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Abstract

This dissertation investigates and extends the mathematical foundations of lo-
gics and automata for the interleaving and synchronous noninterleaving view of
system computations with an emphasis on decision procedures and relative ex-
pressive powers, and introduces extensions of these foundations to the emerging
domain of noninterleaving asynchronous computations. System computations
are described as occurrences of system actions, and tractable collections of such
computations can be naturally represented by finite automata upon which one
can do formal analysis. Specifications of system properties are usually described
in formal logics, and the question whether the system at hand satisfies its spec-
ification is then solved by means of automata-theoretic constructions.

Our focus here is on the linear time behaviour of systems, where execu-
tions are modeled as sequence-like objects, neither reflecting nondeterminism
nor branching choices. We consider a variety of linear time paradigms, such
as the classical interleaving view, the synchronous noninterleaving view, and
conclude by considering an emerging paradigm of asynchronous noninterleaving
computation. Our contributions are mainly theoretical though there is one piece
of practical implementation work involving a verification tool. The theoretical
work is concerned with a range of logics and automata and the results involve
the various associated decision procedures motivated by verification problems,
as well as the relative expressive powers of many of the logics that we consider.

Our research contributions, as presented in this dissertation, are as fol-
lows. We describe the practical implementation of the verification tool Mona.
This tool is basically driven by an engine which translates formulas of monadic
second-order logic for finite strings to deterministic finite automata. This trans-
lation is known to have a daunting complexity-theoretic lower bound, but sur-
prisingly enough, it turns out to be possible to implement a translation algo-
rithm which often works efficiently in practice; one of the major reasons being
that the internal representation of the constituent automata can be maintained
symbolically in terms of binary decision diagrams. In effect, our implementation
can be used to verify the so-called safety properties because collections of finite
strings suffice to capture such properties.

For reactive systems, one must resort to infinite computations to capture
the so-called liveness properties. In this setting, the predominant specification
mechanism is Pnueli’s LTL which turns out to be computationally tractable
and, moreover, equal in expressive power to the first-order fragment of monadic



second-order logic. We define an extension of LTL based on the regular pro-
grams of PDL to obtain a temporal logic, DLTL, which remains computationally
feasible and is yet expressively equivalent to the full monadic second-order logic.

An important class of distributed systems consists of networks of sequential
agents that synchronize by performing common actions together. We exhibit a
distributed version of DLTL and show that it captures exactly all linear time
properties of such systems, while the verification problem, once again, remains
tractable.

These systems constitute a subclass of a more general class of systems with
a static notion of independence. For such systems the set of computations con-
stitute interleavings of occurrences of causally independent actions. These can
be grouped in a natural manner into equivalence classes corresponding to the
same partially-ordered behaviour. The equivalence classes of computations of
such systems can be canonically represented by restricted labelled partial or-
ders known as (Mazurkiewicz) traces. It has been noted that many properties
expressed as LTL-formulas have the “all-or-none” flavour, i.e. either all compu-
tations of an equivalence class satisfy the formula or none do. For such properties
(e.g. “reaching a deadlocked state”) it is possible to take advantage of the nonin-
terleaving nature of computations and apply the so-called partial-order methods
for verification to substantially reduce the computational resources needed for
the verification task. This leads to the study of linear time temporal logics in-
terpreted directly over traces, as specifications in such logics are guaranteed to
have the “all-or-none” property. We provide an elaborate survey of the various
distributed linear time temporal logics interpreted over traces.

One such logic is TLC, through which one can directly formulate causali-
ty properties of concurrent systems. We strengthen TLC to obtain a natural
extended logic TLC∗ and show that the extension adds nontrivially to the ex-
pressive power. In fact, very little is known about the relative expressive power
of the various logics for traces. The game-theoretic proof technique that we
introduce may lead to new separation results concerning such logics.

In application domains such as telecommunication software, the synchronous
communication mechanism that traces are based on is not appropriate. Rather,
one would like message-passing to be the basic underlying communication mech-
anism. Message Sequence Charts (MSCs) are ideally suited for the description of
such scenarios, where system executions constitute partially ordered exchanges
of messages. This raises the question of what constitutes reasonable collec-
tions of MSCs upon which one can hope to do formal analysis. We propose a
notion of regularity for collections of MSCs and tie it up with a class of finite-
state devices characterizing such regular collections. Furthermore, we identify a
monadic second-order logic which also defines exactly these regular collections.

The standard method for the description of multiple scenarios in this set-
ting has been to employ MSC-labelled finite graphs, which might or might not
describe collections of MSCs regular in our sense. One common feature is that
these collections are finitely generated, and we conclude by exhibiting a subclass
of such graphs which describes precisely the collections of MSCs that are both
finitely generated and regular.
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Chapter 1

Introduction

Never send a human to do a machine’s job.
—Agent Smith, The Matrix (1999)

As technological advances in computing lead to increased levels of automa-
tion, the need for correctly functioning software and hardware is becoming more
crucial. In application domains involving safety critical systems, an unforeseen
error can have a devastating impact. To be specific, failures often have unac-
ceptable consequences in applications areas such as air traffic control, medical
monitoring equipment, electronic commerce, and power plants.

Of course, in every design of a system a lot of effort is being employed to
increase the confidence that the system correctly achieves its designated goal.
This may include numerous simulations of an abstraction of the system while in
its early design stages, and extensive testing of a concrete realization of (part of)
the system. While such techniques are often adequate to detect many design and
implementation errors, it is usually impossible to consider all possible scenarios
solely by testing.

These considerations have given rise to what is commonly referred to as
”Formal Methods”. Here, a mathematical model of the system is constructed
which abstractly captures all the interesting computations of the system. The
model is then rigorously investigated for the presence or absence of certain prop-
erties. Based on the results of this analysis, the designer can reach conclusions
regarding the functional correctness of the system. The key point here being
that the level of confidence attained is comparable to that associated with the
(correct!) proof of a mathematical statement.

It turns out that the formal method popularly known as model checking,
especially when applied to finite-state systems, can be fully automated with the
help of software tools. This is in sharp contrast to most other methods such as
theorem-proving where a good deal of intervention is required from an expert.
In this dissertation, we will concentrate mainly on issues centered around the
model checking approach to verification of finite-state systems. Even though sys-
tems might be infinite in nature there are many application areas, for instance

1
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S
!!

ϕ

}}
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��
“yes/no” (+ diagnostic information)

Figure 1.1: Structure of a model checker.

communication protocols and microprocessors, which deal with only finite data
domains, and such applications can be expressed as finite-state systems. More-
over, a number of the techniques of this setting extend to model checking of
infinite-state systems [13, 85].

1.1 Model Checking

Model checking is a term coined by Clarke and Emerson to denote a particular
approach to formal verification. The process of model checking consists of three
main stages. Firstly, a formal description or system model S of the intended
system design is constructed. Usually, this is achieved either by transforming
a graphical representation explicitly identifying states and state changes of the
system, or by compilation of a program text written in a specifically designed
modeling language. Whichever approach is used, the model checking program
builds an internal representation upon which analysis is performed.

Secondly, the properties to be investigated of the system, its specification
ϕ, must be precisely described. Sometimes the model checking program has
algorithms for checking only a limited number of specific properties such as
deadlock or mutual exclusion. However, more sophisticated assertions are for-
mulated within the framework of formal logics.

Finally, the verification is performed by the model checking program which,
by analyzing the internal representation, automatically computes an answer to
the question of whether or not the model formally satisfies its specification with
some precise semantics. As such, a ”no” answer to the correctness question is not
very useful. However, model checking programs often provide some diagnostic
information in case the answer to the correctness question is negative. Such
information helps the designer to identify errors and correct them.

Of course, the value of model checking is limited by the appropriateness of
the formal model constructed. A model must represent the concrete system in
a such way that it captures at least the system actions that are relevant to the
correctness requirements that need to be checked. We shall consider neither the
aspects of constructing the model nor assessing its quality any further here.

There are many variations to the concept of model checking. A multitude of
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classes of systems models, specification formalisms and verification algorithms
have been considered in the literature (see e.g. [20] for a recent exposition), and
model checking of infinite systems is becoming a popular field of research [13,
85]. We will however restrict our attention to finite-state systems and temporal
logics.

1.2 Logics and Automata

In the model checking area, the prevailing paradigm at present is that of reac-
tive systems. These are systems continuously (and possibly infinitely) comput-
ing and interacting with other processes or an environment. Here the possible
histories or computation sequences of the system are of primary interest. The
system behaviour is captured by collections of such computation sequences,
which in turn can be inspected or transformed in order to investigate whether
the system satisfies its specification. Thus finite-state systems can be viewed
as finite automata accepting sequences of system actions. The model checking
problem in this setting is, for a given finite-state automaton S representing the
system and a given specification ϕ, to decide whether every string accepted by
S satisfies ϕ.

The connection between logic and automata is very well understood and
goes back to the pioneering work of Büchi and Elgot [14, 34] in the early sixties.
In fact, they demonstrate an intimate relationship between logic and automata
via the basic result that monadic second-order logic and finite automata de-
scribe the same collections of strings. These collections constitute the so-called
regular languages of sequences. An equally useful fact is that these transla-
tions between logic and automata are constructive, for instance, any sentence of
monadic-second order logic can be algorithmically transformed to an equivalent
automaton and vice versa.

When such prerequisites are met, the question of whether a finite-state sys-
tem meets its specification, can then be phrased and settled solely in terms of
constructions on finite automata and corresponding language inclusions. Often
the model checking problem is solved in terms of the satisfiability problem for
the specification logic, which is to decide whether there exists any computation
sequence satisfying ϕ for a given specification formula. A common approach
is to translate ϕ to an automaton Aϕ accepting the set of strings satisfying ϕ,
which can easily be checked for emptiness. The model checking problem then
amounts to checking whether there is a string accepted by S accepting the nega-
tion of the specification, i.e. checking the product of S and A¬ϕ for emptiness.
Moreover, by simple investigations of this automaton, diagnostic information
can be easily recovered and supplied to the designer. This makes verification
by automata a very versatile tool, because the general approach can be used for
any specification logic which is algorithmically translatable to finite automata.

Temporal logic was introduced into the area of program verification in a
groundbreaking paper by Pnueli [113] more than 20 years ago, and is by now
thoroughly investigated and well understood. See e.g. [35, 83] for expositions
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on temporal logics. The key point is that correctness properties of systems
are usually formulated in terms of relative orderings in time of certain sets
of system actions, and the characteristic feature of temporal logic is that it
facilitates reasoning about such temporal relationships without introducing time
explicitly.

1.3 Outline of Dissertation

This dissertation consists of two parts. Part II contains our research contribu-
tions in the form of published papers and technical reports, while Part I provides
the broad conceptual and technical context for the results appearing in Part II.
In this sense, the overview material presented in Part I, especially in terms of
the topics it addresses, is neither complete nor is it meant to be.

Part I consists of three chapters constituting an overview of logics for for-
mal verification with an emphasis on their expressive powers and automata-
theoretic decision procedures. The three chapters aim at surveying three dif-
ferent paradigms towards formal verification. Chapter 2 exposes the classical
interleaving view of computations as being totally ordered sequences of system
actions. In this sense it provides a direct realization of the general scheme of
automata-based verification as introduced here. In the two chapters following
we generalize the notion of computation “sequence” to the richer domains of
restricted labelled partial orders. More precisely, we survey in Chapter 3 the
extensions of the approach to the noninterleaving synchronous view from the
perspective of Mazurkiewicz traces [86], where the distributed processes commu-
nicate by performing common actions together. Finally, Chapter 4 describes an
emerging theory within the noninterleaving asynchronous view of communica-
tion. Here the distributed processes communicate by means of message-passing
specified as message sequence charts [68]. Together these three classes of be-
havioural models provide a representative overview of the various linear time
approaches to formal specification and verification of systems. The question
whether to use linear time or branching time logics for verification is a subject
of intense debate [146], but we will concentrate exclusively on the linear time
paradigm here.

Part II summarizes contributions within this field in which I have familiarized
myself during my graduate studies. It consists of seven chapters as briefly
described below—each constituting a self-contained reprint of a contribution to
the area surveyed in Part I.

Interleaving Paradigm: Computation Sequences

Chapter 5 [55]: “Mona: Monadic Second-Order Logic in Practice”. Joint
work with Jakob Jensen, Michael Jørgensen, Nils Klarlund, Robert Paige,
Theis Rauhe, and Anders B. Sandholm. Appears in Proceedings of the
1st Workshop on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’95), LNCS 1019. It also appears as BRICS technical
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report RS-95-21. The present version is an updated version.

Chapter 6 [60]: “Dynamic Linear Time Temporal Logic”. Joint work with P.
S. Thiagarajan. Appears in Annals of Pure and Applied Logic 96(1-3).
A preliminary and more elaborate version appears as BRICS technical
report RS-97-8.

Noninterleaving Synchronous Paradigm: Mazurkiewicz Traces

Chapter 7 [61]: “A Product Version of Dynamic Linear Time Temporal
Logic”. Joint work with P. S. Thiagarajan. Appears in Proceedings of
the 8th International Conference on Concurrency Theory (CONCUR’97),
LNCS 1243. It also appears as BRICS technical report RS-97-9.

Chapter 8 [138]: “Distributed Versions of Linear Time Temporal Logic: A
Trace Perspective”. Joint work with P. S. Thiagarajan. A chapter of
Reisig and Rozenberg (Eds.): Lectures on Petri Nets I: Basic Models,
LNCS 1491. The survey also appears as BRICS technical report RS-98-8.

Chapter 9 [54]: “An Expressive Extension of TLC”. Appears in Proceedings
of the 5th Asian Computing Science Conference (ASIAN’99), LNCS 1742.
Also appears as BRICS technical report RS-99-26. The present version is
the full version invited for publication in the ASIAN’99 Special Issue of
International Journal of Foundations of Computer Science.

Noninterleaving Asynchronous Paradigm: Message Sequence Charts

Chapter 10 [56, 57]: “Regular Collections of Message Sequence Charts”.
Joint work with Madhavan Mukund, K. Narayan Kumar, and P. S. Thia-
garajan. Appears in Proceedings of the 25th International Symposium on
Mathematical Foundations of Computer Science (MFCS’00), LNCS 1893.
Excerpts appear in BRICS technical report RS-99-52. The present version
is an extended version.

Chapter 11 [56, 58]: “On Message Sequence Graphs and Finitely Generated
Regular MSC Languages”. Joint work with Madhavan Mukund, K. Na-
rayan Kumar, and P. S. Thiagarajan. Appears in Proceedings of the
27th International Colloquium on Automata, Languages and Program-
ming (ICALP’00), LNCS 1853. Excerpts appear in BRICS technical re-
port RS-99-52. The present version is an extended version.
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Chapter 2

Interleaving Paradigm

In this chapter we consider the verification setting in which computations are
strings of system actions. We begin by reviewing the theories of automata over
strings in Section 2.1 and define the basic notions of regular languages. In Sec-
tion 2.2 we define the monadic second-order logic (MSO) of strings and sketch
how it captures all regular languages of strings. Following that, we define in
Section 2.3 Pnueli’s linear time temporal logic (LTL), which constitutes a cor-
nerstone of automated formal verification. We then show how the satisfiability
and model checking problems are solved in the approach of Chapter 1. Finally,
in Section 2.4 we consider the expressive power of the logics introduced in this
chapter. We bring out how LTL corresponds to the first-order fragment of MSO
and consider how it can be extended to precisely capture MSO.

This material provides the background for our contributions in Chapters 5
and 6. Moreover, many of the ideas presented here have also played an important
role in the developments of the theories in Chapters 7–11.

2.1 Automata over Strings

To bring out the developments of automata over strings, we fix a finite nonempty
alphabet of actions Σ throughout the chapter. We let a, b range over Σ and refer
to members of Σ as actions. Σ∗ is the set of finite strings over Σ and Σω is the
set of (countably) infinite strings generated by Σ with ω = {0, 1, 2, . . .}. We set
Σ∞ = Σ∗ ∪ Σω and denote the null word by ε. We let σ, σ′ range over Σω and
τ, τ ′, τ ′′ range over Σ∗. Moreover, � is the usual prefix ordering defined over Σ∗

and for u ∈ Σ∞, we let prf(u) be the set of finite prefixes of u. Finally, we let
|σ|a denote the number of occurrences of a in the string σ.

Throughout this chapter a language is a collection of strings L ⊆ Σ∗, whereas
an ω-language is a subset of Σω. Whenever necessary, we will treat both finite
and infinite strings on an equal footing and just refer to L ⊆ Σ∞ as being a
language. A language can be naturally viewed as a property, described explic-
itly by the set of all strings possessing the given property. This will become

9
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apparent when we consider logical definability later in this chapter. We will use
“language” and “property” interchangeably throughout the text.

We describe first automata over finite strings and then their extensions to
the infinite setting.

2.1.1 Automata over finite strings

A well-studied notion of classical formal language theory [75] is the collections
of strings described by finite automata. A (nondeterministic) finite automaton
(NFA) over Σ is a quintuple A = (Q,Σ,∆, Q0, F ), where Q is a finite set of
states , Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of final states, and
∆ ⊆ Q× Σ ×Q is the transition relation.

A run of A over a string τ ∈ Σ∗ is a map ρ : prf(τ) → Q such that:

• ρ(ε) ∈ Q0.

• ρ(τ ′) a−→ ρ(τ ′a) for each τ ′a ∈ prf(τ).

The run ρ is said to be accepting iff ρ(τ) ∈ F . To tie everything together,
L(A), the language of finite strings of Σ∗ accepted by A, is L(A) = {τ ∈ Σ∗ |
∃ an accepting run of A over τ}.

It is well-known that L ⊆ Σ∗ is accepted by some nondeterministic automa-
ton if and only if it is accepted by some deterministic finite automaton, i.e.
where Q0 is a singleton set and the automaton is equipped with a transition
function δ : Q× Σ → Q. Hence, nondeterminism does not increase the distin-
guishing power of finite automata over finite strings. The class of languages of
finite strings over Σ accepted by finite-state automata are the regular languages.
These languages are also commonly referred to as being recognizable languages.

Another description formalism for languages of finite strings are the regular
expressions of Kleene [74]. Formally, the set of regular expressions over Σ are
given by:

RE(Σ) ::= a | π0 + π1 | π0;π1 | π∗ , a ∈ Σ.

With each regular expression we associate a set of finite strings via the map
|| · || : RE(Σ) −→ 2Σ∗

. This map is defined in the obvious fashion. In particular,
the semantics of the Kleene iteration is given as ||π∗|| =

⋃
i∈ω ||π||i, where for

L ⊆ Σ∗;

• L0 = {ε} and

• Li+1 = {τ0τ1 | τ0 ∈ L and τ1 ∈ Li} for every i ∈ ω.

We will sometimes use π+ to denote π;π∗. Occasionally, we will refer to the
star-free regular expressions as the set of expressions obtained from the regu-
lar expressions above by replacing the Kleene-star iteration operator with the
operation of complementation π (with respect to Σ∗).

Kleene’s classical theorem can be brought out as follows.



2.1. AUTOMATA OVER STRINGS 11

Theorem 2.1.1 (Kleene [74]) Let L ⊆ Σ∗. Then L is regular if and only if
L = ||π|| for some regular expression π ∈ RE(Σ).

Thus both finite automata and regular expressions characterize the class of
regular languages of finite strings over Σ.

2.1.2 Automata over infinite strings

Collections of finite strings over some alphabet of actions suffice for capturing
the safety properties of reactive systems. Such properties essentially express
that some property holds of every reachable state of the system, and are usually
used to assert that no “bad” states are reached throughout the computations
of the system. However, most interesting reactive systems are nonterminating
and many important properties of such systems are inherently liveness proper-
ties, asserting that at any given time of a computation something “good” will
eventually happen. (see e.g. [2, 80, 82] for classifications of satisfy and liveness
properties.) Such liveness properties, which include various notions of fairness,
can only be captured by infinite computations. Hence finite automata over
infinite strings and regular languages of such strings are at the center of our
concerns.

Guided by the constructions for the finite string case, a stable and coherent
theory of regular languages of infinite strings σ ∈ Σω has been developed. It
turns out that most characterizations of the finite string case can be carried over
to the setting of ω-languages. We start by introducing the notions of finite-state
automata over infinite strings.

A finite automaton accepting infinite strings is obtained from the nondeter-
ministic finite automata introduced above by suitably modifying the criterion of
acceptance. Hence an automaton accepting infinite strings over Σ is a quintuple
B = (Q,Σ, Q0,∆, Acc) where Acc is an acceptance condition expressing when a
given infinite run is deemed accepting. The notion of run is carried over directly,
i.e. a run of B over a string σ ∈ Σω is a map ρ : prf(σ) → Q such that:

• ρ(ε) ∈ Q0.

• ρ(τ) a−→ ρ(τa) for each τa ∈ prf(σ).

Several acceptance conditions have been proposed in the literature. The most
common one is a straightforward generalization of the finite string case called
Büchi acceptance condition, which is given as Acc = F for a set of final states
F ⊆ Q. The run ρ is accepting iff inf(ρ) ∩ F 6= ∅, where inf(ρ) ⊆ Q is given by
q ∈ inf(ρ) iff ρ(τ) = q for infinitely many τ ∈ prf(σ).

An automaton with a Büchi acceptance condition is called a Büchi au-
tomaton. In the obvious manner we define the language accepted by B as
L(B) = {σ ∈ Σω | ∃ an accepting run of B over σ}. We say that L ⊆ Σω is
Büchi recognizable if it is accepted by some Büchi automaton. An example of a
Büchi automaton B is given in Figure 2.1, where L(B) = (a + b)∗bω. To avoid
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/.-,()*+
a,b

�� b //=⇒ /.-,()*+��������
b

��

Figure 2.1: Büchi automaton accepting the language (a+ b)∗bω.

confusion, we will throughout denote automata over finite strings by A while
using B to denote (Büchi) automata over infinite strings.

By replacing the Kleene-star with an infinite iteration operator πω in the
regular expressions and furthermore allowing left concatenation by regular ex-
pressions of RE(Σ), one obtains the ω-regular expressions. With these defini-
tions Büchi [14] showed that Kleene’s Theorem carries over to the setting of
ω-languages in the straightforward manner. Thus it seems natural to take the
ω-regular languages to be the Büchi recognizable ω-languages. There is a large
body of evidence [140] showing that this is the “right” notion of regularity and
we will sketch one such piece of evidence in the form of a characterization in
terms of logic in Section 2.2.

While most of the properties are carried over smoothly, deterministic Büchi
automata are strictly weaker than their nondeterministic counterparts. More
specifically, one can show that the language L ⊆ {a, b}ω consisting of strings of
a’s and b’s with only a finite number of a’s, is not accepted by any deterministic
Büchi automaton. On the other hand, it is easy to see that L is accepted by
the automaton in Figure 2.1.

There is however a number of generalizations of acceptance conditions such
that deterministic automata capture the full class of ω-regular languages. One
such possibility is Muller automata, where the acceptance condition is given
as a family of accepting sets F = {Fi}ni=1, where each Fi ⊆ Q. An infinite
run ρ is accepting in case inf(ρ) = Fi for some 1 ≤ i ≤ n, i.e. the set of
states encountered infinitely often along ρ is exactly one of the Fi’s. Another
possibility is Rabin automata, where the acceptance condition is given by a set of
accepting pairs Ω = {(Li, Ui)}ni=1. In this regime, an infinite run ρ is accepting
if there exists some 1 ≤ i ≤ n such that inf(ρ) ∩Li = ∅ and inf(ρ) ∩Ui 6= ∅, i.e.
the states in Li are only visited a finite number of times whereas some state of
Ui occurs infinitely often. Streett automata are in some sense dual to the Rabin
automata in that the acceptance condition is also given as a set of acceptance
pairs {(Ri, Si)}ni=1 , but the run is accepting in case for every i, inf(ρ)∩Ri 6= ∅
implies inf(ρ) ∩ Si 6= ∅.

It turns out that the class of ω-languages recognized by deterministic Muller,
Rabin, and Streett automata, respectively, is precisely the class of ω-regular
languages. Moreover, nondeterministic Muller, Rabin, and Streett automata,
respectively, accept the same class of languages. See [122] for an overview of
conversions between the various acceptance conditions and complexities of the
corresponding emptiness problems, which is to determine whether or not the
language accepted by a given automaton is empty.
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One pleasant advantage of Büchi automata is that it is very easy to solve the
emptiness problem. This can be done in time linear in the size of the automaton
where the size of a Büchi automaton is the number of states of the automaton.
The problem is known to be logspace-complete for NLOGSPACE [128]. We also
note that the intersection problem for Büchi automata can be easily solved. In
other words, let B1,B2 be two Büchi automata both operating over Σ. Then
one can effectively construct a Büchi automaton B over the same alphabet such
that the language accepted by B is the intersection of the languages accepted
by B1 and B2. Moreover, the size of B can be assumed to be bounded by 2n1n2

where n1 is the size of B1 and n2 is the size of B2 [140].
Complementation of Büchi automata can be performed using Safra’s con-

struction, by which one can effectively complement a Büchi automaton of size
n by constructing a deterministic Rabin automaton with 2O(n logn) states and
O(n) accepting pairs [122]. This can be translated to a Büchi automaton of size
2O(n logn). An interesting feature of Safra’s construction is that it is essentially
an optimal one [122].

2.2 Monadic Second-order Logic

Automata over infinite strings were originally introduced as a basis for anal-
ysis of restricted arithmetic problems of the second-order theory of one suc-
cessor (S1S). Büchi [14] showed that the requirements of this restricted sys-
tem of second-order logic could be translated into acceptance problems of au-
tomata over infinite strings. As the logical system permits quantifications over
only unary relations (or equivalently, sets), it has become widely known as the
monadic second-order logic of strings.

In this section, we present the syntax and semantics of the logical system
and bring out the close correspondence between the (ω-)regular languages and
monadic second-order logic (MSO). We then consider how to use this correspon-
dence in practice to implement a decision procedure for MSO.

2.2.1 Syntax and semantics of MSO

The monadic second-order theory of (finite or infinite) strings over Σ is denoted
MSO(Σ). Its vocabulary consists of a family of unary predicates {Qa}a∈Σ, one
for each a ∈ Σ; a binary predicate ≤; a binary predicate ∈; a countable supply of
individual variables Var = {x, y, z, . . .}; a countable supply of set variables (i.e.
monadic predicate variables) SVar = {X,Y, Z, . . .}. The formulas of MSO(Σ)
are then given as:

MSO(Σ) ::= Qa(x) | x ∈ X | x ≤ y | ¬ϕ | ϕ1 ∨ ϕ2 | (∃x)ϕ | (∃X)ϕ , a ∈ Σ.

The set of formulas above can be used for defining both finite and infinite
strings. We present here the semantics for the infinite case as follows. A struc-
ture for MSO(Σ) is a sequence σ ∈ Σω . Let I be an interpretation of the
variables with I : Var −→ ω and I : SVar −→ 2ω. Then the notion of σ being
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a model of ϕ under the interpretation I, denoted σ |=I ϕ, is defined in the
expected manner. In particular, σ |=I Qa(x) iff σ(I(x)) = a (note that σ ∈ Σω

is here to be viewed as σ : ω −→ Σ); σ |=I x ≤ y iff I(x) ≤ I(y) (here ≤ is the
usual ordering over ω); σ |=I x ∈ X iff I(x) ∈ I(X).

In a similar fashion, the semantics can be adapted to the setting of finite
strings. Most notions are carried over directly with only minor modifications,
which we will not go into here. (Chapter 5 provides a definition of the logic for
finite strings.) Hence, we can view formulas of monadic second-order logic as
also defining languages L ⊆ Σ∞ in the obvious manner.

Apart from the usual derived propositional connectives and universal quan-
tifiers, we will use the following abbreviations:

• x = y
def= x ≤ y ∧ y ≤ x and thus x < y

def= x ≤ y ∧ ¬(x = y).

• x+ 1 ∈ X
def= (∃y)(x < y ∧¬(∃z)(x < z ∧ z < y)∧ y ∈ X). Of course, this

can be generalized to x+ k ∈ X for any natural number k.

• X ⊆ Y
def= (∀x)(x ∈ X ⇒ x ∈ Y ) and hence also (non)equality on

set variables in the same manner as above. Similarly, one can construct
formulas for X = ∅ and X = ω by quantifiers, and the operations of
Boolean operations of union, intersection and complementation from the
corresponding propositional connectives. For example, X ∩ Y = Z can be
expressed as (∀x)(x ∈ X ∧ x ∈ Y ⇔ x ∈ Z). With the same technique we
get:

• X = Y + 1 def= (∀y)(y ∈ Y ⇔ y + 1 ∈ X).

• Single(X) def= (∃Y )(Y ⊆ X ∧ Y 6= X ∧ ¬(∃Z)(Z ⊆ X ∧Z 6= X ∧ Z 6= Y )).

Note that Single(X) expresses that X is a singleton set by asserting that it has
exactly one proper subset Y .

As usual, a sentence is a formula with no free variables. Each sentence ϕ
defines a language denoted Lϕ where Lϕ = {σ ∈ Σ∞ | σ |= ϕ}. We say that
L ⊆ Σ∞ is definable in MSO(Σ) iff there exists a sentence ϕ ∈ MSO(Σ) such
that L = Lϕ. Often we will also use MSO(Σ) to denote the class of languages
described by sentences of the logic.

The first-order theory of (finite or infinite) strings over Σ is denoted FO(Σ)
and is obtained from MSO(Σ) by abolishing the monadic second-order quantifi-
cations from the logic. The semantics and notions of first-order definability are
carried over in the obvious manner.

2.2.2 MSO and the regular languages

The fundamental theorem in this area is Büchi’s Theorem [14], which was the
original motivation for Büchi automata.

Theorem 2.2.1 (Büchi [14]) Let L ⊆ Σω. Then L is definable in MSO(Σ) if
and only if L is ω-regular.
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Let L ⊆ Σω be given and suppose L is accepted by the Büchi automaton
B = (Q,Σ, Q0,∆, F ). To bring out a sentence ϕ of MSO(Σ) defining L we will
express accepting runs ρ of B over σ by existence of sets of positions Xq for
each q ∈ Q. Xq will consist of the positions i ∈ ω corresponding to the prefixes
τi ∈ σ of length i with ρ(τi) = q. More precisely, we define

ϕ
def= (∃Xq1 , . . . , Xqn) (

∧
1≤i6=j≤n

Xqi ∩Xqj = ∅

∧
∨
q∈Q0

(∀x)(¬(∃y)(y < x) ⇒ x ∈ Xq)

∧ (∀x)(
∨

(qi,a,qj)∈∆

x ∈ Xqi ∧Qa(x) ∧ x+ 1 ∈ Xqj )

∧
∨
q∈F

(∀x)(∃y)(x ≤ y ∧ y ∈ Xq))

It is now easy to see that Lϕ = L. The first conjunct asserts that the state
sets are disjoint, the second one that the beginning state is initial while the
third one dictates that the state sets respect the transition relation. Finally, the
fourth conjunct expresses the Büchi acceptance condition.

The proof of the other direction of Büchi’s Theorem proceeds in two steps.
Firstly, the formulas of MSO(Σ) are rewritten into formulas of a small syntactic
subset MSO0(Σ) with only existential quantifications and the sole propositional
connectives being negation and conjunction. Furthermore, all individual vari-
ables are eliminated from MSO0(Σ) and expressed in terms of set variables
explicitly forced to describe singleton sets via the Single-predicate. Finally, one
arrives at a core syntax where the only atomic formulas are of the form Qa(X)
and, as derived on page 14, X ⊆ Y and X = Y + 1.

In the second step, formulas of MSO0(Σ) are inductively translated to Büchi
automata. Such formulas have free set variables, so a formula ϕ with free
variables X1, . . . , Xn can be seen as describing a language of strings over Σ′

n =
Σ × {0, 1}n. Here the ith additional “track” of a string σ ∈ Σ′

n represents the
membership status of positions of σ = a0a1 . . . in Xi, i.e. position j of σ is in
the set described by Xi whenever the ith additional component of aj is 1. In
this interpretation, one shows by induction on ϕ(X1, . . . , Xn) that there exists a
Büchi automaton Bϕ(X1,...,Xn) over Σ′

n such that Lϕ(X1,...,Xn) = L(Bϕ(X1,...,Xn)).
For the base case, each of the (now very restricted) atomic formulas are

translated directly to an equivalent automaton. Figure 2.2 shows the translation
step for X1 ⊆ X2 and X1 = X2 + 1, respectively, where we have assumed, for
notational convenience, that n = 2.

The inductive step involves only ¬,∧, and ∃. The translations of ¬ and
∧ correspond to the automata-theoretic constructions of complementation and
product mentioned in Section 2.1.2. For the existential quantifications we uti-
lize that the (ω-)regular languages are closed under projections of the kind
required. As an example, suppose that ϕ(X1) = (∃X2)(ϕ′(X1, X2)). In the
notation of Figure 2.2, this amounts to replacing transition edges of Bϕ′(X1,X2)
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/.-,()*+��������
(a,0,0),(a,0,1),(a,1,1)

��
=⇒ /.-,()*+��������

(a,0,0)

�� (a,0,1)
))=⇒ /.-,()*+��������

(a,1,1)

��

(a,1,0)

ii

Figure 2.2: Basic translations for X1 ⊆ X2 and X1 = X2 + 1.

labelled (a, 0, 0) or (a, 0, 1) with a transition edge labelled (a, 0) and edges la-
belled (a, 1, 0) or (a, 1, 1) with (a, 1).

This completes the proof, and as an important corollary it can be seen that
the translation from formulas of monadic second-order logic to finite automata
is constructive. We will elaborate on this in the next section. With minor
modifications to the above proof idea, Büchi’s Theorem can be seen to hold for
finite strings as well.

Theorem 2.2.2 (Büchi, Elgot [34]) Let L ⊆ Σ∗. Then L is definable in
MSO(Σ) if and only if L is regular.

2.2.3 Deciding monadic second-order logic

The proof of Theorem 2.2.1 yields a decision procedure for the satisfiability
problem for MSO(Σ), i.e. given a formula ϕ, does there exist a model σ ∈ Σω

such that σ |= ϕ? Such an algorithm can be obtained by translating ϕ to Bϕ
and checking it for emptiness.

For the discussion of the translation, we note that a problem is nonelemen-
tary hard in case it cannot be solved in time bounded by a tower of expo-
nentials of any fixed height. A basic result of complexity theory is that the
satisfiability problem of MSO is nonelementary hard [131], even for the first-
order fragment interpreted over finite strings. This nonelementary hardness
is witnessed by sequences of quantifier alternations, i.e. formulas of the form
(∃x1)(∀x2)(∃x3) . . . (∀xn)ϕ. This stems from the fact that, in general, both de-
terminization and complementation incur unavoidable exponential blow-ups in
the size of the automaton. It would thus appear impossible to get a satisfactory
implementation within any “reasonable” bounds of computational resources,
even for very small formulas.

However, Klarlund discovered that the formulas leading to nonelementary
blow-ups occur only infrequently, and that by means of techniques from the area
of computer-aided verification, an implementation might not be impossible. In
particular, by internally representing transition functions of automata using
Binary Decision Diagrams (BDDs) [12], descriptions of the automata could
often be kept small.

Chapter 5 describes a successful implementation of the decision procedure
over finite strings incorporated into the verification tool Mona [73]. Besides the
introduction of BDDs for the representation of automata, the key points are
to keep the intermediate automata both deterministic and minimal after each
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translation step. The time spent maintaining this representation invariant is
more than compensated by the reduction in size. It turns out to be possible
to directly employ the necessary automata constructions in terms of algorithms
on the symbolic representations as BDDs, hence leading to a very usable and
surprisingly efficient implementation.

This was the starting point of still ongoing research efforts at BRICS. See [73]
for the current status of the Mona tool, which has been extended, optimized,
and improved in a number of ways too substantial to mention here. While
Mona works quite well over finite strings, no even comparably efficient imple-
mentation exists over infinite strings. Several key issues of the above implemen-
tation crucially rely on the fact that the underlying domain consists of finite
strings. For instance, there exists no canonical minimal (let alone deterministic)
Büchi automaton.

2.3 Linear Time Temporal Logic

Monadic second-order logic provides a succinct logical description formalism
for computation sequences as seen in the previous section. Another alternative
is linear time temporal logic, which allows asserting ordering in time without
explicitly introducing time instances as variables of the logic.

Temporal logic was introduced into the area of formal verification of systems
in a seminal paper by Pnueli [113] in the late seventies. Since then a large body
of work on linear time temporal logic has appeared, and it has become a well
established and well understood tool for specifying the dynamic behaviour of
reactive systems.

Linear time temporal logic (LTL) was originally introduced in the state-
based approach as describing properties of systems by means of (infinite) state
sequences. We have chosen here the action-based approach where computations
instead are sequences of actions performed by the system. The two approaches
are very similar and the state-based approach can be recovered by taking the
system actions as consisting of sets of atomic propositions. Furthermore, the
action-based approach is appropriate in the richer setting of noninterleaving
computations to be considered in Chapters 3 and 4.

In what follows, automata-theoretic constructions and expressiveness issues
will play a considerable role. These topics can be treated in a simpler fashion
if we eliminate atomic propositions. Most of the material we present can easily
accommodate atomic propositions with some notational overhead. Hence from
now on, we will not—except for some passing remarks—deal with atomic propo-
sitions. The treatment of LTL in Chapter 8 provides an exposition of these issues
where both actions and atomic propositions are treated as first-class objects.

Here, we first define the syntax and semantics of LTL. We then bring out
solutions to the satisfiability and model checking problems for the logic in terms
of automata as sketched in Chapter 1.
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2.3.1 Syntax and semantics of LTL

The set of formulas of LTL(Σ) is given by the syntax:

LTL(Σ) ::= tt | ¬α | α ∨ β | 〈a〉α | αU β , a ∈ Σ.

Through the rest of this section α, β will range over LTL(Σ).
A model of LTL(Σ) is a sequence σ ∈ Σω. Let σ be a model, τ ∈ prf(σ) and

α be a formula. Then σ, τ |= α will stand for α being satisfied at τ in σ. This
notion is defined inductively as follows.

• σ, τ |= tt .

• σ, τ |= ¬α iff σ, τ 6|= α.

• σ, τ |= α ∨ β iff σ, τ |= α or σ, τ |= β.

• σ, τ |= 〈a〉α iff τa ∈ prf(σ) and σ, τa |= α.

• σ, τ |= αU β iff there exists τ ′ such that ττ ′ ∈ prf(σ) and σ, ττ ′ |= β.
Moreover for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the case that σ, ττ ′′ |= α.

Along with the usual derived propositional connectives ∧,⇒ and ⇔ we will
also use the propositional constant ff = ¬tt . Furthermore, some useful derived
temporal modalities are Oα =

∨
a∈Σ〈a〉α, 3α = tt U α, and 2α = ¬3¬α.

Formulas of LTL(Σ) can be viewed as defining set of strings over Σ. The
language defined by α is given by Lα = {σ ∈ Σω | σ, ε |= α}. We will say that L
is definable in LTL iff there exists some formula α of LTL(Σ) such that Lα = L.

Example 2.3.1 A simple LTL({a, b})-formula is α = 32¬〈a〉tt . Informally, α
asserts that there exists a future point in time, after which it holds continuously
that the action a is not performed. It can by seen that Lα = (a+ b)∗bω, which
is also the language as accepted by the Büchi automaton on Figure 2.1.

We say that a formula α ∈ LTL(Σ) is satisfiable iff there exist a model
σ ∈ Σω and τ ∈ prf(σ) such that σ, τ |= α. This logic does not refer to the past
either in the syntax or in the semantics. Hence the formula α is satisfiable iff
there exists a model σ ∈ Σω such that σ, ε |= α. The satisfiability problem for
LTL is to develop a decision procedure which will determine whether a given
formula α is satisfiable.

2.3.2 The satisfiability problem for LTL

Both the satisfiability and model checking problems for LTL can be solved
elegantly using Büchi automata. We first show how one can effectively construct
for each α ∈ LTL(Σ), a Büchi automaton Bα such that the language of ω-strings
accepted by Bα is nonempty iff α is satisfiable. This is an action-based version
of the classic solution presented by Vardi and Wolper in [147] for LTL.

Through the rest of this section we fix a formula α0. To construct Bα0 we
first define the (Fischer-Ladner) closure of α0. For convenience we will assume
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that the derived next-state modality O is included in the syntax of LTL(Σ). We
take cl(α0) to be the least set of formulas that satisfies:

• α0 ∈ cl(α0).

• If ¬β ∈ cl(α0) then β ∈ cl(α0).

• If α ∨ β ∈ cl(α0) then α, β ∈ cl(α0).

• If 〈a〉α ∈ cl(α0) then α ∈ cl(α0).

• If Oα ∈ cl(α0) then α ∈ cl(α0).

• If αU β ∈ cl(α0) then α, β ∈ cl(α0). In addition, O(αU β) ∈ cl(α0).

Now CL(α0), the closure of α0, is defined to be CL(α0) = cl(α0) ∪ {¬β | β ∈
cl(α0)}. In what follows ¬¬β will be identified with β. For convenience, we
shall often write CL instead of CL(α0).

A subset A ⊆ CL is called an atom iff it satisfies :

• tt ∈ A.

• β ∈ A iff ¬β 6∈ A.

• α ∨ β ∈ A iff α ∈ A or β ∈ A.

• αU β ∈ A iff β ∈ A or α,O(αU β) ∈ A.

• If 〈a〉α ∈ A and 〈b〉β ∈ A then a = b.

AT (α0) is the set of atoms and, again, we shall often write AT instead of
AT (α0). Finally we set Uα0 , the set of until requirements of α0, to be the set
given by Uα0 = {αU β | αU β ∈ CL}. We will often write U0 instead of Uα0 .

The Büchi automaton Bα0 is now defined as Bα0 = (Q,−→, Qin, F ), where
the various components are specified as follows.

• Q = AT × 2U0 is the set of states.

• The transition relation −→ ⊆ Q× Σ ×Q is given by (A, x) a−→ (B, y) iff
the following requirements are met:

– For every 〈a〉α ∈ CL, 〈a〉α ∈ A iff α ∈ B and for every O(α) ∈ CL,
O(α) ∈ A iff α ∈ B.

– if 〈b〉β ∈ A then b = a.

– if x 6= ∅ then y = {αU β | αU β ∈ x and β 6∈ B}. If x = ∅ then
y = {αU β | αU β ∈ B and β 6∈ B}.

• Qin ⊆ Q is given by (A, x) ∈ Qin iff α0 ∈ A and x = ∅.

• F ⊆ Q is given by (A, x) ∈ F iff x = ∅.
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It is not hard to show that L(Bα0) 6= ∅ iff α0 is satisfiable. It is also easy to
check that the size of Bα0 is at most exponential in the size of α0. As observed
in Section 2.1.2 the emptiness problem for Büchi automata can be solved in
time linear in the size of the automaton. Thus we arrive at:

Theorem 2.3.2 (Vardi, Wolper [147]) The satisfiability problem for LTL is
decidable in exponential time.

It has been shown that the problem is in fact PSPACE-complete [127].
In more recent developments, Vardi [145] shows that the satisfiability prob-

lem can also be solved by means of alternating automata. This class of automata
is an extension, not only allowing existential quantification (as nondeterministic
automata), but also universal quantification and combinations of both. A run
of an alternating automata is now not a sequence, but a run tree witnessing how
these quantifications are being satisfied. In turns out that this class of automata
also captures the (ω-)regular languages.

By means of alternating automata, the construction above for α0 can be
formulated very nicely, as the state space can now be taken to be only CL(α0).
The bookkeeping is maintained by the alternation of the automaton. However,
the emptiness problem for this class of automata requires exponential time, so
the running time of the decision procedure remains the same. We will however
not go into these issues in more detail.

2.3.3 The model checking problem for LTL

We now formulate the model checking problem for LTL(Σ). In the present
context a program is just a finite-state transition system Pr = (S,−→, Sin)
over Σ, i.e. S is a finite set of states, −→ ⊆ S × Σ × S is a transition relation
and Sin ⊆ S is a set of initial states of the program. It will often be the case that
the set of initial states is a singleton. Moreover, it is easy to arrange matters
so that at each reachable state of the program at least one transition can be
performed. We will assume that this is indeed the case for all program models we
consider. Each such program Pr has the language LPr associated with it. This
is just the language accepted by the Büchi automaton BPr = (S,−→, Sin, S),
so programs can be taken as Büchi automata.

Let Pr be a program and α be a formula of LTL(Σ). We say that Pr meets
the specification α—denoted Pr |= α—if for every computation σ ∈ LPr, it is
the case that σ, ε |= α. The model checking problem is to decide for a given
program Pr and a given formula α whether or not Pr |= α.

Let α0 be a specification. Then we construct the Büchi automaton B¬α0

corresponding to the negation of α0. Now, let B be the Büchi automaton which
accepts the intersection of the languages accepted by BPr and B¬α0 . It is then
easy to see that Pr |= α0 iff LPr ⊆ Lα0 iff LPr ∩ L¬α0 = ∅. Thus Pr |= α0 iff
the language accepted by B is empty.

An easy analysis of the size of B leads to:
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Proposition 2.3.3 The model checking problem for LTL is decidable in time
O(|Pr| · 2|α0|).

This solution to the model checking problem forms the conceptual basis
of many verification algorithms. Several tools being employed in industry are
built upon this translation from formulas to automata. To improve performance,
however, a number of substantial optimizations must be incorporated.

One observation is that the state space of the product automaton needs
seldomly to be fully constructed. Often the answer to the verification problem
can be established by investigating only a subset of states, and this subset might
be considerably smaller than the entire state space. This is the key insight
underlying the so-called on-the-fly verification techniques [46].

The verification tool SPIN [62] is perhaps the most prominent example of
an efficient implementation based on the above automata-theoretic technique
incorporating the on-the-fly algorithm of [46]. While the classical technique
of [46] employs the state-based approach of labellings by atomic propositions,
the method extends smoothly to action-based versions of linear time temporal
logics [30], in particular the present LTL(Σ).

2.4 Expressiveness of Logics

Since its inception, LTL has gained a substantial amount of attention due to
its practical applicability for verification purposes. Formulas of LTL can be
viewed as defining system properties in terms of sets of computation sequences.
More precisely, the property α is identified with the language Lα of ω-strings
satisfying α.

We first bring out that LTL is equal in expressive power to the first-order
theory of strings. We consider fragments of both logics and mention how the
tight correspondence persists. Then we survey how a temporal logic equivalent
to MSO might arise.

2.4.1 LTL is equivalent to FO

An interesting aspect of the study of temporal logics is to characterize and
compare the classes of properties definable in such logics. It turns out that
the seminal, but perhaps surprising, result is that LTL is expressively complete
with respect to first-order logic. This result is commonly referred to as Kamp’s
Theorem.

Theorem 2.4.1 (Kamp [70], Gabbay, Pnueli, Shelah, Stavi [41]) Let
L ⊆ Σω. Then L is definable in LTL(Σ) if and only if L is definable in FO(Σ).

Traditionally, LTL was introduced with each temporal operator having an
additional (symmetric) past counterpart. More precisely, the syntax included
operators such as “previously α” and “α since β”, dual to 〈a〉α and αU β,
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respectively. Kamp showed in his thesis [70] that first-order logic and the past-
augmented LTL are expressively equivalent. There is an obvious linear transla-
tion from (past-augmented) LTL to FO, but the reverse translation is necessarily
quite involved as it must battle the nonelementary blow-up in formula size made
unavoidable by the PSPACE-completeness of LTL and nonelementary hardness
of FO.

Gabbay, Pnueli, Shelah, and Stavi [41] later strengthened Kamp’s Theorem
by showing that the past-augmented version of LTL is expressively equivalent
to the present formulation of LTL.

The first-order definable languages are broadly accepted as being the inter-
esting class of properties of reactive systems, because it corresponds to the “non-
counting” fragment of the regular languages. Temporal logic is usually intended
for expressing the relative ordering between events and although counting abili-
ties are of interest in certain applications, the “purely temporal” properties are
those of FO. Hence LTL in an intuitive fashion exactly captures a very natu-
ral class of properties without suffering from the nonelementary complexity of
first-order logic, but possibly with a large blow-up in the formula sizes.

2.4.2 Variable-confined subsets of FO

An important corollary of Kamp’s Theorem is that not only is first-order logic
expressively equivalent to LTL, but a bounded number of variables suffice to
express all first-order properties over strings. In particular, letting FO3 denote
first-order logic with only three different variables, Kamp [70] and Immermann
and Kozen [66] showed that FO3 is expressively equivalent to FO. The re-
sult of Stockmeyer [131] however shows that the satisfiability problem remains
nonelementary hard for FO3.

It turns out that the tight correspondence between linear time temporal logic
and first-order logic persists even when considering variable-confined fragments.
More precisely, Etessami, Vardi, and Wilke [36] demonstrated that first-order
logic with two variables also captures a natural class of temporal properties.
More precisely, FO2 is expressively equivalent to unary-LTL. Here unary-LTL
is past-augmented LTL with the until (and since) modalities replaced by the
unary modality 3 (and its past counterpart).

Thérien and Wilke provide another beautiful characterization of first-order
logic with two variables [133]. By applying Ehrenfeucht-Fräıssé games in the
setting of semigroups they show that a property for finite strings is definable
in FO2 if and only if it is definable by a (general) first-order formula with just
one quantifier alternation. Equivalently, FO2 expresses exactly those properties
that can be defined by a formula of the form (∃x1 . . . ∃xm∀y1 . . . ∀yn)(ϕ) and
also of the form (∀x1 . . .∀xr∃y1 . . .∃ys)(ψ), where ϕ and ψ are quantifier-free
formulas of first-order logic. Unfortunately, the result cannot be extended to
infinite strings as (a + b)∗(ab∗)ω is definable in FO2 but not by an existential
formula with one quantifier alternation.
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2.4.3 Extensions to MSO

It was observed by Wolper [155] that properties like “a is performed at every
even position” are not definable in LTL (and hence FO). With both this fact and
the complexity issues in mind, one might set out to find natural extensions of
linear time temporal logics expressively equivalent to full monadic second-order
logic.

One route towards achieving this goal consists of permitting quantification
over atomic propositions. The resulting logic called QPTL [126] has the expres-
sive power of MSO but has a decision procedure of nonelementary complexity.
The second route consists of augmenting LTL with the so-called automaton
connectives of the form A(α1, . . . , αn). Indeed these infinitely many additional
modalities are so powerful that the next and until modalities become derived
ones. The resulting logic called Extended Temporal Logic (ETL) [156] is equal in
expressive power to MSO while admitting an exponential-time decision proce-
dure. Intuitively, accepting runs of the automatonA operating over the alphabet
{a1, a2, . . . , an} express ways that the modality A(α1, . . . , αn) can be fulfilled.

The key drawback of ETL(Σ), as we see it, lies in its lack of structuring
principles for forming compound formulas. Stated differently, the only mecha-
nism that ETL(Σ) has—apart from the boolean connectives—to form compound
formulas is by nesting the automaton formulas. Thus a typical compound for-
mula would look like A1(φ1

1,A2(φ2
1, φ

2
2,A3(φ3

1, . . . , φ
3
n), φ2

4, . . . , φ
2
m), φ1

3, . . . , φ
1
n).

Moreover, ETL, as formulated in [148] has an uncontrolled amount of “external”
elements in the sense that the states and the alphabets of the automata which
are used to write down the automaton formulas have little to do with the logic
under consideration.

Yet another possibility is to extend LTL(Σ) orthogonally by indexing the
until operator with the regular expressions (or programs) of the branching time
logic Propositional Dynamic Logic (PDL) [39, 51]. One then arrives at Dynamic
Linear Time Temporal Logic, denoted DLTL(Σ), where αU β is replaced by the
strengthened αUπβ modality.

To satisfy αUπβ, one must satisfy αU β along some finite stretch of be-
haviour which is in the (linear time) behaviour of the regular expression π.
Recalling from Section 2.1.1 that there is an obvious way to associate a set of
finite strings with every regular expression via a map || · || : RE(Σ) → 2Σ∗

, the
semantics of the new modality is given by:

• σ, τ |= αUπβ iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ prf(σ) and σ, ττ ′ |=
β. Moreover, for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the case that
σ, ττ ′′ |= α.

Note that by replacing the αUπβ modality with the derived operator 〈π〉α def=
ttUπα one obtains a sublogic which is essentially PDL equipped with a linear
time semantics.

The details of the approach are given in Chapter 6. It turns out that DLTL
(and also linear time PDL) are indeed expressively equivalent to MSO. As an
additional fact, the expressive power of FO can be recovered by restriction to
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the fragment of DLTL with star-free regular expressions. Moreover, DLTL has
an exponential-time decision procedure generalizing the classical decision pro-
cedure by Büchi automata sketched in Section 2.3. Finally, it turns out that the
axiomatization of PDL [76] can be nicely extended to a finitary axiomatization
of DLTL.

DLTL is, in spirit, inspired by ETL and in fact it may appear to be at first
sight just a reformulation of ETL with some cosmetic changes. This however
has to do with the instinctive identification one makes between finite state au-
tomata and regular expressions. In fact DLTL is quite different in terms of the
mechanisms it offers for structuring formulas and it seems more transparent
and easier to work with. Our approach also leads to smooth generalizations in
nonsequential settings of which Chapter 7 is an example.

We conclude this chapter by pointing to another expressive temporal logic
known as the (linear time) µ-calculus [130]. The new feature is the introduction
of fixed points operators. More precisely, the formulas are given as:

Φµ(Σ) ::= tt | X | ¬α | α ∨ β | 〈a〉α | µX.α , a ∈ Σ.

Here X ranges over the set of variables, and all free occurrences of X within
formulas are required to lie within the scope of an even number of negations.

We will not go into the semantics in detail, but just note for illustration
that the until operator can be defined in this logic via the minimal fixed point
operator as follows; αU β = µX.β ∨ (α ∧

∨
a∈Σ〈a〉X). In fact, it is this ”fixed

point characterization” of the until operator which is being exploited in the
construction of the automaton Bα0 in Section 2.3.2.

One can prove that the µ-calculus is expressively equivalent to monadic
second-order logic over strings.



Chapter 3

Mazurkiewicz Traces

In Chapter 2 we saw how a rich theory is available for deciding whether a finite-
state system meets its specification. The systems at hand are almost always
distributed in nature, and for such systems the computations will constitute
interleavings of the occurrences of causally independent actions. Consequently,
the computations can be naturally grouped together into equivalence classes
where two computations are equated in case they are two different interleavings
of the same partially ordered stretch of behaviour. It turns out that many of the
properties expressed as LTL-formulas happen to have the so-called “all-or-none”
flavour. Either all members of an equivalence class of computations have the
desired property or none do. (“Leads to deadlock” is one such property.) For
verifying such properties one has to check the property for just one member of
each equivalence class. This is the insight underlying many of the partial-order
based verification methods [48, 108, 144]. As may be guessed, the importance
of these methods lies in the fact that via these methods the computational
resources required for the verification task can often be dramatically reduced.

It is often the case that the equivalence classes of computations generated by
a distributed system constitute objects called Mazurkiewicz traces. They can
be canonically represented as restricted labelled partial orders. This opens up
an alternative way of exploiting the nonsequential nature of the computations
of a distributed systems and the attendant partial-order based methods. It
consists of developing linear time temporal logics that can be directly interpreted
over Mazurkiewicz traces. In these logics, every specification is guaranteed to
have the “all-or-none” property and hence can take advantage of the partial-
order based reduction methods during the verification process. The study of
these logics also exposes the richness of the partial-order settings from a logical
standpoint and the complications that can arise as a consequence.

In this chapter, we will show how the theory of the previous chapters has
been extended to the richer noninterleaving setting of Mazurkiewicz traces. In
the next section we introduce the basic objects of study, and present two equiv-
alent representations of traces. In Section 3.2 we extend the notion of regularity
to trace languages and define a corresponding class of distributed finite-state
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acceptors known as asynchronous automata. We then carry over logical defin-
ability of monadic second-order logic to the setting of traces and sketch how
it, as before, coincides with the notion of regularity. In Section 3.4 we sur-
vey the various extensions of LTL to the partial-order setting and sketch how
their automata-theoretic decision procedures generalize the classical approach of
Chapter 2. We then identify a subclass of trace languages with some nice prop-
erties before concluding the chapter in Section 3.6 by considering the relative
expressive powers of the logics put forth in this chapter.

This material provides the technical and conceptual background for our con-
tributions in Chapters 7–9, of which Chapter 8 contains a survey. Furthermore,
the concepts and results of the present chapter serve as guiding principles for the
developments in Chapters 10 and 11. Certain constructions to be encountered
in those chapters will rely crucially upon the present developments.

3.1 Mazurkiewicz Traces

We first introduce the notion of traces from the standpoint of sequences. This
will enable us to define the notion of a trace consistent property. This notion
plays an important role in partial order based reducion methods. As pointed
out above, it also provides the motivation for studying trace-based linear time
temporal logics. Then we show how traces can be viewed as restricted labelled
partial orders. For both representations, it is possible to give a uniform definition
of both finite and infinite traces.

3.1.1 Traces as sets of sequences

A (Mazurkiewicz) trace alphabet is a pair (Σ, I), where Σ, the alphabet, is a finite
set and I ⊆ Σ×Σ is an irreflexive and symmetric independence relation. In most
applications, Σ consists of the actions performed by a distributed system while
I captures a static notion of causal independence between actions. The idea is
that contiguous independent actions occur with no causal order between them.
Thus, every sequence of actions from Σ corresponds to an interleaved observation
of a partially ordered stretch of system behaviour. This leads to a natural
equivalence relation over execution sequences: two sequences are equated if and
only if they correspond to different interleavings of the same partially ordered
stretch of behaviour.

For the rest of the section we fix a trace alphabet (Σ, I) and define D =
(Σ×Σ)−I to be the dependency relation. Note thatD is reflexive and symmetric.
A set p ⊆ Σ is called a D-clique iff p × p ⊆ D. The equivalence relation
≈I ⊆ Σ∞ × Σ∞ induced by I is given by: σ ≈I σ′ iff σ�p = σ′�p for every
D-clique p. Here and elsewhere, if Σ is a finite set, σ ∈ Σ∞ and Σ′ ⊆ Σ then
σ�Σ′ is the sequence obtained by erasing from σ all occurrences of letters in
Σ − Σ′.

Clearly ≈I is an equivalence relation. Notice that if σ = τabσ1 and σ′ =
τbaσ1 with (a, b) ∈ I then σ ≈I σ′. Thus σ and σ′ are identified if they differ
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only in the order of appearance of a pair of adjacent independent actions. In fact,
for finite strings, an alternative way to characterize ≈I is to say that σ ≈I σ′

iff σ′ can be obtained from σ by a finite sequence of permutations of adjacent
independent actions. However, the definition of ≈I in terms of permutations
can not be directly transported to infinite strings, which is why we work with
the less intuitive definition presented here.

The equivalence classes generated by ≈I are called (Mazurkiewicz) traces.
Throughout this chapter, we will use [σ] to denote the ≈I -equivalence class
containing σ. A set of traces is called a trace language. The theory of traces
and trace languages is well developed and documented (see e.g. [24, 27] for basic
material as well as a substantial number of references to related work).

Example 3.1.1 As an example consider the trace alphabet (Σ, I) where Σ =
{a, b, d} and I = {(a, b), (b, a)}. One trace over (Σ, I) is [abdabd] = {abdabd,
abdbad, badabd, badbad}.

A variety of models of distributed systems naturally have a trace alphabet
associated with them [154]. It also turns out that many interesting properties
of distributed systems respect the equivalence relation induced by these trace
alphabets. This has important consequences for the practical verification of
such properties.

The key notion in this context is that of a trace consistent property. To
bring this out, we start with a trace alphabet (Σ, I) and let L ⊆ Σ∞. We say
that L is trace consistent in case σ ∈ L and σ ≈I σ′ implies σ′ ∈ L for every
σ, σ′ ∈ Σ∞. In other words, either all members of a trace are in L or none of
them are. We say that the formula α of LTL(Σ) is trace consistent in case Lα is
trace consistent. It is not hard to see that there is a one-to-one correspondence
between trace languages and trace consistent languages of strings.

Now suppose Pr is a program over Σ as defined in Section 2.3.3 which has a
trace alphabet (Σ, I) associated with it in some natural manner. Suppose further
that LPr, the linear time behaviour of Pr, is trace consistent (we will see natural
models of distributed programs that possess these features in the material to
follow). Now consider a specification α which happens to be trace consistent.
Then, as described in Section 2.3.3, verifying Pr |= α boils down to verifying
LPr ⊆ Lα. Instead of checking LPr ⊆ Lα we can choose to check L′ ⊆ Lα where
L′ is designed to be such that L′ ⊆ LPr and for every σ ∈ LPr, [σ]∩L′ 6= ∅. The
key point is, the finite representation of L′ can often be substantially smaller
than the representation of Pr. This is the insight underlying many of the so-
called partial-order methods deployed in the model checking world [48, 108, 144].

3.1.2 Traces as labelled partial orders

Traces have many equivalent representations. Here we shall view them as re-
stricted Σ-labelled partial orders. Abusing terminology we shall also call these
objects traces. We will later argue that these objects are in a rather precise
sense the same as the objects called traces defined in Section 3.1.1 in terms of
equivalence classes of sequences.
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Figure 3.1: Trace over (Σ, I) where Σ = {a, b, d} and I = {(a, b), (b, a)}.

Let T be a Σ-labelled poset. In other words, (E,≤) is a poset and λ : E → Σ
is a labelling function. For Y ⊆ E we define ↓Y = {x | ∃y ∈ Y : x ≤ y} and
↑Y = {x | ∃y ∈ Y : y ≤ x}. In case Y = {y} is a singleton we shall write ↓y
(↑y) instead of ↓{y} (↑{y}). We also let l be the covering relation; x l y iff
x < y and for all z ∈ E, x ≤ z ≤ y implies x = z or z = y. Moreover, we let the
concurrency relation be defined as x co y iff x 6≤ y and y 6≤ x.

A (Mazurkiewicz) trace (over (Σ, I)) is a Σ-labelled poset T = (E,≤, λ)
satisfying:

• ↓e is a finite set for each e ∈ E.

• For every e, e′ ∈ E, el e′ implies λ(e) D λ(e′).

• For every e, e′ ∈ E, λ(e) D λ(e′) implies e ≤ e′ or e′ ≤ e.

We shall refer to members of E as events. The trace T = (E,≤, λ) is said
to be finite if E is a finite set. Otherwise it is an infinite trace. Note that E is
always a countable set. T is said to be nonempty in case E 6= ∅. An example of
a finite trace with six events is depicted in Figure 3.1. We let TR∗(Σ, I) be the
set of finite traces and TRω(Σ, I) be the set of infinite traces over (Σ, I) and set
TR(Σ, I) = TR∗(Σ, I) ∪TRω(Σ, I). Often we will write TR instead of TR(Σ, I)
etc. As before, a subset of traces L ⊆ TR will be called a trace language.

Let T = (E,≤, λ) be a trace. The finite prefixes of T , to be called configu-
rations, will play a crucial role in what follows. A configuration of T is a finite
subset c ⊆ E such that c = ↓c. We let CT be the set of configurations of T and
let c, c′, c′′ range over CT . Note that ∅ is always a configuration and ↓e is a con-
figuration for every e ∈ E. Finally, the transition relation −→T ⊆ CT × Σ × CT
is given by: c a−→T c′ iff there exists e ∈ E such that λ(e) = a and e /∈ c and
c′ = c ∪ {e}. It is easy to see that if c a−→T c

′ and c a−→T c
′′ then c′ = c′′.

Note that we have now introduced two different notions of traces; one in
terms of equivalence classes of strings in Section 3.1.1 and the other in terms
of Σ-labelled partial orders in this section. We now sketch briefly the con-
structions that show that Σ∞/≈I and TR(Σ, I) represent the same class of
objects. We shall construct representation maps st : Σ∞/≈I → TR(Σ, I) and
ts : TR(Σ, I) → Σ∞/≈I and state some results which show that these maps are
“inverses” of each other.

Henceforth, we will not distinguish between isomorphic elements in TR(Σ, I).
In other words, whenever we write T = T ′ for traces T = (E,≤, λ) and T ′ =
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(E′,≤′, λ′), we mean that there is a label-preserving isomorphism between T
and T ′.

Recall that for σ ∈ Σ∞, [σ] stands for the ≈I -equivalence class containing
σ. We now define st : Σ∞ → TR(Σ, I). Let σ ∈ Σ∞. Then st(σ) = (E,≤, λ)
where:

• E = {τa | τa ∈ prf(σ)}. (Thus E = prf(σ) − {ε}.)

• ≤ ⊆ E ×E is the least partial order which satisfies: For all τa, τ ′b ∈ E, if
τa � τ ′b and (a, b) ∈ D then τa ≤ τ ′b.

• For τa ∈ E, λ(τa) = a.

The map st induces a natural map st′ from Σ∞/≈I to TR(Σ, I) defined by
st′([σ]) = st(σ). One can show that if σ, σ′ ∈ Σ∞, then σ ≈I σ′ iff st(σ) = st(σ′).
This observation guarantees that st′ is well-defined. In fact, henceforth we shall
write st to denote both st and st′.

Next, let T = (E,≤, λ) ∈ TR(Σ, I). Then σ ∈ Σ∞ is a linearization of T iff
there exists a map ρ : prf(σ) → CT , such that the following conditions are met:

• ρ(ε) = ∅.

• ∀τa ∈ prf(σ) with τ ∈ Σ∗, ρ(τ) a−→T ρ(τa).

• ∀e ∈ E ∃τ ∈ prf(σ), e ∈ ρ(τ).

The function ρ will be called a run map of the linearization σ. Note that the
run map of a linearization is unique. In what follows, we shall let lin(T ) to be
the set of linearizations of the trace T .

We can now define the map ts : TR(Σ, I) → Σ∞/ ≈I as: ts(T ) = lin(T )
and show that ts is well-defined. We can also show that for every σ ∈ Σ∞,
ts(st(σ)) = [σ] and for every T ∈ TR(Σ, I), st(ts(T )) = T . This justifies our
claim that Σ∞/ ≈I and TR(Σ, I) are indeed two equivalent ways of talking
about the same class of objects. By inspection one easily verifies that the traces
of Example 3.1.1 and Figure 3.1 are two different representions of the same
trace.

We shall use both representations interchangeably, but as a rule of thumb
we will use L to denote trace consistent languages of strings and L to denote
collections of labelled partial orders.

3.2 Automata over Traces

Regular collections of traces and corresponding finite-state automata play an
important role as they constitute the basis for extending the model checking
techniques of the previous chapter to the noninterleaving setting of traces. As
we will see in this section, it is possible to exhibit generalizations of finite au-
tomata to the richer domain of traces guided by the interleaving setting of Chap-
ter 2. In this way one can develop elegant and efficient decision procedures for
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satisfiability and model checking problems of most linear time temporal logics
for traces.

As a starting point for regularity, we note that every trace consistent subset
L of Σ∞ defines a trace language L given by L = {st(σ) | σ ∈ L} which has the
property ts(LTr) = L. Consequently, we say that a trace language L is regular
iff ts(L) is a regular subset of Σ∞ in the sense of Chapter 2.

In order to recognize regular trace languages one will have to use generalized
versions of finite-state automata. These process their inputs in a distributed
fashion according to a distribution of actions, which we will introduce first.
Following this, we introduce the class of automata called asynchronous automata
as formulated by Zielonka [157] for recognizing regular languages of finite traces,
and then subsequently define their generalization to infinite traces due to Gastin
and Petit [43]. We present a specific asynchronous automaton called the gossip
automaton which plays an important role in some of the later developments. We
then conclude the chapter by mentioning the extensions of Kleene’s Theorem
to the setting of traces.

3.2.1 Distributed alphabets

The asynchronous automata will process the actions of Σ in a distributed fashion
according to some spatial distribution of processes. To bring this out, we say
that a distributed alphabet is a family {Σp}p∈P where P is a finite nonempty set
of agents (also referred to as processes in the sequel) and Σp is a finite nonempty
alphabet for each p ∈ P . The idea is that whenever an action from Σp occurs,
the agent p must participate in it. Hence the agents can constrain each other’s
behaviour, both directly and indirectly.

Trace alphabets and distributed alphabets are closely related to each other.
Let Σ̃ = {Σp}p∈P be a distributed alphabet. Then ΣP , the global alphabet
associated with Σ̃, is the collection

⋃
p∈P Σp. The distribution of ΣP over P

can be described using a location function locΣ̃ : ΣP → 2P defined as follows:
locΣ̃(a) = {p | a ∈ Σp}. This in turn induces the relation IΣ̃ ⊆ ΣP×ΣP given by:
(a, b) ∈ IΣ̃ iff locΣ̃(a)∩ locΣ̃(b) = ∅. Clearly IΣ̃ is irreflexive and symmetric and
hence (ΣP , IΣ̃) is a trace alphabet. Thus every distributed alphabet canonically
induces a trace alphabet. Two actions are independent according to Σ̃ if they
are executed by disjoint sets of processes. Henceforth, we write loc for locΣ̃

whenever Σ̃ is clear from the context.
Going in the other direction there are, in general, many different ways to

implement a trace alphabet as a distributed alphabet. A standard approach is
to create a separate agent for each maximal D-clique generated by (Σ, I). Recall
that a D-clique of (Σ, I) is a nonempty subset p ⊆ Σ such that p× p ⊆ D. Let
P be the set of maximal D-cliques of (Σ, I). This set of processes induces the
distributed alphabet Σ̃ = {Σp}p∈P where Σp = p for every process p. The
alphabet Σ̃ implements (Σ, I) in the sense that the canonical trace alphabet
induced by it is exactly (Σ, I). In other words, ΣP = Σ and IΣ̃ = I.
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Example 3.2.1 Consider again the trace alphabet of Example 3.1.1 and Fig-
ure 3.1, where Σ = {a, b, d} and I = {(a, b), (b, a)}. The canonical D-clique
implementation of (Σ, I) yields the distributed alphabet Σ̃ = {{a, d}, {d, b}}.

3.2.2 Asynchronous automata

Through the rest of the section we fix a distributed alphabet {Σp}p∈P and set
Σ = ΣP . It will be convenient to assume that P = {1, 2, . . . ,K}. Further, the
ith component of a K-tuple x = (x1, x2, . . . , xK) will be written as x[i]. In other
words, x[i] = xi.

Let Σ̃ be a distributed alphabet with P as the associated set of agents. In an
asynchronous automaton, each process p ∈ P is equipped with a finite nonempty
set of local p-states, denoted Sp, which we will assume to be pairwise disjoint.
It will be convenient to develop some notations for talking about “more global”
states before defining these automata.

First we set S =
⋃
p∈P Sp and call S the set of local states. We let P,Q

range over nonempty subsets of P and let p, q range over P . A Q-state is a
map s : Q → S such that s(q) ∈ Sq for every q ∈ Q. We let SQ denote the
set Q-states. We call SP the set of global states. We use a to abbreviate loc(a)
when talking about states (recall that loc(a) = { p | a ∈ Σp }). Thus an a-state
is just a loc(a)-state and Sa denotes the set of all loc(a)-states. Henceforth,
when dealing with a P-indexed family of sets {Sp}p∈P we will often just write
{Sp}. A similar remark applies for Σ-indexed sets as e.g. {−→a}a∈Σ.

A distributed transition system TS over Σ̃ is a structure ({Sp}, {−→a}, Sin),
where

• Sp is a finite nonempty set of p-states for each process p.

• For a ∈ Σ, −→a ⊆ Sa × Sa is a transition relation between a-states.

• Sin ⊆ SP is a set of initial global states.

The idea is that an a-move by TS involves only the local states of the agents
which participate in the execution of a. This is reflected in the global transition
relation −→TS ⊆ SP ×Σ×SP which is defined in the following. Suppose s and
s′ are two global states and sa and s′a are the two corresponding a-states. In
other words, sa(i) = s(i) and s′a(i) = s′(i) for each i in loc(a). Then

s
a−→TS s

′ iff (sa, s′a) ∈ −→a and s(j) = s′(j) for every j /∈ loc(a).

From the definition of −→TS , it is clear that actions which are executed by
disjoint sets of agents are processed independently by TS.

An asynchronous automaton over Σ̃ is then a distributed transition system
equipped with a set of global accepting states. More precisely, it is a structure
Z = ({Sp}, {−→a}, Sin, F ) where

• ({Sp}, {−→a}, Sin) is a distributed transition system.



32 CHAPTER 3. MAZURKIEWICZ TRACES

• F ⊆ SP is a set of global accepting states.

A trace run of Z over the finite trace T = (E,≤, λ) is a map ρ : CT → SP such
that ρ(∅) ∈ Sin and for every (c, a, c′) ∈ −→T , ρ(c) a−→TS ρ(c′). We say that ρ
is an accepting run whenever ρ(E) ∈ F . The language of finite traces accepted
by Z is given by LTr(Z) = { T ∈ TR∗ | ∃ an accepting run of Z over T }. We
will call the class of languages accepted by some asynchronous automaton the
recognizable trace languages. Zielonka’s fundamental result that asynchronous
automata recognize exactly the regular trace languages can now be formulated
as

Theorem 3.2.2 (Zielonka [157]) Let L ⊆ TR∗(Σ, I). Then L is regular if
and only if L = LTr(Z) for some asynchronous automaton Z over some Σ̃
where Σ̃ is a distributed alphabet whose induced trace alphabet is (Σ, I).

Further, one may assume Z to be deterministic and one may assume Σ̃ to be
the distributed alphabet induced by the maximal D-cliques of (Σ, I).

3.2.3 Asynchronous automata over infinite traces

Zielonka’s Theorem has been generalized to the set of ω-regular trace languages
by Gastin and Petit [43] in terms of asynchronous automata with Büchi accep-
tance conditions. In bringing this out, we use two types of acceptance condi-
tions for the components in order to be able to handle both finite and infinite
behaviours. Even if one is interested only in global infinite behaviours, finite
behaviours at the component level must be treated; a component might quit
after engaging in a finite number of actions while some components run forever.

Hence our automata are distributed transition systems equipped with both
finite and infinite accepting states. Gastin and Petit [43] use slightly different
acceptance conditions but they can be easily shown equivalent to the present
formulation.

An asynchronous Büchi automaton over Σ̃ is a structure Z = ({Sp},
{−→a}, Sin, {(Fp, Fωp )}), where:

• ({Sp}, {−→a}, Sin) is a distributed transition system.

• Fp ⊆ Sp is a set of local finitary accepting states of process p.

• Fωp ⊆ Sp is a set of local infinitary accepting states of process p.

For convenience we will from now on denote this class of automata just “asyn-
chronous1 automata”. We will also use Z to denote such automata.

To define acceptance we must now compute infp(ρ), the set of p-states that
are encountered infinitely often along ρ. When incorporating both finite and

1The term “asynchronous” is perhaps slightly misleading in this context, because these
automata process input in a distributed fashion by synchronizing on common actions. Con-
sequently, a better nomenclature might have been “synchronous automata”, but we adhere to
the tradition here.
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infinite behaviour in this richer domain we have to take care in defining the
set of infinitely occuring states of process p. The obvious definition, namely
infp(ρ) = {sp | ρ(c)(p) = sp for infinitely many c ∈ CT }, will not work. The
complication arises because some processes may make only finitely many moves,
even though the overall trace consists of an infinite number of events. So, we
have to define infp(ρ) so as to detect whether or not process p is making progress.

To bring this out, consider a trace T ∈ TR with T = (E,≤, λ) and some
p ∈ P . Letting Ep = {e | e ∈ E and λ(e) ∈ Σp}, we can define the appropriate
formulation of acceptance as follows:

• Ep is finite: infp(ρ) = {sp}, where ρ(↓Ep) = s and sp = s(p).

• Ep is an infinite set: infp(ρ) = {sp | for infinitely many e ∈ Ep, se(p) =
sp, where ρ(↓e) = se}.

A trace run of an asynchronous automaton over the (possibly infinite) trace
T = (E,≤, λ) ∈ TR is now defined in the obvious way. A run ρ of Z over
the (possibly infinite) trace T = (E,≤, λ) is accepting iff for each process p the
following conditions are met:

• If Ep is finite then infp(ρ) ∩ Fp 6= ∅.

• If Ep is infinite then infp(ρ) ∩ Fωp 6= ∅.

We then have the following characterization extending Theorem 3.2.2.

Theorem 3.2.3 (Gastin, Petit [43]) Let L ⊆ TR(Σ, I) be a trace language.
Then L is regular if and only if L = LTr(Z) for an asynchronous automaton
over Σ̃ where Σ̃ is a distributed alphabet whose induced trace alphabet is (Σ, I).

It should be noted however that deterministic automata no longer suffice for
accepting all regular languages.

The emptiness problem for this class of asynchronous automata is decidable
in time O(n2|P|), where n is the largest of the local state spaces, Sp [97].

We have described here the languages defined by asynchronous automata in
terms of traces. We note that these automata can be viewed as automata run-
ning over Σ-sequences. Using the global transition relations of these automata
one can easily define the string languages accepted by these automata. These
languages will be naturally trace consistent with respect to the trace alphabets
induced by the associated distributed alphabets. The resulting trace languages
will be precisely the trace languages accepted by these automata according to
the definitions we have provided here.

3.2.4 The gossip automaton

Zielonka’s proof [157] of Theorem 3.2.2 is nontrivial, intricate, and difficult. The
reason is that, in the trace setting, one must keep track of the latest information
that the agents have about each other when defining the transitions of the
asynchronous automaton accepting a given regular trace language.
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Mukund and Sohoni [96] define and isolate this phenomenon and show that
such “gossip” information can be kept track of by a deterministic asynchronous
automaton whose size depends only on Σ̃. With this “gossip automaton” as
a constituent subpart, Mukund and Sohoni go on to give—in our opinion—a
more structured account [95] of Zielonka’s Theorem. Gossip is also present in
the original proof by Zielonka [157], but not explicitly. We will also use the gossip
automaton as a constituent part of the automata-theoretic decision procedure
for TrPTL in Chapter 3.4.1. Furthermore, gossiping will play an important role
of the developments in Chapter 10.

We identify the nature of gossiping in the following. Let T ∈ TR with
T = (E,≤, λ) and let Σ̃ be a distributed alphabet implementing (Σ, I). Recall
that Ei = {e | e ∈ E and λ(e) ∈ Σi}. Let c ∈ CT and i ∈ P . Then ↓i(c) is
the i-view of c and it is defined as ↓i(c) = ↓(c ∩ Ei). Note that ↓i(c) is also a
configuration. It is the “best” configuration that the agent i is aware of at c.
We say that ↓i(c) is an i-local configuration. Let CiT = {↓i(c) | c ∈ CT } be the
set of i-local configurations. For Q ⊆ P and c ∈ CT , we let ↓Q(c) denote the
set

⋃
{↓i(c) | i ∈ Q}. Once again, ↓Q(c) is a configuration. It represents the

collective knowledge of the processes in Q about the configuration c.
To bring out the relevant properties of the gossip automaton, let T ∈ TR

with T = (E,≤, λ). For each subset Q of processes, the function latestT,Q :
CT ×P → Q is given by latestT,Q(c, j) = ` iff ` is the least member of Q (under
the usual ordering over the integers) with the property ↓j(↓q(c)) ⊆ ↓j(↓`(c)) for
every q ∈ Q. In other words, among the agents in Q, ` has the best information
about j at c, with ties being broken by the usual ordering over integers.

Proposition 3.2.4 (Mukund, Sohoni [96]) There exists an effectively con-
structible deterministic asynchronous automaton ZΓ = ({Γi}, {=⇒a},Γin,
{(Fi, Fωi )}) such that:

(1) L(ZΓ) = TRω.

(2) For each Q = {i1, i2, . . . , in}, there exists an effectively computable func-
tion gossipQ : Γi1 ×Γi2 × · · ·×Γin ×P → Q such that for every T ∈ TRω,
every c ∈ CT and every j ∈ P, latestT,Q(c, j) = gossipQ(γ(i1), . . . , γ(in), j)
where ρ

T
(c) = γ and ρ

T
is the unique (accepting) run of ZΓ over T .

Henceforth, we refer to ZΓ as the gossip automaton. Each process in the gossip
automaton has 2O(K2 logK) local states, where K = |P|. Moreover the function
gossipQ can be computed in time which is polynomial in the size of K.

The automaton described in [96] operates over finite traces but it is a trivial
task to convert it into an asynchronous automaton having the desired properties.

3.2.5 Concurrent-regular expressions

We have seen that for both finite and infinite traces, the notions of regularity
and recognizability coincide. However, it turns out that the class of languages
described by regular trace expressions is different from the recognizable ones.
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To bring this out, consider the trace alphabet (Σ, I) with Σ = {a, b} and aIb.
Then the regular trace expression (ab)∗ describes the set of strings over Σ with
an equal number of a’s and b’s, which is not regular.

The problem arises when traces consisting of several “independent portions”
are iterated. To bring this out, we say that a trace T = (E,≤, λ) is con-
nected if λ(E) induces a subgraph of (Σ, D) which is connected in the usual
graph-theoretic sense. Equivalently, a trace is connected if and only if its Hasse
diagram is connected when viewed in the straightforward manner as an undi-
rected graph. It is then easy to see that any trace T can be (uniquely) factored
into its connected components, i.e. T = t1 · · · tn with each ti being a connected
trace such that λ(ti)Iλ(tj) for 1 ≤ i 6= j ≤ n. We let con(T ) = {t1, . . . , tn} and
let con(L) =

⋃
{con(T ) | T ∈ L} be the connected components of L for a trace

language L ∈ TR∗.
This led Ochmański to define a slightly modified iteration operator. In ex-

actly the same manner as in Section 2.1.1, one can equip the regular expressions
with an obvious trace semantics. In this notation, we introduce the connected
iteration π† as follows:

• ||π†|| = con(||π||)∗.

Intuitively, the iteration is now performed not over arbitrary traces of the
language, but only over its connected components. With these definitions,
con(ab) = {a, b} and (ab)† = (a+ b)∗ is regular.

By replacing Kleene’s iteration operator with Ochmański’s connected itera-
tion operator, one obtains the concurrent-regular expressions:

RE(Σ, I) ::= a | π0 + π1 | π0;π1 | π† , a ∈ Σ.

We arrive at the following nontrivial generalization of Kleene’s Theorem.

Theorem 3.2.5 (Ochmański [105]) Let L ⊆ TR∗. Then L is regular if and
only if L = ||π|| for some concurrent-regular expression π.

This result is commonly referred to as Ochmański’s Theorem.
In much the same was as the regular expressions was extended from finite to

infinite strings, the concurrent-regular expressions can be extended to infinite
traces. Ochmański’s Theorem has been extended accordingly.

Theorem 3.2.6 (Gastin, Petit, Zielonka [44]) Let L ⊆ TRω. Then L is
ω-regular if and only if L = ||π|| for some concurrent ω-regular expression π.

3.3 Monadic Second-order Logic for Traces

We saw in the preceding chapter how monadic second-order via Büchi’s Theorem
has become a yardstick for regularity in the interleaving setting. There is a very
natural generalization to the richer domain of traces which, as it turns out,
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captures exactly the class of regular trace languages. In this sense it provides
further evidence that the notion of regularity is robust.

We first define the syntax and semantics of MSO for traces and then consider
its connection to regular trace languages.

3.3.1 Syntax and semantics of MSO for traces

We fix a trace alphabet (Σ, I) for the remainder of this section. MSO(Σ, I), the
monadic second-order theory of (finite or infinite) traces over (Σ, I), then has
the same syntax as MSO(Σ). The structures are either finite or infinite traces
of TR(Σ, I), and here we will present both on an equal footing.

Let T ∈ TR(Σ, I) with T = (E,≤, λ) and let I : X → E be an interpretation.
Then T |=IQa(x) iff λ(I(x)) = a and T |=I x ≤ y iff I(x) ≤ I(y). Hence, the
essential difference is that the binary predicate symbol is now interpreted as the
causal (partial) order of the trace. The remaining semantic definitions go along
the expected lines. Not surprisingly, each sentence ϕ defines the trace language
Lϕ = {T ∈ TR | T |= ϕ}. We say that L ⊆ TR is definable in MSO iff there
exists a sentence ϕ in MSO(Σ, I) such that L = Lϕ.

One should note that even though there is a close correspondence to MSO(Σ)
in terms of syntax, formulas of the logic cannot be trivially carried over while
preserving their meanings. As an example, the formula ϕ = (∃x)(∃y)(¬(x ≤
y) ∧ ¬(y ≤ x)) is true of any trace with two concurrent events, but not true of
any finite nor infinite string.

The fragment of the first-order theory of (finite or infinite) traces over (Σ, I),
FO(Σ, I), is obtained from the monadic second-order logic of traces by abolish-
ing second-order quantifications in the same way as in the noninterleaving case
in Section 2.2.1. Clearly it will be strictly weaker than MSO(Σ, I) as, in partic-
ular, FO(Σ) is strictly weaker than MSO(Σ).

3.3.2 MSO and the regular trace languages

Thomas [141] adapted the classical proof of Section 2.2.2 to show that the MSO-
definable languages of finite traces are precisely the regular trace languages, i.e.
those recognized by asynchronous automata.

It turns out that the extension to infinite traces is not just a simple adapta-
tion, but was shown by Ebinger and Muscholl [32] by utilizing already existing
characterizations of regular (string and trace) languages such as Büchi’s Theo-
rem and Theorem 3.2.6 in conjunction with a connection between MSO(Σ) and
MSO(Σ, I). The observation underlying this connection is that if L ⊆ TRω(Σ, I)
is definable in MSO(Σ, I) then ts(L) is definable in MSO(Σ).

For languages of finite strings, the opposite result follows using an important
technique, which will also be utilized for a similar result in Chapter 4. More
precisely, one can show that if L is trace consistent with respect to (Σ, I) and
definable in MSO(Σ) then st(L) is definable in MSO(Σ, I). The crucial observa-
tion is that by fixing a specific representative of each equivalence class [τ ] ⊆ L,
one can express the total order x ≤ y of this representative by a translation to
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x ≤lex y, expressed using the partial order of the induced trace. This repre-
sentative is taken to be lex(τ), the unique lexicographically least element of [τ ]
(given some fixed total order on Σ).

By replacing order formulas in this fashion, one translates formulas ϕ of
MSO(Σ) to formulas ϕ̂ of MSO(Σ, I) such that st(τ) |= ϕ̂ if and only if lex(τ) |=
ϕ. This is sufficient as L is trace consistent.

The same argument holds true for the first-order fragments by replacing
“MSO” with “FO” in the above proof sketch. In this manner, we have in
fact revealed a very intimate relationship between MSO (FO) of finite traces
and their corresponding fragments over finite strings. Unfortunately, the proof
technique doesn’t readily extend to the infinite setting, because the lexicograph-
ically smallest element is in general undefined for traces where the set of actions
occurring infinitely often induces an unconnected subgraph of (Σ, D).

However, the result follows for MSO from the equivalence of MSO(Σ, I)
and asynchronous (Büchi) automata. Fortunately, the remaining gap for FO
in the infinite setting was closed by Ebinger and Muscholl by demonstrating
the equivalence between star-free concurrent ω-regular expressions and first-
order logic of traces and using the already known characterizations of first-order
definability and star-free ω-regular expressions.

These remarks are collected in the following proposition.

Proposition 3.3.1 (Ebinger, Muscholl [32], Thomas [141]) Let L ⊆ Σ∞.
Then L is trace consistent and definable in MSO(Σ) (resp. FO(Σ)) if and only
if {st(σ) | σ ∈ L} is definable in MSO(Σ, I) (resp. FO(Σ, I)).

Interestingly, there are currently no results for variable-confined fragments
of FO for traces. In particular, it is still not known whether the classical result
mentioned in Section 2.4.2 that three variables suffice for FO(Σ), can be carried
over to the setting of FO(Σ, I).

3.4 Linear Time Temporal Logics for Traces

Motivated by the fact that one can generate specifications that are guaranteed
to be trace consistent, several linear time temporal logics for traces have been
proposed starting with [135]. As mentioned earlier, such properties are precisely
those amenable for partial-order reductions. Furthermore, these logics facilitate
the specification of concurrency and causality as first-class notions.

There are several routes towards extending LTL to the setting of traces. One
approach is based on locations, where one reasons explicitly about a distribution
of computing agents cooperating through some communication structure given
as a distributed alphabet. Another option is to view events as the partial order
computation points in time, and base the specifications upon the relationship
between individual events. Together these paradigms constitute the local trace
logics. On the other hand, in global view of computations configurations are seen
as instantaneous snapshots of the system at hand. In this sense, a configuration
is a global view capturing a collection of simultaneous local views.
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In this section we will cover all three approaches in the order introduced
above, and survey the most important logics of each category.

3.4.1 TrPTL and location-based logics

We present here the linear time temporal logic over traces called TrPTL, which
was the first logic patterned after PTL (i.e. LTL) formulated for traces. It was
proposed by Thiagarajan [135] and initiated the developments of linear time
temporal logics for traces.

The logic TrPTL is location-based and parameterized by the class of dis-
tributed alphabets. Through this section, we fix a distributed alphabet Σ̃ =
{Σi}i∈P with P = {1, 2, . . . ,K} and K ≥ 1. The trace alphabet induced by
Σ̃ is denoted (Σ, I). We adopt the notations from the previous sections; in
particular, we will often write just {Xi} when dealing with a P-indexed family
{Xi}i∈P .

Having fixed Σ̃ we shall often almost always write TrPTL to mean TrPTL(Σ̃),
the logic associated with Σ̃. Then ΦTrPTL(Σ̃), the set of formulas of TrPTL(Σ̃),
is given by:

ΦTrPTL(Σ̃) ::= tt | ¬α | α ∨ β | 〈a〉iα | αUiβ , a ∈ Σi.

Throughout we denote ΦTrPTL(Σ̃) as just Φ. In the semantics of the logic,
which will be based on infinite traces, the i-view of a configuration as defined in
Section 3.2.4 will play a crucial role as we shall see shortly. A model is a trace
T = (E,≤, λ) ∈ TR(Σ, I). Let c ∈ CT and α ∈ Φ. Then T, c |= α denotes that
α is satisfied at c in T and it is defined inductively as follows:

• T, c |= tt , T, c |= ¬α, and T, c |= α ∨ β are defined as usual.

• T, c |= 〈a〉iα iff there exists e ∈ Ei − c such that λ(e) = a and T, ↓e |= α.
Moreover, for every e′ ∈ Ei, e′ < e iff e′ ∈ c.

• T, c |= αUiβ iff there exists c′ ∈ CT such that c ⊆ c′ and T, ↓i(c′) |= β.
Moreover, for every c′′ ∈ CT , if ↓i(c) ⊆ ↓i(c′′) ⊂ ↓i(c′) then T, ↓i(c′′) |= α.

A formula α ∈ Φ is satisfiable if there exists a trace T and a configuration
c ∈ CT such that T, c |= α. Moreover, T satisfies α, denoted T |= α, in case
T, ∅ |= α. As usual, the language defined by α is given as Lα = {T ∈ TR(Σ, I) |
T |= α}. We will say that L is definable in TrPTL(Σ̃) iff there exists some
formula α of such that Lα = L.

Thus TrPTL is an action-based multi-agent version of LTL. Indeed both in
terms of its syntax and semantics, LTL(Σ) corresponds to the case where there
is only one agent. The semantics of TrPTL when specialized down to this case
yields the previous LTL(Σ) semantics as given in Section 2.3.1.

The assertion 〈a〉iα says that the agent i will next participate in an a-event.
Moreover, at the resulting i-view, the assertion α will hold. The assertion αUiβ
says that there is a future i-view (including the present i-view) at which β
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will hold and for all the intermediate i-views (if any) starting from the current
i-view, the assertion α will hold.

Atomic propositions can easily be incorporated into the logic in a number
of ways. Chapter 8 illustrates this point by means of local valuation functions
assigning a set of atomic propositions to each i-local configuration. There are
other similar approaches, but it is interesting to note that all atomic assertions
(that we know of) concerning distributed behaviours are local in nature. In-
deed, it is well-known that global atomic propositions will at once lead to an
undecidable logic in the current setting [81, 112].

Before considering examples of TrPTL specifications, we will introduce some
notation. We let α, β with or without subscripts range over Φ. Abusing notation,
we will use loc to denote the map which associates a set of locations with each
formula.

• loc(tt) = ∅.

• loc(¬α) = loc(α).

• loc(α ∨ β) = loc(α) ∪ loc(β).

• loc(〈a〉iα) = loc(αUiβ) = {i}.

In what follows, Φi = {α | loc(α) ⊆ {i}} is the set of i-type formulas. We
note that a TrPTL formula of the form 〈a〉iα could have j ∈ loc(α) with j 6= i.
A similar remark applies to the indexed until-operators.

A basic observation concerning the semantics of TrPTL is that for a trace
T and formula α with loc(α) ⊆ Q, it is the case that T, c |= α iff T, ↓Q(c) |= α.
Thus if α ∈ Φi then T, c |= α if and only if T, ↓i(c) |= α. As a result, the
formulas in Φi can be used in exactly the same manner as one would use LTL to
express properties of the agent i. Boolean combinations of such local assertions
can be used to capture various interaction patterns between the agents implied
by the logical connectives as well as the coordination enforced by the distributed
alphabet Σ̃.

For writing specifications, apart from the usual derived connectives that we
already introduced in Section 2.3.1 for LTL, a number of derived operators are
available. [a]iα = ¬〈a〉i¬α, 3iα = ttUiα, and 2iα = ¬3i¬α are all local
versions of the corresponding derived operator of LTL. Moreover, for X ⊆ Σi
let αUXi β = (α ∧

∧
a∈Σi−X [a]iff )Uiβ. In other words, αUXi β is fulfilled using

(at most) actions taken from X . We set 3X
i α = ttUXi α and 2X

i α = ¬3X
i ¬α.

Another interesting operator that we will use later is α@i def= αUiα (or equiv-
alently ff Uiα). α@i is to be read as “α at i”. If T is a trace and c ∈ CT then
T, c |= α@i iff T, ↓i(c) |= α. (It could of course be the case that loc(α) 6= {i}.)

A simple but important observation is that every formula is a boolean com-
bination of formulas taken from

⋃
i∈P Φi, which makes TrPTL well suited for

describing local properties. However, in TrPTL we can express certain global
properties, e.g. that some specific global configuration is reachable from the ini-
tial configuration. Let {αi}i∈P be a family with αi ∈ Φi for each i. Then we can
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define a derived connective 3(α1, α2, . . . , αK) which has the following semantics
at the empty configuration. Let T be a trace. Then T, ∅ |= 3(α1, α2, . . . , αk) iff
there exists c ∈ CT such that T, c |=

∧K
i=1 αi.

To define this derived connective set Σ′
1 = Σ1 and, for 1 < i ≤ K, set

Σ′
i = Σi − ∪{Σj | 1 ≤ j < i}. Then 3(α1, α2, . . . , αK) is the formula:

3
Σ′

1
1 (α1 ∧ 3

Σ′
2

2 (α2 ∧ 3
Σ′

3
3 (α3 ∧ · · ·3Σ′

K

K αK)) · · · ).
The idea is that the sequence of actions leading up to the required configura-
tion can be reordered so that one first performs all the actions in Σ1, then all
the actions in Σ2 − Σ1 etc. Dually, safety properties that hold at the initial
configuration can also be expressed in a similar fashion.

On the other hand, it seems difficult to express nested global and safety
properties in TrPTL. It is also the case that due to the local nature of the
modalities, information about the past sneaks into the semantics even though
there are no explicit past operators in the logic. We make this apparent in an
example.

Example 3.4.1 Consider again the distributed alphabet Σ̃0 = {Σ1,Σ2} with
Σ1 = {a, d} and Σ2 = {b, d}. Then the trace T0 of Figure 3.1 is a trace over
the trace alphabet induced by Σ̃0. Let c0 ∈ CT0 be the configuration, where the
first a, the first d, and both b’s have occurred. Finally, consider the TrPTL-
formula α0 = 22¬〈a〉2tt ∧ (〈b〉2tt)@1. Then α0 asserts that 2 will never be
able to perform a b-action again, while according the 1’s view of the current
configuration, 2 will next engage in a b-action. It’s then not hard to verify
that (perhaps counter-intuitively) T0, c0 |= α0. However, there exists no trace
T ∈ TR such that T, ∅ |= α0.

A formula α is said to be root-satisfiable iff there exists a trace T such that
T, ∅ |= α. On the other hand, α is said to be satisfiable iff there exists a trace
T and c ∈ CT such that T, c |= α. It turns out that these two notions are not
equivalent as brought out by Example 3.4.1. One can however transform every
formula α into a formula α′ such that α is satisfiable iff α′ is root-satisfiable.

This follows from the observation that every α can be expressed as a boolean
combination of formulas taken from the set

⋃
i∈P Φi. Hence the given for-

mula α can be assumed to be of the form α =
∨m
j=1(αj1 ∧ αj2 ∧ · · · ∧ αjK)

where αji ∈ Φi for each j ∈ {1, 2, . . . ,m} and each i ∈ P . Now convert α to
the formula α′ where α′ =

∨m
j=1 3(αj1, αj2, · · · , αjK). From the semantics of

3(α1, α2, . . . , αK) above it follows that α is satisfiable iff α′ is root-satisfiable.
Hence, in principle, it suffices to consider only root-satisfiability in develop-

ing a decision procedure for TrPTL. There is of course a blow-up involved in
converting satisfiable formulas to root-satisfiable formulas. If one wants to avoid
this blow-up then the decision procedure for checking root-satisfiability can be
suitably modified to yield a direct decision procedure for checking satisfiability
as done in [135]. In any case, it is root-satisfiability which is of importance from
the standpoint of model checking. Hence here we shall only develop a procedure
for deciding if a given formula of TrPTL is root-satisfiable.
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As a first step we augment the syntax of our logic by one more construct.

• If α is a formula, so is Oiα. In the trace T at the configuration c ∈ CT ,
T, c |= Oiα iff T, c |= 〈a〉iα for some a ∈ Σi. We also define loc(Oiα) = {i}.

Thus Oiα ≡
∨
a∈Σi

〈a〉iα is a valid formula and Oi is expressible in the former
syntax. It will be however more efficient to admit Oi as a first class modality
as we did in Section 2.3.2.

Fix a formula α0. Our aim is to effectively associate an asynchronous au-
tomaton Zα0 with α0 such that α0 is root-satisfiable iff LTr(Zα0 ) 6= ∅. Since the
emptiness problem for asynchronous automata is decidable (see Section 3.2.3),
this will yield the desired decision procedure. Let cl(α0) be the least set of
formulas containing α0 which satisfies:

• ¬α ∈ cl(α0) implies α ∈ cl(α0).

• α ∨ β ∈ cl(α0) implies α, β ∈ cl(α0).

• 〈a〉iα ∈ cl(α0) implies α ∈ cl(α0).

• Oiα ∈ cl(α0) implies α ∈ cl(α0).

• αUiβ ∈ cl(α0) implies α, β ∈ cl(α0). In addition, Oi(αUiβ) ∈ cl(α0).

We then define CL(α0) to be the set cl(α0)∪ {¬β | β ∈ cl(α0)}. As usual, ¬¬β
is identified with β and we write CL instead of CL(α0).

A ⊆ CL is called an i-type atom iff it satisfies:

• tt ∈ A.

• α ∈ A iff ¬α 6∈ A.

• α ∨ β ∈ A iff α ∈ A or β ∈ A.

• αUiβ ∈ A iff β ∈ A or (α ∈ A and Oi(αUiβ) ∈ A).

• If 〈a〉iα, 〈b〉iβ ∈ Ai then a = b.

ATi denotes the set of i-type atoms. We now need to define the notion of
a formula in CL being a member of a collection of atoms. Let α ∈ CL and
{Ai}i∈Q be a family of atoms with loc(α) ⊆ Q and Ai ∈ ATi for each i ∈ Q. We
define the predicate Member(α,{Ai}i∈Q), which for convenience will be denoted
by α ∈ {Ai}i∈Q. It is defined inductively as:

• If loc(α) = {j} then α ∈ {Ai}i∈Q iff α ∈ Aj .

• If α = ¬β then α ∈ {Ai}i∈Q iff β 6∈ {Ai}i∈Q.

• If α = α1 ∨ α2 then α1 ∨ α2 ∈ {Ai}i∈Q iff α1 ∈ {Ai}i∈Q or α2 ∈ {Ai}i∈Q.
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The construction of the asynchronous automaton Zα0 is guided by the con-
struction developed for LTL in Section 2.3.3. However in the much richer set-
ting of traces it turns out that one must make crucial use of the latest infor-
mation that the agents have about each other when defining the transitions
of Zα0 . Hence one needs to incorporate the gossip automaton ZΓ = ({Γi},
{=⇒a},Γin, {(Fi, Fωi )}) described in Proposition 3.2.4.

Each i-state of the automaton Zα0 will consist of an i-type atom together
with an appropriate i-state of the gossip automaton. Two additional compo-
nents will be used to check for liveness requirements. One component will take
values from the set Ni = {0, 1, 2, . . . , |Ui|} where Ui = {αUiβ | αUiβ ∈ CL}.
This component will be used to ensure that all “until” requirements are met.
The other component will take values from the set {on,off}. This will be used
to detect when an agent has quit.

The automaton Zα0 can now be defined as Zα0 = ({Si}, {−→a}, Sin,
{(Fi, Fωi )}), where:

• For each i, Si = ATi×Γi×{0, 1, 2, . . . , |Ui|}× {on,off}. (Recall that Γi is
the set of i-states of the gossip automaton.)

• Let sa, s′a ∈ Sa with sa(i) = (Ai, γi, ni, vi) and s′a(i) = (A′
i, γ

′
i, n

′
i, v

′
i) for

each i ∈ loc(a). Then (sa, s′a) ∈ −→a iff the following conditions are met:

– (γa, γ′a) ∈ =⇒a (recall that {=⇒a} is the family of transition relations
of the gossip automaton) where γa, γ′a ∈ Γa such that γa(i) = γi and
γ′a(i) = γ′i for each i ∈ loc(a).

– ∀i, j ∈ loc(a), A′
i = A′

j .

– ∀i ∈ loc(a) ∀〈a〉iα ∈ CL. 〈a〉iα ∈ Ai iff α ∈ A′
i.

– ∀i ∈ loc(a) ∀Oiα ∈ CL. Oiα ∈ A iff α ∈ A′
i.

– ∀i ∈ loc(a)∀〈b〉iβ ∈ CL. If 〈b〉iβ ∈ Ai then b = a.

– Suppose j 6∈ loc(a) and β ∈ CL with loc(β) = {j}. Further suppose
that loc(a) = {i1, i2, . . . , in}. Then β ∈ A′

i iff β ∈ A` where ` =
gossiploc(a)(γi1 , γi2 , . . . , γin , j).

– Let i ∈ loc(a), Ui = {α1Uiβ1, α2Uiβ2, . . . , αniUiβni}. Then u′i and ui
are related to each other via:

u′i =
{

(ui+1) mod (ni+1), if ui = 0 or βui ∈ Ai or αuiUiβui 6∈ Ai
ui, otherwise

– For each i ∈ loc(a), vi = on. Moreover, if v′i = off then 〈a〉iα 6∈ A′
i

for every i ∈ loc(a) and every 〈a〉iα ∈ CL.

• Let s ∈ SP with s(i) = (Ai, γi, ui, vi) for every i. Then s ∈ Sin iff
α0 ∈ {Ai}i∈P and γ ∈ Γin where γ ∈ ΓP satisfies γ(i) = γi for every i.
Furthermore, ui = 0 for every i. Finally, for every i, vi = off implies that
〈a〉iα 6∈ Ai for every 〈a〉iα ∈ CL.
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• For each i, Fωi ⊆ Si is given by Fωi = {(Ai, γi, ui, vi) | ui = 0 and vi = on}
and Fi ⊆ Si is given by Fi = {(Ai, γi, ui, vi) | vi = off}.

Following [134, 135] one now shows that α0 is root-satisfiable iff LTr(Zα0) 6=
∅. Moreover, the number of local states of Zα0 is bounded by 2O(max(n,m2 logm))

where n = |α0| and m is the number of agents mentioned in α0. Clearly, m ≤ n.
We then have the following result.

Theorem 3.4.2 (Thiagarajan [134, 135]) The root-satisfiability problem
(and in fact the satisfiability problem) for TrPTL is solvable in time
2O(max(n,m2 logm)·m).

The number of local states of each process in Zα0 is determined by two
quantities: the length of α0 and the size of the gossip automaton ZΓ. As far as
the size of ZΓ is concerned, it is easy to verify that we need to consider only
those agents in P that are mentioned in loc(α0), rather than all agents in the
system.

In certain cases, the satisfiability problem can be solved within more appeal-
ing time bounds. Meyer and Petit [89] have shown that whenever the induced
trace alphabet is disconnected, it is possible to decompose formulas of TrPTL
into disconnected portions in order to reduce the complexity of the satisfiability
problem.

The model checking problem for TrPTL can be phrased as follows. A finite
state distributed program Pr over Σ̃ is an asynchronous automaton ZPr =
({SPri }, {=⇒Pr

a }, SPrin , {(SPri , SPri )}) modeling the state space of Pr.
Viewing a formula α0 as a specification, we say that Pr meets the speci-

fication α0—denoted Pr |= α0—if for every T ∈ TRω, if ZPr has a run over
T then T, ∅ |= α0. In a manner identical to Section 2.3.3, the model checking
problem for TrPTL can now be solved by “intersecting” the program automa-
ton ZPr with the formula automaton Z¬α0 to yield an automaton Z such that
LTr(Z) = LTr(ZPr) ∩ LTr(Z¬α0). As before, LTr(Z) = ∅ iff Pr |= α0.

It turns out that this model checking problem has time complexity O(|ZPr | ·
2O(max(n,m2 logm)·m)) where |ZPr| is the size of the global state space of the
asynchronous automaton modeling the behaviour of the given program Pr and,
as before, n = |α0| and m is the number of agents mentioned in α0, where α0 is
the specification formula.

We now take a brief look at some related location-based linear time temporal
logics over traces. The first one is the sublogic of TrPTL denoted TrPTLcon

which consists of the so called connected formulas of TrPTL. We define Φcon
TrPTL

(from now on written as Φcon) to be the least subset of Φ satisfying the following
conditions:

• tt ∈ Φcon.

• If α ∈ Φcon then ¬α ∈ Φcon.

• If α, β ∈ Φcon then α ∨ β ∈ Φcon.
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• If α ∈ Φcon and a ∈ Σi such that loc(α) ⊆ loc(a) then 〈a〉iα ∈ Φcon.

• If α, β ∈ Φcon with loc(α), loc(β) ⊆
⋂
{loc(a) | a ∈ Σi} then αUiβ ∈ Φcon.

Connected formulas were first identified by Niebert and used by Huhn [65].
They have also been independently identified by Ramanujam [115]. Thanks to
the syntactic restrictions imposed on the next-state and until formulas, past
information is not allowed to creep in. Indeed one can prove that α is satisfiable
if and only if α is root-satisfiable.

Yet another pleasing feature of TrPTLcon is that the gossip automaton can be
eliminated in the construction of the automaton Zα0 whenever α0 ∈ Φcon. The
automaton construction for full TrPTL on page 42 can be modified accordingly
to obtain that the satisfiability problem for TrPTLcon is solvable in time 2O(|α0|).
Once again, a suitably modified statement can be made about the associated
model checking problem. At present it is not known whether or not TrPTL is
strictly more expressive than TrPTLcon.

Niebert also identified another logic related to TrPTL. By extending TrPTL
with certain fixed point operators as in Section 2.4.3, one obtains a location-
based version [101] of the linear-time µ-calculus. This logic was later revised
to become νTrPTL [102], which Niebert shows expressively equivalent to the
monadic second-order theory of traces while still elementary-time decidable.

The semantics of TrPTL is based on (local) agents’ knowledge of a (global)
configuration, as is hence reminiscent of the so-called logics of knowledge [38].
Ramanujam [115] makes this connection explicit by defining four logics of in-
creasing expressive power based on knowledge-like modalities in the trace set-
ting. Two of the four logics considered turn out to be LTL⊗ (to be considered
in Section 3.5.3) and TrPTLcon.

3.4.2 TLC and event-based logics

We now move to the event-based logics over traces. The most prominent of
these logics is the Temporal Logic of Causality (TLC), which was introduced by
Alur, Peled, and Penczek [4] to formulate causality and concurrency properties
in a direct fashion. It is a temporal logic for traces which allows quantification
over causal chains. Its set of formulas2 is given as follows:

TLC(Σ, I) ::= pa | ¬α | α ∨ β | co(α) | EX(α) | EU(α, β) | EG(α) |
EX−(α) | EU−(α, β) , a ∈ Σ.

The syntax that we have chosen here is inspired by the branching time
temporal logic CTL [19]. Indeed this is no coincidence, as TLC can be viewed
as CTL interpreted over the Hasse diagram of the partial order of the trace at
hand. To bring out the semantics, we will need some simple definitions.

Let (Σ, I) be a trace alphabet which we fix throughout this section. For
any trace T = (E,≤, λ), we will in the presentation of the event-based logics

2The syntax is slightly different from [4], but we have chosen the present syntax for purposes
that will become evident when we later in the subsection extend TLC.
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assume the existence of a unique least event ⊥ ∈ E corresponding to a system
initialization event carrying no label, i.e. λ(⊥) is undefined and ⊥ < e for every
e ∈ E − {⊥}.

A future causal chain rooted at e ∈ E is a (finite or infinite) sequence ρ =
(e0, e1, . . . , en, . . . ) with e = e0, ei ∈ E such that ei−1 l ei for every i ≥ 1. The
labelling function λ : E → Σ is extended to causal chains in the obvious way by
λ(ρ) = λ(e0)λ(e1) · · ·λ(en) · · · . We say that a future causal chain ρ is maximal
in case ρ is either infinite or it is finite and there exists no e′ ∈ E such that
e|ρ| l e′. Past causal chains are defined in the obvious manner.

We can now define the semantics of TLC. Let T ∈ TR(Σ, I) and e ∈ E.
The notion of a formula α of TLC being satified at an event e of T is defined
inductively in the following manner.

• T, e |= pa iff λ(e) = a.

• T, e |= ¬α and T, e |= α ∨ β are defined as usual.

• T, e |= co(α) iff there exists an e′ ∈ E with e co e′ and T, e′ |= α.

• T, e |= EX(α) iff there exists some e′ ∈ E with el e′ such that T, e′ |= α.

• T, e |= EU(α, β) iff there exists a future causal chain rooted at e, ρ =
(e0 l e1 l · · ·l en), such that T, en |= β and T, ei |= α for each 0 ≤ i < n.

• T, e |= EG(α) iff there exists a maximal future causal chain rooted at e,
ρ = (e0 l e1 l · · · l en l · · · ), such that T, ei |= α for each 0 ≤ i.

• T, e |= EX−(α) iff there exists some e′ ∈ E with e′le such that T, e′ |= α.

• T, e |= EU−(α, β) iff there exists a past causal chain rooted at e, ρ =
(enlen−1l· · ·le0), such that T, en |= β and T, ei |= α for each 0 ≤ i < n.

We say that α of TLC is satisfiable in case there exist a trace T = (E,≤, λ)
and an event e ∈ E such that T, e |= α. By T |= α we denote that T satisfies α,
i.e. T,⊥ |= α. The language defined by α is given by Lα = {T ∈ TR(Σ, I) | T |=
α}. We will say that L is definable in TLC(Σ, I) iff there exists some formula
α of TLC(Σ, I) such that Lα = L.

Note that we can derive the propositional constants tt and ff as pa∨¬pa and
its negation. We abbreviate EF (α) = EU(tt , α) and EF−(α) = EU−(tt , α).
Moreover, it is possible to derive EG− as EG−(α) = EU−(α, α ∧ ¬EX−(tt))
and it is hence not included in the syntax.

The satisfiability problem for TLC is solved by once again extending the
classical decision procedure of LTL in Section 2.3.2, albeit in a quite different
way. In more detail, given a formula α0 of TLC, one constructs a Streett
automaton Sα0 accepting the set of linearizations of traces satisfying α. In other
words, L(S) = ts(Lα0). The essential feature here, is that the causal chains can
be iteratively recovered as certain subsequences of actions in the linearizations,
and hence the modalities on causal chains can be given fixed point formulations
over linearizations. This leads to the following result.
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Theorem 3.4.3 (Alur, Peled, Penczek [4]) The satisfiability problem for
TLC(Σ, I) is decidable in exponential time.

As before, the usual arguments apply to the model checking problem.
TLC is ideally suited to express causality properties such as serializability

of partially ordered computations as exemplified in [4]:

Example 3.4.4 Let A,B ⊆ Σ be sets of actions indicating that stages of the
transactions p and q, respectively, are executing. Then

α
def= ¬

(
EF (

∨
a∈A

pa ∧ EF (
∨
b∈B

pb)) ∧ EF (
∨
a∈A

pa ∧ EF−(
∨
b∈B

pb))

)

asserts that it is not allowed that events of one transaction both causally precede
and succeed events of the other.

One of the weaknesses of TLC is that it doesn’t directly facilitate reasoning
about causal relationships of the individual events of the causal chains at hand.
As a consequence, a number of interesting properties are not (either easily or
at all) expressible within TLC. (This claim will be substantiated later.)

It turns out that one can strengthen the chain quantification of TLC to ob-
tain the logic TLC∗ [54], which enjoys the same similarity to CTL∗ [19] as TLC
has to CTL. A more elaborate treatment of TLC∗ can be found in Chapter 9
so we just highlight its main features here.

TLC∗ consists of three different syntactic entities; event formulas (Φev),
future chain formulas (Φ+

ch) and past chain formulas (Φ−
ch) defined by mutual

induction as described below:

Φev ::= pa | ¬α | α1 ∨ α2 | co(α) | E(φ) | E−(ψ) , a ∈ Σ.
Φ+
ch ::= α | ¬φ | φ1 ∨ φ2 | Xφ | φ1Uφ2.

Φ−
ch ::= α | ¬ψ | ψ1 ∨ ψ2 | X−ψ | ψ1U

−ψ2 ,

where α, φ and ψ with or without subscripts here and throughout the rest of
the section are formulas of Φev, Φ+

ch and Φ−
ch, respectively. The formulas of

TLC∗(Σ, I) are the set of event formulas Φev as defined above.
The semantics of formulas of TLC∗ is divided into two parts; event formulas

and chain formulas. Let T ∈ TR(Σ, I) and e ∈ E. The notion of an event
formula α being satified at an event e of T is defined inductively in a manner
very similar to TLC with the following modifications:

• T, e |= E(φ) iff there exists a future causal chain ρ rooted at e with
T, ρ |= φ.

• T, e |= E−(ψ) iff there exists a past causal chain ρ rooted at e with T, ρ |=
ψ.
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Now, assuming ρ = (e0, e1, . . . , en, . . . ) is a future causal chain, the notion of
T, ρ |= φ for a future chain formula φ is as for LTL in Section 2.3.1 in the obvious
way by setting: T, ρ |= α iff T, e0 |= α. The notion of T, ρ |= ψ for a past causal
chain ρ and past chain formula ψ is defined in the straightforward manner.

The notions of satisfiability and language definability are carried over from
TLC in the obvious manner. It is not hard to show that the satisfiability problem
of the extension to TLC∗ remains decidable because it can be embedded into
monadic second-order logic for traces. Chapter 9 investigates this issue in more
detail.

The formulas of TLC(Σ, I) are easily seen to be the set of formulas of
TLC∗(Σ, I) where each of the chain operators X,U,G,X−, U− is immediately
preceded by a chain quantifier E. Indeed, TLC is a sublogic of TLC∗. In Chap-
ter 9 we prove formally that TLC∗ is strictly more expressive that TLC. Here,
we shall content ourselves by bringing out a natural property which is easily
definable in TLC∗ but not in TLC.

Example 3.4.5 Suppose that a and b are actions representing the acquisition
and release, respectively, of some resource. A relevant property of this system
is whether there exists some causal chain in the execution of the system —
presumably containing other system actions than {a, b}—such that the a’s and
b’s alternate strictly until the task is perhaps eventually completed. Via the
future chain formula φxy = px ⇒ X(¬(px∨py)U(py)) we can easily express this
property in TLC∗ by E(G(φab ∧ φba)). The point is here that TLC∗ allows us
to investigate each causal chain in mention by a causal chain formula, which is
then confined to this very chain. This is not possible in TLC, as the existential
quantifications interpreted at some fixed event of the chain would potentially
consider all causal chains originating at this event—not just the one presently
being investigated.

Walukiewicz [150] has taken the idea of causal logics further and has defined
several variations of the µ-calculus [130] interpreted over the Hasse diagram of
the trace. He shows that the pure causal event-based µ-calculus itself is not
sufficient to express all regular trace languages. However, he goes on to demon-
strate that one can augment this logic by different operators reminiscent of the
present co-operator to obtain event-based fixed point logics expressively com-
plete with respect to monadic second-order logic over traces while maintaining
PSPACE-complete satisfiability problems. The novel new feature is that his
completeness proof factors through monadic second-order logic of infinite trees,
which is being employed to define trees of lexicographically least paths of the
corresponding traces. We will not bring out the details here, merely remark
that we will later denote this family of logics by µ−co.

3.4.3 LTrL and configuration-based logics

It is not difficult to show that TrPTL is no more expressive than the first-order
theory of traces but it is not known whether the converse also holds. Moreover,
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it seems difficult to express arbitrary global liveness properties in the location-
and event-based temporal logics over traces.

It would be nice to have a linear time temporal logic for traces patterned after
LTL which has the same expressive power as the first-order theory of traces, and
which would furthermore allow easy formulations of liveness properties. Further
motivation is provided by Proposition 3.3.1, because such a logic would capture
exactly all the trace consistent properties of LTL.

With this as motivation, a different kind of trace-based linear time temporal
logic called LTrL has been proposed in [139] by Thiagarajan and Walukiewicz.
This logic works directly with a trace alphabet (i.e. it is not based on agents).
However, it is not interpreted over individual events, but instead over configu-
rations of a trace. Its syntax is given by:

LTrL(Σ, I) ::= tt | ¬α | α ∨ β | 〈a〉α | αU β | 〈a−1〉tt , a ∈ Σ.

Thus the syntax is very close to LTL except for the addition of a very restricted
past-operator. In fact, just a linear number of past-operators are present in the
logic; one for each action.

A model of LTrL(Σ, I) is a trace T = (E,≤, λ). Let c ∈ CT be a configuration
of T . Then T, c |= α will stand for α being satisfied at c in T . This notion is
defined inductively as follows:

• T, c |= tt , T, c |= ¬α, and T, c |= α∨β are defined in the expected manner.

• T, c |= 〈a〉α iff there exists c′ ∈ CT with c a−→T c
′ with T, c′ |= α.

• T, c |= αU β iff there exists c′ ∈ CT with c ⊆ c′ such that T, c′ |= β.
Moreover, for every c′′ ∈ CT , c ⊆ c′′ ⊂ c′ implies T, c′′ |= α.

• T, c |= 〈a−1〉tt iff there exists c′ ∈ CT with c′ a−→T c.

As usual, we say that a formula α ∈ LTrL(Σ, I) is satisfiable if there exists
a trace T ∈ TR and c ∈ CT such that T, c |= α. Moreover, T satisfies α,
denoted T |= α, in case T, ∅ |= α. The language defined by α is given by
Lα = {T ∈ TR | T |= α}. We will say that L is definable in LTrL(Σ, I) iff there
exists some formula α of such that Lα = L.

Notice that LTrL is a very natural generalization of LTL to the setting of
traces, where configurations are the trace-theoretic equivalents of computation
prefixes. Thus it seems like a direct trace-based analogue of LTL. In the obvious
manner, we derive 3α = ttUα and its dual 2α = ¬3¬α. With these definitions,
it’s very easy to express global liveness properties.

Example 3.4.6 Let (Σ, I) be any trace alphabet and let A ⊆ Σ be a set of
pairwise independent events. The existence of infinitely many configurations
with the top events labelled exactly with the actions of A is then described by

αA
def= 23(

∧
a∈A

〈a−1〉tt ∧
∧
b6∈A

¬〈b−1〉tt).
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Indeed, all global liveness properties can be expressed in LTrL; the major
result concerning LTrL is the following.

Theorem 3.4.7 (Thiagarajan, Walukiewicz [139]) Let L ⊆ TRω(Σ, I).
Then L is definable in LTrL(Σ, I) if and only if L is definable in FO(Σ, I).

Thus, except for the addition of the restricted past-operators, LTrL is a gener-
alization of Kamp’s Theorem to the much richer setting of traces.

A natural question to ask is whether or not one can get a direct analogue
of Kamp’s Theorem by removing the restricted past-operators from LTrL to
obtain exactly LTL interpreted directly over traces. Meyer and Petit did show
that the past-operators can be eliminated without loss of expressive power when
the logic is interpreted over finite traces, but the proof [90] turned out to contain
a mistake, which is not readily correctable.

Later Diekert and Gastin exhibited an expressively complete temporal logic,
LTLf , based on LTrL without past-operators, but at the expense of introduc-
ing new future filtering modalities [25]. However, very recently Diekert and
Gastin [26] have shown that these filtering modalities are not necessary to ob-
tain expressive completeness.

Theorem 3.4.8 (Diekert, Gastin [26]) Let L ⊆ TR(Σ, I). Then L is defin-
able in LTL(Σ, I) if and only if L is definable in FO(Σ, I).

Hence, LTL for traces—interpreted directly over configurations of traces instead
of finite prefixes of sequences—is indeed expressively complete with respect to
first-order logic for traces. In this sense, Thiagarajan and Walukiewicz, together
with Diekert and Gastin, have provided exactly the linear time temporal for
traces.

Unfortunately, this configuration-based logic does not have a matching time
complexity in relation to LTL. Walukiewicz has shown that the satisfiability
problem for LTrL (and also LTL for traces) is nonelementary hard [149]. These
discouraging news have lead Walukiewicz [151] and others to conjecture that
there exists no expressively complete and elementary-time decidable temporal
logic over traces patterned after LTL.

Gastin, Meyer, and Petit [42] show that one can still give an automata-
theoretic decision procedure for LTrL. The procedure does not, however, gener-
alize the classical solution for LTL of Section 2.3.2, but instead constructs the
Büchi automaton Bα0 in a modular fashion by induction on α0.

3.5 Product Languages

We will now exhibit a restricted but useful class of distributed behaviours that
we call product behaviours. Such behaviours are generated by a network of
sequential agents that coordinate their activities by performing common actions
together. It turns out that product behaviours are naturally trace consistent.
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They also constitute a clean and yet nontrivial subset of the class of trace
behaviours.

We start by defining the regular product languages and sketch how they can
be characterized by a subclass of the asynchronous automata. Finally, we solve
the satisfiability and model checking problems for product versions of linear
time temporal logics via these automata.

3.5.1 Regular product languages

We begin by bringing out the product languages. To this end we fix a distributed
alphabet Σ̃ for the remainder of the section and define the K-ary operation ⊗ :
2Σ∞

1 × 2Σ∞
2 × · · · × 2Σ∞

K → 2Σ∞
via ⊗(L1, . . . , LK) = {σ | σ�Σi ∈ Li for each i}.

In what follows we will write L = L1 ⊗ L2 · · · ⊗ LK to denote the fact
⊗(L1, . . . , LK) = L. We say that L ⊆ Σ∞ is a direct product language over Σ̃
iff there exist Li ⊆ Σ∞

i for each i such that L = L1 ⊗ L2 ⊗ · · · ⊗ LK . Here and
elsewhere we will say “product language” instead of “product language over Σ̃”
etc.

As usual, for an alphabet Σ and L ⊆ Σ∞ we say that L is regular iff L∩Σ∗

is a regular subset of Σ∗ and L ∩ Σω is an ω-regular subset of Σω as described
in Section 2.3.1.

We can now define the class of regular product languages as follows. R⊗
0 (Σ̃)

is the subset of 2Σ∞
given by L ∈ R⊗

0 (Σ̃) iff L = L1 ⊗ L2 ⊗ · · · ⊗ LK with
each Li a regular subset of Σ∞

i . The class of regular product languages over Σ̃,
denoted R⊗(Σ̃), is then the least subset of 2Σ∞

which contains R⊗
0 and is closed

under finite unions. As usual, we shall often write R⊗
0 instead of R⊗

0 (Σ̃) and
write R⊗ instead of R⊗(Σ̃). An interesting observation concerning R⊗, due to
Thiagarajan [136], is that R⊗ is closed under boolean operations. Moreover,
it’s not hard to see that product languages are naturally trace consistent.

3.5.2 Product automata

We will bring out how the regular product languages constitute a nice, nontriv-
ial, but proper subclass of the regular trace languages. It will become clear that
the product languages can intuitively be viewed as the “communication free”
trace languages.

As a first step, we will characterize the regular product languages in terms
of automata. Recall that the transition relation of an asynchronous automaton
Z = ({Sp}, {−→a}, Sin, {(Fp, Fωp )}) as described in Section 3.2.3) is given as a
relation between a-states, i.e. −→a ⊆ Sloc(a) × Sloc(a) with a ∈ Σ. Intuitively,
communication between the component automata is performed by enforcing that
only some of the possible joint moves might be allowed and that information
is shared among the participating processes by a global interrelated update of
their resulting local states.

Here, we will restrict attention to the subset of asynchronous automata where
the a-transitions are products of local component transition relations. In this
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sense, these automata correspond to networks of processes purely synchronizing
without exchanging information. Formally, a product Büchi automaton over Σ̃
is a structure B⊗ = ({Bi}Ki=1, Qin) where Bi = (Qi,−→i, Fi, F

ω
i ) for each i, such

that:

• Qi is a finite set of i-local states.

• −→i ⊆ Qi × Σi ×Qi is the transition relation of the ith component.

• Fi ⊆ Qi is a set of i-local finitary accepting states.

• Fωi ⊆ Qi is a set of i-local infinitary accepting states.

• Qin ⊆ Q1 ×Q2 × · · · ×QK is a set of global initial states.

Let B⊗ = ({Bi}Ki=1, Qin) be a product Büchi automaton over Σ̃. From now
on we will say just “product automaton”. Also, we shall often suppress mention
of Σ̃ and write {Bi} instead of {Bi}Ki=1. Let Bi = (Qi,−→i, Fi, F

ω
i ). Then we

set QB⊗
G = Q1 × Q2 × · · · × QK . When B⊗ is clear from the context, we will

write QG instead of QB⊗
G . The global transition relation of B⊗ is denoted as

−→B⊗ and it is the subset of QG × Σ ×QG given by:

q
a−→B⊗ q′ iff ∀ i ∈ loc(a) : q[i] a−→i q

′[i] and ∀ i 6∈ loc(a) : q[i] = q′[i].

Let σ ∈ Σ∞. A run of B⊗ over σ is a map ρ : prf(σ) −→ QG which satisfies:

• ρ(ε) ∈ Qin.

• ρ(τ) a−→B⊗ ρ(τa) for every τa ∈ prf(σ).

A simple but useful property of runs is the following. Suppose ρ is a run of the
product automaton B⊗ over σ. Suppose further that τ, τ ′ ∈ prf(σ) such that
τ � Σi = τ ′ � Σi for some i. Then ρ(τ)[i] = ρ(τ ′)[i].

Let ρ be a run of the product automaton B⊗ over σ. Then ρ is accepting iff
for each i, the following condition is satisfied:

• If σ � Σi is finite then ρ(τ)[i] ∈ Fi where τ ∈ prf(σ) such that τ � Σi =
σ � Σi.

• If σ � Σi is infinite then ρ(τa)[i] ∈ Fωi for infinitely many τa ∈ prf(σ) with
a ∈ Σi.

We now define L(B⊗), the language accepted by the product automaton B⊗

as L(B⊗) = {σ | ∃ an accepting run of B⊗ over σ}. It is now easy to see that
product automata can be viewed as a subclass of the asynchronous automata.
The following brings out an important characterization.

Theorem 3.5.1 (Thiagarajan [136]) Let L ⊆ Σ∞. Then L is a regular prod-
uct language if and only if L is accepted by some product automaton.

Product automata can be naturally applied to settle the satisfiability and
model checking problems for the logic LTL⊗ to be introduced in the next section.
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3.5.3 Product logics

We now wish to bring out a product version of LTL denoted LTL⊗(Σ̃). The set
of formulas and their locations are given by:

• tt is a formula and loc(tt) = ∅.

• Suppose α and β are formulas. Then so are ¬α and α ∨ β. Furthermore,
loc(¬α) = loc(α) and loc(α ∨ β) = loc(α) ∪ loc(β).

• Suppose a ∈ Σi and α is a formula with loc(α) ⊆ {i}. Then 〈a〉iα is a
formula and loc(〈a〉iα) = {i}.

• Suppose α and β are formulas such that loc(α), loc(β) ⊆ {i}. Then αUiβ
is a formula. Moreover, loc(αUiβ) = {i}.

We note that each formula in LTL⊗(Σ̃) is a boolean combination of formulas
taken from the set

⋃
i∈Loc LTL⊗

i (Σ̃) where, for each i,

LTL⊗
i (Σ̃) = {α | α ∈ LTL⊗(Σ̃) and loc(α) ⊆ {i} }.

It is thus easy to see that at least in terms of syntax, LTL⊗ is a sublogic of
TrPTL (and in fact TrPTLcon). The semantics to be presented below supports
this view, and indeed LTL⊗ was isolated in [137] as a nice trace consistent class
of formulas and shown equivalent to a natural subset of TrPTL. For this reason,
we present below the semantics in terms of strings and their projections onto
components.

As before, we will often suppress the mention of Σ̃. We will also often
write τi, τ ′i and τ ′′i instead of τ � Σi , τ ′ � Σi and τ ′′ � Σi, respectively, with
τ, τ ′, τ ′′ ∈ Σ∗. A model is a sequence σ ∈ Σ∞ and the semantics of this logic is
given, as before, with τ ∈ prf(σ).

• σ, τ |= tt , σ, τ |= ¬α, and σ, τ |= α ∨ β are as usual.

• σ, τ |= 〈a〉iα iff there exists τ ′ ∈ prf(σ) such that σ, τ ′ |= α and τ ′i = τia.
(recall that τ ′i = τ ′ � Σi.)

• σ, τ |= αUiβ iff there exists τ ′ such that ττ ′ ∈ prf(σ) and σ, ττ ′ |= β.
Further, for every τ ′′ ∈ prf(τ ′), if ε � τ ′′i ≺ τ ′i then σ, ττ ′′ |= α.

We will say that a formula α ∈ LTL⊗(Σ̃) is satisfiable if there exist σ ∈ Σ∞

and τ ∈ prf(σ) such that σ, τ |= α. The language defined by α is given by
Lα = {σ ∈ Σ∞ | σ, ε |= α}. We say that a language L ⊆ Σ∞ is definable in
LTL⊗(Σ̃) iff there exists some α such that Lα = L. The modalities Oi, 3i

and 2i are once again derivable in the standard fashion as seen earlier in this
chapter.

Even though LTL⊗ might seem expressively weak, many interesting proper-
ties can still be stated easily.
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Example 3.5.2 Consider the distributed alphabet Σ̃0 = ({a, b}, {b, c}, {c, d})
and the formula 21O1tt ⇒ 23O3tt . This property asserts that along every com-
putation, if the first component executes infinitely often then so does the third
component. The point to note is that the first component and the third compo-
nent do not have any common events and hence there is no direct communication
between them. Nevertheless through the power of the boolean connectives alone,
the logic can make assertions about the way components that are ”far apart”
are required to influence each other’s behaviour.

The satisfiability problem for LTL⊗(Σ̃) can be solved by effectively con-
structing a product automaton B⊗

α0
for each α0 ∈ LTL⊗(Σ̃) such that the lan-

guage accepted by B⊗
α0

is nonempty if and only if α0 is satisfiable [137]. The
construction is a generalization of the one for LTL in Section 2.3.2 and can
be viewed as a simplification of the construction for TrPTL (and TrPTLcon)
presented in Section 3.4.1.

Theorem 3.5.3 (Thiagarajan [137]) The satisfiability problem for LTL⊗ is
decidable in exponential time.

The solution to the satisfiability problem will at once lead to a solution to
the model checking problem for programs modeled as a product of sequential
agents. A product program (over Σ̃) is a structure Pr⊗ = ({Pri}Ki=1, Q

Pr
in )

where, for each i, Pri = (Qi,−→i) with Qi a finite set and −→i ⊆ Qi×Σi×Qi.
As usual, it is not difficult to prove the model checking problem for LTL⊗ is
decidable in time O(|Pr| · 2|α0|). The details can be found in Chapter 8.

We will consider the expressiveness of LTL⊗ in the next section, but it
is easy to see that it cannot express all regular product languages. Hence, one
might look for natural extensions of LTL⊗ to capture exactly the class of regular
product languages.

One possibility is to define a product version of DLTL by strengthening the
until-operator in a manner similar to the one in Section 2.4.3. More precisely,
we replace the defining clause of αUiβ by

• Suppose α and β are formulas such that loc(α), loc(β) ⊆ {i}, and suppose
that π is a regular expression over Σi. Then αUπi β is a formula. Moreover,
loc(αUπi β) = {i}.

The semantics is then changed accordingly as follows:

• σ, τ |= αUπi β iff there exists τ ′ such that ττ ′ ∈ prf(σ) with τi ∈ ||π|| and
σ, ττ ′ |= β. Further, for every τ ′′ ∈ prf(τ ′), if ε � τ ′′i ≺ τ ′i then σ, ττ ′′ |= α.

The resulting logic, denoted DLTL⊗, is explored in more detail in Chapter 7.
With the obvious notion of definability carried over, it turns out that DLTL⊗

is indeed expressively complete with respect to R⊗.

Theorem 3.5.4 Let L ⊆ Σ∞. Then L is definable in DLTL⊗ if and only if L
is a regular product language.
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Furthermore, given a formula α0 of DLTL⊗, we can generalize the construc-
tions for DLTL in Chapter 6 and LTL⊗ [137] to obtain an automaton B⊗

α0
. As

before, one can show that α0 is satisfiable iff L(B⊗
α0

) 6= ∅. This leads to:

Theorem 3.5.5 The satisfiability problem for DLTL⊗ is decidable in exponen-
tial time.

As for LTL⊗ above, the model checking problem for DLTL⊗ is decidable in time
O(|Pr| · 2|α0|).

3.6 Expressiveness of Logics for Traces

As we have seen, there are very many different ways to extend the classical linear
time temporal logic LTL to the setting of Mazurkiewicz traces. None of these
extensions have been commonly accepted as the right extension of LTL, mainly
because the nonelementary lower bound for the configuration-based logics makes
them compare unfavourably in relation to the exponential-time decidable LTL
for sequences.

The tight relationship between first-order logic for strings and first-order
logic for traces, as brought out in Proposition 3.3.1, suggests that one should
look for an elementary-time (preferably exponential-time) logic equal in expres-
sive power to the first-order theory of traces. While such a logic has yet to
be identified (if it exists!), we will conclude this chapter by summarizing the
relative merits of the logics encountered in the chapter and giving an overview
of their expressive powers.

Surprisingly, this area has turned out to be far more challenging than its
interleaving counterpart, mainly because the logics are parameterized by trace
alphabets which, even with the same set of underlying system actions Σ, might
have very different independence structure dictated by the relation I ⊆ Σ × Σ.

Hence, for a logic A to be at least as expressive as B we will demand that any
property L ⊆ TR(Σ, I) expressible by a formula of B(Σ, I) is also expressible by
a formula of A(Σ, I), for every trace alphabet (Σ, I). A is then more expressive
than B if A is at least as expressive as B and there exists a trace alphabet
(Σ, I) and a property L ⊆ TR(Σ, I) such that L is definable in A(Σ, I) but not
in B(Σ, I). The notions of expressive equivalence and incomparability should
now be obvious from these remarks.

A quick overview is displayed in Figure 3.2. A dotted (solid) arrow from A
to B indicates that B is at least as expressive as (strictly more expressive than)
A. A directed squiggled line from A to B indicates that B does not subsume
A in terms of expressive power, whereas undirected squiggled lines denote that
the logics are incomparable in terms of expressive power.

We first recall that there exist two logics expressively equivalent to monadic
second-order logic; Niebert’s νTrPTL as mentioned in Section 3.4.1, and the
family of µ−co by Walukiewicz from Section 3.4.2. Both are exponential-time
decidable. At present there exists no (known) event- or location-based tempo-
ral logics expressively complete with respect to first-order logic. As sketched in
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Figure 3.2: Overview of relative expressiveness.

Section 3.4.3, the configuration-based logic LTrL by Thiagarajan and Walukie-
wicz and its sublogic LTL by Diekert and Gastin are expressively complete with
respect to first-order logic, but both of these have nonelementary complexity.

It follows from the sequential case where I = ∅ that FO is strictly weaker
than MSO. One example language separating these logics are “a is performed
at every even position” as mentioned in Section 2.4.3. It turns out that this is a
recurring phenomenon; virtually all separation results are separations inherited
trivially from the sequential setting.

It is not hard to see that TrPTL is expressible within FO [97], but it is
not known whether this inclusion is strict. It is widely believed, however, that
TrPTL is expressively strictly weaker than FO. Obviously, TrPTLcon is a syn-
tactic subset of TrPTL and hence expressively no stronger than TrPTL. Again,
it is neither known whether TrPTLcon is strictly weaker than the full TrPTL
nor whether it is strictly weaker than first-order logic. It is not hard to translate
formulas of TrPTLcon into equivalent formulas of TLC. This is done by deriv-
ing an until-operator of TLC which only operates over locations of some given
distributed alphabet, and translating the i-type until operators of TrPTLcon to
this derived operator of TLC. We will, however, not bring out the details here.

The first nontrivial separation result is due to Thiagarajan [136], who showed
that LTL⊗ is strictly weaker that TrPTLcon. (Recall from Section 3.5.3 that
LTL⊗ is a syntactic subset of TrPTLcon.) This can be brought out by consider-
ing the property L = (abd+ bad+ a′b′d+ b′a′d)ω over the distributed alphabet
Σ̃ = ({a, a′, d}, {d, b, b′}). It is not hard to see that L is trace consistent and
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that one can easily exhibit a TrPTLcon-formula defining L. However, Thiagara-
jan shows that for direct product languages L′ and σ ∈ Σ∞, it is the case that
σ ∈ L′ if and only if for each i there exist σi ∈ L′ such that σ � Σi = σi � Σi.
Thus one shows that L cannot be a finite union of such languages, and hence
not a product language. Intuitively, “mixed” substrings of the form ab′d, b′ad,
a′bd, and ba′d would then inevitably also have to be allowed. In this sense, the
separation once again goes back to properties of strings.

This example is in fact also an instance of a regular trace language which
is not a regular product language. Hence R⊗ constitutes a proper subclass of
the regular trace (consistent) languages. It is easy in the obvious way to define
product versions of first-order and monadic second-order logic, which would
then be expressively equivalent to LTL⊗ and DLTL⊗, respectively. Once again,
as the sequential setting is recovered by the distributed alphabet Σ̃ = (Σ), it
follows from the classical theory that FO⊗ is strictly weaker than MSO⊗. The
example property L above illustrates in conjunction with the sequential setting
the fact that MSO⊗ is incomparable to FO and the expressively weaker TrPTL
and TrPTLcon.

Ramanujam [115] introduced four logics L0, L1, L2, and L3 with each Li
being a syntactic subset of Li+1 for i = 0, 1, 2. As mentioned in Section 3.4.1, L0

and L1 can be identified with LTL⊗ and TrPTLcon. It can be seen that they’re
all definable within first-order logic, but their exact expressiveness was not in-
vestigated. We conjecture however that all four are expressible with TrPTL.

Finally, we consider TLC and its extension TLC∗. It is easy to see that in
the sequential case, both TLC and TLC∗ boil down to past-augmented LTL,
which by Kamp’s Theorem is known to be expressively complete with respect to
FO and strictly weaker than MSO. However, one can formally show that TLC∗

is expressively strictly stronger than TLC exactly when the dependency relation
of the underlying trace alphabet is not transitive. This is done in Chapter 9,
where we tailor the Ehrenfeucht-Fräıssé game of Etessami and Wilke [37] to the
setting of Mazurkiewicz traces to demonstrate the separation. More precisely,
we show that the “counting” property Labd = [abdabd]∗ is undefinable in TLC
over trace alphabets with I = {(a, b), (b, a)} such as in Example 3.1.1. As an
corollary, we obtain that TLC∗ is not included in FO.

Neither TLC nor TLC∗ has a completely resolved relationship to FO, but
progress has been made very recently [151], as Walukiewicz has identified an
example of a property definable in TLC, but not in FO. This also witnesses
our inclusion of TrPTLcon into TLC to be strict. It is still an open problem,
however, whether TLC can express all properties of FO, though it is believed
not to be the case.

In effect, the game-theoretic approach provide the only separation results
of logics over traces phrased directly over the partial orders, without relying
on the properties of the sequential case. Moreover, it is also applicable to
location- and configuration-based logics, and might illuminate a path towards
future separation results within the area of temporal logics over traces.



Chapter 4

Message Sequence Charts

The previous chapter demonstrates how the basic formulation of automata-
based verification leads to elegant but nontrivial generalizations in the nonin-
terleaving setting of Mazurkiewicz traces. Such objects are ideally suited for the
specification and verification of distributed systems composed of independently
computing agents occasionally communicating by handshake mechanisms.

Recently there has been a spurt of activity within the area of formal descrip-
tion and validation of distributed systems such as telecommunication software,
where the computing agents communicate by sending messages to each other.
However, it turns out that the synchronous view of distributed systems on which
traces are based becomes inappropriate when the fundamental communication
paradigm is message-passing. Instead the predominant description technique is
that of Message Sequence Charts (MSCs), which have an appealing and intuitive
visual syntax. These objects are particularly well suited for the description of
scenarios for distributed telecommunications [121] and are often used to capture
system requirements in the early design stages.

In its basic form, an MSC depicts a single partially-ordered execution of
a distributed system which just describes the exchange of messages between
the processes of the system. A collection of MSCs is used to capture some
set of scenarios that a designer might want the system to exhibit (or avoid).
A standard way to generate a collection of MSCs is to use a Hierarchical (or
High-level) Message Sequence Chart (HMSC) [84]. An HMSC is a finite directed
graph in which each node is labelled, in turn, by an HMSC. The HMSCs labelling
the vertices are not refer to each other. The collection of MSCs represented by
an HMSC consists of all MSCs obtained by tracing a path in the HMSC from
an initial vertex to a terminal vertex and concatenating the MSCs that are
encountered along the path.

Because of the restrictions on the labelling of HMSCs, we can derive an
equivalent Message Sequence Graph (MSG) by flattening out the hierarchical
labelling in an HMSC. In other words, an MSG is a graph where each node is
labelled by a simple MSC. Like an HMSC, an MSG defines a collection of MSCs
obtained by concatenating the MSCs labelling each path from an initial ver-
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tex to a terminal vertex. Though HMSCs provide more succinct specifications
than MSGs, they are only as expressive as MSGs. Thus, one often restricts
one’s attention to characterizing structural properties of MSGs rather than of
HMSCs [5, 98, 100].

In this chapter, we consider some foundational steps towards transferring
the well-established techniques of the previous chapters to the message-passing
setting of MSCs. In order to do so, we first propose notions of regularity,
“message-passing” automata, and monadic second-order logic. Unlike Chap-
ters 2 and 3, we will confine our attention to finite MSCs only. This is due to
the fact that the issues investigated here have at present no counterparts in the
infinite setting. We feel however that our results will serve as a good launching
pad for a similar account concerning infinite MSCs. This should then lead to the
design of appropriate temporal logics and automata-theoretic solutions (based
on message-passing automata) to model-checking problems for these logics.

We begin by investigating the basic objects of study in Section 4.1 and
present, like for traces, two equivalent representations of MSCs. Guided by
Chapter 3 we propose a notion of regularity of collections of MSCs. In Sec-
tion 4.2 we introduce a class of finite-state acceptors called message-passing
automata, which accept exactly the MSC languages that are regular in our
sense. We provide another characterization of regular MSC languages in terms
of definability of a natural monadic second-order logic in Section 4.3. Then, in
Section 4.4, we define MSGs and survey the existing theory of detecting certain
specific properties of MSGs. It turns out that not all languages described by
MSGs are regular. Conversely, not all regular MSC languages can be defined
by MSGs. Following this, in Section 4.5, we proceed by identifying the key
notion of finitely generated MSC languages, which is a property shared by all
languages of MSGs. We then exhibit a subclass of MSGs which defines precisely
those languages that are both finitely generated and regular. In this way, we
give a precise characterization of collections of MSCs which are both regular
and definable by MSGs. We conclude the chapter by briefly discussing various
options of regular expressions for MSCs.

This material provides the background for our contributions in Chapters 10
and 11. These very recent developments are guided by the theory and results
of Chapters 1–3.

4.1 Message Sequence Charts

We first introduce MSCs by means of its original visual representation, which
induces a restricted labelled partial order in the natural manner. Then we show
how MSCs can be given an equivalent representation in terms of equivalence
classes of certain strings.
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Figure 4.1: An example MSC over {p, q, r}.

4.1.1 MSCs as labelled partial orders

Through the rest of the chapter, we fix a finite set of processes (or agents) P and
let p, q, r range over P . For each p ∈ P we define Σp = {p!q | p 6= q}∪{p?q | p 6=
q} to be the set of communication actions in which p participates. The action
p!q is to be read as p sends to q and the action p?q is to be read as p receives
from q. At our level of abstraction, we shall not be concerned with the actual
messages that are sent and received. We will also not deal with the internal
actions of the agents. We set Σ =

⋃
p∈P Σp and let a, b range over Σ. Also, we

denote the set of channels by Ch = {(p, q) | p 6= q} and let c, d range over Ch .
As in the previous chapter, a Σ-labelled poset is a structure M = (E,≤, λ)

where (E,≤) is a poset and λ : E → Σ is a labelling function. For p ∈ P and
a ∈ Σ, we set Ep = {e | λ(e) ∈ Σp} and Ea = {e | λ(e) = a}, respectively.
For each c ∈ Ch, we define the relation Rc = {(e, e′) | λ(e) = p!q, λ(e′) =
q?p and |↓e ∩ Ep!q| = |↓e′ ∩ Eq?p|}. Finally, for each p ∈ P , we define the
relation Rp = (Ep × Ep) ∩ ≤.

An MSC (over P) is a finite Σ-labelled poset M = (E,≤, λ) which satisfies
the following conditions:

• Each Rp is a linear order.

• If p 6= q then |Ep!q| = |Eq?p|.

• ≤ = (RP ∪RCh)∗ where RP =
⋃
p∈P Rp and RCh =

⋃
c∈Ch Rc.

In diagrams, the events of an MSC are presented in visual order. The events
of each process are arranged in a vertical line and the members of the relation
RCh are displayed as horizontal or downward-sloping directed edges. We illus-
trate the idea with the example depicted on Figure 4.1. There P = {p, q, r}.
For x ∈ P , the events in Ex are arranged along the line labelled (x) with smaller
(relative to ≤) events appearing above the larger events. The RCh -edges across
agents are depicted by horizontal edges—for instance e3 R(r,q) e

′
2. The labelling

function λ is easy to extract from the diagram—for example, λ(e1) = p!q and
λ(e′2) = q?r.

Henceforth, we will identify an MSC with its isomorphism class. We let
MSC(P) be the set of MSCs over P . An MSC language is a subset L ⊆ MSC(P).
From now on, we will often omit the subscripts and just denote MSC(P) by MSC

and ΣP by Σ when no confusion arises.
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4.1.2 MSCs as sets of strings

We will define regular MSC languages in terms of their linearizations, so we
investigate here the relationship between the MSCs and their linearizations.

The notion of linearization, as defined for traces in Section 3.1.1, can be
carried over to general Σ-labelled partial orders and, in particular, directly to
the setting of MSCs. For an MSC M ∈ MSC, we let lin(M) denote the set of
linearizations of M and set lin(L) =

⋃
{lin(M) |M ∈ L} for an MSC language

L ⊆ MSC. We will see that it is fruitful to identify MSCs also with their set of
linearizations in a manner very similar to the two equivalent representations of
traces in Sections 3.1.1 and 3.1.2, respectively. In this way we identify the MSC
M in Figure 4.1 with lin(M) = {p!q q?p r!q q?r, p!q r!q q?p q?r, r!q p!q q?p q?r}.

In the literature (e.g. [3, 99, 100]) one sometimes considers a more generous
notion of linearization where two adjacent receive actions in a process corre-
sponding to messages from different senders are deemed causally independent.
For instance, p!q r!q q?r q?p would also be a valid linearization of the MSC in
Figure 4.1. One then refers to the causal order of the MSC (as opposed to the
visual order). The present results go through with suitable modifications even
in the presence of this more generous notion of linearization.

To directly characterize the subsets of Σ∗ that correspond to MSC languages,
we proceed as follows. Let Com = {(p!q, q?p) | (p, q) ∈ Ch}. We say that σ ∈ Σ∗

is proper if for every prefix τ of σ and every pair (a, b) ∈ Com , |τ |a ≥ |τ |b. We
say that σ is complete if σ is proper and |σ|a = |σ|b for every (a, b) ∈ Com .
Next we define a context-sensitive independence relation I ⊆ Σ∗ × (Σ × Σ) as
follows: (σ, a, b) ∈ I if σab is proper, a ∈ Σp and b ∈ Σq for distinct processes
p and q, and if (a, b) ∈ Com then |σ|a > |σ|b. Observe that if (σ, a, b) ∈ I then
(σ, b, a) ∈ I.

Let Σ◦ = {σ | σ ∈ Σ∗ and σ is complete}. We then define ∼ ⊆ Σ◦ × Σ◦

to be the least equivalence relation such that if σ = σ1abσ2, σ′ = σ1baσ2 and
(σ1, a, b) ∈ I then σ ∼ σ′. It is important to note that ∼ is defined over Σ◦

(and not Σ∗). It is easy to verify that for each M ∈ MSC, lin(M) is a subset of
Σ◦ and is in fact a ∼-equivalence class over Σ◦.

We define L ⊆ Σ∗ to be a string MSC language if there exists an MSC
language L ⊆ MSC(P) such that L =

⋃
{lin(M) | M ∈ L}. It is easy to see

that L ⊆ Σ∗ is a string MSC language if and only if L is a subset of Σ∗ such
that every string in L is complete and L is ∼-closed (that is, for each σ ∈ Σ◦,
if σ ∈ L and σ ∼ σ′ then σ′ ∈ L).

Clearly MSC languages and string MSC languages represent each other in
a precise manner. Below we construct representation maps sm : Σ◦/∼ → MSC

and ms : MSC → Σ◦/∼ and sketch briefly that these maps are “inverses” of
each other.

We first define sm : Σ◦ → MSC. Let σ ∈ Σ◦. Then sm(σ) = (E,≤, λ), where

• E = {τa | τa ∈ prf(σ)}. (Thus E = prf(σ) − {ε}.)

• ≤ = (RP ∪ RCh)∗ where RP =
⋃
p∈P Rp, RCh =

⋃
c∈Ch Rc. The con-

stituent relations are defined as follows. For each p ∈ P , (τa, τ ′b) ∈ Rp
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iff loc(a) = loc(b) = p and τa ∈ prf(τ ′b). Moreover, for each c ∈ Ch,
(τa, τ ′b) ∈ Rc iff a = p!q and b = q?p for some p, q ∈ P and furthermore
|τa|a = |τ ′b|b.

• For τa ∈ E, λ(τa) = a.

One can show that σ ∼ σ′ implies sm(σ) = sm(σ′). This observation guarantees
that sm′([σ]∼) = sm(σ) is well-defined. In fact, we shall henceforth write sm to
denote both sm and sm′.

Conversely, we define the map ms : MSC → Σ◦/∼ as: ms(M) = lin(M)
and it is not hard to show that ms is well-defined. We can also show that for
every τ ∈ Σ◦,ms(sm(σ)) = [σ]∼ and for every M ∈ MSC, sm(ms(M)) = M .
In this sense, this justifies the claim that Σ◦/∼ and MSC are two equivalent
ways of representing the same class of objects. Hence, abusing terminology, we
will write “MSC language” to mean “string MSC language”. From the context,
it should be clear whether we are working with MSCs from MSC or complete
strings over Σ. As a rule of thumb, we will use L to denote the former and L
to denote the latter, but this distinction is not always firm.

We can now finally bring out our notion of regular collections of MSCs. We
will say that L ⊆ MSC is a regular MSC language if the corresponding string
MSC language is a regular subset of Σ∗. Thus, a language L of MSCs is regular
in case lin(L) is regular in the classical sense. Note that, unlike the settings of
strings (or trees or Mazurkiewicz traces), the universe MSC is itself not regular
according to our definition. This fact has a strong bearing on the automata-
theoretic and logical formulations in our work, as will become evident later in
this chapter.

We conclude this section by introducing the notion of B-bounded MSC lan-
guages. Let B ∈ N be a natural number. We say that a complete string
σ is B-bounded if for each prefix τ of σ and for each channel (p, q) ∈ Ch,
|τ |p!q − |τ |q?p ≤ B. We say that L ⊆ Σ◦ is B-bounded if every string σ ∈ L
is B-bounded. One can show that any regular MSC language is B-bounded
for some B ∈ N. In fact, it is easy to see that a crude bound is always given
by |AL|, where AL is the minimal DFA accepting L. The optimal bound can
however easily be computed from L.

Finally, we shall say that the MSC M is B-bounded if every string in lin(M)
is B-bounded. A collection of MSCs is B-bounded if every member of the
collection is B-bounded. In the following, we let MSC(P , B) be the set of B-
bounded MSCs over P .

4.2 Automata over MSCs

In this section we define a class of automata characterizing the class of regular
MSC languages proposed in the previous section. In this way we obtain a
class of finite-state acceptors which can be used as a basis for carrying over the
automata-based verification technique of the previous chapters to the setting of
MSC languages.
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Our class of automata can be seen as message-passing variations of the asyn-
chronous automata of Section 3.2.2. In fact, recalling the remarks on page 32,
the present class of automata perhaps better deserves to be denoted “asyn-
chronous automata”.

To bring this out, we say that a message-passing automaton over Σ is a
structure M = ({Ap}p∈P ,∆, sin, F ) where:

• ∆ is a finite alphabet of messages.

• Each component Ap is of the form (Sp,−→p) where

– Sp is a finite set of p-local states.

– −→p ⊆ Sp × Σp × ∆ × Sp is the p-local transition relation.

• sin ∈
∏
p∈P Sp is a global initial state.

• F ⊆
∏
p∈P Sp is a set of global final states.

The local transition relation −→p specifies how the process p sends and
receives messages. The transition (s, p!q,m, s′) specifies that when p is in the
state s, it can send the messagem to q (by executing the communication action
p!q) and go to the state s′. The message m is, as a result, appended to the
queue of messages in the channel (p, q). Similarly, the transition (s, p?q,m, s′)
signifies that at the state s, the process p can receive the message m from q by
executing the action p?q and go to the state s′. The message m is removed from
the head of the queue of messages in the channel (q, p).

The set of global states of M is given by
∏
p∈P Sp. For a global state s, we

let sp denote the pth component of s. A configuration is a pair (s, χ) where s is
a global state and χ : Ch → ∆∗ is the channel state which specifies the queue of
messages currently residing in each channel c. The initial configuration of M is
(sin, χε) where χε(c) is the empty string ε for every channel c. The set of final
configurations of M is F × {χε}.

We now define the set of reachable configurations ConfM and the global
transition relation =⇒ ⊆ ConfM × Σ × ConfM inductively as follows:

• (sin, χε) ∈ ConfM.

• Suppose (s, χ) ∈ ConfM, (s′, χ′) is a configuration and (sp, p!q,m, s′p) ∈
−→p such that the following conditions are satisfied:

– r 6= p implies sr = s′r for each r ∈ P .

– χ′((p, q)) = χ((p, q)) ·m and for c 6= (p, q), χ′(c) = χ(c).

Then (s, χ)
p!q
=⇒ (s′, χ′) and (s′, χ′) ∈ ConfM.

• Suppose (s, χ) ∈ ConfM, (s′, χ′) is a configuration and (sp, p?q,m, s′p) ∈
−→p such that the following conditions are satisfied:

– r 6= p implies sr = s′r for each r ∈ P .
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Figure 4.2: A 3-bounded message-passing automaton.

– χ((q, p)) = m · χ′((q, p)) and for c 6= (q, p), χ′(c) = χ(c).

Then (s, χ)
p?q
=⇒ (s′, χ′) and (s′, χ′) ∈ ConfM.

Let σ ∈ Σ∗. A run of M over σ is a map ρ : prf(σ) → ConfM such that
ρ(ε) = (sin, χε) and for each τa ∈ prf(σ), ρ(τ) a=⇒ ρ(τa). The run ρ is accepting
if ρ(σ) is a final configuration. We define L(M) = {σ | M has an accepting run
over σ}. It is easy to see that every member of L(M) is complete and L(M) is
∼-closed in the sense that if σ ∈ L(M) and σ ∼ σ′ then σ′ ∈ L(M).

Unfortunately, L(M) need not be regular. Consider, for instance, a message-
passing automaton for the canonical producer-consumer system in which the
producer p sends an arbitrary number of messages to the consumer q. Since we
can reorder all the p!q actions to be performed before all the q?p actions, the
queue in channel (p, q) can grow arbitrarily long. Hence, the set of reachable
configurations of this system is not bounded and the corresponding language is
not regular.

For B ∈ N, we say that a configuration (s, χ) of the message-passing automa-
ton M is B-bounded if for every channel c ∈ Ch, it is the case that |χ(c)| ≤ B.
We say that M is a B-bounded automaton if every reachable configuration
(s, χ) ∈ ConfM is B-bounded. It is not difficult to show that given a message-
passing automaton M and a bound B ∈ N, one can decide whether or not M
is B-bounded.

Figure 4.2 depicts an example of a 3-bounded message-passing automaton
with two components, p and q (the message alphabet is a singleton and hence
omitted). The automaton accepts the infinite set of MSCs L = {Mi}ωi=0, where
Mi is displayed in Figure 4.3 for i = 2.

We say that M is a bounded message-passing automaton if M is B-bounded
for some B ∈ N. We arrive at the following automata-theoretic characterization
of the regular MSC languages.

Theorem 4.2.1 Let L ⊆ Σ◦. Then L is a regular MSC language if and only if
there exists a bounded message-passing automaton M such that L(M) = L.

The proof of this result goes via an intermediate step by a nontrivial appli-
cation of Zielonka’s Theorem. Furthermore, the construction incorporates a
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Figure 4.3: The Mi’s accepted by the automaton in Figure 4.2.

(message-passing) gossip construction [93] very similar to the one presented in
Section 3.2.4 for synchronous communication.

The details of the proof can be found in Chapter 10. Our approach constructs
a nondeterministic bounded message-passing automaton for any regular MSC
language. This was later refined [94] to construct a deterministic bounded
message-passing automaton.

4.3 Monadic Second-order logic for MSCs

In Chapter 10 we also formulate a natural monadic second-order logic to be
interpreted over MSCs. The logic will characterize regular B-bounded MSC
languages for each fixed B ∈ N. Consequently, our logic will be parameterized
by a pair (P , B) in the same way as the monadic second-order logic of traces
in Section 3.3 was parameterized by trace alphabets. We will denote this logic
by MSO(P , B). For convenience, we fix the set of processes P and the bound
B ∈ N throughout the rest of the section.

The syntax of formulas of MSO(P , B) is, once again, identical to the original
formulation of Section 2.2.1. Thus the syntax does not reflect any information
about B or the structural features of an MSC. These aspects will be dealt with
in the semantics. The formulas of our logic are interpreted over the members
of MSC(P , B). Let M = (E,≤, λ) be an MSC in MSC(P , B) and I be an
interpretation which assigns to each individual variable a member I(x) in E
and to each set variable X a subset I(X) of E. Then M |=I ϕ denotes that
M satisfies ϕ under I. These notions are defined exactly as in Sections 2.2.1
and 3.3.1, with the only change being the way in which the order predicate
is interpreted. Formally, M |=I x ≤ y if I(x) ≤ I(y). Once again, we have
used ≤ to denote both the predicate symbol in the logic and the corresponding
causality relation in the model M .
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All other notions are carried over from MSO(Σ) and MSO(Σ, I). In the
obvious manner, we can now with each sentence ϕ associate an MSC language
Lϕ = {M ∈ MSC(P , B) |M |= ϕ}. We say that L ⊆ MSC(P , B) is definable in
MSO(P , B) if there exists a sentence ϕ such that Lϕ = L.

It turns out that the techniques used for extending Büchi’s Theorem to
the setting of Mazurkiewicz traces sketched in Section 3.3.2, can be suitably
modified to derive an analogous result in the present setting. The following
important result generalizes Büchi’s Theorem to the setting of MSC languages.

Theorem 4.3.1 Let L ⊆ MSC(P). Then L is definable in MSO(P , B) for
some B ∈ N if and only if L is a regular MSC language.

Once again, the details can be found in Chapter 10. An important corollary
of Theorem 4.3.1 is that the translations between MSO(ΣP ) and MSO(P , B)
are constructive, so the satisfiability problem for MSO(P , B) is decidable (al-
beit only in nonelementary time). Additionally, one can implement a set of
macro definitions so that MSO(P , B) can be decided directly by the Mona tool
described in Chapter 5.

It is not hard to see that Theorem 4.3.1 holds true even if we replace the
causal order ≤ with the family of communication relations {Rc}c∈Ch together
with the family of component relations {Rp}p∈P . Indeed, these two order no-
tions are interdefinable within MSO(P , B). However, the corresponding first-
order fragments are not readily expressively equivalent, and this leaves open the
question of what constitutes a plausible definition of FO(P , B).

Our notion of regularity seems quite natural and, as we have seen, has an
accompanying automata-theoretic characterization. Moreover, our notion coin-
cides with definability in the natural monadic second-order logic. Consequently,
it is quite robust.

At present, languages of infinite MSCs have not been considered in this
context, but our results can be seen as a guideline towards generalizations to
the infinite setting. One starting point is to say that a language of infinite MSCs
is regular in case its linearizations constitute an ω-regular subset of Σω as defined
in Section 2.1.2. It is our hope that an extension of Theorem 4.2.1 is possible
using message-passing automata with Büchi acceptance conditions. Moreover,
we feel confident that this class obviously coincides with definability in (the
trivial extension of) monadic second-order logic over infinite MSCs. This paves
the way for linear time temporal logics to be interpreted over infinite MSCs
with automata-theoretic decision procedures based on message-passing (Büchi)
automata, thus generalizing the constructions of Section 2.3.2 and Section 3.4.1.

These issues will be addressed in future research.

4.4 Message Sequence Graphs

The standard method to describe multiple communication scenarios is to gen-
erate collections of MSCs by means of Hierarchical Message Sequence Charts
(HMSCs). As described in the introduction, to analyze HMSCs, it suffices to
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Figure 4.4: An example MSG.

flatten out them out to obtain Message Sequence Graphs (MSGs). As a conse-
quence, henceforth we concentrate on MSGs rather than HMSCs.

An MSG allows the protocol designer to write a finite specification which
combines MSCs using basic operations such as branching choice, composition
and iteration. Such MSGs are finite directed graphs with designated initial and
terminal vertices. Each vertex in an MSG is labelled by an MSC. The edges
represent the natural operation of MSC concatenation. The collection of MSCs
represented by an MSG consists of all those MSCs obtained by tracing a path
in the MSG from an initial vertex to a terminal vertex and concatenating the
MSCs that are encountered along the path.

A Message Sequence Graph (MSG) is a structure G = (Q,−→, Qin, F ),
where:

• Q is a finite and nonempty set of states.

• −→ ⊆ Q×Q.

• Qin ⊆ Q is a set of initial states.

• F ⊆ Q is a set of final states.

• Φ : Q→ MSC(P) is a (state-)labelling function.

A path π through an MSG G is a sequence q0−→q1−→· · ·−→qn such that
(qi−1, qi) ∈ −→ for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π) =
M0 ◦M1 ◦M2 ◦ · · · ◦Mn, where Mi = Φ(qi). A path π = q0−→q1−→· · ·−→qn
is a run if q0 ∈ Qin and qn ∈ F . The language of MSCs accepted by G is
L(G) = {M(π) ∈ MSC(P) | π is a run through G}.

An example of an MSG is depicted in Figure 4.4. It’s not hard to see that
the language L defined is not regular. To see this, we note that L projected
to {p!q, r!s}∗ is {σ ∈ {p!q, r!s}∗ | |σ|p!q = |σ|r!s}, which is not a regular string
language. (Recall that the regular languages are closed under arbitrary projec-
tions.)
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A number of studies are available which are concerned with individual MSCs
in terms of their semantics and properties [3, 78]. The rest of the work within the
area consists of checking specific properties of communication scenarios specified
as MSGs. We will briefly survey these results here.

Muscholl, Peled, and Su [100] investigate various problems of matching of
both individual MSCs and MSGs and combinations. Here, matching refers
to embeddings between the partial orders. More specifically, they show that
given MSGs G1 and G2, it is NP-complete to decide whether there exist MSCs
Mi ∈ L(Gi) such that M1 matches M2. Similarly, it is also NP-complete to
determine the universal counterpart; does there exists some M1 ∈ L(G1) such
that M1 matches every M2 ∈ L(G2).

Muscholl [98] goes on to define “and-or” versions of MSGs reminiscent of
alternating automata, and shows that the matching problems of deciding, given
an “and-or” MSG G1 and a conventional MSG G2, whether there exists a run-tree
of G1 such that the MSC of every path matches some M2 ∈ L(G2). She shows
that this problem in PSPACE-complete, and moreover that a similar problem of
MSGs and properties of LTL (which turns out to be PSPACE-complete as well)
can essentially be solved by matchings between alternating and Büchi automata.

In [8] Ben-Abdallah and Leue identify and characterize two harmful problems
in MSG-specifications and give algorithms to detect such anomalies. The first of
them is that of process divergence signifying that the specification allows some
process to have an unbounded number of unreceived messages in its buffer.
This can be detected in time linear in the total number of messages in the
specification. We will note here that though related, the notion of divergence-
freeness is implied by our notion of regularity, but does not coincide with it.
Figure 4.4 provides a simple counter-example.

The second underspecification detected by Ben-Abdallah and Leue is that
of nonlocal choice. Intuitively, this denotes the existence of branching choices
where different processes have the possibility of taking conflicting routes in the
MSG-specification. To prevent such consistency problems, additional messages
or history variables have to be introduced into the system, whence absence of
nonlocal choice is a very desirable property of MSGs. Once again, Ben-Abdallah
and Leue give an algorithm to detect this which runs in time linear in the total
number of messages in the specification.

Alur and Yannakakis [5] consider model checking problems under various
semantics for systems modeled as MSGs. Specifications are given as automata
accepting the undesireable linearizations, thus describing the complement of the
intended behaviour. In this manner the decision problems essentially boil down
to emptiness checking of products of automata, as the constituent automata
need not be complemented. They show that for synchronous concatenations
of MSCs on the paths of the MSG, the problem is coNP-complete, while the
problem is undecidable in general for asynchronous concatenation.

Following this negative result, they then define the notion1 of local syn-

1This notion was introduced as “bounded” in [5], but we prefer the terminology “locally
synchronized” of [99] to avoid unnecessary overloading of nomenclature.
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chronicity of MSGs. For an MSC M = (E,≤, λ), let CGM , the communication
graph of M , be the directed graph (P , 7→) where (p, q) ∈ 7→ iff there exists an
e ∈ E with λ(e) = p!q. M is said to be connected if CGM consists of one
nontrivial strongly connected component and isolated vertices. A loop in G is
a sequence of edges that starts and ends at the same node. We say that G is
locally synchronized if for every loop π = q−→q1−→· · ·−→q, the MSC M(π) is
connected. An MSC language L is a locally synchronized MSG-language if there
exists a locally synchronized MSG G with L = L(G).

Alur and Yannakakis [5] then show that, interestingly, the asynchronous
model checking problem becomes PSPACE-complete for locally synchronized
MSGs. Clearly, the MSG of Figure 4.4 is not locally synchronized. This is no
coincidence, as it follows as a corollary of their proof sketch that every locally
synchronized MSG-language is indeed regular.

We conclude this section by pointing out that Muscholl and Peled [99] con-
sider two decision problems also related to locally synchronized MSGs. The first
such problem is that of race conditions which can essentially be formulated as
the question whether the causal order allows more linearizations than the visual
order. Recalling our discussion of this issue in Sections 4.1.1 and 4.1.2 we see
that on Figure 4.1 there is a race on process q between the receive events for
the messages from p and r, respectively.

The other problem is to detect confluence of MSG specifications. An MSG G
is said to be confluent in case for any two prefixes M1,M2 of MSCs in L(G) that
are consistent (in the sense that both are prefixes of some common MSC), there
does indeed exist such a completed MSC M in L(G) of which both M1 and M2

is a prefix. Muscholl and Peled show that both problems of deciding whether
an MSG has race conditions or is confluent are undecidable for general MSGs.
However, they emphasize the importance of local synchronicity by additionally
proving that both problems are EXPSPACE-complete for locally synchronized
MSGs.

In the next section we will look at the closely related notion of finitely
generated MSC languages.

4.5 Finitely Generated MSC Languages

A key feature of MSG languages is that for each such language there is a fixed
finite set X of MSCs such that each MSC in the language can be expressed as a
concatenation of MSCs (with multiple copies) taken from X . We say that they
are finitely generated. In this section we investigate the important connection
between MSGs and finitely generated regular MSC languages.

To this end, we let M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) be a pair for
MSCs such that E1 and E2 are disjoint. For i ∈ {1, 2}, let Ric and {Rip}p∈P
denote the underlying communication and process causality relations in Mi.
The (asynchronous) concatenation of M1 and M2 yields the MSC M1 ◦M2 =
(E,≤, λ) where E = E1 ∪ E2, λ(e) = λi(e) if e ∈ Ei, i ∈ {1, 2}, and ≤ =
(RP ∪ RCh)∗, where Rp = R1

p ∪ R2
p ∪ {(e1, e2) | e1 ∈ E1, e2 ∈ E2, λ(e1) ∈
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Σp, λ(e2) ∈ Σp} for p ∈ P , and Rc = R1
c ∪R2

c for c ∈ Com.
Let L1,L2 ⊆ MSC be two sets of MSCs. As usual, L1 ◦ L2 denotes the

pointwise concatenation of L1 and L2 given by {M | ∃M1 ∈ L1,M2 ∈ L2 : M =
M1◦M2}. For X ⊆ MSC, we define X 0 = {ε}, where ε denotes the empty MSC,
and for i ≥ 0, X i+1 = X ◦ X i. The asynchronous iteration of X is then defined
by X~ =

⋃
i≥0 X i. Now, let L ⊆ MSC. We say that L is finitely generated if

there is a finite set of MSCs X ⊆ MSC such that L ⊆ X~.
We first observe that not every regular MSC language is finitely generated.

As an example, the automaton in Figure 4.2 accepts a regular language which
is not finitely generated. By inspection of Figure 4.3 one readily verifies that
none of the MSCs in this language can be expressed as the concatenation of two
or more nontrivial MSCs. Hence, this language is not finitely generated.

Our interest in finitely generated languages stems from the fact that these
arise naturally from standard high-level descriptions of MSC languages such
as message sequence graphs. However, as we saw earlier, Figure 4.4 provides
an example showing that, conversely, not all finitely generated languages are
regular.

Chapter 11 investigates this correspondence in more detail. We show that
it is decidable whether a given regular MSC language L is finitely generated.
Conversely, we show that it is undecidable whether a given MSG generates a
regular MSC language.

Consequently, it would be nice to have a characterization of the finitely gener-
ated regular MSC languages. Alur and Yannakakis’ notion of local synchronicity
of MSGs supplies a sufficient, but not necessary condition for a language of an
MSG to be regular. However, the main result of Chapter 11 is the following
theorem.

Theorem 4.5.1 Let L be an MSC language. Then L is a finitely generated
regular MSC language if and only if L is a locally synchronized MSG-language.

Another important way to phrase this main characterization result is:

Corollary 4.5.2 Let L be a regular MSC language. Then L can be described
by an MSG if and only if L is finitely generated.

4.6 Regular MSC Expressions

We have defined a robust rotion of regularity of collections of MSCs with char-
acterizations in terms of both bounded message-passing automata and a natural
monadic second-order logic. The only remaining characterization is to extend
the celebrated theorems of Kleene and Ochmański (Theorems 2.1.1 and 3.2.5,
respectively) to the setting of MSCs.

Carrying over directly the original definition of Kleene in Section 2.1.1,

RE(P) ::= M | π0 + π1 | π0;π1 | π~ , M ∈ MSC(P),
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unfortunately goes beyond the regular languages. In fact, it is easy to see that
the (nonregular!) language described by the MSG in Figure 4.4 can also be
defined by the expression (M1 ◦M2)

~. Indeed, one can verify that this class
of regular expressions defines precisely the set of languages corresponding to
HMSCs (or MSGs).

Once again, as for Mazurkiewicz traces, the iteration-operator is too pow-
erful. An obvious approach would then be to mimic the “connected” iteration-
operator defined for traces by Ochmański, and restrict ~ to languages connected
in the sense of Section 4.4. While the collections of languages definable by this
class of regular expressions remain regular, one can show that such expressions
are expressively equivalent to locally synchronized MSGs. As we have seen al-
ready, it follows from Figures 4.2 and 4.3 and Theorem 4.5.1 that this class is
too restrictive to capture the regular MSC languages.

In conclusion, it remains a challenging open problem to exhibit a class of
regular expressions characterizing our notion of regularity. As all other opera-
tions preserve finitely generatedness, the right iteration-operator must be able
to construct infinitely many atoms from only finitely many MSCs. A natural
such iteration-operator has yet to be defined...
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We introduce monadic second-order logic of finite strings as a practical means of
specifying regularity. The logic is a highly succinct alternative to the use of reg-
ular expressions. We have built a tool Mona, which acts as a decision procedure
and as a translator to finite-state automata. The tool is based on new algorithms
for minimizing finite-state automata that use binary decision diagrams (BDDs)
to represent transition functions in compressed form. A byproduct of this work
is an algorithm that matches the time but improves the space of Sieling and
Wegener’s algorithm to reduce OBDDs in linear time.

The potential applications are numerous. We discuss text processing, Boole-
an circuits, and distributed systems. Our main example is an automatic proof
of properties for the “Dining Philosophers with Encyclopedia” example by Kur-
shan and MacMillan. We establish these properties for the parameterized case
without the use of induction.
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Our results show that, contrary to common beliefs, high computational com-
plexity may be a desired feature of a specification formalism.

5.1 Introduction

In computer science, regularity amounts to the concept that a class of structures
is recognized by a finite-state device. Often phenomena are so complicated that
their regularity either

• may be overlooked, as in the case of parameterized verification of dis-
tributed finite-state systems with a regular communication topology; or

• may not be exploited, as in the case when a search pattern in a text
editor is known to be regular, but in practice inexpressible as a regular
expression.

We argue that the Monadic Second-Order Logic or MSO can help in practice
to identify and to use regularity. In MSO, one can directly mention positions
and subsets of positions in the string. This feature distinguishes the logic from
regular expressions or automata. Together with quantification and Boolean
connectives, an extraordinarily succinct formalism arises.

Although it has been known for thirty-five years that MSO defines regular
languages (see [140]), the translator from formulas to automata that we describe
in this article appears to be one of the first implementations.

The reason such projects have not been pursued may be the staggering
theoretical lower-bound: any decision procedure is bound to sometimes require
as much time as a stack of exponentials that has height proportional to the
length of the formula.

It is often believed that the lower the computational complexity of a formal-
ism is, the more useful it may be in practice. We want to counter such beliefs
in this article — at least for logics on finite strings.

5.1.1 Why use logic?

Some simple finite-state languages easily described in English call for convoluted
regular expressions. For example, the language L2a2b of all strings over Σ =
{a, b, c} containing at least two occurrences of a and at least two occurrences of
b seems to require a voluminous expression, such as

Σ∗aΣ∗aΣ∗bΣ∗bΣ∗

∪ Σ∗aΣ∗bΣ∗aΣ∗bΣ∗

∪ Σ∗aΣ∗bΣ∗bΣ∗aΣ∗

∪ Σ∗bΣ∗bΣ∗aΣ∗aΣ∗

∪ Σ∗bΣ∗aΣ∗bΣ∗aΣ∗

∪ Σ∗bΣ∗aΣ∗aΣ∗bΣ∗.

If we added ∩ to the operators for forming regular expressions, then the language
L2a2b could be expressed more concisely as (Σ∗aΣ∗aΣ∗) ∩ (Σ∗bΣ∗bΣ∗). Even
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with this extended set of operators, it is often more convenient to express regular
languages in terms of positions and corresponding letters. For example, to
express the set Laafterb of strings in which every b is followed by an a, we would
like a formal language allowing us to write something like

“for every position p, if there is a b in p then for some position q
after p, there is an a in q.”

The extended regular languages do not seem to allow an expression that very
closely reflects this description — although upon some reflection a small regular
expression can be found. But in MSO we can express Laafterb by a formula

∀p : ′b′(p) ⇒ ∃q : p < q ∧ ′a′(q)

(Here the predicate ′b′(p) means “there is a b in position p”.) In general, we
believe that many errors can be avoided if logic is used when the description
in English does not lend itself to a direct translation into regular expressions
or automata. However, the logic can easily be combined with other methods
of specifying regularity since almost any such formalism can be translated with
only a linear blow-up into MSO.

Often regularity is identified by means of projections. For example, if Ltrans
is regular on a cross-product alphabet Σ × Σ (e.g. describing a parameterized
transition relation, see Section 5.5 and Lstart is a regular language on Σ de-
scribing a set of start strings, then the set of strings that can be reached by
a transition from a start string is π2(Ltrans ∩ π−1

1 (Lstart)), where π1 and π2

are the projections from (Σ × Σ)∗ to the first and second component. Such
language-theoretic operations can be very elegantly expressed in MSO.

5.1.2 Our results

In this article, we discuss applications of MSO to text processesing and the
description of parameterized Boolean circuits. Our principal application is a
new proof technique for establishing properties about parameterized, distributed
finite-state systems with regular communication topology. We illustrate our
method by showing safety and liveness properties for a non-trivial version of the
Dining Philosophers’ problem as proposed in [77] by Kurshan and MacMillan.

We present Mona, which is our tool that translates formulas in MSO to
finite-state machines. We show how BDDs can be used to overcome an other-
wise inherent problem of exponential explosion. Our minimization algorithm
works very fast in practice thanks to a simple generalization of the unary apply
operation of BDDs.

5.1.3 Comparisons to other work

Parameterized circuits are described using BDDs in [49]. This method relies
on formulating inductive steps as finite-state devices and does not provide a
single specification language. The work in [120] is closer in spirit to our method
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in that languages of finite strings are used although not as part of a logical
framework. In [6], another approach is given based on iterating abstractions.
The parameterized Dining Philosopher’s problem is solved in [77] by a finite-
state induction principle.

A tool for MSO on finite, binary trees has been developed at the University
of Kiel [129]. Apparently, this tool has only been used for very simple examples.

In [22], a programming language for finite domains based on a fixed point
logic is described and used for verification of non-parameterized finite systems.

5.1.4 Contents

In Section 5.2 we explain the syntax and semantics of MSO for finite strings.
We recall the correspondence to automata theory in Section 5.3. We give several
applications of MSO and the tool in Section 5.4: text patterns, parameterized
circuits, and equivalence testing. Our main example of parameterized verifica-
tion is discussed in Section 5.5. We give an overview of our implementation in
Section 5.6.

5.2 The Monadic Second-order Logic on Strings

Let Σ be an alphabet and let w ∈ Σ∗ be a string over Σ. The semantics of the
logic determines whether a closed MSO formula ϕ holds on w. The language
L(ϕ) denoted by ϕ is the set of strings that make ϕ hold. Assume now that w
has length n and consists of letters a0a1 · · · an−1. The positions in w are then
0, . . . , n− 1.

The syntax of MSO, to be presented here, is slightly different from the
exposition in Part I, but the present syntax is derivable from the minimalistic
syntax of Section 2.2.1.

We can now describe the three syntactic categories of MSO on strings. A
position term t is either

• the constant 0 (which denotes the position 0);

• the constant $ (which denotes the last position, that is n− 1);

• a position variable p (which denotes a position i);

• of the form t ⊕ i (which denotes the position j + i mod n, where j is the
interpretation of t); or

• of the form t 	 i (which denotes the position j − i mod n, where j is the
interpretation of t);

(Position terms are only interpreted for non-empty strings).
A position set term T is either

• the constant ∅ (which denotes the empty set);
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• the constant all (which denotes the set {0, ..., n− 1});

• a position set variable P (which denotes a subset of positions);

• of the form T1 ∪ T2, T1 ∩ T2, or {T1 (which are interpreted in the natural
way);

• of the form T + i (which denotes the set of positions in T shifted right by
an amount of i); or

• of the form T − i (which denotes the set of positions in T shifted left by
an amount of i);

A formula ϕ is either of the form

• ′a′(t) (which holds if letter ai in w = a0a1 · · · is a, where i is the interpre-
tation of t);

• t1 = t2, t1 < t2 or t1 ≤ t2 (which are interpreted in the natural way);

• T1 = T2, T1 ⊆ T2, or t∈T (which are interpreted in the natural way);

• ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 ⇒ ϕ2, or ϕ1 ⇔ ϕ2 (where ϕ1 and ϕ2 are
formulas, and which are interpreted in the natural way);

• ∃p : ϕ (which is true, if there is a position i such that ϕ holds when i is
substituted for p);

• ∀p : ϕ (which is true, if for all positions i, ϕ holds when i is substituted
for p);

• ∃P : ϕ (which is true, if there is a subset of positions I such that ϕ holds
when I is substituted for P ); or

• ∀P : ϕ (which is true, if for all subsets of positions I, ϕ holds when I is
substituted for P );

5.3 From MSO to Automata

In this section, we recall the method for translating a formula in MSO to an
equivalent finite-state automaton (see [140] for more details). Note that any
formula ϕ can be interpreted, given a string w and a value assignment I that
fixes values of the free variables. If ϕ then holds, we write w, I |= ϕ. The key idea
is that a value assignment and the string may be described together as a word
over an extended alphabet consisting of Σ and extra binary tracks, one for each
variable. By structural induction, we then define for each formula an automaton
that exactly recognizes the words in the extended alphabet corresponding to
pairs consisting of a string and an assignment that satisfy the formula.
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Example 5.3.1 Assume that the free variables are P = {P1, P2} and that
Σ = {a, b}. Let us consider the string w = abaa and value assignment

I = [P1 7→ {0, 2}, P2 7→ ∅].

The set I(P1) = {0, 2} can be represented by the bit pattern 1010, since the
numbered sequence

1 0 1 0
0 1 2 3

defines that 0 is in the set (the bit in position 0 is 1), 1 is not in the set (the bit
in position 1 is 0), etc. Similarly, the bit pattern 0000 describes I(P2) = ∅.

If these patterns are laid down as extra “tracks” along w, we obtain an
extended word α, which may be depicted as:

a b a a
1 0 1 0
0 0 0 0

Technically, we define α = α0 · · ·α3 as the word (a, 1, 0)(b, 0, 0)(a, 1, 0) (a, 0, 0)
over the alphabet Σ × B × B of extended letters, where B = {0, 1} is the set of
truth values.

This correspondence can be generalized to any w and any value assignment for
a set of variables P (which can all be assumed to be second-order).

By structural induction on formulas, we construct automata Aϕ,P over al-
phabet Σ × Bk—where P = {P1, · · · , Pk} is any set of variables containing the
free variables in ϕ—satisfying the fundamental correspondence:

w, I |= ϕ iff (w, I)∈L(Aϕ,P).

Thus Aϕ,P accepts exactly the pairs (w, I) that make ϕ true.

Example 5.3.2 Let ϕ be the formula Pi = Pj + 1. Thus when ϕ holds, Pi
is represented by the same bit pattern as that of Pj but shifted right by one
position. This can be expressed by the automaton Aϕ,P :
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In this drawing, αi refers to the ith extra track. Thus, the automaton checks
that the ith track holds the same bit as the jth track the instant before.
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5.4 Applications

5.4.1 Text patterns

The language L2a2b of strings containing at least two occurrences of a and two
occurrences of b can be described in MSO by the formula

(∃p1, p2 : ′a′(p1) ∧ ′a′(p2) ∧ p1 6= p2) ∧
(∃p1, p2 : ′b′(p1) ∧ ′b′(p2) ∧ p1 6= p2)

Our translator yields the minimal automaton, which contains nine states, in a
fraction of a second.

The language Laafterb given by the formula

∀p : ′b′(p) ⇒ ∃q : p < q ∧ ′a′(q)

is translated to the minimal automaton, which has two states, in .3 seconds.
A far more complicated language to express is L<1apart consisting of every

string over {a, b} such that for any prefix the number of a’s and b’s are at most
one apart. When using regular expressions or MSO, one needs to struggle a bit,
but in MSO there is a strategy for describing the functioning of the finite-state
machine that comes to mind.

We observe that a position p may be used to designate a prefix; for example,
0 denotes the prefix consisting of the first letter and $ (the last position) denotes
the whole input string. We may now recognize a string in L<1apart by identifying
three sets of positions: the set P0 corresponding to prefixes with an equal number
of a’s and b’s, the set P+1 corresponding to prefixes where the number of a’s is
one greater than the number of b’s, and the set P−1 corresponding to prefixes
where the number of a’s is one less than the number of b’s:

∃P0, P+1, P−1 :P0 ∪ P+1 ∪ P−1 = all
∧ 0 /∈ P0

∧ 0∈P+1 ⇔ ′a′(0)
∧ 0∈P−1 ⇔ ′b′(0)
∧ ∀p : (p > 0 ⇒

p∈P0 ⇔ (′a′(p) ∧ p	 1∈P−1)
∨ (′b′(p) ∧ p	 1∈P+1)

∧ p∈P+1 ⇔ ′a′(p) ∧ p	 1∈P0

∧ p∈P−1 ⇔ ′b′(p) ∧ p	 1∈P0)

The resulting four-state automaton is calculated in a fraction of a second.
Text editors and operating systems often allow the user to the select pieces

of text according to a pattern. For example, in Emacs we may specify text that
contains two words separated by a “,” using a regular expression

\w+ , \w+

where \w matches a character in a word, + makes the preceeding expression
match one or more times and “,” matches a comma.
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Unfortunately, it is often exceedingly cumbersome to specify search patterns
using regular expressions. Let us consider an example of modifying all declara-
tions int* ch within structure declarations except if the structure declaration
is within a procedure declaration. Thus in

struct {
int* ch;
int x;

} inf;

void foo() {
int y;
struct {int* ch} inf;
. . .

}

we want the first occurrence only of int* ch to be replaced. Let us express
the problem in logic. Say that an interval I is a set of contiguous positions in
the text. An interval can be designated by the lowest and highest position it
contains, so intervals can easily be treated in MSO. Assume we have already
defined predicates struct decl, proc decl, and int ch such that

• struct decl (I) is satisfied if and only if the interval I holds a structure
declaration,

• proc decl (I) is satisfied if and only if the interval I holds a procedure
declaration, and

• int ch (I) is satisfied if and only if the interval I holds the string “int*
ch”.

We can write struct decl and proc decl in MSO under the assumption that the
nesting of braces is bounded. Then an interval I holds a declaration to be
replaced if and only if the formula

int ch(I) ∧ ∃J : J ⊇ I ∧ struct decl(J) ∧ ¬(∃K : K ) J ∧ proc decl(K)) (∗)

is satisfied. This formula states that I must hold an int* ch declaration and
that there must be some interval J containing I such that J holds a structure dec-
laration but is not properly contained in any interval K containing a procedure
declaration.

5.4.2 Parameterized circuits

Assume that we are given a drawing as in Figure 5.1 denoting a parameterized
Boolean function.

How do we describe the language Lex ⊆ B∗ of input bit patterns that make
the output true? From the drawing, no immediate description as a regular
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Figure 5.1: A parameterized circuit.

expression or finite-state automaton is apparent. In MSO, however, it is easy to
model the outputs of the n or-gates as a second-order variable Q, which allows
the language to be described from a direct interpretation of the drawing.

Note that the or-gate at position p > 0 is true if either there is a 1 at p− 1
or p, or in other words: p ∈ Q⇔ ′1′(p	 1)∨ ′1′(p). Since the output is 1 if and
only if all or-gates are 1, that is if Q = all, the language Lex is given by the
formula

∃Q : (∀p : (p = 0 ⇒ p ∈ Q⇔ ′1′(p)) ∧
(p > 0 ⇒ (p ∈ Q⇔ ′1′(p	 1) ∨ ′1′(p))) ∧Q = all)

The resulting automaton has three states and accepts the language (1 ∪ 10)∗,
which is the regular expression that one would obtain by reasoning about the
circuit. For more advanced applications to hardware verification, see [7].

5.4.3 Equivalence testing

A closed formula ϕ is a tautology if L(ϕ) = L(Σ∗), that is if all strings over Σ
satisfy ϕ. The equivalence of formulas ϕ and ψ then amounts to whether ϕ⇔ ψ
is a tautology.

Example 5.4.1 That a set P contains exactly the even positions in a non-
empty input string may be expressed in MSO by the following two rather dif-
ferent approaches: either by the formula even1 (P ) def=

0∈P ∧ ∀p : ((p∈P ∧ p < $ ⇒ p⊕ 1 /∈ P )
∧ (p /∈ P ∧ p < $ ⇒ p⊕ 1∈P )),

or as a formula even2 (P ) def=

P ∪ (P + 1) = all ∧ P ∩ (P + 1) = ∅ ∧ P 6= ∅
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To show the equivalence of the two formulas, we check the truth value of the
bi-implication:

∀P : even1(P ) ⇔ even2(P )

The translation of this formula does indeed produce an automaton accepting
Σ∗, and thus verifies our claim.

5.5 Dining Philosophers with Encyclopedia

A distributed system is parameterized when the number n of processes is not
fixed a priori. For such systems the state space is unbounded, and thus tradi-
tional finite-state verification methods cannot be used. Instead, one often fixes
n to be, say two or three. This yields a finite state space amenable to state
exploration methods. However, the validity of a property for n = 2, 3 does not
necessarily imply that the property holds for all n.

A central problem in verification is automatically to validate parameterized
systems. One way to attack the problem is to formulate induction principles
such that the base case and the inductive steps can be formulated as finite-state
problems. Kurshan and MacMillan [77] used such a method to verify safety and
liveness properties of a non-trivial version of the Dining Philosophers example.

Selection hungry read eat

State’

EAT

THINK READ EAT

State THINK READ

Figure 5.2: Dining Philosophers with Encyclopedia.

In this system, symmetry is broken by an encyclopedia that circulates among
the philosophers. Thus each philosopher is in one of three states: EAT, THINK,
or READ. The global state can be described as a string State of length n over
the alphabet ΣState = {EAT,THINK,READ}, see Figure 5.2.

The system makes a transition according to external events that constitute
a selection . Each process is presented with an event in the alphabet

ΣSelection = {eat, think, read, hungry}.

Thus the selection can be viewed as a string Selection over ΣSelection, see Fig-
ure 5.2. As shown, all processes make a synchronous transition to a new global
State ′ on a selection according to a transition relation

trans(State,State′,Selection),
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which is shown in Figure 5.3 (We use ’#’ in the beginning of a line to indicate
that this line is a comment.) together with an auxiliary predicate blocking
(Selection) used in its definition. Thus the new state of each process is dependent
on its old state and on the selection events presented to itself and its neighbors.
The transition relation is so complicated that it is hard to grasp the functioning
of the system.

Fortunately, the parameterized transition relation can be translated into
basic MSO on strings. For example, we encode State using two second-order
variables P and Q with the convention that

EATp(State) def= p∈P ∧ p∈Q
READp(State) def= p /∈ P ∧ p∈Q
THINKp(State) def= p /∈ P ∧ p /∈ Q

Similarly, State′ and Selection can also each be encoded using two second-order
variables. Thus, the predicate trans(State,State′,Selection) becomes a formula
with six free second-order variables.

For this distributed system there are two important properties to verify:

• Safety Property: The encyclopedia is neither lost nor replicated. Thus
there is always exactly one process in state READ.

• Liveness Property: If no process remains in state EAT forever, then the
encyclopedia is passed around over and over.

In [77] both properties are proved in terms of a complicated induction hypoth-
esis. This hypothesis is itself a distributed system, where each process has four
states. (The Liveness Property in [77] is technically different since it is modeled
in terms of selections.)

Our strategy is fundamentally different. We cannot directly verify liveness
properties. But we can easily verify properties about the transition relation in
the parameterized case and without induction as follows.

Let ϕ be an MSO formula about the global state. For example, we might
consider the property that if a philosopher eats, then his neighbors do not:

ϕmutex(State) def= ∀p : EATp(State) ⇒ ¬EATp	1(State) ∧ ¬EATp⊕1(State)

A property given as a formula ϕ can be verified using the invariance principle:

∀State,State′,Selection :
ϕ(State) ∧ trans(State,State′,Selection) ⇒ ϕ(State ′),

which is also a formula in MSO. In this way, we have verified for the parameter-
ized case that both ϕmutex and the Safety Property that exactly one philosopher
reads, that is ∃!p : READp(State), are invariant. Mona verifies such a formula
in approximately 3 seconds on a Sparc 20.

Note that this method does not rely on a state space exploration (which
is impossible since the state space is unbounded). Instead, it is based on the
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blocking(Selection) def=
eatp⊕1(Selection) ∨ hungryp	1(Selection)
∨ eatp	1(Selection)

trans(State,State′,Selection) def=
∀p :

#THINK → THINK :
(THINKp(State) ∧ THINKp(State ′) ⇒
thinkp(Selection) ∧ ¬(readp	1(Selection))
∨
hungryp(Selection) ∧ blocking(Selection))

∧
#THINK → EAT :
(THINKp(State) ∧ EATp(State ′) ⇒
hungryp(Selection) ∧ ¬(blocking(Selection)))

∧
#THINK → READ :
(THINKp(State) ∧ READp(State ′) ⇒
thinkp(Selection) ∧ readp	1(Selection))

∧
#EAT → THINK :
(EATp(State) ∧ THINKp(State ′) ⇒
thinkp(Selection) ∧ ¬(readp	1(Selection)))

∧
#EAT → EAT :
(EATp(State) ∧ EATp(State ′) ⇒
eatp(Selection))

∧
#EAT → READ :
(EATp(State) ∧ READp(State ′) ⇒
thinkp(Selection) ∧ readp	1(Selection))

∧
#READ → THINK :
(READp(State) ∧ READp(State ′) ⇒
readp(Selection) ∧ thinkp⊕1(Selection))

∧
#READ → EAT :
(READp(State) ∧ EATp(State ′) ⇒
false)

∧
#READ → READ :
(READp(State) ∧ READp(State ′) ⇒
readp(Selection) ∧ ¬(thinkp⊕1(Selection)))

Figure 5.3: The transition relation.

Invariance Principle: to show that a property holds for all reachable states, it is
sufficient to show that it holds for the initial state and is preserved under any
transition.

5.5.1 Establishing the liveness property

The Liveness Property can be expressed in Temporal Logic as

2(READp	1 ⇒ 3READp), (†)

that is, it always holds that if philosopher p	1 reads, then eventually philosopher
p reads. We must prove this property under the assumption that no philosopher
eats forever:

2(EATp ⇒ 3¬EATp). (‡)
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So assume that READp	1 holds. We must prove that 3READp holds. There
are two cases as follows.

• Case EATp holds. By assumption (‡), there is an instant when EATp ∧
¬© EATp holds. Thus if

READp	1 ∧ EATp ∧ ¬© EATp ⇒ ©READp (§)

is a valid property of the transition system, 3EATp holds. In fact, we
verified using Mona that (§) indeed holds.

• Case ¬EATp holds. If EATp becomes true, then use the previous case.
Otherwise, ¬EATp continues to hold. Now, by the assumption (‡) at some
point ¬EATp⊕1 will hold. We then use the property

READp	1 ∧ ¬EATp ∧ ¬© EATp⊕1 ⇒ ©READp ∨ ©EATp, (¶)

which we have also verified using Mona, to show that eventually READp

holds (or eventually EATp holds, which contradicts the assumption that
¬EATp continues to hold).

5.6 Implementation

Mona is our implementation of the decision procedure, which translates for-
mulas of MSO to finite-state automata as outlined in Section 5.3. Our tool is
implemented in Standard ML of New Jersey. A previous version of Mona was
written in C with explicit garbage collection and based on representing tran-
sition functions in a conjunctive normal form. Our present tool runs up to 50
times faster due to improved algorithms.

5.6.1 Representation of automata

Since the size of the extended alphabet grows exponentially with the number
of variables, a straightforward implementation based on explicitly representing
the alphabet would only work for very simple examples. Instead, we represent
the transition relation using Binary Decision Diagrams (BDDs) [11, 12]. In this
way, the alphabet is never explicitly represented. For the external alphabet of
ASCII-characters, we choose an encoding based on seven extra tracks holding
the binary representation. Thus, character classes such as [a-zA-Z] become
represented as very simple BDDs.

A deterministic automaton A is represented as follows. The state space is
Q = {0, 1, . . . , n − 1}, where n is size of the state space; Bk is the extended
alphabet; i0 ∈ Q is the initial state; δ : Q× Bk → Q is the transition function;
and F ⊆ Q is the set of accepting states. We use a bit vector of size n to
represent F and an array containing n pointers to roots of multi-terminal BDDs
representing δ. A leaf of a BDD holds the integer designating the next state. An
internal node v is called a decision node and contains an index denoted v.index,
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Figure 5.4: BDD automaton representation.

where 0 ≤ v.index < k, and high and low successors v.hi and v.lo. If b is a
sequence of k bits, that is b ∈ Bk, then δ(q, b) is found by looking up the qth
entry in the array and following the decision nodes according to b until a leaf
is reached (node v is followed by selecting the high successor if the v.indexth
component of b is 1 and the low successor if it is 0).

For example, the following finite automaton accepting all strings over B2

with at least two occurrences of the letter “11”

//?>=<89:;0 11 //

00;01;10

�� ?>=<89:;1 11 //

00;01;10

�� ?>=<89:;/.-,()*+2

00;01;10;11

��

could be represented as in Figure 5.4.
The use of BDDs makes the representation very succinct in comparison to

our earlier attempt to handle automata with large alphabets [69]. In most cases,
we avoid the exponential blow-up associated with an explicit representation of
the alphabet. We shall see that all operations on automata needed can be
performed by means of simple BDD operations.

Another possibility would have been to use a two-dimensional array of ordi-
nary BDDs. But that would complicate the operations on automata, because
many more BDD operations would be needed.

5.6.2 Rewriting formulas

The first step in the translation consists of rewriting formulas so as to eliminate
nested terms. Then all terms are variables and all formulas are among a small
number of basic formulas.
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5.6.3 Translating formulas

The translation is inductive. All automata corresponding to basic formulas have
a small number of states (less than five!).

The composite formulas are translated by use of operations on automata.
For ¬ϕ, ϕ1 ∧ϕ2 and ∃P : ϕ, which are the ones left after rewriting, we need the
operations of complement, product, projection, and determinization.

Complement Complementation is done by simply negating the bit vector
representing the set of final states.

Product The product automaton A of two automata A1 and A2 is

(Q1 ×Q2,B
k, (i1, i2), δ, F1 × F2),

where δ((q1, q2), b) = (δ1(q1, b), δ2(q2, b)). We are careful, however, to consider
only those states of A that are reachable from (i1, i2).

When considering a new state (q1, q2), we need to construct the BDD repre-
senting the corresponding part of the transition function δ. We use the binary
apply operation on the BDDs corresponding to q1 and q2. For each pair of states
(q′, q′′) encountered in a pair of leaves, we associate a unique integer in the range
{0, 1, . . .N − 1}, where N is the number of different pairs considered so far. In
this way, the new BDDs created conform with the standard representation.

Projection and determinization Projection is the conversion of an automa-
ton over Bk+1 to a nondeterministic automaton over Bk necessary for translating
a formula of the form ∃P : ϕ. On any letter b ∈ Bk, there are two transitions
possible in the nondeterministic automaton corresponding to whether the P -
track is 0 or 1. Therefore this automaton is not hard to construct using the
projection (restriction) operation of BDDs.

Determinization is done according to the subset construction. The use of
the apply operation is similar to that of the product construction except that
leaves hold subsets of states.

5.6.4 Minimizing

Minimization seems essential in order to obtain an effective decision procedure.
For example, if a tautology occurs during calculations, then it is obviously a
good idea to represent it using a one-state automaton instead of an automaton
with e.g. 10,000 states.

The difficulty in obtaining an efficient minimization algorithm stems from
the requirement to keep our shared BDDs in reduced form. Recall that a re-
duced BDD has no duplicate terminals or nonterminals. Such a BDD is just a
specialized form of directed acyclic graphs that has been compressed by com-
bining structurally isomorphic nodes (see Aho, Hopcroft, and Ullman [1] or Cai
and Paige [17, Section 3.4]). In addition, a reduced BDD has no redundant
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tests [11]. Such a BDD is obtained by repeatedly pruning every internal vertex
v that has both outedges leading to the same vertex w, and redirecting all of
v’s incoming edges to w.

Suppose that the shared BDD had all duplicate terminals and nonterminals
eliminated, but did not have any of its redundant tests eliminated. Then it
would be easy to treat the deterministic finite automaton combined with its
BDD machinery as a single automaton whose states were the union of the BDD
nodes and the original automaton states, and whose alphabet were zero and one.
If this derived automaton had n states, then it could be minimized in O(n log n)
steps using Hopcroft’s algorithm [63]. Unfortunately, such an automaton would
be too big.

For our purposes, the space savings due to redundant test removal is of cru-
cial importance. But the important ‘skip’ states that arise from redundant test
removal complicates minimization. Our algorithm combines techniques based
on [1] with new methods adapted for use with the shared BDD representation
of the transition function. For a finite automaton with n states and a transition
function represented by m BDD nodes, the algorithm presented here achieves
worst-case running time O(max(n,m)n).

Terminology A partition P of a finite set U is a set of disjoint nonempty
subsets of U such that the union of these sets is all of U . The elements of P
are called its blocks. A refinement Q of P is a partition of U such that any
block of Q is a subset of a block of P . If q ∈ U , then [q]P denotes the block
of partition P containing the element q, and when no confusion arises, we drop
the subscript.

Let A = (Q, Bk, i0, δ, F ) denote a deterministic finite automaton, and let
P be a partition of Q, and Q a refinement of P . A block B of Q respects the
partition P if for all q, q′ ∈ B and for all b ∈ Bk, [δ(q, b)]P = [δ(q′, b)]P . Thus,
δ cannot distinguish between the elements in B relative to the partition P . A
partition Q respects P if every block of Q respects P . A partition is stable
if it respects itself. The coarsest, stable partition Q respecting P is a unique
partition such that any other stable partition respecting P is a refinement of Q.

The refinement algorithm The minimal automaton A′ recognizing L(A)
is isomorphic to the automaton defined by the coarsest stable partition QA of
Q respecting the partition {F,Q \ F}. The states of A′ are QA, the transition
function δ′ is defined by δ′([p], b) = [δ(p, b)], the initial state is [i0], and the set
of final states is F ′ = {[f ]|f ∈ F}.

Now we are ready to sketch our minimizing algorithm, which works by grad-
ually refining a current partition.

• First split Q into an initial partition Q = {F,Q \ F}. Note that QA is a
refinement of this partition.

• Now let P be the current partition. We construct the new current partition
Q so that it respects P while QA remains a refinement of Q.
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For each state q in Q consider the functions fq : Bk → P defined by
fq(b) = [δ(q, b)]P for all q and b. Now let the equivalence relation ≡ be
defined as q ≡ q′ ⇔ (fq = fq′ ∧ [q]P = [q′]P). The new partition Q
then consists of the equivalence classes of ≡. By definition of the fq’s, Q
respects P and is the coarsest such partition implying the invariant.

We repeat this process until P = Q.

It can be shown that the final partition Q is obtained in at most n iterations
and equals QA. The preceding algorithm is an abstraction of the initial naive
algorithm presented in [1, Section 4.13].

The difficult step in the above algorithm is the splitting according to the
functions fq. However, we can here elegantly take advantage of the shared
BDD representation. The idea is to construct a BDD representing the functions
fq for each state. We represent a partition of the states Q, by associating with
each state q ∈ Q a block id identifying its block. The BDD for fq is calculated
by performing a unary apply on the collection of shared BDDs, where the value
calculated in a leaf is the block id. By a suitable generalization of the standard
algorithm, it is possible to carry out these calculations while visiting each node at
most once (assuming that hashing takes constant time). Thus the split operation
requires time O(max(n,m)). Since we use shared BDDs, we may use the results
of the apply operations directly as new block ids.

The splitting step without hashing An alternative implementation of
the splitting step is possible that achieves the same worst case time bound
O(max(n,m)) without hashing. It is instructive to first consider the case in
which the shared BDDs are reduced only by eliminating redundant nodes but
not by eliminating redundant tests. In this case the BDD may be regarded as an
acyclic deterministic automaton D whose states are the BDD nodes, and whose
alphabet is zero and one. Consider a partition P ′ of the BDD nodes defined by
equivalence classes of the following relation. Two BDD leaves are equivalent iff
their next states belong to the same block of partition P . All decision nodes
of the BDD are equivalent. The coarsest stable partition Q′ that respects P ′

for automaton D can be solved in O(m) worst case time by Revuz [119] and
Cai and Paige [17, Section 3.4]. Finding the equivalence classes of states in Q
that point to BDD roots belonging to the same block of Q′ (that is, finding the
coarsest partition Q that respects P) solves the splitting step in the original
automaton in time O(n).

In the case of fully reduced BDDs, the splitting step is somewhat harder,
and a closer look at the BDD structure is needed. For each decision node
v, v.index represents a position in a string of length k such that v.index <
(v.lo).index ∧ v.index < (v.hi).index. For each BDD leaf v we have v.index
= k, and let v.lo = v.hi be an automaton state belonging to Q. For each BDD
node v we define function fv : Bk → P much like the way functions fq were
defined earlier on automaton states. For each nonleaf v, fv is defined by the
rule fv(b) = fv.lo(b) if bv.index = 0; fv(b) = fv.hi(b) if bv.index = 1. For each
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leaf v, fv is a constant function that maps every argument into an element (that
is, a block) of partition P .

If q ∈ Q is an automaton state that points to a BDD root v, then, clearly,
fq = fv. It is also not hard to see that for any two nonleaf BDD nodes v and
v′, fv = fv′ iff either of the following two conditions hold:

(1) v.index = v′.index ∧ fv.hi = fv′.hi ∧ fv.lo = fv′.lo, or

(2) fv.hi = fv.lo = fv ∧ v.hi = v′.

This leads to the more concrete equivalence relation ≡ on BDD nodes defined
as v ≡ v′ iff fv = fv′ iff either,

(1) v.index = v′.index = k ∧ [v.lo]P = [v′.lo]P , or

(2) v.index = v′.index < k ∧ v.hi ≡ v′.hi ∧ v.lo ≡ v′.lo, or

(3) v.index < k ∧ v.lo ≡ v.hi ≡ v′.

Note that two BDD nodes of different index can be equivalent only by condi-
tion (3). Note also, that we can strengthen condition (2) with the additional
constraint v.hi 6≡ v.lo without modifying the equivalence relation. These two
observations allow us to construct the equivalence classes inductively using a
bottom-up algorithm that processes all BDD nodes of the same index in de-
scending order, proceeding from leaves to roots. The steps are sketched just
below.

(1) In a linear time pass through all of the BDD nodes, place each node in a
bucket according to its index. An array of k + 1 buckets can be used for
this purpose.

(2) Next, distribute the BDD leaves (contained in the bucket associated with
index k) into blocks whose nodes all have lo successors that belong to the
same block of P . This takes time proportional to the number of leaves.

(3) For j = k−1, ..., 0 examine each node v with v.index = j. Both nodes v.lo
and v.hi have already been examined, and have been placed into blocks.
Hence, a streamlined form of multiset sequence discrimination [17] can be
used to place v either in an old block (according to condition (3)) or a
new block (according to condition (2)) for nodes whose children belong
pair-wise to the same old block.

The preceding algorithm computes the equivalence classes as the final set of
blocks in O(m) time. As before, we can use these equivalence classes to find
the coarsest partition Q that respects P , which solves the splitting step in the
original automaton, in time O(n). Thus, the total worst-case time to solve the
splitting step is O(max(n,m)) (without hashing).

In an efficient implementation of finite-state automaton minimization, when
the splitting algorithm above is is performed repeatedly, we only need to per-
form the first step of that algorithm (that is, sorting BDD nodes according to
index) once. Thus, the full DFA minimization algorithm runs in worst case time
O(max(n,m)n) without hashing.
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BDD reduction without hashing Sieling and Wegener[125] were the first to
compress an arbitrary BDD into fully reduced form in linear time. Their result
depended on a radix sort, which is closely related to the multiset discrimination
technique that we use. However, their algorithm needs to maintain integer
representations of BDD nodes, and it utilizes two arrays of size m. We can show
how our algorithm just described can be modified to fully reduce an arbitrary
BDD in worst case time linear in the number of BDD nodes (without hashing),
but with expected auxiliary space k times smaller than Sieling and Wegener’s
algorithm.

Let Q′ be the partition of BDD nodes produced by the algorithm. The states
of the reduced BDD are the blocks in Q′. For each block B ∈ Q′, B.index is the
largest index of any BDD node contained in B. Let v′ be any node belonging
to B of maximum index. If v′ is a BDD leaf, then B is a leaf in the reduced
BDD (that is, B.index = k), and B.lo = B.hi = v′.lo. Otherwise,
B.lo = [v′.lo]Q′ and B.hi = [v′.hi]Q′ . The hi and lo successor blocks can be
determined during the multiset sequence discrimination pass when a new block
is first created. The index of the first node placed in a newly created block is
the index for that block.

What distinguishes our algorithm from that of Sieling and Wegener is that
our buckets in steps (2) and (3) are associated with actual BDD nodes (inside
the main BDD data structure). Their buckets are associated with components
of two auxiliary arrays of size m each. If we replaced each equivalence class
by a single witness (as they do) each iteration of step (3), then our auxiliary
space would be bounded by the maximum number of BDD nodes that have
the same index. If BDD nodes were uniformly distributed among indexes, then
this number is m/k, which would give us a k-fold advantage in auxiliary space
over their algorithm. We expect a minor constant factor advantage in time
as well, because our BDD nodes are represented by their locations instead of
by computed integer values, and because we avoid array access in favor of less
expensive list and pointer processing.

Work is in progress for exploring the “processing the smaller half” idea found
in e.g. [106]. We should mention, however, that the current implementation of
the minimization algorithm in practice seems to run faster than the procedures
for constructing product and subset automata.

5.7 Current version of Mona

Mona is a continuing research project at BRICS and has since this publication
been improved substantially in many ways. The basic ideas, such as the BDD
representation of automata are still the same. For an update on the capabilities
of the Mona tool we refer to the user manual [72] and [73].
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A simple extension of the propositional temporal logic of linear time is pro-
posed. The extension consists of strengthening the until operator by indexing
it with the regular programs of propositional dynamic logic. It is shown that
DLTL, the resulting logic, is expressively equivalent to the monadic second-
order theory of ω-sequences. In fact, a sublogic of DLTL which corresponds to
propositional dynamic logic with a linear time semantics is already expressively
complete. We show that DLTL has an exponential time decision procedure and
admits a finitary axiomatization. We also point to a natural extension of the
approach presented here to a distributed setting.

6.1 Introduction

We present here a simple extension of the propositional temporal logic of linear
time. The basic idea is to strengthen the until modality by indexing it with
the regular programs of propositional dynamic logic. The resulting logic, called

93
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dynamic linear time temporal logic (DLTL), is easy to handle. It has the full
expressive power of the monadic second-order theory of ω-sequences. Indeed a
sublogic of DLTL is already expressively complete. A pleasant feature of this
sublogic is that it is just propositional dynamic logic operating in a linear time
framework.

In addition to our expressiveness results we show that DLTL has an expo-
nential time decision procedure. We also extend the well known axiomatization
of propositional dynamic logic [76] to obtain an axiomatization of DLTL.

Our work may be viewed from two different perspectives. The first one is
from the standpoint of process logics [53, 104, 114] which attempt a rapproche-
ment between dynamic and temporal logics. However the study of process logics
is committed to viewing dynamic logic as a restricted kind of a branching time
temporal logic. One then attempts to bring in some additional mechanisms for
talking about computational paths. Our point of departure consists of merging,
in a very simple way, dynamic logic and temporal logic in a linear time setting.

The second perspective has to do with attempts to augment the expressive
power of linear time temporal logic. One route consists of permitting quantifi-
cation over atomic propositions. The resulting logic called QPTL [126] is as
expressive as MSO, the monadic second-order theory of sequences but its deci-
sion procedure has non-elementary time complexity. The second route consists
of augmenting linear time temporal logic with the so called automaton connec-
tives. The resulting logic called ETL [156] is equal in expressive power to MSO
while admitting an exponential time decision procedure.

Our logic is, in spirit, inspired by ETL and it can be easily translated into
ETL. It may appear to be at first sight to be a mere reformulation of ETL
with some cosmetic changes. This however has to do with the instinctive iden-
tification one makes between finite state automata and regular expressions. In
fact DLTL is quite different in terms of the mechanisms it offers for structuring
formulas and we feel that it is more transparent and easier to work with. The
results and the proofs we present here are designed to support this claim. Our
approach also leads to smooth generalizations in non-sequential settings where
similar extensions in terms of ETL will be hard to cope with.

In the next section we start with an action-based version of of linear time
temporal logic in order to fix terminology. In Section 6.3 we present DLTL
and its semantics. This is then followed by a more detailed assessment of the
similarities and the differences between ETL and DLTL.

In Section 6.4 we prove the decidability of DLTL by reducing it to the empti-
ness problem for Büchi automata. In Section 6.5 we show that DLTL−, a
sublogic of DLTL, has the same expressive power as MSO, the monadic second-
order theory of sequences. We then establish similar results for the first-order
fragment of MSO with the help of the “star-free” fragments of DLTL and
DLTL−.

In Section 6.6, we extend the axiomatization of PDL (propositional dynamic
logic) and the completeness proof in [76] to obtain finitary axiomatizations of
DLTL and DLTL−. In the final section we point to a natural generalization in
the setting of distributed systems. This generalization is eminently accessible
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and offers additional support to our belief that the synthesis of dynamic and
temporal logics in a linear time framework as pursued here is a fruitful one.

6.2 Linear Time Temporal Logic

One key feature of the syntax and semantics of our temporal logic is the treat-
ment of actions as first class objects. To bring this out we formulate a version
of LTL (linear time temporal logic) in which the next-state modality is indexed
by actions taken from a fixed alphabet set.

Through the rest of the chapter we fix a finite non-empty alphabet Σ. We
let a, b range over Σ and refer to members of Σ as actions. Σ∗ is the set of finite
words and Σω is the set of infinite words generated by Σ with ω = {0, 1, 2, . . .}.
We set Σ∞ = Σ∗ ∪ Σω and denote the null word by ε. We let σ, σ′ range over
Σω and τ, τ ′, τ ′′ range over Σ∗. Finally � is the usual prefix ordering defined
over Σ∗ and for u ∈ Σ∞, we let prf(u) be the set of finite prefixes of u.

Next we fix a countable set of atomic propositions P = {p1, p2, . . .} and let
p, q range over P . The set of formulas of LTL(Σ) is then given by the syntax:

LTL(Σ) ::= p | ¬α | α ∨ β | 〈a〉α | α U β.

Through the rest of this section α, β will range over LTL(Σ).
A model of LTL(Σ) is a pairM = (σ, V ) where σ ∈ Σω and V : prf(σ) −→ 2P

is a valuation function. Let M = (σ, V ) be a model, τ ∈ prf(σ) and α be a
formula. Then M, τ |= α will stand for α being satisfied at τ in M . This notion
is defined inductively in the expected manner.

• M, τ |= p iff p ∈ V (τ).

• M, τ |= ¬α iff M, τ 6|= α.

• M, τ |= α ∨ β iff M, τ |= α or M, τ |= β.

• M, τ |= 〈a〉α iff τa ∈ prf(σ) and M, τa |= α.

• M, τ |= α U β iff there exists τ ′ such that ττ ′ ∈ prf(σ) and M, ττ ′ |= β.
Moreover for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the case that M, ττ ′′ |=
α.

We note that the next-state modality of LTL is definable viaOα def=
∨
a∈Σ〈a〉α.

It is well known [41, 70] that LTL(Σ) is expressively equivalent to the first-order
theory of sequences. Hence this temporal logic, relative to MSO, has limited
expressive power. For instance, as pointed out by Wolper [155], the property “p
holds at every even position” is not definable in this logic.

6.3 Dynamic Linear Time Temporal Logic

Our extension of LTL(Σ) basically consists of indexing the until operator with
the programs of PDL (e.g. [39, 51]). We start by defining the set of programs
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(regular expressions) generated by Σ. This set is denoted by Prg(Σ) and is given
by:

Prg(Σ) ::= a | π0 + π1 | π0;π1 | π∗.

Here and elsewhere, π, π′ with or without subscripts will range over Prg(Σ).
With each program we associate a set of finite words via the map || · || :
Prg(Σ) −→ 2Σ∗

. This map is defined in the standard fashion. As before,
we fix a countable set of atomic propositions P = {p1, p2, . . . } and let p, q range
over P . The set of formulas of DLTL(Σ) is then given by the following syntax:

DLTL(Σ) ::= p | ¬α | α ∨ β | α Uπβ.

Here and throughout the rest of the chapter we let α, β range over DLTL(Σ).
The notion of a model is as in the case of LTL(Σ). So let M = (σ, V ) be a
model, τ ∈ prf(σ) and α ∈ DLTL(Σ). Then M, τ |= α is defined inductively.
The base case and the boolean connectives are handled as before. The semantics
of the augmented until operator is given by :

• M, τ |= α Uπβ iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ prf(σ) and
M, ττ ′ |= β. Moreover, for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the case
that M, ττ ′′ |= α.

Thus DLTL(Σ) is obtained form LTL(Σ) by strengthening the until operator.
To satisfy α Uπβ, one must satisfy αUβ along some finite stretch of behaviour
which is in the (linear time) behaviour of the program π.

As usual, α ∈ DLTL(Σ) is satisfiable iff there exist a model M = (σ, V ) and
τ ∈ prf(σ) such that M, τ |= α.

Apart from the conventional derived propositional connectives such as ∧,⇒
and ⇔ the derived modality 〈π〉 and its dual [π] will play an important role in
the sequel.

• tt def= p1 ∨ ¬p1. Recall that P = {p1, p2, . . .}.

• 〈π〉α def= tt Uπα.

• [π]α def= ¬〈π〉¬α.

Suppose M = (σ, V ) is a model and τ ∈ prf(σ). It is easy to see that
σ, τ |= 〈π〉α iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ prf(σ) and σ, ττ ′ |= α. It
is also easy to see that σ, τ |= [π]α iff for every τ ′ ∈ ||π||, if ττ ′ ∈ prf(σ) then
σ, ττ ′ |= α. In this sense, the program modalities of PDL acquire a linear time
semantics in the present setting.

Note that a ∈ Σ is a member of Prg(Σ) and hence 〈a〉α is a derived modality.
Letting Σ = {a1, a2, . . . , an}, it is also easy to see that the until operator of
LTL(Σ) can be obtained via: αUβ def= α UΣ∗

β with Σ as a shorthand for the
program a1+a2+· · ·+an. Thus LTL(Σ) is a fragment of DLTL(Σ) both in terms
of syntax and semantics. To see that DLTL(Σ) is strictly more expressive than
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LTL(Σ), let πev = (Σ; Σ)∗. It is easy to see that αev = [πev]p is a specification
of the property ”p holds at every even position”.

We shall close out the section by briefly discussing the key differences be-
tween DLTL(Σ) and ETL, the extension of LTL proposed by Wolper [155]. We
shall present a simplified form of ETL so as to stay close to DLTL. First we fix
an enumeration of Σ = {a1, a2, . . . , an}. The syntax of the logic that we shall
name as ETL(Σ) is given by:

ETL(Σ) ::= p | ¬φ | φ ∨ φ′ | A(φ0, φ1, . . . , φn).

Here A is a finite state automaton of the form A = (Q,−→, Qin, F ) with −→ ⊆
Q× Σ ×Q as the transition relation, Qin ⊆ Q as the initial states and F ⊆ Q
as the accepting states. Let L(A) be the language of finite words accepted by
A. We shall assume for the sake of convenience that ε 6∈ L(A) for each formula
of the form A(φ0, φ1, . . . , φn).

A model for ETL(Σ) is, as before, a pair M = (σ, V ) with V : prf(σ) −→ 2P .
Let τ ∈ prf(σ). Then M, τ |= φ is defined for the cases of atomic propositions
and the boolean connectives in the expected manner. The automaton connective
is interpreted as follows.

• M, τ |= A(φ0, φ1, . . . , φn) iff there exists ai1ai2 . . . aim ∈ L(A) such that
the following conditions are satisfied:

– i1, i2, . . . , im ∈ {1, 2, . . . , n}. (recall that Σ = {a1, a2, . . . , an}).
– τai1ai2 · · · aim ∈ prf(σ).

– M, τ |= φ0 and M, τai1 · · · aij |= φij for 1 ≤ j ≤ m.

Though the technical details are somewhat different, ETL(Σ) captures the
spirit of the logic presented in [148]. The key drawback of ETL(Σ), as we see
it, lies in its lack of structuring principles for forming compound formulas. The
only mechanism that ETL(Σ) has — apart from the boolean connectives — to
form compound formulas is by nesting the automaton formulas. Thus a typical
compound formula would look like:

A1(φ1
0,A2(φ2

0, φ
2
1,A3(φ3

0, . . . , φ
3
n), φ

2
3, . . . , φ

2
n), φ

1
2, . . . , φ

1
n).

In contrast, DLTL(Σ) adds to the familiar mechanisms of LTL an orthogonal
and well-understood component; namely, the language of regular expressions.
Equally important, this orthogonal component is formulated purely in terms of
Σ and not in terms of arbitrary formulas as is the case of ETL. In fact, ETL,
as formulated in [148] has an uncontrolled amount of “external” elements in
the sense that the states and the alphabets of the automata which are used
to write down the automaton formulas have little to do with the logic under
consideration.

It is an easy exercise to translate DLTL into ETL with only a linear blow-up
in the size of the formulas. It will however be more productive and illuminating
to give an independent treatment of DLTL as we shall do here.
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6.4 A Decision Procedure for DLTL

The goal here is to show that the satisfiability problem for DLTL(Σ) can be
solved in deterministic exponential time. This will be achieved by effectively
constructing for each α ∈ DLTL(Σ), a Büchi automaton Bα such that the
language of ω-words accepted by Bα is non-empty iff α is satisfiable.

A Büchi automaton over Σ is a tuple B = (Q,−→, Qin, F ) where:

• Q is a finite non-empty set of states.

• −→ ⊆ Q× Σ ×Q is a transition relation.

• Qin ⊆ Q is a set of initial states.

• F ⊆ Q is a set of accepting states.

Let σ ∈ Σω. Then a run of B over σ is a map ρ : prf(σ) −→ Q such that:

• ρ(ε) ∈ Qin.

• ρ(τ) a−→ ρ(τa) for each τa ∈ prf(σ).

The run ρ is accepting iff inf(ρ)∩F 6= ∅ where inf(ρ) ⊆ Q is given by q ∈ inf(ρ)
iff ρ(τ) = q for infinitely many τ ∈ prf(σ). Finally L(B), the language of
ω-words accepted by B, is:

L(B) = {σ | ∃ an accepting run of B over σ}.

Through the rest of the section we fix a formula α0. To construct Bα0 we first
define the (Fischer-Ladner) closure of α0 as follows. cl(α0) is the least set of
formulas that satisfies:

• α0 ∈ cl(α0).

• If ¬β ∈ cl(α0) then β ∈ cl(α0).

• If α ∨ β ∈ cl(α0) then α, β ∈ cl(α0).

• If α Uπβ ∈ cl(α0) then α, β ∈ cl(α0).

Now CL(α0), the closure of α0, is defined to be:

CL(α0) = cl(α0) ∪ {¬β | β ∈ cl(α0)}.

In what follows ¬¬β will be identified with β. Moreover, throughout the section,
all the formulas that we encounter — unless stated otherwise — will be assumed
to be members of CL(α0). For convenience, we shall often write CL instead of
CL(α0).

A ⊆ CL is called an atom iff it is a subset of CL satisfying:

• β ∈ A iff ¬β 6∈ A.
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• α ∨ β ∈ A iff α ∈ A or β ∈ A.

• If β ∈ A and ε ∈ ||π|| then α Uπβ ∈ A.

AT (α0) is the set of atoms and again we shall often write AT instead of
AT (α0). Next we define Req(α0), the set of until requirements of α0, to be the
subset of CL given by:

Req(α0) = {α Uπβ | α Uπβ ∈ CL}.

We shall write Req instead Req(α0) and take ξ, ξ′ to range over Req. For each
ξ = α Uπβ ∈ Req we fix a finite state automaton Aξ such that L(Aξ) = ||π||
where L(Aξ) is the language of finite words accepted by Aξ. We shall assume
each such Aξ is of the form Aξ = (Qξ,−→ξ, Iξ, Fξ) where Qξ is the set of states,
−→ξ ⊆ Qξ × Σ × Qξ is the transition relation, Iξ ⊆ Qξ is the set of initial
states and Fξ ⊆ Qξ is the set of final states. Without loss of generality, we
shall assume that ξ 6= ξ′ implies Qξ ∩ Qξ′ = ∅ for every ξ, ξ′ ∈ Req. We set
Q =

⋃
ξ∈Req Qξ and Q̂ = Q× {0, 1}.

The Büchi automaton Bα0 associated with α0 (from now on denoted as B)
can now be defined as

B = (S,=⇒, Sin, F ),

where the various components of B are specified as follows. We provide explana-
tory remarks immediately after the definition.

(1) S ⊆ AT × 2Q × 2Q̂ × {0, 1} × {↓,X} such that (A,X, X̂, x, f) ∈ S iff the
following conditions are satisfied for each ξ = α Uπβ:

(i) If β ∈ A then Fξ ⊆ X . (Recall that Aξ = (Qξ,−→ξ, Iξ, Fξ)).
(ii) If α ∈ A and q ∈ X for some q ∈ Iξ then α Uπβ ∈ A.

(iii) If α Uπβ ∈ A then either β ∈ A and ε ∈ ||π|| or (q, 1−x) ∈ X̂ for some
q ∈ Iξ. (Note that we are considering the candidate (A,X, X̂, x, f)
for membership in S).

(iv) If (q, z) ∈ X̂ with q ∈ Qξ and q 6∈ Fξ or β 6∈ A then α ∈ A.

(2) The transition relation =⇒ ⊆ S × Σ × S is defined as follows:

(A,X, X̂, x, f) a=⇒ (B, Y, Ŷ , y, g)

iff the following conditions are satisfied for each ξ = α Uπβ:

(i) Suppose q′ ∈ Qξ ∩ Y and q a−→ξ q
′ and α ∈ A. Then q ∈ X .

(ii) Suppose (q, z) ∈ X̂ with q ∈ Qξ. Suppose further that q 6∈ Fξ or
β 6∈ A. Then (q′, z) ∈ Ŷ for some q′ with q a−→ξ q

′.
(iii) If f = X then (y, g) = (1 − x, ↓). If f = ↓ then,

(y, g) =

 (x, ↓), if there exists (q, x) ∈ X̂ such that
q 6∈ Fξ or β 6∈ A.

(x,X), otherwise.
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(3) Sin = {(A,X, X̂, x, f) | α0 ∈ A and (x, f) = (0,X)}.

(4) F = {(A,X, X̂, x, f) | f = X}

To understand the functioning of the automaton B, let (σ, V ) be a model
and ρ a run of B over σ. Assume further that τ ∈ prf(σ) and that ρ(τ) =
(A,X, X̂, x, f). The role of the atom A, as usual, is to assert that the formulas
in A will be satisfied at τ . To check this, the automaton should verify that all the
until requirements are being satisfied. This work is divided into two phases; a
0-phase and a 1-phase. The value of the boolean variable x indicates the current
phase of the automaton. The last component is used to signal the successful
completion of one phase. The automaton will not toggle to the next phase until
successful completion of the current phase. The component X corresponds to
the so-called safety automaton in [147]. The point is that the automaton must
assert α Uπβ at τ in case there is some possibility of satisfying this assertion
in the unknown future. The component X , in combination with the transition
relation, is designed to ensure this. The component X̂ is used to check the
liveness requirements. The complication here is that while requirements of the
form (q, x) are being checked, new requirements may come up. These will be
tagged with the value 1 − x but will have to be simultaneously checked. They
cannot be ignored while working towards discharging the requirements in the
current phase. The definition of the state set of the automaton as well as the
transition relation have been guided by these considerations. It might be that
this information could be maintained in a more compact form but it is a pointless
optimization at this stage.

We wish to first prove that α0 is satisfiable iff L(B) 6= ∅. Afterwards we will
argue that the size of B can be chosen to be at most exponential in the size of
α0.

Lemma 6.4.1 Suppose L(B) 6= ∅. Then α0 is satisfiable.

Proof: Let σ ∈ L(B) and ρ : prf(σ) −→ S be an accepting run. For each
τ ∈ prf(σ), let ρ(τ) = (Aτ , Xτ , X̂τ , xτ , fτ ). Define the model M = (σ, V ) via:

V (τ) = Aτ ∩ P for all τ ∈ prf(σ).

Claim: For all τ ∈ prf(σ) and δ ∈ CL,

M, τ |= δ iff δ ∈ Aτ .

First note that if the claim is true then Lemma 6.4.1 follows at once. This is so
because ρ is a run of B and hence ρ(ε) ∈ Sin. But from (3), in the definition of
B, it follows that α0 ∈ Aε.

In proving the claim we will repeatedly refer to various clauses in the defini-
tion of the Büchi automaton B. We proceed by structural induction on δ. For
the base case and the boolean connectives the claim is obvious. Hence assume
that δ = α Uπβ.
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Suppose thatM, τ |= α Uπβ. Since M, τ |= α Uπβ there exists τ ′ ∈ ||π|| such
that ττ ′ ∈ prf(σ) and M, ττ ′ |= β. Moreover, M, ττ ′′ |= α for every τ ′′ ∈ Σ∗

such that ε � τ ′′ ≺ τ ′.
Suppose τ ′ = ε. Then ε ∈ ||π|| and M, τ |= β. By the induction hypothesis

β ∈ Aτ . From the definition of an atom it follows that α Uπβ ∈ Aτ .
So assume that τ ′ 6= ε. Let ξ = α Uπβ and R be an accepting run of Aξ

over τ ′ = a1a2 . . . an with R(ε) = q0 ∈ Iξ and R(a1a2 . . . ai) = qi for 1 ≤ i ≤ n
and qn ∈ Fξ. Since M, ττ ′ |= β we have from the induction hypothesis that
β ∈ Aττ ′. Hence by (1.i), Fξ ⊆ Xττ ′. Now by the definition of R we are
assured that qn−1

an−→ξ qn. On the other hand, the fact that M, τ |= α Uπβ and
the choice of τ ′ guarantee that M, τa1 . . . an−1 |= α (with the convention that
ε = a1 . . . an−1 in case n = 1). By the induction hypothesis α ∈ Aτa1...an−1 , so
by (2.i) and the fact that qn ∈ Xτa1...an , we have that qn−1 ∈ Xτa1...an−1 . In case
n ≥ 2 we repeat the above argument at qn−1 to conclude that qn−2 ∈ Xτa1...an−2 .
Continuing this way we can finally arrive at q0 ∈ Xτ and α ∈ Aτ . But q0 ∈ Iξ
and hence by (1.ii) we are assured that α Uπβ ∈ Aτ .

For the converse direction assume that α Uπβ ∈ Aτ . There are four cases
to consider depending on the values of xτ and fτ . We will only prove one case.
The remaining cases can be resolved by similar arguments.

So assume that xτ = 0 and fτ = ↓. Suppose first that β ∈ Aτ and ε ∈ ||π||.
Then by the induction hypothesis M, τ |= β and hence we at once have M, τ |=
α Uπβ. So assume that β 6∈ Aτ or ε 6∈ ||π||. Then by (1.iii), (q0, 1) ∈ X̂τ for
some q0 ∈ Iξ. Suppose q0 ∈ Fξ. Then ε ∈ ||π|| and thus β 6∈ Aτ . This implies,
by (1.iv), that α ∈ Aτ , and by the induction hypothesis we have that M, τ |= α.

Now with ρ being an accepting run of B over σ there must exist τ1 and τ2
in Σ∗ such that the following conditions are satisfied:

• τ1 6= ε and τ2 6= ε and ττ1τ2 ∈ prf(σ).

• xττ1 = 0 and xττ1τ2 = 1. (Recall the notational convention that ρ(u) =
(Au, Xu, X̂u, xu, fu) for each u ∈ prf(σ)).

• fττ1 = X and fττ1τ2 = X.

• For each τ ′′1 and τ ′′2 in Σ∗, if ε � τ ′′1 ≺ τ1 then f(ττ ′′1 ) 6= X and if
ε ≺ τ ′′2 ≺ τ2 then f(ττ1τ ′′2 ) 6= X.

Let τ1 = a1a2 . . . an and τ2 = b1b2 . . . bm. Now ρ(τ) a1=⇒ ρ(τa1), α Uπβ ∈ Aτ
and (q0, 1) ∈ X̂τ . Moreover, we have that q0 6∈ Fξ (if ε 6∈ ||π||) or β 6∈ Aτ . Thus
by (2.ii), there exists q1 ∈ Qξ such that q0

a1−→ξ q1 and (q1, 1) ∈ X̂τa1.
Now suppose q1 ∈ Fξ and β ∈ Aτa1 . Then a1 ∈ ||π|| and by the induction

hypothesis M, τa1 |= β. Since M, τ |= α has already been deduced we have
M, τ |= α Uπβ. So assume that q1 6∈ Fξ or β 6∈ Aτa1 . Then by repeating the
arguments we had above for q0 at q1 we can arrive at α ∈ Aτa1 , and hence by the
induction hypothesis M, τa1 |= α. Moreover, we can conclude that there exists
q2 ∈ Qξ such that q1

a2−→ξ q2 and (q2, 1) ∈ X̂τa1a2 . Marching down τ1 using
this sequence of arguments we will either terminate with the conclusion M, τ |=
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α Uπβ or we will exhaust all of τ1 while being able to conclude that there must
exist states q0, q1, . . . , qn ∈ Qξ such that q0

a1−→ξ q1
a2−→ξ q2 . . . qn−1

an−→ξ qn.
Furthermore, we will be able to conclude that M, ττ ′′1 |= α for every τ ′′1 such
that ε � τ ′′1 ≺ τ1. Finally, we will also be assured that (qn, 1) ∈ X̂ττ1.

Now suppose qn ∈ Fξ and β ∈ Aττ1 . Then τ1 ∈ ||π|| and M, ττ1 |= β by the
induction hypothesis. Consequently M, τ |= α Uπβ. So assume that qn 6∈ Fξ or
β 6∈ Aττ1 . Then α ∈ Aττ1 (by (1.iv)) and hence M, ττ1 |= α by the induction
hypothesis. Now by the choice of τ1, we know that (xττ1 , fττ1) = (0,X) and
hence (xττ1b1 , fττ1b1) = (1, ↓) by (2.iii). On the other hand, ρ(ττ1)

b1=⇒ ρ(ττ1b1)
implies that there exists q′1 ∈ Qξ such that qn

b1−→ξ q
′
1 and (q′1, 1) ∈ X̂ττ1b1 .

Again q′1 ∈ Fξ and β ∈ Aττ1b1 will lead to the desired conclusion M, τ |= α Uπβ.
So suppose q′1 6∈ Fξ or β 6∈ Aττ1b1 . Then as before, α ∈ Aττ1b1 and hence

M, ττ1b1 |= α by induction hypothesis. By the choice of τ2 we are assured
that m ≥ 2 because fττ1b1 = ↓. So consider ρ(ττ1b1)

b2=⇒ ρ(ττ1b1b2). Then
again it follows easily that there must exist q′2 ∈ Qξ such that q′1

b2−→ξ q
′
2 and

(q′2, 1) ∈ X̂ττ1b1b2 . If q′2 ∈ Fξ and β ∈ Aττ1b1b2 then we will at once obtain
M, τ |= α Uπβ. If not, the facts that (q′1, 1) ∈ X̂ττ1b1 and that q′1 6∈ Fξ or
β 6∈ Aττ1b1 holds, guarantee us that fττ1b1b2 = ↓ by (2.iii). Hence m ≥ 3.
Carrying on this way we will eventually exhaust all of τ2 and while doing so,
reach the desired conclusion M, τ |= α Uπβ. 2

Lemma 6.4.2 Suppose α0 is satisfiable. Then L(B) 6= ∅.

Proof: Since our logic has no past modalities it is easy to see that if α0 is
satisfiable then there exists a model M = (σ, V ) such that M, ε |= α0. We shall
show that σ ∈ L(B) by constructing a map ρ : prf(σ) −→ S so that ρ is an
accepting run of B over σ. For each τ ∈ prf(σ) we set ρ(τ) = (Aτ , Xτ , X̂τ , xτ , fτ )
and define ρ in a componentwise manner.

For each τ ∈ prf(σ) define Aτ via:

Aτ = {α | M, τ |= α}.

For each τ ∈ prf(σ) define Xτ as follows. Suppose ξ = α Uπβ and q ∈ Qξ.
Then q ∈ Xτ iff there exists a pair (τ ′, R′) such that:

• ττ ′ ∈ prf(σ) and M, ττ ′ |= β.

• For every τ ′′, if ε � τ ′′ ≺ τ ′ then M, ττ ′′ |= α.

• R′ : prf(τ ′) −→ Qξ such that R′(ε) = q and R′(τ ′) ∈ Fξ and R′(τ ′′) a−→ξ

R′(τ ′′a) for every τ ′′a ∈ prf(τ ′).

To define the remaining three components we will first define the fourth and
fifth components by mutual induction. To this end we shall make use of some
terminology.

We shall call the pair (τ, ξ) an obligation in M if τ ∈ prf(σ) and ξ =
α Uπβ ∈ Req such that M, τ |= α Uπβ but M, τ 6|= β or ε 6∈ ||π||. Let (τ, ξ) be
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an obligation in M . We shall say that the pair (τ ′, R′) is a witness for (τ, ξ) iff
the following conditions are satisfied:

• ττ ′ ∈ prf(σ) and M, ττ ′ |= β and for every τ ′′, ε � τ ′′ ≺ τ ′ implies
M, ττ ′′ |= α.

• τ ′ ∈ ||π|| and R′ : prf(τ ′) −→ Qξ such that R′(ε) ∈ Iξ, R′(τ ′) ∈ Fξ and
R′(τ ′′) a−→ξ R

′(τ ′′a) for every τ ′′a ∈ prf(τ ′).

Note that if (τ ′, R′) is a witness for the obligation (τ, ξ) then τ ′ 6= ε. We
shall fix a chronicle set CH for M . It is a set of quadruples which satisfies the
following conditions:

• If (τ, ξ, τ ′, R′) ∈ CH then (τ, ξ) is an obligation inM and (τ ′, R′) is witness
for (τ, ξ).

• If (τ, ξ) is an obligation in M then (τ, ξ, τ ′, R′) ∈ CH for some witness
(τ ′, R′) for (τ, ξ).

• If (τ, ξ, τ ′, R′), (τ, ξ, τ ′′, R′′) ∈ CH then (τ ′, R′) = (τ ′′, R′′).

It is easy to check that CH exists. (In fact it can be chosen in a canonical
manner by fixing a lexicographic order on Qξ for each ξ ∈ Req).

With these definitions in place, we are now prepared to define the fourth
and the fifth components of ρ by induction on τ . For the base case, we set
(xε, fε) = (0,X). Now consider the induction step where τ = τ0a and assume
that (xτ ′ , fτ ′) is defined for every τ ′ ∈ prf(τ0). If fτ0 = X then (xτ , fτ ) = (1 −
xτ0 , ↓). Suppose fτ0 = ↓. Then (xτ , fτ ) = (xτ0 , ↓) if there exists (τ1, ξ1, τ ′1, R

′
1) ∈

CH such that τ1 � τ0 ≺ τ1τ
′
1 and xτ1 = 1 − xτ0 . Otherwise, fτ = X and

xτ = xτ0 .
Finally, the third component of ρ can now be defined. For each τ ∈ prf(σ),

we define X̂τ as follows. Suppose ξ ∈ Req and q ∈ Qξ and z ∈ {0, 1}. Then
(q, z) ∈ X̂τ iff there exists (τ1, ξ, τ ′1, R

′
1) ∈ CH such that for some τ ′′1 ∈ prf(τ ′1),

τ1 � τ = τ1τ
′′
1 . Moreover, R′

1(τ
′′
1 ) = q and xτ1 = 1 − z.

We now wish to argue that ρ : prf(σ) −→ S is an accepting run of B over
σ. First we shall show that ρ is well defined. Let τ ∈ prf(σ) be given. We must
show that ρ(τ) ∈ S. It is easy to see that Aτ is an atom, Xτ ⊆ Q, X̂τ ⊆ Q̂,
xτ ∈ {0, 1} and fτ ∈ {↓,X}. We will show that ρ(τ) satisfies all the clauses of
the definition of B.

So fix some α Uπβ = ξ. Assume initially that β ∈ Aτ and q ∈ Fξ. Then
M, τ |= β by definition of Aτ . Now consider the pair (τ ′, R′) where τ ′ = ε and
R′(ε) = q. From the definition of Xτ it now follows that q ∈ Xτ . Thus Fξ ⊆ Xτ

as required by (1.i).
Next assume that α ∈ Aτ and q ∈ Xτ for some q ∈ Iξ. From the definition

of Xτ it follows that there exists a pair (τ ′, R′) such that ττ ′ ∈ prf(σ) and
M, ττ ′ |= β and M, ττ ′′ |= α for every τ ′′ such that ε � τ ′′ ≺ τ ′. Furthermore,
R′ : prf(τ ′) −→ Qξ such that R′(ε) = q and R′(τ ′) ∈ Fξ and R′(τ ′′) a−→ξ

R′(τ ′′a) for every τ ′′a ∈ prf(τ ′). But from the assumption that q ∈ Iξ we have
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that τ ′ ∈ ||π||, because R′ is an accepting run of Aξ over τ ′. Consequently
M, τ |= α Uπβ and this leads to the conclusion that α Uπβ ∈ Aτ as required by
(1.ii).

Next assume that α Uπβ ∈ Aτ and β 6∈ Aτ or ε 6∈ ||π||. Then (τ, ξ) is an
obligation in M since by the definition of Aτ , M, τ |= α Uπβ but M, τ 6|= β
or ε 6∈ ||π||. Hence there exists (τ, ξ, τ ′, R′) ∈ CH . Let R′(ε) = q. From the
fact that (τ ′, R′) is a witness for (τ, ξ) we have that q ∈ Iξ. Moreover, by the
definition of X̂τ and from τ � τ = τ (i.e. τ1 = τ and τ ′′1 = ε), it follows that
(q, 1 − xτ ) ∈ X̂τ as required by (1.iii).

Finally suppose that (q, z) ∈ X̂τ with q ∈ Qξ such that q 6∈ Fξ or β 6∈ A. Now
(q, z) ∈ X̂τ implies, by the definition of X̂τ , that there exists (τ1, ξ, τ ′1, R′

1) ∈ CH
such that for some τ ′′1 ∈ prf(τ ′1), τ1 � τ = τ1τ

′′
1 and R′

1(τ
′′
1 ) = q and xτ1 = 1−z.

But (τ ′1, R
′
1) is a witness for the obligation (τ1, ξ) and hence R′

1(τ
′
1) ∈ Fξ and

M, τ1τ
′
1 |= β. Since β 6∈ Aτ or q 6∈ Fξ it must be the case that τ ′′1 ≺ τ ′1 and

hence M, τ1τ
′′
1 |= α. But then τ = τ1τ

′′
1 now leads to α ∈ Aτ as required by

(1.iv).
We have now shown that ρ is well defined. Next we wish to show that

ρ is a run of B over σ. Since M, ε |= α0 we have α0 ∈ Aε. By definition,
(xε, fε) = (0,X). Hence ρ(ε) ∈ Sin.

Now suppose τa ∈ prf(σ). We must show that ρ(τ) a=⇒ ρ(τa). For this
purpose we fix α Uπβ = ξ ∈ Req. Suppose q, q′ ∈ Qξ with q′ ∈ Xτa such that
q

a−→ξ q
′. Further suppose α ∈ Aτ . Now q′ ∈ Xτa implies that there exists a

pair (τ ′, R′) such that R′(ε) = q′ and R′(τ ′) ∈ Fξ and R′(τ ′′) b−→ξ R
′(τ ′′b) for

every τ ′′b ∈ prf(τ ′). Furthermore, M, τaτ ′ |= β and M, τaτ ′′ |= α for every τ ′′

such that ε � τ ′′ ≺ τ ′. Now consider the pair (aτ ′, R′
a) where R′

a : prf(aτ ′) −→
Qξ is given as R′

a(ε) = q and for every τ ′′ ∈ prf(τ ′), R′
a(aτ ′′) = R′(τ ′′). From

M, τ |= α (as α ∈ Aτ by assumption) it now follows at once that q ∈ Xτ as
required by (2.i).

Suppose now that q ∈ Qξ and (q, z) ∈ X̂τ but q 6∈ Fξ or β 6∈ Aτ . Since
(q, z) ∈ X̂τ there must exist (τ1, ξ, τ ′1, R

′
1) ∈ CH and τ ′′1 ∈ prf(τ ′1) such that

τ1 � τ = τ1τ
′′
1 and xτ1 = 1 − z and R′

1(τ
′′
1 ) = q. But (τ ′1, R

′
1) is a witness for

(τ1, ξ) and hence R′
1(τ ′1) ∈ Fξ and M, τ1τ

′
1 |= β. Consequently τ ′′1 ≺ τ ′1 and thus

τ ′′1 a ∈ prf(τ ′1) for the unique a. This implies that R′
1(τ

′′
1 ) a−→ξ R

′
1(τ

′′
1 a). Let

R′
1(τ ′′1 a) = q′. Then q

a−→ξ q
′. But then it follows directly from the definition

of Xτa, that (q′, 1 − z) ∈ X̂τa as required by (2.ii).
Next suppose that fτ = X. Then clearly (xτa, fτa) = (1 − xτ , ↓) by the

definition of ρ. So assume that fτ = ↓. Supposing there exists α Uπβ = ξ in Req
and there exists q ∈ Qξ such that (q, z) ∈ X̂τ where z = xτ . Further suppose
q 6∈ Fξ or β 6∈ Aτ . Now (q, z) ∈ X̂τ implies that there exists (τ1, ξ, τ ′1, R1′) ∈ CH
such that τ1 � τ = τ1τ

′′
1 for some τ ′′1 ∈ prf(τ ′1) with the further property that

xτ1 = 1 − z. From the definitions and the fact that q 6∈ Fξ or β 6∈ Aτ it follows
that τ1 � τ ≺ τ1τ

′
1. Hence by the definition of ρ it follows that (xτa, fτa) =

(xτ , ↓) as required by (2.iii). On the other hand, if such a (q, z) ∈ X̂τ does not
exist, then it follows directly from the definition that (xτa, fτa) = (xτ ,X) as



6.5. SOME EXPRESSIVENESS RESULTS 105

required by (2.iii).
We have now verified that ρ is a run of B over σ. To show that ρ is accepting

it suffices to prove that for any τ ∈ prf(σ) there exists τ ′ such that ττ ′ ∈ prf(σ)
and fττ ′ = X.

Case 1: (xτ , fτ ) = (0,X). By picking τ ′ = ε the desired conclusion follows
trivially.

Case 2: (xτ , fτ ) = (0, ↓). Define the set Γτ ⊆ CH as follows. Let (τ, ξ, τ ′, R′)
be a member of the chronicle set CH . Then (τ1, ξ1, τ ′1, R

′
1) ∈ Γτ iff τ1 � τ ≺ τ1τ

′
1

and xτ1 = 1. Now if Γτ = ∅ then it is easy to see that with τ ′ = a where
τa ∈ prf(σ) we must have fττ ′ = X as required.

So suppose Γτ 6= ∅. Define, for each ch = (τ1, ξ1, τ ′1, R
′
1) ∈ Γτ , kch =

|τ1τ ′1| − |τ | and set kτ = max({kch}ch∈Γτ ). Let τa ∈ prf(σ). Then it is easy to
see that (xτa, fτa) = (0, ↓). But it is also easy to verify Γτa = ∅ or kτa < kτ .
Proceeding in this way the required conclusion can be drawn eventually.

The two other cases can be resolved by similar arguments. 2

It is now straightforward to establish the main result of this section. To
start with we define the size of a formula α, denoted |α|, via:

• |p| = 1, |¬α| = 1 + |α| and |α ∨ β| = 1 + |α| + |β|.

• |α Uπβ| = 1 + |α| + |π| + |β|,

where |π| is given by |a| = 1, |π+π′| = |π;π′| = 1+ |π|+ |π′| and |π∗| = 1+ |π|.

Theorem 6.4.3 For each α ∈ DLTL(Σ) the question whether or not α is sat-
isfiable can be decided in time 2O(|α|).

Proof: Let α0 ∈ DLTL(Σ). Then α0 is satisfiable iff L(Bα0) 6= ∅ where α0 is
the Büchi automaton constructed above. The emptiness problem for Bα0 can
be settled in time O(|S|) where S is the set of states of B [140].

Clearly CL(α0) is linear in the size of α0 and hence |AT | = 2O(|α0|). Let
α Uπβ ∈ Req. It is known that for π ∈ Prg(Σ), we can construct in polynomial
time a non-deterministic finite state automaton Aξ with L(A) = ||π|| such that
|Qξ| is linear in the size of π (see [64] for a recent account on converting regular
expression to small finite state automata).

Let Req = {α1 Uπ1β1, . . . , αm Uπmβm}. Then |π1|+ |π2|+ · · ·+ |πm| ≤ |α0|.
Consequently both Q and Q̂ are linear in the size of α0. It is now easy to see
that |S| = 2O(|α0|). 2

As usual, the decision procedure can be applied to solve the associated model
checking problem but we will not enter into details here.

6.5 Some Expressiveness Results

Our main goal here is to show that DLTL(Σ) has the same expressive power as
the monadic second-order theory of infinite sequences over Σ. Towards the end
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of the section we will also establish that a natural sublogic of DLTL(Σ) captures
the first-order theory of infinite sequences over Σ.

In order to obtain clean formulations of the expressiveness results, we shall
banish atomic propositions through the rest of the chapter. Instead, we will just
work with the constant tt and its negation ¬tt def= ff . To be precise, the syntax
of DLTL(Σ) will be from now on assumed to be:

DLTL(Σ) ::= tt | ¬α | α ∨ β | α Uπβ,

where π ∈ Prg(Σ) with Prg(Σ) defined as before.
A model is now just a ω-sequence σ ∈ Σω. For τ ∈ prf(σ) we define σ, τ |= α

via:

• σ, τ |= tt .

• All the other clauses are filled in exactly as in Section 6.3 while replacing
M by σ in the appropriate places.

Each formula α now defines a ω-language Lα ⊆ Σω given by:

Lα = {σ | σ, ε |= α}.

We say that L ⊆ Σω is DLTL(Σ)-definable iff there exists some α ∈ DLTL(Σ)
such that L = Lα.

The monadic second-order theory of infinite sequences over Σ is denoted
MSO(Σ). Its vocabulary consists of a family of unary predicates {Ra}a∈Σ, one
for each a ∈ Σ; a binary predicate ≤; a binary predicate ∈; a countable supply of
individual variables Var = {x, y, z, . . .}; a countable supply of set variables (i.e.
monadic predicate variables) SVar = {X,Y, Z, . . .}. The formulas of MSO(Σ)
are then built up by:

• Ra(x), x ≤ y and x ∈ X are atomic formulas.

• If φ and φ′ are formulas then so are ¬φ, φ ∨ φ′, (∃x)φ and (∃X)φ.

A structure for MSO(Σ) is a ω-sequence σ ∈ Σω. Let I be an interpretation
of the variables with I : Var −→ ω and I : SVar −→ 2ω. Then the notion of
σ being a model of φ under the interpretation I, denoted σ |=I φ, is defined
in the expected manner. In particular, σ |=I Ra(x) iff σ(I(x)) = a (note that
σ ∈ Σω is viewed as σ : ω −→ Σ); σ |=I x ≤ y iff I(x) ≤ I(y) (here ≤ is the
usual ordering over ω); σ |=I x ∈ X iff I(x) ∈ I(X).

As usual, a sentence is a formula with no free variables. Each sentence φ
defines a ω-language denoted Lφ where:

Lφ = {σ | σ |= φ}.

We say that L ⊆ Σω is MSO(Σ)-definable iff there exists a sentence φ ∈ MSO(Σ)
such that L = Lφ.
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Lemma 6.5.1 Let L ⊆ Σω. If L is DLTL(Σ)-definable then L is MSO(Σ)-
definable.

Proof: Consider the construction from the previous section which associates
a Büchi automaton Bα0 with each formula α0 ∈ DLTL(Σ). Suppose we apply
this construction to formulas arising from the restricted syntax assumed in the
present section. Then it is easy to see that, in the absence of atomic propositions,
Lα0 = L(Bα0). But then the classic result of Büchi [14] asserts that L ⊆ Σω is
MSO(Σ)-definable iff there exists a Büchi automaton B operating over Σ such
that L = L(B). 2

Next we wish to show that if L ⊆ Σω is MSO(Σ)-definable then L is
DLTL(Σ)-definable. In fact, it turns out that it suffices to consider a natu-
ral fragment of DLTL(Σ) denoted DLTL−(Σ) whose syntax is given by:

DLTL−(Σ) ::= tt | ¬α | α ∨ β | 〈π〉α,

where π ∈ Prg(Σ).
Here 〈π〉α is interpreted as tt Uπ α with the resulting semantics. Thus

DLTL− is PDL equipped with a linear time semantics. As before L ⊆ Σω is said
to be DLTL−(Σ)-definable iff there exists α ∈ DLTL−(Σ) such that L = Lα,
where Lα is defined as for DLTL(Σ). To get at the result we are after we need to
work with Muller automata operating over Σ of the form M = (Q,−→, Qin,F)
where:

• Q,−→ and Qin are as in the case of a Büchi automaton.

• F ⊆ 2Q is a family of accepting sets of states.

Let σ ∈ Σω. Then the notion of a run ρ : prf(σ) −→ Q of M over σ is as in
the case of a Büchi automaton. The definition of inf(ρ) is also as before. The
run ρ is said to be accepting iff inf(ρ) ∈ F . Naturally L(M), the ω-language
accepted by M, is given by : σ ∈ L(M) iff there exists an accepting run of M
over σ.

The Muller automaton M = (Q,−→, Qin,F) is deterministic iff |Qin| = 1
and whenever q a−→ q′ and q a−→ q′′, we have q′ = q′′. The well-known theorem
of McNaughton [87] guarantees that L ⊆ Σω is MSO(Σ)-definable iff there exists
a deterministic Muller automaton operating over Σ such that L = L(M). This
fact will be the basis for the proof of the next result.

Lemma 6.5.2 Let L ⊆ Σω. If L is MSO(Σ)-definable then L is DLTL−(Σ)-
definable.

Proof: As remarked above, L is MSO(Σ)-definable implies that there exists
a deterministic Muller automaton M = (Q,−→, {qin},F) operating over Σ
such that L = L(M). We will exhibit a formula αM ∈ DLTL−(Σ) such that
LαM = L(M).

An easy argument shows that it involves no loss of generality to assume that
M — apart from determinacy — has two additional properties:
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(i) ∅ 6∈ F .

(ii) ∀q ∈ Q ∀a ∈ Σ. ∃q′. q a−→ q′.

Determinacy and (ii) ensure that for every σ ∈ Σω the Muller automaton
M has a unique run over σ. This fact will be crucial in what follows.

If F = ∅ we have that L = ∅, so we set αM = ff . So suppose that F 6= ∅.
For each F ∈ F we shall construct a formula αF expressing acceptance by F .
The required formula αM defining L will then be the disjunction of all such αF .

First we extend −→ ⊆ Q×Σ×Q to −→∗, where −→∗ is the least subset of
Q× Σ∗ ×Q satisfying:

• q
ε−→∗ q for every q ∈ Q.

• If q τ−→∗ q′ and q′ a−→ q′′ then q τa−→∗ q′′.

Next define, for each q, q′ ∈ Q, the language of finite words Lq,q′ ⊆ Σ∗ by:

Lq,q′ = {τ | q τ−→∗ q′}.

It is easy to see that each Lq,q′ is a regular subset of Σ∗. Hence we can fix
a regular expression πq,q′ ∈ Prg(Σ) such that Lq,q′ = ||πq,q′ ||. Due to the
determinacy of M it follows at once that if q, q′, q′′ ∈ Q such that Lq,q′ ∩Lq,q′′ 6=
∅ then q′ = q′′.

Now let F = {q0, q1, . . . , qn−1} with n ≥ 1. Then the formula αF is given
by:

αF =
∨
q∈F

〈πqin,q〉

 ∧
q′ 6∈F

[πq,q′ ]ff ∧
n−1∧
j=0

[πq,qj ]〈πqj ,qj⊕1 〉tt

 ,

where ⊕ denotes addition modulo n.
The required formula αM describing L(M) is then defined as:

αM =
∨
F∈F

αF

Clearly αM ∈ DLTL−(Σ). It is easy to check that LαM = L(M). 2

Theorem 6.5.3 Let L ⊆ Σω. Then the following statements are equivalent:

(i) L is MSO(Σ)-definable.

(ii) L is DLTL(Σ)-definable.

(iii) L is DLTL−(Σ)-definable.

Proof: Follows immediately from Lemmas 6.5.1 and 6.5.2 and the fact that
DLTL−(Σ) is a sublogic of DLTL(Σ). 2
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At present we do not know of a direct translation of DLTL(Σ)-formulas into
DLTL−(Σ)-formulas. Although these two logics have the same expressive power
in the sense of Theorem 6.5.3, it appears that DLTL(Σ) will admit more natural
specifications. In addition, it is a conservative extension of LTL(Σ) even from a
syntactic standpoint and hence conventional LTL specifications can be brought
in with no overhead translation costs.

We shall conclude this section by pointing out that star-free programs can
be used to capture the first-order definable subsets of Σω. Admittedly this is
not a big surprise, but it illustrates once more that our method of augmenting
the expressive power of LTL is a natural one.

FO(Σ) will denote the first-order theory of ω-sequences generated by Σ. It is
the fragment of MSO(Σ) obtained by eliminating set variables from the syntax.
We shall say that L ⊆ Σω is FO(Σ)-definable iff there exists a sentence φ in
FO(Σ) such that L = Lφ.

The set of star-free regular programs over Σ is denoted PrgSF(Σ) and its
syntax is given by:

PrgSF(Σ) ::= 0 | a | π + π′ | π;π′ | π .

The set of finite words denoted by each star-free program is obtained via the
map || · || : Prg

SF
(Σ) −→ 2Σ∗

which is defined as follows: ||π || = Σ∗ − ||π|| and
||0|| = ∅. The remaining cases are handled as before.

The star-free version of DLTL(Σ) will be denoted — for want of a better
notation — by DLTLSF(Σ) and its syntax is given by:

DLTLSF(Σ) ::= tt | ¬α | α ∨ β | α Uπβ (π ∈ PrgSF(Σ)).

Thus the only difference is that the programs that are used to build up
the until-formulas are required to be star-free programs. The fragment of
DLTLSF(Σ) which corresponds to DLTL−(Σ) has the syntax:

DLTL−
SF

(Σ) ::= tt | ¬α | α ∨ β | 〈π〉α (π ∈ Prg
SF

(Σ)).

Theorem 6.5.4 Let L ⊆ Σω. Then the following statements are equivalent:

(i) L is FO(Σ)-definable.

(ii) L is DLTLSF(Σ)-definable.

(iii) L is DLTL−
SF

(Σ)-definable.

Proof: Trivially (iii) implies (ii). The proof that (ii) implies (i) utilizes the
well-known fact [88] that FO(Σ)-definable languages over finite strings and the
languages described by star-free regular expressions coincide. It is then straight-
forward to exhibit a syntactic translation of formulas of DLTLSF(Σ) to FO(Σ)
essentially re-expressing the semantics by relativizing the formulas arising from
the star-free expressions. The details can be found in [59].

That (i) implies (iii) is a consequence of the fact that the abovementioned
characterization of FO(Σ) and star-free regular expressions can be extended
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to languages of ω-sequences [140]. A linear translation from the star-free ω-
regular expressions to DLTL−

SF
(Σ) is then obtained by inductively translating

the boolean operations to their logical counterparts, while left concatenation
with a star-free language of finite strings is handled by the 〈π〉-modality. Once
again, the details can be found in [59]. 2

6.6 Axiomatizations

Our axiomatization of the set of valid formulas of DLTL is an extension of
Segerberg’s axiomatization of PDL [124]. Moreover, our completeness argument
is based on the elegant proof of completeness of Segerberg’s axioms due to Kozen
and Parikh [76]. It will be convenient to first axiomatize DLTL−.

We begin by augmenting the set of regular programs with the atomic pro-
gram 1. We set ||1|| = {ε}. By abuse of notation this augmented set of programs
will also be denoted as Prg(Σ). Next we define the transition relation −→Prg(Σ)

(from now on written as just −→) to be the least subset of Prg(Σ)×Σ×Prg(Σ)
yielded by the following rules:

•
a

a−→ 1

• π
a−→ π1

π + π′ a−→ π1

π
a−→ π1

π′ + π
a−→ π1

• π
a−→ π1

π;π′ a−→ π1;π′ if π1 6= 1

• π
a−→ 1

π;π′ a−→ π′

• π′ a−→ π′′

π;π′ a−→ π′′ if ε ∈ ||π||

• π
a−→ π′

π∗ a−→ π′;π∗ .

This transition relation is extended to the relation −→∗ ⊆ Prg(Σ) × Σ∗ ×
Prg(Σ) via:

• π
ε−→∗ π

• If π τ−→∗ π′ and π′ a−→ π′′ then π
τa−→∗ π′′.

Finally the sets of programs δa(π) and δ∗(π) for each π and each a are defined
as follows:

• δa(π) = {π′ | π a−→ π′}.
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• δ∗(π) = {π′ | ∃τ. π τ−→∗ π′}.

Proposition 6.6.1 For each π and each a, both δa(π) and δ∗(π) are finite sets.

Proof: The proof follows easily by structural induction on π. 2

We are now ready to present an axiomatization of DLTL− (Recall that
Oα

def=
∨
a∈Σ〈a〉α). The logical system DLT L− is given as follows.

Axiom schemes
(A0) All the tautologies of propositional calculus.
(A1) [π] (α⇒ β) ⇒ ([π]α⇒ [π]β).
(A2) 〈π + π′〉α⇔ 〈π〉α ∨ 〈π′〉α.
(A3) 〈π;π′〉α⇔ 〈π〉〈π′〉α.
(A4) 〈π∗〉α⇔ α ∨ 〈π〉〈π∗〉α.
(A5) [π∗](α⇒ [π]α) ⇒ (α⇒ [π∗]α).
(A6) α⇔ 〈1〉α.
(A7) Ott .
(A8) 〈a〉tt ⇒

∧
b6=a[b]ff .

(A9) 〈a〉α⇒ [a]α.
(A10) 〈π〉α ⇔ α ∨

(∨
a∈Σ〈a〉

∨
π′∈δa(π)〈π′〉α

)
, (ε ∈ ||π||).

(A11) 〈π〉α ⇔
∨
a∈Σ〈a〉

∨
π′∈δa(π)〈π′〉α, (ε 6∈ ||π||).

Inference rules

(MP)
α α⇒ β

β
.

(TG)
α

[π]α
.

(A0) through (A5) and the inference rules together constitute an axiomati-
zation of PDL. The behaviour of 1 is captured by (A6). The remaining axiom
schemes describe the linear time semantics provided for regular programs in the
setting of DLTL−. Due to Proposition 6.6.1 both (A10) and (A11) are well-
defined. It is easy to see that the axioms are valid and that the inference rules
preserve validity.

We shall say, as usual, that a formula α is (DLT L−-)consistent in case
¬α is not a thesis derivable from the system DLT L−. We shall prove that
every consistent formula is satisfiable. To this end, fix a consistent formula α0.
Define ĉl(α0) just as we defined cl(α0) in Section 6.4. In addition, the following
conditions are required to be satisfied:

• If 〈π〉α ∈ ĉl(α0) and π′ ∈ δa(π) then〈π′〉α, 〈a〉〈π′〉α ∈ ĉl(α0).

• If 〈1〉α ∈ ĉl(α0) then α ∈ ĉl(α0).

• 〈a〉tt ∈ ĉl(α0) for every a ∈ Σ.

Next define ĈL(α0) as ĈL(α0) = ĉl(α0) ∪ {¬β | β ∈ ĉl(α0)}. As usual, we
will identify ¬¬β with β in what follows.



112 CHAPTER 6. DYNAMIC LINEAR TIME TEMPORAL LOGIC

Proposition 6.6.2 ĈL(α0) is a finite set.

Proof: Follows at once from Proposition 6.6.1. 2

In this section, an atom is a maximal consistent subset of ĈL(α0). If A is
an atom then Â will be the conjunction of all the formulas in A. Let AT0 be
the set of all atoms. We now define the transition system TS0 = (AT0,=⇒)
where =⇒ ⊆ AT0 × Σ×AT0 is given by A a=⇒ B iff Â ∧ 〈a〉B̂ is consistent. As
before, the transition relation =⇒ is extended to =⇒∗ ⊆ AT0 ×Σ∗×AT0 in the
obvious way.

Lemma 6.6.3

(i) Suppose A,B ∈ AT0 and π ∈ Prg(Σ) such that Â ∧ 〈π〉B̂ is consistent.
Then there exists τ ∈ ||π|| such that A τ=⇒∗ B.

(ii) Suppose 〈π〉α ∈ A ∈ AT0. Then there exists B ∈ AT0 and τ ∈ ||π|| such
that α ∈ B and A τ=⇒∗ B.

Proof: Part (i) can be established by just repeating the proof of [76, Lemma 1].
Now part (ii) follows easily from part (i) with the help of a few tautologies of
propositional calculus. 2

We are now ready to extract a model of α0 from TS0. We shall do so by
inductively defining a map ρ̂ : ω −→ AT0 and an ascending chain of sequences
τ0 ≺ τ1 ≺ . . . where each τi is in Σ∗. In what follows we will denote ρ̂(i) by Ai
for each i ∈ ω. We shall also assume that we have fixed an enumeration of the
countable set ĈL(α0) × Σ∗.

• ρ̂(0) = A0 where A0 ∈ AT0 such that α0 ∈ A0. Further, τ0 = ε.

• Assume ρ̂(i) and τi are defined. We say that the pair (〈π〉α, τ) is a re-
quirement at stage i provided the following conditions are satisfied:

– τ � τi and 〈π〉α ∈ Aj where |τ | = j.

– For every τ ′ ∈ Σ∗, if ττ ′ � τi then τ ′ 6∈ ||π|| or α 6∈ Ak where
|ττ ′| = k.

Let RQi be the set of requirements at stage i. Suppose that RQi = ∅. Let
a ∈ Σ such that 〈a〉tt ∈ Ai. The fact that such an a exists and is unique
is guaranteed by (A7) and (A8). Since

∨
A∈AT0

Â is a thesis, it follows from
simple propositional reasoning that Â ∧ 〈a〉B̂ is consistent for some B ∈ AT0.
Consequently A a=⇒ B. Now let ρ̂(i+ 1) = B and τi+1 = τia. The construction
now proceeds from stage i+ 1.

Suppose now that RQi 6= ∅. Let (〈π〉α, τ) be the least member of RQi in
the enumeration we have fixed for ĈL(α0)×Σ∗. Let j = |τ | and ττ ′ = τi. Then

using (A10) and (A11) it is easy to show that there exists π′ such that π τ ′
−→∗ π′
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and 〈π′〉α ∈ Ai. Moreover α 6∈ Ai or ε 6∈ ||π′||. By part (ii) of Lemma 6.6.3,

there exists B ∈ AT0 and τ ′′ ∈ ||π′|| such that Ai
τ ′′

=⇒∗ B and α ∈ B. Let
τ ′′ = b1b2 . . . bm. Then we can find B0, B1, · · · , Bm ∈ AT0 such that Ai = B0

and Bm = B and Bk
bk=⇒ Bk+1 for 0 ≤ k < m. We now extend ρ̂ by:

ρ̂(i+ k) = Bk for 1 ≤ k ≤ m.

Further we define τi+k = τib1b2 . . . bk for 1 ≤ k ≤ m. The construction now
proceeds from stage i+m.

Now consider the modelM0 = (σ, V0) where σ ∈ Σω is the sequence satisfying
that τi � σ for every i ∈ ω. Further, V0(τ) = A|τ |∩P for each τ ∈ prf(σ). It is a
routine exercise to establish that for all τ ∈ prf(σ) and α ∈ ĈL(α0), M0, τ |= α
iff α ∈ A|τ |. Hence M0, ε |= α0 as required.

The system DLT L is obtained by replacing (A10) and (A11) with the fol-
lowing axiom schemes:

(A12) α Uπβ ⇒ 〈π〉β.
(A13) α Uπβ ⇔ β ∨

(
α ∧

∨
a∈Σ〈a〉

∨
π′∈δa(π) α Uπ′

β
)
, (ε ∈ ||π||).

(A14) α Uπβ ⇔ α ∧
∨
a∈Σ〈a〉

∨
π′∈δa(π) α Uπ′

β, (ε 6∈ ||π||).
It is an easy exercise to extend the completeness argument for DLT L− to

DLT L. Thus we have:

Theorem 6.6.4

(i) DLT L− is a sound and complete axiomatization of the set of valid for-
mulas of DLTL−(Σ).

(ii) DLT L is a sound and complete axiomatization of the set of valid formulas
of DLTL(Σ).

6.7 Conclusion

We have presented here an enriched version of LTL called DLTL. The exten-
sion is obtained by indexing the until operator of LTL with regular programs.
We have shown that in terms of the complexity of the decision procedure and
expressiveness, DLTL compares very favourably with ETL. It is worth pointing
out here that the decision procedure for DLTL is carried out directly in terms of
Büchi automata whereas for ETL it is carried out in terms of the so called set-
subword automata, which are then translated to Büchi automata [148]. Two
additional results that are available for DLTL are: A characterization of the
first-order fragment of MSO in terms of the sublogics DLTL−

SF
and DLTLSF;

and a relatively clean axiomatization of DLTL− and DLTL. All these results
demonstrate that our means of bringing together propositional dynamic and
temporal logics in a linear time setting is natural.

It turns out that our idea extends smoothly to richer domains. In par-
ticular, we can obtain similar results concerning the so called ω-regular prod-
uct languages [136] in terms of the product version of DLTL [61]. Roughly
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speaking, a ω-regular product language is a ω-regular language L ⊆ Σω gen-
erated by a distributed alphabet {Σi}Ki=1 with Σ =

⋃K
i=1 Σi. The language L

is a product language in the sense it is a finite union languages of the form
L1 ⊗ L2 ⊗ · · · ⊗ LK with each Li a regular subset of finite and infinite strings
over Σi and ⊗ standing for the synchronized product operation. In other words
σ ∈ Σω is in L1 ⊗L2⊗ · · ·⊗LK iff σ � Σi (i.e. the sequence obtained by erasing
all symbols from σ that are not in Σi) is in Li for each i. The interesting dis-
tributed alphabets are of course those in which the component alphabets are not
pairwise disjoint. The ω-regular product languages can be used to capture the
linear time behaviour of a widely used model of distributed programs. These
programs consist of a fixed set of finite state sequential programs that coor-
dinate their behaviours by performing common actions together. Our logical
characterization of ω-regular product languages is obtained by taking boolean
combinations of formulas in

⋃K
i=1 DLTL(Σi). More details can be found in [61].

It seems likely that one can find a nice generalization of this distributed version
of DLTL to capture the full class of ω-regular trace languages.
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We present here a linear time temporal logic which simultaneously extends
LTL, the propositional temporal logic of linear time, along two dimensions.
Firstly, the until operator is strengthened by indexing it with the regular pro-
grams of propositional dynamic logic (PDL). Secondly, the core formulas of the
logic are decorated with names of sequential agents drawn from fixed finite set.
The resulting logic has a natural semantics in terms of the runs of a distributed
program consisting of a finite set of sequential programs that communicate by
performing common actions together. We show that our logic, denoted DLTL⊗,
admits an exponential time decision procedure. We also show that DLTL⊗ is ex-
pressively equivalent to the so called regular product languages. Roughly speak-
ing, this class of languages is obtained by starting with synchronized products
of (ω-)regular languages and closing under boolean operations. We also sketch
how the behaviours captured by our temporal logic fit into the framework of
labelled partial orders known as Mazurkiewicz traces.

115
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7.1 Introduction

We present a linear time temporal logic which extends LTL, the propositional
temporal logic of linear time [83, 113] along two dimensions. Firstly, we streng-
then the until modality by indexing it with the regular programs of PDL, propo-
sitional dynamic logic [39, 51]. Secondly, we consider networks of sequential
agents that communicate by performing common actions together. We then
reflect this in the logic by decorating the “core” formulas with the names of the
agents. The resulting logic, denoted DLTL⊗, is a smooth generalization of the
logic called product LTL [137] and the logic called dynamic linear time temporal
logic [60].

DLTL⊗ admits a pleasant theory and our technical goal here is to sketch
the main results of this theory. We believe that these results provide additional
evidence — in a non-sequential setting — suggesting that our technique of
combining dynamic and temporal logic as initiated in [60] is a fruitful one.

In the next section we introduce dynamic linear time temporal logic. We
then state two main results concerning this logic. In Section 7.3 we define regular
product languages. These are basically boolean combinations of synchronized
products of (ω-)regular languages. We then present a characterization of this
class of languages in terms of networks of Büchi automata that coordinate their
activities by synchronizing on common letters.

In Section 7.4 we formulate the temporal logic DLTL⊗, the main object of
study in this chapter. In Section 7.5 we establish an exponential time decision
procedure for this logic by exploiting the Büchi automata networks presented
in Section 7.3. In the subsequent section we show that DLTL⊗ captures ex-
actly the class of regular product languages. It is worth noting that this is
the first temporal logical characterization of this important class of distributed
behaviours. In the final section we sketch how the behaviours described by our
temporal logic (i.e. regular product languages) lie naturally within the domain
of regular Mazurkiewicz trace languages.

7.2 Dynamic Linear Time Temporal Logic

One key feature of the syntax and semantics of our temporal logic is that actions
will be treated as first class objects. The usual presentation of LTL [83, 113]
is based on states ; they are represented as subsets of a finite set of atomic
propositions. We wish to bring in actions explicitly because it is awkward,
if not difficult, to define synchronized products of sequential components in a
purely state-based setting. This method of forming distributed systems is a
common and useful one. Moreover, it is the main focus of attention in this
chapter. Hence it will be handy to work with logics in which both states and
actions can be treated on an equal footing. As a vehicle for introducing some
terminology we shall first introduce an action-based version of LTL denoted
LTL(Σ). We begin with some notations.

Through the rest of the chapter we fix a finite non-empty alphabet Σ. We
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let a, b range over Σ and refer to members of Σ as actions. Σ∗ is the set of finite
words and Σω is the set of infinite words generated by Σ with ω = {0, 1, . . .}.
We set Σ∞ = Σ∗ ∪ Σω and denote the null word by ε. We let σ, σ′ range over
Σ∞ and τ, τ ′, τ ′′ range over Σ∗. Finally, � is the usual prefix ordering defined
over Σ∗ and prf(σ) is the set of finite prefixes of σ.

The set of formulas of LTL(Σ) is then given by the syntax:

LTL(Σ) ::= tt | ¬α | α ∨ β | 〈a〉α | α U β.

For convenience we have avoided introducing atomic propositions and in-
stead just deal with the constant tt and its negation ¬tt def= ff . Through the
rest of this section α, β will range over LTL(Σ). The modality 〈a〉 is an action-
indexed version of the next-state modality of LTL. A model is a ω-sequence
σ ∈ Σω. For τ ∈ prf(σ) we define σ, τ |= α via:

• σ, τ |= tt .

• σ, τ |= ¬α iff σ, τ 6|= α.

• σ, τ |= α ∨ β iff σ, τ |= α or σ, τ |= β.

• σ, τ |= 〈a〉α iff τa ∈ prf(σ) and σ, τa |= α.

• σ, τ |= α U β iff there exists τ ′ such that ττ ′ ∈ prf(σ) and σ, ττ ′ |= β.
Further, for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the case that σ, ττ ′′ |= α.

It is well known that LTL(Σ) is equal in expressive power to the first order
theory of sequences [41, 70]. Consequently this temporal logic is quite limited in
terms of what it can not say. As an example, let Σ = {a, b}. Then the property
“at every even position the action b is executed” is not definable in LTL(Σ).
This observation, made in a state-based setting by Wolper, is the starting point
for the extension of LTL called ETL [155, 156]. The route that we have taken to
augment the expressive power of LTL(Σ) is similar in spirit but quite different in
terms of the structuring mechanisms made available for constructing compound
formulas. A more detailed assessment of the similarities and the differences
between the two approaches is given in [60].

The extension that we have proposed is called DLTL(Σ). It basically consists
of indexing the until operator with the programs of PDL (e.g. [39]). We start
by defining the set of regular programs (expressions) generated by Σ. This set
is denoted by Prg(Σ) and its syntax is given by:

Prg(Σ) ::= a | π0 + π1 | π0;π1 | π∗.

With each program we associate a set of finite words via the map || · || :
Prg(Σ) −→ 2Σ∗

. This map is defined in the standard fashion:

• ||a|| = {a}.

• ||π0 + π1|| = ||π0|| ∪ ||π1||.
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• ||π0;π1|| = {τ0τ1 | τ0 ∈ ||π0|| and τ1 ∈ ||π1||}.

• ||π∗|| =
⋃
i∈ω ||πi||, where

– ||π0|| = {ε} and

– ||πi+1|| = {τ0τ1 | τ0 ∈ ||π|| and τ1 ∈ ||πi||} for every i ∈ ω.

The set of formulas of DLTL(Σ) is given by the following syntax.

DLTL(Σ) ::= tt | ¬α | α ∨ β | α Uπβ, π ∈ Prg(Σ)

A model is a ω-sequence σ ∈ Σω. For τ ∈ prf(σ) we define σ, τ |= α just as
we did for LTL(Σ) in the case of the first three clauses. As for the last one,

• σ, τ |= α Uπβ iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ prf(σ) and σ, ττ ′ |=
β. Moreover, for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the case that
σ, ττ ′′ |= α.

Thus DLTL(Σ) adds to LTL(Σ) by strengthening the until operator. To
satisfy α Uπβ, one must satisfy αUβ along some finite stretch of behaviour
which is required to be in the (linear time) behaviour of the program π. We
now wish to state two of the main results of [60]. To do so, we first say that a
formula α ∈ DLTL(Σ) is satisfiable if there exist σ ∈ Σω and τ ∈ prf(σ) such
that σ, τ |= α. Secondly, we associate with a formula α the ω-language Lα via:

Lα
def= {σ ∈ Σω | σ, ε |= α}.

A language L ⊆ Σω is said to be DLTL(Σ)-definable if there exists some α ∈
DLTL(Σ) such that L = Lα. Finally, we assume the notions of Büchi and Muller
automata and ω-regular languages as formulated in [140].

Theorem 7.2.1

(i) Given an α0 ∈ DLTL(Σ) one can effectively construct a Büchi automaton
Bα0 of size 2O(|α0|) such that L(Bα0) 6= ∅ iff α0 is satisfiable. Thus the
satisfiability problem for DLTL(Σ) is decidable in exponential time.

(ii) L ⊆ Σω is ω-regular iff L is DLTL(Σ)-definable.

It is also easy to formulate and solve a natural model checking problem for
DLTL(Σ) where finite state programs are modelled as Büchi automata. But we
shall not enter into details here.

To close out the section we shall point to two useful derived operators of
DLTL(Σ):

• 〈π〉α def= tt Uπα.

• [π]α def= ¬〈π〉¬α.
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Suppose σ ∈ Σω is a model and τ ∈ prf(σ). It is easy to see that σ, τ |= 〈π〉α
iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ prf(σ) and σ, ττ ′ |= α. It is also easy
to see that σ, τ |= [π]α iff for every τ ′ ∈ ||π||, ττ ′ ∈ prf(σ) implies σ, ττ ′ |= α.
In this sense, the program modalities of PDL acquire a linear time semantics
in the present setting. As shown in [60] the second part of Theorem 7.2.1 goes
through even for the the sublogic of DLTL(Σ) obtained by banishing the until
operator and instead using 〈π〉α and the boolean connectives. For an example
of what can be said in this sublogic, assume Σ = {a, b} and define πev to be
the program ((a+ b); (a+ b))∗. Then the formula [πev]〈b〉tt says ”at every even
position the action b is executed”.

Next we note that a ∈ Σ is a member of Prg(Σ) and the until operator of
LTL(Σ) can be obtained via: αUβ def= αUΣ∗

β. Due to second part of Theo-
rem 7.2.1 we now have that both syntactically and semantically, LTL(Σ) is a
proper fragment of DLTL(Σ).

To conclude the section, we note that the material presented here can be
easily extended to include finite sequences over Σ as well. We shall assume from
now on that this extension has indeed been carried out.

7.3 Regular Product Languages

A restricted but very useful model of finite state concurrent programs consists of
a fixed number of finite state sequential programs that coordinate their activities
by performing common actions together. A regular product language is an
abstract specification of the linear time behaviour of such concurrent programs.
The idea is to start with synchronized products of regular languages and close
under boolean operations. Formally, we start with a distributed alphabet Σ̃ =
{Σi}Ki=1, a family of alphabets with each Σi a non-empty finite set of actions.
One key point is that the component alphabets are not necessarily disjoint.
Intuitively, loc = {1, . . . ,K} is the set of names of communicating sequential
processes synchronizing on common actions, where Σi is the set of actions which
require the participation of the agent i. Through the rest of the chapter we fix
a distributed alphabet Σ̃ = {Σi}Ki=1 and set Σ =

⋃K
i=1 Σi. We carry over the

terminology developed in the previous section for dealing with finite and infinite
sequences over Σ. In addition, for σ ∈ Σ∞ and i ∈ loc we denote by σ � i the
projection of σ down to Σi. In other words, it is the sequence obtained by
erasing from σ all occurrences of symbols that are not in Σi. We let i, j, k range
over loc = {1, . . . ,K} and define loc(a) = {i | a ∈ Σi}. We note that loc(a) is
the set of processes that participate in each occurrence of the action a.

Next we define the K-ary operator ⊗ : 2Σ∞
1 × · · · × 2Σ∞

K → 2Σ∞
by

⊗(L1, . . . , LK) = {σ ∈ Σ∞ | σ � i ∈ Li for each i ∈ loc}.

Usually we will write ⊗(L1, . . . , LK) as L1 ⊗L2 ⊗ · · ·⊗LK . Finally, we will say
that the language L ⊆ Σ∞ is regular iff L ∩ Σ∗ is a regular subset of Σ∗ and
L ∩ Σω is an ω-regular subset of Σω. Regular product languages can be built
up as follows.
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Definition 7.3.1 L ⊆ Σ∞ is a direct regular product language over Σ̃ iff L =
L1 ⊗ · · · ⊗ LK with Li a regular subset of Σ∞

i for each i ∈ loc.

We let R⊗
0 (Σ̃) be the class of direct regular product languages over Σ̃.

Definition 7.3.2 The class of regular product languages over Σ̃ is denoted
R⊗(Σ̃) and is the least class of languages containing R⊗

0 (Σ̃) and satisfying:

• If L1, L2 ∈ R⊗(Σ̃) then L1 ∪ L2 ∈ R⊗(Σ̃).

In what follows we will often suppress the mention of the distributed alphabet
Σ̃. It is easy to prove that R⊗ is closed under boolean operations. The proof
of this result as well as other results mentioned in this section can be found
in [136]. Just as ω-regular languages are captured by Büchi automata, we can
capture regular product languages with the help of networks of Büchi automata.
For convenience such automata will be termed product automata.

Definition 7.3.3 A product automaton over Σ̃ is a structure

A = ({Ai}i∈loc, Qin),

where each Ai = (Qi,−→i, Fi, F
ω
i ) satisfies:

• Qi is a non-empty finite set of i-local states.

• −→i ⊆ Qi × Σi ×Qi is the transition relation of the ith component.

• Fi ⊆ Qi is a set of finitary accepting states of the ith component.

• Fωi ⊆ Qi is a set of infinitary accepting states of the ith component.

Moreover, Qin ⊆ Q1 × · · · ×QK is a set of global initial states.

Thus, a product automaton is a network of local automata with a global set
of initial states. It is necessary to have global initial states in order to obtain the
required expressive power. Each local automaton is equipped to cope with both
finite and infinite behaviours using the finitary and infinitary accepting states.
The infinitary accepting states are to be interpreted as defining a Büchi accep-
tance condition. This will become clear once we define the language accepted
by a product automaton. We choose to deal with both finite and infinite com-
ponent behaviours because the global behaviour can always induce finite local
behaviours. In other words, even if ω-behaviour is the main focus of interest, a
global infinite run will consist of one or more components running forever but
with some other components, in general, quitting after making a finite num-
ber of moves. The notational complications involved in artificially making all
components to run forever do not seem to be worth the trouble.

Let A be a product automaton over Σ̃. Then QA
G = Q1 × · · ·×QK is the set

of global states of A. The i-local transition relations induce a global transition
relation −→A ⊆ QA

G × Σ ×QA
G as follows:

q
a−→A q′ iff q[i] a−→i q

′[i] for each i ∈ loc(a) and
q[i] = q′[i] for each i 6∈ loc(a),
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where q[i] denotes the ith component of q = (q1, . . . , qK). A run of A over
σ ∈ Σ∞ is a mapping ρ : prf(σ) → QA

G satisfying that ρ(ε) ∈ Qin and ρ(τ) a−→A
ρ(τa) for all τa ∈ prf(σ). The run is accepting iff the following conditions are
satisfied for each i:

• If σ � i is finite then ρ(τ)[i] ∈ Fi for some τ ∈ prf(σ) with τ � i = σ � i.

• If σ � i is infinite then ρ(τ)[i] ∈ Fωi for infinitely many τ ∈ prf(σ).

We next define

L(A) = {σ ∈ Σ∞ | there exists an accepting run of A over σ}.

The next result established relates regular product languages to product
automata.

Theorem 7.3.4 L ∈ R⊗(Σ̃) iff L = L(A) for some product automaton A over
Σ̃.

We will later give solutions to the satisfiability problem for a product version
of DLTL with the help of product automata. The following results will be
useful in this context. In stating these results we take the size of the product
automaton A to be |QA

G|.

Lemma 7.3.5

• Let A be a product automaton. The question L(A)
?

6= ∅ can be effectively
decided in time O(n2), where n is the size of A.

• Let A1 and A2 be product automata of sizes n1 and n2, respectively. Then
a product automaton A of size O(n1n2) with L(A) = L(A1) ∩ L(A2) can
be effectively constructed.

7.4 A Product Version of DLTL

We now wish to design a product version of DLTL denoted DLTL⊗(Σ̃). It will
turn out to have the expressive power of regular product languages over Σ̃. The
set of formulas and their locations are given by:

• tt is a formula and loc(tt) = ∅.

• Suppose α and β are formulas. Then so are ¬α and α ∨ β. Furthermore,
loc(¬α) = loc(α) and loc(α ∨ β) = loc(α) ∪ loc(β).

• Suppose α and β are formulas such that loc(α), loc(β) ⊆ {i} and suppose
π ∈ Prg(Σi). Then α Uπi β is a formula. Moreover, loc(α Uπi β) = {i}.
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We note that each formula in DLTL⊗(Σ̃) is a boolean combination of for-
mulas taken from the set

⋃
i∈loc DLTL⊗

i (Σ̃) where, for each i,

DLTL⊗
i (Σ̃) = {α | α ∈ DLTL⊗(Σ̃) and loc(α) ⊆ {i} }.

Once again, we have chosen to avoid dealing with atomic propositions for the
sake of convenience. They can be introduced in a local fashion as done in [136].
The decidability result to be presented will go through with minor notational
overheads.

As before, we will often suppress the mention of Σ̃. We will also often write
τi, τ ′i and τ ′′i instead of τ � i , τ ′ � i and τ ′′ � i, respectively with τ, τ ′, τ ′′ ∈ Σ∗.

A model is a sequence σ ∈ Σ∞ and the semantics of this logic is given as
before, with τ ∈ prf(σ).

• σ, τ |= tt .

• σ, τ |= ¬α iff σ, τ 6|= α.

• σ, τ |= α ∨ β iff σ, τ |= α or σ, τ |= β.

• σ, τ |= α Uπi β iff there exists τ ′ such that τ ′i ∈ ||π|| (recall that τ ′i = τ ′ � i)
and ττ ′ ∈ prf(σ) and σ, ττ ′ |= β. Further, for every τ ′′ ∈ prf(τ ′), if
ε � τ ′′i ≺ τ ′i then σ, ττ ′′ |= α.

We will say that a formula α ∈ DLTL⊗(Σ̃) is satisfiable if there exist σ ∈ Σ∞

and τ ∈ prf(σ) such that σ, τ |= α. The language defined by α is given by

Lα
def= {σ ∈ Σ∞ | σ, ε |= α}.

We say that L ⊆ Σ∞ is DLTL⊗(Σ̃)-definable if there exists some α ∈ DLTL⊗(Σ̃)
with Lα = L.

7.5 A Decision Procedure for DLTL⊗

We will show the satisfiability problem for DLTL(Σ) is solvable in deterministic
exponential time. This will be achieved by effectively constructing a product
automaton Aα for each α ∈ DLTL⊗(Σ̃) such that the language accepted by Aα

is non-empty iff α is satisfiable. Our construction is a common generalization of
the one for product LTL in [137] and the one for DLTL(Σ) in [60]. The solution
to the satisfiability problem will at once lead to a solution to the model checking
problem for programs modelled as synchronizing sequential agents.

Through the rest of the section we fix a formula α0 ∈ DLTL⊗. In order to
construct Aα0 we first define the (Fischer-Ladner) closure of α0. As a first step
let cl(α0) be the least set of formulas satisfying:

• α0 ∈ cl(α0).

• ¬α ∈ cl(α0) implies α ∈ cl(α0).
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• α ∨ β ∈ cl(α0) implies α, β ∈ cl(α0).

• α Uπi β ∈ cl(α0) implies α, β ∈ cl(α0).

We will now take the closure of α0 to be CL(α0) = cl(α0) ∪ {¬α | α ∈ cl(α0)}.
From now on we shall identify ¬¬α with α. Set CLi(α0) = CL(α0)∩DLTL⊗

i (Σ̃)
for each i. We will often write CL instead of CL(α0) and CLi instead of
CLi(α0). All formulas considered from now on will be assumed to belong to
CLi unless otherwise stated.

An i-type atom is a subset A ⊆ CLi which satisfies:

• tt ∈ A.

• α ∈ A iff ¬α 6∈ A.

• α ∨ β ∈ A iff α ∈ A or β ∈ A.

• β ∈ A and ε ∈ ||π|| implies α Uπi β ∈ A.

The set of i-type atoms is denoted ATi. Following this, we define the predicate
Member(α, (A1, . . . , AK)) for each α ∈ CL(α0) and (A1, . . . , AK) ∈ AT1 × · · ·×
ATK . For convenience this predicate will be denoted as α ∈ (A1, . . . , AK) and
is given inductively by:

• Let α ∈ CLi. Then α ∈ (A1, . . . , AK) iff α ∈ Ai.

• Let α = ¬β. Then α ∈ (A1, . . . , AK) iff β 6∈ (A1, . . . , AK).

• Let α = β ∨ γ. Then α ∈ (A1, . . . , AK) iff β ∈ (A1, . . . , AK) or γ ∈
(A1, . . . , AK).

The set of i-type until requirements is the subset of CLi given by

Reqi = {α Uπi β | α Uπi β ∈ CLi}.

We shall let ξ, ξ′ range over Reqi. For each ξ = α Uπi β ∈ Reqi we fix a finite
state automaton Aξ such that L(Aξ) = ||π|| where L(Aξ) is the language of
finite words accepted by Aξ. We shall assume each such Aξ is of the form
Aξ = (Qξ,−→ξ, Iξ, Fξ) where Qξ is the set of states, −→ξ ⊆ Qξ × Σ × Qξ
is the transition relation, Iξ ⊆ Qξ is the set of initial states and Fξ ⊆ Qξ is
the set of final states. Without loss of generality, we shall assume that ξ 6= ξ′

implies Qξ ∩ Qξ′ = ∅ for every ξ, ξ′ ∈ Reqi. We set Qi =
⋃
ξ∈Reqi

Qξ and
Q̂i = Qi × {0, 1}.

The product automaton Aα0 associated with α0 is now defined to be Aα0 =
({Ai}i∈loc, Qin) where for each i, Ai = (Si,=⇒i, Fi, F

ω
i ) is specified as

(1) Si ⊆ ATi × 2Qi × 2Q̂i × {stop, go} × {0, 1} × { ↓,X} such that

(A,X, X̂, s, x, f) ∈ Si

iff the following conditions are satisfied for each ξ = α Uπi β:
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(i) If β ∈ A then Fξ ⊆ X . (Recall that Aξ = (Qξ,−→ξ, Iξ, Fξ)).

(ii) If α ∈ A and q ∈ X for some q ∈ Iξ then α Uπi β ∈ A.

(iii) If α Uπi β ∈ A then either β ∈ A and ε ∈ ||π|| or (q, 1−x) ∈ X̂ for some
q ∈ Iξ. (Note that we are considering the candidate (A,X, X̂, s, x, f)
for membership in Si).

(iv) If (q, z) ∈ X̂ with q 6∈ Fξ or β 6∈ A then α ∈ A.

(2) The transition relation =⇒i ⊆ Si × Σi × Si is defined as follows:

(A,X, X̂, s, x, f) a=⇒i (B, Y, Ŷ , t, y, g)

iff the following conditions are satisfied for each ξ = α Uπi β ∈ Reqi:

(i) s = go.

(ii) Suppose q′ ∈ Qξ ∩ Y and q a−→ξ q
′ and α ∈ A. Then q ∈ X .

(iii) Suppose (q, z) ∈ X̂ with q ∈ Qξ. Suppose further that q 6∈ Fξ or
β 6∈ A. Then (q′, z) ∈ Ŷ for some q′ with q a−→ξ q

′.

(iv) If f = X then (y, g) = (1 − x, ↓). If f = ↓ then,

(y, g) =

 (x, ↓), if there exists (q, x) ∈ X̂ such that
q 6∈ Fξ or β 6∈ A

(x,X), otherwise.

(3) Fi = {(A,X, X̂, s, x, f) | s = stop and X̂ = ∅}.

(4) Fωi = {(A,X, X̂, s, x, f) | f = X}.

Finally, Qin ⊆ Q1 × · · · ×QK is specified as

((A1, X1, X̂1, s1, x1, f1), . . . , (AK , XK , X̂K , sK , xK , fK)) ∈ Qin

iff α0 ∈ (A1, . . . , AK) and (xi, fi) = (0,X) for every i ∈ loc.
The main result of this section can now be formulated.

Theorem 7.5.1 L(Aα0 ) = Lα0 where Aα0 is as defined above. Hence α0 is
satisfiable iff L(Aα0) 6= ∅. Moreover, the size of Aα0 is 2O(|α0|) and consequently
the satisfiability problem for DLTL⊗(Σ̃) is decidable in exponential time.

Proof: Let σ ∈ L(Aα0 ) by the accepting run ρ : prf(σ) → QA
G. For each

τ ∈ prf(σ) let ρ(τ)[i] = (Aτi , Xτi , X̂τi, sτi , xτi , fτi). Then a detailed examination
of the above construction reveals that for all τ ∈ prf(σ) and δ ∈ CLi,

σ, τ |= δ iff δ ∈ Aτi .

By definition of Qin we are assured that α0 ∈ (ρ(ε)[1], . . . , ρ(ε)[K]). Hence a
simple induction on the structure of α0 will show that σ, ε |= α0.



7.5. A DECISION PROCEDURE FOR DLTL⊗ 125

Conversely, if α0 is satisfiable we may assume that σ, ε |= α0 for some σ. We
will construct an accepting run ρ : prf(σ) → QA

G. For each τ ∈ prf(σ) and each
i, we set ρ(τ)[i] = (Aτi , Xτi , X̂τi, sτi , xτi , fτi) and define the various components
of this tuple as follows. First we define Aτi by Aτi = {α ∈ CLi | σ, τ |= α}.
Next sτi is defined as sτi = stop iff σ � i = τi (recall the convention τ � i = τi).
In defining the other components it will be convenient to adopt the following
terminology.

Let ξ = α Uπi β and q ∈ Qξ and τi ∈ Σ∗
i . Then an accepting run of Aξ over

τi starting from q is a map R : prf(τi) −→ Qξ such that R(ε) = q, R(τi) ∈ Fξ
and R(τ ′′i ) a−→ξ R(τ ′′i a) for every τ ′′i a ∈ prf(τi). In case q ∈ Iξ we shall just say
that R is an accepting run of Aξ over τi.

Let ξ = α Uπi β and q ∈ Qξ. Then q ∈ Xτi iff there exist τ ′ and R′ such
that ττ ′ ∈ prf(σ), σ, ττ ′ |= β, and for every τ ′′ ∈ prf(τ ′), if ε � τ ′′i ≺ τ ′i then
σ, ττ ′′ |= α. Furthermore, R′ should be an accepting run of Aξ over τ ′i starting
from q.

To specify the remaining three components we shall make use of a chronicle
of obligations.

We’ll say that (τ, ξ) is an obligation if τ ∈ prf(σ) and ξ = α Uπi β ∈ Reqi such
that σ, τ |= α Uπi β but σ, τ 6|= β or ε 6∈ ||π||. Let (τ, ξ) be an obligation. We shall
say that the pair (τ ′, R′) is a witness for (τ, ξ) iff ττ ′ ∈ prf(σ) and σ, ττ ′ |= β
and for every τ ′′ ∈ prf(τ ′), if ε � τ ′′i ≺ τ ′i then σ, ττ ′′ |= α. Furthermore,
τ ′i ∈ ||π|| and R′ is an accepting run of Aξ over τ ′i . A chronicle set CH is a set
of quadruples satisfying that if (τ, ξ, τ ′, R′) ∈ CH then (τ, ξ) is an obligation
and (τ ′, R′) is witness for (τ, ξ). Moreover, for every obligation (τ, ξ) there is
a unique element of the form (τ, ξ, τ ′, R′) in CH . We fix such a set CH which
clearly exists.

Now xτi and fτi are defined by mutual induction as follows. For the base
case, (xε, fε) = (0,X). For the induction step, let τ = τ ′a. Suppose a /∈
Σi. Then (xτi , fτi) = (xτ ′

i
, fτ ′

i
). So assume that a ∈ Σi. If fτ ′

i
= X then

(xτi , fτi) = (1 − xτ ′
i
, ↓). Suppose fτ ′

i
= ↓. Then (xτi , fτi) = (xτ ′

i
, ↓) if there

exists (τ ′′, ξ1, τ ′′′, R′
1) ∈ CH such that τ ′′ � τ ′ ≺ τ ′′τ ′′′ and xτ ′′

i
= 1 − xτ ′

i
.

Otherwise, fτi = X and xτi = xτ ′
i
.

The only remaining component to be dealt with is X̂τi . This is now defined
via: (q, z) ∈ X̂τi iff there exists (τ ′, ξ, τ ′′, R′

1) ∈ CH such that for some τ ′′′ ∈
prf(τ ′′), τ ′i � τi = τ ′iτ

′′′
i and furthermore R′

1(τ
′′′
i ) = q and xτ ′

i
= 1 − z. Using

these definitions it is not difficult to show that ρ is an accepting run.
Finally, by Lemma 7.3.5 it suffices to show that our construction yields a

product automaton of exponential size. Clearly, CL(α0) is linear in α0, and
surely then |AT1|+ · · ·+ |ATK | = 2O(|α0|). Moreover, it is well-known that each
π ∈ Prg(Σi) in polynomial time can be converted to a finite (non-deterministic)
automaton with a linear state space (see [64] for a recent account of such con-
versions). Then both Q1 + · · · + QK and Q̂1 + · · · + Q̂K are of size O(|α0|).
Consequently, |QA

G| = 2O(|α0|) as required. 2

The procedure outlined above also lends itself to a solution to the model
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checking problem, which is defined as for DLTL except that a finite-state pro-
gram is now simply a product automaton P . Once again, we do not wish to
enter into details.

7.6 An Expressiveness Result

We now wish to show that our logic is expressively complete with respect to the
regular product languages. In fact we will identify a natural sublogic — to be
denoted DLTL⊗

− — which also enjoys this property.
The syntax of the formulas of DLTL⊗

−(Σ̃) remains as for DLTL⊗(Σ̃), but the
until modality is to be restricted to the derived operator 〈 〉i. Formally, the set
of formulas and locations of this sublogic is obtained via:

• tt is a formula and loc(tt) = ∅.

• Suppose α and β are formulas so are ¬α and α ∨ β. Moreover loc(¬α) =
loc(α) and loc(α ∨ β) = loc(α) ∪ loc(β).

• Suppose α is formula such that loc(α) ⊆ {i} and π ∈ Prg(Σi). Then 〈π〉iα
is formula. Moreover, loc(〈π〉iα) = {i}.

Proposition 7.6.1 If L ∈ R⊗(Σ̃) then L is DLTL⊗
−(Σ̃)-definable.

Proof: It suffices to show that the claim holds for L ∈ R⊗
0 (Σ̃) because each

member of R⊗(Σ̃) is a finite union of languages in R⊗
0 (Σ̃).

Let L = L1 ⊗ · · · ⊗ LK ∈ R⊗
0 (Σ̃). Then each Li ∩ Σ∗

i is regular. Clearly
Li ∩ Σ∗

i = ||πi|| for some πi ∈ Prg(Σi). Now define αi∗ = 〈πi〉i[π′
i]iff where

π′
i = (a1 + . . .+ an) with Σi = {a1, . . . , an}.

Next, Li ∩ Σωi is ω-regular. Hence it is accepted, due to McNaughton’s the-
orem [87], by a deterministic Muller automaton. Choose such an automaton
M = (Q, qin,−→,F), which we, without loss of generality, assume to be com-
plete. (See [60] for the formal details). For q, q′ ∈ Q we set Lq,q′ = {τ | q τ−→ q′},
which is obviously a regular subset of Σ∗

i . So we can fix πq,q′ ∈ Prg(Σi)
such that Lq,q′ = ||πq,q′ ||. Moreover, by the determinacy of M it follows that
Lq,q′ ∩ Lq,q′′ 6= ∅ implies q′ = q′′. We now define

αiω =
∨
F∈F

∨
q∈F

〈πqin,q〉i

 ∧
q′ 6∈F

[πq,q′ ]iff ∧
n−1∧
j=0

[πq,qj ]i〈πqj ,qj⊕1 〉itt


with the assumption {q0, q1, . . . , qn−1} is an enumeration of the F ∈ F under
consideration and “⊕” denotes addition modulo n. It is easy to show that
σ � i ∈ Li ∩ Σωi iff σ, ε |= αiω.

The required formula α is given by α =
∧
i∈loc α

i where αi = αi∗ ∨ αiω for
each i. It is a routine exercise to establish Lα = L1 ⊗ · · · ⊗ LK .

2
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On the other hand, Theorem 7.3.4 together with Theorem 7.5.1 states that
Lα0 is a product language over Σ̃ for any α0 ∈ DLTL⊗(Σ̃). Since DLTL⊗

− is a
sublogic of DLTL⊗ we have the following expressiveness result.

Corollary 7.6.2 Let L ⊆ Σ∞. Then the following statements are equivalent:

(i) L ∈ R⊗(Σ̃).

(ii) L is DLTL⊗
−(Σ̃)-definable.

(iii) L is DLTL⊗(Σ̃)-definable.

7.7 Discussion

We shall conclude this section by placing regular product languages in the
broader context of regular Mazurkiewicz trace languages. For an introduction
to (Mazurkiewicz) traces related to the concerns of the present chapter, we re-
fer the reader to [97]. We shall assume the bare minimum of the background
material on traces.

We begin by noting that the distributed alphabet Σ̃ = {Σi}Ki=1 induces
the trace alphabet (Σ, IΣ̃) where the irreflexive and symmetric independence
relation IΣ̃ ⊆ Σ × Σ is given by:

a IΣ̃ b iff loc(a) ∩ loc(b) = ∅.

Recall that loc(x) = {i | x ∈ Σi} for x ∈ Σ. We shall write I instead of IΣ̃ from
now on. This independence relation in turn induces the equivalence relation
≈I ⊆ Σ∞ × Σ∞ (from now on written as ≈) given by:

σ ≈ σ′ iff σ � i = σ′ � i for every i ∈ loc.

The ≈-equivalence classes of Σ∞ constitute the set of finite and infinite traces
generated by the trace alphabet (Σ, I). Traces can be — upto isomorphisms —
uniquely represented as certain Σ-labelled posets where the labelling functions
respect I in a natural manner. A trace language is just a subset of Σ∞/ ≈.

A language L ⊆ Σ∞ is trace consistent in case σ ∈ L and σ ≈ σ′ implies
σ′ ∈ L, for every σ, σ′. The point is, a trace consistent language L canonically
represents the trace language {[σ]≈ | σ ∈ L}. We extend this idea to logical
formulas by saying that α ∈ DLTL⊗(Σ̃) is trace consistent iff Lα is trace con-
sistent. It is easy to show that every formula of DLTL⊗(Σ̃) is trace consistent.
An important feature of properties defined by trace consistent formulas is that
they can often be verified efficiently using partial order based reduction tech-
niques [48, 108, 144]. Consequently, DLTL⊗(Σ̃) provides a flexible and powerful
means for specifying trace consistent properties of distributed programs. As it
turns out, every formula of DLTL⊗(Σ̃) defines — via the canonical representa-
tion — a regular trace language contained in Σ∞/ ≈. Hence by Corollary 7.6.2,
every regular product language corresponds to a regular trace language.
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The converse however is not true. To bring this out, consider the distributed
alphabet Σ̃ = {{a, a′, c}, {b, b′, c}} and the language L = {cab, cba, ca′b′, cb′a′}ω.
Then it is easy to check that L is trace consistent and ω-regular and that it is
not a regular product language. In a forthcoming paper we shall deal with
the problem of extending DLTL⊗(Σ̃) so as to capture all of the regular trace
languages.
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8.1 Introduction

Linear time Temporal Logic (LTL) as proposed by Pnueli [113] has become a
well established tool for specifying the dynamic behaviour of distributed sys-
tems. A basic feature of LTL is that its formulas are interpreted over sequences.
Typically, such a sequence will model a computation of a system; a sequence
of states visited by the system or a sequence of actions executed by the system
during the course of the computation. A system is said to satisfy a specifica-
tion expressed as an LTL formula in case every computation of the system is a
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model of the formula. A rich theory of LTL is now available using which one
can effectively verify whether a finite state system meets its specification [147].
Indeed, the verfication task can be automated (for instance using the software
packages SPIN [62] and FormalCheck [16]) to handle large systems of practical
interest.

In many applications the computations of a distributed system will consti-
tute interleavings of the occurrences of causally independent actions. Conse-
quently, the computations can be naturally grouped together into equivalence
classes where two computations are equated in case they are two different in-
terleavings of the same partially ordered stretch of behaviour. It turns out that
many of the properties expressed as LTL-formulas happen to have the so called
“all-or-none” property. Either all members of an equivalence class of compu-
tations will have the desired property or none will do (“leads to deadlock” is
one such property). For verifying such properties one has to check the property
for just one member of each equivalence class. This is the insight underlying
many of the partial-order based verification methods [48, 108, 144]. As may be
guessed, the importance of these methods lies in the fact that via these meth-
ods the computational resources required for the verification task can often be
dramatically reduced.

It is often the case that the equivalence classes of computations generated by
a distributed system constitute objects called Mazurkiewicz traces. They can
be canonically represented as restricted labelled partial orders. This opens up
an alternative way of exploiting the non-sequential nature of the computations
of a distributed systems and the attendant partial-order based methods. It
consists of developing linear time temporal logics that can be directly interpreted
over Mazurkiewicz traces. In these logics, every specification is guaranteed to
have the “all-or-none” property and hence can take advantage of the partial-
order based reduction methods during the verification process. The study of
these logics also exposes the richness of the partial-order settings from a logical
standpoint and the complications that can arise as a consequence.

Our aim here is to present an overview of linear time temporal logics whose
models can be viewed as Mazurkiewicz traces. The presentation is, in principle,
self-contained though previous exposure to temporal logics [35] and automata
over infinite objects [140] will be very helpful. We have provided net-theoretic
examples whenever possible in order to emphasize the broad scope of applica-
bility of the material.

In the next section we introduce linear time temporal logic and sketch the
automata-theoretic solutions to the satisfiability problem (does a formula have
a model?) and the model checking problem (do all computations of a system
constitute models of a given specification formula?). In Section 3 we introduce
Mazurkiewicz traces viewed as equivalence classes of sequences. This leads to
the precise formualtion of the notion “all-or-none” LTL properties.

Next we introduce a well-understood class of trace languages called prod-
uct languages. The automata that recognize these languages are called product
automata and they incorporate a simple and yet useful method of forming dis-
tributed systems. The system consists of a network of sequential agents, each
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with its own alphabet of actions. In the interesting instances the alphabets are
not pair-wise disjoint. One then imposes a synchronization regime under which
the agents are forced to carry out common actions together. After presenting a
theory of product languages and automata, we formulate in Section 5 a simple
version of a trace-based version of LTL called product LTL. The formulas of
this logic have a natural semantics in terms of the computations generated by
a network of sequential agents as introduced in the previous section. Using the
theory of product automata we then provide solutions to the satisfiability and
model checking problems for product LTL.

In Section 6 we introduce the representation of Mazurkiewicz traces as re-
stricted labelled partial orders. We then provide a rapid introduction to the
theory of trace languages and automata that we call asynchronous automata
for recognizing trace languages. In the subsequent section we introduce the
logic TrPTL which is a trace-based logic with much richer possibilities than
product LTL. We then provide solutions to the satisfiability and model check-
ing problems for TrPTL using asynchronous automata. This is followed by a
brief survey of other trace-based linear time temporal logics available in the
literature. Section 8 is devoted to considering various expressiveness issues as-
sociated with our temporal logics. We conclude in the final section with remarks
about branching time temporal logics based on traces.

8.2 Linear Time Temporal Logic

In our formulation of linear time temporal logics it will be convenient to treat
actions as first class objects both at the syntactic and semantic levels. As a first
step we shall consider a version of LTL (linear time temporal logic) in which
the next-state modality is indexed by actions.

Through the rest of the chapter we fix a finite non-empty alphabet of actions
Σ. We let a, b range over Σ and refer to members of Σ as actions. Σ∗ is the
set of finite words and Σω is the set of infinite words generated by Σ with
ω = {0, 1, 2, . . .}. We set Σ∞ = Σ∗ ∪ Σω and denote the null word by ε. We
let σ, σ′ range over Σω and τ, τ ′, τ ′′ range over Σ∗. Finally � is the usual prefix
ordering defined over Σ∗ and for u ∈ Σ∞, we let prf(u) be the set of finite
prefixes of u.

Next we fix a finite non-empty set of atomic propositions P = {p1, p2, . . .}
and let p, q range over P . The set of formulas of LTL(Σ) is then given by the
syntax:

LTL(Σ) ::= p | ¬α | α ∨ β | 〈a〉α | α U β.

Through the rest of this section α, β will range over LTL(Σ).
A model of LTL(Σ) is a pair M = (σ, V ) where σ ∈ Σω and V : prf(σ) → 2P

is a valuation function. Let M = (σ, V ) be a model, τ ∈ prf(σ) and α be a
formula. Then M, τ |= α will stand for α being satisfied at τ in M . This notion
is defined inductively in the expected manner.

• M, τ |= p iff p ∈ V (τ).
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• M, τ |= ¬α iff M, τ 6|= α.

• M, τ |= α ∨ β iff M, τ |= α or M, τ |= β.

• M, τ |= 〈a〉α iff τa ∈ prf(σ) and M, τa |= α.

• M, τ |= α U β iff there exists τ ′ such that ττ ′ ∈ prf(σ) and M, ττ ′ |= β.
Moreover for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the case that M, ττ ′′ |=
α.

Along with the usual propositional connectives ∧,⇒ and ≡ we will also use
the propositional constants, tt def= p1 ∨ ¬p1 and ff def= ¬tt . Some useful derived
modalities are:

• Oα
def=
∨
a∈Σ〈a〉α.

• 3α
def= ttUα.

• 2α
def= ¬3¬α.

Let M = (σ, V ) be a model and τ ∈ prf(σ). Then it is easy to check the
following assertions.

• M, τ |= Oα iff M, τ ′ |= α where τ ′ ∈ prf(σ) is such that |τ ′| = |τ | + 1.

• M, τ |= 3α iff there exists a τ ′ ∈ Σ∗ with ττ ′ ∈ prf(σ) such that M, ττ ′ |=
α.

• M, τ |= 2α iff for each τ ′ ∈ Σ∗, ττ ′ ∈ prf(σ) implies M, ττ ′ |= α.

Note that Oα is the usual next-state operator of LTL.
We say that a formula α ∈ LTL(Σ) is satisfiable iff there exist a model

M = (σ, V ) and τ ∈ prf(σ) such that M, τ |= α. This logic does not refer
to the past either in the syntax or in the semantics. Hence the formula α is
satisfiable iff there exists a model M such that M, ε |= α. This is easy to check.
The satisfiability problem for LTL is to develop a decision procedure which will
determine whether a given formula α is satisfiable. We will later in this section
describe such a decision procedure.

We now wish to formulate the model checking problem for LTL(Σ). A finite-
state program over Σ is a structure Pr = (S,−→, Sin, VPr) where:

• S is a finite set of states.

• −→ ⊆ S × Σ × S is a transition relation.

• Sin ⊆ S is a set of initial states of the program.

• VPr : S → 2P assigns a subset of P to each state of the program.
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The members of P capture a finite set of basic assertions concerning the program
which can usually be “read off” by examining the states of Pr and this is
described by VPr. It will often be the case that the set of initial states is a
singleton.

It is easy to arrange matters so that at each reachable state of the program
at least one transition can be performed. We will assume that this is indeed
the case for all program models we consider in this chapter. Further we will say
“program” instead “finite-state program” from now on.

A computation of the program Pr is a pair (σ, ρ) where σ ∈ Σω and ρ :
prf(σ) → S is a map which satisfies:

• ρ(ε) ∈ Sin.

• ρ(τ) a−→ ρ(τa) for each τa ∈ prf(σ).

Let (σ, ρ) be a computation of the program Pr. Then this computation
canonically induces the model Mσ,ρ = (σ, Vρ) where Vρ is given by: Vρ(τ) =
VPr(ρ(τ)) for each τ ∈ prf(σ).

Let Pr be a program and α be a formula of LTL(Σ). We say that Pr meets
the specification α — denoted Pr |= α — if for every computation (σ, ρ) of Pr,
it is the case that M, ε |= α where M is the model induced by the computation
(σ, ρ). The model checking problem is to decide for a given program Pr and a
given formula α whether or not Pr |= α. We will sketch a solution to the model
checking problem later in this section.

Let N = (B,E, F, cin) be a finite elementary net system. In other words, it
is an elementary net system in which both B, the set of conditions and E, the set
of events are finite sets. We can associate the program PrN = (S,−→, Sin, VPr)
with N as follows:

• Σ = E and P = B.

• S is the least subset of 2B and −→ is the least subset of S×Σ×S satisfying:

– cin ∈ S.

– Suppose c ∈ S and e ∈ E such that •e ⊆ c and e• ∩ c = ∅. Then
c′ ∈ S and (c, e, c′) ∈ −→ where c′ = (c− •e) ∪ e•.

• Sin = {cin}.

• VPr(c) = c for every c ∈ S.

Thus the so called case graph is the underlying transition system of the
program. The conditions serve as the atomic propositions.

For c ⊆ B, let αc be the formula
∧
b∈c b. Now consider the specification

2¬αc for some c ⊆ B. Then PrN 6|= 2¬αc iff c is a reachable state (i.e. c ∈ S)
in N . Next suppose e and e′ are two events. Then PrN |= 23〈e〉tt ⇒ 23〈e′〉tt
captures the fact that in N , along every computation, if e occurs infinitely often
then so does e′. A rich variety of liveness and safety properties can be expressed
in LTL(Σ). For a substantial collection of examples the reader should see [83].
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It turns out that both the satisfiability and model checking problems for
LTL can be solved elegantly using Büchi automata [147]. We start with a
brief introduction to these automata. A Büchi automaton over Σ is a tuple
B = (Q,−→, Qin, F ) where:

• Q is a finite non-empty set of states.

• −→ ⊆ Q× Σ ×Q is a transition relation.

• Qin ⊆ Q is a set of initial states.

• F ⊆ Q is a set of accepting states.

Let σ ∈ Σω. Then a run of B over σ is a map ρ : prf(σ) −→ Q such that:

• ρ(ε) ∈ Qin.

• ρ(τ) a−→ ρ(τa) for each τa ∈ prf(σ).

The run ρ is accepting iff inf(ρ) ∩ F 6= ∅ where inf(ρ) ⊆ Q is given by
q ∈ inf(ρ) iff ρ(τ) = q for infinitely many τ ∈ prf(σ). Finally L(B), the language
of ω-words accepted by B, is:

L(B) = {σ | ∃ an accepting run of B over σ}.

The languages recognized by Büchi automata are called the ω-regular lan-
guages. For an excellent survey of regular languages and automata over infinite
objects, the reader is referred to [140].

It is easy to solve the emptiness problem for Büchi automata; to determine
whether or not the language accepted by a Büchi automaton is empty. This can
be done in time linear in the size of the automaton where the size of a Büchi
automaton is the number of states of the automaton [140].

We will now show how one can effectively construct for each α ∈ LTL(Σ),
a Büchi automaton Bα such that the language of ω-words accepted by Bα is
non-empty iff α is satisfiable. This is an action-based version of the elegant
solution presented in [147] for LTL.

Through the rest of the section we fix a formula α0. To construct Bα0 we
first define the (Fischer-Ladner) closure of α0. For convenience we will assume
that the derived next-state modality modality O is included in the syntax of
LTL(Σ). We take cl(α0) to be the least set of formulas that satisfies:

• α0 ∈ cl(α0).

• If ¬β ∈ cl(α0) then β ∈ cl(α0).

• If α ∨ β ∈ cl(α0) then α, β ∈ cl(α0).

• If 〈a〉α ∈ cl(α0) then α ∈ cl(α0).

• If Oα ∈ cl(α0) then α ∈ cl(α0).



8.2. LINEAR TIME TEMPORAL LOGIC 135

• If α U β ∈ cl(α0) then α, β ∈ cl(α0). In addition, O(α U β) ∈ cl(α0).

Now CL(α0), the closure of α0, is defined to be:

CL(α0) = cl(α0) ∪ {¬β | β ∈ cl(α0)}.

In what follows ¬¬β will be identified with β. Moreover, throughout the section,
all the formulas that we encounter will be assumed to be members of CL(α0).
For convenience, we shall often write CL instead of CL(α0).

A ⊆ CL is called an atom iff it satisfies :

• β ∈ A iff ¬β 6∈ A.

• α ∨ β ∈ A iff α ∈ A or β ∈ A.

• α U β ∈ A iff β ∈ A or α,O(α U β) ∈ A.

• If 〈a〉α ∈ A and 〈b〉β ∈ A then a = b.

AT (α0) is the set of atoms and again we shall often write AT instead of AT (α0).
Finally we set Uα0 , the set of until requirements of α0, to be the given by
Uα0 = {α U β | α U β ∈ CL}. We will often write U0 instead of Uα0 .

The Büchi automaton Bα0 (from now on denoted as B) is now defined as
B = (Q,−→, Qin, F ), where the various components of B are specified as follows.

• Q = AT × 2U0 is the set of states.

• The transition relation −→ ⊆ Q× Σ ×Q is given by (A, x) a−→ (B, y) iff
the following requirements are met:

– For every 〈a〉α ∈ CL, 〈a〉α ∈ A iff α ∈ B and for every O(α) ∈ CL,
O(α) ∈ A iff α ∈ B.

– if 〈b〉β ∈ A then b = a.

– if x 6= ∅ then y = {α U β | α U β ∈ x and β 6∈ B}. If x = ∅ then
y = {α U β | α U β ∈ B and β 6∈ B}.

• Qin ⊆ Q is given by (A, x) ∈ Qin iff α0 ∈ A and x = ∅.

• F ⊆ Q is given by (A, x) ∈ F iff x = ∅.

It is easy to show that L(B) 6= ∅ iff α0 is satisfiable. It is also easy to check that
the size of B is at most exponential in the size of α0. As observed earlier the
emptiness problem for a Büchi automaton can be solved in time linear in the
size of the automaton. Thus we arrive at:

Theorem 8.2.1 The satisfiability problem for LTL(Σ) is decidable in exponen-
tial time.
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Turning now to the model checking problem we first recall that the inter-
section problem for Büchi automata can be easily solved. In other words, let
B1,B2 be two Büchi automata both operating over Σ. Then one can effectively
construct a Büchi automaton B over the same alphabet such that the language
accepted by B is the intersection of the languages accepted by B1 and B2. More-
over, the size of B can be assumed to be bounded by 2n1n2 where n1 is the size
of B1 and n2 is the size of B2 [140].

Now let Pr = (S,−→, Sin, VPr) be a program. We associate the Büchi
automaton BPr = (S,;, Sin, S) over the alphabet Σ × 2P with Pr where ; is
given by: (s, (a,R), s′) ∈ ; iff (s, a, s′) ∈ −→ and VPr(s) = R.

Let α be a specification. Then we construct the Büchi automaton B¬α
corresponding to the negation of α. Let B¬α = (Q,=⇒, Qin, F ). Recall that
each state in Q is of the form (A, x) where A is an atom. We now convert this
automaton into the automaton B̂ = (Q,V, Qin, F ) over the alphabet Σ × 2P

by defining V as: ((A, x), (a,R), (B, y)) ∈ V iff ((A, x), a, (B, y)) ∈ =⇒ and
A∩P = R. Finally, let B be the Büchi automaton which accepts the intersection
of the languages accepted by BPr and B̂. It is straightforward to check that
Pr |= α iff the language accepted by B is empty. An easy analysis of the size of
B leads to:

Theorem 8.2.2 The model checking problem for LTL(Σ) is decidable in time
O(|Pr| · 2|α|).

In what follows, automata-theoretic constructions and expressiveness issues
will play a considerable role. These topics can be treated in a simpler fashion
if we eliminate atomic propositions. Most of the material we present can easily
accommodate atomic propositions with some notational overhead. Hence from
now on, we will not — except for some passing remarks — deal with atomic
propositions. To be specific, the syntax of LTL(Σ) will be assumed to be:

LTL(Σ) ::= tt | ¬α | α ∨ β | 〈a〉α | α U β.

Notice that a model is now just a member of Σω with the semantics being the
obvious one (tt is always true). The set of models of a formula constitute a
language of infinite words. More precisely, each α induces the language Lα
given by:

Lα = {σ | σ, ε |= α}.
A program is now just a finite-state transition system Pr = (S,−→, Sin)

over Σ. Each such program Pr has the language LPr associated with it. This
is just the language accepted by the Büchi automaton (S,−→, Sin, S). It is also
easy to see that Pr |= α iff LPr ⊆ Lα iff LPr ∩ L¬α = ∅.

8.3 Mazurkiewicz Traces and Trace Consistent
Properties

Here we wish to introduce the notion of traces from the standpoint of sequences.
This will enable us to define the notion of a trace consistent property. This
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notion plays an important role in partial order based reducion methods. As
pointed out in the introduction, it also provides the motivation for studying
trace based linear time temporal logics.

A (Mazurkiewicz) trace alphabet is a pair (Σ, I), where Σ, the alphabet, is
a finite set and I ⊆ Σ × Σ is an irreflexive and symmetric independence rela-
tion. In most applications, Σ consists of the actions performed by a distributed
system while I captures a static notion of causal independence between ac-
tions. The idea is that contiguous independent actions occur with no causal
order between them. Thus, every sequence of actions from Σ corresponds to
an interleaved observation of a partially-ordered stretch of system behaviour.
This leads to a natural equivalence relation over execution sequences: two se-
quences are equated iff they correspond to different interleavings of the same
partially-ordered stretch of behaviour.

For the rest of the section we fix a trace alphabet (Σ, I) and assume the
terminology developed in the previous section for objects derived from Σ. We
define D = (Σ × Σ) − I to be the dependency relation. Note that D is reflexive
and symmetric. A set p ⊆ Σ is called a D-clique iff p× p ⊆ D. The equivalence
relation ≈I ⊆ Σ∞ × Σ∞ induced by I is given by:

σ ≈I σ′ iff σ � p = σ′ � p for every D-clique p.

Here and elsewhere, if A is a finite set, ρ ∈ A∞ and B ⊆ A then ρ�B is the
sequence obtained by erasing from ρ all occurrences of letters in A−B.

Clearly ≈I is an equivalence relation. Notice that if σ = τabσ1 and σ′ =
τbaσ1 with (a, b) ∈ I then σ ≈I σ′. Thus σ and σ′ are identified if they differ
only in the order of appearance of a pair of adjacent independent actions. In
fact, for finite words, an alternative way to characterize ≈I is to say that σ ≈I σ′

iff σ′ can be obtained from σ by a finite sequence of permutations of adjacent
independent actions. However the definition of ≈I in terms of permutations can
not be directly transported to infinite words, which is why we work with the
definition presented here.

The equivalence classes generated by ≈I are called (Mazurkiewicz) traces.
A set of traces is called a trace language. The theory of traces is well developed
and documented—see [24, 27] for basic material as well as a substantial number
of references to related work.

A variety of models of distributed systems naturally have a trace alphabet
associated with them [154]. It also turns out that many interesting properties
of distributed systems respect the equivalence relation induced by these trace
alphabets. This has important consequences for the practical verification of
such properties.

The key notion in this context is that of a trace consistent property. To bring
this out, we start with a trace alphabet (Σ, I) and recall the remarks concerning
the abolition of atomic propositions at the end of Section 8.2. Let L ⊆ Σω. We
say that L is trace consistent in case σ ∈ L and σ ≈I σ′ implies σ′ ∈ L; for every
σ, σ′ ∈ Σω. In other words, either all members of a trace are in L or none of
them are. We say that the formula α in LTL(Σ) is trace consistent in case Lα is
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trace consistent. It is not hard to see that there is a one-to-one correspondence
between trace languages and trace consistent languages of strings.

Now suppose Pr is a program over Σ which has a trace alphabet (Σ, I)
associated with it in some natural manner. Suppose further that LPr, the
linear time behaviour of Pr, is trace consistent (we will see a number of models
of distributed programs that possess these features in the material to follow).
Now consider a specification α which happens to be trace consistent. Then, as
remarked at the end of Section 8.2, verifying Pr |= α boils down to verifying
LPr ⊆ Lα. Instead of checking LPr ⊆ Lα we can choose to check L′ ⊆ Lα where
L′ is designed to be such that L′ ⊆ LPr and for every σ ∈ LPr, [σ]∩L′ 6= ∅. The
key point is, the finite representation of L′ can often be substantially smaller
than the representation of Pr. This is the insight underlying many of the so
called partial-order methods deployed in the model checking world [48, 108, 144].

As pointed out in the introduction this is also the main motivation for con-
sidering the trace-based linear time temporal logics that we will encounter later.
We shall conclude this section with some examples.

Recall the material on elementary net systems introduced in Section 8.2.
Suppose N = (B,E, F, cin) is an elementary net system. Each such system
induces the independence relation IN given by:

IN = {(e1, e2) | (•e1 ∪ e•1) ∩ (•e2 ∪ e•2) = ∅}.

Let e ∈ E and consider the formula 23〈e〉tt . The property captured by this
formula says that (along every computation) the event e occurs infinitely often.
It is easy to see that this is a trace consistent property with respect to the trace
alphabet (E, IN ). Next consider the net system of Figure 8.1.

Consider the formula β = 23(〈e〉tt ∧ 〈e′〉tt). Suppose σ = (e1e2ee′)ω and
σ′ = (e1e′e2e)ω. Then σ, ε |= β and σ ≈IN σ′ but σ′, ε 6|= β. Thus this property
is not trace consistent with respect to the trace alphabet induced by this net
system.

8.4 Product Languages and Automata

We will now exhibit a restricted but useful class of distributed behaviours that
we call product behaviours. Such behaviours are generated by a network of
sequential agents that coordinate their activities by performing common actions
together. It will turn out that product behaviours are naturally trace consistent.
They also constitute a clean and yet non-trivial subset of the class of trace
behaviours considered later.

We first study product Büchi automata. We then formulate in Section 8.5
the product version of LTL(Σ). We will then use product Büchi automata to
solve the satisfiability and model checking problems for the product version
of LTL(Σ). The technical details — which we suppress here — can be found
in [136]. The key notion underlying product behaviours is that of a distributed
alphabet. It can be viewed as an “implementation” of a trace alphabet. As a
result, distributed alphabets play a fundamental role in the automata-theoretic
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Figure 8.1: Example elementary net system.

aspects of trace languages [43, 157]. This will become more clear when the
material in Section 8.6 is encountered.

A distributed alphabet is a family {Σp}p∈P where P is a finite non-empty
set of agents (also referred to as processes in the sequel) and Σp is a finite non-
empty alphabet for each p ∈ P . The idea is that whenever an action from Σp
occurs, the agent p must participate in it. Hence the agents can constrain each
other’s behaviour, both directly and indirectly.

Trace alphabets and distributed alphabets are closely related to each other.
Let Σ̃ = {Σp}p∈P be a distributed alphabet. Then ΣP , the global alphabet
associated with Σ̃, is the collection

⋃
p∈P Σp. The distribution of ΣP over P

can be described using a location function locΣ̃ : ΣP → 2P defined as follows:

locΣ̃(a) = {p | a ∈ Σp}.

This in turn induces the relation IΣ̃ ⊆ ΣP × ΣP given by:

(a, b) ∈ IΣ̃ iff locΣ̃(a) ∩ locΣ̃(b) = ∅.

Clearly IΣ̃ is irreflexive and symmetric and hence (ΣP , IΣ̃) is a trace alphabet.
Thus every distributed alphabet canonically induces a trace alphabet. Two
actions are independent according to Σ̃ if they are executed by disjoint sets
of processes. Henceforth, we write loc for locΣ̃ whenever Σ̃ is clear from the
context.

Going in the other direction there are, in general, many different ways to
implement a trace alphabet as a distributed alphabet. A standard approach is
to create a separate agent for each maximalD-clique generated by (Σ, I). Recall
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that a D-clique of (Σ, I) is a non-empty subset p ⊆ Σ such that p × p ⊆ D.
Let P be the set of maximal D-cliques of (Σ, I). This set of processes induces
the distributed alphabet Σ̃ = {Σp}p∈P where Σp = p for every process p. The
alphabet Σ̃ implements (Σ, I) in the sense that the canonical trace alphabet
induced by it is exactly (Σ, I). In other words, ΣP = Σ and IΣ̃ = I.

For example, consider the trace alphabet (Σ, I) where Σ = {a, b, d} and
I = {(a, b), (b, a)}. The canonical D-clique implementation of (Σ, I) yields the
distributed alphabet Σ̃ = {{a, d}, {d, b}}.

Through the rest of the section we fix a distributed alphabet {Σp}p∈P and
set Σ = ΣP . It will be convenient to assume that P = {1, 2, . . . ,K}. Further,
the ith component of a K-tuple x = (x1, x2, . . . , xK) will be written as x[i]. In
other words, x[i] = xi.

A product Büchi automaton over Σ̃ is a structure A = ({Ai}Ki=1, Qin) where
Ai = (Qi,−→i, Fi, F

ω
i ) for each i such that :

• Qi is a finite set of i-local states.

• −→i ⊆ Qi × Σi ×Qi is the transition relation of the ith component.

• Fi ⊆ Qi is a set of finitary accepting states.

• Fωi ⊆ Qi is a set of infinitary accepting states.

• Qin ⊆ Q1 ×Q2 × · · · ×QK is a set of global initial states.

We use two types of accepting states for the components in order to be able
to handle both finite and infinite behaviours. Even if one is interested only
in global infinite behaviours, finite behaviours at the component level must be
treated; a component might quit after engaging in a finite number of actions
while a part of the network runs forever. We use global initial states to obtain the
required expressive power. In general, the automaton will not be able to branch
off into different parts of the state space, starting from a single global initial
state. This will be brought out through a simple example after we define the
language behaviour of product automata. The same example will also illustrate
why using the cartesian product of local initial state sets as global initial states
will result in a loss of expressive power.

Let A = ({Ai}Ki=1, Qin) be a product Büchi automaton over Σ̃. From now on
we will say just “product automata”. Also, we shall often suppress the mention
of Σ̃. We will also write {Ai} instead of {Ai}Ki=1. Let
Ai = (Qi,−→i, Fi, F

ω
i ). Then we set QA

G = Q1 × Q2 × · · · × QK . When A
is clear from the context, we will write QG instead of QA

G. The global transition
relation of A is denoted as −→A and it is the subset of QG ×Σ×QG given by:

q
a−→A q′ iff ∀ i ∈ loc(a) : q[i] a−→i q

′[i] and ∀ i 6∈ loc(a) : q[i] = q′[i].

Let σ ∈ Σ∞. A run of A over σ is a map ρ : Prf(σ) −→ QG which satisfies:

• ρ(ε) ∈ Qin.
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Figure 8.2: Product automaton accepting L = {ad, bd}.

• ∀ τa ∈ prf(σ). ρ(τ) a−→A ρ(τa).

A simple but useful property of runs is the following. Suppose ρ is a run of
the product automaton A over σ. Further suppose that τ, τ ′ ∈ Prf(σ) such that
τ � i = τ ′ � i for some i. Then ρ(τ)[i] = ρ(τ ′)[i].

Let ρ be a run of the product automaton A over σ. Then ρ is accepting iff
for each i, the following condition is satisfied:

• If σ � i is finite then ρ(τ)[i] ∈ Fi where τ ∈ prf(σ) such that τ � i = σ � i.

• If σ � i is infinite then ρ(τa)[i] ∈ Fωi for infinitely many τa ∈ prf(σ) with
a ∈ Σi.

If σ � i is finite then clearly there exists τ ∈ prf(σ) such that τ � i = σ � i.
Now the above property of runs assures us that the notion of an accepting run
is well-defined. In case σ � i is infinite the acceptance condition can also be
phrased as:

• ρ(τ)[i] ∈ Fωi for infinitely many τ ∈ prf(σ).

This once again follows easily from the definition of a run. We now define L(A),
the language accepted by the product automaton A as,

L(A) = {σ | ∃ an accepting run of A over σ}.

Now consider the alphabet ({a, d}, {d, b}) and the language L = {ad, bd}.
Figure 8.2 shows a product automaton over this alphabet which accepts L. It is
easy to verify that no product automaton over this alphabet with a single global
initial state can accept L. It is also easy to verify that no product automaton
whose set of initial states is a cartesian product of component initial state sets
can accept this language.

A crucial property of product automata is that they accept ≈-consistent
languages.
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Lemma 8.4.1 Let A = ({Ai}, Qin) be a product automaton over Σ̃. Then
L(A) is trace consistent.

The class of languages accepted by product automata can now be character-
ized. To this end we define theK-ary operation⊗ : 2Σ∞

1 ×2Σ∞
2 ×· · ·×2Σ∞

K → 2Σ∞

via ⊗(L1, . . . , LK) = {σ | σ � i ∈ Li for each i}.
In what follows we will write L = L1 ⊗ L2 · · · ⊗ LK to denote the fact

⊗(L1, . . . , LK) = L. We say that L ⊆ Σ∞ is a direct product language over Σ̃
iff ∃ Li ⊆ Σ∞

i for each i such that L = L1 ⊗L2 ⊗ · · · ⊗LK . Here are two useful
properties of direct product languages. In stating this result and elsewhere we
will say “product language” instead of “product language over Σ̃” etc.

Proposition 8.4.2

(1) Let L be a direct product language and σ ∈ Σ∞. Then σ ∈ L iff for each
i there exists σi ∈ L such that σ � i = σi � i.

(2) Let L ⊆ Σ∞. Then L is a direct product language iff L = L̂1⊗L̂2⊗· · ·⊗L̂K
where L̂i = {σ � i | σ ∈ L} for each i.

As usual, for an alphabet Σ and L ⊆ Σ∞ we say that L is regular iff L∩Σ∗

is a regular subset of Σ∗ and L ∩ Σω is an ω-regular subset of Σω as described
in Section 8.2. We can now define the class of languages accepted by product
automata.

Definition 8.4.3

• R⊗
0 (Σ̃) is the subset of 2Σ∞

given by L ∈ R⊗
0 (Σ̃) iff L = L1⊗L2⊗· · ·⊗LK

with each Li a regular subset of Σ∞
i .

• R⊗(Σ̃) is the least subset of 2Σ∞
which contains R⊗

0 and is closed under
finite unions.

The class R⊗(Σ̃) defined above will be called the regular product languages over
Σ̃. As usual, we shall often write R⊗

0 instead of R⊗
0 (Σ̃) and write R⊗ instead

of R⊗(Σ̃). An interesting observation concerning R⊗ is the following:

Proposition 8.4.4 R⊗ is closed under boolean operations.

It turns out that R⊗ is precisely the class of languages accepted by product
automata.

Theorem 8.4.5 ([136]) Let L ⊆ Σ∞. Then L ∈ R⊗ iff there exists a product
automaton A such that L = L(A).

We shall be using product automata to settle the decidability and model
checking problems for the logic LTL⊗ to be introduced in the next section. In
anticipation of this, we shall put down two more results concerning product
automata. While doing so and elsewhere the size of the product automaton A
will be understood to be |QG|.
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Theorem 8.4.6 Let A be a product automaton. Then the question L(A) ?= ∅
can be settled in time O(22K · n2) where n is the size of A.

Theorem 8.4.7 Let A1 and A2 be two product automata. Then one can effec-
tively construct a product automaton A such that L(A) = L(A1) ∩ L(A2) and
moreover n = O(2K · n1 · n2) where n is the size of A and n` is the size of A`

for ` = 1, 2.

8.5 A Product Version of LTL

We now wish to design a product version of LTL denoted LTL⊗(Σ̃). The set of
formulas and their locations are given by:

• tt is a formula and loc(tt) = ∅.

• Suppose α and β are formulas. Then so are ¬α and α ∨ β. Furthermore,
loc(¬α) = loc(α) and loc(α ∨ β) = loc(α) ∪ loc(β).

• Suppose a ∈ Σi and α is a formula with loc(α) ⊆ {i}. Then 〈a〉iα is a
formula and loc(〈a〉iα) = {i}.

• Suppose α and β are formulas such that loc(α), loc(β) ⊆ {i}. Then αUiβ
is a formula. Moreover, loc(αUiβ) = {i}.

We note that each formula in LTL⊗(Σ̃) is a boolean combination of formulas
taken from the set

⋃
i∈loc LTL⊗

i (Σ̃) where, for each i,

LTL⊗
i (Σ̃) = {α | α ∈ LTL⊗(Σ̃) and loc(α) ⊆ {i} }.

Stated differently, the syntax of LTL⊗
i (Σ̃) is given inductively by:

• tt ∈ LTL⊗
i (Σ̃).

• If α and β are in LTL⊗
i (Σ̃) then ¬α and α ∨ β are in LTL⊗

i (Σ̃).

• If α is in LTL⊗
i (Σ̃) and a ∈ Σi then 〈a〉iα is in LTL⊗

i (Σ̃).

• If α and β are in LTL⊗
i (Σ̃) then αUiβ is in LTL⊗

i (Σ̃).

Once again, we have chosen to avoid dealing with atomic propositions for the
sake of convenience. They can be introduced in a local fashion as done in [136].
The decidability result to be presented will go through with minor notational
overheads.

As before, we will often suppress the mention of Σ̃. We will also often write
τi, τ ′i and τ ′′i instead of τ � i , τ ′ � i and τ ′′ � i, respectively with τ, τ ′, τ ′′ ∈ Σ∗.

A model is a sequence σ ∈ Σ∞ and the semantics of this logic is given, as
before, with τ ∈ prf(σ).

• σ, τ |= tt .
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• σ, τ |= ¬α iff σ, τ 6|= α.

• σ, τ |= α ∨ β iff σ, τ |= α or σ, τ |= β.

• σ, τ |= 〈a〉iα iff there exists τ ′ ∈ prf(σ) such that σ, τ ′ |= α and τ ′i = τia.
(recall that τ ′i = τ ′ �i.)

• σ, τ |= αUiβ iff there exists τ ′ such that ττ ′ ∈ prf(σ) and σ, ττ ′ |= β.
Further, for every τ ′′ ∈ prf(τ ′), if ε � τ ′′i ≺ τ ′i then σ, ττ ′′ |= α.

As before we derive some useful modalities:

• Oiα
def=
∨
a∈Σi

〈a〉iα.

• 3iα
def= ttUiα.

• 2iα
def= ¬3i¬α.

Let M = σ be a model and τ ∈ prf(σ). The following assertions can now easily
be checked.

• σ, τ |= Oiα iff there exists τ ′ ∈ prf(σ) such that σ, τ ′ |= α and |τ ′i | =
|τi| + 1.

• σ, τ |= 3iα iff there exists τ ′ with ττ ′ ∈ prf(σ) such that σ, ττ ′ |= α.

• σ, τ |= 2iα iff for each τ ′, ττ ′ ∈ prf(σ) implies σ, ττ ′ |= α.

Note that Oiα is the i-local version of the usual next-state operator of LTL.
We will say that a formula α ∈ LTL⊗(Σ̃) is satisfiable if there exist σ ∈ Σ∞

and τ ∈ prf(σ) such that σ, τ |= α. The language defined by α is given by

Lα = {σ ∈ Σ∞ | σ, ε |= α}.

We will show the satisfiability problem for LTL⊗(Σ̃) is solvable in deter-
ministic exponential time. This will be achieved by effectively constructing a
product automaton Aα for each α ∈ LTL⊗(Σ̃) such that the language accepted
by Aα is non-empty iff α is satisfiable. Our construction is a generalization of
the one for LTL in Section 8.2. The solution to the satisfiability problem will at
once lead to a solution to the model checking problem for programs modelled
as a product of sequential agents.

Through the rest of the section we fix a formula α0 ∈ LTL⊗(Σ̃). As before
we will for convenience assume that the derived local next-state modality Oi
is included in the syntax of LTL⊗. In order to construct Aα0 we first define
the (Fischer-Ladner) closure of α0. As a first step let cl(α0) be the least set of
formulas satisfying:

• α0 ∈ cl(α0).

• ¬α ∈ cl(α0) implies α ∈ cl(α0).
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• α ∨ β ∈ cl(α0) implies α, β ∈ cl(α0).

• 〈a〉iα ∈ cl(α0) implies α ∈ cl(α0).

• αUiβ ∈ cl(α0) implies α, β ∈ cl(α0). In addition, Oi(αUiβ) ∈ cl(α0).

We will now take the closure of α0 to be CL(α0) = cl(α0) ∪ {¬α | α ∈ cl(α0)}.
From now on we shall identify ¬¬α with α. Set CLi(α0) = CL(α0)∩LTL⊗

i for
each i. We will often write CL instead of CL(α0) and CLi instead of CLi(α0).
All formulas considered from now on will be assumed to belong to CL unless
otherwise stated.

An i-type atom is a subset A ⊆ CLi which satisfies:

• tt ∈ A.

• α ∈ A iff ¬α 6∈ A.

• α ∨ β ∈ A iff α ∈ A or β ∈ A.

• αUiβ ∈ A iff β ∈ A or α,Oi(αUiβ) ∈ A.

The set of i-type atoms is denoted ATi. We next define, for each α ∈ CL(α0)
and (A1, . . . , AK) ∈ AT1 × · · · ×ATK , the predicate Member(α, (A1, . . . , AK)).
For convenience this predicate will be denoted as α ∈ (A1, . . . , AK) and is given
inductively by:

• Let α ∈ CLi. Then α ∈ (A1, . . . , AK) iff α ∈ Ai.

• Let α = ¬β. Then α ∈ (A1, . . . , AK) iff β 6∈ (A1, . . . , AK).

• Let α = β ∨ γ. Then α ∈ (A1, . . . , AK) iff β ∈ (A1, . . . , AK) or γ ∈
(A1, . . . , AK).

Finally, we set Ui = {αUiβ | αUiβ ∈ CLi(α0)} for each i. The product
automaton Aα0 associated with α0 is now defined to be Aα0 = ({Ai}, Qin)
where, for each i, Ai = (Qi,−→i, Fi, F

ω
i ) is specified as follows:

• Qi = ATi × {off, on} × 2Ui

• −→i ⊆ Qi × Σi × Qi is given by, (A, x, u) a−→i (B, y, v) iff the following
conditions are met.

(1) x = on and for all 〈a〉iα ∈ CLi(α0), 〈a〉iα ∈ A iff α ∈ B and for all
Oiα ∈ CLi(α0), Oiα ∈ A iff α ∈ B. Moreover, if 〈b〉iβ ∈ A then
b = a.

(2) If u 6= ∅ then v = {αUiβ | αUiβ ∈ u and β 6∈ B}. If u = ∅ then
v = {αUiβ | αUiβ ∈ B and β 6∈ B}.

• Fi ⊆ Qi is given by: (A, x, u) ∈ Fi iff x = off and for all 〈a〉iα ∈ CLi(α0),
〈a〉iα 6∈ A and for all Oiα ∈ CLi(α0), Oiα 6∈ A.



146 CHAPTER 8. DISTRIBUTED VERSIONS OF LTL

• Fωi ⊆ Qi is given by: (A, x, u) ∈ Fωi iff u = ∅.

• Qin ⊆ Q1 ×Q2 × . . .×QK is given by: ((A1, x1, u1), . . . , (AK , xK , uK)) ∈
Qin iff α0 ∈ (A1, . . . , AK) and ui = ∅ for every i.

It is not difficult to now establish the next result by an application of The-
orem 8.4.6.

Theorem 8.5.1 α0 is satisfiable iff L(Aα0) 6= ∅. Hence the satisfiability prob-
lem for LTL⊗ is decidable in exponential time.

We now turn to the model checking problem for LTL⊗. A product program
(over Σ̃) is a structure Pr = ({Pri}Ki=1, Q

Pr
in ) where, for each i, Pri = (Qi,−→i)

with Qi a finite set and −→i ⊆ Qi × Σi × Qi. Since we have agreed to drop
atomic propositions there is no need for (local) interpretations for the atomic
propositions. Let us further assume for convenience that QPrin is a singleton
with qin as its sole member and with qin[i] = qiin for each i. With each such
program we can associate the product automaton APr = ({Ai}Ki=1, {qin}) where
Ai = (Qi,−→i, Qi, Qi) for each i.

Now let Pr be a product program and α0 be a formula of LTL⊗. As in
the case for LTL, we say that Pr meets the specification α0 — again denoted
Pr |= α0 — iff σ, ε |= α0 for every σ ∈ L(APr). Once again, using Theorem 8.4.7
it is not difficult to prove the following.

Theorem 8.5.2 The model checking problem for LTL⊗ is decidable in time
O(|Pr| · 2|α0|).

We wish to observe that each product program can be represented as a Σ-
labelled 1-safe net system. To see this let Pr = ({Pri}Ki=1, {qin}) be a product
program. Let’s assume without loss of generality that the family of local states
{Qi} is pairwise disjoint. We set Q =

⋃
i∈P Qi and define an a-state to be a

map qa : loc(a) → Q which satisfies qa(i) ∈ Qi for each i in loc(a). (A more
elaborate development of these notions will appear in the next section). An
a-event is a pair of a-states (qa, q′a) which satisfies qa(i)

a−→i q
′
a(i) for each i

in loc(a). We let Ea be the set of a-events. We can now define the Σ-labelled
1-safe net system representing Pr to be N = (B,E, F, cin, φ) where:

• B = Q

• E =
⋃
a∈Σ Ea

• Let qi ∈ Qi and e = (qa, q′a) ∈ Ea. Then (qi, e) ∈ F iff i ∈ loc(a) and
qa(i) = qi. Similarly (e, qi) ∈ F iff i ∈ loc(a) and q′a(i) = qi.

• Let e ∈ E. Then φ(e) = a iff e is an a-event.

On the other hand each 1-safe net system which is covered by a set of S-
components can be viewed as a (deterministic) product program; the alphabet
of each component is its set of events. If necessary, S-complementation can be
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Figure 8.3: 1-safe net with three components.

performed to ensure that the system is covered by a set of S-components. We
do not wish to enter into details here. Instead we show on Figure 8.3 an example
of a 1-safe net system composed out of three components.

Let Pr denote the associated product program over the distributed alphabet
{{e1, e2, e3}, {e3, e4}, {e′1, e′2, e4}}. Then it is easy to check that

Pr |= 21O1tt ⇒ 23O3tt .

This property says that along every computation, if the first component executes
infinitely often then so does the third component. The point to note is that the
first component and the third component do not have any common events and
hence there is no direct communication between them. Nevertheless through
the power of the boolean connectives alone the logic can make assertions about
the way components that are ”far apart” are required to influence each other’s
behaviour.

8.6 Trace Languages and Automata

Traces have many equivalent representations. Here we shall view them as re-
stricted Σ-labelled partial orders. Abusing terminology we shall call these ob-
jects also traces. We will then argue that these objects are in a rather precise
sense the same as the objects called traces defined in Section 8.3 in terms of
equivalence classes of sequences.

Let T be a Σ-labelled poset. In other words, (E,≤) is a poset and λ : E → Σ
is a labelling function. For Y ⊆ E we define ↓Y = {x | ∃y ∈ Y : x ≤ y} and
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↑ Y = {x | ∃y ∈ Y : y ≤ x}. In case Y = {y} is a singleton we shall write ↓y
(↑ y) instead of ↓{y} (↑ {y}). We also let l be the relation: xl y iff x < y and
for all z ∈ E, x ≤ z ≤ y implies x = z or z = y.

A trace (over (Σ, I)) is a Σ-labelled poset T = (E,≤, λ) satisfying:

(T1) ∀e ∈ E. ↓e is a finite set
(T2) ∀e, e′ ∈ E. el e′ implies λ(e) D λ(e′).
(T3) ∀e, e′ ∈ E. λ(e) D λ(e′) implies e ≤ e′ or e′ ≤ e.

We shall refer to members of E as events. The trace T = (E,≤, λ) is said
to be finite if E is a finite set. Otherwise it is an infinite trace. Note that E
is always a countable set. T is said to be non-empty in case E 6= ∅. We let
TR∗(Σ, I) be the set of finite traces and TRω(Σ, I) be the set of infinite traces
over (Σ, I) and set TR(Σ, I) = TR∗(Σ, I)∪TRω(Σ, I). Often we will write TR∗

instead of TR∗(Σ, I) etc. As before, a subset of traces LTr ⊆ TR will be called
a trace language.

Let T = (E,≤, λ) be a trace. The finite prefixes of T , to be called configu-
rations, will play a crucial role in what follows. A configuration of T is a finite
subset c ⊆ E such that c = ↓ c. We let CT be the set of configurations of T
and let c, c′, c′′ range over CT . Note that ∅, the empty set, is a configuration
and ↓ e is a configuration for every e ∈ E. Finally, the transition relation
−→T ⊆ CT × Σ × CT is given by: c a−→T c′ iff there exists e ∈ E such that
λ(e) = a and e /∈ c and c′ = c ∪ {e}. It is easy to see that if c a−→T c′ and
c

a−→T c
′′ then c′ = c′′.

Note that we have now introduced two different notions of traces; one in
terms of equivalence classes of strings as in Section 8.3 and the other in terms
of Σ-labelled partial orders as in this section. We now sketch briefly the con-
structions that show that Σ∞/≈I and TR(Σ, I) represent the same class of
objects. We shall construct representation maps st : Σ∞/ ≈I→ TR(Σ, I) and
ts : TR(Σ, I) → Σ∞/ ≈I and state some results which show that these maps
are “inverses” of each other. We shall not prove these results. The details can
be easily obtained using the constructions developed in [154] for relating traces
and event structures.

Henceforth, we will not distinguish between isomorphic elements in
TR(Σ, I). In other words, whenever we write T = T ′ for traces T = (E,≤, λ)
and T ′ = (E′,≤′, λ′), we mean that there is a label-preserving isomorphism
between T and T ′.

Recall that for σ ∈ Σ∞, [σ] stands for the ≈I-equivalence class containing
σ. We now define st : Σ∞ → TR(Σ, I). Let σ ∈ Σ∞. Then st(σ) = (E,≤, λ)
where:

• E = {τa | τa ∈ prf(σ)}. Recall that τ ∈ Σ∗ and a ∈ Σ. Thus E =
prf(σ) − {ε}, where ε is the null string.

• ≤ ⊆ E×E is the least partial order which satisfies: For all τa, τ ′b ∈ E, if
τa � τ ′b and (a, b) ∈ D then τa ≤ τ ′b.

• For τa ∈ E, λ(τa) = a.
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The map st induces a natural map st′ from Σ∞/ ≈I to TR(Σ, I) defined by
st′([σ]) = st(σ). One can show that if σ, σ′ ∈ Σ∞, then σ ≈I σ′ iff st(σ) = st(σ′).
This observation guarantees that st′ is well-defined. In fact, henceforth we shall
write st to denote both st and st′.

Next, let T = (E,≤, λ) ∈ TR(Σ, I). Then σ ∈ Σ∞ is a linearization of T iff
there exists a map ρ : prf(σ) → CT , such that the following conditions are met:

• ρ(ε) = ∅.

• ∀τa ∈ prf(σ) with τ ∈ Σ∗, ρ(τ) a−→T ρ(τa).

• ∀e ∈ E ∃τ ∈ prf(σ). e ∈ ρ(τ).

The function ρ will be called a run map of the linearization σ. Note that the
run map of a linearization is unique. In what follows, we shall let lin(T ) to be
the set of linearizations of the trace T .

We can now define the map ts : TR(Σ, I) → Σ∞/ ≈I as: ts(T ) = lin(T ). One
can now show that for every σ ∈ Σ∞, ts(st(σ)) = [σ] and for every T ∈ TR(Σ, I),
st(ts(T )) = T . This justifies our claim that Σ∞/ ≈I and TR(Σ, I) are indeed
two equivalent ways of talking about the same class of objects.

We note that every trace consistent subset L of Σ∞ defines a trace language
LTr given by LTr = {st(σ) | σ ∈ L} which has the property ts(LTr) = L. In
this sense every product language defines a trace language. We say that a trace
language LTr is regular iff ts(LTr) is a regular subset of Σ∞. As we will see
later not every (regular) trace language is a (regular) product language. Hence
in order to recognize regular trace languages one will have to use strengthened
versions of product automata. Such automata called asynchronous automata
were formulated by Zielonka for recognizing regular languages of finite traces.
These were then generalized for handling infinite traces by Gastin and Petit [43].
We will use a combination of these two types of automata for solving the satis-
fiability and model checking problems for the trace-based temporal logic called
TrPTL to be considered in the next section.

Let Σ̃ be a distributed alphabet with P as the associated set of agents. In
an asynchronous automaton, each process p ∈ P is equipped with a finite non-
empty set of local p-states, denoted Sp. It will be convenient to develop some
notations for talking about “more global” states before defining these automata.

First we set S =
⋃
p∈P Sp and call S the set of local states. We let P,Q

range over non-empty subsets of P and let p, q range over P . A Q-state is a
map s : Q → S such that s(q) ∈ Sq for every q ∈ Q. We let SQ denote the set
Q-states. We call SP the set of global states.

We use a to abbreviate loc(a) when talking about states (recall that loc(a) =
{ p | a ∈ Σp }). Thus an a-state is just a loc(a)-state and Sa denotes the set of
all loc(a)-states.

A distributed transition system TS over Σ̃ is a structure

({Sp}, {−→a}, Sin),

where
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• Sp is a finite non-empty set of p-states for each process p.

• For a ∈ Σ, −→a ⊆ Sa × Sa is a transition relation between a-states.

• Sin ⊆ SP is a set of initial global states.

The idea is that an a-move by TS involves only the local states of the agents
which participate in the execution a. This is reflected in the global transition
relation −→TS ⊆ SP ×Σ×SP which is defined as follows: Suppose s and s′ are
two global states and sa and s′a are the two corresponding a-states. In other
words, sa(i) = s(i) and s′a(i) = s′(i) for each i in loc(a). Then

s
a−→TS s

′ iff (sa, s′a) ∈ −→a and s(j) = s′(j) for every j /∈ loc(a).

From the definition of −→TS , it is clear that actions which are executed by
disjoint sets of agents are processed independently by TS.

An asynchronous automaton over Σ̃ is then a distributed transition system
equipped with a set of global accepting states. More precisely, it is a structure
A = ({Sp}, {−→a}, Sin, F ) where

• F ⊆ SP is a set of accepting global states.

A trace run of A over the finite trace T = (E,≤, λ) is a map ρ : CT → SP
such that ρ(∅) ∈ Sin and for every (c, a, c′) ∈ −→T , ρ(c) a−→TS ρ(c′). We say
that ρ is an accepting run whenever ρ(E) ∈ F . The language of finite traces
accepted by A is given by

LTr(A) = { T ∈ TR∗ | ∃ an accepting run of A over T }.

In the present setting Zielonka’s fundamental result can now be formulated
as

Theorem 8.6.1 ([157]) L ⊆ TR∗(Σ, I) is regular iff L = LTr(A) for some
asynchronous automaton A over some Σ̃ where Σ̃ is a distributed alphabet whose
induced trace alphabet is (Σ, I). Further, one may assume A to be deterministic
and one may assume Σ̃ to be the distributed alphabet induced by the maximal
D-cliques of (Σ, I).

This result has been generalized to the set of ω-regular trace languages by
Gastin and Petit [43] in terms of asynchronous automata with Büchi acceptance
conditions. Since we will treat both finite and infinite traces on an equal footing
we will present a class of automata capable of accepting both finite and infi-
nite traces. Hence our automata are essentially distributed transition systems
augmented with both finite and infinite accepting states.

An asynchronous Büchi automaton over Σ̃ is a structure

A = ({Sp}, {−→a}, Sin, {(Fp, Fωp )}),

where:
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• ({Sp}, {−→a}, Sin) is a distributed transition system.

• Fp ⊆ Sp is a set of local finitary accepting states of process p.

• Fωp ⊆ Sp is a set of local infinitary accepting states of process p.

For convenience we will from now on denote this class of automata just “asyn-
chronous automata”.

To define acceptance we must now compute Infp(ρ), the set of p-states that
are encountered infinitely often along ρ. When incorporating both finite and
infinite behaviour in this richer domain we have to take care in defining the
set of infinitely occuring states of process p. The obvious definition, namely
Infp(ρ) = {sp | ρ(c)(p) = sp for infinitely many c ∈ CT }, will not work. The
complication arises because some processes may make only finitely many moves,
even though the overall trace consists of an infinite number of events.

For instance, consider the distributed alphabet Σ̃0 = {{a}, {b}}. In the
corresponding distributed transition system, there are two processes p and q
which execute a’s and b’s completely independently. Consider the trace T =
(E,≤, λ) where |Ep| = 1 and Eq is infinite — i.e., all the infinite words in ts(T )
contain one a and infinitely many b’s. Let sp be the state of p after executing
a. Then, there will be infinitely many configurations whose p-state is sp, even
though p only moves a finite number of times.

Continuing with the same example, consider another infinite trace T ′ =
(E′,≤′, λ′) over the same alphabet where both Ep and Eq are infinite. Once
again, let sp be the local state of p after reading one a. Further, let us suppose
that after reading the second a, p never returns to the state sp. It will still
be the case that there are infinitely many configurations whose p-state is sp:
consider the configurations c0, c1, c2, . . . where cj is the finite configuration after
one a and j b’s have occurred.

So, we have to define Infp(ρ) so as to detect whether or not process p is
making progress. The appropriate formulation is as follows:

• Ep is finite: Infp(ρ) = {sp}, where ρ(↓Ep) = s and sp = s(p).

• Ep is an infinite set: Infp(ρ) = {sp | for infinitely many e ∈ Ep, se(p) =
sp, where ρ(↓e) = se}.

A trace run of an asynchronous automaton over the (possibly infinite) trace
T = (E,≤, λ) ∈ TR is now defined in the obvious way. A run ρ of A over
the (possibly infinite) trace T = (E,≤, λ) is accepting iff for each process p the
following conditions are met:

• If Ep is finite then Infp(ρ) ∩ Fp 6= ∅.

• If Ep is infinite then Infp(ρ) ∩ Fωp 6= ∅.

We then have the following characterization extending Theorem 8.6.1.
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Theorem 8.6.2 A trace language L ⊆ TR(Σ, I) is regular iff L = LTr(A) for
an asynchronous automaton over Σ̃ where Σ̃ is a distributed alphabet whose
induced trace alphabet is (Σ, I).

It should be noted however that deterministic automata no longer suffice for
accepting all regular languages.

We say that A is in standard form if

• For each p, Fp ∩ Fωp = ∅.

• For each (sa, ta) ∈ −→a and p ∈ loc(a) we have that sa(p) 6∈ Fp.

Thus, A is in standard form if the p-states in Fp are all “dead” and disjoint from
Fωp . It is easy to convert every asynchronous automaton into standard form.
All our asynchronous automata will be in standard form.

We conclude with a result concerning the emptiness problem for asynchronous
automata.

Proposition 8.6.3 ([97]) Let A be an asynchronous automaton in standard
form. The emptiness problem is decidable in time O(n2|P|), where n is the
largest of the local state spaces, Sp.

We have described here the languages defined by asynchronous automata
in terms of traces. We note that these automata can be viewed — and this
is the conventional approach — as automata running over Σ-sequences. Using
the global transition relations of these automata one can easily define the string
languages accepted by these automata. These languages will be naturally trace
consistent w.r.t. the trace alphabets induced by the associated distributed al-
phabets. The resulting trace languages will be precisely the trace languages
accepted by these automata according to the definitions we have provided here.

8.7 TrPTL

We present here the linear time temporal logic over traces called TrPTL. This
is the first such logic patterned after PTL (i.e. LTL) formulated for traces. For
a detailed treatment of this logic the reader is referred to [135, 134].

As before, it will be notationally convenient to deal with distributed al-
phabets in which the names of the processes are positive integers. Through
this section and the next, we fix a distributed alphabet Σ̃ = {Σi}i∈P with
P = {1, 2, . . . ,K} and K ≥ 1. We let i, j and k range over P . As before,
let P,Q range over non-empty subsets of P . The trace alphabet induced by Σ̃
is denoted (Σ, I). We assume the terminology and notations developed in the
previous sections. In particular, when dealing with a P-indexed family {Xi}i∈P
we will often write just {Xi}.

The logic TrPTL is parameterized by the class of distributed alphabets.
Having fixed Σ̃ we shall often almost always write TrPTL to mean TrPTL(Σ̃),
the logic associated with Σ̃. In order to better illustrate the main features of
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the logic we will first include atomic propositions. They will be dropped once
we return to considering the technical aspects of the logic. We fix a finite non-
empty set of atomic propositions P with p, q ranging over P . Then ΦTrPTL(Σ̃),

the set of formulas of TrPTL(Σ̃), is defined inductively via:

• For p ∈ P and i ∈ P , p(i) is a formula (which is to be read “p at i”).

• If α and β are formulas, so are ¬α and α ∨ β.

• If α is a formula and a ∈ Σi then 〈a〉iα is a formula.

• If α and β are formulas so is αUiβ.

Throughout this section, we denote ΦTrPTL(Σ̃) as just Φ. In the semantics of
the logic, which will be based on infinite traces, the i-view of a configuration will
play a crucial role. Let T ∈ TRω with T = (E,≤, λ). Recall that Ei = {e | e ∈ E
and λ(e) ∈ Σi}. Let c ∈ CT and i ∈ P . Then ↓i(c) is the i-view of c and it is
defined as:

↓i(c) = ↓(c ∩ Ei).
We note that ↓i(c) is also a configuration. It is the “best” configuration that
the agent i is aware of at c. We say that ↓i(c) is an i-local configuration. Let
CiT = {↓ i(c) | c ∈ CT } be the set of i-local configurations. For Q ⊆ P and
c ∈ CT , we let ↓Q(c) denote the set

⋃
{↓i(c) | i ∈ Q}. Once again, ↓Q(c) is a

configuration. It represents the collective knowledge of the processes in Q about
the configuration c.

The following basic properties of traces follow directly from the definitions.

Proposition 8.7.1 Let T = (E,≤, λ) be an infinite trace. The following state-
ments hold.

(1) Let ≤i = ≤ ∩ (Ei × Ei). Then (Ei,≤i) is a linear order isomorphic to
ω if Ei is infinite and isomorphic to a finite initial segment of ω if Ei is
finite.

(2) (CiT ,⊆) is a linear order. In fact (CiT − {∅},⊆) is isomorphic to (Ei,≤i).

(3) Suppose ↓ i(c) 6= ∅ where c ∈ CT . Then there exists e ∈ Ei such that
↓i(c) = ↓e. In fact e is the ≤i-maximum event in (c ∩Ei).

(4) Suppose Q ⊆ Q′ ⊆ P and c ∈ CT . Then ↓Q(c) =↓Q(↓Q′
(c)). In particular,

for a single process i, ↓i(c) =↓i(↓i(c)).

We can now present the semantics of TrPTL. A model is a pair M =
(T, {Vi}i∈p) where T = (E,≤, λ) ∈ TRω and Vi : CiT → 2P is a valuation
function which assigns a set of atomic propositions to i-local configurations for
each process i. Let c ∈ CT and α ∈ Φ. Then M, c |= α denotes that α is satisfied
at c in M and it is defined inductively as follows:

• M, c |= p(i) for p ∈ P iff p ∈ Vi(↓i(c)).
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• M, c |= ¬α iff M, c 6|= α.

• M, c |= α ∨ β iff M, c |= α or M, c |= β.

• M, c |= 〈a〉iα iff there exists e ∈ Ei− c such that λ(e) = a and M, ↓e |= α.
Moreover, for every e′ ∈ Ei, e′ < e iff e′ ∈ c.

• M, c |= αUiβ iff there exists c′ ∈ CT such that c ⊆ c′ and M, ↓i(c′) |= β.
Moreover, for every c′′ ∈ CT , if ↓i(c) ⊆ ↓i(c′′) ⊂ ↓i(c′) then M, ↓i(c′′) |= α.

Thus TrPTL is an action based multi-agent version of LTL. Indeed both in
terms of its syntax and semantics, LTL(Σ) corresponds to the case where there
is only one agent. The semantics of TrPTL when specialized down to this case
yields the previous LTL(Σ) semantics.

Returning to TrPTL, the assertion p(i) says that the i-view of c satisfies the
atomic proposition p. Observe that we could well have p(i) satisfied at c but
not p(j) (with i 6= j). It is interesting to note that all atomic assertions (that
we know of) concerning distributed behaviours are local in nature. Indeed, it is
well-known that global atomic propositions will at once lead to an undecidable
logic in the current setting [81, 112].

Suppose M = (T, {Vi}) is a model and c
a−→T c′ with j /∈ loc(a). Then

M, c |= p(j) iff M, c′ |= p(j). In this sense the valuation functions are local.
There are, of course, a number of equivalent ways of formulating this idea which
we will not get into here.

The assertion 〈a〉iα says that the agent i will next participate in an a-event.
Moreover, at the resulting i-view, the assertion α will hold. The assertion αUiβ
says that there is a future i-view (including the present i-view) at which β
will hold and for all the intermediate i-views (if any) starting from the current
i-view, the assertion α will hold.

Before considering examples of TrPTL specifications, we will introduce some
notation. We let α, β with or without subscripts range over Φ. Abusing notation,
we will use loc to denote the map which associates a set of locations with each
formula.

• loc(p(i)) = loc(〈a〉iα) = loc(αUiβ) = {i}.

• loc(¬α) = loc(α).

• loc(α ∨ β) = loc(α) ∪ loc(β).

In what follows, Φi = {α | loc(α) = {i}} is the set of i-type formulas. We
note that unlike LTL⊗, a TrPTL formula of the form 〈a〉iα could have j ∈ loc(α)
with j 6= i. A similar remark applies to the indexed until-operators.

A basic observation concerning the semantics of TrPTL can be phrased as
follows:

Proposition 8.7.2 Let M = (T, {Vi}) be a model, c ∈ CT and α a formula
such that loc(α) ⊆ Q. Then M, c |= α iff M, ↓Q(c) |= α.
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A corollary to this result is that in case α ∈ Φi then M, c |= α if and only if
M, ↓i(c) |= α. As a result, the formulas in Φi can be used in exactly the same
manner as one would use LTL⊗ to express properties of the agent i. Boolean
combinations of such local assertions can be used to capture various interac-
tion patterns between the agents implied by the logical connectives as well as
the coordination enforced by the distributed alphabet Σ̃. For writing specifica-
tions, apart from the usual derived connectives that we already introduced in
Section 8.2 for LTL, the following operators are also available:

• tt def= p1(1) ∨¬p1(1) denotes the constant “True”, where P = {p1, p2, . . .}.
We use ff = ¬tt to denote “False”.

• 3iα
def= ttUiα is a local version of the 3 modality of LTL.

• 2iα
def= ¬3i¬α is a local version of the 2 modality of LTL.

• Let X ⊆ Σi and X = Σi − X . Then αUXi β
def= (α ∧

∧
a∈X [a]iff )Uiβ. In

other words αUXi β is fulfilled using (at most) actions taken from X . We
set 3X

i α
def= ttUXi α and 2X

i α
def= ¬3X

i ¬α.

• α(i) def= αUiα (or equivalently ff Uiα). α(i) is to be read as “α at i”. If
M = (T, {Vi}) is a model and c ∈ CT then M, c |= α(i) iff M, ↓i(c) |= α.
It could of course be the case that loc(α) 6= {i}.

A simple but important observation is that every formula is a boolean com-
bination of formulas taken from

⋃
i∈P Φi. In TrPTL we can say that a specific

global configuration is reachable from the initial configuration. Let {αi}i∈P be
a family with αi ∈ Φi for each i. Then we can define a derived connective
3(α1, α2, . . . , αK) which has the following semantics at the empty configura-
tion. Let M = (T, {Vi}) be a model. Then M, ∅ |= 3(α1, α2, . . . , αk) iff there
exists c ∈ CT such that M, c |= α1 ∧ α2 ∧ · · · ∧ αK .

To define this derived connective set Σ′
1 = Σ1 and, for 1 < i ≤ K, set

Σ′
i = Σi − ∪{Σj | 1 ≤ j < i}. Then 3(α1, α2, . . . , αK) is the formula:

3
Σ′

1
1 (α1 ∧ 3

Σ′
2

2 (α2 ∧ 3
Σ′

3
3 (α3 ∧ · · ·3Σ′

K

K αK)) · · · ).

The idea is that the sequence of actions leading up to the required configu-
ration can be reordered so that one first performs all the actions in Σ1, then all
the actions in Σ2 − Σ1 etc. Hence, if now is an atomic proposition, the formula
3(now(1), now(2), . . . , now(K)) is satisfied at the empty configuration iff there
is a reachable configuration at which all the agents assert now.

Dually, safety properties that hold at the initial configuration can also be
expressed. For example, let crti be the atomic assertion declaring that the
agent i is currently in its critical section. Then it is possible to write a formula
ϕME which asserts that at all reachable configurations at most one agent is in
its critical section, thereby guaranteeing that the system satisfies the mutual
exclusion property. We omit the details of how to specify ϕME .
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On the other hand, it seems difficult to express nested global and safety
properties in TrPTL. It is also the case that due to the local nature of the
modalities, information about the past sneaks into the semantics even though
there are no explicit past operators in the logic.

A formula α is said to be root-satisfiable iff there exists a model M such that
M, ∅ |= α. On the other hand, α is said to be satisfiable iff there exists a model
M = (T, {Vi}) and c ∈ CT such that M, c |= α. It turns out that these two
notions are not equivalent. Consider the distributed alphabet Σ̃0 = {Σ1,Σ2}
with Σ1 = {a, d} and Σ2 = {b, d}. Then it is not difficult to verify that the
formula p(2)(1) ∧ 22¬p(2) is satisfiable but not root-satisfiable. (Recall that
p(2)(1) abbreviates ff U1p(2)). One can however transform every formula α into
a formula α′ such that α is satisfiable iff α′ is root satisfiable.

This follows from the observation that every α can be expressed as a boolean
combination of formulas taken from the set

⋃
i∈P Φi. Hence the given formula

α can be assumed to be of the form α =
∨m
j=1(αj1 ∧ αj2 ∧ · · · ∧ αjK) where

αji ∈ Φi for each j ∈ {1, 2, . . . ,m} and each i ∈ P . Now convert α to the
formula α′ where α′ =

∨m
j=1 3(αj1, αj2, · · · , αjK). (Recall the derived modality

3(α1, α2, . . . , αK) introduced earlier.) From the semantics of 3(α1, α2, . . . , αK)
it follows that α is satisfiable iff α′ is root-satisfiable.

Hence, in principle, it suffices to consider only root-satisfiability in develop-
ing a decision procedure for TrPTL. There is of course a blow-up involved in
converting satisfiable formulas to root-satisfiable formulas. If one wants to avoid
this blow-up then the decision procedure for checking root-satisfiability can be
suitably modified to yield a direct decision procedure for checking satisfiability
as done in [135]. In any case, it is root satisfiability which is of importance from
the standpoint of model checking. Hence here we shall only develop a procedure
for deciding if a given formula of TrPTL is root-satisfiable.

As a first step we augment the syntax of our logic by one more construct.

• If α is a formula, so is Oiα. In the model M = (T, {Vi}), at the configura-
tion c ∈ CT , M, c |= Oiα iff M, c |= 〈a〉iα for some a ∈ Σi. We also define
loc(Oiα) = {i}.

Secondly, we will from now on drop the atomic propositions and instead work
with the constant tt and its negation ff as done earlier. The semantic definitions
are assumed to be suitably modified.

Thus Oiα ≡
∨
a∈Σi

〈a〉iα is a valid formula and Oi is expressible in the former
syntax. It will be however more efficient to admit Oi as a first class modality
as we did in Section 8.2.

Fix a formula α0. Our aim is to effectively associate an asynchronous au-
tomaton Aα0 with α0 such that α0 is root-satisfiable iff LTr(Aα0) 6= ∅. Since the
emptiness problem for asynchronous automata is decidable (Proposition 8.6.3),
this will yield the desired decision procedure. Let cl(α0) be the least set of
formulas containing α0 which satisfies:

• ¬α ∈ cl(α0) implies α ∈ cl(α0).
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• α ∨ β ∈ cl(α0) implies α, β ∈ cl(α0).

• 〈a〉iα ∈ cl(α0) implies α ∈ cl(α0).

• Oiα ∈ cl(α0) implies α ∈ cl(α0).

• αUiβ ∈ cl(α0) implies α, β ∈ cl(α0). In addition, Oi(αUiβ) ∈ cl(α0).

We then define CL(α0) to be the set cl(α0) ∪ {¬β | β ∈ cl(α0)}.
Thus CL(α0), sometimes called the Fisher-Ladner closure of α0, is closed

under negation with the convention that ¬¬β is identified with β. Moreover,
throughout the remainder of the section all formulas that we encounter will be
assumed to be members of CL(α0). From now we shall write CL instead of
CL(α0).

A ⊆ CL is called an i-type atom iff it satisfies:

• tt ∈ A.

• α ∈ A iff ¬α 6∈ A.

• α ∨ β ∈ A iff α ∈ A or β ∈ A.

• αUiβ ∈ A iff β ∈ A or (α ∈ A and Oi(αUiβ) ∈ A).

• If 〈a〉iα, 〈b〉iβ ∈ Ai then a = b.

ATi denotes the set of i-type atoms. We now need to define the notion of
a formula in CL being a member of a collection of atoms. Let α ∈ CL and
{Ai}i∈Q be a family of atoms with loc(α) ⊆ Q and Ai ∈ ATi for each i ∈ Q.
We’ll define the predicate Member(α,{Ai}i∈Q), which for convenience will be
denoted by α ∈ {Ai}i∈Q. It is defined inductively as:

• If loc(α) = {j} then α ∈ {Ai}i∈Q iff α ∈ Aj .

• If α = ¬β then α ∈ {Ai}i∈Q iff β 6∈ {Ai}i∈Q.

• If α = α1 ∨ α2 then α1 ∨ α2 ∈ {Ai}i∈Q iff α1 ∈ {Ai}i∈Q or α2 ∈ {Ai}i∈Q.

The construction of the asynchronous automaton Aα0 is guided by the con-
struction developed for LTL in Section 8.2. However in the much richer setting
of traces it turns out that one must make crucial use of the latest information
that the agents have about each other when defining the transitions of Aα0 .
It has been shown by Mukund and Sohoni [96] that this information can be
kept track of by a deterministic asynchronous automaton whose size depends
only on Σ̃. (Actually the automaton described in [96] operates over finite traces
but it is a trivial task to convert it into an asynchronous automaton having
the desired properties). To bring out the relevant properties of this automaton,
let T ∈ TRω with T = (E,≤, λ). For each subset Q of processes, the func-
tion latestT,Q : CT × P → Q is given by latestT,Q(c, j) = ` iff ` is the least
member of Q (under the usual ordering over the integers) with the property
↓j(↓q(c)) ⊆ ↓j(↓`(c)) for every q ∈ Q. In other words, among the agents in Q,
` has the best information about j at c, with ties being broken by the usual
ordering over integers.
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Theorem 8.7.3 ([96]) There exists an effectively constructible deterministic
asynchronous automaton AΓ = ({Γi}, {=⇒a},Γin, {(Fi, Fωi )}) such that:

(1) LTr(AΓ) = TRω.

(2) For each Q = {i1, i2, . . . , in}, there exists an effectively computable func-
tion gossipQ : Γi1 × Γi2 × · · · × Γin × P → Q such that for every
T ∈ TRω, every c ∈ CT and every j ∈ P, latestT,Q(c, j) =
gossipQ(γ(i1), . . . , γ(in), j) where ρ

T
(c) = γ and ρ

T
is the unique (ac-

cepting) run of AΓ over T .

Henceforth, we refer to AΓ as the gossip automaton. Each process in the gossip
automaton has 2O(K2 logK) local states, where K = |P|. Moreover the function
gossipQ can be computed in time which is polynomial in the size of K.

Each i-state of the automaton Aα0 will consist of an i-type atom together
with an appropriate i-state of the gossip automaton. Two additional compo-
nents will be used to check for liveness requirements. One component will take
values from the set Ni = {0, 1, 2, . . . , |Ui|} where Ui = {αUiβ | αUiβ ∈ CL}.
This component will be used to ensure that all “until” requirements are met.
The other component will take values from the set {on,off}. This will be used
to detect when an agent has quit.

The automaton Aα0 can now be defined as:

Aα0 = ({Si}, {−→a}, Sin, {(Fi, Fωi )}),

where:

• For each i, Si = ATi × Γi × Ni× {on,off}. Recall that Γi is the set of
i-states of the gossip automaton and Ni = {0, 1, 2, . . . , |Ui|} with Ui =
{αUiβ | αUiβ ∈ CL}.

• Let sa, s′a ∈ Sa with sa(i) = (Ai, γi, ni, vi) and s′a(i) = (A′
i, γ

′
i, n

′
i, v

′
i) for

each i ∈ loc(a). Then (sa, s′a) ∈ −→a iff the following conditions are met.

– (γa, γ′a) ∈ =⇒a (recall that {=⇒a} is the family of transition relations
of the gossip automaton) where γa, γ′a ∈ Γa such that γa(i) = γi and
γ′a(i) = γ′i for each i ∈ loc(a).

– ∀i, j ∈ loc(a), A′
i = A′

j .
– ∀i ∈ loc(a) ∀〈a〉iα ∈ CL. 〈a〉iα ∈ Ai iff α ∈ A′

i.
– ∀i ∈ loc(a) ∀Oiα ∈ CL. Oiα ∈ A iff α ∈ A′

i.
– ∀i ∈ loc(a)∀〈b〉iβ ∈ CL. If 〈b〉iβ ∈ Ai then b = a.
– Suppose j 6∈ loc(a) and β ∈ CL with loc(β) = {j}. Further suppose

that loc(a) = {i1, i2, . . . , in}. Then β ∈ A′
i iff β ∈ A` where ` =

gossiploc(a)(γi1 , γi2 , . . . , γin , j).
– Let i ∈ loc(a), Ui = {α1Uiβ1, α2Uiβ2, . . . , αniUiβni}. Then u′i and ui

are related to each other via:

u′i =
{

(ui+1) mod (ni+1), if ui = 0 or βui ∈ Ai or αuiUiβui 6∈ Ai
ui, otherwise
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– For each i ∈ loc(a), vi = on. Moreover, if v′i = off then 〈a〉iα 6∈ A′
i

for every i ∈ loc(a) and every 〈a〉iα ∈ CL.

• Let s ∈ SP with s(i) = (Ai, γi, ui, vi) for every i. Then s ∈ Sin iff
α0 ∈ {Ai}i∈P and γ ∈ Γin where γ ∈ ΓP satisfies γ(i) = γi for every i.
Furthermore, ui = 0 for every i. Finally, for every i, vi = off implies that
〈a〉iα 6∈ Ai for every 〈a〉iα ∈ CL.

• For each i, Fωi ⊆ Si is given by Fωi = {(Ai, γi, ui, vi) | ui = 0 and vi = on}
and Fi ⊆ Si is given by Fi = {(Ai, γi, ui, vi) | vi = off}.

This construction is an optimized version of the original construction for
TrPTL presented in [135, 134]. Note that Aα0 is indeed in standard form.
Arguments similar to those presented in [135, 134] lead to the next set of results.

Theorem 8.7.4

(1) α0 is root-satisfiable iff LTr(Aα0 ) 6= ∅.

(2) The number of local states of Aα0 is bounded by 2O(max(n,m2 logm)) where
n = |α0| and m is the number of agents mentioned in α0. Clearly, m ≤ n.
It follows that the root-satisfiability problem (and in fact the satisfiability
problem) for TrPTL is solvable in time 2O(max(n,m2 logm)·m).

The number of local states of each process in Aα0 is determined by two
quantities: the length of α0 and the size of the gossip automaton AΓ. As far as
the size of AΓ is concerned, it is easy to verify that we need to consider only
those agents in P that are mentioned in loc(α0), rather than all agents in the
system.

The model checking problem for TrPTL can be phrased as follows. A finite
state distributed program Pr over Σ̃ is an asynchronous automaton APr =
({SPri }, {=⇒Pr

a }, SPrin , {(SPri , SPri )}) modeling the state space of Pr.
Viewing a formula α0 as a specification, we say that Pr meets the specifica-

tion α0 — denoted Pr |= α0 — if for every T ∈ TRω, if APr has a run over T
then T, ∅ |= α0.

The model checking problem for TrPTL can be solved by “intersecting”
the program automaton APr with the formula automaton A¬α0 to yield an
automaton A such that LTr(A) = LTr(APr)∩LTr(A¬α0). As before, LTr(A) =
∅ iff Pr |= α0.

It turns out that this model checking problem has time complexity
O(|APr | · 2O(max(n,m2 logm)·m)) where |APr| is the size of the global state space
of the asynchronous automaton modeling the behaviour of the given program
Pr and, as before, n = |α0| and m is the number of agents mentioned in α0,
where α0 is the specification formula.

We now take a brief look at some related agent-based linear time temporal
logics over traces. The first one is the sublogic of TrPTL denoted which consists
of the so called connected formulas of TrPTL. We define Φcon

TrPTL (from now on
written as Φcon) to be the least subset of Φ satisfying the following conditions:
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• tt ∈ Φcon and as before loc(tt) = ∅

• If α, β ∈ Φcon, so are ¬α and α ∨ β.

• If α ∈ Φcon and a ∈ Σi such that loc(α) ⊆ loc(a) then 〈a〉iα ∈ Φcon.

• If α, β ∈ Φcon with loc(α), loc(β) ⊆ {i} then αUiβ ∈ Φcon. Actually one
needs only to demand that loc(α), loc(β) ⊆

⋂
{loc(a) | a ∈ Σi} but this

leads to notational complications that we wish to avoid here.

• If α ∈ Φcon and loc(α) ⊆ {i} then Oiα ∈ Φcon. (Once again one needs
just to demand that loc(α) ⊆

⋂
{loc(a) | a ∈ Σi}.)

Connected formulas were first identified by Niebert and used by Huhn [65].
They have also been independently identified by Ramanujam [115]. Thanks to
the syntactic restrictions imposed on the next state and until formulas, past
information is not allowed to creep in. Indeed one can prove the following:

Proposition 8.7.5 Let α ∈ Φcon. Then α is satisfiable iff α is root-satisfiable.

Yet another pleasing feature of TrPTLcon is that the gossip automaton can
be eliminated in the construction of the automaton Aα0 whenever α0 ∈ Φcon.
In fact one can prove the following.

Theorem 8.7.6 The satisfiability problem for TrPTLcon is solvable in time
2O(|α0|).

Once again, a suitably modified statement can be made about the associated
model checking problem. At present we do not know whether or not TrPTL
is strictly more expressive than TrPTLcon, but it is clear that LTL⊗ is a strict
sublogic of TrPTLcon. We shall deal with the relative strengths of these logics
in the next section. Two of the four logics considered by Ramanujam [115] in a
closely related setting turn out to be LTL⊗ and TrPTLcon. We conjecture that
the other two logics are also expressible within TrPTL.

Katz and Peled introduced the logic ISTL [71] whose semantics has a trace-
theoretic flavour. In a subsequent paper by Peled and Pnueli [109] on ISTL,
the connection to traces was made more directly. Indeed this is one of the
first instances of the explicit use of traces in a temporal logical setting that we
know of. However, it has branching time modalities which permit quantification
over the so called observations of a trace. ISTL uses global atomic propositions
rather than local atomic propositions. Penczek has also studied a number of
temporal logics (including a version of ISTL) with branching time modalities
and global atomic propositions [112]. His logics are interpreted directly over the
space of configurations of a trace resulting in a variety of axiomatizations and
undecidability results. We feel that local atomic propositions (as used in TrPTL)
are crucial for obtaining tractable partial order based temporal logics. Niebert
has considered several µ-calculus versions of TrPTL [101, 102] and has obtained
various decidability results using a variant of asynchronous Büchi automata.
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The temporal logic of causality (TLC) proposed by Alur, Peled and Penczek
is basically a temporal logic over traces [4]. The concurrent structures used in [4]
as frames for TLC can be easily represented as traces over an appropriately
chosen trace alphabet. The interesting feature of TLC is that its branching
time modalities are interpreted over causal paths. In a trace (E,≤, λ), the
sequence e0e1 · · · ∈ E∞ is a causal path if e0 l e1 l e2 · · · . This logic admits
an essentially exponential time decision procedure for checking satisfiablity in
terms of a variant of Büchi automata called Street automata.

8.8 Expressiveness Issues

Our aim here is to discuss some expressiveness issues concerning trace-based
linear time temporal logics. To set the stage we first quickly review the classical
case of sequences.

The monadic second-order theory of infinite sequences over Σ is denoted
MSO(Σ). Its vocabulary consists of a family of unary predicates {Ra}a∈Σ, one
for each a ∈ Σ; a binary predicate ≤; a binary predicate ∈; a countable supply of
individual variables Var = {x, y, z, . . .}; a countable supply of set variables (i.e.
monadic predicate variables) SVar = {X,Y, Z, . . .}. The formulas of MSO(Σ)
are then built up by:

• Ra(x), x ≤ y and x ∈ X are atomic formulas.

• If φ and φ′ are formulas then so are ¬φ, φ ∨ φ′, (∃x)φ and (∃X)φ.

A structure for MSO(Σ) is a ω-sequence σ ∈ Σω. Let I be an interpretation
of the variables with I : Var −→ ω and I : SVar −→ 2ω. Then the notion of
σ being a model of φ under the interpretation I, denoted σ |=I φ, is defined
in the expected manner. In particular, σ |=I Ra(x) iff σ(I(x)) = a (note that
σ ∈ Σω is viewed as σ : ω −→ Σ); σ |=I x ≤ y iff I(x) ≤ I(y) (here ≤ is the
usual ordering over ω); σ |=I x ∈ X iff I(x) ∈ I(X).

As usual, a sentence is a formula with no free variables. Each sentence φ
defines an ω-language, denoted Lφ, where:

Lφ = {σ | σ |= φ}.

We say that L ⊆ Σω is MSO(Σ)-definable iff there exists a sentence φ ∈ MSO(Σ)
such that L = Lφ. A celebrated result of Büchi [14] shows that the class
of languages expressible by sentences in MSO(Σ) coincides with the class of
languages recognized by Büchi automata over Σ. This class is the ω-regular
languages over Σ.

The first-order theory of infinite sequences over Σ is denoted FO(Σ) and is
obtained from MSO(Σ) by abolishing the monadic second-order quantifications
from the logic. The semantics and notions of first-order definability are carried
over in the obvious manner.

A fundamental result in the theory of temporal logic is Kamp’s Theorem [70]
which was later strengthened in [41] to establish that LTL(Σ) is expressively
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equivalent to the FO(Σ). The surprise here being that LTL(Σ) admits only a
bounded number of operators (one unary and one binary as we have formulated
it) whereas infinitely many operators of increasing arities can be defined in
FO(Σ). Secondly, as we saw in Section 8.2, the satisfiability problem for LTL(Σ)
can be solved in deterministic exponential time. The satisfiability problem for
FO(Σ) on the other hand, even when the sentences are interpreted over finite
words, is known to be non-elementary hard [131]. It is quite easy to see that
FO(Σ) — and hence LTL(Σ) — is strictly less expressive than MSO(Σ) in
the sense that there is a language which is MSO(Σ)-definable but not FO(Σ)-
definable. (Indeed this is the sense in which we shall compare the expressive
power of various logics in what follows.) For instance, as pointed out by Wolper
in a state-based setting [155], the language L ⊆ {a, b}ω given by “a is executed
at every even position” is not definable in this logic. On the other hand, it is
easy to come up with a formula of MSO(Σ) defining L.

The expressive power of LTL can be extended to obtain the expressive power
of MSO while still guaranteeing an exponential time decidable satisfiability prob-
lem as demonstrated first in [156]. Here we sketch how the regular programs
over Σ can be used to achieve this goal [60].

The syntax of regular programs over Σ is given by:

Prg(Σ) ::= a | π0 + π1 | π0;π1 | π∗.

With each program we associate a set of finite words via the map || · || :
Prg(Σ) −→ 2Σ∗

. This map is defined in the standard fashion:

• ||a|| = {a}.

• ||π0 + π1|| = ||π0|| ∪ ||π1||.

• ||π0;π1|| = {τ0τ1 | τ0 ∈ ||π0|| and τ1 ∈ ||π1||}.

• ||π∗|| =
⋃
i∈ω ||πi||, where

– ||π0|| = {ε} and

– ||πi+1|| = {τ0τ1 | τ0 ∈ ||π|| and τ1 ∈ ||πi||} for every i ∈ ω.

The set of formulas of DLTL(Σ) is given by the following syntax.

DLTL(Σ) ::= tt | ¬α | α ∨ β | αUπβ, π ∈ Prg(Σ)

A model is a ω-sequence σ ∈ Σω. For τ ∈ prf(σ) we define σ, τ |= α just as
we did for LTL(Σ) in the case of the first three clauses. As for the last one,

• σ, τ |= αUπβ iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ prf(σ) and σ, ττ ′ |=
β. Moreover, for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the case that
σ, ττ ′′ |= α.

Thus DLTL(Σ) adds to LTL(Σ) by strengthening the until-operator. To sat-
isfy αUπβ, one must satisfy αUβ along some finite stretch of behaviour which
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is required to be in the (linear time) behaviour of the program π. We associate
with a formula α of DLTL(Σ) the ω-language Lα in the obvious manner.

A useful derived operator of DLTL is:

• 〈π〉α def= tt Uπα.

By replacing the until-modality of DLTL with the above derived operator we
obtain the sublogic DLTL−(Σ), which is essentially Propositional Dynamic
Logic [39] equipped with a linear time semantics. It turns out that DLTL(Σ)
and DLTL−(Σ) both have the same expressive power as MSO(Σ).

Theorem 8.8.1 Let L ⊆ Σω. Then the following statements are equivalent.

(1) L is ω-regular (i.e. definable in MSO(Σ)).

(2) L is DLTL(Σ)-definable.

(3) L is DLTL−(Σ)-definable.

Both the satisfiablity and model checking problems for DLTL(Σ) are decid-
able with the same time complexity as for LTL(Σ).

Let (Σ, I) be trace alphabet. Then MSO(Σ, I), the monadic second-order
theory of infinite traces (over Σ, I), has the same syntax as MSO(Σ). The
structures are elements of TRω(Σ, I). Let T ∈ TRω(Σ, I) with T = (E,≤, λ)
and let I : X → E be an interpretation. Then T |=MSO

I Ra(x) iff λ(I(x)) = a
and T |=MSO

I x ≤ y iff I(x) ≤ I(y). Hence, the essential difference is that the
binary predicate symbols is now interpreted as the causal partial order of the
trace. The remaining semantic definitions go along the expected lines. Each
sentence ϕ (i.e., a formula with no free occurrences of variables) defines the
ω-trace language

Lϕ = {T | T |=MSO ϕ}.
We say that L ⊆ TRω is MSO-definable iff there exists a sentence ϕ in MSO(Σ, I)
such that L = Lϕ. It is known that MSO-definable languages are precisely the
regular trace languages; i.e. those recognized by asynchronous automata [32].

FO(Σ, I), the first-order theory of traces, is defined in the obvious way.
Clearly it will be strictly weaker than MSO(Σ, I). For more information the
reader is referred to [27]. Naturally both these theories can be made to handle
finite traces as well.

Through the rest of this section we fix a distributed alphabet Σ̃ and let
(Σ, I) be the induced trace alphabet. By MSO(Σ̃) we shall mean the theory
MSO(Σ, I) and similarly for FO(Σ̃), the first-order fragment of MSO(Σ̃). In
what follows we shall often supress the mention of Σ̃ as well as the induced
(Σ, I).

We first consider the logic LTL⊗. Recall that product languages are trace
consistent and hence they induce trace languages via the map st. The resulting
trace languages will be called product trace languages. As might be expected,
the regular product trace languages are the ones obtained from regular product
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languages via the map st. It is easy to show that not every (regular) trace
language is a product trace language [136]. It is also easy to see that LTL⊗-
definable trace languages constitute a strict subclass of regular product trace
languages. It has been shown that a product version of DLTL denoted DLTL⊗

captures exactly the class of regular product trace languages [61]. We also claim
that it is an easy exercise to formulate a product version of MSO(Σ̃) and show
that it captures exactly the regular product trace languages. Let us denote
this product version of MSO(Σ̃) as MSO⊗(Σ̃) and its first-order fragment as
FO⊗(Σ̃). It is easy to show — using Kamp’s theorem — that LTL⊗(Σ̃) has
exactly the same expressive power as FO⊗(Σ̃).

We also know that LTL⊗ is strictly weaker than TrPTL. First note that each
formula (say α of TrPTL) defines a trace language Lα via :

Lα = { T | T, ∅ |= α}.

Hence we can compare the relative expressive powers of LTL⊗ and TrPTL. It
is known that ([97, 136]):

LTL⊗ ⊂ TrPTLcon ⊆ TrPTL.

It is still open whether TrPTLcon is equal to TrPTL in expressive power.
It is not difficult to show that TrPTL is no more expressive than the first-

order theory of traces but it is not known whether the converse also holds. It
would be nice to have a linear time temporal logic over traces patterned after
LTL which has the same expressive power as the first-order theory of traces.
The motivation is provided by the next result [32]:

Proposition 8.8.2 Let L ⊆ Σω. Then the following statements are equivalent.

(1) L is trace consistent and LTL(Σ)-definable.

(2) {st(σ) | σ ∈ L} is FO(Σ, I)-definable.

Egged on by this result, recently a different kind of trace-based linear time
temporal logic called LTrL has been proposed [139]. This logic works directly
with a trace alphabet (i.e. it is not based on agents). It is interpreted over the
configurations of a trace and its syntax is given by:

LTrL(Σ, I) ::= tt | ¬α | α ∨ β | 〈a〉α | α U β | 〈a−1〉tt .

Thus the syntax is very close to LTL except for the addition of a very restricted
past-operator. In fact, just a constant number of past-operators are present in
the logic; one for each action.

A model of LTrL(Σ, I) is a trace T = (E,≤, λ). Let c ∈ CT be a configuration
of T . Then T, c |= α will stand for α being satisfied at c in T . This notion is
defined inductively as follows:

• T, c |= tt .
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• T, c |= ¬α and T, c |= α ∨ β are defined in the expected manner.

• T, c |= 〈a〉α iff there exists c′ ∈ CT with c a−→T c
′ with T, c′ |= α.

• T, c |= α U β iff there exists c′ ∈ CT with c ⊆ c′ such that T, c′ |= β.
Moreover, for every c′′ ∈ CT , c ⊆ c′′ ⊂ c′ implies T, c′′ |= α.

• T, c |= 〈a−1〉tt iff there exists c′ ∈ CT with c′ a−→T c.

The major result concerning LTrL is the following:

Theorem 8.8.3 ([139]) Let L ⊆ TRω(Σ, I). Then the following statements
are equivalent.

(1) L is FO(Σ, I)-definable.

(2) L is LTrL(Σ, I)-definable.

Thus — except for the addition of the restricted past-operators — LTrL is a
generalization of Kamp’s Theorem to the much richer setting of traces. Meyer
and Petit have shown that the past-operators can be eliminated without loss of
expressive power when the logic is interpreted over finite traces [90]. A similar
result for infinite traces is not known at present. Unfortunately this logic does
not have a matching time complexity in relation to LTL. Recently Walukiewicz
has shown that the satisfiability problem for LTrL is non-elementary hard [149].
A related result concerns the logic TLPO formulated by Ebinger [31]. This is
also a linear time temporal logic interpreted over traces but with full-fledged
past-operators. TLPO is claimed to be expressively complete when interpreted
over finite traces but nothing is known about the complexity of the satisfiability
problem nor about its expressive power in relation to infinite traces.

At present we do not know much about the relationship between TLC and
the logics we have mentioned so far, except that it is strictly weaker than the
monadic second-order theory of traces.

In an interesting recent development Niebert [102] has formulated a fixed
point based linear time temporal logic for traces in the setting of distributed
alphabets. This logic is denoted as νTrPTL. It is equal in expressive power
to the monadic second-order theory of traces and it has decision procedure of
essentially exponential time complexity. However, the formulas of this logic are
required to satisfy what appears to be awkward syntactic restrictions and it is
not clear how one could express global properties of interest in this formalism.

The relative strengths of the various linear time temporal logics over traces
mentioned in this section are displayed in Figure 8.4. A dotted (solid) arrow
from A to B indicates that B is at least as expressive as (strictly more expressive
than) A. Squiggled lines denote that the logics are incomparable to each other.

To conclude this section, a lot is known about linear time temporal logics
for traces but at present we still do not have — unlike the case of sequences
— pleasing counterparts to the first-order and monadic second-order theories of
traces.
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Figure 8.4: Relative expressive power of the logics.

8.9 Conclusion

In this chapter we have attempted an overview of linear time temporal logics
interpreted over traces. We have mainly concentrated on the satisfiability and
model checking problems as well as expressiveness issues. The problem of ax-
iomatizing these logics seems to be a non-trivial task. Some partial results may
be found in [116]. In [109] the authors present proof rules for the logic ISTL with
a trace semantics together with a relative expressive completeness result. Reisig
has also developed a kit of proof rules for a version of UNITY logic [117, 118].
The models of this logic are the non-sequential processes of a net system and
the proof rules are mainly designed to help reason about distributed algorithms
modelled using net systems.

At present not much is known about corresponding logics in a branching
time setting. Most of the attempts in this direction have lead to logics whose
satisfiablity problems are undecidable [18, 81, 112]. It is however the case that
the model checking problem often remains tractable [18, 112]. We do not know
at present whether the properties expressible in such logics have any type of “all-
or-none” flavour and if so whether one can develop some reduction techniques
for verifying such properties. Some preliminary attempts in this direction have
been made in [45, 153].
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A temporal logic of causality (TLC) was introduced by Alur, Penczek, and
Peled in [4]. It is basically a linear time temporal logic interpreted over Ma-
zurkiewicz traces which allows quantification over causal chains. Through this
device one can directly formulate causality properties of distributed systems.
In this chapter we consider an extension of TLC by strengthening the chain
quantification operators. We show that our logic TLC∗ adds to the expressive
power of TLC. We do so by defining an Ehrenfeucht-Fräıssé game to capture
the expressive power of TLC. We then exhibit a property and by means of this
game prove that the chosen property is not definable in TLC. We then show
that the same property is definable in TLC∗. We prove in fact the stronger
result that TLC∗ is expressively stronger than TLC exactly when the depen-
dency relation associated with the underlying trace alphabet is not transitive.
We then show that TLC∗ defines only regular trace languages by embedding it
into the monadic second-order logic. Finally, the relative expressive power of
TLC∗ and similar logics for traces is compared.
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9.1 Introduction

One traditional approach to automatic program verification is model checking
LTL [113] specifications. In this context, the model checking problem is to
decide whether or not all computation sequences of the system at hand satisfy
the required properties formulated as an assertion of LTL. Several software
packages exploiting the rich theory of LTL are now available to carry out the
automated verification task for quite large finite-state systems, e.g. [16, 62].

Usually computations of a distributed system will constitute interleavings
of the occurrences of causally independent actions. Often, the computation se-
quences can be naturally grouped together into equivalence classes of sequences
corresponding to different interleavings of the same partially ordered computa-
tion stretch. For a large class of interesting properties expressed by linear time
temporal logics, it turns out that either all members of an equivalence class
satisfy a certain property or none do. For such properties the computional re-
sources needed for the verification task can be substantially reduced by means
of the so-called partial-order methods for verification [48, 108, 144].

Such equivalence classes can be canonically represented by restricted labeled
partial orders known as Mazurkiewicz traces [27, 86]. These objects — apart
from alleviating the state-explosion problems of verification — also allow direct
formulations of properties expressing concurrency and causality. A number of
linear time temporal logics to be interpreted directly over Mazurkiewicz traces
(e.g. [4, 25, 26, 102, 115, 135, 138, 139, 150]) has been proposed in the literature
starting with TrPTL [135].

Among these, we consider here a temporal logic of causality (TLC) intro-
duced in [4] to express serializability (of partially ordered computations) in a
direct fashion. The operators of TLC are essentially the branching-time opera-
tors of CTL [19] interpreted over causal chains of traces. However, the expressive
power of this logic has remained an interesting open problem. Indeed, not much
is known about the relative expressive powers of the various temporal logics
over traces.

What is known is that a linear time temporal LTrL, patterned after LTL,
was introduced [139] and proven expressively equivalent to the first-order theory
of traces [32]. LTrL has a simple and natural formulation with very restricted
past operators, but was shown non-elementary in [149]. Recently, it was shown
in a series of papers [25, 26] that the restricted past operators of LTrL can
be removed while retaining expressive completeness, essentially extending the
celebrated Kamp’s Theorem [70] to the setting of traces. In other work, Niebert
introduced a fixed point based linear time temporal logic [102]. This logic has
an elementary-time decision procedure and is equal in expressive power to the
monadic second-order theory of traces. Recently, also Walukiewicz defined a µ-
calculus with additional operators with similar expressiveness and decidability,
and this logic is interpreted directly over the causal chains of traces in a manner
similar to TLC.

However, the expressive powers of most other logics put forth (e.g. [4, 115,
135]) still have an unresolved relationship to each other and, in particular, to
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first-order logic. Most notably, it is still a challenging open problem whether
or not TrPTL or TLC can express all properties of first-order logic. With
virtually no other separation result known, this chapter is a contribution towards
understanding the relative expressive power of such logics.

One major weakness of TLC is that it doesn’t facilitate direct reasoning
about causal relationships between the individual events on the causal chains.
In this chapter we remedy this deficiency and extend TLC by strengthening
quantification over causal chains. This extended logic, which we call TLC∗,
will enjoy a similarity to CTL∗ [19] that TLC has to CTL. The main result
of this chapter is that our extension TLC∗ is expressively stronger than TLC
for general trace alphabets whereas they express the same class of properties
over trace alphabets where the underlying dependency relation is transitive. We
prove this result with the aid of an Ehrenfeucht-Fräıssé game for traces that we
develop. To our knowledge this is the first instance of the use of such games
to obtain separation results for temporal logics defined over partial orders. We
believe that this approach is fruitful and that similar techniques may lead to
other separation results within this area.

In the next section we briefly recall Mazurkiewicz traces and a few related
notions. In Section 9.3 we introduce TLC and TLC∗, the main objects of study
in this chapter. We give a very simple and natural example of a property easily
captured in TLC∗ but not in TLC. In Section 9.4 we define an Ehrenfeucht-
Fräıssé game and prove its correspondence to TLC. We use this correspondence
in Section 9.5 to exhibit a property which we prove is undefinable in TLC. In
Section 9.6 we show that the said property can be defined within TLC∗ and
put all the pieces together to arrive at the main result. Following that we show
that TLC∗ can be embedded into monadic second-order logic of traces, which
demonstrates that the satisfiability problem of our extension TLC∗ remains
decidable and that the expressive power stays within the realm of the regular
trace languages. Finally, we proceed in Section 9.7 with a quick overview of
the relative expressive powers of related logics for traces before concluding the
chapter by considering a few open problems.

9.2 Preliminaries

A (Mazurkiewicz) trace alphabet is a pair (Σ, I), where Σ, the alphabet, is a
finite set and I ⊆ Σ × Σ is an irreflexive and symmetric independence relation.
Usually, Σ consists of the actions performed by a distributed system while I
captures a static notion of causal independence between actions. For the rest
of the section we fix a trace alphabet (Σ, I). We define D = (Σ × Σ) − I to be
the dependency relation which is then reflexive and symmetric. For the purpose
of interpreting temporal logics of causality we will adopt the viewpoint that
traces are restricted labeled partial orders of events and hence have an explicit
representation of causality and concurrency.

Let T = (E,≤, λ) be a Σ-labeled poset. In other words, (E,≤) is a poset and
λ : E → Σ is a labelling function. For e ∈ E we define ↓e = {x ∈ E | x ≤ e}.
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We also let l be the covering relation given by xl y iff x < y and for all z ∈ E,
x ≤ z ≤ y implies x = z or z = y. Moreover, we let the concurrency relation
be defined as x co y iff x 6≤ y and y 6≤ x. A Mazurkiewicz trace (over (Σ, I)) is
then a Σ-labeled poset T = (E,≤, λ) satisfying:

• ↓e is a finite set for each e ∈ E.

• For every e, e′ ∈ E, el e′ implies λ(e) D λ(e′).

• For every e, e′ ∈ E, λ(e) D λ(e′) implies e ≤ e′ or e′ ≤ e.

We shall let TR(Σ, I) denote the class of traces over (Σ, I). As usual, a trace
language L is a subset of traces, i.e. L ⊆ TR(Σ, I). Throughout the chapter we
will not distinguish between isomorphic elements in TR(Σ, I). We will refer to
members of E as events. We will for convenience always assume the existence
of a unique least event ⊥ ∈ E corresponding to a system initialization event
carrying no label, i.e. λ(⊥) is undefined and ⊥ < e for every e ∈ E − {⊥}.

In its original formulation [86], Mazurkiewicz introduced traces as ≈I -e-
quivalence classes of strings induced by the congruence relation generated by:
τabσ ≈I τbaσ whenever aIb. This viewpoint of traces is also the insight un-
derlying to so-called partial order methods for verification. It is, however, not
hard to show that the traces introduced above as restricted labeled partial or-
ders can be represented as ≈I -equivalence classes of strings (and vice versa;
see e.g. [138]). Hence they denote the same class of objects, so we will some-
times abuse notation and let a string in Σ∗ denote its corresponding trace in
TR(Σ, I) whenever no confusion arises. This is enforced by using conventional
parentheses for string languages and square brackets for trace languages.

In setting the scene for defining the semantics of formulas of TLC∗ we first
introduce some notation for sequences. The length of a finite sequence ρ will be
denoted by |ρ|. In case ρ is infinite we set |ρ| = ω. Let ρ = (e0, e1, . . . , en, . . . )
and 0 ≤ k < |ρ|. We set ρk = (ek, ek+1, . . . , en, . . . ).

Let T = (E,≤, λ) be a trace over (Σ, I). A future causal chain rooted at
e ∈ E is a (finite or infinite) sequence ρ = (e0, e1, . . . , en, . . . ) with e = e0, ei ∈ E
such that ei−1 lei for every i ≥ 1. The labelling function λ : E → Σ is extended
to causal chains in the obvious way by: λ(ρ) = (λ(e0)λ(e1) · · ·λ(en) · · · ). We
say that a future causal chain ρ is maximal in case ρ is either infinite or it is
finite and there exists no e′ ∈ E such that e|ρ| l e′.

A past causal chain rooted at e ∈ E is a (finite) sequence ρ = (en, . . . , e1, e0)
with e = e0, ei ∈ E such that ei l ei−1 for every 1 ≤ i ≤ n. In this case we will
use ρ−k to denote (en, . . . , ek+1, ek) for 0 ≤ k < |ρ|.

9.3 Syntax and Semantics

In this section we will define the syntax and semantics of the temporal logics
over traces to be considered in this chapter. We start by introducing TLC∗ and
continue by giving an explicit definition of the sublogic TLC.
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TLC∗ is parameterized by a trace alphabet (Σ, I) and consists of three dif-
ferent syntactic entities; event formulas (Φev), future chain formulas (Φ+

ch) and
past chain formulas (Φ−

ch) defined by mutual induction as described below:

Φev ::= pa | ¬α | α1 ∨ α2 | co(α) | E(ϕ) | E−(ψ), a ∈ Σ
Φ+
ch ::= α | ¬ϕ | ϕ1 ∨ ϕ2 | Xϕ | ϕ1Uϕ2

Φ−
ch ::= α | ¬ψ | ψ1 ∨ ψ2 | X−ψ | ψ1U

−ψ2 ,

where α, ϕ and ψ with or without subscripts here and throughout the rest of
the chapter are formulas of Φev, Φ+

ch and Φ−
ch, respectively.

The formulas of TLC∗(Σ, I) are the set of event formulas Φev as defined
above1 and will be interpreted over traces of TR(Σ, I). To make the distinction
between event and chain formulas easier we will throughout the remainder of
the chapter whenever possible use α, β, γ (respectively, ϕ, ψ) with or without
primes and subscripts to denote event formulas (respectively, chain formulas).

The semantics of formulas of TLC∗ is divided into two parts; event formulas
and chain formulas. Let T ∈ TR(Σ, I) and e ∈ E. The notion of an event
formula α being satified at an event e of T is defined inductively in the following
manner:

• T, e |= pa iff λ(e) = a.

• T, e |= ¬α iff T, e 6|= α.

• T, e |= α1 ∨ α2 iff T, e |= α1 or T, e |= α2.

• T, e |= co(α) iff there exists an e′ ∈ E with e co e′ and T, e′ |= α.

• T, e |= E(ϕ) iff there exists a future causal chain ρ rooted at e with
T, ρ |= ϕ.

• T, e |= E−(ψ) iff there exists a past causal chain ρ rooted at e with T, ρ |=
ψ.

As usual, tt = pa ∨ ¬pa and ff = ¬tt. Suppose ρ = (e0, e1, . . . , en, . . . ) is
a future causal chain. The notion of T, ρ |= ϕ for a future chain formula ϕ is
defined inductively below.

• T, ρ |= α iff T, e0 |= α.

• T, ρ |= ¬ϕ iff T, ρ 6|= ϕ.

• T, ρ |= ϕ1 ∨ ϕ2 iff T, ρ |= ϕ1 or T, ρ |= ϕ2.

• T, ρ |= Xϕ iff T, ρ1 |= ϕ.

• T, ρ |= ϕ1Uϕ2 iff there exists a 0 ≤ k < |ρ| such that T, ρk |= ϕ2. More-
over, T, ρm |= ϕ1 for each 0 ≤ m < k.

1Another logic was in [4] termed “TLC∗”, but as that logic denoted TLC interpreted over
linearizations it is unrelated to our logic which seems naturally to earn the name “TLC∗”.
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The well-known future chain operators are derived as Fϕ = ttUϕ and Gϕ =
¬F¬ϕ.

The notion of T, ρ |= ψ for a past causal chain ρ and past chain formula ψ
is defined in the expected manner. In particular;

• T, ρ |= X−ψ iff T, ρ−1 |= ψ.

• T, ρ |= ψ1U
−ψ2 iff there exists a 0 ≤ k < |ρ| such that T, ρ−k |= ψ2.

Moreover, T, ρ−m |= ψ1 for each 0 ≤ m < k.

(Recall that a past causal chain is of the form ρ = (en, . . . , e1, e0) with e = e0,
ei ∈ E such that ei l ei−1 for every 1 ≤ i ≤ n.)

Suppose T ∈ TR(Σ, I) and α ∈ TLC∗(Σ, I). Then T satisfies α iff T,⊥ |= α,
which we will usually denote as T |= α. The formula α is satisfiable if there
exists a trace T satisfying α, and the satisfiability problem is to decide whether α
is satisfiable. The language defined by α is L(α) = {T ∈ TR(Σ, I) | T |= α}. We
say that L ⊆ TR(Σ, I) is definable in TLC∗ if there exists some α ∈ TLC∗(Σ, I)
such that L(α) = L. By slight abuse of notation, the class of trace languages
over (Σ, I) definable in TLC∗ will also be denoted by TLC∗(Σ, I).

The formulas of TLC(Σ, I) — introduced in [4] with a slightly different
syntax — is then the set of formulas of TLC∗(Σ, I) where each of the chain
operators X,U,G,X−, U− is immediately preceded by a chain quantifier E. As
TLC will play a prominent role in this chapter we will bring out its definition
in more detail. More precisely, the set of formulas of TLC is given as:

TLC(Σ, I) ::= pa | ¬α | α1 ∨ α2 | co(α), a ∈ Σ
EX(α) | EU(α1, α2) | EG(α)
EX−(α) | EU−(α1, α2) ,

The semantics is inherited directly from TLC∗ in the obvious manner, so notions
of definability etc. are carried over directly.

While the formulas of TLC basically consist of the well-known operators
of the branching-time logic CTL [19] augmented with symmetrical past oper-
ators and concurrency information, the operators of TLC∗ are basically the
well-known operators of CTL∗[19] similarly extended with past quantifiers in
a restricted fashion as well as concurrency information. The crucial difference
is that while CTL and CTL∗ are branching-time logics interpreted over Kripke
structures, TLC and TLC∗ are linear time temporal logics on traces interpreted
over the underlying Hasse diagrams of the partial orders.

The salient feature of TLC is that its satisfiability problem is PSPACE-
complete and decidable in exponential time [4], i.e. the computational resources
needed is similar to those of LTL. It is not hard to show that the satisfiability
problem for our extension TLC∗ remains decidable. This follows by a translation
of formulas of TLC∗ into monadic second-order logic of traces, which will be
dealt with in Section 9.6 when we investigate the expressive power of TLC∗.

One of the weaknesses of TLC is that it doesn’t directly facilitate reasoning
about causal relationships of the individual events of the causal chains at hand.
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As a consequence, a number of interesting properties are not (either easily or at
all) expressible within TLC. Section 9.5 provides a formal proof of this claim, but
we will in the following bring out another such property which is very natural.

Suppose that a and b are actions representing the acquiring and releasing, re-
spectively, of some resource. A relevant property of this system is then whether
or not there exists some causal chain in the execution of the system — pre-
sumably containing other system actions than {a, b} — such that the a’s and
b’s alternate strictly until the task is perhaps eventually completed. Via the
future chain formula ϕxy = px → X(¬(px ∨ py)Upy) we can easily express this
property in TLC∗ as E(G(ϕab ∧ ϕba)). The point is here that TLC∗ allows us
to investigate each causal chain in mention by a causal chain formula, which is
then confined to this very chain. This is not possible in TLC, as the existential
quantifications interpreted at some fixed event of the chain would potentially
consider all causal chains originating at this event — not just the one presently
being investigated.

We conclude this section with two important notions relating to TLC. Firstly,
let α be a formula of TLC(Σ, I). The operator depth of α is defined inductively
as follows:

• od(pa) = 0.

• od(¬α) = od(α).

• od(α ∨ β) = max(od(α), od(β)).

• od(EX(α)) = od(EG(α)) = od(EX−(α)) = od(co(α)) = 1 + od(α).

• od(EU(α, β)) = od(EU−(α, β)) = 1 + max(od(α), od(β)).

The set of formulas of operator depth k is denoted by OD(k).
Given T0, T1 ∈ TR(Σ, I) and ei events of Ti we define that (T0, e0) ≡n (T1, e1)

if for any formula α ∈ TLC(Σ, I) with od(α) ≤ n, T0, e0 |= α if and only if
T1, e1 |= α, i.e. both structures agree on all subformulas of operator depth at
most n ≥ 0. It is then not hard to see that (T0, e0) ≡0 (T1, e1) if and only if e0
and e1 are identically labeled, i.e. either λ(e0) = λ(e1) or e0 = e1 = ⊥.

9.4 An Ehrenfeucht-Fräıssé Game for TLC

In this section we will present an Ehrenfeucht-Fräıssé game to capture the ex-
pressive power of TLC. The game is played directly on the poset representa-
tion of (finite or infinite) Mazurkiewicz traces and it is similar in spirit to the
Ehrenfeucht-Fräıssé game for LTL introduced by Etessami and Wilke [37]. We
extend their approach to the richer setting of traces by highlighting current
causal chains in the until-based moves and adding past- and co-moves.

The EF-TLC game is a game played between two persons, Spoiler and Pre-
server, on a pair of traces (T0, T1). The game is played over k rounds starting
from an initial game state (e0, e1) and after each round the current game state
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is a pair of events (e′0, e
′
1) with e′i ∈ Ei. Each round starts with the game in

some specific initial game state (e0, e1) and Spoiler chooses one of the moves
defined below and the game proceeds accordingly:

EX-Move: This move can only be played by Spoiler if there exists an e′0 ∈ E0

such that e0 le′0 or there exists an e′1 ∈ E1 such that e1 le′1. Spoiler then
wins the game in case there either exists no e′0 ∈ E0 such that e0 l e′0 or
no e′1 ∈ E1 such that e1 l e′1. Otherwise (in which case both e0 and e1
has l-successors) the game proceeds as follows:

(i) Spoiler chooses i ∈ {0, 1}, and an event e′i ∈ Ei such that ei l e′i.

(ii) Preserver responds by choosing an event e′1−i ∈ E1−i such that e1−il
e′1−i.

(iii) The new game state is now (e′0, e
′
1).

EU-Move:

(i) Spoiler chooses i ∈ {0, 1}, and an event e′i ∈ Ei such that ei ≤ e′i and
he highlights a future causal chain (ei = f0

i , f
1
i , . . . , f

n
i = e′i) with

n ≥ 0.
(ii) Preserver responds by choosing an event e′1−i ∈ E1−i with e1−i ≤

e′1−i such that if ei = e′i then e1−i = e′1−i. Furthermore she highlights
a future causal chain (e1−i = f0

1−i, f
1
1−i, . . . , f

m
1−i = e′1−i) with m ≥ 0.

(iii) Spoiler now chooses one of the following two steps:
• Spoiler sets the game state to (e′0, e

′
1).

• Spoiler chooses an event f1−i ∈ {f0
1−i, f

1
1−i . . . f

m
1−i}. Preserver

responds with an event fi ∈ {f0
i , f

1
i . . . f

n
i } and the game contin-

ues in the state (f0, f1).

EG-Move:

(i) Spoiler chooses i ∈ {0, 1}, and highlights a maximal future causal
chain (ei = f0

i , f
1
i , . . . , f

n
i , . . . ) with f ji ∈ Ei and n ≥ 0.

(ii) Preserver responds by highlighting a maximal future causal chain
(e1−i = f0

1−i, f
1
1−i, . . . , f

m
1−i, . . . ) with f ji ∈ E1−i and m ≥ 0.

(iii) Spoiler chooses an event f1−i ∈ {f0
1−i, f

1
1−i . . . f

m
1−i}. Preserver re-

sponds with an event fi ∈ {f0
i , f

1
i . . . f

n
i } and the game continues in

the state (f0, f1).

co-Move: This move can only be played by Spoiler if there exists an e′0 ∈ E0

such that e0 co e′0 or there exists an e′1 ∈ E1 such that e1 co e′1. Spoiler
then wins the game in case there either exists no e′0 ∈ E0 such that e0 co e′0
or no e′1 ∈ E1 such that e1 co e′1. Otherwise (in which case both e0 and
e1 have concurrent events) the game proceeds as follows:

(i) Spoiler chooses i ∈ {0, 1}, and an event e′i ∈ Ei such that ei co e′i in
Ti.
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(ii) Preserver responds by choosing an event e′1−i ∈ E1−i such that
e1−i co e′1−i in T1−i.

(iii) The new game state is now (e′0, e′1).

EX−-Move: This move can only be played by Spoiler if e0 6= ⊥ or e1 6= ⊥.
Spoiler then wins the game in case e0 = ⊥ or e1 = ⊥. Otherwise (in which
case neither e0 nor e1 is ⊥) the game proceeds as follows:

(i) Spoiler chooses i ∈ {0, 1}, and an event e′i ∈ Ei such that e′i l ei.

(ii) Preserver responds by choosing an event e′1−i ∈ E1−i such that e′1−il
e1−i.

(iii) The new game state is now (e′0, e
′
1).

EU−-Move:

(i) Spoiler chooses i ∈ {0, 1}, and an event e′i ∈ Ei such that e′i ≤ ei and
he highlights a past causal chain (e′i = fni , f

n−1
i , . . . , f0

i = ei) with
n ≥ 0.

(ii) Preserver responds by choosing an event e′1−i ∈ E1−i with e′1−i ≤
e1−i such that if ei = e′i then e1−i = e′1−i. Furthermore she highlights
a past causal chain (e′1−i = fm1−i, f

m−1
1−i , . . . , f

0
1−i = e1−i) with m ≥ 0.

(iii) Spoiler now chooses one of the following two steps:

• Spoiler sets the game state to (e′0, e
′
1).

• Spoiler chooses an event f1−i ∈ {f0
1−i, f

1
1−i . . . f

m
1−i}. Preserver

responds with an event fi ∈ {f0
i , f

1
i . . . f

n
i } and the game contin-

ues in the state (f0, f1).

In the 0-round game Spoiler wins if (T0, e0) 6≡0 (T1, e1) and otherwise Pre-
server wins. In the (k + 1)-round game Spoiler wins if (T0, e0) 6≡0 (T1, e1). If
it is the case that (T0, e0) ≡0 (T1, e1), a round is played according to the above
moves. This round either results in a win for Spoiler (e.g. by the EX-move)
or a new game state (e′0, e

′
1). In the latter case, a k-round game is then played

starting from the initial game state (e′0, e′1).
We say that Preserver has a winning strategy in the k-round game on (T0, e0)

and (T1, e1), denoted (T0, e0) ∼k (T1, e1), if she can win the k-round game on the
structures T0 and T1 starting in the initial game state (e0, e1) no matter which
moves are performed by Spoiler. If not, we say that Spoiler has a winning
strategy. We refer to [37] for basic intuitions about the game.

Our interest in the game lies in the following fact.

Proposition 9.4.1 (T0, e0) ∼k (T1, e1) if and only if (T0, e0) ≡k (T1, e1).

Proof: We prove that (T0, e0) ∼k (T1, e1) if and only if (T0, e0) ≡k (T1, e1) by
induction on k. The base case where k = 0 follows trivially from the definition.

For the inductive step suppose that the claim is true for k. We first prove
the direction from left to right. Suppose that (T0, e0) ∼k+1 (T1, e1). Let α ∈
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TLC(Σ, I) with od(α) = k + 1. We must show that T0, e0 |= α if and only if
T1, e1 |= α. It suffices to prove the statement when the top-level connective of α
is a chain-operator because by boolean combinations (T0, e0) and (T1, e1) would
then agree on all formulas of operator depth k + 1. We will only consider the
case where the top-level chain-operator is the EU -operator. The other cases
proceed in a very similar manner.

Suppose α = EU(β, β′). Assume without loss of generality that T0, e0 |= α,
i.e. there exists a future causal chain ρ0 = (f0

0 , f
1
0 , . . . , f

n
0 ) with e0 = f0

0 and
fn0 = e′0 such that T0, f

j
0 |= β for each 0 ≤ j < n and T0, e

′
0 |= β′. Hence we let

Spoiler play the EU -move on T0 and make him highlight ρ0 on T0. Preserver
now uses her winning strategy and highlights ρ1 = (f0

1 , f
1
1 , . . . , f

m
1 ) with e1 = f0

1

and fm1 = e′1. Two subcases now arise.
Assume first that Spoiler sets the new game state to (e′0, e

′
1). As e′1 was

chosen from Preserver’s winning strategy we have that (T0, e
′
0) ∼k (T1, e

′
1) which

by induction hypothesis implies that (T0, e
′
0) ≡k (T1, e

′
1). Thus T1, e

′
1 |= β′.

Now, assume that Spoiler instead picked an event f1 on ρ1. By Preserver’s
winning strategy she could pick an event f0 on ρ0 (This is possible due to the
requirement that if e0 = e′0 then e1 = e′1). Again by the winning strategy we
have that (T0, f0) ∼k (T1, f1) and by induction hypothesis that T1, f1 |= β.
Hence T1, f1 |= EU(β, β′), which concludes this direction of the proof.

We prove the direction from right to left by contraposition, so suppose that
(T0, e0) 6∼k+1 (T1, e1). We will then exhibit a formula α ∈ TLC(Σ, I) with
od(α) = k + 1 such that T0, e0 |= α but T1, e1 6|= α. Again, we will only prove
the case where Spoiler’s first move of his winning strategy is either the EU -move.
The other cases either follows in analogous or easier manners.

Suppose Spoiler plays the EU -move on T0 (without loss of generality), i.e. he
chooses a future causal chain ρ0 = (f0

0 , f
1
0 , . . . , f

n
0 ) with e0 = f0

0 and fn0 = e′0.
It is not hard to show by induction that there are only a finite number of
semantically inequivalent formulas α with od(α) ≤ k and T0, e |= α for any e ∈
E0. Hence, each formula βj0 =

∧
{α ∈ OD(k) | T0, f

j
0 |= α} ∧

∧
{¬α ∈ OD(k) |

T0, f
j
0 6|= α} is well-defined and equivalent to a formula of operator depth k for

each 0 ≤ j < n, so letting βe′0 = βn0 we have that α = EU(
∨

0≤j<n β
j
0 , βe′0) is a

TLC-formula with od(α) = k + 1 and by definition T0, e0 |= α. We will argue
that T1, e1 6|= α.

Suppose that T1, e1 |= α. Then there exists a future causal chain ρ1 =
(f0

1 , f
1
1 , . . . , f

m
1 ) with e1 = f0

1 and fm1 = e′1 such that T1, f
l
1 |=

∨
0≤j<n β

j
0 for

each 0 ≤ l < m and T1, e
′
1 |= βe′0 .

Assume first that Spoiler chooses to set the new game state to (e′0, e
′
1) by

following his winning strategy. As T1, e
′
1 |= βe′0 it must be the case that for

each γ ∈ OD(k), T0, e
′
0 |= γ if and only if T1, e

′
1 |= γ. By induction hypothesis

(T0, e
′
0) ∼k (T1, e

′
1) which contradicts that Spoiler has a winning strategy be-

cause Preserver could initially have played ρ1 as above and continued according
to (T0, e

′
0) ∼k (T1, e

′
1).

Now assume that Spoiler instead by his winning strategy picks an event
f1 on ρ1. Then T1, f1 |= βj0 for some 0 ≤ j < n as T1, f1 |=

∨
0≤j<n β

j
0.
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Again by induction hypothesis we know that (T0, f
j
0 ) ∼k (T1, f1) which again

contradicts that Spoiler has a winning strategy because Preserver could respond
by picking f j0 ∈ E0 and continue from the game state (f j0 , f1) according to
(T0, f

j
0 ) ∼k (T1, f1).

Hence T1, e1 6|= α as required. This concludes the proof of the direction from
right to left. 2

9.5 An Undefinability Result

We have now set the stage to begin the study of the expressive power of
TLC∗. It is clear that TLC is a syntactic subset of TLC∗ whence TLC(Σ, I) ⊆
TLC∗(Σ, I). In this section we will give an example of a natural property, which
we by means of the Ehrenfeucht-Fräıssé game characterization for TLC of the
previous section will show is not expressible in TLC. In the next section we
show that this property is indeed definable in TLC∗. In conjunction these facts
show that TLC∗ adds to the expressive power of TLC.

Specifically, let (Σ, I) be a trace alphabet with {a, b, c} ⊆ Σ such that a D c
and c D b but a I b. Consider L = [abcabc]∗ ⊆ TR(Σ, I).

Lemma 9.5.1 L is not definable in TLC(Σ, I).

Proof: Let k ≥ 0 be given and consider T k0 = [abc]4k and T k1 = [abc]4k+1. It
suffices to show that (T k0 ,⊥) ∼k (T k1 ,⊥). By Proposition 9.4.1 it then follows
that (T k0 ,⊥) ≡k (T k1 ,⊥). Suppose L would be definable by a TLC-formula α
of operator depth n. In particular, then (T n0 ,⊥) ≡n (T n1 ,⊥). However, by
definition it must be the case that T n0 ∈ L and T n1 6∈ L, contradicting that T n0
and T n1 satisfy the same set of formulas of operator depth at most n. Hence, L
cannot be expressed by any formula of TLC assuming that (T k0 ,⊥) ∼k (T k1 ,⊥)
holds for each k ≥ 0.

The remainder of the proof will be devoted to showing that it is the case that
(T k0 ,⊥) ∼k (T k1 ,⊥). To bring this out we need a few definitions. As depicted in
Figure 9.1 the game is played on T k0 and T k1 consisting of 4k and 4k + 1 copies
of the trace factor [abc], respectively. The section of ei for i ∈ {0, 1} is then
defined to be the number of the enclosing [abc]-factor in T ik counting from left
and starting with 1. We denote this number by sect(ei). In case ei = ⊥ we
set sect(ei) = 0. Furthermore, we say that e0 and e1 are position equivalent, in
case either (e0, e1) = (⊥,⊥) or λ(e0) = λ(e1). From the definition of T0 and T1

it follows that e0 and e1 are position equivalent in case e0 and e1 denote the
same local positions in two (possibly distinct) sections of T0 and T1, respectively.
The unique event of section s ≥ 1 labeled with letter x ∈ {a, b, c} in T ki will be
denoted ex,si . For example, the fourth b-labeled event of T k0 is denoted eb,40 .

We will then show that Preserver has a strategy such that after k′ ≤ k rounds
played on (T k0 , T

k
1 ) with current game state (e0, e1), the following invariant holds:

(i) e0 and e1 are position equivalent.
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Figure 9.1: T k0 (top) and T k1 (bottom) on which the game is played.

(ii) sect(e0) = sect(e1) or sect(e0) = sect(e1) − 1.

(iii) sect(e0) = sect(e1) implies sect(e0) ≤ 2(k + k′).

(iv) sect(e0) = sect(e1) − 1 implies sect(e0) ≥ 2(k − k′) + 1.

We prove that the invariant holds by induction on k′. It is trivial to observe,
that in the base case we have that (e0, e1) = (⊥,⊥), sect(e0) = sect(e1) = 0
and k′ = 0 thus satisfying (i),(ii), (iii) and (iv) above.

For the inductive step, assume that the statement holds for k′ < k. From (i)
it follows that (T0, e0) ≡0 (T1, e1), so a next round is played. We then show that
the Preserver can move so as to maintain the invariant for the next game state
(e′0, e

′
1) by case analysis on the next move chosen by Spoiler. We only consider

the case for the EU -move. The other moves follow analogously. From (ii) we
know that sect(e0) = sect(e1) or sect(e0) = sect(e1) − 1, so two subcases arise.

Case I: sect(e0) = sect(e1). Suppose Spoiler chooses to play the EU -move
on T k0 and highlights a future causal chain ρ0 = (e0 = ex0,s0

0 , ex1,s1
0 , . . . , exn,sn

0 =
e′0). By assumption sect(e0) ≤ 2(k + k′).

Suppose first that sn ≤ 2(k+k′+1). Then Preserver can just copy the move
and respond with ρ1 = (e1 = ex0,s0

1 , ex1,s1
1 , . . . , exn,sn

1 = e′1). If Spoiler chooses
to set the new game state to (e′0, e

′
1), sect(e

′
0) = sect(e′1) ≤ 2(k + k′ + 1) and

the invariant is maintained. If Spoiler instead chooses to pick an event exi,si

1 ,
Preserver would respond by picking exi,si

0 and the invariant is maintained in a
similar manner.

Suppose then that sn > 2(k + k′ + 1). Preserver must then “insert” an
additional occurrence of a section into ρ0 at section 2(k + k′ + 1). To bring
this out, let l be the least index such that sl = 2(k + k′ + 1), which exists by
assumption. Preserver then responds with ρ1 =

(ex0,s0
1 , . . . , exl,sl

1 , e
xl+1,sl+1
1 , exl,sl+1

1 , e
xl+1,sl+1+1
1 , e

xl+2,sl+2+1
1 , . . . , exn,sn+1

1 )
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with e′1 = exn,sn+1
1 . If Spoiler chooses to set the new game state to (e′0, e

′
1),

sect(e′0) = sn = sect(e′1)−1. However, the invariant is maintained as sect(e′0) ≥
2(k + k′ + 1) ≥ 2(k − (k′ + 1)) + 1. If Spoiler instead chooses to pick an event
on ρ1, Preserver responds dependent upon its index. If Spoiler picks one of
the first l + 2 events exi,si

1 , Preserver responds with exi,si

0 . As sect(exi,si

0 ) =
si = sect(exi,si

1 ) ≤ 2(k + k′ + 1) the invariant is maintained. If Spoiler picks
one of the remaining events exi,si+1

1 , Preserver responds with exi,si

0 in which
case sect(exi,si

0 ) = si = sect(exi,si+1
1 ) − 1 and the invariant is maintained as

sect(exi,si

0 ) ≥ 2(k + k′ + 1) > 2(k − (k′ + 1)) + 1.
Suppose spoiler chooses to play the EU -move on T k1 and highlights a fu-

ture causal chain ρ1 = (e1 = ex0,s0
1 , ex1,s1

1 , . . . , exn,sn

1 = e′1). By assumption
sect(e0) ≤ 2(k + k′). If sn ≤ 2(k + k′ + 1) then Preserver can, as above, just
copy the move and maintain the invariant, so suppose that sn > 2(k + k′ + 1).
Preserver must then “chop” a duplicate occurrence off ρ1 around the sections
2(k+ k′)+1, 2(k+ k′)+2 = 2(k+ k′ +1), 2(k+ k′)+3 which exist by construc-
tion. Any causal chain passing through these three sections must pass (at least)
two identical ac-labeled or bc-labeled stretches. Now, let l be the least index
such that sl = 2(k+ k′) + 1 and consider the sequence σ = (xl, xl+2, xl+4) with
λ(σ) ∈ {a, b}3. Remove from σ the first occurrence xi where there exists an
j > i with xj in σ and xi = xj . Let σ′ = (xp, xq) denote the resulting sequence
where p, q ∈ {l, l+ 2, l+ 4}. Preserver then plays the chain ρ0 =

(ex0,s0
0 , . . . , e

xl−1,sl−1
0 , e

xp,sl

0 , e
c,sl+1
0 , e

xq,sl+2
0 , e

c,sl+3
0 , e

xl+5,sl+5−1
0 , . . . , exn,sn−1

0 )

with e′0 = exn,sn−1
0 . If Spoiler chooses to set the new game state to (e′0, e

′
1)

then sect(e′0) = sn = sect(e′1) − 1 so the invariant is maintained because sn >
2(k + k′ + 1) > 2(k − (k′ + 1)) + 1. If Spoiler chooses to pick an event on ρ0,
Preserver responds according to one of several cases. If Spoiler picks one of the
first l events exi,si

0 then Preserver picks exi,si

1 and the invariant is maintained
as usual. If Spoiler picks either ec,sl+1

0 or ec,sl+3
0 then Preserver picks either

e
c,sl+1
1 or ec,sl+3

1 , respectively. As the sections are both sl+1 or both sl+3 and
sl+1 < sl+3 = sl + 1 = 2(k + k′ + 1) the invariant follows. If Spoiler picks an
event, exm,s

0 say, in {exp,sl

0 , e
xq,sl+2
0 } before the removed occurrence in σ then m ∈

{l, l+2} and Preserver responds by exm,s
1 . Then sect(exm,s

0 ) = s = sect(exm,s
1 ) ≤

sl+2 = 2(k + k′ + 1). Similarly, if exm,s
0 occurs after the removed occurrence

then m ∈ {l + 2, l + 4} and Preserver picks exm,s+1
1 . Then sect(exm,s

0 ) = s =
sect(ex

m,s+1
1 ) − 1 ≥ 2(k + k′) > 2(k − (k′ + 1)) + 1 and in both cases the

invariant is maintained. Finally, if Spoiler picks one of the remaining events
exi,si−1
0 with i ≥ l + 5 then Preserver responds with exi,si

1 . As sect(exi,si−1
0 ) =

sect(exi,si

1 )−1 ≥ 2(k− (k′ +1))+1 the invariant is also maintained in this case.
Case II: sect(e0) = sect(e1) − 1. Here the futures of e0 in T k0 and e1 in T k1

both consist of 4k − sect(e0) factors of [abc] and are identical with respect to
future moves. Hence Preserver can just “copy” the move made by Spoiler with
the obvious correspondence that exi,si

0 is matched with exi,si+1
1 and vice versa.

2
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9.6 The Expressiveness of TLC∗

In this section we use Lemma 9.5.1 to tie up the knots and pin down the expres-
sive power of TLC∗. We first show that TLC∗ is expressively stronger than TLC
for general trace alphabets, where the underlying dependency relation is tran-
sitive. We then briefly review monadic second-order for traces and show that
TLC∗ can be embedded into it. It then follows that the satisfiability problem
remains decidable for TLC∗.

To initiate developments, let (Σ, I) be any trace alphabet with {a, b, c} ⊆ Σ
such that a D c and c D b but a I b. Consider L = [abcabc]∗ ⊆ TR(Σ, I)
introduced in the previous section.

Lemma 9.6.1 L is definable in TLC∗(Σ, I).

Proof: Our proof will in fact show that the future fragment of TLC with only
one future chain quantifier of TLC∗ suffices to express L. First define

α[abc]∗ = AG(
∧

d∈Σ−{a,b,c}
¬pd) ∧ EX(pa ∧ EX(pc)) ∧ EX(pb ∧ EX(pc)) ∧

AG(pc ∧ EX(tt) → EX(pa ∧EX(pc)) ∧EX(pb ∧EX(pc)).

It is easy to see that T |= α[abc]∗ if and only if T ∈ [abc]∗. We will then use
existence of “zig-zagging” future causal chains to restrict to [abcabc]∗ ( [abc]∗

below. Define the future chain formula ϕ(acbc)∗ as follows:

ϕ(acbc)∗ = pa ∧G(pa → X(pc ∧X(pb ∧X(pc ∧ (¬Xtt ∨Xpa))))).

It’s easy to see that T, e |= E(ϕ(acbc)∗) if and only if there exists a future causal
chain ρ rooted at e such that λ(ρ) ∈ (acbc)∗ ⊆ Σ∗. The statement of the lemma
now follows by taking αL = α[abc]∗ ∧ (¬EXtt ∨ EX(E(ϕ(acbc)∗))). 2

Putting all the pieces together, we can now state and prove the main result
of the chapter.

Theorem 9.6.2 Let (Σ, I) be any trace alphabet. Then

(i) TLC(Σ, I) = TLC∗(Σ, I) if D is transitive.

(ii) TLC(Σ, I) ( TLC∗(Σ, I) if D is not transitive.

Proof: Obviously TLC(Σ, I) ⊆ TLC∗(Σ, I), so (ii) follows easily from Lemmas
9.5.1 and 9.6.1 as (a, c), (c, b) ∈ D but (a, b) 6∈ D witness that D is not transitive.
Hence it suffices to prove (i).

Let (Σ, I) be a trace alphabet with D transitive, i.e. the graph (Σ, D) is
a disjoint union of cliques {Ci}ni=1. Thus any trace T ∈ TR(Σ, I) consists of
disjoint Ci-labeled causal chains connected only initially by ⊥. We can then
define three mutually inductive translations || · ||ev, || · ||+ch, and || · ||−ch converting
event formulas, future chain formulas and past chain formulas, respectively, of
TLC∗(Σ, I) to formulas of TLC(Σ, I) as follows:
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• ||pa||ev = pa.

• ||¬α||ev = ¬||α||ev and ||α1 ∨ α2||ev = ||α1||ev ∨ ||α2||ev.

• ||co(α)||ev = co(||α||ev).

• ||E(ϕ)||ev = ||ϕ||+ch and ||E−(ψ)||ev = ||ψ||−ch.

• ||α||+ch = ||α||ev and ||α||−ch = ||α||ev .

• ||¬ϕ||+ch = ¬||ϕ||+ch and ||¬ψ||−ch = ¬||ψ||−ch.

• ||ϕ1 ∨ ϕ2||+ch = ||ϕ1||+ch ∨ ||ϕ2||+ch and ||ψ1 ∨ ψ2||−ch = ||ψ1||−ch ∨ ||ψ2||−ch.

• ||Xϕ||+ch = EX(||ϕ||+ch).

• ||X−ψ||−ch = EX−(||ψ||−ch).

• ||ϕ1Uϕ2||+ch = EU(||ϕ1||+ch, ||ϕ2||+ch).

• ||ψ1U
−ψ2||−ch = EU−(||ψ1||−ch, ||ψ2||−ch).

A routine induction now shows that T, e |= α if and only if T, e |= ||α||ev for
each α ∈ TLC∗(Σ, I). The required conclusion follows as one readily verifies
that ||α||ev ∈ TLC(Σ, I). 2

Theorem 9.6.2 states that TLC is expressively equivalent to TLC∗ exactly
when the underlying trace alphabet (Σ, I) gives rise to a transitive dependency
relation D. This corresponds to the case where the static notion of depen-
dency of system actions allows a decomposition of the system into a number of
autonomous computing processes with no interprocess communication. In this
sense, TLC yields a lower bound of the expressiveness of TLC∗. In the following
we provide an upper bound in terms of monadic second-order logic.

The monadic second-order theory of traces over (Σ, I) is denoted MSO(Σ, I).
Its vocabulary consists of a family of unary predicates {Qa}a∈Σ, one for each
a ∈ Σ; a binary predicate ≤; a binary predicate ∈; a countable supply of
individual variables Var = {x, y, z, . . .}; a countable supply of set variables
(i.e. monadic predicate variables) SVar = {X,Y, Z, . . .}. The formulas Ω of
MSO(Σ, I) are then given as:

MSO(Σ, I) ::= Qa(x) | x ∈ X | x ≤ y | ¬Ω | Ω1 ∨ Ω2 | (∃x)Ω | (∃X)Ω, a ∈ Σ.

A structure for MSO(Σ, I) is a trace T = (E,≤, λ) of TR(Σ, I). Let I be
an interpretation of the variables with I : Var → E and I : SVar → 2E .
Then the notion of T being a model of Ω under the interpretation I, denoted
T |=I Ω, is defined in the expected manner. In particular, T |=I Qa(x) iff
λ(I(x)) = a; T |=I x ∈ X iff I(x) ∈ I(X); and T |=I x ≤ y iff I(x) ≤ I(y).
For convenience, we use ≤ to denote both the predicate symbol in the logic
and the corresponding causality relation in the model T . We will freely use
the standard abbreviations for derived propositional connectives such as ∧,⇒,



182 CHAPTER 9. AN EXPRESSIVE EXTENSION OF TLC

universal quantifications such as (∀x)(Ω(x)), together with the derived ordering
relations x 6= y, x < y, xl y, x ≤ y ≤ z, X ⊆ Y , etc.

As usual, Ω is a sentence if there are no free occurrences of individual or
set variables in Ω. With each sentence Ω we can associate a trace language
LΩ = {T ∈ TR(Σ, I) | T |= Ω}. We say that L ⊆ TR(Σ, I) is MSO(Σ, I)-
definable if there exists a sentence ϕ such that LΩ = L.

The first-order theory of traces over (Σ, I) is denoted FO(Σ, I) and is ob-
tained from MSO(Σ, I) by abolishing the monadic second-order quantifications
from the logic. The semantics and notions of first-order definability are carried
over in the obvious manner.

We now wish to argue that any language definable by a formula of TLC∗ is
definable by a sentence of MSO.

Lemma 9.6.3 Let (Σ, I) be any trace alphabet. Then TLC∗(Σ, I) ⊆ MSO(Σ, I).

Proof: We show by structural induction over formulas of TLC∗(Σ, I) that for
each event formula α (future chain formula ϕ, past chain formula ψ, respec-
tively), there exists a formula Ωα of MSO(Σ, I) with free variable x (formulas
Ω+
ϕ and Ω−

ψ with free set variable X , respectively) such that for each trace
T = (E,≤, λ) of TR(Σ, I), event e ∈ E, and causal chain ρ;

(i) T, e |= α if and only if T |=I Ωα(x) with I(x) = e.

(ii) T, ρ |= ϕ if and only if T |=I Ω+
ϕ (X) with I(X) = ρ.

(iii) T, ρ |= ψ if and only if T |=I Ω−
ψ (X) with I(X) = ρ.

This suffices to prove the statement of the lemma, as we can then for a given
formula α of TLC∗, define an equivalent formula Ω of MSO with LΩ = L(α) via
Ω = (∃x)(¬(∃y)(y ≤ x) ∧ Ωα(x)).

To complete the proof we only present by mutual induction the formulas
Ωα and Ωϕ maintaining the correspondence (i) and (ii) above. The formulas
Ω−
ψ witnessing (iii) follow in a very similar manner. In more detail, for event

formulas we inductively define:

• Ωpa(x) = Qa(x).

• Ω¬α(x) = ¬Ωα(x).

• Ωα1∨α2(x) = Ωα1(x) ∨ Ωα2(x).

• Ωco(α)(x) = (∃y)(¬(x ≤ y) ∧ ¬(y ≤ x) ∧ Ωα(y)).

• ΩE(ϕ)(x) = (∃X)(Chain+(X,x) ∧ Ω+
ϕ (X)).

We have here used the fact that the MSO formula

Chain+(X,x) = (∀y, z)(y, z ∈ X ∧ y 6= z ⇒
(y < z ∨ z < y) ∧
[¬(y l z ∨ z l y) ⇒

(∃w)(w ∈ X ∧ (y < w < z ∨ z < w < y))])
∧ x ∈ X ∧ (∀y)(y ∈ X ⇒ x ≤ y)
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expresses that the set X denotes a future causal chain rooted at the event
denoted by the variable x.

We will use this abbreviation extensively in defining the translation for future
chain formulas as follows:

• Ω+
α (X) = (∃x)(Chain(X,x)+ ∧ Ωα(x)).

• Ω+
¬ϕ(X) = ¬Ω+

ϕ (X).

• Ω+
ϕ1∨ϕ2(X) = Ω+

ϕ1
(X) ∨ Ω+

ϕ2
(X).

• Ω+
Xϕ(X) = (∃x, y, Y )(Chain+(X,x) ∧ x l y ∧ Chain+(Y, y)

∧ Y ⊆ X ∧ Ω+
ϕ (Y )).

• Ω+
ϕ1Uϕ2

(X) = (∃x, y, Y )(Chain+(X,x)∧x ≤ y∧Chain+(Y, y)∧Y ⊆ X

∧Ω+
ϕ2

(Y )∧(∀z, Z)(x ≤ z < y∧Chain+(Z, z)∧Z ⊆ X ⇒ Ω+
ϕ1

(Z))).

It’s not hard to verify that the translations satisfy (i) and (ii). 2

As MSO(Σ, I) is known to be decidable [14, 32], we obtain the following as
an immediate consequence of Lemma 9.6.3.

Corollary 9.6.4 The satisfiability problem for TLC∗ is decidable.

9.7 Conclusion

We conclude by summarizing what is currently known about the relative expres-
sive powers of the various linear time temporal logics over traces. Surprisingly,
this area has turned out to be far more challenging than its interleaving coun-
terpart, mainly because the logics are parameterized by trace alphabets which,
even with the same set of underlying system actions Σ, might have very different
independence structures dictated by the relation I ⊆ Σ × Σ.

Hence, for a logic A to be at least as expressive as B we will demand that any
property L ⊆ TR(Σ, I) expressible by a formula of B(Σ, I) is also expressible by
a formula of A(Σ, I), for every trace alphabet (Σ, I). A is then more expressive
than B if A is at least as expressive as B and there exists some trace alphabet
(Σ, I) and a property L ⊆ TR(Σ, I) such that L is definable in A(Σ, I) but not
in B(Σ, I). The notions of expressive equivalence and noninclusion should now
be obvious from these remarks.

A quick overview is displayed in Figure 9.2. A dotted (solid) arrow from A
to B indicates that B is at least as expressive as (strictly more expressive than)
A, while a squiggled line from A to B denotes that A is not included in B.

The two most important classes consist of MSO and its first-order frag-
ment, FO. There exist two logics expressively equivalent to MSO; Niebert’s
νTrPTL [102] and µ−co by Walukiewicz [150]. Both logics are based on fixed
point operators, and the latter logic can be viewed as the µ-calculus [75] with
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MSO = νTrPTL [102] = µ−co [150]

TLC∗
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Figure 9.2: Overview of relative expressive powers.

some additional operators (reminiscent of the present co-operator of TLC) in-
terpreted directly over the Hasse diagram of traces. Both logics are decidable
in exponential time.

It is a classical fact that FO is strictly weaker than MSO over the domain of
sequences, which is reflected in the present setting with I = ∅. The relationship
between first-order logic for strings and first-order logic for traces is very tight,
as a given trace language is definable in FO over traces if and only if its set
of linearizations is definable in FO over sequences [32]. This result suggests
that one should look for an elementary-time (preferably exponential-time) logic
equal in expressive power to the first-order theory of traces as such a logic (if
it exists!) would capture precisely [32, 70] the properties of LTL amenable to
partial-order verification. With this in mind, Thiagarajan proposed the first
linear temporal logic for traces, TrPTL [135]. It is known [97] that TrPTL is
no more expressive than FO, but it is — perhaps surprisingly — still an open
problem whether TrPTL is expressively equivalent to FO.

Thiagarajan and Walukiewicz later defined a linear time temporal logic,
LTrL [139], expressively complete with respect to first-order logic for traces.
Their logic was later refined [25, 26] to show that LTL interpreted on traces is
expressively equivalent to FO, yielding an extension of Kamp’s Theorem [70] to
the richer setting of traces. Unfortunately, the satisfiability problems for these
logics have nonelementary lower bounds [149]!

Theorem 9.6.2 and Lemma 9.6.3 have been applied to place TLC∗ in Fig-
ure 9.2. The classical result that FO is weaker than MSO, in conjunction with
the fact that TLC∗(Σ, ∅) is equivalent to FO(Σ, ∅), yields a strict inclusion of
TLC∗ into MSO. A simple corollary of Lemma 9.6.1 is that TLC∗ is not included
in FO whenever D is transitive, because our example property L is easily seen
not be first-order definable. Hence, TLC∗ does not have a completely resolved
relationship to FO.

Neither does TLC, but progress has been made very recently [151], as Walu-
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kiewicz has identified an example of a property definable in TLC, but not in FO.
It is still an open problem, however, whether TLC can express all properties of
FO, though it is believed not to be the case. Similarly, the relative expressive
power of TLC and the seminal TrPTL is still completely open. For the syntactic
subset TrPTLcon [65] which is not known to be weaker than TrPTL itself, it is
not hard to devise a translation into TLC, as mentioned in Section 3.6. The
example property of Walukiewicz then witnesses that this inclusion must be
strict.

It remains an interesting open problem for future research to give a precise
characterization of the expressive power of TLC∗. One possibility to be inves-
tigated is in terms of MSO with set quantifications restricted to chains along
the lines of [50, 92], which achieves a similar goal for the branching time logic
CTL∗. Another possibility would be to consider (a suitably variable-confined
subset of) FO with the transitive-closure operator [67].

Finally, the present proof of decidability of the satisfiability problem for
TLC∗, is indirect and essentially relies upon the decidability of monadic second-
order logic [14], thus yielding a nonelementary upper bound. It seems to be a
challenging open problem to pin down the precise complexity of the satisfiability
problem for TLC∗ and, preferably, to give a direct construction in terms of
automata which operates in elementary time.
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Message Sequence Charts (MSCs) are an attractive visual formalism used
during the early stages of design in domains such as telecommunication soft-
ware. A popular mechanism for generating a collection of MSCs is a Hier-
archical Message Sequence Chart (HMSC). However, not all HMSCs describe
collections of MSCs that can be “realized” as a finite-state device. Our main
goal is to pin down this notion of realizability. We propose an independent
notion of regularity for collections of MSCs and explore its basic properties.
In particular, we characterize regular collections of MSCs in terms of finite-
state distributed automata called bounded message-passing automata, in which
a set of sequential processes communicate with each other asynchronously over
bounded FIFO channels. We also provide a logical characterization in terms
of a natural monadic second-order logic interpreted over MSCs. It turns out
that realizable collections of MSCs as specified by HMSCs constitute a strict
subclass of the regular collections of MSCs.

10.1 Introduction

Message Sequence Charts (MSCs) are an appealing visual formalism often used
to capture system requirements in the early stages of design. They are par-

187
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ticularly suited for describing scenarios for distributed telecommunication soft-
ware [68, 121]. They have also been called timing sequence diagrams, message
flow diagrams and object interaction diagrams and are used in a number of soft-
ware engineering methodologies [9, 52, 121]. In its basic form, an MSC depicts
the exchange of messages between the processes of a distributed system along a
single partially-ordered execution. A collection of MSCs is used to capture the
scenarios that a designer might want the system to exhibit (or avoid).

Given the requirements in the form of a collection of MSCs, one can hope
to do formal analysis and discover design errors at an early stage. A natural
question in this context is to identify when a collection of MSCs is amenable to
formal analysis. A related issue is how to represent such collections.

A standard way to generate a collection of MSCs is to use a Hierarchical
Message Sequence Chart (HMSC) [84]. An HMSC is a finite directed graph in
which each node is labelled, in turn, by an HMSC. The labels on the nodes
are not permitted to refer to each other. From an HMSC we can derive an
equivalent Message Sequence Graph (MSG) [3] by flattening out the hierarchical
labelling to obtain a graph where each node is labelled by a simple MSC. An
MSG defines a collection of MSCs obtained by concatenating the MSCs labelling
each path from an initial vertex to a terminal vertex. Though HMSCs provide
more succinct specifications than MSGs, they are only as expressive as MSGs.
Thus, one often restricts one’s attention to characterizing structural properties
of MSGs rather than of HMSCs [5, 98, 100].

In [5], it is shown that locally synchronized MSGs define reasonable col-
lections of MSCs—the collection of MSCs generated by a locally synchronized
MSG can be represented as a regular string language. Thus, behaviours cap-
tured by locally synchronized MSGs can, in principle, be realized as finite-state
automata. In general, the collection of MSCs defined by an arbitrary MSG
is not realizable in this sense. A characterization of the collections of MSCs
definable using locally synchronized MSGs is provided in Chapter 11.

The main goal of this chapter is to pin down this notion of realizability in
terms of a notion of regularity for collections of MSCs. One consequence of our
study is that our definition of regularity provides a general and robust setting
for studying collections of MSCs. A second consequence, which follows from
the results in Chapter 11, is that locally synchronized MSGs define a strict
subclass of regular collections of MSCs. A final consequence is that our notion
addresses an important issue raised in [23]; namely, how to convert requirements
as specified by MSCs into distributed, state-based specifications.

Another motivation for focussing on regularity is that this notion has turned
out to be very fruitful in a variety of contexts including finite (and infinite)
strings, trees and restricted partial orders known as Mazurkiewicz traces [27,
140]. In all these settings there is a representation of regular collections in
terms of finite-state devices. There is also an accompanying monadic second-
order logic that usually induces temporal logics using which one can reason
about such collections [140]. One can then develop automated model-checking
procedures for verifying properties specified in these temporal logics. In this
context, the associated finite-state devices representing the regular collections
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often play a very useful role [147].
We show here that our notion of regular MSC languages fits in nicely with a

related notion of a finite-state device, as also a monadic second-order logic. We
fix a finite set of processes P and consider MSC, the universe of MSCs defined
over the set P . An MSC in MSC can be viewed as a partial order labelled using
a finite alphabet Σ that is canonically fixed by P . We say that L ⊆ MSC is
regular if the set of all linearizations of all members of L constitutes a regular
subset of Σ∗. A crucial point is that the universe MSC is itself not regular
according to our definition, unlike the classical setting of strings (or trees or
Mazurkiewicz traces). This fact has a strong bearing on the automata-theoretic
and logical formulations in our work.

It turns out that regular MSC languages can be stratified using the concept
of bounds. An MSC is said to be B-bounded for a natural number B if at every
“prefix” of the MSC and for every pair of processes (p, q) there are at most B
messages that p has sent to q that have yet to be received by q. An MSC language
is B-bounded if every member of the language is B-bounded. Fortunately, for
every regular MSC language L we can effectively compute a (minimal) bound
B such that L is B-bounded. This leads to our automaton model called B-
bounded message-passing automata. The components of such an automaton
correspond to the processes in P . These components communicate with each
other over (potentially unbounded) FIFO channels. We say that a message-
passing automaton is B-bounded if, during its operation, it is never the case that
a channel contains more thanB messages. We establish a precise correspondence
between B-bounded message-passing automata and B-bounded regular MSC
languages. In a similar vein, we formulate a natural monadic second-order logic
MSO(P , B) interpreted over B-bounded MSCs. We then show that B-bounded
regular MSC languages are exactly those that are definable in MSO(P , B).

In related work, a number of studies are available that are concerned with
individual MSCs in terms of their semantics and properties [3, 78]. As pointed
out earlier, a nice way to generate a collection of MSCs is to use an MSG.
A variety of algorithms have been developed for MSGs in the literature—for
instance, pattern matching [79, 98, 100] and detection of process divergence
and non-local choice [8]. A systematic account of the various model-checking
problems associated with MSGs and their complexities is given in [5].

In this chapter, we confine our attention to finite MSCs. The issues inves-
tigated here have, at present, no counterparts in the infinite setting. We feel,
however, that our results will serve as a launching pad for a similar account
concerning infinite MSCs. This should then lead to the design of appropriate
temporal logics and automata-theoretic solutions (based on message-passing au-
tomata) to model-checking problems for these logics.

The chapter is organized as follows. In the next section we introduce MSCs
and regular MSC languages. In Section 10.3 we establish our automata-theoretic
characterization and, in Section 10.4, the logical characterization. While doing
so, we borrow one basic result and a couple of proof techniques from the theory
of Mazurkiewicz traces [27]. However, we need to modify some of these tech-
niques in a non-trivial way (especially in the setting of automata) due to the
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Figure 10.1: An example MSC over {p, q, r}.

asymmetric flow of information via messages in the MSC setting, as opposed
to the symmetric information flow via handshake communication in the trace
setting. Due to lack of space, we provide only proof sketches. More details are
available in [56].

10.2 Regular MSC Languages

Through the rest of the chapter, we fix a finite set of processes (or agents) P and
let p, q, r range over P . For each p ∈ P we define Σp

def= {p!q | p 6= q}∪{p?q | p 6=
q} to be the set of communication actions in which p participates. The action
p!q is to be read as p sends to q and the action p?q is to be read as p receives
from q. At our level of abstraction, we shall not be concerned with the actual
messages that are sent and received. We will also not deal with the internal
actions of the agents. We set Σ =

⋃
p∈P Σp and let a, b range over Σ. We also

denote the set of channels by Ch = {(p, q) | p 6= q} and let c, d range over Ch.
A Σ-labelled poset is a structure M = (E,≤, λ) where (E,≤) is a poset and

λ : E → Σ is a labelling function. For e ∈ E we define ↓e def= {e′ | e′ ≤ e}.
For p ∈ P and a ∈ Σ, we set Ep

def= {e | λ(e) ∈ Σp} and Ea
def= {e | λ(e) = a},

respectively. For each c ∈ Ch, we define the relation Rc
def= {(e, e′) | λ(e) =

p!q, λ(e′) = q?p and |↓e ∩ Ep!q| = |↓e′ ∩ Eq?p|}. Finally, for each p ∈ P , we

define the relation Rp
def= (Ep × Ep) ∩ ≤.

An MSC (over P) is a finite Σ-labelled poset M = (E,≤, λ) that satisfies
the following conditions:

(i) Each Rp is a linear order.

(ii) If p 6= q then |Ep!q| = |Eq?p|.

(iii) ≤ = (RP ∪RCh)∗ where RP =
⋃
p∈P Rp and RCh =

⋃
c∈Ch Rc.

In diagrams, the events of an MSC are presented in visual order. The events
of each process are arranged in a vertical line and the members of the relation
RCh are displayed as horizontal or downward-sloping directed edges. We illus-
trate the idea with an example in Figure 10.1. Here P = {p, q, r}. For x ∈ P ,
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the events in Ex are arranged along the line labelled (x) with smaller (relative to
≤) events appearing above the larger events. The RCh -edges across agents are
depicted by horizontal edges—for instance e3 R(r,q) e

′
2. The labelling function λ

is easy to extract from the diagram—for example, λ(e′3) = r!p and λ(e2) = q?p.
We define regular MSC languages in terms of their linearizations. For the

MSC M = (E,≤, λ), let lin(M) def= {λ(π) | π is a linearization of (E,≤)}. By
abuse of notation, we have used λ to also denote the natural extension of λ
to E∗. The string p!q r!q q?p q?r r!p p?r is a linearization of the MSC in
Figure 10.1.

In the literature [3, 100] one sometimes considers a more generous notion
of linearization where two adjacent receive actions in a process corresponding
to messages from different senders are deemed to be causally independent. For
instance, p!q r!q q?r q?p r!p p?r would also be a valid linearization of the MSC
in Figure 10.1. All our results go through with suitable modifications even in
the presence of this more generous notion of linearization.

Henceforth, we will identify an MSC with its isomorphism class. We let
MSC(P) be the set of MSCs over P . An MSC language L ⊆ MSC(P) is said
to regular if

⋃
{lin(M) | M ∈ L} is a regular subset of Σ∗. We note that the

entire set MSC(P) is not regular by this definition.
To directly characterize the subsets of Σ∗ that correspond to regular MSC

languages, we proceed as follows. Let Com def= {(p!q, q?p) | (p, q) ∈ Ch}. For
τ ∈ Σ∗ and a ∈ Σ, let |τ |a denote the number of times a appears in τ . We say
that σ ∈ Σ∗ is proper if for every prefix τ of σ and every pair (a, b) ∈ Com ,
|τ |a ≥ |τ |b. We say that σ is complete if σ is proper and |σ|a = |σ|b for
every (a, b) ∈ Com . Next we define a context-sensitive independence relation
I ⊆ Σ∗ × (Σ×Σ) as follows: (σ, a, b) ∈ I if σab is proper, a ∈ Σp and b ∈ Σq for
distinct processes p and q, and if (a, b) ∈ Com then |σ|a > |σ|b. Observe that if
(σ, a, b) ∈ I then (σ, b, a) ∈ I.

Let Σ◦ def= {σ | σ ∈ Σ∗ and σ is complete}. We then define ∼ ⊆ Σ◦ × Σ◦

to be the least equivalence relation such that if σ = σ1abσ2, σ′ = σ1baσ2 and
(σ1, a, b) ∈ I then σ ∼ σ′. It is important to note that ∼ is defined over Σ◦ (and
not Σ∗). It is easy to verify that for each M ∈ MSC(P), lin(M) is a subset of
Σ◦ and is in fact a ∼-equivalence class over Σ◦.

We define L ⊆ Σ∗ to be a regular string MSC language if there exists a
regular MSC language L ⊆ MSC(P) such that L =

⋃
{lin(M) | M ∈ L}. It

is easy to see that L ⊆ Σ∗ is a regular string MSC language if and only if
L is a regular subset of Σ∗, every word in L is complete and L is ∼-closed
(that is, for each σ ∈ L, if σ ∈ L and σ ∼ σ′ then σ′ ∈ L). Clearly regular
MSC languages and regular string MSC languages represent each other. Hence,
abusing terminology, we will write “regular MSC language” to mean “regular
string MSC language”. From the context, it should be clear whether we are
working with MSCs from MSC(P) or complete words over Σ∗.

Given a regular subset L ⊆ Σ∗, we can decide whether L is a regular MSC
language. We say that a state s in a finite-state automaton is live if there is
a path from s to a final state. Let A = (S,Σ, sin, δ, F ) be the minimal DFA
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representing L. Then it is not difficult to see that L is a regular MSC language
if and only if we can associate with each live state s ∈ S, a channel-capacity
function Ks : Ch → N that satisfies the following conditions.

(i) If s ∈ {sin} ∪ F then Ks(c) = 0 for every c ∈ Ch.

(ii) If s, s′ are live states and δ(s, p!q) = s′ then Ks′((p, q)) = Ks((p, q))+1
and Ks′(c) = Ks(c) for every c 6= (p, q).

(iii) If s, s′ are live states and δ(s, q?p) = s′ then Ks((p, q)) > 0, Ks′ ((p, q)) =
Ks((p, q))−1 and Ks′(c) = Ks(c) for every c 6= (p, q).

(iv) Suppose δ(s, a) = s1 and δ(s1, b) = s2 with a ∈ Σp and b ∈ Σq, p 6= q. If
(a, b) /∈ Com or Ks((p, q)) > 0, there exists s′1 such that δ(s, b) = s′1 and
δ(s′1, a) = s2.

These conditions can be checked in time linear in the size of δ. We conclude
this section by introducing the notion of B-bounded MSC languages. Let B ∈ N

be a natural number. We say that a complete word σ is B-bounded if for each
prefix τ of σ and for each channel (p, q) ∈ Ch, |τ |p!q − |τ |q?p ≤ B. We say that
L ⊆ Σ◦ is B-bounded if every word σ ∈ L is B-bounded. Let L be a regular
MSC language and let A = (S,Σ, sin, δ, F ) be its minimal DFA, as described
above, with capacity functions {Ks}s∈S . Let BL

def= maxs∈S,c∈Ch Ks(c). Then
it is easy to see that L is BL-bounded and that BL can be effectively computed
from A. Finally, we shall say that the MSC M is B-bounded if every string in
lin(M) is B-bounded. A collection of MSCs is B-bounded if every member of
the collection is B-bounded.

10.3 An Automata-Theoretic Characterization

Recall that the set of processes P determines the communication alphabet Σ
and that for p ∈ P , Σp denotes the actions in which process p participates.

Definition 10.3.1 A message-passing automaton over Σ is a structure M =
({Ap}p∈P ,∆, sin, F ) where

• ∆ is a finite alphabet of messages.

• Each component Ap is of the form (Sp,−→p) where

– Sp is a finite set of p-local states.

– −→p ⊆ Sp × Σp × ∆ × Sp is the p-local transition relation.

• sin ∈
∏
p∈P Sp is the global initial state.

• F ⊆
∏
p∈P Sp is the set of global final states.
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The local transition relation −→p specifies how process p sends and receives
messages. The transition (s, p!q,m, s′) specifies that when p is in the state s,
it can send the message m to q by executing the action p!q and move to the
state s′. The message m is, as a result, appended to the queue in channel (p, q).
Similarly, the transition (s, p?q,m, s′) signifies that in the state s, the process
p can receive the message m from q by executing the action p?q and move to
the state s′. The message m is removed from the head of the queue in channel
(q, p).

The set of global states of M is given by
∏
p∈P Sp. For a global state s, we

let sp denote the pth component of s. A configuration is a pair (s, χ) where s is
a global state and χ : Ch → ∆∗ is the channel state that specifies the queue of
messages currently residing in each channel c. The initial configuration of M is
(sin, χε) where χε(c) is the empty string ε for every channel c. The set of final
configurations of M is F × {χε}.

We now define the set of reachable configurations ConfM and the global
transition relation =⇒ ⊆ ConfM × Σ × ConfM inductively as follows:

• (sin, χε) ∈ ConfM.

• Suppose (s, χ) ∈ ConfM, (s′, χ′) is a configuration and (sp, p!q,m, s′p) ∈
−→p such that the following conditions are satisfied:

– r 6= p implies sr = s′r for each r ∈ P .

– χ′((p, q)) = χ((p, q)) ·m and for c 6= (p, q), χ′(c) = χ(c).

Then (s, χ)
p!q
=⇒ (s′, χ′) and (s′, χ′) ∈ ConfM.

• Suppose (s, χ) ∈ ConfM, (s′, χ′) is a configuration and (sp, p?q,m, s′p) ∈
−→p such that the following conditions are satisfied:

– r 6= p implies sr = s′r for each r ∈ P .

– χ((q, p)) = m · χ′((q, p)) and for c 6= (q, p), χ′(c) = χ(c).

Then (s, χ)
p?q
=⇒ (s′, χ′) and (s′, χ′) ∈ ConfM.

Let σ ∈ Σ∗. A run of M over σ is a map ρ : prf(σ) → ConfM (where prf(σ)
is the set of prefixes of σ) such that ρ(ε) = (sin, χε) and for each τa ∈ prf(σ),
ρ(τ) a=⇒ ρ(τa). The run ρ is accepting if ρ(σ) is a final configuration. We
define L(M) def= {σ | M has an accepting run over σ}. It is easy to see that
every member of L(M) is complete and L(M) is ∼-closed.

Clearly, L(M) need not be regular. Consider, for instance, a message-passing
automaton for the canonical producer-consumer system in which the producer
p sends an arbitrary number of messages to the consumer q. Since we can
reorder all the p!q actions to be performed before all the q?p actions, the queue
in channel (p, q) can grow arbitrarily long. Hence, the reachable configurations
of this system are not bounded and the corresponding language is not regular.
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Figure 10.2: A 3-bounded message-passing automaton.
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Figure 10.3: The Mi’s accepted by the automaton in Figure 10.2.

For B ∈ N, we say that a configuration (s, χ) of the message-passing automa-
ton M is B-bounded if for every channel c ∈ Ch, it is the case that |χ(c)| ≤ B.
We say that M is a B-bounded automaton if every reachable configuration
(s, χ) ∈ ConfM is B-bounded. It is not difficult to show that given a message-
passing automaton M and a bound B ∈ N, one can decide whether or not M is
B-bounded. Figure 10.2 depicts an example of a 3-bounded message-passing au-
tomaton with two components, p and q (the message alphabet is a singleton and
hence omitted). The automaton accepts the infinite set of MSCs L = {Mi}ωi=0,
where Mi is displayed in Figure 10.3 for i = 2.

In this example, the message alphabet is a singleton, and is hence omitted.
The initial state is (s1, t1) and there is only one final state, (s2, t3). This au-
tomaton accepts an infinite set of MSCs, none of which can be expressed as the
concatenation of two or more non-trivial MSCs. As a result, this MSC language
cannot be represented using MSGs, as formulated in [5].

Lemma 10.3.2 Let M be a B-bounded automaton over Σ. Then L(M) is a
B-bounded regular MSC language.

This result follows from the definitions and it constitutes the easy half of the
characterization we wish to obtain. The second half of our characterization says
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that every B-bounded regular MSC language can be recognized by a B-bounded
message-passing automaton. This is much harder to establish.

Let {Σc}c∈Ch be given by Σc
def= {p!q, q?p} for c = (p, q). We let X = P∪Ch .

For a ∈ Σ, we define the locations of a as loc(a) def= {x ∈ X | a ∈ Σx}.
The distributed alphabet {Σx}x∈X induces the Mazurkiewicz trace alphabet
(Σ, IX ), where IX = {(a, b) | a, b ∈ Σ, loc(a) ∩ loc(b) = ∅} is an irreflexive and
symmetric independence relation. We can then define ≈ ⊆ Σ∗ × Σ∗ to be the
least equivalence relation such that if σ = σ1abσ2, σ′ = σ1baσ2 and (a, b) ∈ IX
then σ ≈ σ′. We say that L ⊆ Σ∗ is a regular (Mazurkiewicz) trace language
over (Σ, IX ) if L is a regular subset of Σ∗ and L is ≈-closed— that is, for each
σ ∈ Σ∗, if σ ∈ L and σ ≈ σ′ then σ′ ∈ L.

Let L ⊆ Σ∗ be a regular MSC language. It is not difficult to verify that L is a
regular trace language over (Σ, IX )—the independence relation IX corresponds
to the static kernel of the context-sensitive independence relation I defined in
Section 10.2.

In order to apply Zielonka’s Theorem we need to first introduce asynchronous
automata. An asynchronous automaton over the distributed alphabet {Σx}x∈X
is a structure Z = ({Sx}x∈X , {−→a}a∈Σ, sin, F ) where each Sx is a finite set
of local states of the component x. Let S =

∏
x∈X Sx denote the set of global

states of Z. Then sin ∈ S is the global initial state and F ⊆ S is the set of
global final states. Let a = p!q. Then −→a ⊆ (Sp × S(p,q)) × (Sp × S(p,q)).
The pair ((s1, s′1), (s2, s

′
2)) ∈ −→a denotes the fact that the p-component in

state s1, and the channel (p, q)-component in state s′1 can together execute p!q
and move to the joint state (s2, s′2). Similarly, for a receive action b = q?p,
−→b ⊆ (S(p,q) × Sq) × (S(p,q) × Sq) defines joint moves of the channel (p, q)
and process q when q receives messages from p. To define the global transition
relation −→ ⊆ S × Σ × S, we let sx denote the xth component of the global
state s. Suppose s, s′ ∈ S, a = p!q and c = (p, q). Then (s, a, s′) ∈ −→ if
((sp, sc), (s′p, s

′
c)) ∈ −→a and sx = s′x for every x ∈ X \ {p, c}. Transitions of

the form (s, b, s′) with b = q?p are defined in a similar fashion. The notions of
runs and accepting runs

Zielonka’s Theorem [157] asserts that from a regular trace language L, we
can construct a deterministic asynchronous automaton Z such that L(Z) = L.
We have already observed that a regular MSC language L ⊆ Σ∗ is a regular trace
language over (Σ, IX ). It follows that from a regular MSC language L ⊆ Σ∗ we
can effectively construct a deterministic asynchronous automaton Z over the
distributed alphabet {Σx}x∈X such that L = L(Z).

Fix a B-bounded regular MSC language L and let Z = ({Sx}x∈X ,
{−→a}a∈Σ, sin, F ) be a deterministic asynchronous automaton such that L =
L(Z). We claim that we can effectively transform Z into a B-bounded message-
passing automaton M over Σ such that L(M) = L.

This transformation is complicated by the following fact. In Z, for each
pair p, q ∈ P , the actions p!q and q?p are performed by the channel component
(p, q) and are hence dependent on each other in all contexts. As a result, the
transition relations −→p!q and −→q?p do not reflect the context-sensitive inde-
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pendence of the actions p!q and q?p, even though the language accepted by Z is
a regular MSC language and is hence closed with respect to the context-sensitive
independence relation I on Σ. This means that for two inputs σ and σ′ such
that σ ∼ σ′, Z will, in general, admit drastically different runs on σ and σ′.
On the other hand, the structure of message-passing automata is such that the
moves of any message-passing automaton over Σ can be reordered with respect
to the independence relation I. This implies that the simulation of Z by M
should not depend on the order in which independent occurrences of actions of
the form p!q and q?p are linearized in a given input.

To get around this, we simulate the component (p, q) of Z in M using the
components p and q such that for each input σ, p and q keep track the moves of
(p, q) along a canonical reordering σ′ ∼ σ. This simulation is coordinated using
the messages sent from p to q.

The key technical input for this simulation comes from [93] where it is
shown how each process p in a message-passing system can use a bounded time-
stamping protocol to keep track of the latest information about every other
process in the system. The protocol does not add extra messages to the system.
This protocol also allows each process p to locally keep track of the messages
resident in each channel (p, q) for which p has not received an “acknowledg-
ment”, directly or indirectly, from q. This list of “unacknowledged” messages
yields an upper bound for the number of messages currently resident in each
outgoing channel from p. (A more detailed description of the time-stamping
protocol is presented in [56, Appendix A].)

The desired automaton M will be of the form ({A′
p}p∈P ,∆, s′in, F

′), where
A′
p = (S′

p, p). For each process p, each state in S′
p is of the form 〈sp, s̄p, τp〉

where sp records a local state of p in Z, s̄p records a local state sc in Z for each
incoming channel c = (q, p) at p, and τ is a time-stamp generated by protocol
of [93].

The message alphabet is ∆ = Ev × T where Ev =
⋃
a∈Σ −→a and T is the

set of time-stamps used by the protocol of [93]. (Recall that −→a is the set of
a-transitions specified in Z for each a.) The initial state and the final states are
defined in the expected manner using the initial and final states of Z.

The transitions of M are arranged as follows. The tuple (〈sp, sp, τp〉, p!q,
(e, τ), 〈s′p, s′p, τ ′p〉) belongs to the p-local transition relation  p provided the
following hold. First, τ = τ ′p and τ ′p is the time-stamp generated from τp by
the protocol of [93]. Let c = (p, q). The e-component of the message is a move
((sp, sc), (s′p, s′c)) ∈ −→p!q for some sc, s′c ∈ Sc. Finally, according to τp there
are at most B−1 “unacknowledged” messages in the channel c, indicating that
sending this message will not violate the B-boundedness of M.

The tuple (〈sp, sp, τp〉, p?q, (e, τ ′), 〈s′p, s′p, τ ′p〉) belongs to  p provided the
following hold. From the time-stamp τ ′ on the incoming message, p collects the
latest information from each process r ∈ P about new r!p events that have been
sent by r but not yet received by p. For each such event, the time-stamp τ ′

also records the move ((sr, sc), (s′r, s
′
c)) guessed by r when the event occurred.

Process p updates the (r, p)-component of sp by applying this move guessed by
r. If this guess is not permitted by the current state of (r, p) as recorded in sp,
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p aborts. If there is more than one such r!p event then p processes each of them
in the order in which they were sent. Let the resulting states corresponding to
the channel components {(r, p) | r ∈ P} be ŝp. Let c = (q, p). Now, p simulates

the unique p?q move (ŝc, sp)
p?q
=⇒ (s′c, s

′
p) of Z (recall that Z is deterministic).

With this, p has updated the components sp and s̄p of its state to s′p and s′p.
Finally, it uses the time-stamps τp and τ ′ to generate a new time-stamp τ ′p as
specified by the protocol of [93].

The automaton M is nondeterministic because each send action requires
guessing a move of Z. It is easy to show that L(Z) ⊆ L(M). To show the
converse, let σ ∈ L(M) and let ρ be an accepting run of M over σ. From the
way M simulates Z, we can show that there is a canonical reordering σ′ ∼ σ
such that there is an accepting run ρ′ of M over σ′ where ρ′ is just a reordered
version of ρ. The word σ′ has the property that each message is received as soon
as possible, subject to causality constraints. For instance, if σ = p!q p!q q?p q?p
then σ′ = p!q q?p p!q q?p, and if σ = p!q p!q p!r r?p r!q q?r q?p q?p, then
σ′ = σ. In the second example, the messages via r ensure that p will have sent
both messages to q before q receives the first one. From ρ′ it is easy to extract
an accepting run of Z over σ′. The language accepted by Z is ∼-closed because
L is ∼-closed. Consequently, σ is also accepted by Z.

Filling in the details of this proof skeleton leads to the following result.

Lemma 10.3.3 Let L ⊆ Σ∗ be a B-bounded regular MSC language. Then there
exists a B-bounded message-passing automaton M over Σ such that L(M) = L.

We say that M is a bounded message-passing automaton if M is B-bounded
for some B ∈ N. The main result of this section is an easy consequence of the
two previous lemmas.

Theorem 10.3.4 Let L ⊆ Σ∗. Then L is a regular MSC language if and
only if there exists a bounded message-passing automaton M over Σ such that
L(M) = L.

10.4 A Logical Characterization

We formulate a monadic second-order logic that characterizes regular B-boun-
ded MSC languages for each fixed B ∈ N. Thus our logic will be parameterized
by a pair (P , B). For convenience, we fix B ∈ N through the rest of the section.
As usual, we shall assume a supply of individual variables x, y, . . ., a supply of
set variables X,Y, . . ., and a family of unary predicate symbols {Qa}a∈Σ. The
syntax of the logic is then given by:

MSO(P , B) ::= Qa(x) | x ∈ X | x ≤ y | ¬ϕ | ϕ ∨ ϕ | (∃x)ϕ | (∃X)ϕ

Thus the syntax does not reflect any information about B or the structural
features of an MSC. These aspects will be dealt with in the semantics. Let
MSC(P , B) be the set of B-bounded MSCs over P . The formulas of our logic
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are interpreted over the members of MSC(P , B). Let M = (E,≤, λ) be an
MSC in MSC(P , B) and I be an interpretation that assigns to each individual
variable a member I(x) in E and to each set variable X a subset I(X) of E.
Then M |=I ϕ denotes that M satisfies ϕ under I. This notion is defined in the
expected manner. For instance, M |=I Qa(x) if λ(I(x)) = a, M |=I x ≤ y if
I(x) ≤ I(y) etc. For convenience, we have used ≤ to denote both the predicate
symbol in the logic and the corresponding causality relation in the model M .

As usual, ϕ is a sentence if there are no free occurrences of individual or set
variables in ϕ. With each sentence ϕ we can associate an MSC language Lϕ def=
{M ∈ MSC(P , B) | M |= ϕ}. We say that L ⊆ MSC(P , B) is MSO(P , B)-
definable if there exists a sentence ϕ such that Lϕ = L. We wish to argue that
L ⊆ MSC(P , B) is MSO(P , B)-definable if and only if it is a B-bounded regular
MSC language. It turns out the techniques used for proving a similar result in
the theory of traces [32] can be suitably modified to derive our result.

Lemma 10.4.1 Let ϕ be a sentence in MSO(P , B). Then Lϕ is a B-bounded
regular MSC language.

Proof sketch: The fact that Lϕ is B-bounded follows from the semantics and
hence we just need to establish regularity. Consider MSO(Σ), the monadic
second-order theory of finite strings in Σ∗. This logic has the same syntax as
MSO(P , B) except that the ordering relation is interpreted over the positions
of a structure in Σ∗. Let L =

⋃
{lin(M) |M ∈ Lϕ}. We exhibit a sentence ϕ̂ in

MSO(Σ) such that L = {σ | σ |= ϕ̂}. The main observation is that the bound
B ensures that the family of channel-capacity functions K can be captured by
a fixed number of sets, which is used both to assert channel-consistency and
to express the partial order of MSCs in terms of the underlying linear order of
positions. The required conclusion will then follow from Büchi’s Theorem [15].

Let {K0,K1, . . . ,Kn} be the set {K ∈ NCh | ∀c ∈ Ch . K(c) ≤ B}. Without
loss of generality, assume that K0(c) = 0 for every c ∈ Ch . For K ∈ NCh

and c ∈ Ch, let K+c to be the member of NCh where K+c(c) = K(c) + 1 and
K+c(d) = K(d) for all d 6= c. Similarly, for K ∈ NCh and c ∈ Ch such that
K(c) > 0, K−c is given by K−c(c) = K(c) − 1 and K−c(d) = K(d) for all d 6= c.

The required sentence ϕ̂ will be of the form :

(∃XK0)(∃XK1) · · · (∃XKn)(COMP ∧ ||ϕ||),

where COMP and ||ϕ|| are defined as follows. We provide these definitions in
textual form to enhance readability. They can be easily converted to formulas
in MSO(Σ).

First we define COMP to be the conjunction of the following formulas.

(i) Every position x belongs to exactly one of the sets in {XK0 , . . . , XKn}.

(ii) If x is the first position then x ∈ XK0 .

(iii) If x is the last position then Qq?p(x) for some c = (p, q). Moreover x
belongs to XKm such that Km(c) = 1 and Km(d) = 0 for d 6= c.
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(iv) If y is the successor of x, Qp!q(x), x ∈ XKi and y ∈ XKj , then Kj = K+c
i ,

where c = (p, q).

(v) If y is the successor of x, Qq?p(x), x ∈ XKi and y ∈ XKj , then Ki(c) > 0
and Kj = K−c

i , where c = (p, q).

The formula ||ϕ|| is given inductively as follows:

• ||Qa(x)||
def= Qa(x).

• ||x ∈ X || def= x ∈ X .

• ||¬ϕ′|| def= ¬||ϕ′||.

• ||ϕ1 ∨ ϕ2|| def= ||ϕ1|| ∨ ||ϕ2||.

• ||(∃x)ϕ′|| def= (∃x)||ϕ′||.

• ||(∃X)ϕ′|| def= (∃X)||ϕ′||.

• Finally, ||x ≤ y|| def= x v y where we shall first define v in terms of <·
and then define <·. This translation is based on the fact that in an MSC
M = (E,≤, λ), ≤ = (RP ∪RCh)∗.

The formula x v y asserts that there exist non-empty subsets {p1, p2, . . . , pm}
of processes and {x1, y1, x2, y2, . . . , xm, ym} of positions such that x = x1 and
ym = y. Further, xi � yi and xi and yi are both in Σpi for 1 ≤ i ≤ m. In
addition, yi <· xi+1 for 1 ≤ i < m.

The predicate x <· y is given by: x ≺ y and there is a channel c = (p, q) such
that Qp!q(x) and Qq?p(y). Further, if x ∈ XKm then there are exactly Km(c)
occurrences of the symbol q?p between the positions x and y (and not including
y). It is now straightforward to show that ϕ̂ has the required property. 2

Lemma 10.4.2 Let L ⊆ MSC(P , B) be a regular MSC language. Then L is
definable.

Proof sketch: Let L =
⋃
{lin(M) | M ∈ L}. Then L is a regular (string)

MSC language over Σ. Hence by Büchi’s Theorem [15] there exists a sentence
ϕ in MSO(Σ) such that L = {σ | σ |= ϕ}. An important property of ϕ is that
one linearization of an MSC satisfies ϕ iff all linearizations of the MSC satisfy
ϕ. We then define the sentence ϕ̂ = ||ϕ|| in MSO(P , B) inductively such that
the language of MSCs defined by ϕ̂ is precisely L. The key idea here is to define
a canonical linearization of MSCs and show that the underlying linear order is
expressible in MSO(P , B). As a result, we can look for a formula ϕ̂ which will
say “along the canonical linearization of an MSC, the sentence ϕ is satisfied”.
We present below the main ideas and constructions involved in arriving at ϕ̂.

Throughout what follows, we fix a strict linear order ≺ ⊆ Σ × Σ. Consider
an MSC M = (E,≤, λ). For e ∈ E, let ↑e = {e′ | e ≤ e′}. For events e, e′ ∈ E,
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we define e co e′ if e 6≤ e′ and e′ 6≤ e. For X ⊆ E, let λ(X) def= {λ(e) | e ∈ X}.
Next, suppose that ∅ 6= Σ′ ⊆ Σ. Then min(Σ′) is the least element of Σ′ under
≺. Finally, suppose e, e′ ∈ E with e co e′. Then Σee′ = λ(↑e \ ↑e′).

Let M = (E,≤, λ) be an MSC. Then the ordering relation ≺ induces the
ordering relation ≺M ⊆ E × E given by e ≺M e′ if e < e′ or (e co e′ and
min(Σee′ ) ≺ min(Σe′e)).

Claim: Let M = (E,≤, λ) be an MSC. Then (E,≺M ) is a strict linear order.

Proof: Same as the proof of [139, Lemma 15], which asserts an identical result
in the setting of (infinite) Mazurkiewicz traces. 2

We next exhibit a formula in MSO(P , B) (for any B ∈ N) which captures
the relation ≺M for each B-bounded MSC M . First we define the formula
min(z1, z2, a) where z1 and z2 are individual variables and a ∈ Σ via:

min(z1, z2, a)
def= (∃z) [ z1 ≤ z ∧ ¬(z2 ≤ z) ∧Qa(z)∧

(∀z′)
(
(z1 ≤ z′ ∧ ¬(z2 ≤ z′)) ⇒ Qa(z′) ∨

∨
a≺a′ Qa′(z

′)
)
]

The formula Lex(x, y) is now given by:

Lex(x, y) def= (x < y) ∨
(

co(x, y) ∧
∨
a≺b

min(x, y, a) ∧ min(y, x, b)

)

where co(x, y) is an abbreviation for ¬(x ≤ y) ∧ ¬(y ≤ x).
Turning now to the proof of the statement of Lemma 10.4.2, let L =⋃

{lin(M) | M ∈ L}. Then L is a regular (string) MSC language over Σ.
Hence by Büchi’s Theorem [15] there exists a sentence ϕ in MSO(Σ) such that
L = {σ | σ |= ϕ}. We now define the formula ϕ̂ = ||ϕ|| in MSO(P , B) inductively
as follows:

||Qa(x)|| def= Qa(x) and ||x � y|| def= (x ≤ y ∧ y ≤ x) ∨ Lex(x, y).

The remaining clauses are the natural ones. It is now straightforward to verify
that Lϕ̂ = L. The key step in the proof is to show the following: Suppose
M ∈ MSC(P , B) and σ is the the linearization of M dictated by ≺M . Then M
is a model of ϕ̂ iff σ is a model of ϕ. This follows easily by structural induction
on ϕ. The required conclusion can now be derived by exploiting the fact that
L is ∼-closed. 2

Since MSO(Σ) is decidable, it follows that MSO(P , B) is decidable as well.
To conclude, we can summarize the main results of this chapter as follows.

Theorem 10.4.3 Let L ⊆ Σ∗, where Σ is the communication alphabet associ-
ated with a set P of processes. Then the following are equivalent.

(i) L is a regular MSC language.
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(ii) L is a B-bounded regular MSC language, for some B ∈ N.

(iii) There exists a bounded message-passing automaton M such that L(M) =
L.

(iv) L is MSO(P , B)-definable, for some B ∈ N.
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Message Sequence Charts (MSCs) are an attractive visual formalism widely
used to capture system requirements during the early design stages in domains
such as telecommunication software. A standard method to describe multiple
communication scenarios is to use Message Sequence Graphs (MSGs). An MSG
allows the protocol designer to write a finite specification which combines MSCs
using basic operations such as branching choice, composition and iteration. The
MSC languages described by MSGs are not necessarily regular in the sense of
Chapter 10. We characterize here the class of regular MSC languages that are
MSG-definable in terms of a notion called finitely generated MSC languages.
We show that a regular MSC language is MSG-definable if and only if it is
finitely generated. In fact we show that the subclass of “locally synchronized”
MSGs defined in [5] exactly capture the class of finitely generated regular MSC
languages.
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11.1 Introduction

Message Sequence Charts (MSCs) are an appealing visual formalism often used
to capture system requirements in the early design stages. They are particularly
suited for describing scenarios for distributed telecommunication software [68,
121]. They also appear in the literature as timing sequence diagrams, message
flow diagrams and object interaction diagrams and are used in a number of
software engineering methodologies [9, 52, 121]. In its basic form, an MSC
depicts a single partially-ordered execution of a distributed system which just
describes the exchange of messages between the processes of the system. A
collection of MSCs is used to capture the scenarios that a designer might want
the system to exhibit (or avoid).

Message Sequence Graphs (MSGs) are a nice mechanism for defining col-
lections of MSCs. An MSG is a finite directed graph with a designated initial
vertex and terminal vertex in which each node is labelled by an MSC and the
edges represent a natural concatenation operation on MSCs. The collection of
MSCs defined by an MSG consists of all those MSCs obtained by tracing a path
in the MSG from the initial vertex to the terminal vertex and concatenating
the MSCs that are encountered along the path. It is easy to see that this way
of defining a collection of MSCs extends smoothly to the case where there are
multiple terminal nodes. Throughout what follows we shall assume this ex-
tended notion of an MSG (that is, with multiple terminal nodes). For ease of
presentation, we shall also not deal with the so called hierarchical MSGs [5].

Intuitively, not every MSG-definable collection of MSCs can be realized as
a finite-state device. To formalize this idea we have introduced a notion of a
regular collection of MSCs and studied its basic properties in Chapter 10. Our
notion of regularity is independent of the notion of MSGs.

Our main goal in this chapter is to pin down the regular MSC languages
that can be defined using MSGs. We introduce the notion of an MSC language
being finitely generated. From our results, which we detail below, it follows that
a regular MSC language is MSG-definable if and only if it is finitely generated.
In fact we establish the following results.

As already mentioned, not every MSG defines a regular MSC language. Alur
and Yannakakis have identified a syntactic property called local synchronicity
and shown that the set of all linearizations of the MSCs defined by a locally
synchronized MSG is a regular string language over an appropriate alphabet of
events. It then follows easily that, in the present setting, every locally synchro-
nized MSG defines a finitely generated regular MSC language. One of our main
results here is that the converse is also true, namely, every finitely generated
regular MSC language can be defined by a locally synchronized MSG. Since
every MSG (locally synchronized or otherwise) defines only a finitely generated
MSC language, it follows that a regular MSC language is finitely generated if
and only if it is MSG-definable and, in fact, if and only if it is definable by some
locally synchronized MSG.

Since the class of regular MSC languages strictly includes the class of finitely
generated regular MSC languages, one could ask when a regular MSC language
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is finitely generated. We show that this question is decidable. Finally, one
can also ask whether a given MSG defines a regular MSC language (and is
hence “equivalent” to a locally synchronized MSG). We show that this decision
problem is undecidable.

Turning briefly to related literature, a number of studies are available which
are concerned with individual MSCs in terms of their semantics and proper-
ties [3, 78]. A variety of algorithms have been developed for MSGs in the
literature—for instance, pattern matching [79, 98, 100], detection of process
divergence and non-local choice [8], and confluence and race conditions [99].
A systematic account of the various model-checking problems associated with
MSGs and their complexities can be found in [5]. Finally, many of our proof
techniques make use of results from the theory of Mazurkiewicz traces [27].

In the next section we introduce MSCs and regular MSC languages. We
then introduce Message Sequence Graphs in Section 11.3. In Section 11.4 we
define finitely generated MSC languages and provide an effective procedure to
decide whether a regular MSC language is finitely generated. Our main result
that the class of finitely generated regular MSC languages coincides with the
class of locally synchronized MSG-definable languages is then established in
Section 11.5. Finally, we sketch why the problem of determining if an MSG
defines a regular MSC language is undecidable. We give here only the main
technical constructions and sketches of proofs. More details are available in [56].

11.2 Regular MSC Languages

We fix a finite set of processes (or agents) P and let p, q, r range over P . For
each p ∈ P we define Σp

def= {p!q | p 6= q} ∪ {p?q | p 6= q} to be the set of
communication actions in which p participates. The action p!q is to be read as
p sends to q and the action p?q is to be read as p receives from q. At our level
of abstraction, we shall not be concerned with the actual messages that are sent
and received. We will also not deal with the internal actions of the agents. We
set Σ =

⋃
p∈P Σp and let a, b range over Σ. We also denote the set of channels

by Ch = {(p, q) | p 6= q} and let c, d range over Ch.
A Σ-labelled poset is a structure M = (E,≤, λ) where (E,≤) is a poset and

λ : E → Σ is a labelling function. For e ∈ E we define ↓e def= {e′ | e′ ≤ e}.
For p ∈ P and a ∈ Σ, we set Ep

def= {e | λ(e) ∈ Σp} and Ea
def= {e | λ(e) = a},

respectively. For each c ∈ Ch, we define the communication relation Rc
def=

{(e, e′) | λ(e) = p!q, λ(e′) = q?p and |↓e∩Ep!q| = |↓e′ ∩Eq?p|}. Finally, for each

p ∈ P , we define the p-causality relation Rp
def= (Ep × Ep)∩ ≤.

An MSC (over P) is a finite Σ-labelled poset M = (E,≤, λ) which satisfies
the following conditions:

(i) Each Rp is a linear order.

(ii) If p 6= q then |Ep!q| = |Eq?p|.
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(p)
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•e1 //• e2

•e′2 • e3oo
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Figure 11.1: An example MSC over {p, q, r}.

(iii) ≤ = (RP ∪RCh)∗ where RP =
⋃
p∈P Rp and RCh =

⋃
c∈Ch Rc.

In diagrams, the events of an MSC are presented in visual order. The events
of each process are arranged in a vertical line and the members of the rela-
tion RCh are displayed as horizontal or downward-sloping directed edges. We
illustrate the idea with an example, shown in Figure 11.1.

Here P = {p, q, r}. For x ∈ P , the events in Ex are arranged along the line
labelled (x) with earlier (relative to ≤) events appearing above the later events.
The RCh -edges across agents are depicted by horizontal edges—for instance
e3 R(r,q) e

′
2. The labelling function λ is easy to extract from the diagram—for

example, λ(e′3) = r!p and λ(e2) = q?p.
We define regular MSC languages in terms of their linearizations. For the

MSC M = (E,≤, λ), let lin(M) def= {λ(π) | π is a linearization of (E,≤)}. By
abuse of notation, we have used λ to also denote the natural extension of λ
to E∗. The string p!q r!q q?p q?r r!p p?r is a linearization of the MSC in
Figure 11.1.

We say that σ ∈ Σ∗ is proper if for every prefix τ of σ and every pair
(p, q) of processes, |τ |p!q ≥ |τ |q?p. We say that σ is complete if σ is proper
and |σ|p!q = |σ|q?p for every pair of processes (p, q). Clearly, any linearization
of an MSC is a complete string. Conversely, every complete sequence is the
linearization of some MSC.

Henceforth, we identify an MSC with its isomorphism class. We let MSC(P)
be the set of MSCs over P . An MSC language L ⊆ MSC(P) is said to regular
if
⋃
{lin(M) | M ∈ L} is a regular subset of Σ∗. We note that the entire set

MSC(P) is not regular by this definition.
We define L ⊆ Σ∗ to be a regular string MSC language if there exists a

regular MSC language L ⊆ MSC(P) such that L =
⋃
{lin(M) | M ∈ L}.

As shown in [56], regular MSC languages and regular string MSC languages
represent each other. Hence, abusing terminology, we will write “regular MSC
language” to mean “regular string MSC language”. From the context, it should
be clear whether we are working with MSCs from MSC(P) or complete words
over Σ∗.

Given a regular subset L ⊆ Σ∗, we can decide whether L is a regular MSC
language. We say that a state s in a finite-state automaton is live if there is
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a path from s to a final state. Let A = (S,Σ, sin, δ, F ) be the minimal DFA
representing L. Then it is not difficult to see that L is a regular MSC language
if and only if we can associate with each live state s ∈ S, a (unique) channel-
capacity function Ks : Ch → N which satisfies the following conditions.

(i) If s ∈ {sin} ∪ F then Ks(c) = 0 for every c ∈ Ch.

(ii) If s, s′ are live states and δ(s, p!q) = s′ then Ks′((p, q)) = Ks((p, q))+1
and Ks′(c) = Ks(c) for every c 6= (p, q).

(iii) If s, s′ are live states and δ(s, q?p) = s′ then Ks((p, q)) > 0, Ks′((p, q)) =
Ks((p, q))−1 and Ks′(c) = Ks(c) for every c 6= (p, q).

(iv) Suppose δ(s, a) = s1 and δ(s1, b) = s2 with a ∈ Σp and b ∈ Σq, p 6= q. If
(a, b) /∈ Com or Ks((p, q)) > 0, there exists s′1 such that δ(s, b) = s′1 and
δ(s′1, a) = s2. (Here and elsewhere Com = {(p!q, q?p) | p 6= q}.)

In the minimal DFA A representing a regular MSC language, if s is a live state
and a, b ∈ Σ then we say that a and b are independent at s if (a, b) ∈ Com implies
Ks((p, q)) > 0 where K is the unique channel-capacity function associated with
A and a = p!q and b = q?p.

We conclude this section by introducing the notion of B-bounded MSC
languages. Let B ∈ N be a natural number. We say that a word σ in
Σ∗ is B-bounded if for each prefix τ of σ and for each channel (p, q) ∈ Ch,
|τ |p!q − |τ |q?p ≤ B. We say that L ⊆ Σ∗ is B-bounded if every word σ ∈ L is
B-bounded. It is not difficult to show:

Proposition 11.2.1 Let L be a regular MSC language. There is a bound B ∈ N

such that L is B-bounded.

11.3 Message Sequence Graphs

An MSG allows a protocol designer to write in a standard way [68], a finite
specification which combines MSCs using operations such as branching choice,
composition and iteration. Each node is labelled by an MSC and the edges
represent the natural operation of MSC concatenation.

To bring out this concatenation operation, we let M1 = (E1,≤1, λ1) and
M2 = (E2,≤2, λ2) be a pair for MSCs such that E1 and E2 are disjoint. For i ∈
{1, 2}, let Ric and {Rip}p∈P denote the underlying communication and process
causality relations in Mi. The (asynchronous) concatenation of M1 and M2,
denoted M1 ◦M2, is the MSC (E,≤, λ) where E = E1 ∪ E2, λ(e) = λi(e) if
e ∈ Ei, i ∈ {1, 2}, and ≤ = (RP ∪RCh)∗, where Rp = R1

p ∪R2
p ∪ {(e1, e2) | e1 ∈

E1, e2 ∈ E2, λ(e1) ∈ Σp, λ(e2) ∈ Σp} for p ∈ P , and Rc = R1
c ∪R2

c for c ∈ Com.
A Message Sequence Graph (MSG) is a structure G = (Q,−→, Qin, F ),

where:

• Q is a finite and nonempty set of states.
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Figure 11.2: An example MSG.

• −→ ⊆ Q×Q.

• Qin ⊆ Q is a set of initial states.

• F ⊆ Q is a set of final states.

• Φ : Q→ MSC(P) is a (state-)labelling function.

A path π through an MSG G is a sequence q0−→q1−→· · ·−→qn such that
(qi−1, qi) ∈ −→ for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π) =
M0 ◦M1 ◦M2 ◦ · · · ◦Mn, where Mi = Φ(qi). A path π = q0−→q1−→· · ·−→qn
is a run if q0 ∈ Qin and qn ∈ F . The language of MSCs accepted by G is
L(G) = {M(π) ∈ MSC(P) | π is a run through G}.

An example of an MSG is depicted in Figure 11.2. It’s not hard to see that
the MSC language L defined is not regular in the sense defined in Section 11.2.
To see this, we note that L projected to {p!q, r!s} is not a regular string language.

11.4 Finitely Generated MSC Languages

A key feature of MSG languages is that for each such language there is a fixed
finite set X of MSCs such that each MSC in the language can be expressed as
a concatenation of MSCs (with multiple copies) taken from X . We say that
they are finitely generated. In the next section we investigate the important
connection between MSGs and finitely generated regular MSC languages. More
precisely, we characterize the locally synchronized MSG-languages as precisely
constituting the class of MSC languages that are both regular and finitely gen-
erated.

For the purpose of bringing all this out, let L1,L2 ⊆ MSC be two sets of
MSCs. As usual, L1 ◦ L2 denotes the pointwise concatenation of L1 and L2 as
brought out in the previous section. For X ⊆ MSC, we define X 0 = {ε}, where
ε denotes the empty MSC, and for i ≥ 0, X i+1 = X ◦ X i. The asynchronous
iteration of X is then defined by X~ =

⋃
i≥0 X i. Now, let L ⊆ MSC. We say
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Figure 11.3: An atomic MSC of Linf which is not a finitely generated language.

that L is finitely generated if there is a finite set of MSCs X ⊆ MSC such that
L ⊆ X~.

We first observe that not every regular MSC language is finitely generated.
Let P = {p, q, r}. Consider the regular expression p!q σ∗ q?p, where σ is the
sequence p!r r?p r!q q?r q!p p?q. This expression describes an infinite set of
MSCs Linf = {Mi}ωi=0. Figure 11.3 shows the MSC M2. None of the MSCs in
this language can be expressed as the concatenation of two or more non-trivial
MSCs. Hence, this language is not finitely generated.

Our interest in finitely generated languages stems from the fact that these
arise naturally from standard high-level descriptions of MSC languages such
as message sequence graphs. However, as we saw earlier, Figure 11.2 provides
an example showing that, conversely, not all finitely generated languages are
regular.

The first question we address is that of deciding whether a regular MSC
language is finitely generated. To do this, we need to introduce atoms. Let
M,M ′ ∈ MSC be nonempty MSCs. Then M ′ is a component of M in case
there exist M1,M2 ∈ MSC such that M = M1 ◦M ′ ◦M2. We say that M is an
atom if the only component of M is M itself.

Thus, an atom is a nonempty message sequence chart that cannot be decom-
posed into non-trivial subcomponents. For an MSCM , we let Atoms(M) denote
the set {M ′ | M ′ is an atom and M ′ is a component of M}. For an MSC lan-
guage L ⊆ MSC, Atoms(L) =

⋃
{Atoms(M) | M ∈ L}. It is clear that the

question of deciding whether L is finitely generated is equivalent to that of
checking whether Atoms(L) is finite.



210 CHAPTER 11. ON MSGS AND FIN. GEN. REG. MSC LANGUAGES

Theorem 11.4.1 Let L be a regular MSC language. It is decidable whether L
is finitely generated.

Proof sketch: Let A = (S,Σ, sin, δ, F ) be the minimum DFA for L. From A,
we construct a finite family of finite-state automata which together accept the
linearizations of the MSCs in Atoms(L). It will then follow that L is finitely
generated if and only if each of these automata accepts a finite language. We
sketch the details below.

We know that for each live state s ∈ S, we can assign a capacity function
Ks : Ch → N which counts the number of messages present in each channel
when the state s is reached. We say that s is a zero-capacity state if Ks(c) = 0
for each channel c. The following facts are easy to prove.

Fact 11.4.2 Let M be an MSC in Comp(L) (in particular, in Atoms(L)) and
w be a linearization of M . Then, there are zero-capacity live states s, s′ in A
such that s w−→ s′.

If M is in Comp(L), then there are MSC’s M1, M2 such that M1MM2 ∈ L.
Thus, if w1, w2 are some linearizations of M1 and M2, then w1ww2 is accepted
by A. Thus, there is an accepting run sin

w1−→ s
w−→ s′ w2−→ t. As linearizations

of MSCs, w1, w2 and w are complete words. Further, sin is a zero-capacity state
and thus s and s′ must be zero-capacity states. This proves Fact 11.4.2.

Fact 11.4.3 Let M be an MSC in Comp(L). M is an atom if and only if for
each linearization w of M and each pair (s, s′) of zero-capacity live states in A,
if s w−→ s′ then no intermediate state visited in this run has zero-capacity.

Let M an atom and w be a linearization of M . Suppose w = w1w2 for
nonempty words w1 and w2 and s

w1−→ s1
w2−→ s′, where s1 is a zero-capacity

state. w1 and w2 are nonemtpy complete words. Recall that every complete
word is the linearization of some MSC. Let M1 and M2 be the MSCs corre-
sponding to w1 and w2. Then, M = M1 ◦M2 ◦M3, where M3 is the empty
MSC, contradicting the assumption that M is an atom. Thus, the run can have
no intermediate zero-capacity state.

Suppose, M is not an atom. Then M = M1 ◦M2 ◦M3 and at least two
of M1,M2,M3 are nonempty. Let w1, w2 and w3 be linearizations of M1,M2

and M3. All three are complete words. Thus, there are states s1, s2 such that
s

w1−→ s1
w2−→ s2

w3−→ s′. Since at least one of these words in nonempty, one
of the states s1 or s2 is a zero-capacity intermediate state. This completes the
proof of Fact 11.4.3.

Let us say that two complete wordsw and w′ are equivalent, written w ∼ w′,
if they are linearizations of the same MSC. Suppose s w−→ s′ and w ∼ w′ .

Then it is easy to see that s w′
−→ s′ as well.

With each pair (s, s′) of live zero-capacity states we associate a language
LAt (s, s′). A word w belongs to LAt (s, s′) if and only if w is complete, s w−→ s′

and for each w′ ∼ w the run s w′
−→ s′ has no zero-capacity intermediate states.
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From Facts 1 and 2 proved above, each of these languages consists of all the
linearizations of some subset of Atoms(L) and the linearizations of each element
of Atoms(L) is contained in some LAt (s, s′). Thus, it suffices to check for the
finiteness of each of these languages.

Let Ls,s′ be the language of strings accepted by A when we set the initial
state to be s and the set of final states to be {s′}. Clearly LAt (s, s′) ⊆ Ls,s′ .
We now show how to construct an automaton for for LAt (s, s′).

We begin with A and prune the automaton as follows:

• Remove all incoming edges at s and all outgoing edges at s′.

• If t /∈ {s, s′} and Kt = 0, remove t and all its incoming and outgoing edges.

• Recursively remove all states that become unreachable as a result of the
preceding operation.

Let A1 be the resulting automaton. A1 accepts any complete word w on
which the run from s to s′ does not visit an intermediate zero-capacity state.
Clearly, LAt (s, s′) ⊆ L(A1). However, L(A1) may also contain linearizations of
non-atomic MSCs that happen to have no complete prefix. For all such words,
we know from Fact 11.4.3 that there is at least one equivalent linearization on
which the run passes through a zero-capacity state and which would hence be
eliminated from L(A1). Thus, LAt (s, s′) is the ∼-closed subset of L(A1) and we
need to prune A1 further to obtain the automaton for LAt (s, s′).

Recall that the original DFA A was structurally closed with respect to the
independence relation on communication actions in the following sense. Suppose
δ(s1, a) = s2 and δ(s2, b) = s3 with a, b independent at s1. Then, there exists
s′2 such that δ(s1, b) = s′2 and δ(s′2, a) = s3.

To identify the closed subset of L(A1), we look for local violations of this
“diamond” property and carefully prune transitions. We first blow up the state
space into triples of the form (s1, s2, s3) such that there exist a and a′ with
δ(s1, a) = s2 and δ(s2, a′) = s3. Let S′ denote this set of triples. We obtain
a nondeterministic transition relation δ′ def= {((s1, s2, s3), a, (t1, t2, t3)) | s2 =
t1, s3 = t2, δ(s2, a) = s3}. Set Sin = {(s1, s2, s3) ∈ S′ | s2 = sin} and F ′ =
{(s1, sf , s2) ∈ S′ | sf ∈ F}. Let A2 = (S′,Σ, δ′, Sin, F ′).

Consider any state s1 in A1 such that a and b are independent at s1,
δ(s1, a) = s2, δ(s2, b) = s3 but there is no s′2 such that δ(s1, b) = s′2 and
δ(s′2, a) = s3. For each such s1, we remove all transitions of the form
((t, s0, s1), a, (s0, s1, t′)) and ((t, s2, s3), b, (s2, s3, t′)) from A2. We then recur-
sively remove all states which become unreachable after this pruning.

Eventually, we arrive at an automaton A3 such that L(A3) = LAt (s, s′).
Since A3 is a finite-state automaton, we can easily check whether L(A3) is
finite. This process is repeated for each pair of live zero-capacity states. 2
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11.5 Locally Synchronized MSGs and Regular

MSC Languages

Alur and Yannakakis [5] introduced the notion of local synchronicity for MSGs.
They also showed that the set of all linearizations of the MSCs defined by a
locally synchronized MSG is a regular string language. In the present setting
this boils down to local synchronicity of an MSG being a sufficient condition for
its MSC language to be regular. To state their condition, we first have to define
the notion of connectedness.

Let M = (E,≤, λ) be an MSC. We let CGM , the communication graph of
M , be the directed graph (P , 7→) defined as follows: (p, q) ∈ 7→ if and only if
there exists an e ∈ E with λ(e) = p!q. M is connected if CGM consists of one
non-trivial strongly connected component and isolated vertices. For an MSC
language L ⊆ MSC(P) we say that L is connected in case every M ∈ L is
connected.

Let G = (Q,−→, Qin, F ) be an MSG. A loop in G is a sequence of edges
that starts and ends at the same node. We say that G is locally synchronized
if for every loop π = q−→q1−→· · ·−→q, the MSC M(π) is connected. An
MSC language L is a locally synchronized MSG-language if there exists a locally
synchronized MSG G with L = L(G).

It is easy to check whether a given MSG is locally synchronized. Clearly,
the MSG of Figure 11.2 is not locally synchronized. One of the main results
concerning locally synchronized MSGs shown in [5] at once implies:

Lemma 11.5.1 Every locally synchronized MSG-language is a regular MSC
language.

One way to establish this result is — following [21] — to show that the asyn-
chronous iteration of a connected regular MSC language is regular. The proof
in [21] is based on grammars. A more direct, automata-theoretic proof of the
same result is described in [56, Appendix B].

Our main interest in this section is to prove the converse of Lemma 11.5.1.

Lemma 11.5.2 Let L be a finitely generated regular MSC language. Then L is
a locally synchronized MSG-language.

Proof sketch: Suppose L is a regular MSC language accepted by the mini-
mal DFA A = (S,Σ, sin, δ, F ). Let Atoms(L) = {a1, a2, . . . , am}. For each
atom ai, fix a linearization ui ∈ lin(ai). Define an auxiliary DFA A′ =
(S0,Atoms(L), sin, δ̂, F̂ ) as follows:

• S0 is the set of states of A which have zero-capacity functions.

• F̂ = F .

• δ̂(s, ai) = s′ iff δ(s, ui) = s′ in A. (Note that u, u′ ∈ lin(ai) implies
δ(s, u) = δ(s, u′), so s′ is fixed independent of the choice of ui ∈ lin(ai).)
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Thus, A′ accepts the (regular) language of atoms corresponding to L(A).
We can define a natural independence relation IA on atoms as follows: atoms ai
and aj are independent if and only if the set of active processes in ai is disjoint
from the set of active processes in aj. (The process p is active in the MSC
(E,≤, λ) if Ep is non-empty.)

It follows that L(A′) is a regular Mazurkiewicz trace language over the trace
alphabet (Atoms(L), IA). As usual, for w ∈ Atoms(L)∗, we let [w] denote the
equivalence class of w with respect to IA.

We now fix a strict linear order ≺ on Atoms(L). This induces a (lexico-
graphic) total order on words over Atoms(L). Let Lex ⊆ Atoms(L)∗ be given
by: w ∈ Lex iff w is the lexicographically least element in [w].

For a trace languageL over (Atoms(L), IA), let lex (L) denote the set L∩Lex.

Fact 11.5.3 ([27], Sect. 6.3.1)

(i) If L is a regular trace language over (Atoms(L), IA), then lex (L) is a
regular language over Atoms(L). Moreover, L = {[w] | w ∈ lex (L)).

(ii) If w1ww2 ∈ Lex, then w ∈ Lex.

(iii) If w is not a connected1 trace, then ww /∈ Lex.

From (i) we know that lex (L(A′)) is a regular language over Atoms(L). Let
C = (S′,Atoms(L), s′in, δ

′, F ′) be the DFA over Atoms(L) obtained by eliminat-
ing the (unique) dead state, if any, from the minimal DFA for lex (L(A′)). It is
easy to see that an MSC M belongs to L if and only if it can be decomposed
into a sequence of atoms accepted by C. Using this fact, we can derive an MSG
G from C such that L(G) = L. We define G = (Q,−→, Qin, F ) as follows:

• Q = S′ × (Atoms(L) ∪ {ε}).

• Qin = {(s′in, ε)}.

• (s, b)−→(s′, b′) iff δ′(s, b′) = s′.

• F ′ = F × Atoms(L).

• Φ(s, b) = b.

Clearly G is an MSG and the MSC language that it defines is L. We need to
show that G is locally synchronized. To this end, let π = (s, b)−→(s1, b1)−→· · ·
−→(sn, bn)−→(s, b) be a loop in G. We need to establish that the MSC M(π) =
b1 ◦ · · · ◦ bn ◦ b defined by this loop is connected. Let w = b1b2 . . . bnb.

Consider the corresponding loop s
b1−→ s1

b2−→ · · · bn−→ sn
b−→ s in C. Since

every state in C is live, there must be words w1, w2 over Atoms(L) such that
w1w

kw2 ∈ lex (L(A′)) for every k ≥ 0.

1Recall from Section 3.2.5 that a trace is said to be connected if, when viewed as a labelled
partial order, its Hasse diagram consists of a single connected component. See [27] for a more
formal definition.
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Figure 11.4: An non-locally synchronized MSG whose language is regular.

From (ii) of Fact 11.5.3, wk ∈ Lex. This means, by (iii) of Fact 11.5.3, that w
describes a connected trace over (Atoms(L), IA). From this, it is not difficult to
see that the underlying undirected graph of the communication graphCGM(π) =
(P , 7→) consists of a single connected component C ⊆ P and isolated processes.
We have to argue that the component C is, in fact, strongly connected. We
show that if C is not strongly connected, then the regular MSC language L is
not B-bounded for any B ∈ N, thus contradicting Proposition 11.2.1.

Suppose that the underlying graph of C is connected but C not strongly
connected. Then, there exist two processes p, q ∈ C such that p 7→ q, but there
is no path from q back to p in CGM(π). For k ≥ 0, let M(π)k = (E,≤, λ) be
the MSC corresponding to the k-fold iteration M(π) ◦M(π) ◦ · · · ◦M(π)︸ ︷︷ ︸

k times

. Since

p 7→ q in CGM(π), it follows that there are events labelled p!q and q?p in M(π).
Moreover, since there is no path from q back to p in CGM(π), we can conclude
that in M(π)k, for each event e with λ(e) = p!q, there is no event labelled q?p
in ↓e. This means that M(π)k admits a linearization v′k with a prefix τ ′k which
includes all the events labelled p!q and excludes all the events labelled q?p, so
that |τ |p!q − |τ |q?p ≥ k.

By Proposition 11.2.1, since L is a regular MSC language, there is be a bound
B ∈ N such that every word in L is B-bounded—that is, for each v ∈ L, for each
prefix τ of v and for each channel (p, q) ∈ Ch, |τ |p!q − |τ |q?p ≤ B. Recall that
w1w

kw2 ∈ lex (L(A′)) for every k ≥ 0. Fix linearizations v1 and v2 of the atom
sequences w1 and w2, respectively. Then, for every k ≥ 0, uk = v1v

′
kv2 ∈ L

where v′k is the linearization of M(π)k defined earlier. Setting k to be B+1, we
find that uk admits a prefix τk = v1τ

′
k such that |τk|p!q − |τk|q?p ≥ B+1, which

contradicts the B-boundedness of L.
Hence, it must be the case that C is a strongly connected component, which

establishes that the MSG G we have constructed is locally synchronized. 2

Putting together Lemmas 11.5.1 and 11.5.2, we obtain the following charac-
terization of MSG-definable regular MSC languages.
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Figure 11.5: The MSC Ma encoding the letter a ∈ A.

Theorem 11.5.4 Let L be a regular MSC language. Then the following state-
ments are equivalent:

(i) L is finitely generated.

(ii) L is a locally synchronized MSG-language.

(iii) L is MSG-definable.

It is easy to see that local synchronicity is not a necessary condition for
regularity. Consider the MSG in Figure 11.4, which is not locally synchronized.
It accepts the regular MSC language M1 ◦ (M1 +M2)

~.
Thus, it would be useful to provide a characterization of the class of MSGs

representing regular MSC languages. Unfortunately, the following result shows
that there is no (recursive) characterization of this class.
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Theorem 11.5.5 The problem of deciding whether a given MSG represents a
regular MSC language is undecidable.

Proof sketch: It is known that the problem of determining whether the trace-
closure of a regular language L ⊆ A∗ with respect to a trace alphabet (A, I)
is also regular is undecidable [123]. We reduce this problem to the problem of
checking whether the MSC language defined by an MSG is regular.

Let Ã = (A1, . . . , An) be a distributed alphabet implementing the trace
alphabet (A, I) [27]. We will fix a set of processes P and the associated com-
munication alphabet Σ and encode each letter a by an MSC Ma over P .

For each i, we create 1 + |Ai| processes which we will denote by pi, pa1
i , p

a2
i ,

. . . , pak

i , where Ai = {a1, a2, . . . , ak}. Suppose now that the letter a appears in
the components Ai1 , Ai2 , . . . , Aik of the distributed alphabet Ã with 1 ≤ i1 <
i2 < · · · < ik ≤ n. The MSC Ma representing a is then given in Figure 11.5.
It’s easy to see that the communication graph CGMa is strongly connected.
Moreover, if (a, b) ∈ I, then the sets of active processes of Ma and Mb are
disjoint. The encoding ensures that we can construct a finite-state automaton
to parse any word over Σ and determine whether it arises as the linearization
of an MSC of the form Ma1 ◦Ma2 ◦ · · · ◦Mak

. If so, the parser can uniquely
reconstruct the corresponding word a1a2 . . . ak over A.

Let A be the minimal DFA corresponding to a regular languageL overA. We
construct an MSG G from A as described in the proof of Lemma 11.5.2. Given
the properties of our encoding, we can then establish that the MSC language
L(G) is regular if and only if the trace-closure of L is regular, thus completing
the reduction. 2
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[133] Thérien, D., Wilke, Th.: Over words, two variables are as powerful as
one quantifier alternation: FO2 = Σ2 ∩ Π2. Proceedings of the 30th An-
nual ACM Symposium on Theory of Computing (STOC’98), ACM Press
(1998) 234–240

[134] Thiagarajan, P. S.: TrPTL: a trace based extension of linear time tem-
poral logic. Technical report TCS-93-6, Chennai Mathematical Institute
(1993)

[135] Thiagarajan, P. S.: A trace based extension of linear time temporal logic.
Proceedings of the 9th Annual IEEE Symposium on Logic in Computer
Science (LICS’94), IEEE Computer Society Press (1994) 438–447

[136] Thiagarajan, P. S.: PTL over product state spaces. Technical report TCS-
95-4, Chennai Mathematical Institute (1995)

[137] Thiagarajan, P. S.: A trace consistent subset of PTL. Proceedings of
the 6th International Conference on Concurrency Theory (CONCUR’95),
Lecture Notes in Computer Science 962, Springer-Verlag (1995) 438–452



228 BIBLIOGRAPHY

[138] Thiagarajan, P. S., Henriksen, J. G.: Distributed versions of linear time
temporal logic: A trace perspective. In Reisig, W., Rozenberg, G. (Eds.):
Lectures on Petri Nets I: Basic Models, Lecture Notes in Computer Sci-
ence 1491, Springer-Verlag (1998) 643–681

[139] Thiagarajan, P. S., Walukiewicz, I.: An expressively complete linear time
temporal logic for Mazurkiewicz traces. Proceedings of the 12th Annual
IEEE Symposium on Logic in Computer Science (LICS’97), IEEE Com-
puter Society Press (1997) 183–194

[140] Thomas, W.: Automata on infinite objects. In van Leeuwen, J. (Ed.):
Handbook of Theoretical Computer Science, Volume B: Formal Models
and Semantics, Elsevier Science Publishers (1990) 133–191

[141] Thomas, W.: On logical definability of trace languages. Proceedings of
the ASMICS Workshop on Free Partially Commutative Monoids, Tech-
nical report TUM-I9002, Institut für Informatik, Technische Universität
München (1990) 172–182

[142] Thomas, W.: On the Ehrenfeucht-Fräıssé game in theoretical com-
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