2 Peter Ørbæk.Trust and Dependence Analysis. July 1997. PhD
thesis. x+175 pp.

DS-97-1 Gerth Stølting Brodal. Worst Case Efficient Data Structures.
January 1997. PhD thesis. x+121 pp.

