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Outline of Dissertation

Back where I come from, we have universities of great learning,
where men go to become great thinkers. And when they come
out, they think deep thoughts and with no more brains than you
have. But they have one thing that you haven’t got: a diploma.

—Wizard of Oz, Wizard of Oz

During four years of arduous service, a Ph. D. student is expected to familiarise
himself1 with his field of research, and, hopefully, contribute to this field. This is
reflected by the division of this dissertation into two parts. Part I is a (partial)
overview of the field of computational biology as I conceive it, an overview
that is aimed at presenting the context for my contributions to the field of
computational biology. These contributions are presented in part II as five
independent articles.

Part I is constituted of chapters 1 through 3. Chapter 1 gives a brief in-
troduction to some important concepts from computer science and molecular
biology used throughout the dissertation. The remainder of part I is split into
two chapters. The first of these, chapter 2, focuses on problems arising when we
abstract biomolecules – DNA, RNA and proteins – to be merely sequences over
a finite alphabet. In the second, chapter 3, I focus on the structural problems
introduced when looking at biomolecules as real, three dimensional chemical
molecules.

Part II is constituted of chapters 4 through 8, each consisting of an indepen-
dent article. Prior to each article there is a short description of the publication
status of the results presented in the article, and references to implementations
where applicable.

1From the Merriam-Webster dictionary [4]: he [pronoun] – used in a generic sense or when
the sex of the person is unspecified.
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Chapter 1

Introduction

What’s in a name? That which we call a rose by any other name
would smell as sweet;

—William Shakespeare, Romeo and Juliet

The analytical and differential engines of Charles Babbage were mainly intended
for generating tables of functions and performing basic mathematical compu-
tations. Since then the power of automated computing has increased tremen-
dously. With the advent of affordable computational power numerous fields
have discovered the advantages of employing computers’ capacities in storage,
computation and simulation, thus spawning new interdisciplinary areas with
computer science as one of the disciplines.

One such area is computational biology. This area is concerned with the use
of computers for biological problems, most prominently problems in evolution-
ary and molecular biology. This area is also referred to as bioinformatics and
these two terms are often used interchangeably. However, it does seem that
some consensus is forming for using computational biology when the focus is on
developing good algorithms for mathematical models with biological relevance,
and bioinformatics when the focus is on constructing and using computational
tools for biology. With this distinction the work presented in this dissertation
clearly falls in the category of computational biology.

1.1 Computational Concepts

When developing an algorithm the primary objective is of course for the algo-
rithm to actually solve the problem it is intended to solve. Another important
objective is to limit the resources, usually the time and space, used by the
algorithm. A useful way to describe this is by the O notation expressing the
asymptotic behaviour of resource usage. This allows us to ignore unimportant
details complicating the analysis but still gives a good foundation for estimating
the requirements of the algorithm for new instances of the problem.

Let f : N → R be a function expressing the resource usage of an algo-
rithm, such that f(n) is the maximal resource usage for any problem instance
of size n (this measure of size might e.g. be the number of characters if the
input is a sequence). Formally f(n) is O(g(n)) where g : N→ R (often written
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f(n) = O(g(n))) if ∃n0, c > 0 ∀n ≥ n0 : f(n) ≤ cg(n), that is, g gives an
upper bound on the growth of f . In itself the O notation does not give us any
information on the actual resource requirements for a specific instance of the
problem. But coupled with a good estimate on c, possibly in part obtained
by some representative examples, it does allow rough estimates for problem
instances of any size.

Actually it does not make sense to specify the resource requirements for
an algorithm without having fixed a computational model. If our model only
allows us to add numbers and not multiply them it would take time O(log n) to
compute n2 whereas we can compute the same result in time O(1) in a model
with unit-cost multiplication. Throughout this dissertation we will not go into
details with the assumed computational models; the assumptions can be in-
ferred from the resource bounds arguments and are all of a ‘unit-cost standard
computer’ type, that is, a model resembling a standard computer (conditional
branching, various addressing modes, arithmetic operations with ‘sufficient’ pre-
cision etc.) with single operations taking constant time. One argument for this
choice is, that in an interdisciplinary field like computational biology the focus
is on computationally solving problems more than on determining the intrinsic
complexity of problems.

Of special interest are those algorithms that run in polynomial time, that
is, the time requirement is bounded by some polynomial in the size of the in-
stance. One can, arguably cf. [113, pp. 6–8], claim that algorithms running in
polynomial time are efficient, while algorithms requiring more than polynomial
time are inefficient. Furthermore, there is a polynomial correspondence between
most realistic computational models, that is, we can simulate one model in an-
other model in time bounded by a polynomial of the time required in the model
being simulated. As the composition of two polynomials is again a polynomial,
polynomial time is rather robust to the choice of computational model.

The problems for which a polynomial time algorithm is known (or more gen-
erally exists) can thus be solved efficiently. This class of problems is denoted by
P (short for polynomial time) and is often referred to as the tractable problems.
Another important class for studying efficient solutions is the class of problems
that can be solved in nondeterministic polynomial time denoted by NP. Infor-
mally NP is the class of problems for which we can verify (but not necessarily
find) a solution in polynomial time. Some confusion exists about this being the
class of intractable problems but as P ⊆ NP this is obviously not the case. The
confusion, supported by NP being misconceived as short for non-polynomial
time, is probably due to the fact, that proving a problem NP complete is taken
as a strong indication that the problem is in fact intractable. The NP complete
problems are in some sense as hard as they come in NP – if there is any problem
in NP that cannot be solved in polynomial time then no NP complete problem
can be solved in polynomial time. As many bright people have attempted to
find polynomial time algorithms for numerous NP complete problems but no
one has succeeded, NP complete is usually considered equivalent to ‘probably
intractable’.

With all this said, it should be remembered that what constitutes a good
and useful algorithm very much depends on the particular case. Much effort and
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computational power has been devoted to find suboptimal solutions to problems
arising in telecommunications, airline planning etc. as even small improvements
yield significant savings; in Hitch Hiker’s Guide to the Galaxy [5, chapter 25] a
race of hyperintelligent pan-dimensional beings builds Deep Thought, a humon-
gous computer that runs for millions of years to find the answer to the great
question of life, the universe and everything. On the other hand polynomial
time algorithms finding optimal solutions within a model might be of little in-
terest. In section 3.1.2 we present an algorithm with time complexity O(n5) for
predicting a class of RNA secondary structures containing pseudoknots. Being
ready to wait a year for the result, we should thus be able to handle quite large
sequences. That kind of patience in this situation is however unrealistic as the
result will only be a rough estimate of a real-world secondary structure, a struc-
ture that might be of limited significance. Whether the resource requirements
are acceptable thus to a high degree depends on the perceived quality of the
result of the computation.

1.2 Biological Concepts

Having an efficient algorithm solving a problem is of little use if we do not have
interesting instances of the problem needed to be solved. A key component in
shaping the field of computational biology has thus been the development of
efficient techniques to peek into the fundamental building blocks of life. Where
Darwin and Mendel were restricted to just observe the phenotypes, i.e. colour,
shape etc., we now have the means to explore the genotype, i.e. the hereditary
characteristics, of an organism as well. Apart from opening for a new level
of understanding of biological processes, this can also be very helpful when
comparing species. As convergent evolution is highly unlikely at the level of
DNA sequences, this provides us with a rich source of information that might
help settling old disputes. Or introducing new ones [122].

But before we can bring computers to bear on all this new information,
we need to bring it into the computer. In other words, we need to design
models about the biological realities that are comprehensible to computers.
The specific model of course depends on the questions we are asking, but a few
elements – the sequence nature of key biomolecules and thermodynamics – are
of so general use that we will give a brief treatment of them here.

1.2.1 Biological Sequences

In their genetic material all living organisms carry a blueprint of the molecules
they need for the complex task of living. This genetic material is (usually)
stored in the form of DNA – short for deoxyribonucleic acid – sequences. The
DNA is not actually sequences but rather long, chain-like molecules consisting
of nucleotides linked together by phosphate ester bonds. A nucleotide consists
of phosphoric acid, a pentose sugar (2-deoxyribose for DNA) and an amine base,
cf. figure 1.1. The amine base is one of guanine, cytosine, adenine and thymine,
cf. figure 1.2. A DNA molecule is thus a uniform backbone of 2-deoxyriboses
linked together by phosphates with side chains of amine bases. Hence, a DNA
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*3’ position Y 2’ position

Figure 1.1: A generic nucleotide with the phosphates linking to the previous
and next nucleotides. If Y is a hydrogen atom the sugar is 2-deoxyribose, and
if Y is is an OH-group it is ribose.
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Guanine
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Cytosine

N
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N N H

H

Adenine

N

N

O

H

O Y

Thymine/Uracil

Figure 1.2: The five bases of nucleic acid sequences. When Y is a hydrogen
atom, the right-hand base is uracil, and when Y is a CH3 group, it is thymine.
The hydrogen bonds in the base pairings are shown with dotted lines. The
connections to the backbone are shown with dashed lines.

molecule can be specified uniquely by listing the sequence of amine base side
chains, a listing conventionally starting from the 5’ end. This motivates the
abstract view of DNA as sequences over a four letter alphabet.

In organisms the DNA is actually not stored as just a single sequence of
nucleotides, but as two complementary sequences of nucleotides wound around
each other in a helix. Two sequences are complementary if one is the other read
backwards with guanine and cytosine interchanged and adenine and thymine
interchanged. As illustrated in figure 1.2, the four types of amine bases can be
split into two pairs of complementary bases that can form strong interactions,
called base pairings, by hydrogen bonding. Two complementary sequences can
thus glue together, forming a helix stabilised by the consecutive stretch of base
pairings. This structure was proposed by Watson and Crick [154] and is called
the Watson-Crick model. The two types of base pairings it involves are called
Watson-Crick base pairs.
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(a) General structure of the nineteen
primary amino acids. Primary refers
to the amino group having two hydro-
gen atoms. The type of amino acid is
determined by the side chain R.
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C OH

O
H

(b) Structure of proline, the only sec-
ondary amino acid encountered in pro-
teins. The three undesignated corners
of the pentagon are occupied by CH2

groups.

Figure 1.3: The amino acids encountered in proteins are all α-amino acids,
i.e. the amino group is attached to the carbon atom next to (in α position of)
the carboxyl group.
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Figure 1.4: A segment of the backbone of a protein. The peptide bonds linking
the amino acid residues are indicated by gray lines.

The rôle of DNA is as storage medium for information about the individual
molecules needed in the biochemical processes of the organism. A region of
the DNA that encodes a single functional molecule is refered to as a gene, and
when the molecule is needed the gene is transcribed to an RNA – short for
ribonucleic acid – sequence. By the transcription an RNA sequence comple-
mentary to the DNA sequence complementary to the gene – and thus (almost)
identical to the gene – is constructed. Like DNA, RNA is actually a molecule
rather than a sequence, but a molecule very similar to DNA. The only differ-
ences are ribose being the pentose sugar, cf. figure 1.1, and uracil replacing
thymine, cf. figure 1.2. For RNA it is thus also valid to use a sequence ab-
straction. Furthermore, we can define an RNA sequence complementary to a
DNA sequence in much the same way as for DNA with uracil taking the place
of thymine.

Sometimes the RNA molecule generated by the transcription will itself be
the functional molecule encoded by the gene, but most often it is intended as a
template for a protein. Like DNA and RNA, proteins are chain-like molecules,
but for proteins the backbone consists of α-amino acids, cf. figure 1.3, linked
together by peptide bonds, cf. figure 1.4. Twenty different types of amino
acids, cf. [103, table 15.1], are encountered in proteins, so again we observe that
a sequence over a finite alphabet suffices to specify a biomolecule.
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Before the RNA transcribed from the gene is translated to a protein some
parts might need to be removed. In eukaryotes the coding parts of a gene,
called exons, might be interspersed with non-coding parts, called introns. These
introns need to be removed, joining the exons at the splice sites, to generate
the functional messenger RNA coding for the protein. When the messenger
RNA is translated to the protein it is read three bases at a time. These three
bases, called a codon, uniquely determines the next amino acid added to the
protein being constructed according to the (almost) universal genetic code,
cf. [103, table 16.3].

1.2.2 Thermodynamics

When trying to solve a problem by a computer we usually have an objective
we are trying to optimise. Nature has its own objective function, entropy, that
it is perpetually optimising. According to the second law of thermodynamics,
the entropy of an isolated system will be non-decreasing, cf. [7, section 3.7].
Biological systems are not isolated but we can derive another quantity, the Gibbs
free energy, that will be non-increasing under conditions resembling those under
which biochemical processes take place, cf. [7, section 4.3]. When modelling
biochemical processes, e.g. like structure formation, it is thus often natural to
choose an objective function imitating the free energy, as it for one thing lends
an immediate interpretation.

The free energy of a system can be divided into an enthalpic contribution and
an entropic contribution, cf. [7, equation 4.14]. The enthalpy of a system can be
thought of as the energy stored in the system, e.g. the heat obtained by burning
this dissertation equals the change in enthalpy between the dissertation and the
ash and other products of the burning process. Entropy is usually refered to as
disorder and can be thought of as the number of choices available to the system
in its current state. To illustrate this, if we roll two dice and count the total
number of spots, we get a number between two and twelve. But all outcomes
are not equally probable; we only roll twelve if both dice come out with six but
there are six different ways to roll seven. More choices are available for rolling
seven and thus the ‘entropy’ of seven is larger than the ‘entropy’ of twelve.

To further exemplify this concept, consider the formation of a base pair in
an RNA structure, cf. section 3.1.2. The change in enthalpy by forming this
base pair will be advantageous, as the enthalpy decreases by the amount of
energy needed to break the hydrogen bonds of the base pair. On the other
hand, the base pair will fix the two bases pairing in close spatial proximity.
This means that there are less conformations available for the RNA molecule.
Thus the base pair formation will be entropically disadvantageous. Whether
the change in free energy is advantageous or disadvantageous depends on the
relative proportions of these two entities.

8



Chapter 2

Sequence Analysis

22:18 For I testify unto every man that heareth the words of the
prophecy of this book, If any man shall add unto these things,
God shall add unto him the plagues that are written in this book:

22:19 And if any man shall take away from the words of the book
of this prophecy, God shall take away his part out of the book
of life, and out of the holy city, and from the things which are
written in this book.

—Revelation, The Bible, King James V version

Contrary to the ‘book of life’, the ‘articles of life’ stored in the genetic sequences
of all living organisms do not seem to have any desire for constancy. Over the
course of time, these sequences evolve by small discrete changes called muta-
tions such that after a couple of aeons it might be hard if not impossible to
find any resemblance to the original sequence. These mutations are not un-
constrained, though, as the sequence is the blueprint of some organism that
has to live, thrive and survive in the real world. It is thus relevant to examine
these sequences, both to look for regularities (that might be used to identify the
sequence or from which some of the constraints of evolution can be inferred)
and to compare two or more sequences believed to have evolved from the same
ancestral sequence. Inferring structural information for the sequence, cf. chap-
ter 3, could be considered part of looking for regularities but the extent and
importance of this area usually justifies considering it a realm of its own.

2.1 Detecting Regularities

If we only have one sequence at our disposal we can only ask questions about
that one particular sequence, and not questions about how it relates to other
sequences. One such question could be detection of introns, exons and splice-
sites in the sequence, that is, what parts of the sequence that code for a protein.
These methods usually relies on inferring the patterns or regularities sought for
from a set of known data, e.g. by training a hidden Markov model (cf. sec-
tion 2.2.2) as reported by Krogh [79]; then occurrences of these patterns or
regularities can be detected to gain information for a new sequence. As the
patterns and regularities are inferred from a data set of known sequences, these

9



1 4

ning g 6

2 5 3

ning g ing

in g n

Figure 2.1: The suffix-tree of the word inning ; the leafs are labeled with the
index of the start of the suffix they represent. As g only occurs as the last letter
we do not need to add a special end-marker.

methods are on the borderline between finding regularities in a single sequence
and comparing sequences. If we truly only have a single sequence at our dis-
posal, we will in some sense have to compare the sequence against itself to find
regularities.

Perhaps the simplest possible, non-trivial regularity to look for in a se-
quence s is repeated occurrences of a substring. If the occurrences of a sub-
string α are contiguous it is called a tandem repeat or a square; thus s contains
a tandem repeat if it contains the substring αα for some α. Recently it has been
shown that (a compact representation of) all tandem repeats of a sequence s
can be determined in time O(n) where n = |s|, cf. [77, 53]. This implies that we
can output all tandem repeats in time O(n+z) where z is the number of tandem
repeats. This improves on previous methods requiring time O(n log n+ z).

A convenient data structure when looking for repeated patterns in a se-
quence is the suffix tree of the sequence, cf. figure 2.1. A suffix tree T (s) of the
sequence s is the compressed trie of all suffixes of s, cf. definition 8 on page 58.
A trie of a set of words over some alphabet Σ is a tree where

• each edge is labeled with a character from Σ and the edges going to the
children of a node all have different labels.

• the path-label of the path from the root to a node (that is, the concate-
nation of the labels of the edges traversed on the path from the root to
the node) of the trie is a prefix of one of the words in the set.

• for each word there is a node (a leaf unless the word is a prefix of another
word) where the word is spelled by the path from the root to that node.
If we extend each word with a special end-marker $ 6∈ Σ each word will
be represented by one leaf.

A compressed trie is a trie where non-branching parts of the tree are com-
pressed; all internal nodes with only one child are removed and the paths thus
removed are replaced with edges labeled by the strings spelled by the paths,
thus preserving the path-labels from the root down to the remaining nodes.

It is easy to see how we can use a suffix-tree to find repeated occurrences of
a substring. If s[i..i + k] = α = s[j..j + k] for some i 6= j, then both the suffix
of s starting at i and the suffix starting at j will begin with α. The paths from
the root down to the leafs labeled i and j will thus coincide at least until α has
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been spelled. Hence the repeated substrings corresponds to all strings spelled
on a path from the root to some internal node, possibly ending somewhere on
the middle of the edge, that is, using only a prefix of the edge label of the last
edge traversed. In the word inning we can thus recognise the three repeated
substrings n, i and in , cf. figure 2.1. As the suffix tree of a sequence s can be
constructed in time O(n) [155, 102, 144, 41] where n = |s|, we can determine
all pairs of repeated substrings in a sequence in time O(n + z) where z is the
number of pairs of repeated substrings.

In many situations the full set of all repeated sequences might contain re-
dundant and uninteresting information. For one thing, we can observe that the
two occurrences of the repeated substring i in inning are substrings of the two
occurrences of the repeated substring in. Thus we might want to restrict our
attention to maximal pairs, that is, a pair of occurrences of a repeated substring
where both the characters to the immediate right of the two occurrences and
to the immediate left of the two occurrences are different, cf. definition 7 on
page 57. Furthermore, as the sequence becomes longer we are bound to find
repetitions of longer and longer subsequences simply by the pigeonhole princi-
ple. Thus we might not be interested in short repetitions unless the distance
between them is in some bounded interval.

In chapter 4 we present a method to find all maximal pairs in a sequence
s with an upper and lower bound on the length of the gap between the occur-
rences, bounds that can depend on the length of the substrings constituting the
pair. The method requires time O(n log n + z) and space O(n), where n = |s|
and z is the number of maximal pairs reported; if we only want to impose a
lower bound on the length of the gap between the occurrences, the time require-
ments can be reduced to O(n + z). The problem of finding all maximal pairs
with bounded gap length can in some sense be considered an intermediary be-
tween finding tandem repeats (where there is no gap between the occurrences)
and finding all pairs as described above; in the following we will give a brief
sketch of the basic ideas of the method.

Our method is an extension of the suffix-tree based method for finding all
pairs described above. We will use the notation (i, j, k) for a pair with the
meaning that the two substrings s[i..i + k − 1] and s[j..j + k − 1] are identical
and thus forms a pair of substrings of length k, cf. figure 4.1. The first obser-
vation is that we can sort out all pairs (i, j, k) where (i, j, k + 1) is also a pair,
that is, pairs that can be extended to the right with an extra character, by only
reporting pairs of indices from different subtrees of an internal node. Thus a
straightforward approach would be to examine all internal nodes; for a particu-
lar internal node with α spelled by the path from the root to that node all pairs
of indices i, j from different subtrees are examined; if the gap length between
s[i..i+ |α| − 1] and s[j..j + |α| − 1] is within the bounds and s[i− 1] 6= s[j − 1]
the pair (i, j, |α|) is reported. This approach might be to costly, however, as we
might inspect numerous pairs of indices that are not reported.

To improve on the efficiency the first thing we need is an improved way of
handling each of the indices in one subtree of an internal node in T (s). For a
particular index, the range of indices in another subtree of the internal node
that it can be reported against should be determined efficiently. This is achieved
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by maintaining the indices in balanced search trees. By lemma 5 on page 60,
given the indices of one subtree we can find the indices in another subtree from
which to start reporting in time O(log

(n+m
n

)
), where n andm are the number of

indices in the two subtrees, if we have the indices stored in balanced search trees.
We can now proceed from these starting points, scanning through indices until
we reach the other end of the bounded interval and reporting all pairs provided
they do not have identical characters to the immediate left. This provision
constitutes the last obstacle as we again might find ourselves inspecting too
many pairs that cannot be reported. This is handled by maintaining an extra
balanced search tree allowing us to skip blocks of consecutive indices with the
same character to the immediate left. The full data structure constructed at
each node in the suffix tree is illustrated in figure 4.3. By lemma 4 on page 60,
if we traverse T (s) in a bottom-up fashion we can maintain this data structure
at the nodes visited in time proportional to the time we use to search the data
structure. By applying the “smaller-half trick”, that is, always searching with
the smaller of two sets of indices, we can limit the time required, disregarding
time that can be attributed to reporting of pairs, by O(n log n). The details
can be found in section 4.3.

If only a lower bound is imposed on the gap length between occurrences we
get off easier on two accounts. First, for an index from one subtree we do not
need to search for the indices in another subtree from which to report; we can
just start from the index farthest away and continue until we get to an index
that is too close. This trick has to be applied twice, though, as it is too costly
to look through all indices in one subtree if most of them cannot be reported
against any indices in the other subtree. We thus start from opposite ends and
work our way inwards. Secondly, as we only need to find extreme indices – the
ones farthest away – we do not need to maintain a fully ordered tree structure;
a heap-ordered tree structure will suffice. This allows us to merge the indices of
two subtrees in amortised constant time. Thus, disregarding time that can be
attributed to reporting of pairs, we only need time proportional to the number
of nodes of T (s), which is O(n), to report all maximal pairs with a lower bound
on gap length for a sequence s. The details can be found in section 4.4.

So why look for these repetitions? Occurrences of tandem repeats – or rather
tandem arrays, that is, multiple contiguous occurrences of a substring – are well-
known in e.g. the human genome where tandem repeats are found in several
interesting connections, cf. [52, pp. 139–142]. A widespread use of tandem
arrays is as ‘genetic fingerprints’ as the number of repetitions shows a high
variability between individuals, cf. [24]. In most, if not all, of these applications
it is however known where to look for the repeated sequences, so the problem
of finding repetitions is probably most correctly termed a problem inspired by
biology rather than a biological problem.

2.2 Comparing Sequences

As soon as we have two or more sequences we can compare them against each
other. The uses of comparing sequences are many. We might compare a new se-
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− t h− e−−−
− t h r e− e−
s t− r i n g s

Figure 2.2: An example alignment of the three strings the, three and strings.

quence to a database of known sequences to find homologous sequences, that is,
sequences which have evolved from a common ancestral sequence. Homologous
sequences can be compared simply to gain information about how distantly
related they are or to try to infer evolutionary constraints, e.g. like conserved
residues in a protein that can indicate an active site1, or compensatory changes
that can indicate a base pairing in an RNA molecule, cf. section 3.1.2.

The evolution of DNA sequences usually takes place by small, local changes,
where one nucleic acid is substituted for another or a short sequence of nucleic
acids are either inserted or deleted in the sequence. These are not the only kinds
of mutations known but the most frequently observed; a large part of the work
concerned with comparing biological sequences has been devoted to models that
only involves substitutions and indels (indels is a contraction of insertions and
deletions – in some situations there is made no distinction between these, and
indel is used as common nominator). Except where specifically stated otherwise,
in the following we will assume an evolutionary model that only allows these
two types of mutations.

Traditionally the alignment notation, cf. figure 2.2, has been used to il-
lustrate a comparison between two or more sequences. An alignment of m
sequences is an m× n matrix where an entry in the i’th row either contains a
character from the i’th sequence or a special gap character ; the character ‘−’
is commonly used as gap character. Furthermore the concatenation of the non-
gap entries of the i’th row is identical to the i’th sequence (thus n ≥ ni for
1 ≤ i ≤ m where ni is the length of the i’th sequence). The alignment notation
makes it easy by eye to see the regions of highest similarity and to get an im-
pression of which parts of the sequences that correspond to each other. Apart
from being an informative representation of a comparison, alignments can also
be considered a useful tool when manually comparing sequences. The notation
is helpful in spotting possible improvements.

We mentioned above that an alignment makes it easy to see which regions
of the sequences that corresponds to each other, but the information in an
alignment is even more fine-grained than this. A column in an alignment will
contain at most one character of each sequence; these characters can be said to
occupy the same position in the alignment or in the family of sequences that are
aligned. Assume that the sequences we have aligned all descend from the same
ancestral sequence. In a perfect evolutionary alignment2 of these sequences the

1Proteins usually works as catalysts – they form a close interaction with one or more
molecules by which the speed of some biochemical reaction is increased; the place on the
protein molecule where the actual catalysis takes place is called the active site.

2In some cases it might be desirable to have an alignment express information other than
evolutionary, e.g. the positions corresponding to amino acids occupying roughly the same
spatial positions in the structures of a set of aligned protein sequences.
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characters in a position should be characters that by a process of zero or more
substitutions can be traced back to the same character in the ancestral sequence
or to a character that at some time was inserted into one of the lineages. A
gap thus indicates either that the character in that position was deleted from
the sequence at some point or that the sequence is not part of the lineage into
which the character at that position was inserted.

As alignments are useful and well established in the context of compar-
ing biological sequences the problem of comparing biological sequences is often
referred to as the alignment problem, even when other information than an ac-
tual alignment is sought for. Traditionally alignments were constructed by an
expert – and still are when an alignment of utmost quality is needed – who
aligned regions and characters of the sequences he deemed to be corresponding.
To make a computer ‘deem’ anything we need a model and an objective. In the
following we will discuss two widely used types of models and related parts of
our work.

2.2.1 Distance Models

Assume that we have two sequences a and b believed to have evolved from
an unknown common ancestor c. As we do not know c, for all we know any
sequence could be the ancestor of a and b. Furthermore, even if we did know
c, we would not know which characters in a and b that should be in the same
position as we do not have information on how a and b evolved from c. The
arbiter for handling this situation is Occam’s Razor, or, as it is better known
as in the area of evolution, the parsimony principle. It basically states, that we
ought to assume that nature is cheap and thus the most probable of all possible
explanations is the simplest.

Let us first assume that we have the question of simplicity of evolving one
sequence from another decided by some (real-valued) function evol(x, y), that
tells us how costly it is for evolution to get from sequence x to sequence y.
Applying the parsimony principle we can then define the evolutionary distance
between our two sequences a and b as

dist(a, b) = min
c
{evol(c, a) + evol(c, b)}, (2.1)

that is, the minimum over all possible choices of an ancestral sequence of the
sum3 of the costs of evolving the sequence into a and b respectively. The
sequences minimising the above expression are the most parsimonious estimates
for an ancestral sequence.

As mentioned above we assume that evolution can be explained by a series of
substitutions, insertions and deletions, or more generally as a series of discrete
events changing one sequence into another. Assume we are given a function
cost(x e→ y) assigning costs to an event e that transforms x into y, and a

3It should be noted that we could have chosen other, equally suitable, ways to combine the
evolutionary costs than a sum, e.g. taking the maximum of the two costs. The model we are
specifying here is thus not founded solely on parsimony but also takes other considerations
into account, prominent among which is convenience. Other models would fit equally well in
a section on distance models.
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c
e0

e′0
↗
↘
a(0) e1→ a(1) e2→ · · · ek→ a

b(0)
e′1→ b(1)

e′2→ · · · e′
k′→ b

(a) The standard situation where we
evolve a and b independently from the
common ancestor c.

c
e0

e′0
↙
↘
a(0) e1← a(1) e2← · · · ek← a

b(0)
e′1→ b(1)

e′2→ · · · e′
k′→ b

(b) With reversible events we can reverse
the direction of evolving a from c, thus
changing the view to b evolving from a
over the intermediary sequence c.

Figure 2.3: Evolution of the two sequences a and b from a common ancestor c
by independent sequences of evolutionary events E and E′.

sequence E of events e1, e2, . . . , ek transforming one sequence x(0) into another
sequence x(k) by x(0) e1→ x(1) e2→ · · · ek→ x(k). We can now define the cost of
evolving x(0) into x(k) by the sequence of events E as the sum of the costs of
each of the events,

cost(x(0) E→ x(k)) =
∑
ei∈E

cost(x(i−1) ei→ x(i)), (2.2)

cf. equation 5.2 on page 85. Once again using the parsimony principle we can
define the cost of evolving sequence x into sequence y as

evol(x, y) = min{cost(x E→ y) | E is a sequence of events}, (2.3)

cf. equation 5.3 on page 85.
Combining equations 2.1 and 2.3 we get a new expression for the evolution-

ary distance between a and b,

dist(a, b) = min{cost(c E→ a) + cost(c E′→ b) |
c is a sequence and E and E′ sequences of events}. (2.4)

This expression is illustrated in figure 2.3(a) where the two sequences a and b
independently evolve from an ancestral sequence c. If we assume evolutionary
events to be reversible, that is, cost(x e→ y) = cost(y e′→ x), the situation
simplifies. Instead of having a and b both evolving from the ancestral sequence c,
we can take the alternative view that a evolves first into c and then from c to
b as illustrated in figure 2.3(b). Using the assumptions of additive costs this
allows us to simplify equation 2.4 to

dist(a, b) = min{cost(a E→ c) + cost(c E′→ b) |
c is a sequence and E and E′ sequences of events}

= min{cost(a E→ b) | E is a sequence of events},
(2.5)

eliminating the minimum over ancestral sequences from the equation. Hence we
only need to search over all possible sequences of evolutionary events changing
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a into b. From a sequence of events we can easily construct an alignment simply
by keeping track of which characters are substituted, inserted or deleted; the
distance between sequences thus gives us a model and an objective allowing a
computer to ‘deem’ what alignment is the best.

Even with the above simplifications the problem of finding the most parsi-
monious evolutionary path remains in the realm of undecidable problems as we
have not restricted the dependencies of the cost function of an event. It can
depend arbitrarily on the context in which it takes place. If we have the set
of events changing one sequence into the other – a set obtained e.g. from an
alignment by postulating the substitutions, insertions and deletions expressed
by each column – finding the optimal order of this set of events is still NP
complete if we allow arbitrary context dependence in the cost function of single
events.

If we require the cost function to be context-free, that is, only depending on
the actual part of the sequence that changes, one of the simplest imaginable cost
functions is the function where each substitution and each character inserted
or deleted has unit cost. The distance thus defined is usually called the edit
distance or Levenshtein distance and measures the number of single-character
changes – substitutions, deletions or insertions – needed to change one sequence
into the other.

To find the edit distance between two sequences a and b we can specify a
recursion in terms of edit distances between prefixes of a and b,

dist(a[1..i], b[1..j]) = min{dist(a[1..i − 1], b[1..j]) + 1,
dist(a[1..i], b[1..j − 1]) + 1,
dist(a[1..i − 1], b[1..j − 1]) + δ(a[i], b[j])}

(2.6)

where

δ(σ1, σ2) =

{
0 if σ1 = σ2.
1 otherwise.

For reasons of succinctness we omit the special boundary cases that are trivial
modifications of the above recursion. The intuition behind the recursion is that
either a[i] has been deleted, b[j] has been inserted or a[i] and b[j] are in the
same position. The simplicity of the recursion is a consequence of the context-
free nature of our cost function – the cost of e.g. substituting a[i] with b[j] does
not depend on whether a[i − 1] has been deleted, b[j − 1] has been inserted or
a[i− 1] has been substituted with b[j − 1].

Using the above recursion it is easy to devise an algorithm using dynamic
programming to compute an alignment corresponding to the minimum edit
distance in time and space O(|a||b|). Kruskal [81, pp. 23–24] lists a number of
independent discoveries of this algorithm. If we are only interested in the edit
distance we can do with O(|a|) space by computing the distances in order of
increasing length of the prefix of b; Hirschberg [63] shows how linear space can be
obtained even when computing a corresponding alignment by recursively finding
the alignment of the mid character of a subsequence of one of the sequences.

Unit costs might not be the best choice when comparing biological sequences
as some events are more likely than others. One can observe, however, that the
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recursion of equation 2.6 applies for arbitrary choices of costs for substitutions
and single character indels as long as δ is a metric. Gotoh [46] describes how
to compute the distance between two sequences when the cost of an indel of k
characters is an affine function of k. This method does not lead to an increase in
time and space complexities compared to the simple algorithm sketched above,
and works by introducing two new arrays for storing distances between prefixes
when an insertion or deletion has already been initiated. More complex cost
functions for indels can be handled while increasing the time complexity by at
most a factor O(log(|a|+ |b|)), cf. [39, 106, 83].

When comparing two DNA sequences each coding for a protein we are faced
with a difficult choice: Should we just compare the DNA sequences or should
we compare the two proteins they code for? The evolutionary events our model
postulates takes place in the DNA sequence but the evolutionary constraints
mainly depends on the protein expressed from the DNA. In the protein we can
only make insertions and deletions between codons; as many amino acids are
coded for by several different codons there is no way of telling how alike the
underlying codons of two amino acids are if we restrict our attention to proteins.
On the other hand, proteins evolve slower than their coding DNA; thus the
protein might be more informative, especially when comparing distantly related
sequences. It would be desirable to consider the DNA and the protein coded
for simultaneously4.

Hein [60] proposes a model for assigning costs to evolutionary events in
a DNA sequence where changes at both the DNA and the protein level are
considered. The evolutionary events affects the DNA level directly and are
thus scored by a cost function (of the type presented above where the cost
of a substitution only depends on the nucleotides involved and the cost of an
indel only depends affinely on its length). On the protein level evolutionary
events only have an indirect affect through the mapping from DNA to protein;
a deletion on the DNA level might not be explainable by a single substitution
or indel, cf. figure 5.3(c) on page 87. On the protein level an evolutionary event
is thus scored by the distance between the protein encoded by the DNA before
and after the event. Given two DNA sequences a and b coding for protein
sequences A and B the cost of an event e changing a into b is thus

cost(a e→ b) = costd (a e→ b) + distp(A,B), (2.7)

where costd is the event cost function on the DNA level and distp is the evo-
lutionary distance between protein sequences (we will in the following assume
that the distance between proteins is defined by a model of the type described
above, i.e. a model only allowing substitution of single amino acids and indels
of consecutive amino acids), cf. section 5.2. Furthermore, indels are restricted
to be of a length divisible by 3, which reduces the context sensitivity for indels
at the protein level. This restriction can be justified by the rareness of indels

4This is evidently not the only two levels of information that we might find it opportune to
combine, e.g. for DNA coding for RNA molecules structure predictions can be incorporated in
the comparison, cf. [131, 45]. A major asset of this particular combination, however, is that it
requires no further input than the DNA sequence, and does not rely on uncertain prediction
methods.
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Figure 2.4: An example of the non-commutativity of the model proposed in [60].
One event e1 changes the first nucleotide of a DNA sequence from C to A and
the other event e2 changes the second nucleotide from T to G. The sum of the
costs at the protein level depends on the order in which e1 and e2 takes place.

causing frame shifts, a rareness that is due to the cataclysmic effects of such
events, cf. figure 5.1 on page 86.

This model significantly increases the complexity of finding the distance
between two models. The simple recursion of equation 2.6 no longer holds as the
protein level introduces context sensitivity to the cost function. Furthermore
we do not even retain commutativity between evolutionary events as illustrated
in figure 2.4 (an example inspired by a similar example in [60]); it matters in
which order the events takes place and we thus cannot assign a cost to one
event without knowledge of other events.

We can however retain the context-free property to some degree. Hein [60]
observes that we can split an alignment of two sequences a and b into indels
occurring between codons and a number of codon alignments, cf. figure 5.5 on
page 90. A codon alignment is a minimal part of the alignment flanked by
positions occupied by nucleotides from the first position5 in a codon from both
sequences to the left and from the third position in a codon to the right. In
between these two positions there will be one position occupied by nucleotides
from the second position in a codon from both sequences and the rest of the
positions will represent indels. One can observe that the events represented
by a codon alignment does not affect the protein sequence except for the part
encoded by nucleotides occupying positions within that codon alignment. Cou-
pled with some fair assumptions about the relative costs of substitutions and
indels discussed in section 5.2.3 this ensures that the cost of a codon alignment
only depends on the events of the codon alignment.

Hein [60] uses this to formulate a recursion similar to equation 2.6 – the dis-
tance between a[1..3i] and b[1..3j] is the minimum over all appropriate choices of
i′ and j′ of the sum of the distance between a[1..3i′] and b[1..3j′] and an optimal
codon alignment of a[3i′ + 1..3i] and b[3j′ + 1..j]. By some further assumptions
limiting the number of different types of codon alignment, cf. section 5.3, this
is used to formulate an algorithm requiring time O(|a|2|b|2) for determining the
distance between two sequences in the combined DNA and protein cost model.

In chapter 5 we present an improved algorithm for this problem. The basic
ideas of the algorithm are a vast extension of the ideas of [46] having numerous
arrays for storing extendable distances between prefixes of the sequences, and

5The position in a codon should not be confused with the position in an alignment; a codon
consists of three nucleotides that are said to be in the first, second and third position of the
codon.
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the introduction of the concept of witnesses. A deletion in a codon alignment
might on the protein level not just remove a stretch of consecutive amino acids
but instead compress them to a single amino acid, cf. figure 5.3(c) on page 87.
We thus need to keep track of possible witnesses in the compressed stretch
of amino acids that can be matched with the remaining amino acid. The time
complexity of the algorithm is O(|a||b|) with a constant depending on how many
arrays ‘numerous arrays’ are; by being very meticulous, this number can be kept
at roughly 400 thus yielding an acceptable running time for most applications.
With 400 arrays space usage could be a cause for worrying but the algorithm
allows using the trick of [63] to obtain linear space complexity.

At a first glance the increase in complexity of our algorithm compared with
the simple algorithm based on equation 2.6 might seem stunning. One way to
account for this increase in complexity is by looking at the difficulties extracting
a minimum cost of the events expressed in an alignment. With Levenshtein
distance we can simply sum over the cost of the event postulated by each
column. Using an affine cost for indels increases the complexity slightly as
we have to group consecutive columns postulating an insertion or a deletion;
Gotoh’s algorithm [46] reflects this by increasing the number of arrays from one
to three. In the model of Hein [60] we can no longer look at events separately but
have to group the alignment into codon alignments; for each codon alignment
we then have to find the minimum cost over all permutations of the events
postulated in the codon alignment.

So far we have gracefully avoided discussing the problem of comparing more
than two sequences. Adding more sequences adds new problems. First of all,
how should we define distances? A comparison of all pairs of sequences might
lead to sets of incompatible events, e.g. the comparison between a and b claiming
a[i] and b[j] occupies the same position, the comparison between b and c claim-
ing that b[j] and c[k] occupies the same position and the comparison between c
and a claiming that c[k] and a[i′], with i 6= i′, occupies the same position. But
any multiple alignment of all the sequences, cf. figure 2.2, induces an alignment
of all pairs of the sequences (removing the rows not corresponding to either
of the sequences and, possibly, removing columns in the remaining alignment
containing only gap characters), a set of pairwise alignments that are without
such incompatibilities. The score defined by taking the sum over the costs of
all these alignments is called the sum-of-pairs score; the problem of finding the
multiple alignment with least sum-of-pairs score is NP–hard, cf. [152]. Other
scoring schemes might seem more relevant, e.g. scoring schemes taking the tree-
like shape of evolutionary relationships, cf. figure 2.5, into account; this does
not help any on the intractability of the problem as finding the optimal tree
alignment is MAX SNP–hard, cf. [152].

The problem of finding a good multiple alignment is of so grave importance
that the results on tractability stated above has not deterred people from tak-
ing stabs at it. Bafna et al. [12] present an approximation algorithm finding
a multiple alignment of k sequences with a sum-of-pairs score that is at most
2− l

k from the optimal score in polynomial time for fixed l (and k ≥ l). Carrillo
and Lipman [25] and Gupta et al. [51] suggest bounding the search space for
finding the optimal multiple alignment. A multitude of heuristics have been
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Figure 2.5: An example evolution of a hypothetical ancestral sequence into four
different homologous sequences.

proposed; e.g. Hein [59] proposes a heuristic simultaneously aligning the se-
quences and building a phylogeny6 for the sequences; Bucka-Lassen et al. [23]
propose a method for combining many multiple alignments into an improved
alignment. One of the most successful and popular heuristics, introduced by
Krogh et al. [80], is using profile hidden Markov models to generate an align-
ment.

2.2.2 Hidden Markov Models

A Markov chain is a sequence of symbols or states qi0qi1 . . . qij . . . where the
probability of observing a specific state in the j’th position only depends on
the state observed in the j − 1’st position, that is, the conditional probability
P (qij = p | qi0 . . . qij−1) = P (qij = p | qij−1). We can think of a Markov
chain as generated by a Markov model consisting of a set of states S and a
transition function Pq : S → R for each state q ∈ S. The transition function
Pq(p) = P (qij = p | qij−1 = q) gives the probability of moving to state p when
the current state is q. Starting in a specific start state or in a state chosen
according to some probability distribution over the states we can now generate
a Markov chain by outputting the current state q and choosing the next state
according to Pq. A special end-state can be added to explicitly stop the sequence
generation.

In a hidden Markov model instead of outputting the states entered, at each
state q a character from some alphabet Σ is output according to a probability
distribution Pq : Σ → R. Thus we do not observe the state sequence but only
the sequence of characters outputted at the states, hence the term hidden. In
some situations states not outputting any character are useful; such states are
called silent states in contrast to the non-silent states outputting characters.
One use of hidden Markov models is for annotating a sequence s; given a path
through a hidden Markov model that generates s we can annotate the characters
of s by the states outputting them. In the following we will make this concept
clear by developing the architecture known as profile hidden Markov models,
cf. [80].

Assume we have some sequences that all descend from a common ancestral
sequence AG of two characters, cf. figure 2.5. If we start out by only modelling
positions corresponding to characters present in the ancestral sequence, we can

6A phylogeny for a set of sequences is a tree showing evolutionary relationships between
the sequences, cf. figure 2.5.
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match 2
G End- - -

(a) A hidden Markov model for the se-
quence AG.

Start
match 1

A : 0.8
C : 0.05
G : 0.05
T : 0.1

match 2

A : 0.04
C : 0.05
G : 0.9
T : 0.01

End- - -

(b) A hidden Markov model for a sequence
of two characters allowing substitutions.

Start
match 1

A : 0.8
C : 0.05
G : 0.05
T : 0.1

match 2

A : 0.04
C : 0.05
G : 0.9
T : 0.01

End- - -

delete 1
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(c) A hidden Markov model for an ances-
tral sequence of two characters allowing
substitutions and deletions.

Start
match 1

A : 0.8
...

T : 0.1

match 2

A : 0.04
...

T : 0.01

End- - -

insert 0
A : 0.2

...
T : 0.2

6
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insert 1

A : 0.3
...

T : 0.1

?

6
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��

-

insert 2

A : 0.1
...

T : 0.5
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?

Nw

� � �

delete 1 delete 2

(d) A profile hidden Markov model with
two ancestral positions.

Figure 2.6: Incremental construction of the profile hidden Markov model ar-
chitecture. For clarity the transition probabilites have been omitted and only
transitions with nonzero probabilities are shown.

model the ancestral sequence by a hidden Markov model that from the start-
state moves to a state that outputs an A, then to a state that outputs a G and
finally to the end-state, cf. figure 2.6(a). During evolution the characters do
not stay fixed but can be changed by substitutions, e.g. the A of the ancestral
sequence has changed to a T in the sequence labelled man in figure 2.5. Thus
instead of outputting an A with probability 1 in the first position and a G with
probability 1 in the second position we assign a probability distribution over
the characters of our alphabet to each state, cf. figure 2.6(b). These two states
are called match-states as a character output from one of these states is said to
match the corresponding character in the ancestral sequence.

Another possible event affecting a position is the deletion of the character
in that position, e.g. the G in the ancestral sequence has been deleted in the
sequence labelled mouse in figure 2.5. This could be modelled by assigning a
probability to not outputting any character in the output distribution of the
match-states. But the chance that the character in the next position has been
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deleted depends on whether the character in the current position has been
deleted and thus a silent delete-state is added to the model for each position,
cf. figure 2.6(c).

The last event is the insertion of new characters, e.g. a C is inserted between
A and G in the sequence labelled bird and a TG is inserted at the end of
the sequence labelled alligator in figure 2.5. Insertions do not affect positions
corresponding to characters in the ancestral sequence but rather takes place
either between two such positions or at the beginning or the end of the sequence.
Thus we add insert-states at these places, cf. figure 2.6(d). Furthermore, as
more than one character can be inserted between two positions corresponding
to characters in the ancestral sequence, an insert-state has a self-loop allowing
a transition to itself.

Given a sequence we can thus use a path through a profile hidden Markov
model to annotate it with positions. There will usually be a host of differ-
ent paths through a hidden Markov model generating a specific sequence but
each path has an associated probability. It is thus (usually) a natural choice
to annotate a sequence by (one of) the most probable path generating it. The
probability of the most probable path can be found by recursions similar to
equation 2.6 by for each state q and prefix s[1..i] of s to find the probabil-
ity P (q, i) of the most probable path generating s[1..i] and ending in q; the
basic form of these recursions are

P (q, i) = Pq(a[i]) ·max
p→q
{Pp(q) · P (p, i− 1)} (2.8)

for non-silent states and

P (q, i) = max
p→q
{P (p, i)} (2.9)

for silent states where the meaning of the p→ q notation is that the maximum
is taken over all states p with a transition to q. This gives us a method for
generating a multiple alignment for a set of sequences using a (profile) hidden
Markov model; the quality of the alignment of course depends on how well the
model models the family of sequences we want to align.

For the typical situation where we do not have the evolutionary history of
the sequences we want to align ready at hand for determining the parameters
of our model, there are methods for improving the quality of the model by
‘training’ (iteratively adjusting the parameters) the model with the sequences.
One commonly used method is to adjust the parameters based on the relative
probabilities of using a transition or outputting a character in a state, summed
over all paths generating any of our sequences. To this end, for any prefix s[1..i]
of s and state q we need to be able to compute the sum, instead of the maximum,
of the probabilities of all paths generating s[1..i] and ending in the state q. This
can be done by a trivial modification of equation 2.8 and equation 2.9, changing
maximum to sum. Being able to find the total probability that a hidden Markov
model generates a given sequence by any path also comes in handy when using
hidden Markov models as classifiers, i.e. to answer whether a new sequence
belongs to the family modelled by the hidden Markov model.
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But what if we instead of just having a single sequence have a family of se-
quences we want to compare to the family of sequences represented by a hidden
Markov model? We could of course make all pairwise comparisons between the
sequences of the two families or between the the sequences of one of the families
and the hidden Markov model representing the other family of sequences. If we
have hidden Markov models representing both families M1 and M2 it will often
be desirable to be able to just compare these as

• the hidden Markov models is a general representation of the entire family
and not just a single observation from the family.

• it is less confusing having only a single comparison result.

• it will be faster if we can efficiently compare the models as we need to
make only one comparison.

In chapter 6 we present an algorithm to compute the co-emission probability of
two profile hidden Markov models, that is, the probability that the two models
independently generate identical sequences. The algorithm is a generalisation
of the algorithm to find the total probability that a model generates a specific
sequence. For any pair of states q ∈ M1 and q′ ∈ M2 we compute the sum
over all pair of paths π and π′ generating identical sequences and ending in q
and q′ respectively of their joint probability. This sum is found recursively by
looking at pairs of states with transitions to q and q′. The only two problems
introduced by this generalisation is

• we have to be careful not counting any pair of paths more than once.

• the insert-states have transitions to themselves and thus we have a cyclic
problem, needing the co-emission probability at q, q′ for computing the
co-emission probability at q, q′ when q and q′ are both insert-states.

The latter problem is solved by recognising the geometric series in the derived
expression for the co-emission probability at a pair of insert-states. The time
complexity of the algorithm is O(m1m2) where m1 is the number of transitions
in M1 and m2 is the number of transitions in M2.

The algorithm immediately generalises to all left-right models, i.e. models
where the underlying graph of nonzero transitions is a directed acyclic graph
when self-loops are ignored. In section 6.5.1 we observe that we at a pair of
states q, q′ only need to be able to compute the probability of returning to q, q′

by paths generating identical sequences to apply the geometric series trick. This
widens the class of models that can be handled to all models where a state is
part of at most one cycle.

In section 6.5.2 we remark that the co-emission probability for general hid-
den Markov models can be determined by solving a set of linear equations with
a variable for each pair of states. Furthermore, we present an algorithm to ap-
proximate the co-emission probability for general hidden Markov model. The
algorithm incrementally finds the probabilities of pairs of longer and longer
paths having emitted identical sequences. In k rounds it finds upper and lower
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bounds on the co-emission probability differing by at most ck where c < 1 is a
constant that depends on the models compared. The time complexity of each
round is O(m1m2) where m1 is the number of transitions in M1 and m2 is the
number of transitions in M2. This algorithm can thus be expected to obtain
a decent estimate for the co-emission probability significantly faster than the
linear equation method in many cases.

We now have a method for computing the co-emission probability of two
models, but as stated in proposition 2 on page 112 the co-emission probability
does have some deficiencies as a measure on the similarity between two models.
In section 6.4 we observe that a hidden Markov model – or rather the probability
distribution over all finite sequences represented by the model – can be viewed as
a vector in the infinite-dimensional space spanned by all finite sequences over
our alphabet. With this view the co-emission probability becomes the inner
product of two models and based on this we can define angles and distances
between models. We also present two similarity measures based on the co-
emission probability possessing some of the desirable properties the co-emission
probability is lacking.

As repeatedly hinted at above, profile hidden Markov models are not by far
the only type of hidden Markov models used in computational biology. Hidden
Markov models have been used for gene prediction [79], recognition of trans-
membrane proteins [134], prediction of signal peptides and signal anchors [111]
and prediction of protein secondary structure [11] just to mention a few appli-
cations. Our method can thus also be used to compare families of sequences
against these more structural or pattern oriented models, or even to add in-
formation from such models in training a new model. Another use that we
are currently in the process of investigating is to what extent we are able to
reconstruct a model based on data. Given a model we can generate sequences
according to the probability parameters of the model and examine e.g.

• how does the distance between a trained model and the original model
depend on the size of the set of training sequences?

• what are the effects of taking a wrong guess at the underlying architecture,
e.g. how close can we come to the probability distribution of the original
model when varying the length of a profile hidden Markov model relative
to the length of the original model?

• how much do Dirichlet mixtures [21] help?

• are there differences between different packages for constructing hidden
Markov models, e.g. HMMER [1], SAM [3] and HMMpro [2]?

Two major sources of uncertainties when working with hidden Markov models
is how successful we are at reconstructing a model based on a set of data and
to what extent the part of reality we are trying to model can be modelled by a
hidden Markov model. With our method for comparing hidden Markov models
we can answer the first in a meaningful way.
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Chapter 3

Structure Prediction

Nuts.
—Anthony Clement McAuliffe, Bastogne, December 22nd , 1944

The purpose of all the genetic material stored in all living organisms is not
to give biologists useful information for comparing the organisms. Rather the
genetic material is the blueprint for the biochemical molecules the organisms
need in the processes that make them live. The genetic material is stored in
DNA and translated to RNA or proteins, all types of molecules that allows us
to view it as sequences, cf. section 1.2.1. There is strong evidence that most of
the ‘characters’, or residues, in these sequences are not by themselves important
for the chemical reactions the molecules participates in; the functionality of a
protein or an RNA molecule is primarily determined by the three-dimensional
structure and a few key residues. On the other hand, experiments by Anfinsen
et al. [8] supports that the total sequence of characters determines the structure,
thus allowing us to refer to the structure of an RNA or protein sequence.

As the structure of a biomolecule is essential for its function, determining
this structure is of interest on at least two accounts. First of all it might help
us determining the function of the molecule, thus identifying the roles of differ-
ent molecules and helping in understanding biological processes; it might also
allow designing new molecules with desirable functions. Secondly, the structure
will be more conserved than the underlying sequences – if the function of the
molecule is sufficiently important, a mutation causing a major distortion of the
structure will almost always leave the organism inviable or severely impaired; a
mutation not causing a significant structural change will, unless it affects one of
the few key residues have at most a negligible effect. Thus we might use struc-
tural information to improve alignments of sequences, e.g. by simply aligning
the structures [139].

Experimentally determining the structure of a protein or RNA molecule is at
present a complicated and laborious task easily requiring several years of work.
Being able to computationally determine the structure of a protein or RNA
molecule based on the sequence of amino acids or nucleic acids, and possibly
other easily obtainable information, is thus a quest-worthy project, qualifying
as one of the numerous holy grails in computational biology. Traditionally
structural information is categorised in four levels, cf. [103], for proteins:
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At its simplest, protein structure is the sequence in which amino
acid residues are bound together. Called the primary structure
of a protein [. . . ] Thus, the term secondary structure refers to
the way in which segments of the peptide backbone are oriented
into a regular pattern; tertiary structure refers to the way in
which the entire protein molecule is coiled into an overall three-
dimensional shape; and quaternary structure refers to the way
in which several protein molecules come together to yield large ag-
gregate structures.

Only for secondary structures does the hierarchy for RNA molecules differ al-
though the secondary structure of RNA also deals with structurally local infor-
mation.

As biomolecules are part of reality they (are believed to) obey the laws of
thermodynamics, cf. section 1.2.2, and thus the most stable structure should
be that of lowest free energy. At the time scale of biochemical processes other
aspects, e.g. kinetics, might also play an important role in the structure forma-
tion but still it is common to frame models for structure predictions in terms
of a free energy that we want to minimise. Whenever we in the following refer
to energies of structures it will be based on this concept.

3.1 Secondary Structure

The secondary structure of a biomolecule consists of local structural elements
of the full tertiary structure of the molecule. For proteins this local informa-
tion consists of segments of consecutive amino acids forming regular structural
patterns. For RNA it is a set of pairs of bases, not necessarily located close to
each other, forming strong interactions. An important use for secondary struc-
ture information is to reduce the number of degrees of freedom when trying to
predict the full tertiary structure, but also as a help in aligning sequences and
for inferring functional information does it find use. In the following we will
briefly mention protein secondary structure prediction. We then give a thor-
ough handling of RNA secondary structure prediction with special focus on the
commonly used free energy model for RNA secondary structures.

3.1.1 Protein Secondary Structure Prediction

In protein structures small segments of consecutive amino acids are observed
to form very regular structural patterns called α-helices and β-strands. The
α-helix is a winding spiral resembling a corkscrew and it stabilises itself by
formation of hydrogen bonds between neighbouring turns. The β-strands are
stretched-out parts of the amino acid sequence that stabilises by forming hy-
drogen bonds to neighbouring β-strands that runs parallel or anti parallel to
the strand in the structure but might be located far away in the sequence.
Computationally protein secondary structure prediction is usually in the realm
of pattern recognition, e.g. by neural networks [123, 126] or hidden Markov
models [11]. The methods described in chapter 6 can be used in combination
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with hidden Markov models for protein secondary structure prediction and for
a family of protein sequences to predict the secondary structure of the family
of sequences as represented by the hidden Markov model.

3.1.2 RNA Secondary Structure Prediction

In the tertiary structure of an RNA molecule the most distinctive feature is the
stacking of base pairs. An RNA molecule, just like a DNA molecule, consists
of a sugar/phosphate backbone with (almost) the same four amine bases as
possible side chains. It is thus not surprising that complementary bases in an
RNA molecule form strong interactions by hydrogen bonding similar to those
found in the double helix of DNA. It should be mentioned that the four bases of
RNA can form other types of hydrogen bonds than the classical Watson-Crick
bonds, cf. [140], and as an RNA molecule forms a structure by folding back on
itself, and not by forming base pairs with a molecule with a complementary
base sequence as DNA, other base pairs than the classical Watson-Crick base
pairs are observed in RNA structures. Only G,U base pairs, or wobble base
pairs, are of so frequent occurrence to qualify as a standard RNA base pair,
though.

Furthermore, as the bases mainly consists of flat, aromatic rings, consecu-
tive base pairs can stack, much like Pringles r© chips, to form compact helices
shielding the hydrophobic aromatic structures from the surrounding aqueous
environment. Or rather shielding the surrounding aqueous environment from
the hydrophobic aromatic structures. Besides being a distinctive feature in
RNA structures, the forces involved in these interactions are also quite strong,
making them a key component governing the structure formation of an RNA
molecule.

A secondary structure for an RNA sequence s ∈ {A,C,G,U}∗ , cf. figure 7.1
on page 130, is a set S of base pairs i · j with 1 ≤ i < j ≤ |s| such that no base
is paired with more than one other base, that is ∀i ·j, i′ ·j′ ∈ S : i = i′ ⇔ j = j′.
Generally · is used as notation for base pairs – thus X · Y means any base pair
formed between a base of type X and a base of type Y and Xi · Yj means the
specific X ·Y formed between bases s[i] = X and s[j] = Y . Often it is assumed
that a secondary structure does not contain pseudoknots, that is overlapping
base pairs i · j, i′ · j′ ∈ S with i < i′ < j < j′. Nature does not prohibit
pseudoknots, cf. [121], and numerous structures containing pseudoknots have
been reported. In the following we will at first assume that structures do not
contain pseudoknots and return to pseudoknots at the end of this section.

If i < k < j and i · j ∈ S then k is said to be accessible from i · j if there is
no base pair between i · j and k, that is, if ¬∃i′ · j′ ∈ S : i < i′ < k < j′ < j. If
k · l ∈ S (or l · k ∈ S) for some l, then it is an easy consequence of the absence
of pseudoknots that l will also be accessible from i · j – otherwise we would
have a base pair i′ · j′ ∈ S with k < i′ < l < j′ (with i′ < l < j′ < k) – and
we say that the base pair k · l (the base pair l · k) is accessible from i · j. A
further observation is that any base or base pair is accessible from at most one
base pair. If a base or base pair is not accessible from any base pairs it is called
external.
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For each possible base pair i · j ∈ S we can define the loop closed by that
base pair – or having that base pair as exterior base pair – to be the loop
formed by i · j and all bases and base pairs accessible from i · j. The base pairs
other than i · j in the loop are called interior base pairs. This means that we
can partition a secondary structure into a number of loops, with any two loops
being disjoint, except if the exterior base pair of the one loop is an interior
base pair of the other loop in which case they overlap by one base pair. As
illustrated in figure 7.1 on page 130 a loop closed by base pair i · j is named
according to the number of interior base pairs and unpaired bases:

• With zero interior base pairs the loop is called a hairpin loop.

• With one interior base pair i′ · j′ the loop is called

– a stacking base pair if there are no unpaired bases in the loop, that
is, if i′ = i+ 1 and j′ = j− 1. A stretch of consecutive stacking base
pairs is called a helix.

– a bulge if there are unpaired bases between the exterior and interior
base pair only on one side, that is, if i′ = i + 1, j′ < j − 1 or if
i′ > i+ 1, j′ = j − 1.

– an internal loop if there are unpaired bases between the exterior and
interior base pair on both sides, that is, if i′ > i+ 1 and j′ < j − 1.

• With more than one interior base pair the loop is called a multibranched
loop.

Using this decomposition into loops Tinoco et al. [141] propose a model for
calculating the energy of a secondary structure that has successfully celebrated
its twenty fifth anniversary. The model is sufficiently close to reality so that
calculations based on it yields decent results but still simple enough to allow for
efficient algorithms for e.g. structure prediction. The model states that we can
calculate the energy of a structure as a sum of independent contributions from
each of the loops of the structure. Experimentally determining and estimating
the energies of loops in RNA structures has been ongoing work at the Turner
Group and the most recent parameters are published in [99].

Based on this model Zuker and Stiegler [167] and Nussinov and Jacob-
son [112] propose a recursive algorithm for finding the minimum energy of a
structure for an RNA sequence s. A structure of this minimum energy can
then be determined by backtracking the computations that yielded this energy.
The algorithm works by finding the minimum energies of structures for sub-
strings s[i..j] of s closed by i · j, that is, the structure for s[i..j] is required to
contain the base pair i · j. When determining the optimal structure for the
substring s[i..j] we simply have to minimise over all choices of loops that i · j
can close, the sum of the energy of the loop and the energies of optimal struc-
tures closed by the interior base pairs of the loop. The full algorithm – that is
frequently called the mfold algorithm – is outlined in section 7.2 and has time
complexity O(n3) where n = |s|.
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An examination of the above description of the algorithm, combined with
counting the number of possible loops closed by a generic base pair brings out
an apparent contradiction with the claimed time complexity. A specific base
pair i·j will close O((j−i)2) different internal loops for a total of O(n4) different
internal loops when summing over all possible base pairs. Multibranched loops
do nothing to help in this situation by introducing an extra O(2n) loops.

With general energy parameters for loops, finding a structure of minimum
energy for an RNA sequence in the model of Tinoco et al. would still be in-
tractable (though the energy of a specific structure could still be computed
efficiently). The mfold algorithm thus has to exploit specific properties of the
energy functions to reduce the time requirements. Hence, the model thus only
allows efficient algorithms for structure prediction when these properties are
included in the model.

For multibranched loops it seems to be a good approximation to assume
that the energy only depends on

• the size of the loop, that is, the number of unpaired bases and interior
base pairs in the loop.

• exterior and interior base pairs stacking with neighbouring unpaired bases
or base pairs.

Not only does this allow for a vast improvement in the time requirements for
handling multibranched loops (though further approximations are applied to
obtain a time complexity of O(n3) as we discuss below), but it would also be
difficult akin to impossible to determine parameters for more complex types of
energy functions.

For internal loops experiments have led to the adaption of an energy function
that is a sum of energy parameters for

• the exterior and interior base pairs stacking with neighbouring unpaired
bases.

• an energy function depending on the size of the loop, that is, the total
number of unpaired bases in the loops.

• an energy function depending on the asymmetry of the loop, that is, the
relation between the number of unpaired bases on each side of the exterior
and interior base pairs.

If one ignores this last asymmetry term, Waterman and Smith [153] propose an
O(n3) algorithm for the internal loop part of computing the minimum energy
of an RNA secondary structure. This method, however, does not work with
the type of asymmetry functions proposed by Papanicolaou et al. in [114]. This
type of asymmetry function, called Ninio type asymmetry functions, is firmly
established as it improves energy estimations. To retain a time complexity of
O(n3) a commonly used heuristic is to upper bound the size of internal loops
considered by some constant k (usually 30), as internal loops even close to this
size are seldomly encountered. With this upper bound there are only O(k2)
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internal loops to consider for each base pair, thus reducing the total number of
internal loops considered to O(k2n2).

In chapter 7 we observe that asymmetry functions of the Ninio type only
depends on the lopsidedness, i.e. the difference between the number of unpaired
bases on each side of the base pairs, of an internal loop when the number
of unpaired bases on each side of the base pairs is larger than some (small)
constant. This is used to formulate a modified recursion that allows for constant
time determination of the optimal interior base pair among most internal loops
of the same size closed by a specific base pair i · j. This reduces the time
complexity of handling internal loops with an upper bound on the loop size
of k to O(kn2); thus the time complexity of the unbounded, general case is
reduced to O(n3).

Finding only the structure(s) of minimum energy might not give the full
information one is interested in though. In some cases it might be of interest
to be able to compare competing structures of low energies, not to mention the
fact that the structure of minimum free energy on average only contains 73 %
of the base pairs of the true secondary structure while a near-optimal structure
often exists containing more of the true base pairs, cf. [99]. Zuker [164] proposes
a base pair oriented method for finding suboptimal structures. Just as we can
calculate the energy of an optimal structure of the subsequence s[i..j] of an
RNA sequence s with the restriction that the structure contains i · j, we can
calculate the energy of an optimal structure of s excluding s[i+ 1..j − 1] with
the restriction that the structure contains i ·j; adding these two energies we get
the energy of an optimal structure of s containing i · j. This allows us to re-
port structures for all base pairs that participates in a structure with an energy
not to far from the optimal. McCaskill [101] presents a similar algorithm com-
puting the full equilibrium partition function

∑
S:i·j∈S e

E(S)/kT for each base
pair, thus allowing the computation of the base pair probability according to
the Maxwell-Boltzmann distribution, cf. [7], as

∑
S:i·j∈S e

E(S)/kT /
∑

S e
E(S)/kT .

By using a meticulous backtracking procedure Wuchty et al. [157] present an
algorithm to generate all structures with an arbitrary upper bound on the en-
ergy, and in Cupal et al. [31] a method for finding the density of states, that
is, the distribution of energies of structures for a sequence, is proposed. The
method we suggest for handling internal loops in chapter 7 uses nothing but the
commutativity and associativity of the order in which structures are handled
and of combining structural elements. It thus applies quite generally, e.g. in all
the cases just mentioned as well as in many of the recursions used by Rivas and
Eddy [125] to predict structures containing pseudoknots.

A secondary structure for an RNA sequence can of course be used on its own
right when looking for interesting features, e.g. like the anticodon of tRNA’s
that are located in the hairpin loop of the middle stem of the cloverleaf struc-
ture. Of other uses, Gruener et al. [49] use energy-based structure prediction
to analyse connections between the space of RNA sequences and the space of
secondary structures under the fold mapping (as defined by the structure pre-
diction) and Hofacker [64] suggests RNA secondary structures as a tractable
model for biopolymer folding, cf. section 3.2.2. Major et al. [98] report on us-
ing, among other information, the secondary structure of yeast tRNAPhe as
constraints to predict the three-dimensional structure.
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Especially when trying to determine the tertiary structure it is questionable
whether a secondary structure with only 73 % of the true base pairs is sufficient.
It is thus highly desirable to improve on the predictions of secondary structure
for RNA sequences. If several related sequences are available we can use the
mutual information generated by sequence divergence while at the same time
keeping a conserved structure to vastly improve structure determination. As
only six of the sixteen possible combinations of bases form stable base pairs,
often it is the case that when a base involved in a base pair is mutated, the base
with which it pairs has to undergo a compensatory change for the base pair to
be retained in the structure. Similarly, insertions and deletions might call for
compensatory changes. One approach to using this information is simply to
use the correlation between bases at any two positions in an alignment of the
sequences as base pair scores, thus reducing the problem of determining the
optimal structure to a maximum weighted matching problem (for which there
is no need for the requirement of disallowing pseudoknots), cf. [136]. Other
approaches include construction of stochastic context-free grammars [128, 76],
covariance models [38] or simultaneous alignment of sequences and construction
of a consensus structure [131, 45]. The authoritative method for determining
the secondary structure of an RNA sequence, if the tertiary structure is not
available, is comparative modelling, that is, manually constructing alignments
revealing compensatory base pairs and insertions or deletions in related se-
quences.

Multibranched Loops

As mentioned in sections 6.6 and 6.7, when folding RNA sequences at elevated
temperatures we did not predict any long range base pairings. Rather the pre-
dicted structure consisted of a number of structural fragments, each covering
only a short subsequence. We conjecture that a major reason for this short-
coming of the algorithm might be the application of a linear penalty function
for unpaired bases in multibranched loops.

If one assumes the contributions to the change in free energy of forming a
multibranched loop is predominantly entropic, that is, the change in free energy
is predominantly caused by the reduced number of attainable conformations,
Jacobson and Stockmayer [72] show that the free energy’s dependence on the
size of the loop should be logarithmic.

An inspection of the energy parameters for RNA secondary structure for-
mation reveals, that two stacking base pairs increase the stability of a structure
while almost all other loops decrease the stability of a structure (for some small
loops the added stability for the closing base pairs stacking with neighbouring
unpaired bases may exceed the destabilising effect of the loop). As the stability
of stacking base pairs decrease with temperature while the destabilising effects
of loops increase, at elevated temperatures it requires longer helices of consec-
utively stacking base pairs to compensate for loops. One should thus expect
multibranched loops to contain more unpaired bases at elevated temperatures.

Though a reasonable logarithmic function for multibranched loop stability
can be approximated quite well by a linear function when the size of the loop is
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Figure 3.1: Approximation a logarithmic size dependence with a piecewise linear
function – one linear function is used for sizes less than x1, another for sizes
between x1 and x2 and a third for sizes greater than x2.

small, for loops with a larger number of unpaired bases the discrepancy becomes
significant and the excess penalising of unpaired bases becomes prohibitively
high. Compared to this, exterior unpaired bases, that is unpaired bases that are
not part of any loop, are not penalised but considered neutral for the stability
of the structure.

It is thus not surprising that the predicted structures at elevated tempera-
tures only contains very few, if any, multibranched loops (the predicted struc-
ture of the thermococcus celer 23S subunit at 88 ◦C e.g. contains one multi-
branched loop with two internal base pairs and eight unpaired bases). One can
expect a predicted structure at elevated temperatures to consist mostly of local
structural fragments, that is, helices closing hairpin loops and internal loops
and bulges (for which a logarithmic size dependence is used), but with most
of the global, or long-range, structure formed by helices closing multibranched
loops being absent.

Waterman and Smith [153] propose a general way to handle more complex
size dependencies for multibranched loops, by extending the the WM array,
that is, the array holding the energy of an optimal structure that constitutes
a part of a multibranched loop (see section 7.2), with an extra index counting
the number of unpaired bases in the structure. This method implies no restric-
tions on the size dependence and furthermore applies to calculating partition
functions. It does however increase both the time and space complexities of the
algorithm with a factor of n, for a O(n4) time and O(n3) space algorithm for
RNA secondary structure prediction. A more careful accounting of the space
usage of this algorithm reveals the constant hidden by the O to be roughly 1
byte (assuming entries in the arrays require 2 bytes each), and thus it would
require approximately 128 MB to fold a sequence of 500 nucleotides with this
algorithm – a sequence of 1000 nucleotides would require roughly 1 GB!

We propose meeting halfway between the tractability of a linear size de-
pendence and the desirability of a logarithmic size dependence as a feasible
alternative. Though a linear function cannot successfully imitate the wanted
logarithmic dependence over the entire range of expectable loop sizes, for a
smaller interval a good approximation can be achieved by a linear function.
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The expected range of loop sizes can thus be divided into intervals, in each of
which the desired size dependence can be approximated by a linear function as
illustrated in figure 3.1, a method also mentioned for sequence comparison by
Myers [107].

Assume that we want to use a piecewise linear function consisting of m
linear functions to model the size dependence of multibranched loops,

sizemultibranch(k, k′) = bk +




a1 + c1k
′ for k′ < x1

a2 + c2k
′ for x1 ≤ k′ < x2

...
am + cmk

′ for xm−1 ≤ k′

where k is the number of interior base pairs (for simplicity we assume a linear
dependence on the number of interior base pairs, but the technique also applies
for more complex interdependencies between the number of interior base pairs
and the number of unpaired bases) and k′ is the number of unpaired bases in
the multibranched loop. By concavity of the logarithmic function we want to
imitate, it is fair to assume decreasing slopes for the linear functions, that is,

c1 > c2 > . . . > cm, (3.1)

and that the value of any of the linear functions is less than the value of its
neighbours at the endpoints of the interval it covers, that is,

al + clxl ≤ al−1 + cl−1xl and al−1 + cl−1(xl − 1) ≤ al + cl(xl − 1) (3.2)

for 0 < l ≤ m. These two assumptions combined yields that for xl ≤ k′ < xl+1,
1 ≤ l ≤ m (with x0 = 0 and xm+1 = ∞), the value of the linear function
al +clk

′ is less than the value of any of the other linear functions. We introduce
a recursion similar to the one for WM on page 131,

WMl(i, j) = min{V (i, j) + b,WMl(i, j − 1) + cl,WMl(i+ 1, j) + cl,

min
i<k≤j

{WMl(i, k − 1) +WMl(k, j)}},

for each segment 1 ≤ l ≤ m. In this recursion V (i, j) holds the minimum energy
of a structure of s[i..j] closed by i · j; WMl(i, j) holds the minimum energy of
a structure of s[i..j] with at least one base pair, with base pairs and unpaired
bases penalised according to the l’th size dependence function. We can now
calculate the energy of the optimal multibranched loop closed by base pair i · j
as

VM(i, j) = min
1≤l≤m

i+1<k≤j−1

{WMl(i+ 1, k − 1) +WMl(k, j − 1) + al}.

An inspection of the above recursions reveals that we do not keep track of the
number of unpaired bases. Instead each possible multibranched loop is evalu-
ated using each of the linear functions, irregardless of the number of unpaired
bases in the loop.
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Figure 3.2: A multibranched loop with k interior base pairs.

So why does it work? Consider a specific candidate multibranched loop
with k interior base pairs and k′ unpaired bases, cf. figure 3.2. This loop will
be considered for each of the WMl(i, j)’s with a size dependence of al + clk

′.
For a specific l, the value of WMl(i, j) might thus be wrong in the sense that
it is the energy of a loop with a number of unpaired bases that is not in the
interval between xl−1 and xl. But by equations 3.1 and 3.2 the energy with
which the loop will be considered for the correct WM array, that is, the array
for which the size dependence follows the linear function to be used with k′

unpaired bases, will be lower. Thus we can trust the value of the minimum
over all the WMl(i, j)’s to be correct, though we can’t be sure that the energy
stored in a particular WMl(i, j) entry is correct. By this, the minimum value
calculated for VM(i, j) will be correct.

It is straightforward to verify that using m linear functions for the size de-
pendence of multibranched loops requires time O(mn3) and space O(mn2) for
the multibranched loop part of the RNA secondary structure prediction algo-
rithm. So how large an m will be required? To get an estimate we assume that
we want to imitate a logarithmic size dependence of 1.67 kcal/mol · ln(k′ + 1)
(fitting the previously1 used linear dependence of 0.4 kcal/mol · k′ for k′ = 0
and k′ = 10 – Zuker et al. [165] proposes a logarithmic size dependence of
1.079 kcal/mol · k′). Table 3.1 shows for how large loops we can guarantee the
discrepancy to be less than ε for different choices of m and ε. Considering the
certainty with which parameters for RNA secondary structure can be deter-
mined, it seems that three or four linear functions will usually be sufficient.
Instead of using a fixed maximum discrepancy as we did when calculating ta-
ble 3.1, one can of course also design the piecewise linear function to keep within
some discrepancy relative to the number of unpaired bases, or to be upper and
lower bounded by two different functions.

The technique of approximating a complex function by a number of simpler
functions is by no means new, but to our knowledge it has not been applied

1Mathews et al. [99] reports a set of improved energy parameters for RNA secondary
structure prediction. These contain coefficients for both the linear and the logarithmic size
dependency cases, but in the linear case the coefficient is zero and in the logarithmic case it
is negative.
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ε\m 1 2 3 4
0.1 kcal/mol 1 7 23 65
0.2 kcal/mol 3 19 84 348
0.3 kcal/mol 4 32 190 1081
0.5 kcal/mol 8 95 930 8949

Table 3.1: The number of unpaired bases we can handle for various choices of
maximum discrepancy and number of linear functions.

to the problem of predicting multibranched loops in RNA secondary structures
before. The perhaps greatest advantage of this technique is the ease of im-
plementation. It requires little more than a for-loop around existing code for
multibranched loop prediction. Furthermore it can be applied to other choices
of concave size dependence functions. On the other hand it relies on the object
being to find a minimum energy structure and thus does not apply to calcula-
tions of partition functions, cf. [101].

Pseudoknots

Usually it is assumed that any two base pairs, i·j and i′ ·j′, of an RNA secondary
structure are either nested, i.e. i < i′ < j′ < j, or disjoint, i.e. i < j < i′ < j′.
If the third possibility, the two base pairs being overlapping, i.e. i < i′ < j < j′,
is encountered, the structure is said to contain a pseudoknot. The term sec-
ondary structure is quite often even taken to mean a set of non-overlapping base
pairs; thus Pleij [121] refers to unknotted structures as ‘classical’ or ‘orthodox’
secondary structures, Major et al. [98] uses the term ‘tertiary base pairs’ for
four pseudoknot forming base pairs in the structure of yeast tRNAPhe, and
Sankoff [131] simply states it as a condition for secondary structures.

The reasons for this are several, but prominent among them are proba-
bly that a number of algorithms associated with RNA secondary structure,
e.g. predicting secondary structure [167, 112], computing the full partition func-
tion [101], comparing secondary structures [161], simultaneous alignment and
structure prediction of RNA sequences [131, 45] and stochastic models for RNA
secondary structures [128, 38, 76], are unable to handle structures containing
pseudoknots. Another reason is that the possible presence of a given pseudo-
knot involves spatial constraints – the constraints imposed by the other base
pairs in a knotted structure might prevent the two bases of a candidate pseudo-
knot base pair being in the proximity of each other. The stability of a general
pseudoknot base pair cannot be determined solely by local features like stacking
base pairs etc., but depends on the tertiary structure of the RNA molecule.

Rivas and Eddy [125] propose a modification to the classical dynamic pro-
gramming algorithm for RNA secondary structure prediction to allow for some
pseudoknotted structures. The basic idea of the algorithm is to keep a region
free for pseudoknot interactions when determining the energy of an optimal
structure for subsequences of the RNA sequence. Tables are maintained such
that the entries indexed by i, j, k, l holds the energy of an optimal structure for
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Figure 3.3: General recursion scheme for the Rivas/Eddy RNA secondary struc-
ture prediction algorithm.

i

j
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l

Optimal energy =

min
i<j<k<l

{Optimal energy of i j k l +
Optimal energy of j k l i }

Figure 3.4: A model for a class of pseudoknots. The sequence has been drawn
as a circle to highlight that one of the four parts of the sequence might extend
across the sequence ends, here shown with a zigzagged line.

the subsequence from base i to base j with bases from k to l yet unpaired, and
with various restrictions on which of the bases i, j, k, and l are paired and with
what base. The basic recursion used to maintain these tables is illustrated in
figure 3.3 – two indices are chosen where to split a subsequence with an un-
paired region into two subsequences with unpaired regions. The requirements
of time O(n6) and space O(n4) follows immediately from this recursion scheme.

In [88] we propose a more restricted model for structures containing pseu-
doknots based on the same principle. The sequence is split into four parts and
the optimal structures of the two pairs of opposite structures are computed
independently. Then the two structures are put together such that one forms
the classical secondary structure while the other forms the pseudoknot inter-
actions as illustrated in figure 3.4. Here we assume that the energies of the
two structures are just added but more elaborate rules for combining the ener-
gies, e.g. based on which of the bases neighbouring the splitting points that are
paired, can be used. Figure 3.4 also illustrates that an alternative view of the
model is, that we find structures of sequences with a subsequence removed by
which the analogy to the Rivas/Eddy algorithm is clear.

A straightforward algorithm to solve this problem would be to run through
all the O(n4) choices of splits and compute the energy of the optimal structures
of the two pairs of subsequences. This would require time O(n7) and space
O(n2). One can however observe, that when we compute the energy of the
optimal structure of the subsequence from base i to base l with the subsequence
from base j to base k removed, we also compute the energy of the optimal
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Algorithm 1 An algorithm for predicting RNA secondary structures contain-
ing pseudoknots based on the model illustrated in figure 3.4.

/* Vj,k(i, l) denotes the energy of the optimal structure for s[i..j] concatenated
with s[k..l]. */
E =∞
for k = 1 to |s| do /* Fix one of the endpoints of the excluded region */

Allocate memory for storing and calculating Vj,k(i, l) and Vk−1,l(j, i) for
i < j < k < l
/* Compute tables with k (or k− 1) as right (or left) endpoint of excluded
region. */
for j = 1 to k − 1 do

Compute table Vj,k

end for
for l = k to |s| do

Compute table Vk−1,l

end for
/* Combine tables. */
for 1 ≤ i < j < k < l ≤ |s| do
E = min{E,Vj,k(i, l) + Vk−1,l+1(j + 1, i− 1)}

end for
Free allocated memory

end for

structure of the subsequence from base i′ to base l′ with the subsequence from
base j to base k removed for all i ≤ i′ ≤ j and k ≤ l′ ≤ l. By using these
intermediate results from the dynamic programming algorithm we can thus
reduce the time requirements to O(n5) by just running through all the O(n2)
choices of the removed subsequence. Unfortunately we then have to store some
intermediate results until other results become available, increasing the space
requirements to O(n4). However, a more thorough investigation shows that
the intermediate results computed with k − 1 as the right endpoint of the
removed subsequence are only combined with intermediate results computed
with k as the left endpoint of the removed subsequence. This allows us to split
the computation into n independent phases, each requiring only space O(n3),
thus reducing the overall space requirements to O(n3) while maintaining the
O(n5) time requirements.

This method is sketched in algorithm 1, and one observes that the method
only relies on intermediate results being computed and not the specific RNA
secondary structure prediction used to compute the Vj,k tables. One could thus
use the Rivas/Eddy algorithm instead, or even apply the method recursively.
Using an algorithm with time complexity T (n) and space complexity S(n) for
computing the Vj,k tables, will result in an algorithm with time complexity
O(n2T (n)) and space complexity O(n3 + S(n)).

Despite the polynomial complexities of the above algorithms, it is arguable
whether this justifies calling the problems they solve tractable. Based on our
experiences when looking for large internal loops in natural occurring sequences,
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cf. section 6.6, we will use the 4269 bases of Qβ as a rough upper bound on
the length of sequences for which the classical O(n3) RNA secondary structure
prediction algorithm finishes in reasonable time. Assuming similar constants
hidden by the O notation this gives an upper bound of 65 bases for the Ri-
vas/Eddy algorithm2 and 150 bases for our O(n5) algorithm. Even a continued
rapid increase in computing power does not do much to improve on the situa-
tion. Zuker and Stiegler [167] in 1981 report folding a sequence of 459 bases.
Assuming an equivalent 1000-fold increase in computing power over the next 18
years, in 2017 the Rivas/Eddy algorithm should be able to handle sequences of
up to 200 bases, and our O(n5) algorithm – that only considers a very restricted
class of structures containing pseudoknots – should be able to handle sequences
of up to 600 bases. Furthermore, as we will show in the following, there are
sound reasons for restraining one’s hopes for an efficient algorithm to predict
general RNA secondary structures containing arbitrary pseudoknots.

Definition 1 (Nearest Neighbour Pseudoknot Model) Let S be a sec-
ondary structure on a sequence s ∈ {A,C,G,U}∗, with |s| = n, without the
unknotted restriction, that is, S is a set of base pairs i · j where 1 ≤ i < j ≤ n
and ∀i · j, i′ · j′ ∈ S : i = i′ ⇔ j = j′. The energy of S is an independent sum
of energies of each of the base pairs in S,

E(S) =
∑
i·j∈S

E(i · j),

where the energy of a base pair i · j only depends on

• the base pair itself, that is, the types of bases forming the pair.

• the two neighbouring bases i+ 1 and j − 1, that is, the types of these two
bases, and what base pairs they are forming if any.

Proposition 1 The problem of determining whether the optimal structure in
the Nearest Neighbour Pseudoknot Model has energy lower than some energy
value E is NP-hard3.

We will prove proposition 1 by a reduction to the special case of 3sat where
each literal occurs at most two times, cf. [113, proposition 9.3]. Throughout
the proof of the proposition we will allow only Watson-Crick base pairs. This
will become explicit in the final specification of the base pair energy function.
Before proving proposition 1 we need some building blocks.

Definition 2 The d digit binary representation of k, where 0 ≤ k ≤ 2d − 1,
over the alphabet {A,U}, is the string b{A,U}(k, d) where |b{A,U}(k, d)| = d and
b{A,U}(k, d) interpreted as a binary number with A representing 0 and U rep-
resenting 1 equals k. Similarly b{C,G}(k, d) is the d digit binary representation

2Rivas and Eddy [125] reports on folding a sequence of 105 bases. This stresses that our
estimates should be taken as just that – mere estimates that depend on computing power,
efficiency of implementation not to mention patience.

3As the problem trivially is in NP this implies that the problem is NP-complete.
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of k over the alphabet {C,G}. The k’th distinct {A,U} pattern with d digit
binary representations, p{A,U}(k, d), is the string

A . . . A︸ ︷︷ ︸
d+2

Ub{A,U}(k, d)AUAb{A,U}(k, d)UA . . . A︸ ︷︷ ︸
d+2

and similarly p{C,G}(k, d) is the k’th distinct {C,G} pattern with d digit binary
representations.

Definition 3 For a string s the complementary string s̄ is the string con-
structed by reversing s and replacing A’s with U ’s, U ’s with A’s, C’s with G’s
and G’s with C’s.

These distinct patterns and their complementary strings will be used to
build an RNA sequence corresponding to a boolean formula on restricted 3sat
form, such that the energy of an optimal structure of the string implies whether
the formula is satisfiable. The string will consist of two parts, a part where the
literals are grouped according to the clauses and a part where the literals are
grouped according to the variables. We will use distinct {C,G} patterns and
their complementary strings in the clauses and variables parts, respectively, to
represent the literals of the formula. The distinct {A,U} patterns and their
complementary strings will be used to form structures nullifying the benefit of
pairing a distinct {C,G} pattern with its complementary string.

Definition 4 Let C = l1 ∨ l2 ∨ l3 be a boolean disjunction of three literals. The
clause block C of C with d digit binary representations is the string

︸︷︷︸
S1

︸︷︷︸
L1

︸︷︷︸
S̄1

S̄2︷︸︸︷ ︸︷︷︸
S̄3

︸︷︷︸
L2

︸︷︷︸
S2

S3︷︸︸︷︸︷︷︸
S4

︸︷︷︸
L3

︸︷︷︸
S̄4

,

where the Si’s are distinct {A,U} patterns with d digits for four different k’s,
and the Li’s are distinct {C,G} patterns with d digits for three different k’s.
The overlaps between S̄1 and S̄2 indicates that the terminal d+2 U ’s of S̄1 and
initial d + 2 U ’s of S̄2 are shared. Similarly the terminal d + 2 A’s of S3 and
initial d+ 2 A’s of S4 are shared.

The rationale behind this construction is, that if a structure S contains the
helix formed by S1 and its complementary pattern S̄1 it cannot also contain
the helix formed by S2 and S̄2. Similarly, a structure cannot at the same time
contain the helix formed by S3 and S̄3 and the helix formed by S4 and S̄4.
Furthermore, if both the helices formed by S2 and S3 and their complementary
strings are present, there will be a base pair i · j ∈ S with a neighbouring base
pair forming a pseudoknot, that is, i+ 1 · j′ ∈ S with j′ 6∈ {i+ 2, . . . , j − 1}.

If S is to be without neighbouring base pairs forming a pseudoknot, we
can thus form helices of either S1 and S3 and their complementary strings
blocking L1 and L2 – blocking meaning that if L1 or L2 form a helix with
their complementary strings it will result in the innermost base pair of the
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helix formed by either S1 or S3 having a neighbouring base pair forming a
pseudoknot – of S1 and S4 blocking L1 and L3, or of S2 and S4 blocking L2 and
L3. For a clause block we can thus form helices of two of the distinct patterns
straightaway, and a third helix if we can pair one of the Li patterns with its
complementary string in the variables part.

Definition 5 Let x be a variable occurring in a boolean formula where each
literal occurs at most twice. The variable block V of x with d digit binary
representations is the string

︸︷︷︸
S̄1

︸︷︷︸
P̄1

G ︸︷︷︸
P̄2

︸︷︷︸
S1

︸︷︷︸
N̄1

G ︸︷︷︸
N̄2

︸︷︷︸
S̄1

,

where S1 is a distinct {A,U} pattern for some k, the P̄i’s are complementary
strings to the distinct {C,G} patterns used for the at most two positive occur-
rences of x (if x occurs positive only once, one of the P̄ patterns is omitted from
V) and the N̄i’s are complementary strings to the distinct {C,G} patterns used
for the at most two negative occurrences of x (if x occurs negative only once,
one of the N̄ patterns is omitted from V).

The rationale behind this construction is, that if a structure S contains the
helix formed by S1 and one of the two occurrences of its complementary string,
this helix will block either the complementary strings corresponding to the two
positive occurrences of x, or the complementary sequences corresponding to
the two negative occurrences of x. If S is to be without neighbouring base
pairs forming a pseudoknot, either the distinct pattern S1 does not form a helix
with one of its complementary strings, the complementary strings corresponding
to the positive occurrences of x does not form helices, or the complementary
strings corresponding to the negative occurrences of x does not form helices.
We are now ready to define an RNA sequence representing a boolean formula
on restricted 3sat form.

Definition 6 Let φ be a boolean formula on conjunctive normal form where
each clause has 3 literals and each literal occurs at most three times. Assume
that φ consists of c clauses and uses v variables. The RNA sequence corre-
sponding to φ is the sequence

sφ = C1GC2G . . . GCcGV1V2 . . .Vv,

where Ci is the clause block with dlog2(4c+v)e digit binary representations corre-
sponding to the i’th clause of φ, Vi is the variable block with dlog2(4c + v)e digit
binary representations corresponding to the i’th variable of φ, and no distinct
pattern is used more than once.

The choice of number of digits ensures that we can choose at least 4c+ v dif-
ferent values for distinct patterns. Each clause block uses four distinct {A,U}
patterns and three distinct {C,G} patterns while each variable block uses one
distinct {A,U} pattern. Thus we do not run out of patterns. We will use
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the term complementary pattern for the deliberate occurrences of the comple-
mentary string to a distinct pattern, that is, the strings indicated by a barred
pattern in definitions 4 and 5.

So far we have assumed that helices only form between a distinct pattern
and the complementary string designed to form a helix with it. Helices can
of course form between parts of distinct patterns not designed to form helices
together, but the following lemma limits the length of such helices.

Lemma 1 Let sφ be an RNA sequence constructed from a boolean formula φ
according to definition 6. In any structure S of sφ, any helix of consecutively
stacking pairs of length at least 4d + 7, where d is the number of digits used
for the binary representations, will have at least 2d + 3 bases at the end of
a distinct pattern forming base pairs with the intended bases of (one of) the
complementary pattern to this distinct pattern.

Proof. By construction any substring of sφ of length at least 4d + 7 will con-
tain at least 2d + 3 bases from one of the ends of a distinct pattern or its
complementary pattern. Consider one of the two substrings forming the helix.
This will be of length at least 4d + 7 and thus contain at least 2d + 3 bases
from a distinct pattern or its complementary pattern. Assume without loss of
generality that it contains the first 2d + 3 bases from p{A,U}(k, d), that is, the
substring Ad+2Ub{A,U}(k, d). By construction, the only occurrences of d + 2
consecutive U ’s preceeded by an A in sφ are at the ends of complementary pat-
terns to distinct {A,U} patterns, and thus Ad+2Ub{A,U}(k, d) forms base pairs
with b̄{A,U}(k′, d)AUd+2 for some k′ (by the assumption that only Watson-Crick
base pairs are allowed). As b{A,U}(k, d) pairs with b̄{A,U}(k′, d) it follows that
k = k′. 2

We have now established that any helix of considerable length will contain
at least part of a designed pairing. The next lemma establishes that this will
be all it contains.

Lemma 2 Let sφ be an RNA sequence constructed from a boolean formula φ
according to definition 6 with d digits used for the binary representations. In
any structure S of sφ, there are no helices of more than 4d + 9 consecutively
stacking base pairs containing only A’s and U ’s or containing only C’s and G’s.
The only helices of length 4d + 9 containing only A’s and U ’s or containing
only C’s and G’s are helices formed by distinct patterns and (one of) their
complementary pattern.

Proof. By lemma 1 we know that a helix of length 4d + 9 will contain one of
the ends of a distinct pattern paired with its complementary pattern. All we
have to show is, that we cannot extend a helix with an extra stacking pair of
bases of the same type at the end of a helix formed by a distinct pattern and
its complementary pattern.

If the distinct pattern is a {C,G} pattern this is straightforward, as it will
be in a clause block and thus bordered by an A and a U . Similarly a distinct
{A,U} pattern from a variable block will be bordered by two G’s. A distinct
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{A,U} pattern from a clause block corresponding to S1 or the complementary
pattern corresponding to S4 in definition 4 will be bordered by a C and a G.
Finally, patterns corresponding to S2 in definition 4 will have a C to its left
and an A to its right not matching either the U to the right or the A to the left
of its complementary pattern. Patterns corresponding to S3 will have an A to
its left and a U to its right not matching either the C to the right or the U to
the left of its complementary pattern. 2

Proof (of proposition 1). As mentioned above the reduction will be from 3sat
with the restriction that each literal appears at most twice. So let φ be a valid
formula for this restriction of 3sat with c clauses and v variables. In polynomial
time, we can construct sφ according to definition 6, and the base pair energy
function

E(Xi · Yj, Vi+1,Wj−1) =


−1 if Vi+1 ·Wj−1 ∈ S and either X · Y, V ·W ∈ {A · U,U ·A}
or X · Y, V ·W ∈ {C ·G,G · C}

4d+ 7 if X · Y ∈ {A · U,U ·A,C ·G,G · C} and for j′ 6∈ {i+ 1, . . . j − 1}
we have Vi+1 · Zj′ ,Wj−1 · Zj′ , Zj′ · Vi+1, Zj′ ·Wj−1 6∈ S

4d+ 8 otherwise

where d is the number of digits used for the binary representations in sφ and
S is the structure for which the energy is calculated. Now we claim that the
optimal structure of sφ with the above energy function has energy −(3c+ v) if
and only if φ is satisfiable.

By the energy function, the only helices for which the base pairs combined
yields a negative contribution to the energy of the structure are helices of at
least 4d+ 9 base pairs, base pairs that are either all A’s pairing with U ’s or all
C’s pairing with G’s. By lemma 2, the only such helices that can be formed
are between distinct patterns and their complementary patterns; these helices
will consist of exactly 4d + 9 base pairs and thus contribute −1 to the total
score of a structure, provided that the innermost base pair of the helix does not
have a neighbouring base pair that forms a pseudoknot. If a distinct pattern is
blocked4 by a helix, it can thus not form a helix yielding a negative contribution
to the total energy.

If there is an assignment of truth values to the variables of φ satisfying
φ, we can construct a structure S on sφ with energy −(3c + v) based on this
assignment by

• For each variable block forming the helix of the distinct {A,U} pattern
and the complementary pattern blocking the complementary patterns of
the literals that become false by the assignment.

4The term ‘block’ is used here with the same meaning as in the discussion following defi-
nition 4. A helix blocks a distinct pattern (or a complementary pattern), if forming the helix
between this pattern and its complementary pattern would result in the innermost base pair
of the original helix getting a neighbouring base pair forming a pseudoknot.
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• For each clause block forming two helices between distinct {A,U} patterns
that leaves the distinct {C,G} pattern of a literal that becomes true by
the assignment unblocked.

• Forming the helices between the unblocked distinct patterns of literals in
the clauses part and their complementary patterns (that are unblocked as
the assignment satisfies φ, and as the G between the two complementary
patterns of a literal prevents these from interfering with each other) in
the variables part.

By the discussion following definition 4, the distinct patterns of a clause block
can form at most three helices, each yielding a contribution of −1, and each
variable block introduces only one new distinct pattern; hence the energy of S
of −(3c+ v) is optimal.

Assume now that sφ has an optimal structure S of energy −(3c + v). By
the above and the discussion following definition 4, we get that each clause
block will contain a distinct pattern corresponding to a literal forming a helix
with its unblocked complementary pattern in the variables part, and that the
complementary patterns corresponding either to a variable or to its negation
will be blocked. We can thus infer a truth assignment to the variables of φ
satisfying φ from the unblocked complementary patterns of literals in S. 2

The energy function specified in the proof of proposition 1 rewards stacking
some base pairs, penalises loops by penalising the first base pair in a helix, and
further penalises neighbouring base pairs that forms a pseudoknot. The only
two remarkable oddities are the disallowance of base pairings between G and
U , and penalising stacking an A,U base pair with a C,G base pair.

One can observe that we could allow G,U base pairs without having to
change anything but swapping the distinct pattern and its complementary pat-
terns in the variable blocks, and using C instead of G to separate clause blocks
in sφ. As for penalising stacking A,U base pairs with C,G base pairs, this was
chosen to ease establishing the fact no energy benefits are obtained by extending
a helix formed by a distinct pattern and its complementary pattern by further
stacking base pairs. A proof where the energy function rewards stacking of all
combinations of A,U base pairs, C,G base pairs and G,U base pairs can be
achieved by slightly changing the construction of the variables part of sφ. To
limit the complexity of the proof, we have however chosen to present the above
version.

Even with the oddities of the energy function mentioned above, proposi-
tion 1 tells us, that if P 6= NP there is little hope for a worst case polynomial
time algorithm for RNA secondary structure prediction in the nearest neigh-
bour pseudoknot model or models extending it. An algorithm allowing energy
functions sufficiently general to be specialised to the above values and run-
ning in worst case polynomial time would imply P = NP. Thus an algorithm
for predicting RNA secondary structures with general pseudoknots would most
likely have to exploit properties of a fixed, reasonable energy function to obtain
polynomial running time.

By the above result it seems quite sensible to explore alternative approaches
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to predict RNA secondary structures with pseudoknots. One such approach is to
limit the types of pseudoknots considered as done by Rivas and Eddy [125] and
in algorithm 1. Another approach is that taken by Tabaska et al. [136], where in-
teractions with neighbouring base pairs are ignored, thus reducing the problem
of RNA secondary structure prediction to compute a maximal weighted pairing.
Numerous papers, e.g. [26], propose algorithms for predicting RNA secondary
structures containing pseudoknots, that generates a set of (all the) helices that
can be formed from the sequence, and then combines a compatible – compatible
meaning that no two helices contain the same base – subset of these helices into
a structure. Finally, heuristics can be applied to search for structures of low
energy; van Batenburg et al. [147] reports on successful experiments with ap-
plying genetic algorithms to the problem of finding low energy RNA secondary
structures containing pseudoknots.

3.2 Tertiary Structure

Being able to predict the tertiary structure of a protein (or an RNA molecule) is
of much higher importance than predicting the secondary structure. First of all,
from the full tertiary structure it is trivial to deduct the secondary structure.
Secondly, the tertiary structure is a lot more informative for inferring functional
properties. It should be mentioned, though, that a protein is not a completely
rigid molecule but has a somewhat dynamic structure that vibrates around an
equilibrium known as the native state. A change in the environment of the
protein will often modify this equilibrium, a modification that is of importance
during the catalytic processes the protein participates in cf. [40, section 1.4.1].
Thus the quaternary structure is the functionally most important structural
level. Nevertheless the tertiary structure usually does not deviate dramatically
from the quaternary structure, and furthermore reveals information, e.g. about
the surface and electric field of the protein at the beginning of the catalytic pro-
cess, helpful in deducting the pathway of the process. Much like predicting the
secondary structure is a stepping stone towards predicting the tertiary struc-
ture, predicting the tertiary structure is a stepping stone towards understanding
the functional aspects of a protein.

3.2.1 Structure Models

As always when trying to bring reality into a computer we need a model of the
part of reality we are interested in. For proteins this involves a model for the
protein molecule, a model of possible conformations, possibly including rules
determining legal conformations, and, if we want to use the model for prediction,
some objective, usually an energy function that should be minimised. For such a
model to be relevant, it has to reflect at least part of the reality we are trying to
model. For models for protein structure an obvious property to reflect is visual
equivalence between conformations, and, hopefully, between conformations of
minimum energy in the model and native states for real proteins. A more subtle,
but useful, property is behavioural equivalence, that is, proteins in the model
and in reality has some similar behavioural traits.

44



Once again claiming that proteins are part of reality, we may assume that
they obey the laws of quantum mechanics. A fundamental model for protein
structures is thus the Schrödinger equation

Ĥψ = i}
∂ψ

∂t
,

cf. [32, equation 6.31]. Despite its apparent simplicity it contains several un-
wieldy or impossible elements, as determining the Hamiltonian operator Ĥ and
solving the equation, either analytically or computationally.

In chemistry molecules are rarely viewed as wave functions, but rather as
atoms connected by various kinds of bonds, that is, the classical balls-and-
sticks model where the atoms are represented by balls that are connected by
sticks representing the bonds. Using this as underlying model for molecules,
we can specify the tertiary structure of a protein by giving the angles, lengths
and torsions of all the bonds in the structure. To reduce complexity, some
atoms, e.g. hydrogen atoms, are often omitted from the structural description
or grouped; the entire side chain of an amino acid might thus be represented by a
single ‘superatom’. Models with this detailed chemical and physical description
of the real world system are often called analytic models.

We can assign energies to structures in analytic models, e.g. by specifying
energy functions for bond lengths, angles and torsions, possibly depending on
local information on bond and atom types, and for non-local interactions, that
is, energy functions depending on distances between non-bonded atoms. These
energy functions might be based on physical principles like Coulombic and van
der Waals forces or on statistical information obtained from known structures5

known as mean force potentials [133]. These models tend to be at least in-
tractable, e.g. finding the optimal structure in a model of this type has been
proven NP-hard by Ngo and Marks [109].

A first step towards reducing the complexity of the model, is by restrict-
ing the attainable angles and lengths to finite sets of values; thus we could in
theory solve the structure prediction problem in the model, simply by enumer-
ating all possible conformations. As bond lengths only varies little, especially
compared to bond angles and bond torsions, these are typically set to a fixed
value depending on the bond type.

For angles and torsions, instead of choosing an arbitrary (uniform) distri-
bution of values, these can be restricted to sets of values compiled from known
structures, e.g. as by Pedersen and Moult [118], thus adding extra information
derived from the real world to the model. Such models are often used as a
starting point for finding good candidate conformations that can be refined in
more fine-grained models. It is thus arguable whether they should be considered
models of their own right, or just useful heuristics restricting the search space in
a broader model. For a specific conformation the energy is usually determined
by an energy function applicable to (or even stemming from) a general analytic
model.

5Somewhat depressing, part of the progress in protein structure prediction in recent years,
has been achieved by discarding our knowledge of intra- and intermolecular forces and replac-
ing it by statistical information retrieved from databases of known structures.
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Extending on this principle, instead of just compiling angles and torsions
from known structures, we can compile structural segments from known struc-
tures, cf. [18]. Taking this to the limit where we fit a new protein to a com-
plete known structure, we arrive at the threading problem suggested by Jones
et al. [74]. This method has proven to be quite successful for protein structure
prediction and methods using branch-and-bound (Lathrop and Smith [85]) or
genetic algorithms (Yadgari et al. [159]) have been proposed. Even a polynomial
time algorithm has been proposed for a class of threading problems (Xu and
Uberbacher [158]), but Lathrop [84] has proven the general threading problem
NP-complete.

Another path of pursuit, is to restrict the allowed values for angles and tor-
sions to the point where legal conformations are embeddings in a lattice. These
types of models are called lattice models, and it can be difficult to draw a clear
line between lattice models and analytical models with fixed bond lengths and a
very restricted set of allowed bond angles and torsions. A lattice model will of-
ten be characterised by neighbouring atoms (atoms connected by a bond) being
required to occupy neighbouring lattice points, amino acids being grouped into
one ‘superatom’, and the energy function only depending on non-local interac-
tions, that is, pairs of atoms not connected by a bond occupying neighbouring
lattice points.

Probably the most widely used type of lattice is the two- or three-dimensional
square lattice (corresponding to an analytic model with bond angles restricted
to multiples of 90◦ and torsions restricted to multiples of either 180◦ or 90◦ if
neighbouring atoms are to occupy neighbouring lattice points). It is evident
that square lattice models are not striving for visual equivalence with real pro-
teins. Dill et al. [34] give an extensive report on experiments supporting some
behavioural equivalences between square lattice models and real proteins, and
Šali et al. [129] suggest only sequences with a pronounced minimum energy can
be expected to fold to their minimum energy structures based on experiments
in a square lattice model. The reason that we want to use lattice models for
behavioural studies is of course that they are more wieldy than analytic mod-
els. For one thing it is preferable if we are able to determine the conformations
of minimum energy in the model; unfortunately there exists NP-completeness
results for various square lattice models [115, 145, 43].

One of the more popular square lattice models is the HP model proposed by
Dill [33]. In the HP model, cf. section 8.2 for a detailed description, a protein
is abstracted as a sequence of superatoms, each representing an entire amino
acid that is either hydrophobic or hydrophilic; we will use 0’s to denote hy-
drophiles and 1’s to denote hydrophobes, such that a protein in the HP model
is a sequence over the alphabet {0, 1}; a legal conformation is a self-avoiding
embedding where consecutive amino acids occupies neighbouring lattice point;
the energy is proportional to the number of non-local hydrophobic bonds, that
is, pairs of non-consecutive hydrophobic amino acids occupying neighbouring
lattice points, cf. figure 8.1 on page 150. The first approximation algorithm
for protein structure prediction was proposed by Hart and Istrail [57], cf. sec-
tion 3.2.2, for the HP model, and for some time there was hope that the HP
model would allow for efficient determination of the conformations of mini-
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mum energy. However, this problem has recently been proven NP-complete,
cf. [17, 28]. In this apparent absence of tractable models for protein structure
formation, Hofacker [64] has suggested the RNA secondary structure model,
cf. section 3.1.2, as a suitable model for studying structure formation.

3.2.2 Approximation Algorithms in the HP Model

Approximation algorithms are algorithms that yield solutions guaranteed to be
within some range from the optimal solution. In the HP model the energy
of a structure is proportional to the number of non-local hydrophobic bonds.
For a sequence s ∈ {0, 1}∗, an approximation algorithm should thus find a
structure with a number of non-local hydrophobic bonds A(s) that is within
some predetermined range from the number of non-local hydrophobic bonds in
the optimal structure OPT(s). In this section we will focus on the case where
this guarantee is given as an approximation ratio, that is, the deviation is in
terms of a multiplicative constant. An approximation ratio r is called absolute if
∀s ∈ {0, 1}∗ : A(s) ≥ r ·OPT(s). In some cases we might fall short of obtaining
such a guarantee by e.g. an additive constant, or at least an additive term that
becomes negligible small relative to OPT(s) when OPT(s) becomes large. If
∀ε > 0 ∃k ∀s ∈ {0, 1}∗ : OPT(s) ≥ k ⇒ A(s) ≥ (r − ε) · OPT(s) we will thus
refer to r as an asymptotic approximation ratio.

Hart and Istrail [57] present an approximation algorithm for the two-dimen-
sional HP model6 based on separating the hydrophobes into two sets, EVEN(s)
that are the hydrophobes in even-indexed positions in s, and ODD(s) that
are the hydrophobes in the odd-indexed positions in s. By ‘checkerboarding’
the lattice points they obtain a 2 ·min{|EVEN(s)|, |ODD(s)|} upper bound for
OPT(s), cf. equation 8.1, and observe that for any sequence s

• there is an index 1 ≤ i ≤ |s| such that at least half of the hydrophobes
in even-indexed positions are on one side of i and at least half of the
hydrophobes in odd-indexed positions are on the other side of i.

• for a substring of s we can fold loops out to one side, making a face or
stem where the hydrophobes in even-indexed (or odd-indexed) positions
of the substring occupy every other lattice point.

This leads to an approximation algorithm with an asymptotic approximation
ratio of 1/4. The algorithm has time complexity O(|s|), and works by dividing
the sequence at i and folding a face of hydrophobes in even-indexed positions
against a face of hydrophobes in odd-indexed positions in what we call a U-
fold, cf. figure 8.2 on page 151. A slight modification leads to an absolute
approximation ratio of 1/4, cf. [57].

In section 8.3 we present several attempts to improve on the Hart/Istrail ap-
proximation algorithm. First of all, instead of only allowing hydrophobes from
either EVEN(s) or ODD(s) in a face, we might as well find optimal faces to fold

6Hart and Istrail [57] also present an approximation algorithm for the three-dimensional
HP model with an approximation ratio of 3/8. The principles of this algorithm are similar to
those of the algorithm for the two-dimensional case.
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against each other. This can be done in time O(|s|2), cf. section 8.3, but unfor-
tunately does not improve on the approximation ratio. Two generalisations of
this, cf. section 8.3, are

• the S-fold, cf. figure 8.5(a) on page 153: Instead of just two faces, we stack
an arbitrary number of faces where only the two outermost faces can be
contracted by folding loops out to one side. It can be proven that this
generalisation does not lead to an approximation ratio better than 1/4.

• the C-fold, cf. figure 8.5(b) on page 153: Instead of having the two faces
consisting of a prefix and the corresponding suffix of s, we might as well
have one of them extending ‘across the ends’ of s. By this we mean con-
structing one of the faces from a substring in the middle of s and the other
from the remaining ends of s. We have not been able to prove that this
leads to an approximation ratio better than 1/4, but by a transformation
to what we call the circle problem, cf. section 8.4, we can prove that the
C-fold generalisation does not lead to an approximation ratio better than
1/3. Furthermore, from the circle problem we have obtained experimental
evidence supporting an approximation ratio of 1/3.

The optimal structure for both these two types of structures can be determined
in time O(|s|3) by dynamic programming.

Hart and Istrail [57] also mention the C-fold generalisation. As their method
only considers hydrophobes in even-indexed positions in one of the faces forming
non-local hydrophobic bonds with hydrophobes in odd-indexed positions in the
other face, they can however prove that it does not improve on the approxima-
tion ratio of 1/4. Mauri et al. [100] also present an approximation algorithm for
the two-dimensional HP model formulated in terms of a context-free grammar
for {0, 1}∗. Parsings by this grammar lead to C-fold structures, and by an al-
gorithm to find the most probable parsing for stochastic context-free grammars
they find the optimal structure in time O(|s|3). Based on experiments they
conjecture a 3/8 approximation ratio, a discrepancy with the upper bound of
1/3 we establish. This discrepancy can be explained by the empirical basis of
their conjecture, and the fact that they also count non-local hydrophobic bonds
in the loops contracting the stems. Our algorithms can without increasing the
time complexity be modified to count these non-local hydrophobic bonds too,
but they complicate the analysis of the approximation ratio and we conjecture
that counting them will not improve the approximation ratio.

So what is the use of these approximation algorithms? Hart and Istrail [57]
suggest that the structures determined might resemble the molten globule state,
an intermediate state with compact structures observed in real protein struc-
ture formation, based on arguments that to a varying degree can be considered
sound. Furthermore, many approximation algorithms perform much better
than their guaranteed ratios. Hart and Istrail [56, 58] show how to transform
an approximate result to more realistic lattices than the square lattice. It is thus
conceivable that we could use approximate structures in the two-dimensional
HP model as a starting point towards finding good structures in realistic ana-
lytic models.
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The approximation algorithms here do however probably fail in vastly out-
performing their guarantees, as we only look for one non-local hydrophobic
bond for each hydrophobe instead of the maximum of two; a structure with
more than around 50% non-local hydrophobic bonds compared to the optimal
structure should thus not be expected. Furthermore, even more is lost in the
transformation to more realistic lattices. These approximation algorithms for
protein folding in simple lattice models should thus probably, even more so
than the problem of finding maximal pairs presented in section 2.1, be termed
as solving problems inspired by biology and not as solving biological problem.
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Chapter 4

Finding maximal pairs with bounded gap

Gemini: The Twins
Another of Ptolemy’s original forty-eight groups, and one of the
constellations of the Zodiac. It takes its name from Castor and
Pollux, two of the mythological heroes—twin boys, sons of a Spar-
tan king, Tyndarus, and his queen Leda.

—Patrick Moore, The Observer’s Book of Astronomy

This paper describes methods to find repeated occurrences of strings within a
bounded distance from each other in a sequence. The results were presented
at the Tenth Annual Symposium on Combinatorial Pattern Matching and a
short version of the paper, not containing the section describing how to achieve
linear time when removing the upper bound on gap size, is published in the
proceedings of this conference [19]. Furthermore, the paper has been published
as a technical report in the BRICS report series [20]. The algorithms presented
have not been implemented.
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Finding maximal pairs with bounded gap

Gerth Stølting Brodal∗ Rune B. Lyngsø∗

Christian N. S. Pedersen∗ Jens Stoye†

Abstract

A pair in a string is the occurrence of the same substring twice. A pair
is maximal if the two occurrences of the substring cannot be extended to
the left and right without making them different. The gap of a pair is the
number of characters between the two occurrences of the substring. In
this paper we present methods for finding all maximal pairs under various
constraints on the gap. In a string of length n we can find all maximal pairs
with gap in an upper and lower bounded interval in time O(n log n + z)
where z is the number of reported pairs. If the upper bound is removed
the time reduces to O(n + z). Since a tandem repeat is a pair where the
gap is zero, our methods can be seen as a generalization of finding tandem
repeats. The running time of our methods equals the running time of well
known methods for finding tandem repeats.

4.1 Introduction

A pair in a string is the occurrence of the same substring twice. A pair is left-
maximal (right-maximal) if the characters to the immediate left (right) of the
two occurrences of the substring are different. A pair is maximal if it is both
left- and right-maximal. The gap of a pair is the number of characters between
the two occurrences of the substring. For example, the two occurrences of the
substring ma in the string maximal form a maximal pair of ma with gap two.

Gusfield [52, Section 7.12.3] describes how to report all maximal pairs in a
string using the suffix tree of the string in time O(n+z) and space O(n), where n
is the length of the string and z is the number of reported pairs. Since there
is no restriction on the gap of the maximal pairs reported by this algorithm,
many of them probably describe occurrences of substrings that are overlapping
or far apart in the string. In many applications in computational biology this
is unfortunate, so several papers address the problem of finding occurrences of
similar substrings not too far apart [75, 86, 127].

In the first part of this paper we describe how to find all maximal pairs in a
string with gap in an upper and lower bounded interval in time O(n log n+ z)
and space O(n). The interval of allowed gaps can be chosen such that we

∗Basic Research in Computer Science (BRICS), Centre of the Danish National Research
Foundation, Department of Computer Science, University of Aarhus, Ny Munkegade, 8000
Århus C, Denmark. E-mail: {gerth,rlyngsoe,cstorm}@brics.dk.

†Deutsches Krebsforschungszentrum (DKFZ), Theoretische Bioinformatik, Im Neuen-
heimer Feld 280, 69120 Heidelberg, Germany. E-mail: j.stoye@dkfz-heidelberg.de
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report a maximal pair only if the gap is between constants c1 and c2, but more
generally, it can be chosen such that we report a maximal pair of α only if the
gap is between g1(|α|) and g2(|α|), where g1 and g2 are functions that can be
computed in constant time. This, for example, makes it possible to find all
maximal pairs with gap between zero and some fraction of the length of the
repeated substring. In the second part of this paper we describe how removing
the upper bound g2(|α|) on allowed gaps, and only require the gap of a reported
pair of α to be at least g1(|α|), makes it possible to reduce the running time
to O(n+ z). The methods we present all use the suffix tree as the fundamental
data structure combined with efficient methods for merging search trees and
heap-ordered trees.

The problem of finding occurrences of repeated substrings in a string is well
studied. Most of the work has been concerned with efficient methods for finding
occurrences of contiguously repeated substrings. An occurrence of a substring of
the form αα is called an occurrence of a square or a tandem repeat. Most well-
known methods for finding the occurrences of all tandem repeats in a string
require time O(n log n + z), where n is the length of the string and z is the
number of reported occurrences of tandem repeats [29, 9, 96, 78, 135]. Work
has also been done on just detecting whether or not a string contains a tandem
repeat [97, 30]. Recently, extending on the idea presented in [30], two methods
have been presented that find a compact representation of all tandem repeats
in a string in time O(n) [77, 53]. Other papers consider the problem of finding
occurrences of contiguous repeats of substrings that are within some Hamming-
or edit-distance of each other [82].

In biological sequence analysis searching for tandem repeats is used to re-
veal structural and functional information [52, pp. 139–142], but searching for
exact tandem repeats can be too restrictive because of sequencing and other
experimental errors. By searching for maximal pairs with small gaps (maybe
depending on the length of the substring) it could be possible to compensate
for these errors. On the other hand, finding maximal pairs with a gap within
an interval can be seen as a generalization of finding occurrences of tandem re-
peats. Stoye and Gusfield [135] say that an occurrence of the tandem repeat αα
is a branching occurrence of the tandem repeat αα if and only if the characters
to the immediate right of the two occurrences of α are different, and they ex-
plain how to deduce the occurrence of all tandem repeats in a string from the
occurrences of branching tandem repeats in time proportional to the number
of tandem repeats. Since a branching occurrence of a tandem repeat is just a
right-maximal pair with gap zero, the methods presented in this paper can be
used to find all tandem repeats in time O(n log n+ z). This matches the time
bounds of previous published methods for this problem [29, 9, 96, 78, 135].

The rest of this paper is organized in two parts which can be read indepen-
dently. In Section 4.2 we present the preliminaries necessary to read either of
the two parts; we define pairs and suffix trees and describe how in general to
find pairs using the suffix tree. In the first part, Section 4.3, we present the
methods to find all maximal pairs in a string with gap in an upper and lower
bounded interval. This part also presents facts about efficient merging of search
trees which are essential to the formulation of the methods. In the second part,
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Section 4.4, we present the methods to find all maximal pairs in a string with
gap in a lower bounded interval. This part also includes the presentation of two
novel data structures, the heap-tree and the colored heap-tree, which are essen-
tial to the formulation of the methods. Finally, in Section 4.5 we summarize
our work and discuss open problems.

4.2 Preliminaries

Throughout this paper S will denote a string of length n over a finite alphabet Σ.
We will use S[i], for i = 1, 2, . . . , n, to denote the ith character of S, and use
S[i .. j] as notation for the substring S[i]S[i+1] · · · S[j] of S. To be able to refer
to the characters to the left and right of every character in S without worrying
about the first and last character, we define S[0] and S[n+1] to be two distinct
characters not appearing anywhere else in S.

In order to formulate methods for finding repetitive structures in S, we need
a proper definition of such structures. An obvious definition is to find all pairs
of identical substrings in S. This, however, leads to a lot of redundant output,
e.g. in the string that consists of n identical characters there are Θ(n3) such
pairs. To limit the redundancy without sacrificing any meaningful structures
Gusfield [52] defines maximal pairs.

Definition 7 (Pair) We say that (i, j, |α|) is a pair of α in S formed by i and j
if and only if 1 ≤ i < j ≤ n−|α|+1 and α = S[i .. i+ |α|−1] = S[j .. j+ |α|−1].
The pair is left-maximal (right-maximal) if the characters to the immediate left
(right) of two occurrences of α are different, i.e. left-maximal if S[i−1] 6= S[j−1]
and right-maximal if S[i+|α|] 6= S[j+|α|]. The pair is maximal if it is right- and
left-maximal. The gap of a pair (i, j, |α|) is the number of characters j− i− |α|
between the two occurrences of α in S.

It follows from the definition that a string of length n in the worst case con-
tains Θ(n2) right-maximal pairs. The string an contains the worst case number
of right-maximal pairs but only Θ(n) maximal pairs. The string (aab)n/3 how-
ever contains Θ(n2) maximal pairs. This shows that the worst case number of
maximal pairs and right-maximal pairs in a string are asymptotically equal.

Figure 4.1 illustrates the occurrence of a pair. In some applications it might
be interesting only to find pairs that obey certain restrictions on the gap, e.g. to
filter out pairs of substrings that are overlapping or far apart and thus to reduce
the number of pairs to report. Using the “smaller-half trick”, see Section 4.3.1,
and Lemma 3 it is easy to prove that a string of length n in the worst case
contains Θ(n log n) right-maximal pairs with gap in an interval of constant
size.

In this paper we present methods for finding all right-maximal and maximal
pairs (i, j, |α|) in S with gap in a bounded interval. These methods all use the
suffix tree of S as the fundamental data structure. We briefly review the suffix
tree and refer to [52] for a more comprehensive treatment.

Definition 8 (Suffix tree) The suffix tree T (S) of the string S is the com-
pressed trie of all suffixes of S. Each leaf in T (S) represents a suffix S[i .. n]
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Figure 4.1: An occurrence of a pair (i, j, |α|) with gap j − i− |α|.

of S and is annotated with the index i. We refer to the set of indices stored
at the leaves in the subtree rooted at node v as the leaf-list of v and denote
it LL(v). Each edge in T (S) is labelled with a nonempty substring of S such
that the path from the root to the leaf annotated with index i spells the suffix
S[i .. n]. We refer to the substring of S spelled by the path from the root to
node v as the path-label of v and denote it L(v).

The suffix tree T (S) can be constructed in time O(n) [155, 102, 144, 41].
It follows from the definition that all internal nodes in T (S) have out-degree
between two and |Σ|. We can turn the suffix tree T (S) into the binary suffix
tree TB(S) by replacing every node v in T (S) with out-degree d > 2 by a binary
tree with d − 1 internal nodes and d − 2 internal edges in which the d leaves
are the d children of node v. We label each new internal edge with the empty
string such that the d− 1 nodes replacing node v all have the same path-label
as node v has in T (S). Since T (S) has n leaves, constructing the binary suffix
tree TB(S) requires adding at most n− 2 new nodes. Since each new node can
be added in constant time, the binary suffix tree TB(S) can be constructed in
time O(n).

The binary suffix tree is an essential component of our methods. Definition 8
implies that there is a node v in T (S) with path-label α if and only if α is the
longest common prefix of S[i .. n] and S[j .. n] for some 1 ≤ i < j ≤ n. In
other words, there is a node v with path-label α if and only if (i, j, |α|) is a
right-maximal pair in S. Since S[i+ |α|] 6= S[j+ |α|] the indices i and j cannot
be elements in the leaf-list of the same child of v. Using the binary suffix
tree TB(S) we can thus formulate the following lemma.

Lemma 3 There is a right-maximal pair (i, j, |α|) in S if and only if there is a
node v in the binary suffix tree TB(S) with path-label α and distinct children w1

and w2 where i ∈ LL(w1) and j ∈ LL(w2).

Lemma 3 gives an approach to find all right-maximal pairs in S; for every
internal node v in the binary suffix tree TB(S) consider the leaf-lists at its two
children w1 and w2, and for every element (i, j) in LL(w1) × LL(w2) report a
right-maximal pair (i, j, |α|) if i < j and (j, i, |α|) if j < i. To find all maximal
pairs in S the problem remains to filter out all right-maximal pairs that are not
left-maximal.

58



��������������������
p

α

L(p, |α|) R(p, |α|)

|α| + g2(|α|) |α| + g2(|α|)
|α| + g1(|α|) |α| + g1(|α|)

Figure 4.2: If (p, q, |α|) (respectively (q, p, |α|)) is a pair with gap between g1(|α|)
and g2(|α|), then one occurrence of α is at position p and the other occurrence
is at a position q in the interval R(p, |α|) (respectively L(p, |α|)) of positions.

4.3 Pairs with upper and lower bounded gap

We want to find all maximal pairs (i, j, |α|) in S with gap between g1(|α|)
and g2(|α|), i.e. g1(|α|) ≤ j − i − |α| ≤ g2(|α|), where g1 and g2 are functions
that can be computed in constant time. An obvious approach is to generate all
maximal pairs in S and only report those with gap between g1(|α|) and g2(|α|),
but as shown above there might be asymptotically fewer maximal pairs in S
with gap between g1(|α|) and g2(|α|) than maximal pairs in S in total. We
therefore want to find all maximal pairs (i, j, |α|) in S with gap between g1(|α|)
and g2(|α|) without generating and considering all maximal pairs in S. A step
towards finding all maximal pairs with gap between g1(|α|) and g2(|α|) is to
find all right-maximal pairs with gap between g1(|α|) and g2(|α|).

Figure 4.2 shows that if one occurrence of α in a pair with gap between g1(|α|)
and g2(|α|) is at position p, then the other occurrence of α must be at a posi-
tion q in one of the two intervals L(p, |α|) = [ p−|α|−g2(|α|) .. p−|α|−g1(|α|) ]
or R(p, |α|) = [ p+ |α|+g1(|α|) .. p+ |α|+g2(|α|) ]. Together with Lemma 3 this
gives an approach to find all right-maximal pairs in S with gap between g1(|α|)
and g2(|α|); from every internal node v in the binary suffix tree TB(S) with
path-label α and children w1 and w2, we report for every p in LL(w1) the pairs
(p, q, |α|) for all q in LL(w2) ∩ R(p, |α|) and the pairs (q, p, |α|) for all q in
LL(w2) ∩ L(p, |α|).

To report right-maximal pairs efficiently using this procedure, we must be
able to find for every p in LL(w1), without looking at all the elements in LL(w2),
the proper elements q in LL(w2) to report it against. It turns out that search
trees make this possible. In this paper we use AVL trees, but other types of
search trees, e.g. (a, b)-trees [68] or red-black trees [50], can also be used as long
as they obey Lemmas 4 and 5 stated below. Before we can formulate algorithms
we review some useful facts about AVL trees.

4.3.1 Data Structures

An AVL tree T is a balanced search tree that stores an ordered set of elements.
AVL trees were introduced in [6], but are explained in almost every textbook
on data structures. We say that an element e is in T , or e ∈ T , if it is stored
at a node in T . For short notation we use e to denote both the element and
the node at which it is stored in T . We can keep links between the nodes in T
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in such a way that we in constant time from the node e can find the nodes
next(e) and prev (e) storing the next and previous element in increasing order.
We use |T | to denote the size of T , i.e. the number of elements stored in T .

Efficient merging of two AVL trees is essential to our methods. Hwang
and Lin [70] show how to merge two sorted lists using the optimal number
of comparisons. Brown and Tarjan [22] show how to implement merging of
two height-balanced search trees, e.g. AVL trees, in time proportional to the
optimal number of comparisons. Their result is summarized in Lemma 4, which
immediately implies Lemma 5.

Lemma 4 Two AVL trees of size at most n and m can be merged in time
O(log

(n+m
n

)
).

Lemma 5 Given a sorted list of elements e1, e2, . . . , en and an AVL tree T
of size at most m, m ≥ n, we can find qi = min

{
x ∈ T

∣∣ x ≥ ei
}

for all
i = 1, 2, . . . , n in time O(log

(
n+m

n

)
).

Proof. Construct the AVL tree of the elements e1, e2, . . . , en in time O(n).
Merge this AVL tree with T according to Lemma 4, except that whenever
the merge-algorithm would insert one of the elements e1, e2, . . . , en into T , we
change the merge-algorithm to report the neighbor of the element in T instead.
This modification does not increase the running time. 2

The “smaller-half trick” is essential to several methods for finding tandem
repeats [29, 9, 135]. It says that the sum over all nodes v in an arbitrary binary
tree of size n of terms that are O(n1), where n1 ≤ n2 are the numbers of leaves
in the subtrees rooted at the two children of v, is O(n log n). Our methods rely
on a stronger version of the “smaller-half trick” hinted at in [104, Ex. 35] and
used in [105, Chap. 5, p. 84]; we summarize it in the following lemma.

Lemma 6 Let T be an arbitrary binary tree with n leaves. The sum over all
internal nodes v in T of terms that are O(log

(n1+n2
n1

)
), where n1 and n2 are the

numbers of leaves in the subtrees rooted at the two children of v, is O(n log n).

Proof. As the terms are O(log
(n1+n2

n1

)
) we can find constants, a and b, such

that the terms are upper bounded by a+ b log
(n1+n2

n1

)
. We will by induction in

the number of leaves of the binary tree prove that the sum is upper bounded
by (2n − 1)a+ b log n!. As log n! = O(n log n) the lemma follows.

If T is a leaf the upper bound holds vacuously. Now assume inductively that
the upper bound holds for all trees with at most n−1 leaves. Let T be a tree with
n leaves where the number of leaves in the subtrees rooted at the two children
of the root are n1 < n and n2 < n. According to the induction hypothesis the
sum over all nodes in these two subtrees, i.e. the sum over all nodes of T except
the root, is bounded by (2n1 − 1)a+ b log n1! + (2n2 − 1)a+ b log n2! and thus
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the entire sum is bounded by

(2n1 − 1)a+b log n1! + (2n2 − 1)a+ b log n2! + a+ b log
(
n1 + n2

n1

)
= (2(n1 + n2)− 1)a+ b log n1! + b log n2!+

b log(n1 + n2)!− b log n1!− b log n2!
= (2n − 1)a+ b log n!

which proves the lemma. 2

4.3.2 Algorithms

We first describe an algorithm that finds all right-maximal pairs in S with
bounded gap using AVL trees to keep track of the elements in the leaf-lists
during a traversal of the binary suffix tree TB(S). We then extend it to find all
maximal pairs in S with bounded gap using an additional AVL tree to filter out
efficiently all right-maximal pairs that are not left-maximal. Both algorithms
run in time O(n log n + z) and space O(n), where z is the number of reported
pairs. In the following we assume, unless stated otherwise, that v is a node in
the binary suffix tree TB(S) with path-label α and children w1 and w2 named
such that |LL(w1)| ≤ |LL(w2)|. We say that w1 is the small child of v and
that w2 is the big child of v.

Right-maximal pairs with upper and lower bounded gap

To find all right-maximal pairs in S with gap between g1(|α|) and g2(|α|) we
consider every node v in the binary suffix tree TB(S) in a bottom-up fashion,
e.g. during a depth-first traversal. At every node v we use AVL trees storing
the leaf-lists LL(w1) and LL(w2) at its two children to report the proper right-
maximal pairs of its path-label α. The details are given in Algorithm 2 and
explained below.

At every node v in TB(S) we construct an AVL tree, the leaf-list tree T , that
stores the elements in LL(v). If v is a leaf then we construct T directly in Step 1.
If v is an internal node then LL(v) is the union of the disjoint leaf-lists LL(w1)
and LL(w2) which by assumption are stored in the already constructed T1

and T2, so we construct T by merging T1 and T2, |T1| ≤ |T2|, using Lemma 4.
Before constructing T in Step 2c we use T1 and T2 to report right-maximal pairs
from node v by reporting every p in LL(w1) against every q in LL(w2)∩L(p, |α|)
and LL(w2)∩R(p, |α|). This is done in two steps. In Step 2a we find for every p
in LL(w1) the minimum element qr(p) in LL(w2)∩R(p, |α|) and the minimum
element ql(p) in LL(w2)∩L(p, |α|) by searching in T2 using Lemma 5. In Step 2b
we report pairs (p, q, |α|) and (q, p, |α|) for every p in LL(w1) and increasing q’s
in LL(w2) starting with qr(p) and ql(p) respectively, until the gap violates the
upper or lower bound.

To argue that Algorithm 2 finds all right-maximal pairs with gap between
g1(|α|) and g2(|α|) it is enough to argue that we for every p in LL(w1) re-
port all right-maximal pairs (p, q, |α|) and (q, p, |α|) with gap between g1(|α|)
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and g2(|α|). The rest follows because we at every node v in TB(S) consider
every p in LL(w1). Consider the call Report(qr(p), p+ |α|+ g2(|α|)) in Step 2b.
From the implementation of Report follows that this call reports p against ev-
ery q in LL(w2) ∩ [qr(p) .. p + |α| + g2(|α|)]. By construction of qr(p) and def-
inition of R(p, |α|) follows that LL(w2) ∩ [qr(p) .. p + |α| + g2(|α|)] is equal to
LL(w2)∩R(p, |α|), so the call reports all pairs (p, q, |α|) with gap between g1(|α|)
and g2(|α|). Similarly we can argue that the call Report(ql(p), p− |α| − g1(|α|))
reports all pairs (q, p, |α|) with gap between g1(|α|) and g2(|α|).

Now consider the running time of Algorithm 2. Building the binary suffix
tree TB(S) and creating an AVL tree of size one at each leaf in Step 1 takes
time O(n). At every internal node in TB(S) we do Step 2. Since |T1| ≤ |T2|
searching in Step 2a and merging in Step 2c takes time O(log

(|T1|+|T2|
|T1|

)
) by

Lemmas 5 and 4 respectively. Reporting of pairs in Step 2b takes time pro-
portional to |T1|, because we consider every p in LL(w1), plus the number of
reported pairs. Summing this over all nodes gives by Lemma 6 that the total
running time is O(n log n+ z), where z is the number of reported pairs. Since
constructing and keeping TB(S) requires space O(n), and since no element at
any time is in more than one leaf-list tree, Algorithm 2 requires space O(n).

Theorem 1 Algorithm 2 finds all right-maximal pairs (i, j, |α|) in a string S
with gap between g1(|α|) and g2(|α|) in space O(n) and time O(n log n + z),
where z is the number of reported pairs and n is the length of S.

Maximal pairs with upper and lower bounded gap

We now turn towards finding all maximal pairs in S with gap between g1(|α|)
and g2(|α|). Our approach to find all maximal pairs in S with gap between g1(|α|)
and g2(|α|) is to extend Algorithm 2 to filter out all right-maximal pairs that
are not left-maximal. A simple solution is to extend the procedure Report to
check if S[p − 1] 6= S[q − 1] before reporting the pair (p, q, |α|) or (q, p, |α|) in
Step 2b. This solution takes time proportional to the number of inspected right-
maximal pairs, and not time proportional to the number of reported maximal
pairs. Even though the maximum number of right-maximal pairs and maximal
pairs in strings of a given length are asymptotically equal, many strings contain
significantly fewer maximal pairs than right-maximal pairs. We therefore want
to filter out all right-maximal pairs that are not left-maximal without inspecting
all right-maximal pairs. In the remainder of this section we describe one way
to do this.

Consider the reporting step in Algorithm 2 and assume that we are about
to report from a node v with children w1 and w2. The leaf-list trees T1 and T2,
|T1| ≤ |T2|, are available and they make it possible to access the elements
in LL(w1) = {p1, p2, . . . , ps} and LL(w2) = {q1, q2, . . . , qt} in sorted order. We
divide the sorted leaf-list LL(w2) into blocks of contiguous elements such that
the elements qi−1 and qi are in the same block if and only if S[qi−1−1] = S[qi−1].
We say that we divide the sorted leaf-list into blocks of elements with equal left-
characters. To filter out all right-maximal pairs that are not left-maximal we
must avoid to report p in LL(w1) against any element q in LL(w2) in a block of
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Algorithm 2 Find all right-maximal pairs in string S with bounded gap.

1. Initializing: Build the binary suffix tree TB(S) and create at each leaf an
AVL tree of size one that stores the index at the leaf.

2. Reporting and merging: When the AVL trees T1 and T2, |T1| ≤ |T2|, at
the two children w1 and w2 of node v with path-label α are available, we
do the following:

(a) Let {p1, p2, . . . , ps} be the elements in T1 in sorted order. For each
element p in T1 we find

qr(p) = min
{
x ∈ T2

∣∣ x ≥ p+ |α|+ g1(|α|)
}

ql(p) = min
{
x ∈ T2

∣∣ x ≥ p− |α| − g2(|α|)}
by searching in T2 with the sorted lists {pi + |α| + g1(|α|) | i =
1, 2, . . . , s} and {pi − |α| − g2(|α|) | i = 1, 2, . . . , s} using Lemma 5.

(b) For each element p in T1 we do Report(qr(p), p + |α| + g2(|α|)) and
Report(ql(p), p−|α|−g1(|α|)) where Report is the following procedure.

def Report(from , to) :
q = from
while q ≤ to :

report pair (p, q, |α|) if p < q, and (q, p, |α|) otherwise
q = next(q)

(c) Build the leaf-list tree T at node v by merging T1 and T2 using
Lemma 4.

elements with left-character S[p−1]. This gives the overall idea of the extended
algorithm; we extend the reporting step in Algorithm 2 such that whenever we
are about to report p in LL(w1) against q in LL(w2) where S[p− 1] = S[q − 1]
we skip all elements in the current block containing q and continue reporting p
against the first element q′ in the following block, which by the definition of
blocks satisfies that S[p− 1] 6= S[q′ − 1].

To implement this extended reporting step efficiently we must be able to
skip all elements in a block without inspecting each of them. We achieve this
by constructing an additional AVL tree, the block-start tree, that keeps track
of the blocks in the leaf-list. At each node v during the traversal of TB(S)
we thus construct two AVL trees; the leaf-list tree T that stores the elements
in LL(v), and the block-start tree B that keeps track of the blocks in the sorted
leaf-list by storing all the elements in LL(v) that start a block. We keep links
from the block-start tree to the leaf-list tree such that we in constant time can
go from an element in the block-start tree to the corresponding element in the
leaf-list tree. Figure 4.3 illustrates the leaf-list tree, the block-start tree and
the links between them. Before we present the extended algorithm and explain
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Figure 4.3: The data structure constructed at each node v in TB(S). The
leaf-list tree T stores all elements in LL(v). The block-start tree B stores all
elements in LL(v) that start a block in the sorted leaf-list. We keep links from
the elements in the block-start tree to the corresponding elements in the leaf-list
tree.

how to use the block-start tree to efficiently skip all elements in a block, we first
describe how to construct the leaf-list tree T and block-start tree B at node v
from the leaf-list trees, T1 and T2, and block-start trees, B1 and B2, at its two
children w1 and w2.

Since LL(v) is the union of the disjoint leaf-lists LL(w1) and LL(w2) stored
in T1 and T2 respectively, we can construct the leaf-list tree T by merging T1

and T2 using Lemma 4. It is more involved to construct the block-start tree B.
The reason is that an element pi that starts a block in LL(w1) or an element qj
that starts a block in LL(w2) does not necessarily start a block in LL(v) and vice
versa, so we cannot construct B by merging B1 and B2. Let {e1, e2, . . . , es+t}
be the elements in LL(v) in sorted order. By definition the block-start tree B
contains all elements ek in LL(v) where S[ek−1 − 1] 6= S[ek − 1]. We con-
struct B by modifying B2. We choose to modify B2, and not B1, because
|LL(w1)| ≤ |LL(w2)|, which by the “smaller-half trick” allows us to consider all
elements in LL(w1) without spending too much time in total. To modify B2 to
become B we must identify all the elements that are in B but not in B2 and
vice versa.

Lemma 7 If ek is in B but not in B2 then ek ∈ LL(w1) or ek−1 ∈ LL(w1).

Proof. Assume that ek is in B and that ek and ek−1 both are in LL(w2).
In LL(w2) the elements ek and ek−1 are neighboring elements qj and qj−1.
Since ek starts a block in LL(v) then S[qj − 1] = S[ek − 1] 6= S[ek−1 − 1] =
S[qj−1 − 1]. This shows that qj = ek is in B2 and the lemma follows. 2

Let NEW be the set of elements ek in B where ek or ek−1 are in LL(w1). It
follows from Lemma 7 that this set contains at least all elements in B that are
not in B2. It is easy to see that we can construct NEW in sorted order while
merging T1 and T2; whenever an element ek from T1, i.e. LL(w1), is placed in T ,
i.e. LL(v), we include it, and/or the next element ek+1 placed in T , in NEW if
they start a block in LL(v).

If we insert the elements in NEW we are halfway done modifying B2 to
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become B. We still need to identify and remove the elements that should be
removed from B2, that is, the elements that are in B2 but not in B.

Lemma 8 An element qj in B2 is not in B if and only if the largest element ek
in NEW smaller than qj in B2 has the same left-character as qj.

Proof. If qj is in B2 but does not start a block in LL(v), then it must be in a
block started by some element ek with the same left-character as qj. This block
cannot contain qj−1 because qj being in B2 implies that S[qj−1] 6= S[qj−1−1].
We thus have the ordering qj−1 < ek < qj. This implies that ek is the largest
element in NEW smaller than qj. If ek is the largest element in NEW smaller
than qj, then no block starts in LL(v) between ek and qj, i.e. all elements e in
LL(v) where ek < e < qj satisfy that S[e−1] = S[ek−1], so if S[ek−1] = S[qj−1]
then qj does not start a block in LL(v). 2

By searching in B2 with the sorted list NEW using Lemma 5 it is straight-
forward to find all pairs of elements (ek, qj), where ek is the largest element in
NEW smaller than qj in B2. If the left-characters of ek and qj in such a pair
are equal, i.e. S[ek−1] = S[qj−1], then by Lemma 8 the element qj is not in B
and must therefore be removed from B2. It follows from the proof of Lemma 8
that if this is the case then qj−1 < ek < qj, so we can, without destroying the
order among the nodes in B2, remove qj from B2 and insert ek instead, simply
by replacing the element qj with the element ek at the node storing qj in B2.

We can now summarize the three steps it takes to modify B2 to become B.
In Step 1 we construct the sorted set NEW that contains all elements in B
that are not in B2. This is done while merging T1 and T2 using Lemma 4. In
Step 2 we remove the elements from B2 that are not in B. The elements in B2

being removed and the elements from NEW replacing them are identified using
Lemmas 5 and 8. In Step 3 we merge the remaining elements in NEW into the
modified B2 using Lemma 4. Adding links from the new elements in B to the
corresponding elements in T can be done while replacing and merging in Steps 2
and 3. Since |NEW | ≤ 2 |T1| and |B2| ≤ |T2|, the time it takes to construct B
is dominated by the the time it takes merge a sorted list of size 2 |T1| into an
AVL tree of size |T2|. By Lemma 4 this is within a constant factor of the time
it takes to merge T1 and T2, so the time is takes to construct B is dominated
by the time it takes to construct the leaf-list tree T .

Now that we know how to construct the leaf-list tree T and block-start
tree B at node v from the leaf-list trees, T1 and T2, and block-start trees, B1

and B2, at its two children w1 and w2, we can proceed with the implementation
of the extended reporting step. The details are shown in Algorithm 3. This
algorithm is similar to Algorithm 2 except that we at every node v in TB(S)
construct two AVL trees; the leaf-list tree T that stores the elements in LL(v),
and the block-start tree B that keeps track of the blocks in LL(v) by storing
the subset of elements that start a block. If v is a leaf, we construct T and B
directly. If v is an internal node, we construct T by merging the leaf-list trees T1

and T2 at its two children w1 and w2, and we construct B by modifying the
block-start tree B2 as explained above.
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Algorithm 3 Find all maximal pairs in string S with bounded gap.

1. Initializing: Build the binary suffix tree TB(S) and create at each leaf two
AVL trees of size one, the leaf-list and the block-start tree, both storing
the index at the leaf.

2. Reporting and merging: When the leaf-list trees T1 and T2, |T1| ≤ |T2|,
and the block-start trees B1 and B2 at the two children w1 and w2 of
node v with path-label α are available, we do the following:

(a) Let {p1, p2, . . . , ps} be the elements in T1 in sorted order. For each
element p in T1 we find

qr(p) = min
{
x ∈ T2

∣∣ x ≥ p+ |α|+ g1(|α|)
}

ql(p) = min
{
x ∈ T2

∣∣ x ≥ p− |α| − g2(|α|)}
br(p) = min

{
x ∈ B2

∣∣ x ≥ p+ |α|+ g1(|α|)
}

bl(p) = min
{
x ∈ B2

∣∣ x ≥ p− |α| − g2(|α|)}
by searching in T2 and B2 with the sorted lists {pi+|α|+g1(|α|) | i =
1, 2, . . . , s} and {pi − |α| − g2(|α|) | i = 1, 2, . . . , s} using Lemma 5.

(b) For each element p in T1 we do ReportMax(qr(p), br(p), p + |α| +
g2(|α|)) and ReportMax(ql(p), bl(p), p−|α|−g1(|α|)) where ReportMax
is the following procedure.

def ReportMax(from T , from B , to):
q = from T
b = from B
while q ≤ to:

if S[q − 1] 6= S[p − 1]:
report pair (p, q, |α|) if p < q, and (q, p, |α|) otherwise
q = next(q)

else:
while b ≤ q:

b = next(b)
q = b

(c) Build the leaf-list tree T at node v by merging T1 and T2 using
Lemma 4. Build the block-start tree B at node v by modifying B2

as described in the text.

Before constructing T and B we report all maximal pairs from node v with
gap between g1(|α|) and g2(|α|) by reporting every p in LL(w1) against every q
in LL(w2)∩L(p, |α|) and LL(w2)∩R(p, |α|) where S[p− 1] 6= S[q − 1]. This is
done in two steps. In Step 2a we find for every p in LL(w1) the minimum ele-
ments ql(p) and qr(p), as well as the minimum elements bl(p) and br(p) that start
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a block, in LL(w2)∩L(p, |α|) and LL(w2)∩R(p, |α|) respectively. This is done
by searching in T2 and B2 using Lemma 5. In Step 2b we report pairs (p, q, |α|)
and (q, p, |α|) for every p in LL(w1) and increasing q’s in LL(w2) starting with
qr(p) and ql(p) respectively, until the gap violates the upper or lower bound.
Whenever we are about to report p against q where S[p− 1] = S[q − 1], we in-
stead use the block-start tree B2 to skip all elements in the block containing q
and continue with reporting p against the first element in the following block.

To argue that Algorithm 3 finds all maximal pairs with gap between g1(|α|)
and g2(|α|) it is enough to argue that we for every p in LL(w1) report all max-
imal pairs (p, q, |α|) and (q, p, |α|) with gap between g1(|α|) and g2(|α|). The
rest follows because we at every node in TB(S) consider every p in LL(w1).
Consider the call ReportMax(qr(p), br(p), p+ |α|+ g2(|α|)) in Step 2b. From the
implementation of ReportMax follows that unless we skip elements by increas-
ing b then we consider every q in LL(w2)∩R(p, |α|). The test S[q−1] 6= S[p−1]
before reporting a pair ensures that we only report maximal pairs and when-
ever S[q − 1] = S[p − 1] we increase b until b = min{x ∈ B2 | x > q}. This
is, by construction of B2 and br(p), the element that starts the block following
the block containing q, so all elements q′, q < q′ < b, we skip by setting q
to b satisfy that S[p − 1] = S[q − 1] = S[q′ − 1]. We thus conclude that
ReportMax(qr(p), br(p), p + |α| + g2(|α|)) reports p against exactly those q in
LL(w2) ∩ R(p, |α|) where S[p − 1] 6= S[q − 1], i.e. it reports all maximal pairs
(p, q, |α|) at node v with gap between g1(|α|) and g2(|α|). Similarly, the call
ReportMax(ql(p), bl(p), p−|α|−g1(|α|)) reports all maximal pairs (q, p, |α|) with
gap between g1(|α|) and g2(|α|).

Now consider the running time of Algorithm 3. We first argue that the call
ReportMax(qr(p), br(p), p+ |α|+ g2(|α|)) takes constant time plus time propor-
tional to the number of reported pairs (p, q, |α|). To do this all we have to show
is that the time used to skip blocks, i.e. the number of times we increase b, is
proportional to the number of reported pairs. By construction br(p) ≥ qr(p),
so the number of times we increase b is bounded by the number of blocks in
LL(w2) ∩ R(p, |α|). Since neighboring blocks contain elements with different
left-characters, we report p against an element from at least every second block
in LL(w2)∩R(p, |α|). The number of times we increase b is thus proportional to
the number of reported pairs. The call ReportMax(ql(p), bl(p), p− |α| − g1(|α|))
also takes constant time plus time proportional to the number of reported pairs
(q, p, |α|). We thus have that Step 2b takes time proportional to |T1| plus the
number of reported pairs. Everything else we do at node v, i.e. searching in T2

and B2 and constructing the leaf-list tree T and block-start tree B, takes time
O(log

(|T1|+|T2|
|T1|

)
). Summing this over all nodes gives by Lemma 6 that the to-

tal running time of the algorithm is O(n log n + z) where z is the number of
reported pairs. Since constructing and keeping TB(S) requires space O(n), and
since no element at any time is in more than one leaf-list tree, and maybe one
block-start tree, Algorithm 3 requires space O(n).

Theorem 2 Algorithm 3 finds all maximal pairs (i, j, |α|) in a string S with
gap between g1(|α|) and g2(|α|) in space O(n) and time O(n log n+ z), where z
is the number of reported pairs and n is the length of S.
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We observe that Algorithm 3 never uses the block-start tree B1 at the small
child w1. This observation can be used to ensure that only one block-start tree
exists during the execution of the algorithm. If we implement the traversal
of TB(S) as a depth-first traversal in which we at each node v first recursively
traverse the subtree rooted at the small child w1, then we do not need to
store the block-start tree returned by this recursive traversal while recursively
traversing the subtree rooted at the big child w2. This implies that only one
block-start tree exists at all times during the recursive traversal of TB(S). The
drawback is that we at each node v need to know in advance which child is the
small child, but this knowledge can be obtained in linear time by annotating
each node with the size of the subtree it roots.

4.4 Pairs with lower bounded gap

If we relax the constraint on the gap and only want to find all maximal pairs
in S with gap at least g(|α|), where g is a function that can be computed
in constant time, then a straightforward solution is to use Algorithm 3 with
g1(|α|) = g(|α|) and g2(|α|) = n. This obviously finds all maximal pairs with
gap at least g1(|α|) = g(|α|) in time O(n log n+z). However, the missing upper
bound on the gap, i.e. the trivial upper bound g2(|α|) = n, makes it possible to
reduce the running time to O(n+ z) since reporting from each node during the
traversal of the binary suffix tree is simplified.

The reporting of pairs from node v with children w1 and w2 is simpli-
fied, because the lack of an upper bound on the gap implies that we do not
have to search LL(w2) for the first element to report against the current el-
ement in LL(w1). Instead we can start by reporting the current element in
LL(w1) against the biggest (and smallest) element in LL(w2) and then con-
tinue reporting it against decreasing (and increasing) elements from LL(w2)
until the gap becomes smaller than g(|α|). Unfortunately this simplification
alone does not reduce the asymptotic running time because inspecting every el-
ement in LL(w1) and keeping track of the leaf-lists in AVL trees alone requires
time Θ(n log n). To reduce the running time we must thus avoid to inspect ev-
ery element in LL(w1) and find another way to store the leaf-lists. We achieve
this by using the data structures presented below to store the leaf-lists during
the traversal of the binary suffix tree.

4.4.1 Data structures

A heap-ordered tree is a tree in which each node stores an element and has a
key. Every node other than the root satisfies that its key is greater than or equal
to the key at its parent. Heap-ordered trees have been widely studied and are
the basic structure of many priority queues [156, 42, 150, 44]. In this section we
utilize heap-ordered trees to construct two data structures, the heap-tree and
the colored heap-tree, that are useful in our application of finding pairs with
lower bounded gap but might also have applications elsewhere.

A heap-tree stores a collection of elements with comparable keys and sup-
ports the following operations.
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Init(e, k): Return a heap-tree of size one that stores element e with key k.

Find(H,x): Return all elements e stored in the heap-tree H with key k ≤ x.
Min(H): Return the element e stored in H with minimum key.

Meld(H,H ′): Return a heap-tree that stores all elements in H and H ′ with
unchanged keys.

A colored heap-tree stores a collection of colored elements with comparable
keys. We use color (e) to denote the color of element e. A colored heap-tree
supports the same operations as a heap-tree except that it allows us to find all
elements not having a particular color. The operations are as follows.

ColorInit(e, k): Return a colored heap-tree of size one that stores element e
with key k.

ColorFind(H,x, c): Return all elements e stored in the colored heap-tree H
with key k ≤ x and color (e) 6= c.

ColorMin(H): Return the element e stored in H with minimum key.

ColorSec(H): Return the element e stored in H with minimum key such
that color (e) 6= color(ColorMin(H)).

ColorMeld(H,H ′): Return a colored heap-tree that stores all elements in H
and H ′ with unchanged keys.

In the following we will describe how to implement heap-trees and colored
heap-trees using heap-ordered trees such that Init, Min, ColorInit, ColorMin and
ColorSec take constant time, Find and ColorFind take time proportional to the
number of returned elements, and Meld and ColorMeld take amortized constant
time. This means that we can meld n (colored) heap-trees of size one into
a single (colored) heap-tree of size n by an arbitrary sequence of n − 1 meld
operations in time O(n) in the worst case.

Heap-trees

We implement heap-trees as binary heap-ordered trees as illustrated in Fig-
ure 4.4. At every node in the heap-ordered tree we store an element from the
collection of elements we want to store. The key of a node is the key of the
element it stores. We use v.elm to refer to the element stored at node v, v.key
to refer to the key of node v, and v.right and v.left to refer to the two children
of node v. Besides the heap-order we maintain the invariant that the root of
the heap-ordered tree has no left-child.

We define the backbone of a heap-tree as the path in the heap-ordered tree
that starts at the root and continues via nodes reachable from the root via
a sequence of right-children. We define the length of the backbone as the
number of edges on the path it describes. Consider the heap-trees H and H ′

in Figure 4.4; the backbone of H is the path r, v1, . . . , vs of length s and the
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Figure 4.4: The implementation of heap-trees as binary heap-ordered trees.
The figure shows two heap-trees H and H ′. The nodes on the backbone of the
two heap-trees are shaded.

backbone of H ′ is the path r′, v′1, . . . , v
′
t of length t. We say that the node on

the backbone farthest from the root is at the bottom of the backbone. We keep
track of the nodes on the backbone of a heap-tree using a stack, the backbone-
stack, in which the root is at the bottom and the node farthest from the root
is at the top. The backbone-stack makes it easy to access the nodes on the
backbone from the bottom and up towards the root.

We now turn to the implementation of Init, Min, Find and Meld. Init(e, k) is
straightforward. We construct a single node v where v.elm = e, v.key = k and
v.right = v.left = null and a backbone-stack of size one that contains node v.
Min(H) is also straightforward. The heap-order implies that root r of H stores
the element with minimum key, i.e. Min(H) = r.elm .

We implement Find(H,x) as a recursive traversal of H starting at the root.
At each node v we compare v.key to x. If v.key ≤ x, we report v.elm and
continue recursively with the two children of v. If v.key > x, then by the
heap-order all keys at nodes in the subtree rooted at v are greater than x, so
we return from v without reporting. Clearly this traversal reports all elements
stored at nodes v with v.key ≤ x, i.e. all elements stored with key k ≤ x. Since
each node has at most two children, we make, for each reported element, at
most two additional comparisons against x corresponding to the at most two
recursive calls from which we return without reporting. The running time of
the traversal is thus proportional to the number of reported elements.

We implement Meld(H,H ′) in two steps. Figure 4.5 illustrates the melding
of the heap-trees H and H ′ from Figure 4.4. We assume that r.key ≤ r′.key . In
Step 1 we merge the backbones ofH andH ′ together such that the heap-order is
satisfied in the resulting tree. The merged backbone is constructed from the bot-
tom and up towards the root by popping nodes from the backbone-stacks of H
and H ′. Step 1 results in a heap-tree with a backbone of length s+ t+1. Since
r.key ≤ r′.key , a prefix of the merged backbone consists of nodes r, v1, v2, . . . , vi

solely from the backbone of H. In Step 2 we shorten the merged backbone.
Since the root r′ of H ′ has no left-child, the node r′ on the merged backbone
has no left-child either, so by moving the right-child of r′ to this empty spot,
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Figure 4.5: The two steps of melding the heap-trees H and H ′ shown in Fig-
ure 4.4. The heap-tree to the left is the result of merging the backbones. The
heap-tree to the right is the result of shortening the backbone by moving the
right-child of r′ in the merged backbone to the left-child. The nodes on the
backbone of the two heap-trees are marked.

making it the left-child of r′, we shorten the length of the merged backbone
to i+ 1.

The two steps of Meld(H,H ′) clearly construct a heap-ordered tree that
stores all elements in H and H ′ with unchanged keys. Since r.key ≤ r′.key , the
root of the constructed heap-ordered tree is the root of H and therefore has
no left-child. The constructed heap-ordered tree is thus a heap-tree as wanted.
The backbone of the new heap-tree is the path r, v1, . . . , vi, r

′. We observe that
the backbone-stack of H after Step 1 contains exactly the nodes r, v1, . . . vi. We
can thus construct the backbone-stack of the new heap-tree by pushing r′ onto
what remains of the backbone-stack of H after Step 1.

Now consider the running time of Meld(H,H ′). Step 1 takes time propor-
tional to the total number of nodes popped from the two backbone-stacks.
Since i + 1 nodes remains on the backbone-stack of H, Step 1 takes time
(s + 1) + (t+ 1) − (i + 1) = s + t− i + 1. Step 2 and construction of the new
backbone-stack takes constant time, so, except for a constant factor, melding
two heap-trees with backbones of length s and t takes time T (s, t) = s+t−i+1.
In our application of finding pairs we are more interested in bounding the total
time required to do a sequence of melds rather than bounding the time of each
individual meld. We therefore turn to amortized analysis [137].

On a forest F of heap-trees we define the potential function Φ(F ) to be the
sum of the lengths of the backbones of the heap-trees in the forest. Melding two
heap-trees with backbones of length s and t, as illustrated in Figure 4.5, changes
the potential of the forest with ∆Φ = i+1−(s+t). The amortized running time
of melding the two heap-trees is T (s, t)+∆Φ = (s+t−i+1)+(i−s−t+1) = 2, so
starting with n heap-trees of size one, i.e. a forest F0 with potential Φ(F0) = 0,
and doing a sequence of n− 1 meld operations until the forest Fn−1 consists of
a single heap-tree, takes time O(n) in the worst case.
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Colored heap-trees

We implement colored heap-trees as colored heap-ordered trees in much the
same way as we implemented heap-trees as uncolored heap-ordered trees. The
implementation only differs in two ways. First, a node in the colored heap-
ordered tree stores a set of elements instead of just a single element. Secondly,
a node, including the root, can have several left-children. The elements stored
at a node, and the references to the left-children of a node, are kept in uncolored
heap-trees. More precisely, a node v in the colored heap-ordered tree has the
following attributes.

v.elms : A heap-tree that stores the elements at node v. Find(v.elms , x) returns
all elements stored at node v with key less than or equal to x. All
elements stored at node v have identical colors. We say that this color
is the color of node v and denote it by color (v).

v.key : The key of node v. We set the key of a node to be the minimum key
of an element stored at the node, i.e. the key of node v is the key of
the element stored at the root of v.elms .

v.right : A reference to the right-child of node v.

v.lefts : A heap-tree that stores the references to the left-children of node v.
A reference is stored with a key equal to the key of the referenced
left-child, so Find(v.lefts , x) returns the references to all left-children
of node v with key less than or equal to x.

As for a heap-tree we define the backbone of a colored heap-tree as the path
that starts at the root and continues via nodes reachable from the root via a
sequence of right-children. We use a stack, the backbone-stack, to keep track
of the nodes on the backbone. In addition to the heap-order, saying that the
key of every node other than the root is greater than or equal to the key of its
parent, we maintain the following three invariants about the color of the nodes
and the relation between the elements stored at a node and its left-children.

I1: Every node v other than the root r has a color different from its parent.

I2: Every node v satisfies that |Find(v.elms , x)| ≥ |Find(v.lefts , x)| for any x.

I3: The root r satisfies that |Find(r.elms , x)| ≥ |Find(r.lefts , x)| + 1 for any
x ≥ Min(r.elms).

We can now turn to the implementation of the operations on colored heap-
trees. ColorInit(e, k) is straightforward. We simply construct a single node v
where v.key = k, v.elms = Init(e, k) and v.right = v.lefts = null and a
backbone-stack that contains node v. ColorMin(H) is also straightforward.
The heap-order implies that the element with minimum key is stored in the
heap-tree r.elms at the root r of H, so ColorMin(H) = Min(r.elms). The heap-
order and I1 imply that ColorSec(H) is the element stored with minimum key
at a child of r. The element stored with minimum key at the right-child is
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Min(r.right ) and the element stored with minimum key at a left-child must
by the heap-order of r.lefts be the element stored with minimum key at the
left-child referenced by the root of r.lefts , i.e. Min(Root(r.lefts).elm). Both
ColorMin(H) and ColorSec(H) can thus be found in constant time.

We implement ColorFind(H,x, c) as a recursive traversal of H starting at the
root. More precisely, we implement ColorFind(H,x, c) as ReportFrom(r) where r
is the root of H and ReportFrom is the following recursive procedure.

def ReportFrom(v):
if key(v) ≤ x:

if color (v) 6= c:
E = Find(v.elms , x)
for e in E:

report e
ReportFrom(v.right)
W = Find(v.lefts , x)
for w in W :

ReportFrom(w)

The correctness of this implementation is easy to establish. The heap-order
ensures that all nodes v with v.key ≤ x are visited during the traversal. The
definition of v.key implies that any element e with key k ≤ x is stored at a
node v with v.key ≤ x, i.e. among the elements returned by Find(v.elms , x) for
some node v visited during the traversal. Together with the test color (v) 6= c
this implies that all elements e with key k ≤ x and color different from c are
reported by ColorFind(H,x, c).

Now consider the running time of ColorFind(H,x, c). Since Find(v.elms , x)
and Find(v.lefts , x) both take time proportional to the number of returned ele-
ments, it follows that the running time is dominated by the number of recursive
calls plus the number of reported elements. To argue that the running time of
ColorFind(H,x, c) is proportional to the number of reported elements we there-
fore argue that the number of reported elements dominates the number of re-
cursive calls. We only make recursive calls from a node v if v.key ≤ x. Let v be
such a node and consider two cases. If color (v) 6= c, then we report at least one
element, namely the element with key v.key , and by I2 and I3 we report at least
as many elements as the number of left-children we call from v, so except for a
constant term that we can charge for visiting node v, the number of reported
elements at v accounts for the call to v and all calls from v. If color (v) = c, then
we do not report any elements at v, but I1 ensures that we reported elements
at its parent (unless v is the root) and that we will be reporting elements at
all left-children we call from v. The call to v is thus already accounted for by
the elements reported at its parent, and except for a constant term that we can
charge for visiting node v, all calls from v will be accounted for by elements
reported at the children of v. We conclude that the number of reported ele-
ments dominates the number of recursive calls, so ColorFind(H,x, c) takes time
proportional to the number of reported elements.
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We implement ColorMeld(H,H ′) similar to Meld(H,H ′) except that we must
ensure that the constructed colored heap-tree obeys the three invariants. Let H
and H ′ be colored heap-trees with roots r and r′, r.key ≤ r′.key , respectively.
We implement ColorMeld(H,H ′) as the following three steps.

1. Merge. We merge the backbones of H and H ′ together such that the re-
sulting heap-ordered tree stores all elements in H and H ′ with unchanged
keys. The merging is done by popping nodes from the backbone-stacks
of H and H ′ until the backbone-stack of H ′ is empty

2. Solve conflicts. A node w on the merged backbone with the same color
as its parent v is a violation of invariant I1. We solve conflicts between
neighboring nodes v and w of equal color by melding the elements and
left-children of the two nodes and removing node w. We say that parent v
swallows the child w.

v.elms = Meld(v.elms , w.elms)
v.lefts = Meld(v.lefts , w.lefts)
v.right = w.right

3. Shorten backbone. Let v be the node on the merged backbone correspond-
ing to r′ or the node that swallowed r′ in Step 2. We shorten the backbone
by moving the right-child of v to the set of left-children of v.

v.lefts = Meld(v.lefts , Init(v.right , v.right .key))
v.right = null

The main difference from the implementation of Meld(H,H ′) is Step 2 where the
invariant I1 is restored along the merged backbone. To establish the correctness
of the implementation of ColorMeld(H,H ′) we consider each of the three steps
in more details.

In Step 1 we merge the backbones of H and H ′ together such that the
resulting tree is a heap-ordered tree that stores all elements in H and H ′ with
unchanged keys. Since the merging does not change the left-children or the
elements of any node and since H and H ′ both obey I2 and I3, the constructed
heap-ordered tree also obeys I2 and I3. The merged backbone can however
contain neighboring nodes of equal color. These conflicts are a violation of I1.

In Step 2 we restore I1. We solve all conflicts on the merged backbone
between neighboring nodes v and w of equal color by letting the parent v
swallow the child w as illustrated in Figure 4.6. We observe that since H and H ′

both obey I1 a conflict must involve a node from both of them. This implies
that a conflict can only occur in the part of the merged backbone made of
nodes popped off the backbone-stacks in Step 1. We also observe that solving a
conflict does not induce a new conflict. Combined with the previous observation
this implies that the number of conflicts is bounded by the number of nodes
popped off the backbone-stacks in Step 1. Finally, we observe that solving a
conflict does not induce violations of I2 and I3, so after solving all conflicts on
the merged backbone we have a colored heap-tree that stores all elements in H
and H ′ with unchanged keys.
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Figure 4.6: This figure illustrates how a conflict on the merged backbone is
solved. If color (v) = color (w) then I1 is violated. The invariant is restored by
letting node v swallow node w, i.e. melding the elements and left-children at
the two nodes and removing node w. Since color (u) 6= color (w) = color (v) and
color (u′) 6= color (v), solving a conflict does not induce another conflict.

In Step 3 we shorten the merged backbone. This is done by moving the
right-child of r′ to its left-children, or in case r′ has been swallowed by a node v
in Step 2, by moving the right-child of v to its left-children. To argue that this
does not induce violations of I2 and I3 we start by making two observations.
First, we observe that moving the right-child of a node that obeys I3 to its set
of left-children results in a node that obeys I2. Secondly, we observe that if a
node that obeys I2 (or I3) swallows a node that obeys I2 it results in a node
that still obeys I2 (or I3).

Since r′ is the root of H ′, it obeys I3 before Step 2. We consider two cases.
First, if r′ is not swallowed in Step 2, the first observation immediately implies
that it obeys I2 after Step 3. Secondly, if r′ is swallowed by a node v in Step 2,
we might as well think of Step 2 and Step 3 as occurring in the opposite order as
this does not affect the resulting tree. Hence, first we move the right-child of r′

to its set of left-children, which by the first observation results in a node that
obeys I2, then we let node v swallow this node, which by the second observation
does not affect the invariants obeyed by v.

We conclude that our implementation of ColorMeld(H,H ′) constructs a col-
ored heap-tree that obeys all three invariants and stores all elements in H
and H ′ with unchanged keys. It is easy to see that the backbone-stack of
the colored heap-tree constructed by ColorMeld(H,H ′) is what remains on the
backbone-stack of H after popping of nodes in Step 1 with the node r′ pushed
onto it, unless the node r′ is swallowed in Step 2.

Now consider the time it takes to meld n colored heap-trees of size one
together by a sequence of n − 1 melds. If we ignore the time it takes to meld
the heap-trees storing elements and references to left-children when solving
conflicts in Step 2 and shortening the backbone in Step 3, then we can bound
the time it takes to do the sequence of melds by O(n) exactly as we did in
the previous section. It is easy to see that melding n colored heap-trees of
size one involves melding at most n heap-trees of size one storing elements,
and at most n heap-trees of size one storing references to left-children. Since
melding n heap-trees of size one takes time O(n), we have that melding the
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heap-trees storing elements and references to left-children also takes time O(n),
so melding n colored heap-trees of size one takes time O(n) in the worst case.

4.4.2 Algorithms

In the following we present two algorithms to find pairs with lower bounded
gap. First we describe a simple algorithm to find all right-maximal pairs with
lower bounded gap using heap-trees, then we extend it to find all maximal
pairs with lower bounded gap using colored heap-trees. Both algorithms run in
time O(n+ z) where z is the number of reported pairs.

Right-maximal pairs with lower bounded gap

We find all right-maximal pairs in S with gap at least g(|α|) by for each node v
in the binary suffix tree TB(S) to consider the leaf-lists at its two children w1

and w2. The pair (p, q, |α|), p ∈ LL(w1) and q ∈ LL(w2), is right-maximal and
has gap at least g(|α|) if and only if q ≥ p+ |α| + g(|α|). If we let pmin denote
the minimum element in LL(w1) this implies that every q in

Q = {q ∈ LL(w2) | q ≥ pmin + |α|+ g(|α|)}

forms a right-maximal pair (p, q, |α) with gap at least g(|α|) with every p in

Pq = {p ∈ LL(w1) | p ≤ q − g(|α|) − |α|}.

By construction Pq contains pmin and we have that (p, q, |α|) is a right-maximal
pair with gap at least g(|α|) if and only if q ∈ Q and p ∈ Pq. We can constructQ
and Pq using heap-trees. Let Hi and H̄i be heap-trees that store the elements
in LL(wi) ordered by “≤” and “≥” respectively. By definition of the operations
Min and Find we have that pmin = Min(H1), Q = Find(H̄2, pmin + |α| + g(|α|)
and Pq = Find(H1, q − g(|α|) − |α|).

This leads to the formulation of Algorithm 4 in which we at every node v
in TB(S) construct two heap-trees, H and H̄, that store the elements in LL(v)
ordered by “≤” and “≥” respectively. If v is a leaf, we construct H and H̄
directly by creating two heap-trees of size one each storing the index at the leaf.
If v is an internal node, we construct H and H̄ by melding the corresponding
heap-trees at the two children (lines 11–12). Before constructing H and H̄ at
node v, we report right-maximal pairs of its path-label (lines 1–10).

To argue that Algorithm 4 finds all right-maximal pairs in S with gap at
least g(|α|) it is enough to argue that we at each node v in TB(S) report all
pairs (p, q, |α|) and (q, p, |α|), p ∈ LL(w1) and q ∈ LL(w2), with gap at least
g(|α|). The rest follows because we consider every node in TB(S). Let v be a
node in TB(S) at which the heap-trees H1, H̄1 and H2, H̄2 at its two children
are available. As explained above (p, q, |α|) is a right-maximal pair with gap at
least g(|α|) if and only if q ∈ Q and p ∈ Pq, which exactly are the pairs reported
in lines 1–5. Symmetrically we can argue that (q, p, |α|) is a right-maximal pair
with gap at least g(|α|) if and only if p ∈ P and q ∈ Qp, which exactly are the
pairs reported in lines 6–10.
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Algorithm 4 Find all right-maximal pairs in S with lower bounded gap.

1. Initializing: Build the binary suffix tree TB(S). Create at each leaf two
heap-trees of size one, H ordered by “≤” and H̄ ordered by “≥”, that
both store the index at the leaf.

2. Reporting and melding: When the heap-trees H1 and H̄1 at the left-child
of node v, and the heap-trees H2 and H̄2 at the right-child of node v
are available we report pairs of α, the path-label of v, and construct the
heap-trees H and H̄ as follows

1 Q = Find(H̄2,Min(H1) + |α|+ g(|α|))
2 for q in Q:
3 Pq = Find(H1, q − g(|α|) − |α|)
4 for p in Pq:
5 report pair (p, q, |α|)

6 P = Find(H̄1,Min(H2) + |α|+ g(|α|))
7 for p in P :
8 Qp = Find(H2, p− g(|α|) − |α|)
9 for q in Qp:

10 report pair (q, p, |α|)

11 H = Meld(H1,H2)
12 H̄ = Meld(H̄1, H̄2)

Now consider the running time of the algorithm. We first note that con-
structing two heap-trees of size one at each of the n leaves in TB(S) and melding
them together according to the structure of TB(S) takes time O(n) because each
of the n− 1 meld operation takes amortized constant time. We then note that
the reporting of pairs at each node, lines 1–10, takes time proportional to the
number of reported pairs because the find operation takes time proportional
to the number of returned elements and the set Pq (and Qp) is non-empty for
every element q in Q (and p in P ). Finally we remember that constructing the
binary suffix tree TB(S) takes time O(n). Now consider the space needed by
the algorithm. The binary suffix tree requires space O(n). The heap-trees also
requires space O(n) because no element at any time is stored in more than one
heap-tree. Finally, since no leaf-list contains more than n elements, storing the
elements returned by the find operations during the reporting requires no more
than space O(n). In summary we formulate the following theorem.

Theorem 3 Algorithm 4 finds all right-maximal pairs (i, j, |α|) in a string S
with gap at least g(|α|) in space O(n) and time O(n+z), where z is the number
of reported pairs and n is the length of S.
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Maximal pairs with lower bounded gap

Essential to the above algorithm is that we in time proportional to its size
can construct the set Q that contains all elements q in LL(w2) that form a
right-maximal pair (pmin, q, |α|) with gap at least g(|α|). Unfortunately the
left-characters S[q−1] and S[pmin−1] can be equal, so Q can contain elements
that do not form a maximal pair with any element in LL(w1). Since we aim
for the reporting of pairs to take time proportional to the number of reported
pairs, this implies that we cannot afford to consider every element in Q if we
only want to report maximal pairs.

Fortunately we can efficiently construct the subset of LL(w2) that con-
tains all the elements that form at least one maximal pair. An element q
in LL(w2) forms a maximal pair if and only if there is an element p in LL(w1)
such that q ≥ p + |α| + g(|α|) and S[q − 1] 6= S[p − 1]. We can construct
this subset of LL(w2) using colored heap-trees. We define the color of an el-
ement to be its left-character, i.e. the color of p in LL(w1) and q in LL(w2)
is S[p − 1] and S[q − 1] respectively. Let Hi and H̄i be colored heap-trees
that store the elements in LL(wi) ordered by “≤” and “≥” respectively. Using
pmin = ColorMin(H1) and psec = ColorSec(H1) we can characterize the ele-
ments in LL(w2) that form at least one maximal pair with gap at least g(|α|)
by considering two cases.

First, if q ≥ psec + |α| + g(|α|) then (pmin, q, |α|) and (psec, q, |α|) both
have gap at least g(|α|) and since S[pmin − 1] 6= S[psec − 1] at least one of
them is maximal, so every q ≥ psec + |α| + g(|α|) forms a maximal pair with
gap at least g(|α|). If # is a character not appearing anywhere in S, i.e. no
element in LL(w2) has color #, this is the same as saying that every q in
Q′ = ColorFind(H̄2, psec + |α| + g(|α|),#) forms a maximal pair with gap at
least g(|α|). Secondly, if q < psec + |α|+ g(|α|) forms a maximal pair (p, q, |α|)
with gap at least g(|α|) then pmin ≤ p < psec. This implies that S[p − 1] =
S[pmin − 1], so (pmin, q, |α|) is also maximal and has gap at least g(|α|). We
thus have that q < psec + |α| + g(|α|) forms a maximal pairs with gap at
least g(|α|) if and only if (pmin, q, |α|) is maximal and has gap at least g(|α|),
i.e. if and only if S[q−1] 6= S[pmin−1] and q ≥ pmin + |α|+g(|α|). This implies
that the set Q′′ = ColorFind(H̄2, pmin + |α|+ g(|α|), S[pmin − 1]) contains every
q < psec + |α|+ g(|α|) that forms a maximal pair with gap at least g(|α|).

By construction of Q′ and Q′′ the set Q′ ∪ Q′′ contains all elements in
LL(w2) that form a maximal pair with gap at least g(|α|). More precisely,
every q in Q′ ∪Q′′ forms a maximal pair (p, q, |α|) with gap at least g(|α|) with
every p ≤ q − g(|α|) − |α| in LL(w1) where S[p − 1] 6= S[q − 1], i.e. every p
in Pq = ColorFind(H1, q − g(|α|) − |α|, S[q − 1]) which by construction is non-
empty. We can construct Q′ ∪Q′′ efficiently. Every element in Q′′ greater than
psec + |α|+ g(|α|) is also in Q′, so we can construct Q′ ∪Q′′ by concatenating
Q′ and what remains of Q′′ after removing all elements greater than psec + |α|+
g(|α|) from it. This together with the complexity of ColorFind implies that we
can construct Q′ ∪Q′′ in time proportional to |Q′|+ |Q′′| ≤ 2|Q′ ∪Q′′|.

This leads to the formulation of Algorithm 5. The algorithm is similar to
Algorithm 4 except that we maintain colored heap-trees during the traversal of
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Algorithm 5 Find all maximal pairs in S with lower bounded gap.

1. Initializing: Build the binary suffix tree TB(S). Create at each leaf two
colored heap-trees of size one, H ordered by “≤” and H̄ ordered by “≥”,
that both store the index at the leaf with color corresponding to its left-
character.

2. Reporting and melding: When the colored heap-trees H1 and H̄1 at the
left-child of node v, and the colored heap-trees H2 and H̄2 at the right-
child of node v are available we report pairs of α, the path-label of v, and
construct the colored heap-trees H and H̄ as follows (remember that #
is a character not appearing anywhere in S)

1 pmin, psec = ColorMin(H1),ColorSec(H1)
2 Q′ = ColorFind(H̄2, psec + |α| + g(|α|),#)
3 Q′′ = ColorFind(H̄2, pmin + |α|+ g(|α|), S[pmin − 1])
4 for q in Q′ ∪Q′′:
5 Pq = ColorFind(H1, q − g(|α|) − |α|, S[q − 1])
6 for p in Pq:
7 report pair (p, q, |α|)

8 qmin, qsec = ColorMin(H2),ColorSec(H2)
9 P ′ = ColorFind(H̄1, qsec + |α| + g(|α|),#)

10 P ′′ = ColorFind(H̄1, qmin + |α|+ g(|α|), S[qmin − 1])
11 for p in P ′ ∪ P ′′:
12 Qp = ColorFind(H2, p − g(|α|) − |α|, S[p − 1])
13 for q in Qp:
14 report pair (q, p, |α|)

15 H = ColorMeld(H1,H2)
16 H̄ = ColorMeld(H̄1, H̄2)

the binary suffix tree. At every node we report maximal pairs of its path-label.
In lines 1–7 we report all maximal pairs (p, q, |α|) by constructing and consid-
ering the elements in Pq for every q in Q′ ∪ Q′′. In lines 8–15 we analogously
report all maximal pairs (q, p, |α|). The correctness of the algorithm follows
immediately from the above discussion. Since the operations on colored heap-
trees have the same complexities as the corresponding operations on heap-tress,
the running time and space requirement of the algorithm is exactly as analyzed
for Algorithm 4. In summary we can formulate the following theorem.

Theorem 4 Algorithm 5 finds all maximal pairs (i, j, |α|) in a string S with
gap at least g(|α|) in space O(n) and time O(n + z), where z is the number of
reported pairs and n is the length of S.
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4.5 Conclusion

We have presented efficient and flexible methods to find all maximal pairs
(i, j, |α|) in a string under various constraints on the gap j − i− |α|. If the gap
is required to be between g1(|α|) and g2(|α|), the running time is O(n log n+ z)
where n is the length of the string and z is the number of reported pairs. If the
gap is only required to be at least g1(|α|), the running time reduces to O(n+z).
In both cases we use space O(n).

In some cases it might be interesting only to find maximal pairs (i, j, |α|)
fulfilling additional requirements on |α|, e.g. to filter out pairs of short sub-
strings. This is straightforward to do using our methods by only reporting
from the nodes in the binary suffix tree whose path-label α fulfills the require-
ments on |α|. In other cases it might be of interest just to find the vocabulary
of substrings that occur in maximal pairs. This is also straightforward to do
using our methods by just reporting the path-label α of a node if we can report
one or more maximal pairs from the node.

Instead of just looking for maximal pairs, it could be interesting to look
for an array of occurrences of the same substring in which the gap between
consecutive occurrences is bounded by some constants. This problem requires a
suitable definition of a maximal array. One definition and approach is presented
in [127]. Another definition inspired by the definition of a maximal pair could
be to require that every pair of occurrences in the array is a maximal pair.
This definition seems very restrictive. A more relaxed definition could be to
only require that we cannot extend all the occurrences in the array to the left
or to the right without destroying at least one pair of occurrences in the array.
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Chapter 5

Comparison of coding DNA

In the grand design, women were definitely drawn from a different
set of blueprints.

—Dale Cooper, Twin Peaks

This paper describes an algorithm to compare two DNA sequences when con-
sidering both the DNA sequences themselves, and the proteins encoded by the
DNA sequences. The results were presented at the Ninth Annual Conference on
Combinatorial Pattern Matching and published in the proceedings of this con-
ference [116]. Furthermore, a similar paper has been published in the BRICS
report series [117]. The algorithm has been implemented and the source code
is available at http://www.brics.dk/∼cstorm/combat/index.html.
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Comparison of coding DNA

Christian N. S. Pedersen∗ Rune B. Lyngsø∗ Jotun J. Hein†

Abstract

We discuss a model for the evolutionary distance between two coding
DNA sequences which specializes to the DNA/protein model proposed
in Hein [60]. We discuss the DNA/protein model in details and present
a quadratic time algorithm that computes an optimal alignment of two
coding DNA sequences in the model under the assumption of affine gap
cost. The algorithm solves a conjecture in [60] and we believe that the con-
stant factor of the running time is sufficiently small to make the algorithm
feasible in practice.

5.1 Introduction

A straightforward model of the evolutionary distance between two coding DNA
sequences is to ignore the encoded proteins and compute the distance in some
evolutionary model of DNA. We say that such a model is a DNA level model.
The evolutionary distance between two sequences in a DNA level model can
most often be formulated as a classical alignment problem and be efficiently
computed using a dynamic programming approach [108, 130, 132, 151].

It is well known that proteins evolve slower than its coding DNA, so it is
usually more reliable to describe the evolutionary distance based on a compar-
ison of the encoded proteins rather than on a comparison of the coding DNA
itself. Hence, most often the evolutionary distance between two coding DNA
sequences is modeled in terms of amino acid events, such as substitution of a
single amino acid and insertion-deletion of consecutive amino acids, necessary to
transform the one encoded protein into the other encoded protein. We say that
such a model is a protein level model. The evolutionary distance between two
coding DNA sequences in a protein level model can most often be formulated
as a classical alignment problem of the two encoded proteins. Even though a
protein level model is usually more reliable than a DNA level model, it falls
short because it postulates that all insertions and deletions on the underlying
DNA occur at codon boundaries and because it ignores similarities on the DNA
level.

In this paper we present a model of the evolutionary distance between two
coding DNA sequences in which a nucleotide event is penalized by the change it
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induces on the DNA as well as on the encoded protein. The model is a natural
combination of a DNA level model and a protein level model. The DNA/protein
model introduced in Hein [60, 62] is a biological reasonable instance of the
general model in which the evolution of coding DNA is idealized to involve only
substitution of a single nucleotide and insertion-deletion of a multiple of three
nucleotides. Hein [60, 62] presents an O(n2m2) time algorithm for computing
the evolutionary distance in the DNA/protein model between two sequences of
length n and m. This algorithm assumes certain properties of the cost function.
We discuss these properties and present an O(nm) time algorithm that solves
the same problem under the assumption of affine gap cost.

The practicality of an algorithm not only depends on the asymptotic running
time but also on the constant factor hidden by the use of O-notation. To
determine the distance between two sequences of length n and m our algorithm
computes 400nm table entries. Each computation involves a few additions,
table lookups and comparisons. We believe the constant factor is sufficiently
small to make the algorithm feasible in practice.

The problem of comparing coding DNA is also discussed by Arvestad [10]
and Hua, Jiang and Wu [67]. The models discussed in these papers are inspired
by the DNA/protein model in Hein [60, 62] but differ in the interpretation
of gap cost. A heuristic algorithm for solving the alignment problem in the
DNA/protein model is described In Hein [61]. A related problem of how to
compare a coding DNA sequence with a protein has been discussed in [119].

The rest of this paper is organized as follows: In Sect. 5.2 we introduce and
discuss the DNA/protein model. In Sect. 5.3 we describe how to determine the
cost of an alignment. In Sect. 5.4 we present the simple alignment algorithm
of Hein [60]. In Sect. 5.5 we present a quadratic time alignment algorithm.
Finally, in Sect. 5.6 we discuss future work.

5.2 The DNA/protein model

Let a = a1a2a3 . . . a3n−2a3n−1a3n be a coding sequence of DNA of length 3n with
a reading frame starting at a1. We introduce the notation ai

1a
i
2a

i
3 to denote the

ith codon a3i−2a3i−1a3i and the notation Ai to describe the amino acid coded by
the ith codon. The amino acid sequence A = A1A2 . . . An describes the protein
coded by a. Let b = b1b2b3 . . . b3m−2b3m−1b3m, bi1b

i
2b

i
3 and B = B1B2 . . . Bm be

defined similarly.

5.2.1 The general model

An evolutionary event e on the DNA that transforms a to a′ will also change
the encoded protein from A to A′. As some amino acids are coded by several
codons, the proteins A and A′ might be identical. The cost of e should reflect
the changes on the DNA as well as the changes on the encoded protein.

cost(a e→ a′) = costd(a
e→ a′) + costp(A

e→ A′) (5.1)

We say that costd(a
e→ a′) is the DNA level cost of e and that costp(A

e→ A′) is
the protein level cost of e. In this paper we assume that the DNA level cost and
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the protein level cost are combined by addition but other combination functions
f : R×R→ R could of course also be considered.

The cost of a sequence E of evolutionary events e1, e2, . . . , ek transforming
a(0) to a(k) as a(0) e1→ a(1) e2→ a(2) e3→ · · · ek→ a(k) is defined as some function of the
costs of each event. In the rest of this paper we will assume that this function
is the sum of the costs of each event.

cost(a(0) E→ a(k)) =
k∑

i=1

cost(a(i−1) ei→ a(i)) (5.2)

We define the distance between two coding sequences of DNA a and b according
to the parsimony principle as the minimum cost of a sequence of evolutionary
events which transforms a to b.

dist(a, b) = min{cost(a E→ b) | E is a sequence of events} (5.3)

In order to compute dist(a, b) we have to specify the set of allowed evolutionary
events and define the cost of each event on the DNA level as well as on the
protein level. The choice of evolutionary events and cost function influences
both the biological relevance of the distance measure and the computational
complexity of computing the distance.

5.2.2 The specific model

The DNA/protein model introduced in [60] can be described as an instance of
the general model where the evolution of coding DNA is idealized to involve
only substitutions of single nucleotide and insertion-deletions of a multiple of
three consecutive nucleotides. The DNA level cost of an event is defined in the
classical way by specifying a substitution cost and a gap cost. The protein level
cost of an event that changes the encoded protein from A to A′ is defined to
reflect the difference between protein A and protein A′.

• The DNA level cost costd(a
e→ a′) depends on e. The cost of substituting

a nucleotide σ with σ′ is cd(σ, σ′) for some metric cd on nucleotides. The
cost of inserting or deleting 3k consecutive nucleotides is gd(3k) for some
subadditive1 function gd : N→ R+.

• The protein level cost costp(A
e→ A′) is defined as the distance distp(A,A′)

between A and A′. The distance distp(A,A′) is the minimum cost of a
distance alignment of A and A′ where we allow substitution of a single
amino acid and insertion-deletion of consecutive amino acids. The sub-
stitution cost is given by a metric cp on amino acids and the gap cost is
given by a subadditive function gp : N→ R+. Additional restrictions will
be given in Sect. 5.2.3.

1A function is subadditive if f(i+j) ≤ f(i)+f(j). A subadditive gap cost function implies
that an insertion-deletion of a consecutive block of nucleotides is best explained as a single
event.
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The reason why gap lengths are restricted to a multiple of three is that an
insertion or deletion of length not divisible by three changes the reading frame.
This is called a frame shift and it may change the entire remaining amino acid
sequence as illustrated in Fig. 5.1. Frame shifts are believed to be rare biological
events, so it is not unreasonable to leave them out of the model.

Thr
A C G

Val
G T G

Thr
A C G

Gln
C A A

Ile
A T T · · ·

A C G
Thr

G A T
Gly

G A C
Asp

G C A
Ala

A A T
Asn

T · · ·

Figure 5.1: An insertion-deletion of length not divisible by three changes the
reading frame.

Except for the restriction on insertion-deletion length the DNA/protein
model allows the traditional set of symbol based nucleotide events. This al-
lows us to use the notion of an alignment. An alignment of two sequences
describes a set of substitution or insertion-deletion events necessary to trans-
form one of the sequences into the other sequence. The set of events is usually
described by a matrix or a path in a graph as illustrated in Fig. 5.2. The cost
of an alignment is the optimal cost of any sequence of the events described by
the alignment. Hence, the evolutionary distance dist(a, b) in the DNA/protein
model between two coding DNA sequences a and b is the cost of an optimal
alignment of a and b in the DNA/protein model. In the rest of this paper we
will address the problem of computing the cost of an optimal alignment in the
DNA/protein model.

[
T T G C T − − − C
T − − − C A T G C

]

T TGC T C
T
C
A
T
G
C

Figure 5.2: An alignment can be described by a matrix or a path in the align-
ment graph. The above alignment describes three matches and two gaps of
combined length six.

If the cost of any sequence of events is independent of the order but only
depends on the set of events, then an optimal alignment can be computed
efficiently using dynamic programming [108, 130, 132, 151]. In the DNA/protein
model the cost of an event is the sum of the DNA level cost and the protein
level cost. We observe that the DNA level cost of a sequence of events is
independent of the order but that the protein level cost is not [60, Fig. 2].
This implies that we cannot use a classical alignment algorithm to compute an
optimal alignment in the DNA/protein model. In order to formulate an efficient
alignment algorithm in the DNA/protein model we must examine the protein
level cost further.
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5.2.3 Restrictions on the cost function

A single nucleotide event affects nucleotides in one or more consecutive codons.
Since a nucleotide event in the DNA/protein model cannot change the reading
frame then only the amino acids encoded by the affected codons are affected
by the nucleotide event. A nucleotide event thus changes protein A = UXV to
protein A′ = UX ′V where X and X ′ are the amino acids affected by nucleotide
event. Let us consider the protein level cost distp(A,A′) of the event.

Hein [60] implicitly assumes that distp(A,A′) is the cost of a distance align-
ment of X and X ′ with the minimum number of insertion-deletions. This
assumption implies that distp(A,A′) is the cost of one of the alignments of A
and A′ shown in Fig. 5.3. This assumption is essential to the formulation of
our alignment algorithms in Sect. 5.4 and 5.5.

If the cost of alignment of A and A′ implied by Fig. 5.3 is not minimal then
the assumption conflicts with our previous definition of distp(A,A′) as being
the minimum cost of an alignment of A and A′. Lemma 9 states restrictions on
cp and gp that prevent this conflict. If we assume an affine gap cost function
gp(k) = αp + βpk for some αp, βp ≥ 0 (and define gp(0) to be zero), then
the restrictions on cp and gp becomes cp(σ, τ) + αp + βpk ≤ 2αp + βp(k + 2l)
for any amino acids σ, τ and all lengths 0 < l ≤ n − k. This simplifies to
cp(σ, τ) ≤ αp + 2βp for all amino acids σ, τ which is a biological reasonable
restriction as insertions and deletions are rare events compared to substitutions.

[
A1 A2 · · · Ai−1

A1 A2 · · · Ai−1

Ai

A′
i

Ai+1 · · · An

Ai+1 · · · An

]

(a) A substitution in the ith codon. The cost is cp(Ai, A
′
i).

[
A1 A2 · · · Ai−1 Ai

A1 A2 · · · Ai−1 Ai

Ai+1 · · · Ai+k

− · · · −
Ai+k+1 · · · An

Ai+k+1 · · · An

]

(b) An insertion-deletion of 3k nucleotides affecting exactly k codons. The cost is gp(k).

[
A1 A2 · · · Ai−1

A1 A2 · · · Ai−1

Ai · · · Aj−1 Aj Aj+1 · · · Ai+k

− · · · − υ − · · · −
Ai+k+1 · · · An

Ai+k+1 · · · An

]

(c) An insertion-deletion of 3k nucleotides affecting k + 1 codons. The remaining amino
acid υ is matched with one of the amino acids affected by the deletion. The cost is
minj=0,1,...,k {gp(j) + cp(Ai+j , υ) + gp(k − j)}.

Figure 5.3: The protein level cost of a nucleotide event can be determined by
considering only the amino acids affected by the event.
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Lemma 9 Assume a nucleotide event changes A = UXV to A′ = UX ′V . Let
n = |A| and k = ||A| − |A′||. If there for any amino acids σ, τ and for all 0 <
l ≤ n−k exists 0 ≤ j ≤ k such that cp(σ, τ)+gp(j)+gp(k−j) ≤ gp(l)+gp(l+k),
then distp(A,A′) is the cost of an alignment describing exactly k insertions or
deletions. Furthermore distp(A,A′) only depends on X and X ′.

Proof. We note that the alignments in Fig. 5.3 all describe the minimum num-
ber of insertion-deletions and that only the sub-alignment of X and X ′, as
illustrated by the shaded parts, contributes to the cost. We will argue that the
assumption on cp and gp stated in the lemma ensures that distp(A,A′) is the
cost of one of the alignments in Fig. 5.3. We split the argumentation depending
on the event. Since distp(A,A′) is equal to distp(A′, A) the cost of an insertion
transforming A to A′ is equal to the cost of a deletion transforming A′ to A.
We thus only consider substitutions and deletions.

A substitution of a nucleotide in the ith codon of A transforms Ai to A′
i. The

alignment in Fig. 5.3(a) describes no insertion-deletions and has cost cp(Ai, A
′
i).

Any other alignment of A and A′ must describe an equal number of insertions
and deletions, so by subadditivity of gp the cost is at least 2gp(l) for some
0 < l ≤ n. The assumption in the lemma implies that cp(Ai, A

′
i) ≤ 2gp(l) for

any 0 < l ≤ n. The alignment in Fig. 5.3(a) is thus optimal and the protein
level cost of the substitution is cp(Ai, A

′
i).

A deletion of 3k nucleotides affecting k codons transforms A = A1A2 · · ·An

to A′ = A1A2 · · ·AiAi+k+1Ai+k+2 · · ·An. Any alignment of A and A′ must
describe l insertions and l+ k deletions for some 0 ≤ l ≤ n− k, so the cost is at
least gp(l)+gp(l+k). The alignment in Fig. 5.3(b) describes k deletions and has
cost gp(k). The assumption in the lemma and the sub-additivity of gp implies
that gp(k) ≤ gp(j) + gp(k − j) ≤ gp(l) + gp(l + k) for all l > 0. The alignment
in Fig. 5.3(b) is thus optimal and the protein level cost of the deletion is gp(k).

A deletion of 3k nucleotides affecting k+ 1 codons, say a deletion of the 3k
nucleotides ai

3a
i+1
1 ai+1

2 ai+1
3 · · · ai+k

1 ai+k
2 , transforms A = A1A2 · · ·An to A′ =

A1A2 · · ·Ai−1υAi+k+1 · · ·An where υ is the amino acid coded by ai
1a

i
2a

i+k
3 .

We say that υ is the remaining amino acid and ai
1a

i
2a

i+k
3 is the remaining

codon. Any alignment of A and A′ describing exactly k deletions must align
υ with Ai+j for some 0 ≤ j ≤ k, so by subadditivity of gp the cost is at least
gp(j) + cp(Ai+j, υ) + gp(k − j). The alignment in Fig. 5.3(c) illustrates one of
the k + 1 alignments of A and A′ where υ is aligned with an affected amino
acid and all non-affected amino acids are aligned. Such an alignment describes
exactly k deletions and the cost of the optimal alignment among them has cost

min
j=0,1,...,k

{gp(j) + cp(Ai+j , υ) + gp(k − j)}, (5.4)

and is thus optimal for any alignment describing exactly k deletions. Any other
alignment of A and A′ must describe l insertions and l + k deletions for some
0 < l ≤ n − k, so the cost is at least gp(l) + gp(l + k). The assumption in the
lemma implies that the cost given by (5.4) is less than or equal to gp(l)+gp(l+k).
The protein level cost of the deletion is thus given by (5.4). 2
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The assumption in Lemma 9 is sufficient to ensure that we can compute the
protein level cost of a nucleotide event efficiently, but the formulation of the
lemma is too general to make the assumption necessary. The following example
however suggests when the assumption is necessary. Consider a deletion of
three nucleotides that transforms the six amino acids ABEFCD to ABGCD,
i.e. X = EF and X ′ = G. Consider the two alignments shown in Fig. 5.4.[

A B E F C D
A B G − C D

] [
A B E F − C D
A B − − G C D

]
Figure 5.4: Two alignments of the amino acids ABEFCD and ABGCD.

If we assume that cp(E,G) ≤ cp(F,G) then the cost of the alignment in
Fig. 5.4 (left) is cp(E,G)+gp(1) while the cost of the alignment in Fig. 5.4 (right)
is gp(2) + gp(1). If the assumption in lemma 9 does not hold then gp(2) + gp(1)
might be less than cp(E,G) + gp(1) because cp(E,G) can be arbitrary large.
Hence, the protein level cost of the deletion would not be the cost of an align-
ment describing the minimum number of insertion-deletions.

5.3 The cost of an alignment

Before we can describe how to compute the cost of an optimal alignment of two
sequence in the DNA/protein model, we need to know how to compute the cost
of a given alignment in the model.

An alignment of two sequences describes a set of events necessary to trans-
form one of the sequences into the other sequence but it does not describe the
order of the events. As observed in Sect. 5.2.2 the DNA level cost of an align-
ment is independent of the order of the events, while the protein level cost of
an alignment depends on the order of the events. This implies that the DNA
level cost of an alignment is just the sum of the DNA level cost of the events
described by the alignment, while the protein level cost of the same alignment is
somewhat harder to determine. An obvious way to determine the protein level
cost of an alignment is to minimize over all possible sequences of the events
described by the alignment. This method is however not feasible in practice
due to the factorial number of possible sequences one has to consider.

If Lemma 9 is fulfilled then we know that the protein level cost of a nu-
cleotide event only depends on the affected codons. We can use this property
to decompose the computation of the protein level cost of an alignment into
smaller subproblems. The idea is to decompose the alignment into codon align-
ments. A codon alignment is a minimal part of the alignment that corresponds
to a path connecting two nodes (3i′, 3j′) and (3i, 3j) in the alignment graph.
We can decompose an alignment uniquely into codon alignments as illustrated
in Fig. 5.5.

The assumption that the length of an insertion or deletion is a multiple
of three implies that a codon alignment either describes no substitutions (see
Type 2 and 3 in Fig. 5.7) or exactly three substitutions. If a codon align-
ment describes exactly three substitutions then it can also describe one or more
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Figure 5.5: An alignment of two sequences decomposed into codon alignments.

insertion-deletions. More precisely, between any two consecutive substitutions
in the codon alignment there can be an alternating sequence of insertions and
deletions each with length a multiple of three. Such a sequence of insertion-
deletions corresponds to a “staircase” in the alignment graph. The set of codon
alignments that describe three substitutions and at most one insertion and dele-
tion between two consecutive substitutions, i.e. the “staircase” is limited to at
most one “step”, is illustrated in Fig. 5.6. A particular codon alignment in this
set corresponds to a choice of which sides of the two rectangles to traverse.

Now consider the decomposition of an alignment into codon alignments (this
could be as illustrated in Fig. 5.5). We observe that nucleotide events described
by two different codon alignments in the decomposition do not affect the same
codons. Hence, the protein level cost of a codon alignment can be computed
independently of the other codon alignments in the decomposition. We can
thus compute the protein level cost of an alignment as the sum of the protein
level cost of each of the codon alignments in the decomposition.

Since a codon alignment can describe an alternating sequence of insertion-
deletions between two consecutive substitutions it is possible that a decom-
position of an alignment of two sequences of length n and m contains codon
alignments describing Θ(n+m) events. This implies that the problem of com-
puting the cost of the codon alignments in a decompsition of an alignment
is, in the worst case, not any easier than computing the cost of the align-
ment itself. One way to circumvent this problem is to only consider align-
ments that can be decomposed into (or built of) codon alignments with at
most some maximum number of insertion-deletions between two consecutives
substitutions. This upper bounds the number of events described by any codon
alignment by some constant. Hence, we can determine the cost of a codon
alignment in constant time simply by minimizing over all possible sequences
of the events described by the codon alignment. The protein level cost of an
alignment can thus be determined in time proportional to the number of codon
alignments in the decomposition of the alignment.

In Hein [60] at most one insertion or one deletion is allowed between two con-
secutive substitutions in a codon alignment. Besides the two codon alignments
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that describe no substitutions, this corresponds to the set of codon alignments
we obtain from Fig. 5.6 when we require that the width and/or the height of
each of the two rectangles must be zero. This implies that there are eleven
different types of codon alignments. The eleven types are shown in Fig. 5.7.

Figure 5.6: A summary of all possible codon alignments with at most one
insertion and one deletion between two consecutive substitutions.

Type 1: Type 2: Type 3: Type 4:

Type 5:

Type 6:

Type 7:

Type 8:

Type 9:

Type 10: Type 11:

Figure 5.7: The eleven types of codon alignments with at most one inseriton or
one deletion between two consecutive substitutions.

5.4 A simple alignment algorithm

Let a1a2 · · · a3n and b1b2 · · · b3m be two coding sequences of DNA. Hein [60]
describes how the decomposition into codon alignments makes it possible to
compute the cost of an optimal alignment of a and b in the DNA/protein model
in time O(n2m2). The algorithm assumes that Lemma 9 is fulfilled and that we
only allow codon alignments with some maximum number of insertion-deletions
between two consecutive substitutions, e.g. the eleven types of codon alignments
in Fig. 5.7. The algorithm can be summarized as follows.

Let D(i, j) denote the cost of an optimal alignment of a1a2 · · · a3i and
b1b2 · · · b3j . We define D(0, 0) to be zero and D(i, j) to be infinity for i < 0
or j < 0. An optimal alignment of a1a2 · · · a3i and b1b2 · · · b3j can be decom-
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posed into codon alignments ca1, ca2, . . . , cak. We say that cak is the last codon
alignment and that ca1, ca2, . . . , cak−1 is the remaining alignment.

If the last codon alignment cak in an optimal alignment is an alignment of
a3i′+1a3i′+2 · · · a3i and b3j′+1b3j′+2 · · · b3j for some (i′, j′) < (i, j)2, then D(i, j)
is equal to D(i′, j′) + cost(cak). This is the cost of the last codon alignment plus
the cost of the remaining alignment. We can compute D(i, j) by minimizing
the expression D(i′, j′) + cost(ca) over all (i′, j′) < (i, j) and all possible codon
alignments ca of a3i′+1a3i′+2 · · · a3i and b3j′+1b3j′+2 · · · b3j .

The upper bound on the number of insertion-deletions in a codon alignment
implies that the number of possible codon alignments of a3i′+1a3i′+2 · · · a3i and
b3j′+1b3j′+2 · · · b3j , for all (i′, j′) < (i, j), is upper bounded by some constant.
For example, if we only consider the eleven types of codon alignments in Fig. 5.7
then there are at most three possible codon alignments of a3i′+1a3i′+2 · · · a3i

and b3j′+1b3j′+2 · · · b3j . Hence, if we assume that D(i′, j′) is known for all
(i′, j′) < (i, j) then we can compute D(i, j) in time O(ij). By dynamic pro-
gramming this implies that we can compute D(n,m) in time O(n2m2) and
space O(nm). By back-tracking we can also get the optimal alignment (and
not only the cost) within the same time and space bound.

5.5 An improved alignment algorithm

Let a and b be coding sequences of DNA as introduced in the previous section.
We will describe how to compute the cost of an optimal alignment of a and
b in the DNA/protein model in time O(nm) and space O(n). Besides the
assumptions of the simple algorithm described in the previous section we also
assume that the function g(k) = gd(3k)+gp(k) is affine α+βk for some α, β ≥ 0.
We say that g is the combined gap cost function.

The idea behind the improved algorithm is similar to the idea behind the
simple algorithm in the sense that we compute the cost of an optimal align-
ment by minimizing the cost over all possible last codon alignments. We define
Dt(i, j) to be the cost of an optimal alignment of a1a2 · · · a3i and b1b2 · · · b3j

under the assumption that the last codon alignment is of type t. Remember
that we only allow codon alignments with some maximum number of insertion-
deletions between two consecutive substitutions. This implies that the number
of possible codon alignment, i.e. types of codon alignments, is upper bounded
by some constant. We define Dt(0, 0) to be zero and Dt(i, j) to be infinity for
i < 0 or j < 0. We can compute D(i, j) as

D(i, j) = min
t
Dt(i, j). (5.5)

Lemma 9 ensures that Dt(i, j) is the cost of some last codon alignment (of
type t) plus the cost of the corresponding remaining alignment. This allows us to
compute Dt(i, j) by minimizing the cost over all possible last codon alignments
of type t. The assumption that g is affine makes it possible to compute Dt(i, j)
in constant time if Dt(k, l), for all t, is known for some (k, l) < (i, j). Since we

2We say that (i′, j′) < (i, j) iff i′ ≤ i ∧ j′ ≤ j ∧ (i′ 6= i ∨ j′ 6= j).
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only consider a constant number of possible codon alignments (e.g. the types in
Fig. 5.7) this implies that we can compute D(n,m) in time O(nm) and space
O(n). By adapting the technique in Hirschberg [63] or the variant described in
Durbin et al. [35, Page 35–36] we can also get the optimal alignment (and not
only the cost) within the same time and space bound.

The method we use to compute Dt(i, j) can be used for any type of last
codon alignment but the bookkeeping and thereby the constant overhead in-
creases with the number of gaps described by the last codon alignment. By
restricting ourselves to the eleven types of codon alignments shown in Fig. 5.7
we can compute the cost of an optimal alignment with a reasonable constant
overhead. In the rest of this paper we therefore focus on these eleven types
of codon alignments. We divide the explanation of how to compute Dt(i, j)
for t = 1, 2, . . . , 11 according to the number of gaps within a codon (denoted
internal gaps) described by a codon alignment of type t. Codon alignments of
type 1–3 describe no internal gaps, codon alignments of type 4–7 describe one
internal gap and codon alignments of type 8–11 describe two internal gaps.

We introduce c∗p : {A,C,G,T}3 × {A,C,G,T}3 → R for use in the explana-
tion. We define c∗p(σ1σ2σ3, τ1τ2τ3) as the distance between σ1σ2σ3 and τ1τ2τ3 in
the DNA/protein model. This is the minimum over the cost3 of the six possible
sequences of the three substitutions σ1 → τ1, σ2 → τ2 and σ3 → τ3.

5.5.1 Codon alignments with no internal gaps

The cost D1(i, j) is the cost of the last codon alignment of type 1 plus the cost
of the remaining alignment. The last codon alignment is an alignment of ai

1a
i
2a

i
3

and bj1b
j
2b

j
3. By definition of c∗p the cost is c∗p(ai

1a
i
2a

i
3, b

j
1b

j
2b

j
3). The cost of the

remaining alignment is D(i− 1, j − 1).

D1(i, j) = D(i− 1, j − 1) + c∗p(a
i
1a

i
2a

i
3, b

j
1b

j
2b

j
3) (5.6)

A codon alignment of type 2 or type 3 describes a gap between codons. Since
the combined gap cost function is affine we can use the technique introduced
in [46] saying that a gap ending in (i, j) is either a continuation of an existing
gap ending in (i− 1, j) or (i, j − 1), or the start of a new gap.

D2(i, j) = min{D(i, j − 1) + α+ β,D2(i, j − 1) + β} (5.7)

D3(i, j) = min{D(i− 1, j) + α+ β,D3(i− 1, j) + β} (5.8)

5.5.2 Codon alignments with one internal gap

We describe how to compute D6(i, j). The other cases where the last codon
alignment describes one internal gap are handled similarly. The cost D6(i, j)
is the cost of the last codon alignment of type 6 plus the cost of the remaining
alignment. The last codon alignment of type 6 describes three substitutions and
one deletion. If the deletion has length k (a deletion of 3k nucleotides) then
the cost of the remaining alignment is D(i − k − 1, j − 1) and the last codon

3We use the term cost to denote the DNA level cost plus the protein level cost.
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alignment is an alignment of ai′
1 a

i′
2 a

i′
3 · · · ai

1a
i
2a

i
3 and bj1b

j
2b

j
3 where i′ = i − k.

This is illustrated in Fig. 5.8.

ai′
1ai′

2 ai′
3 ai

1 ai
2 ai

3

bj
1

bj
2

bj
3

(3i,3j)

(3i−3k−3,3j−3)

Figure 5.8: The last codon alignment of type 6.

The cost of the last codon alignment is the minimum cost of a sequence of
the three substitutions and the deletion. Any sequence of these four events can
be divided into three steps: The substitutions occurring before the deletion, the
deletion and the substitutions occurring after the deletion. Figure 5.9 illustrates
the three steps of the evolution of ai′

1 a
i′
2 a

i′
3 · · · ai

1a
i
2a

i
3 to bj1b

j
2b

j
3. The nucleotides

x1, x2 and x3 are the result of the up to three substitutions before the deletion.
For example, if the substitution ai′

1 → bj1 occurs before the deletion, then x1 is
bj1, otherwise it is ai′

1 . We say that x1 ∈ {ai′
1 , b

j
1}, x2 ∈ {ai′

2 , b
j
2} and x3 ∈ {ai

3, b
j
3}

are the status of the three substitutions before the deletion. We observe that
x1x2x3 is the remaining codon of the deletion.

ai′
1 ai′

2 ai′
3 ai

1 ai
2 ai

3

bj
1

bj
2

bj
3 subs−→

x1x2a
i′
3 ai

1 ai
2x3

bj
1

bj
2

bj
3 del−→

x1x2x3

bj
1

bj
2

bj
3 subs−→

bj
1 bj

2 bj
3

bj
1

bj
2

bj
3

Figure 5.9: The evolution of ai′
1 a

i′
2 a

i′
3 · · · ai

1a
i
2a

i
3 to bj1b

j
2b

j
3 described by the last

codon alignment.

The substitutions occurring before the deletion change codon ai′
1 a

i′
2 a

i′
3 to

x1x2a
i′
3 and codon ai

1a
i
2a

i
3 to ai

1a
i
2x3. The substitutions occurring after the

deletion change codon x1x2x3 to bj1b
j
2b

j
3. We recall that the cost of changing

codon σ1σ2σ3 to codon τ1τ2τ3 by a sequence of the substitutions σ1 → τ1,
σ2 → τ2 and σ3 → τ3 is c∗p(σ1σ2σ3, τ1τ2τ3). Since an identical substitution has
cost zero then the cost of the three substitutions in the last codon alignment is
equal to the cost of the induced codon changes. The cost is

cost(subs) = c∗p(a
i′
1 a

i′
2 a

i′
3 , x1x2a

i′
3 )+

c∗p(a
i
1a

i
2a

i
3, a

i
1a

i
2x3) + c∗p(x1x2x3, b

j
1b

j
2b

j
3). (5.9)

The cost of the deletion of 3k nucleotides in the last codon alignment is the
sum of the DNA level cost gd(3k) and the protein level cost as given by (5.4).
By using the combined gap cost function g(k) = gd(3k) + gp(k) = α + βk and
our knowledge of the remaining codon x1x2x3 of the deletion, we can formulate
this sum as

cost(del) = min




α+ βk + cp(ai
1a

i
2x3, x1x2x3)4

αp + α+ βk + min0<l<k cp(ai−l
1 ai−l

2 ai−l
3 , x1x2x3)

α+ βk + cp(x1x2a
i′
3 , x1x2x3)

. (5.10)
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The cost of the deletion depends on the deletion length, the remaining codon
x1x2x3 and a witness. The witness can be the start-codon x1x2a

i′
3 , the end-

codon ai
1a

i
2x3 or one of the internal codons ai−l

1 ai−l
2 ai−l

3 for some 0 < l < k.
The witness encodes the amino acid aligned with the remaining amino acid.

We can now compute D6(i, j) under the assumption of a certain deletion
length k and remaining codon x1x2x3 of the deletion in the last codon alignment
as the sum cost(subs) + cost(del ) +D(i− k − 1, j − 1). We can thus compute
D6(i, j) by minimizing this sum over all possible combinations of deletion length
k and remaining codon x1x2x3. A combination of deletion length k and remain-
ing codon x1x2x3 is possible if x1 ∈ {ai′

1 , b
j
1}, x2 ∈ {ai′

2 , b
j
2} and x3 ∈ {ai

3, b
j
3}

where i′ = i − k. The terms c∗p(ai
1a

i
2a

i
3, a

i
1a

i
2x3) and c∗p(x1x2x3, b

j
1b

j
2b

j
3) of

cost(subs) do not depend on the deletion length, so we can split the mini-
mization as

D6(i, j) = min
x1x2x3

{c∗p(ai
1a

i
2a

i
3, a

i
1a

i
2x3)+

c∗p(x1x2x3, b
j
1b

j
2b

j
3) +D6

x1x2x3
(i, j)} (5.11)

where

D6
x1x2x3

(i, j) = min
0<k<i

{D(i− k − 1, j − 1)+

c∗p(a
i−k
1 ai−k

2 ai−k
3 , x1x2a

i−k
3 ) + cost(del)} (5.12)

is the minimum cost of the terms that depend on both the deletion length and
the remaining codon under the assumption that the remaining codon is x1x2x3.
If we expand the term cost(del) we get

D6
x1x2x3

(i, j) = min
0<k<i

{len6
x1x2

(i, j, k)+

min




cp(ai
1a

i
2x3, x1x2x3)

αp + min0<l<k cp(ai−l
1 ai−l

2 ai−l
3 , x1x2x3)

cp(x1x2a
i−k
3 , x1x2x3)

(5.13)

where

len6
x1x2

(i, j, k) = D(i− k − 1, j − 1)+

c∗p(a
i−k
1 ai−k

2 ai−k
3 , x1x2a

i−k
3 ) + α+ βk (5.14)

is the cost of the remaining alignment plus the part of the cost of the last
codon alignment that does not depend on the codon ai

1a
i
2a

i
3 and the witness.

The cost len6
x1x2

(i, j, k) is defined if x1 ∈ {ai−k
1 , bj1} and x2 ∈ {ai−k

2 , bj2}. The
cost D6

x1x2x3
(i, j) is defined if there exists a deletion length k such that k and

x1x2x3 is a possible combination of deletion length and remaining codon.
We observe that there are at most 32 possible remaining codons x1x2x3.

The observation follows because we known that x3 must be one of the two
4We use cp(σ1σ2σ3, τ1τ2τ3) as a convenient notation for cp(σ, τ ) where σ and τ are the

amino acids coded by the codons σ1σ2σ3 and τ1τ2τ3 respectively.
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1
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1
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3

not witness

� U

(d) Case 4

Figure 5.10: The four cases in the computation of D6
x1x2x3

(i, j). We use z1z2z3
as notation for ai−1

1 ai−1
2 ai−1

3 .

known nucleotides ai
3 or bj3. If we can compute D6

x1x2x3
(i, j) in constant time

for each of the possible remaining codons then we can also compute D6(i, j)
in constant time. To compute D6

x1x2x3
(i, j) we must determine a combination

of witness and deletion length that minimizes the cost. We say that we must
determine the witness and deletion length of D6

x1x2x3
(i, j).

It is easy to see that witness and deletion lenghth of D6
x1x2x3

(i, j) must
be one of the four combinations illustrated in Fig. 5.10. We can thus com-
pute D6

x1x2x3
(i, j) as the minimum over the cost of the four cases illustrated in

Fig. 5.10. The cost of case 1–3 is computed by simplifying (5.13) for a particular
witness and deletion length. The cost of case 4 cannot be computed this way
because both the witness and the deletion length are unknown.

Case 1. The end-codon is the witness and the deletion length is at least one.
The cost is min

0<k<i
len6

x1x2
(i, j, k) + cp(ai

1a
i
2x3, x1x2x3).

Case 2. The last internal codon is the witness and the deletion length is at least
two. The cost is min

1<k<i
len6

x1x2
(i, j, k) + αp + cp(ai−1

1 ai−1
2 ai−1

3 , x1x2x3).

Case 3. The start-codon is the witness and the deletion length is one. The cost
is len6

x1x2
(i, j, 1) + cp(x1x2a

i−1
3 , x1x2x3).

Case 4. The witness is neither the end-codon nor the last internal codon and
the deletion length is at least two. We observe that if the witness of
D6

x1x2x3
(i − 1, j) is not the end-codon ai−1

1 ai−1
2 x3 then by optimality of

D6
x1x2x3

(i− 1, j) this witness must also be the witness of case 4. If this is
the case then the cost of case 4 is D6

x1x2x3
(i− 1, j) + β.
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The observation in case 4 suggests that we can use dynamic programming
to keep track of D6

x1x2x3
(i, j) under the assumption that the end-codon is not

the witness, i.e. use dynamic programming to keep track of the minimum cost
of case 2–4. We introduce tables F 6

x1x2x3
corresponding to the 64 combinations

of x1x2x3. We maintain that if x1x2x3 is a possible remaining codon and the
end-codon ai

1a
i
2x3 is not the witness of D6

x1x2x3
(i, j), then F 6

x1x2x3
(i, j) is equal

to D6
x1x2x3

(i, j). If we define F 6
x1x2x3

(0, j) to infinity, then

F 6
x1x2x3

(i, j) = min




cost of Case 2
cost of Case 3
F 6

x1x2x3
(i− 1, j) + β

(5.15)

In order to compute the cost of case 1 and 2 in constant time we maintain
the minimum of len6

x1x2
(i, j, k) over k by dynamic programming. We introduce

tables L6
x1x2

corresponding to the 16 combinations of x1x2 such that L6
x1x2

(i, j)
is equal to min0<k<i len6

x1x2
(i, j, k). If we define L6

x1x2
(0, j) to infinity, then

L6
x1x2

(i, j) = min
{

len6
x1x2

(i, j, 1)
L6

x1x2
(i− 1, j) + β

(5.16)

We can now compute D6
x1x2x3

(i, j) in constant time as the minimum cost of
case 1–4. The cost of case 1 is L6

x1x2
(i, j)+cp(ai

1a
i
2x3, x1x2x3) and the minimum

cost of case 2–4 is F 6
x1x2x3

(i, j), so

D6
x1x2x3

(i, j) = min
{
L6

x1x2
(i, j) + cp(ai

1a
i
2x3, x1x2x3)

F 6
x1x2x3

(i, j)
(5.17)

The computation of D6(i, j) by (5.11) requires us to compute D6
x1x2x3

(i, j)
for each of the 32 possible remaining codons. To do this we must compute
entry (i, j) in the 16 tables L6

x1x2
and entry (i, j) in the 64 tables F 6

x1x2x3
. As

explained in this section all this can be done in constant time.
The other three cases where the last codon alignment describes one internal

gap (type 4, 5 and 7) are handled similarly. However, if the last codon alignment
is of type 4 or 5, then only the first nucleotide x1 in the remaining codon
depends on the deletion (or insertion) length. This limits the number of possible
remaining codons to 16 and implies that only four tables are needed to keep
track of min0<k<i lent

x1
(i, j, k) for t = 4, 5. Hence, to compute Dt(i, j) for

t = 4, 5, 6, 7, we compute 2 · 4 + 2 · 16 + 4 · 64 = 296 table entries in total.

5.5.3 Codon alignments with two internal gaps

We describe how to compute D8(i, j). The other cases where the last codon
alignment describes two internal gaps are handled similarly. The cost D8(i, j)
is the cost of the last codon alignment of type 8 plus the cost of the remaining
alignment. The last codon alignment of type 8 describes three substitutions
and two deletions. If the first deletion has length k′ and the second deletion
has length k then the cost of the remaining alignment is D(i− k− k′− 1, j − 1)
and the last codon alignment is an alignment of ai′′

1 a
i′′
2 a

i′′
3 · · · ai′

1 a
i′
2 a

i′
3 · · · ai

1a
i
2a

i
3

and bj1b
j
2b

j
3 where i′ = i− k and i′′ = i′ − k′. This is illustrated in Fig. 5.11.
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Figure 5.11: The last codon alignment of type 8

We will compute D8(i, j) as we computed D6(i, j) by minimizing the cost
over all possible combinations of deletion length k and remaining codon x1x2x3

of the second deletion. This reduces the problem of computing D8(i, j) to
computing D8

x1x2x3
(i, j), the cost under the assumption of a certain remaining

codon of the second deletion, for each of the 32 possible remaining codons of the
second deletion. We can compute D8

x1x2x3
(i, j) similar to the way we computed

D6
x1x2x3

(i, j). An inspection of (5.15), (5.16) and (5.17) reveals that all we
essentially have to do is to replace len6

x1x2
(i, j, 1) with the corresponding part

of D8(i, j). We denote this part of the cost len8
x1x2x3

(i, j, 1).
More precisely, if we assume that the second deletion has length k and

remaining codon x1x2x3 then len8
x1x2x3

(i, j, k) is the part of D8(i, j) that does
not depend on the codon ai

1a
i
2a

i
3 and the witness of the second deletion. This

cost depends on the order of the two deletions in the last codon alignment.
Hence, we introduce len8′

x1x2x3
(i, j, k) and len8′′

x1x2x3
(i, j, k) to denote the cost

when the first deletion occurs before the second deletion and vice versa. We
define len8

x1x2x3
(i, j, k) as min{len8′

x1x2x3
(i, j, k), len8′′

x1x2x3
(i, j, k)}. Since we only

have to compute len8
x1x2x3

(i, j, 1) we can restrict ourselves to the case where the
second deletion has length one and the first deletion has length k′. In the rest
of this section we use the notation that i′ = i− 1 and i′′ = i′− k′. We split into
two cases depending on the order of the first and second deletion.

y1a
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3 ai′
1 y2ai′
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1 ai

2 y3

bj
1

bj
2

bj
3 1 . del−→

y1 y2ai′
3 ai

1 ai
2 y3

bj
1

bj
2

bj
3 subs−→

x1x2a
i′
3 ai

1 ai
2x3

bj
1

bj
2

bj
3 2 . del−→

x1x2x3

bj
1

bj
2

bj
3 subs−→
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Figure 5.12: The first deletion occurs before the second deletion and the second
deletion has length one.

Figure 5.12 illustrates the evolution of the last codon alignment (of type 8)
when the second deletion has length one and occurs after the first deletion. The
nucleotides y1, y2 and y3 are the status of the substitutions before the first dele-
tion and the nucleotides x1, x2 and x3 are the status of the substitutions before
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the second deletion. Similar to (5.9) we compute the cost of the three substi-
tutions in the last codon alignment as the cost of the induced codon changes.
An inspection of Fig. 5.12 reveals that the cost of the three substitutions is

cost(subs) = c∗p(a
i′′
1 a

i′′
2 a

i′′
3 , y1a

i′′
2 a

i′′
3 ) + c∗p(a

i′
1 a

i′
2 a

i′
3 , a

i′
1 y2a

i′
3 )+

c∗p(a
i
1a

i
2a

i
3, a

i
1a

i
2y3) + c∗p(y1y2a

i′
3 , x1x2a

i′
3 )+

c∗p(a
i
1a

i
2y3, a

i
1a

i
2x3) + c∗p(x1x2x3, b

j
1b

j
2b

j
3). (5.18)

We can compute the cost of the two deletions similar to (5.10). Remember that
the first deletion has length k′ and the second deletion has length one and that
we use the notation i′ = i− 1 and i′′ = i′ − k′.

cost(del1) = min




α+ βk′ + cp(ai′
1 y2a

i′
3 , y1y2a

i′
3 )

αp + α+ βk′ + min0<l<k′ cp(ai′−l
1 ai′−l

2 ai′−l
3 , y1y2a

i′
3 )

α+ βk′ + cp(y1a
i′′
2 a

i′′
3 , y1y2a

i′
3 )

(5.19)

cost(del2) = α+ β + min
{
cp(x1x2a

i′
3 , x1x2x3)

cp(ai
1a

i
2x3, x1x2x3)

(5.20)

If we assume that the first deletion occurs before the second deletion and that
the second deletion has length one and remaining codon x1x2x3 then D8(i, j)
is given by the sum cost(subs) + cost(del1) + cost(del2) +D(i′ − k′ − 1, j − 1)
minimized over all possible combinations of codon y1y2y3 and length k′. Re-
member that len8′

x1x2x3
(i, j, 1) is the part of this minimum that does not de-

pend on ai
1a

i
2a

i
3 or the witness of the second deletion. By inspection of the

above expressions we observe that len8′
x1x2x3

(i, j, 1) includes everything but the
terms c∗p(ai

1a
i
2a

i
3, a

i
1a

i
2y3) and c∗p(ai

1a
i
2y3, a

i
1a

i
2x3) of cost(subs) and everything

but the term min{cp(x1x2a
i′
3 , x1x2x3), cp(ai

1a
i
2x3, x1x2x3)} of cost(del 2). It is

easy to verify that D4
y1y2ai′

3

(i′, j) is equal to the sum D(i′ − k′ − 1, j − 1) +

c∗p(ai′′
1 a

i′′
2 a

i′′
3 , y1a

i′′
2 a

i′′
3 ) + cost(del1) minimized over the deletion length k′ of the

first deletion. This observation makes it possible to compute len8′
x1x2x3

(i, j, 1)
as

len8′
x1x2x3

(i, j, 1) = α+ β + c∗p(x1x2x3, b
j
1b

j
2b

j
3)+

min
y1y2

{c∗p(ai′
1 a

i′
2 a

i′
3 , a

i′
1 y2a

i′
3 ) +D4

y1y2ai′
3

(i′, j) + c∗p(y1y2a
i′
3 , x1x2a

i′
3 )} (5.21)

where we minimize over y1 ∈ {ai′′
1 , x1} and y2 ∈ {ai′

2 , x2}. The cost
len8′

x1x2x3
(i, j, 1) is defined if x1x2x3 allows the second deletion to have length

one, i.e. if x1 ∈ {ai′′
1 , b

j
1}, x2 ∈ {ai′

2 , b
j
2} and x3 ∈ {ai

3, b
j
3}. The nucleotide ai′′

1

depends on the unknown length of the first deletion, so we must assume that it
can be any of the four nucleotides.

Figure 5.13 illustrates the evolution of the last codon alignment when the
second deletion has length one and occurs before the first deletion. The nu-
cleotides z1, x2 and x3 are the status of the substitutions before the second
deletion and the nucleotides y1, y2 and y3 are the status of the substitutions
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Figure 5.13: The second deletion occurs before the first deletion and the second
deletion has length one.

before the first deletion. Observe that x1 is just ai′
1 . The cost of this case can

be described as above. This would reveal that len8′′
x1x2x3

(i, j, 1) includes every-
thing but c∗p(ai

1a
i
2a

i
3, a

i
1a

i
2x3) + c∗p(ai

1a
i
2x3, a

i
1a

i
2y3) + cp(x1x2x3, w1w2w3) where

w1w2w3 is the witness of the second deletion. Furthermore it would reveal that
D4

y1y2y3
(i′, j) is equal to the sum of the cost of the remaining alignment, the

cost of the first deletion and the cost of changing codon ai′′
1 a

i′′
2 a

i′′
3 to z1ai′′

2 a
i′′
3 to

y1a
i′′
2 a

i′′
3 minimized over the deletion length k′ of the first deletion. This makes

it possible to compute len8′′
x1x2x3

(i, j, 1) as

len8′′
x1x2x3

(i, j, 1) = α+ β + c∗p(a
i′
1 a

i′
2 a

i′
3 , x1x2a

i′
3 )+

min
y1y2y3

{c∗p(ai′
1 x2x3, a

i′
1 y2y3) +D4

y1y2y3
(i′, j) + c∗p(y1y2y3, b

j
1b

j
2b

j
3)} (5.22)

where we minimize over y1 ∈ {z1, bj1}, y2 ∈ {x2, b
j
2} and y3 ∈ {x3, b

j
3}. The

nucleotide z1 depends on the unknown length of the first deletion, so we must
assume that z1 can be any of the four nucleotides. The cost len8′′

x1x2x3
(i, j, 1) is

defined if x1x2x3 allows the second deletion to have length one, i.e. if x1 = ai′
1 ,

x2 ∈ {ai′
2 , b

j
2} and x3 ∈ {ai

3, b
j
3}.

We are finally in a position where we can describe how to use the method
from the previous section to compute D8(i, j). The cost len8

x1x2x3
(i, j, k) de-

pends on x1, x2 and x3, so instead of 16 tables we need 64 tables L8
x1x2x3

to
keep track of min0<k<i len8

x1x2x3
(i, j, k). We still need 64 tables F 8

x1x2x3
to keep

track of the cost under the assumption that the end-codon ai
1a

i
2x3 is not the

witness (of the second deletion). We compute table entry (i, j) in these tables
as

L8
x1x2x3

(i, j) = min
{

len8
x1x2x3

(i, j, 1)
L8

x1x2x3
(i− 1, j) + β

(5.23)

F 8
x1x2x3

(i, j) = min




L8
x1x2x3

(i− 1, j) + β + αp + cp(ai−1
1 ai−1

2 ai−1
3 , x1x2x3)

len8
x1x2x3

(i, j, 1) + cp(x1x2a
i−1
3 , x1x2x3)

F 8
x1x2x3

(i− 1, j) + β

(5.24)
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We compute D8
x1x2x3

(i, j) using the above tables and we compute D8(i, j) by
minimizing over the 32 possible remaining codons of the second deletion.

D8
x1x2x3

(i, j) = min
{
L8

x1x2x3
(i, j) + cp(ai

1a
i
2x3, x1x2x3)

F 8
x1x2x3

(i, j)
(5.25)

D8(i, j) = min
x1x2x3

{c∗p(ai
1a

i
2a

i
3, a

i
1a

i
2x3) +D8

x1x2x3
(i, j)} (5.26)

This constant time computation of D8(i, j) requires us to compute entry (i, j)
in 128 tables. The other three cases where the last codon alignment de-
scribes two internal gaps are handled similarly. Hence, to compute Dt(i, j)
for t = 8, 9, 10, 11 we compute 4 · 128 = 512 table entries in total.

5.5.4 Combining the computation

We observe that the only real difference between the computation of D6(i, j)
andD8(i, j) is between len6

x1x2
(i, j, 1) and len8

x1x2x3
(i, j, 1). The similarity stems

from the fact that a codon alignment of type 6 and type 8 ends in the same
way. By “end in the same way” we mean that the events described on the codon
ai

1a
i
2a

i
3 are the same. Figure 5.7 reveals that a codon alignment of type 11 also

ends in the same way as codon alignments of type 6 and 8.
The similarity between the computation of Dt(i, j) for t = 6, 8, 11 makes it

possible to combine the computation of the three costs and thereby reduce the
number of tables. We can replace the three tables L6

x1x2
, L8

x1x2x3
and L11

x1x2x3

with one table L6,8,11
x1x2x3 where L6,8,11

x1x2x3(i, j) is the minimum of entry (i, j) in
the three tables it replaces. Similarly we can replace F 6

x1x2x3
, F 8

x1x2x3
and

F 11
x1x2x3

with F 6,8,11
x1x2x3 . We can compute L6,8,11

x1x2x3(i, j) and F 6,8,11
x1x2x3(i, j) by expres-

sions similar to (5.23) and (5.24). All we essentially have to do is to replace
len8

x1x2x3
(i, j, 1) by

len6,8,11
x1x2x3

(i, j, 1) = min
t=6,8,11

lent
x1x2x3

(i, j, 1) (5.27)

where we in order to ensure that lent
x1x2x3

(i, j, 1) for t = 6, 8, 11 describes the
same part of the total cost must redefine len6

x1x2x3
(i, j, 1) as len6

x1x2
(i, j, 1) +

c∗p(x1x2x3, b
j
1b

j
2b

j
3).

We introduce D6,8,11(i, j) as the minimum of Dt(i, j) over t = 6, 8, 11. We
can compute D6,8,11(i, j) by using L6,8,11

x1x2x3 and F 6,8,11
x1x2x3 in expressions similar

to (5.25) and (5.26). The computation of D6,8,11(i, j) requires us to compute
only 64+64 = 128 table entries while the individual computation ofDt(i, j) for
t = 6, 8, 10 requires us to compute 80+128+128 = 336 table entries. Figure 5.7
also reveals that codon alignments of type 7, 9 and 10 end in the same way.
Hence, we can also combine the computation of Dt(i, j) for t = 7, 9, 10.

Finally, to computeD(i, j) by (5.5) we must minimize over D1(i, j), D2(i, j),
D3(i, j), D4(i, j), D5(i, j), D6,8,11(i, j) and D7,9,10(i, j). In total this computa-
tion requires us to compute 1 + 7 + 68 + 68 + 128 + 128 = 400 table entries.
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5.6 Future work

We are working on implementing the alignment algorithm described in the
previous section in order to compare it to the heuristic alignment algorithm
described in [61]. The heuristic algorithm allows frame shifts, so an obvious
extension of our exact algorithm would be to allow frame shifts, e.g. to allow
insertion-deletions of arbitrary length. This however makes it difficult to split
the evaluation of the alignment cost into small independent subproblems (codon
alignments) of known size.

Another interesting extension would be to annotate the DNA sequence with
more information. For example, if the DNA sequence codes in more than one
reading frame (overlapping reading frames) then the DNA sequence should be
annotated with all the amino acid sequences encoded and the combined cost
of a nucleotide event should summarize the cost of changes induced on all the
amino acid sequences encoded by the DNA sequence. This extension also makes
it difficult to split the evaluation of the alignment cost into small independent
subproblems. To implement these extensions efficiently it might be fruitful to
investigate reasonable restrictions of the cost functions.
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Chapter 6

Measures on hidden Markov models

a day will come when I
shall take the hidden paths that run
west of the moon, east of the sun.

—J. R. R. Tolkien, Lord of the Rings

This paper describes methods to compute metrics and similarity measures com-
paring hidden Markov models. The results were presented at the Seventh Inter-
national Conference on Intelligent Systems for Molecular Biology and a short
version of the paper, not describing the methods for handling models that
are not of the left/right type, is published in the proceedings of this confer-
ence [92]. Furthermore, the paper has been published in the BRICS report
series [91]. The version included here has been slightly modified compared
to the version in the original dissertation presented to the Faculty of Science,
University of Aarhus. More precisely, the original illustration of the transition
structure of a profile hidden Markov model in figure 6.1 has been replaced with
the profile hidden Markov model also shown in figure 2.6(d). And section 6.5.1
has been rewritten as the original version contained some errors. The method
for left/right models has been implemented and source code is available at
http://www.brics.dk/∼cstorm/hmmcomp/index.html.
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Measures on hidden Markov models

Rune B. Lyngsø∗ Christian N. S. Pedersen† Henrik Nielsen‡

Abstract

Hidden Markov models were introduced in the beginning of the 1970’s as
a tool in speech recognition. During the last decade they have been found
useful in addressing problems in computational biology such as charac-
terising sequence families, gene finding, structure prediction and phyloge-
netic analysis. In this paper we propose several measures between hidden
Markov models. We give an efficient algorithm that computes the mea-
sures for left-right models, e.g. profile hidden Markov models, and discuss
how to extend the algorithm to other types of models. We present an ex-
periment using the measures to compare hidden Markov models for three
classes of signal peptides.

6.1 Introduction

A hidden Markov model describes a probability distribution over a potentially
infinite set of sequences. It is convenient to think of a hidden Markov model as
generating a sequence according to some probability distribution by following a
first order Markov chain of states, called the path, from a specific start-state to
a specific end-state and emitting a symbol according to some probability dis-
tribution each time a state is entered. One strength of hidden Markov models
is the ability efficiently to compute the probability of a given sequence as well
as the most probable path that generates a given sequence. Hidden Markov
models were introduced in the beginning of the 1970’s as a tool in speech recog-
nition. In speech recognition the set of sequences might correspond to digitised
sequences of human speech and the most likely path for a given sequence is the
corresponding sequence of words. Rabiner [124] gives a good introduction to the
theory of hidden Markov models and their applications to speech recognition.

Hidden Markov models were introduced in computational biology in 1989
by Churchill [27]. Durbin et al. [35] and Eddy [36, 37] are good overviews of
the use of hidden Markov models in computational biology. One of the most
popular applications is to use them to characterise sequence families by using
so called profile hidden Markov models introduced by Krogh et al. [80]. For a
profile hidden Markov model the probability of a given sequence indicates how

∗Department of Computer Science, University of Aarhus, Denmark. E-mail:
rlyngsoe@daimi.au.dk. Work done in part while visiting the Institute for Biomedical Com-
puting at Washington University, St. Louis.
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University of Aarhus, Denmark. E-mail: cstorm@brics.dk.

‡Center for Biological Sequence Analysis, Centre of the Danish National Research Foun-
dation, Technical University of Denmark, Denmark. E-mail: hnielsen@cbs.dtu.dk
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likely it is that the sequence is a member of the modelled sequence family, and
the most likely path for a given sequence corresponds to an alignment of the
sequence against the modelled sequence family.

An important advance in the use of hidden Markov models in computational
biology within the last two years, is the fact that several large libraries of profile
hidden Markov models have become available [37]. These libraries not only
make it possible to classify new sequences, but also open up the possibility of
comparing sequence families by comparing the profiles of the families instead
of comparing the individual members of the families, or of comparing entire
sequence families instead of the individual members of the family to a hidden
Markov model constructed to model a particular feature. To our knowledge
little work has been published in this area, except for alignment of profiles [47].

In this paper we propose measures for hidden Markov models that can be
used to address this problem. The measures are based on what we call the
co-emission probability of two hidden Markov models. We present an efficient
algorithm that computes the measures for profile hidden Markov models and
observe that the left-right architecture is the only special property of profile
hidden Markov models required by the algorithm. We describe how to extend
the algorithm to broader classes of models and how to approximate the measures
for general hidden Markov models. The method can easily be adapted to various
special cases, e.g. if it is required that paths pass through certain states.

As the algorithm we present is not limited to profile hidden Markov mod-
els, we have chosen to emphasise this generality by presenting an application
to a set of hidden Markov models for signal peptides. These models do not
strictly follow the profile architecture and consequently cannot be compared
using profile alignment [47].

The rest of the paper is organised as follows. In section 6.2 we discuss hid-
den Markov models in more detail. In section 6.3 we introduce the co-emission
probability of two hidden Markov models and formulate an algorithm for com-
puting this probability of two profile hidden Markov models. In section 6.4 we
use the co-emission probability to formulate several measures between hidden
Markov models. In section 6.5 we discuss extensions to more general models.
In section 6.6 we present an experiment using the method to compare three
classes of signal peptides. Finally in section 6.7 we briefly discuss how to com-
pute relaxed versions of the co-emission probability.

6.2 Hidden Markov models

Let M be a hidden Markov model that generates sequences over some finite
alphabet Σ with probability distribution PM , i.e. PM (s) denotes the probability
of s ∈ Σ∗ under model M . Like a classical Markov model, a hidden Markov
model consists of a set of interconnected states. We use Pq(q′) to denote the
probability of a transition from state q to state q′. These probabilities are
usually called state transition probabilities. The transition structure of a hidden
Markov model is often shown as a directed graph with a node for each state,
and an edge between two nodes if the corresponding state transition probability
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is non-zero. Figure 6.1 shows an example of a transition structure. Unlike a
classical Markov model, a state in a hidden Markov model can generate or emit
a symbol according to a local probability distribution over all possible symbols.
We use Pq(σ) to denote the probability of generating or emitting symbol σ ∈ Σ
in state q. These probabilities are usually called symbol emission probabilities.
If a state does not have symbol emission probabilities we say that the state is
a silent state.

It is often convenient to think of a hidden Markov model as a generative
model, in which a run generates or emits a sequence s ∈ Σ∗ with probability
PM (s). A run of a hidden Markov model begins in a special start-state and
continues from state to state according to the state transition probabilities until
a special end-state is reached. Each time a non-silent state is entered, a symbol
is emitted according to the symbol emission probabilities of the state. A run
thus results in a Markovian sequence of states as well as a generated sequence
of symbols. The name “hidden Markov model” comes from the fact that the
Markovian sequence of states, also called the path, is hidden, while only the
generated sequence of symbols is observable.

Start
match 1
A : 0.8

...
T : 0.1

match 2
A : 0.04

...
T : 0.01

End-
0.6

- -

insert 0
A : 0.2

...
T : 0.2

6
0.1

R

7�

0.3

insert 1
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...
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?

6
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��

-

insert 2
A : 0.1

...
T : 0.5

6

?

Nw
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delete 1 delete 2

Figure 6.1: The structure of a profile hidden Markov model. The squares are
the match-states, the diamonds are the insert-states and the circles are the
silent delete-states.

Hidden Markov models have found applications in many areas of computa-
tional biology, e.g. gene finding [79] and protein structure prediction [134], but
probably the most popular use is as profiles for sequence families. A profile is
a position-dependent scoring scheme that captures the characteristics of a se-
quence family, in the sense that the score peaks around members of the family.
Profiles are useful when searching for unknown members of a sequence family
and several methods have been used to construct and use profiles [48, 87, 138].
Krogh et al. [80] realized that simple hidden Markov models, which they called
profile hidden Markov models, were able to capture all other profile methods.

The states of a profile hidden Markov model are divided into match-, insert-
and delete-states. Figure 6.1 illustrates the transition structure of a simple
profile hidden Markov model. Note the highly repetitive transition structure.
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Each of the repeated elements consisting of a match-, insert- and delete-state
models a position in the consensus sequence for the sequence family. The silent
delete-state makes it possible to skip a position while the self-loop on the insert-
state makes it possible to insert one or more symbols between two positions.
Another distinctive feature of the structure of profile hidden Markov models
is the absence of cycles, except for the self-loops on the insert-states. Hidden
Markov models with this property are generally referred to as left-right [73] (or
sometimes Bakis [13]) models, as they can be drawn such that all transitions
go from left to right.

The state transition and symbol emission probabilities of a profile hidden
Markov model (the parameters of the model) should be such that PM (s) is
significant if s is a member of the sequence family. These probabilities can
be derived from a multiple alignment of the sequence family, but more impor-
tantly, several methods exist to estimate them (or train the model) if a multiple
alignment is not available [14, 35, 37].

6.3 Co-emission probability of two models

When using a profile hidden Markov model, it is sometimes sufficient just to
focus on the most probable path through the model, e.g. when using a profile
hidden Markov model to generate alignments. It is, however, well known that
profile hidden Markov models possess a lot more information than the most
probable paths, as they allow the generation of an infinity of sequences, each
by a multitude of paths. Thus, when comparing two profile hidden Markov
models, one should look at the entire spectrum of sequences and probabilities.

In this section we will describe how to compute the probability that two
profile hidden Markov models independently generate the same sequence, that
is for models M1 and M2 generating sequences over an alphabet Σ we compute∑

s∈Σ∗
PM1(s)PM2(s). (6.1)

We will call this the co-emission probability of the two models. It is also of-
ten called the collision probability of two probability distributions, as it is the
probability that a pair of elements drawn at random from the two distributions
‘collide’, i.e. are identical. The algorithm we present to compute the co-emission
probability is a dynamic programming algorithm similar to the algorithm for
computing the probability that a hidden Markov model will generate a specific
sequence [35, Chapter 3]. We will describe how to handle the extra compli-
cations arising when exchanging the sequence with a profile hidden Markov
model.

When computing the probability that a hidden Markov model M generates
a sequence s = s1 . . . sn, a table indexed by a state from M and an index from s
is usually built. An entry (q, i) in this table holds the probability of being in the
state q in M and having generated the prefix s1 . . . si of s. We will use a similar
approach to compute the co-emission probability. Given two hidden Markov
models M1 and M2, we will describe how to build a table A indexed by states
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from the two hidden Markov models, such that the entry A(q, q′) – where q is
a state of M1 and q′ is a state of M2 – holds the probability of being in state
q in M1 and q′ in M2 and having independently generated identical sequences
on the paths to q and q′. The entry indexed by the two end-states will then
hold the probability of being in the end-states and having generated identical
sequences, that is the co-emission probability.

To build the table, A, we have to specify how to fill out all entries of A.
For a specific entry A(q, q′) this depends on the types of states q and q′. As
explained in the previous section, a profile hidden Markov model has three types
of states (insert-, match- and delete-states) and two special states (start and
end). We postpone the treatment of the special states until we have described
how to handle the other types of states. For reasons of succinctness we will
treat insert- and match-states as special cases of a more general type, which
we will call a generate-state; this type encompasses all non-silent states of the
profile hidden Markov models.

The generate-state will be a merging of match- and insert-states, thus both
allowing a transition to itself and having a transition from the previous insert-
state; a match-state can be viewed as a generate-state with probability zero of
choosing the transition to itself, and an insert-state can be viewed as a generate-
state with probability zero of choosing the transition from the previous insert-
state. Note that this merging of match- and insert-states is only conceptual; we
do not physically merge any states, but just handle the two types of states in
a uniform way. This leaves two types of states and thus four different pairs of
types. This number can be reduced to three, by observing that the two cases of
a generate/delete-pair are symmetric, and thus can be handled the same way.

The rationale behind the algorithm is to split paths up in the last transi-
tion(s)1 and all that preceded this. We will thus need to be able to refer to the
states with transitions to q and q′. In the following, m, i and d will refer to
the match-, insert- and delete-state with a transition to q, and m′, i′ and d′ to
those with a transition to q′. Observe that if q (or q′) is an insert-state, then
i (or i′) is the previous insert-state which, by the generate-state generalisation,
has a transition to q (or q′) with probability zero.

delete/delete entry Assume that q and q′ are both delete-states. As these
states don’t emit symbols, we just have to sum over all possible combinations
of immediate predecessors of q and q′, of the probability of being in these
states and having independently generated identical sequences, multiplied by
the joint probability of independently choosing the transitions to q and q′. For
the calculation of A(q, q′) we thus get the equation

A(q, q′) =
A(m,m′)Pm(q)Pm′(q′) +A(m, i′)Pm(q)Pi′(q′) +A(m,d′)Pm(q)Pd′(q′)
+A(i,m′)Pi(q)Pm′(q′) +A(i, i′)Pi(q)Pi′(q′) +A(i, d′)Pi(q)Pd′(q′)
+A(d,m′)Pd(q)Pm′(q′) +A(d, i′)Pd(q)Pi′(q′) +A(d, d′)Pd(q)Pd′(q′).

(6.2)

1In some of the cases explained below, we will only extend the path in one of the models
with an extra transition, hence the unspecificity.
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delete/generate entry Assume that q is a delete-state and q′ is a generate-
state. Envision paths leading to q and q′ respectively while independently gen-
erating the same sequence. As q does not emit symbols while q′ does, the path
to q’s immediate predecessor (that is, the path to q with the actual transition
to q removed) must also have generated the same sequence as the path to q′.
We thus have to sum over all immediate predecessors of q, of the probability of
being in this state and in q′ and having generated identical sequences, multi-
plied by the probability of choosing the transition to q. For the calculation of
A(q, q′) in this case we thus get the following equation

A(q, q′) = A(m, q′)Pm(q) +A(i, q′)Pi(q) +A(d, q′)Pd(q). (6.3)

generate/generate entry Assume that q and q′ are both generate-states.
The last character in sequences generated on the paths to q and q′ are generated
by q and q′ respectively. We will denote the probability that these two states
independently generate the same symbol by p, and it is an easy observation
that

p =
∑
σ∈Σ

Pq(σ)Pq′(σ). (6.4)

The problem with generate/generate entries is that the last transitions on paths
to q and q′ might actually come from q and q′ themselves, due to the self-
loops of generate states. It thus seems that we need A(q, q′) to be able to
compute A(q, q′)!

So let us start out by assuming that at most one of the paths to q and q′

has a self-loop transition as the last transition. Then we can easily compute
the probability of being in q and q′ and having independently generated the
same sequence on the paths to q and q′, by summing over all combinations
of states with transitions to q and q′ (including combinations with either q or
q′ but not both) the probabilities of these combinations, multiplied by p (for
independently generating the same symbol at q and q′) and the joint probability
of independently choosing the transitions to q and q′. We denote this probability
by A0(q, q′), and by the above argument the equation for computing it is

A0(q, q′) =p(A(m,m′)Pm(q)Pm′(q′) +A(m, i′)Pm(q)Pi′(q′)
+A(m,d′)Pm(q)Pd′(q′) +A(m, q′)Pm(q)Pq′(q′)
+A(i,m′)Pi(q)Pm′(q′) +A(i, i′)Pi(q)Pi′(q′)
+A(i, d′)Pi(q)Pd′(q′) +A(i, q′)Pi(q)Pq′(q′)
+A(d,m′)Pd(q)Pm′(q′) +A(d, i′)Pd(q)Pi′(q′)
+A(d, d′)Pd(q)Pd′(q′) +A(d, q′)Pd(q)Pq′(q′)
+A(q,m′)Pq(q)Pm′(q′) +A(q, i′)Pq(q)Pi′(q′)
+A(q, d′)Pq(q)Pd′(q′)).

(6.5)

Now let us cautiously proceed, by considering a pair of paths where one of the
paths has exactly one self-loop transition in the end, and the other path has at
least one self-loop transition in the end. The probability – that we surprisingly
call A1(q, q′) – of getting to q and q′ along such paths while generating the
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same sequences is the probability of getting to q and q′ along paths that do not
both have a self-loop transition in the end, multiplied by the joint probability
of independently choosing the self-loop transitions, and the probability of q and
q′ emitting the same symbols. But this is just

A1(q, q′) = rA0(q, q′), (6.6)

where
r = pPq(q)Pq′(q′) (6.7)

is the probability of independently choosing the self-loop transitions and emit-
ting the same symbols in q and q′. Similarly we can define Ak(q, q′), and by
induction it is easily proven that

Ak(q, q′) = rAk−1(q, q′) = rkA0(q, q′). (6.8)

As any finite path ending in q or q′ must have a finite number of self-loop
transitions in the end, we get

A(q, q′) =
∞∑

k=0

Ak(q, q′)

=
∞∑

k=0

rkA0(q, q′)

=
1

1− rA0(q, q′).

(6.9)

Despite the fact that there is an infinite number of cases to consider, we observe
that the sum over the probabilities of all these cases comes out as a geometric
series that can easily be computed.

Based on equations 6.2, 6.3, 6.5 and 6.9 we can compute each of the entries of A
pertaining to match- insert- and delete-states in constant time. As for the start-
states (denoted by s and s′) we initialise A(s, s′) to 1 (as we have not started
generating anything and the empty sequence is identical to itself). Otherwise,
even though they do not generate any symbols, we will treat the start-states as
generate states; this allows for choosing an initial sequence of delete-states in
one of the models. The start-states are the only possible immediate predeces-
sors for the first insert-states, and together with the first insert-states the only
immediate predecessors of the first match- and delete-states; the equations for
the entries indexed by any of these states can trivially be modified according
to this. The end-states (denoted by e and e′) do not emit any symbols and are
thus akin to delete-states, and can be treated the same way.

The co-emission probability of M1 and M2 is the probability of being in the
states e and e′ and having independently generated the same sequences. This
probability can be found by looking up A(e, e′). In the rest of this paper we
will use A(M1,M2) to denote the co-emission probability of M1 and M2.

As all entries of A can be computed in constant time, we can compute the
co-emission probability of M1 and M2 in time O(n1n2) where ni denotes the
number of states in Mi. The straightforward space requirement is also O(n1n2)
but can be reduced to O(n1) by a standard trick [52, Chapter 11].
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6.4 Measures on hidden Markov Models

Based on the co-emission probability we define two metrics that hopefully, to
some extent, express how similar the families of sequences represented by two
hidden Markov models are. A problem with the co-emission probability is that
the models having the largest co-emission probability with a specific model, M ,
usually will not include M itself, as shown by the following proposition.

Proposition 2 LetM be a hidden Markov model and p = max{PM (s) | s ∈ Σ∗}.
The maximum co-emission probability with M attainable for any hidden Markov
model is p. Furthermore, the hidden Markov models attaining this co-emission
probability with M , are exactly those models, M ′, for which PM ′(s) > 0 ⇔
PM (s) = p for all s ∈ Σ∗.

Proof. Let M ′ be a hidden Markov model with PM ′(s) > 0⇔ PM (s) = p. Then∑
s∈Σ∗,PM (s)=p

PM ′(s) = 1 (6.10)

and thus the co-emission probability of M and M ′ is∑
s∈Σ∗

PM (s)PM ′(s) =
∑

s∈Σ∗,PM (s)=p

PM (s)PM ′(s) = p. (6.11)

Now let M ′ be a hidden Markov model with PM ′(s′) = p′ > 0 for some
s′ ∈ Σ∗ with PM (s′) = p′′ < p. Then the co-emission probability of M and
M ′ is ∑

s∈Σ∗
PM (s)PM ′(s) = p′p′′ +

∑
s∈Σ∗\{s′}

PM (s)PM ′(s)

≤ p′p′′ + (1− p′)p
< p.

(6.12)

This proves that a hidden Markov model, M ′, has maximum co-emission prob-
ability, p, with M , if and only if the assertion of the proposition is fulfilled.

2

Proposition 2 indicates that the co-emission probability of two models not
only depends on how alike they are, but also on how ‘self-confident’ the models
are, that is, to what extent the probabilities are concentrated to a small subset
of all possible sequences.

Another way to explain this undesirable property of the co-emission proba-
bility, is to interpret hidden Markov models – or rather the probability distribu-
tion over finite sequences of hidden Markov models – as vectors in the infinite
dimensional space spanned by all finite sequences over the alphabet. With this
interpretation the co-emission probability, A(M1,M2), of two hidden Markov
models, M1 and M2, simply becomes the inner product,

〈M1,M2〉 = |M1||M2| cos v, (6.13)
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of the models. In the expression on the right hand side, v is the angle between
the models – or vectors – and |Mi| =

√〈Mi,Mi〉 is the length of Mi. One
observes the direct proportionality between the co-emission probability and the
length (or ‘self-confidence’) of the models being compared. If the length is to be
completely ignored, a good measure of the distance between two hidden Markov
models would be the angle between them – two models are orthogonal, if and
only if they can not generate identical sequences, and parallel (actually identical
as the probabilities have to sum to 1) if they express the same probability
distribution. This leads to the definition of our first metric on hidden Markov
models.

Definition 9 Let M1 and M2 be two hidden Markov models, and let A(M,M ′)
denote the co-emission probability of two hidden Markov models M and M ′.
We define the angle between M1 and M2 as

Dangle(M1,M2) = arccos
(
A(M1,M2)

/√
A(M1,M1)A(M2,M2)

)
.

Having introduced the vector interpretation of hidden Markov models, another
obvious metric to consider is the standard metric on vector spaces, that is, the
(euclidian) norm of the difference between the two vectors

|M1 −M2| =
√
〈M1 −M2,M1 −M2〉. (6.14)

Considering the square of this, we obtain

|M1 −M2|2 = 〈M1 −M2,M1 −M2〉
=
∑
s∈Σ∗

(PM1(s)− PM2(s))
2

=
∑
s∈Σ∗

(
PM1(s)

2 + PM2(s)
2 − 2PM1(s)PM2(s)

)
= A(M1,M1) +A(M2,M2)− 2A(M1,M2).

(6.15)

Thus this norm can be computed based on co-emission probabilities, and we
propose it as a second choice for a metric on hidden Markov models.

Definition 10 Let M1 and M2 be two hidden Markov models, and A(M,M ′)
be the co-emission probability of M and M ′. We define the difference between
M1 and M2 as

Ddiff(M1,M2) =
√
A(M1,M1) +A(M2,M2)− 2A(M1,M2).

One problem with the Ddiff metric is that |M1| − |M2| ≤ Ddiff(M1,M2) ≤
|M1| + |M2|. If |M1| � |M2| we therefore get that Ddiff(M1,M2) ≈ |M1|, and
we basically only get information about the length of M1 from Ddiff.

The metricDangle is not prone to this weakness, as it ignores the length of the
vectors and focuses on the sets of most probable sequences in the two models
and their relative probabilities. But this metric can also lead to undesirable
situations, as can be seen from figure 6.2 which shows that Dangle might not
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(a) Hidden Markov model M1 with
PM1(a) = 1.

Start a : 1 End-1 -
1
2

a : 1
?

1
2

:
n−1

n

1
n

7

(b) Hidden Markov model
M2 with PM2(a) = 1/2 and
PM2(a

k) = 1
2n

(n−1
n

)k−2 for k > 1.

Figure 6.2: Two distinctly different models can have an arbitrarily small dis-
tance in the Dangle metric. It is an easy observation that A(M1,M1) = 1,
A(M1,M2) = 1/2 and A(M2,M2) = 1/4 + 1/(8n − 4); for n → ∞ one thus
obtains Dangle(M1,M2)→ 0 but Ddiff(M1,M2)→ 1/2.

be able to discern two clearly different models. Choosing what metric to use,
depends on what kind of differences one wants to highlight.

For some applications one might want a similarity measure instead of a
distance measure. Based on the above metrics or the co-emission probability
one can define a variety of similarity measures. We decided to examine the
following two similarity measures.

Definition 11 Let M1 and M2 be two hidden Markov models and A(M,M ′)
be the co-emission probability of M and M ′. We define the similarity between
M1 and M2 as

S1(M1,M2) = cos (Dangle(M1,M2))

= A(M1,M2)
/√

A(M1,M1)A(M2,M2)

and
S2(M1,M2) = 2A(M1,M2) /(A(M1,M1) +A(M2,M2)) .

One can easily prove that these two similarity measures possess the following
nice properties.

1. 0 ≤ Si(M1,M2) ≤ 1.

2. Si(M1,M2) = 1 if and only if ∀s ∈ Σ∗ : PM1(s) = PM2(s).

3. Si(M1,M2) = 0 if and only if ∀s ∈ Σ∗ : PMi(s) > 0⇒ PM3−i(s) = 0, that
is, there are no sequences that can be generated by both M1 and M2.

The only things that might not be immediately clear are that S2 satisfies prop-
erties 1 and 2. This however follows from

A(M1,M1) +A(M2,M2)− 2A(M1,M2) =
∑
s∈Σ∗

(PM1(s)− PM2(s))
2, (6.16)

cf. equation 6.15, wherefore 2A(M1,M2) ≤ A(M1,M1)+A(M2,M2), and equal-
ity only holds if for all sequences their probabilities in the two models are equal.
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6.5 Other types of hidden Markov models

Profile hidden Markov models are not by far the only type of hidden Markov
models used in computational biology. Other types of hidden Markov models
have been constructed for e.g. gene prediction [79] and recognition of trans-
membrane proteins [134].We observe that the properties of the metrics and
similarity measures introduced in the previous section do not depend on the
structure of the underlying models, so once we can compute the co-emission
probability of two models, we can also compute the distance between and simi-
larity of the two models. The question thus is, can our method be extended to
compute the co-emission probability for other types of hidden Markov models
too?

The first thing one can observe, is that the only feature of the underlying
structure of profile hidden Markov models we use, is that they are left-right
models, i.e. we can number the states such that if there is a transition from
state i to state j then i ≤ j (if the inequality is strict, that is i < j, then we do
not even need the geometric sequence calculation, and the calculation of the co-
emission probability reduces to a calculation similar to the forward/backward
calculations [35, Chapter 3]). For all left-right hidden Markov models, e.g. pro-
file hidden Markov models extended with free insertion modules [15, 69], we
can thus use recursions similar to those specified in section 6.3 to compute the
co-emission probability.

With some work the method can even be extended to all hidden Markov
models where each state is part of at most one cycle, even if this cycle consists
of more than the one state of the self-loop case. We will denote such models as
hidden Markov models with only simple cycles. This extension can be useful
when comparing models of coding DNA, that will often contain cycles with three
states, or models describing a variable number of small domains. For general
hidden Markov models we will have to resort to approximating the co-emission
probability. In the rest of this section we will describe these two generalisations.

6.5.1 Hidden Markov models with only simple cycles

Assume that we can split M and M ′ into a number of disjoint cycles and single
states, {Ci}i≤k and {C ′

i}i≤k′ , such that {Ci} and {C ′
i} are topologically sorted,

i.e. for p ∈ Ci (p′ ∈ C ′
i) and q ∈ Cj (q′ ∈ C ′

j) and i < j there is no path from q
to p in M (from q′ to p′ in M ′). To compute the co-emission probability of M
and M ′, we will go from considering pairs of single states to considering pairs
of cycles, i.e. we look at all states in a cycle at the same time.

Let Ci and C ′
i′ be cycles2 in M and M ′ respectively. Assume that we have

already computed the co-emission probability, A(q, q′), for all pairs of states,
q, q′, where q ∈ Cj , q′ ∈ C ′

j′ , j ≤ i, j′ ≤ i′ and (i, i′) 6= (j, j′). We will now
describe how to compute the co-emission probability, A(p, p′), for all pairs of
states, p, p′, with p ∈ Ci and p′ ∈ C ′

i′ .

2If Ci or C′
i′ is not a cycle but a single state, the calculations of the co-emission probabilities

pertaining to pairs of states from Ci and C′
i′ trivialises to calculations similar to equation 6.17

below.

115



As with the profile hidden Markov models, cf. section 6.3, we will proceed in
a step by step fashion. We start by restricting the types of paths we consider,
to get some intermediate results; we then expand the types of paths allowed,
using the intermediate results, until we have covered all possible paths.

The first types of paths we consider are paths, π and π′, generating identical
sequences that ends in p and p′, but where the immediate predecessor of p on
π is not in Ci, or the immediate predecessor of p′ on π′ is not in C ′

i′ . We will
denote the co-emission probability at p, p′ of paths of this type as Ae(p, p′), as
it covers the co-emission probability of paths entering the pair of cycles, Ci, C

′
i′ ,

at p, p′; it can easily be computed as

Ae(q, q′) =
∑

r→q,r′→q′
(r, r′) 6∈ Ci × C′

i′

Pr(q)Pr′(q′)A(r, r′)
∑
σ∈Σ

Pq(σ)Pq′(σ), (6.17)

where r → q (r′ → q′) denotes that there is a transition from r to q in M (from
r′ to q′ in M ′). Here we assume that both q and q′ are non-silent states; if both
are silent, the sum over all symbols factor,

∑
σ∈Σ Pq(σ)Pq′(σ) (the probability

that q and q′ generates identical symbols), should be omitted, and if one is silent
and the other non-silent, the sum should furthermore only be over non-Ci (or
non-C ′

i′) predecessors of the silent state.
Before we proceed further, we will need some definitions that allow us to

talk about predecessors of states and predecessors of pairs of states in Ci, C
′
i′ ,

and some related probabilities.

Definition 12 Let q ∈ Ci (q′ ∈ C ′
i′). The predecessor of q in Ci (q′ in C ′

i′) is
the unique state r ∈ Ci (r′ ∈ C ′

i′) for which there is a transition from r to q
(from r′ to q′).

The uniqueness of the predecessor follows from the requirement that the models
only have simple cycles. For predecessors of pairs of states things are a little bit
more complicated, as we want the predecessor of a pair to be the unique pair
from which we can come, generating the same number of symbols (zero or one)
using one transition in one or both models. This is captured by definition 13.

Definition 13 Let q ∈ Ci and q′ ∈ C ′
i′. The predecessor of q, q′ in Ci, C

′
i′ , pre(q, q′),

is the pair of states r, r′ where

• if q is silent or q′ is non-silent, then r is the predecessor of q; otherwise
r = q.

• if q′ is silent or q is non-silent, then r′ is the predecessor of q′; otherwise
r′ = q′.

By this definition the predecessor of a pair of states, q, q′, is the pair of predeces-
sors of q and q′ if both states are silent or both states are non-silent states. If q
is a non-silent state and q′ is a silent state then the predecessor of q, q′ is the pair
consisting of q and the predecessor of q′. Note that though any pair of states
has a unique predecessor, the same pair of states can be the predecessor of more
than one pair of states. Hence, the structure of the predecessor relationships
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for pair of states will consist of a number of independent cycles with tree-like
(i.e. acyclic) structures branching off at some nodes in the cycles, cf. figure 6.3.
Once we have computed the co-emission probability for all pairs of states in
one of these cycles, it is easy to compute the co-emission probabilities at the
pairs of states in the attached tree-like structures as these computations do not
involve cyclic dependencies. Therefore we will only consider the pairs of states
in the cycles in the following.

We will use Ppre(q,q′)(q, q′) to denote the probability of getting from r, r′ =
pre(q, q′) to q, q′ generating identical symbols. If q and q′ are both non-silent,
then Pr,r′(q, q′) = Pr(q)Pr′(q′)

∑
σ∈Σ Pq(σ)Pq′(σ); if one or both are silent,

the sum over all symbols factor,
∑

σ∈Σ Pq(σ)Pq′(σ), should be omitted, and
if only q (q′) is silent, the Pr′(q′) factor (Pr(q) factor) should furthermore be
omitted as r′ = q′ (as r = q).

More generally we will use Pr,r′(q, q′), where q, r ∈ Ci and q′, r′ ∈ C ′
i′ , to de-

note the probability of getting from q, q′ to r, r′ generating identical sequences
without cycling, i.e. by just starting in q, q′ and backtracking through predeces-
sors until we reach r, r′ the first time. We resolve the ambiguity of the meaning
of Pq,q′(q, q′) by setting Pq,q′(q, q′) = 1. To ease notation in the following, we
furthermore define P ′

r,r′(q, q
′) = Ppre(q,q′)(q, q′)Pr,r′(pre(q, q′)). The probability

P ′
q,q′(q, q

′) is thus the probability of going through one full cycle of predeces-
sors to q, q′ until we are back at q, q′; for all r, r′ 6= q, q′ one observes that
P ′

q,q′(r, r
′) = Pq,q′(r, r′).

We are now ready to compute the probability of getting simultaneously to
p and p′ having generated identical sequences, without having been simultane-
ously in p and p′ previously on the paths. This is

A0(p, p′) =
∑

q, q′ belongs to the
same cycle of pairs as p, p′

Ae(q, q′)Pq,q′(p, p′) (6.18)

as we sum over all possible pairs, q, q′, where paths ending in p, p′ can have
entered Ci, C

′
i′ . It is similar to A0(p, p′) for profile hidden Markov models in the

sense, that it is the probability of reaching p and p′ having generated identical
sequences without having looped through p, p′ previously.

To compute the A0 entries efficiently for all pairs of states in a cycle of
pairs, we exploit the fact that Ppre(q,q′)(p, p′) = Ppre(q,q′)(q, q′)Pq,q′(p, p′) (for
pre(q, q′) 6= p, p′); we can thus compute A0(p, p′) in an incremental way, starting
at the pair of states on the cycle having p, p′ as predecessor and working our
way through the cycle of pairs of states, adding the Ae values and multiplying
by the probability of getting to the next successor, until we get back to p, p′.
Furthermore, as

A0(pre(p, p′))Ppre(p,p′)(p, p
′) +Ae(p, p′)

=
∑

q, q′ belongs to the
same cycle of pairs as p, p′

Ae(q, q′)Pq,q′(pre(p, p′))Ppre(p,p′)(p, p
′)

+Ae(p, p′)P ′
p,p′(p, p

′)

= A0(p, p′) +Ae(p, p′)P ′
p,p′(p, p

′)

(6.19)
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(b) The structure of predecessor relations be-

tween pairs of states from Ci and C′
i′ . There

is an edge from one pair of states to another
pair of states if the first pair of states is a
predecessor of the second pair of states.

Figure 6.3: An example of a pair of cycles in M and M ′ and the induced
predecessor structures for pairs of states from the two cycles. A path, π, ending
in q2 in Ci and a path, π′, ending in q′2 in C ′

i′ are shown with zigzagged lines. If
we assume that the two paths generate identical sequences, then the co-emission
path, π, π′, ends in q2, q′2 in Ci, C

′
i′ . Though π′ enters C ′

i′ at q′4, the co-emission
path, π, π′, enters Ci, C

′
i′ at q0, q′0, as the first symbol in the sequence generated

by π and π′ that is generated by states in both Ci and C ′
i′ , the second last

symbol of the sequence, is generated by q0 and q′0 respectively.
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Algorithm 6 Computation of the co-emission probabilities at all pairs of states
that are in the same cycle of pairs as p, p′.
q, q′ = p, p′

AccumulatedP = Ae(p, p′)
r = 1

while q, q′ 6= pre(p, p′) do
Set q, q′ to the pair of states on the cycle of pairs having the current q, q′

pair as predecessor
AccumulatedP = AccumulatedP · Ppre(q,q′)(q, q′) +Ae(q, q′)
r = r · Ppre(q,q′)(q, q′)

r = r · Pq,q′(p, p′)

repeat /* AccumulatedP = A0(q, q′) and r = P ′
q,q′(q, q

′) */
A(q, q′) = AccumulatedP · 1

1−r
Set q, q′ to the pair of states on the cycle of pairs having the current q, q′

pair as predecessor
AccumulatedP = AccumulatedP · Ppre(q,q′)(q, q′) + (1− r) ·Ae(q, q′)

until q, q′ = pre(p, p′)

we do not need to start from scratch when computing A0 for the other pairs that
belong to the same cycle of pairs as p, p′ – which would require time proportional
to the square of the number of pairs in the cycle – but can reuse A0(pre(p, p′))
to compute A0(p, p′) in constant time. Finally we observe that

A(p, p′) =
∞∑
i=0

P ′
p,p′(p, p

′)iA0(p, p′) =
1

1− P ′
p,p′(p, p

′)
A0(p, p′) (6.20)

and
P ′

p,p′(p, p
′) = P ′

q,q′(q, q
′) (6.21)

for all q, q′ that belong to the same cycle of pairs as p, p′. This allows us to
formulate algorithm 6 for computing the co-emission probability at all pairs in
a cycle.

It is an easy observation that we run through all pairs of the cycle of pairs
twice – once in the while-loop and once in the repeat-loop – thus using time
proportional to the number of pairs in the cycle to compute the co-emission
probabilities at each pair. Therefore, the overall time for handling the entries
pertaining to the pair of cycles, Ci, C

′
i′ , is O(|Ci||C ′

i′ |) once we have computed
the Ae entries; thus the time used to compute the co-emission probability of two
hidden Markov models with only simple cycles is proportional to the product
of the number of transitions in the two models. This is comparable to the
complexity of O(n1n2) for profile hidden Markov models, as this result relied
on there only being a constant number of transitions to each state. In general
we can compute the co-emission probability of two hidden Markov models, M1

and M2, with only simple cycles – including left-right hidden Markov models –
in time O(m1m2), where mi denotes the number of transitions in Mi.
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6.5.2 General hidden Markov models

For more complex hidden Markov models, let us examine what is obtained by
iterating the calculations. Let A′

i(q, q
′) be the value computed for entry (q, q′)

in the i’th iteration. If we assume that q and q′ are either both silent or both
non-silent states, then we can compute the new entry for (q, q′) as

A′
i+1(q, q

′) = p
∑
r→q
r′→q′

A′
i(r, r

′)Pr(q)Pr′(q′), (6.22)

where p is as defined in equation 6.4 if q and q′ are non-silent states, and is 1 if q
and q′ are silent states. If q and q′ are of different types, the summation should
only be over the predecessors of the silent state as in equation 6.3. In each
iteration we thus extend co-emission paths with one pair of states, and A′

i(q, q
′)

is the probability of getting to q, q′ having generated identical sequences on a
co-emission path of length i.

The resemblance of this iterated computation to the previous calculation of
Ai is evident, but a well-known mathematical sequence is not easily recognisable
in equation 6.22. We can observe, though, that if we can find an array A′ with
A′(s, s′) = 1 that for all entries is a fixed point (i.e. no entry changes if we
recompute it using equation 6.22), it will provide us with a solution to the
problem of determining the co-emission probability. This fixed point can be
determined by solving the set of linear equations induced by equation 6.22.

Solving this set of linear equations might be too time consuming in many
cases. Furthermore, in most cases a good estimate of the co-emission probability
will be sufficient. It is thus of interest to examine how fast we can assume the
iterated computation to converge. We observe that A′

i(q, q
′) holds the prob-

ability of being in states q and q′ and having generated identical prefixes in
the two models after i iterations. If we assume that the only transitions from
the end-states are self-loops with probability 1 (this makes the A′

i(e, e
′) entry

accumulate the probabilities of generating identical sequences after at most i
iterations), then

A′
i(e, e

′) ≤ A(M1,M2) ≤
∑

q∈M1, q′∈M2

A′
i(q, q

′) (6.23)

where A(M1,M2) is the true co-emission probability ofM1 andM2. This follows
from the fact, that to generate identical sequences we must either already have
done so, or at least have generated identical prefixes so far.

Now assume that for any two states, we can choose transitions to non-silent
states (or the end-states) and emit different symbols with probability at least
1 − c where c < 1. Then the total weight with which A′

i(q, q
′) contributes to

the entries – not counting the special (e, e′) entry – of A′
i+1 is at most c. Thus

∑
q∈M1, q′∈M2

(q,q′)6=(e,e′)

A′
i+1(q, q

′) ≤ c
∑

q∈M1, q′∈M2

(q,q′)6=(e,e′)

A′
i(q, q

′) (6.24)
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and by induction we get∑
q∈M1, q′∈M2

A′
i(q, q

′)−A′
i(e, e

′) =
∑

q∈M1, q′∈M2

(q,q′)6=(e,e′)

A′
i(q, q

′) ≤ ci, (6.25)

which shows that the iteration method approximates the co-emission probability
exponentially fast.

Though our assumption about the non-zero probability of choosing transi-
tions and emissions such that we generate different symbols in the two models is
valid for most, if not all, hidden Markov models used in practice, it is not even
necessary. If d is the minimum number of paired transitions we have to follow
from q and q′ to get to the end-states3 or states where we can emit different
symbols after having generated identical prefixes, and c′ is the probability of
staying on this path and emit different symbols, we still get the exponential
approximation of equation 6.25 with c = (c′)1/d. By these arguments we can
approximate the co-emission probabilities and thus the metrics and similarity
measures presented in section 6.4 of arbitrary hidden Markov models exponen-
tially fast.

6.6 Results

We have implemented the method described in the previous sections for com-
puting the co-emission probabilities of two left-right models. The program,
which is currently available at www.brics.dk/∼cstorm/hmmcomp, furthermore
computes the derived measures. The program was used to test the four mea-
sures in a comparison of hidden Markov models for three classes of secretory
signal peptides – cleavable N-terminal sequences which target secretory proteins
for translocation over a membrane.

Signal peptides do not have a well-defined consensus motif, but they do share
a common structure: an N-terminal region with a positive charge, a stretch of
hydrophobic residues, and a region of more polar regions containing the cleavage
site, where two positions are partially conserved [148]. There are statistical
differences between prokaryotic and eukaryotic signal peptides concerning the
length and composition of these regions [149, 110], but the distributions overlap,
and in some cases, eukaryotic and prokaryotic signal peptides are found to be
functionally interchangeable [16].

The hidden Markov model used here is not a profile HMM, since signal
peptides of different proteins are not necessarily related, and therefore do not
constitute a sequence family that can be aligned in a meaningful way. Instead,
the signal peptide model is composed of three region models, each having a
characteristic amino acid composition and length distribution, plus seven states
modelling the cleavage site – see Nielsen and Krogh [111] for a detailed descrip-
tion. A combined model with three branches was used to distinguish between

3The end-states ensures that d exists – if we can not get to e and e′, then we can not pass
through q and q′ and generate identical sequences. Therefore we may just as well ignore the
(q, q′) entry.
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Figure 6.4: Plots of the results obtained with the different measures. Models
1 through 5 are the models trained on eukaryotic sequences, models 6 through
10 are the models trained on Gram-positive bacterial sequences, and models
11 through 15 are the models trained on Gram-negative bacterial sequences.
This gives 9 blocks, each of 25 entries, of different pairs of groups of organisms
compared, but as all the measures are symmetric we have left out half the
blocks showing comparisons between different groups of organisms. This should
increase clarity, as no parts of the plots are hidden behind peaks.

signal peptides, signal anchors (a subset of transmembrane proteins), and non-
secretory proteins; but only the part modelling the signal peptide plus the first
few positions after the cleavage site has been used in the comparisons reported
here.

The same architecture was used to train models of three different signal pep-
tide data sets: eukaryotes, Gram-negative bacteria (with a double membrane),
and Gram-positive bacteria (with a single membrane). For cross-validation
of the predictive performance, each model was trained on five different train-
ing/test set partitions, with each training set comprising 80% of the data – i.e.,
any two training sets have 75% of the sequences in common.

The comparisons of the models are shown in figures 6.4 and 6.5. In general,
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Euk Gpos Gneg

Euk 0.231 1.56 1.52
Gpos 0.864 1.47
Gneg 0.461

(a) Table of Dangle values

Euk Gpos Gneg

Euk 6.77 · 10−11 2.56 · 10−10 2.67 · 10−10

Gpos 1.95 · 10−11 9.09 · 10−11

Gneg 4.43 · 10−11

(b) Table of Ddiff values

Euk Gpos Gneg

Euk 0.967
Gpos 1.06 · 10−2 0.547
Gneg 4.74 · 10−2 0.102 0.866

(c) Table of S1 values

Euk Gpos Gneg

Euk 0.955
Gpos 1.78 · 10−3 0.511
Gneg 2.93 · 10−2 4.78 · 10−2 0.839

(d) Table of S2 values

Figure 6.5: Tables of the average values of each block plotted in figure 6.4. The
empty entries corresponds to the blocks left out in the plots.

models trained on cross-validation sets of the same group are more similar than
models trained on data from different groups, and the two groups of bacteria
are more similar to one another than to the eukaryotes. However, there are
some remarkable differences between the measures. According to Ddiff, the two
bacterial groups are almost as similar as the cross-validation sets, but according
to Dangle and the similarity measures, they are almost as dissimilar as the
bacterial/eukaryotic comparisons.

This difference actually reflects the problem with theDdiff measure discussed
in section 6.4. The distribution of sequences for models trained on eukaryotic
data are longer in the vector interpretation, i.e. the probabilities are more con-
centrated, than the distributions for models trained on bacterial data. What we
mainly see in the Ddiff values for bacterial/eukaryotic comparisons is thus the
length of the eukaryotic models. This reflects two properties of eukaryotic signal
peptides: they have a more biased amino acid composition in the hydrophobic
region that comprises a large part of the signal peptide sequence; and they are
actually shorter than their bacterial counterparts, thus raising the probability
of the most probable sequences generated by this model.

Dangle also shows that the differences within groups are larger in the Gram-
positive group than in the others. This may simply reflect the smaller sample
size in this group (172 sequences vs. 356 for the Gram-negative bacteria and
1137 for the eukaryotes).

The values of Dangle in between-group comparisons are quite close to the
maximal π/2. Thus the distributions over sequences for models of different
groups are close to being orthogonal. This might seem surprising in the light
of the reported examples of functionally interchangeable signal peptides; but
it does not mean that no sequences can be generated by both eukaryotic and
bacterial models, only that these sequences have low probabilities compared to
those that are unique for one group. In other words: if a random sequence is
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generated from one of these models, it may with a high probability be identified
which group of organisms it belongs to.

6.7 Discussion

Recall that the co-emission probability is defined as the probability that two
hidden Markov models, M1 and M2, generate completely identical sequences,
i.e. as

∑
s1,s2∈Σ PM1(s1)PM2(s2) where s1 = s2. One problem with the co-

emission probability – and measures based on it – is that it can be desirable
to allow sequences to be slightly different. One might thus want to loosen the
restriction of “s1 = s2” to, e.g., “s1 is a substring (or subsequence) of s2,” or
even “|s1| = |s2|” ignoring the symbols of the sequences and just comparing the
length distributions of the two models.

Another approach is to take the view that the two hidden Markov models do
not generate independent sequences, but instead generates alignments with two
sequences. Inspecting the equations for computing the co-emission probability,
one observes that we require that when one model emits a symbol the other
model should emit an identical symbol. This corresponds to only allowing
columns with identical symbols in the produced alignments. A less restrictive
approach would be to allow other types of columns, i.e. columns with two
different symbols or a symbol in only one of the sequences, and weighting a
column according to the difference it expresses. The modifications proposed in
the previous paragraph can actually be considered special cases of this approach.
Our method for computing the co-emission probability can easily be modified
to encompass these types of modifications.

Acknowledgements

This work was inspired by a talk by Xiaobing Shi on his work with David States
on aligning profile hidden Markov models. The authors would like to thank Bjarne
Knudsen and Jotun Hein for their valuable suggestions. Finally we would like to
thank Anders Krogh for his help with the software used to train and parse the models.
Christian N. S. Pedersen and Henrik Nielsen are supported by the Danish National
Research Foundation.

124



Chapter 7

Prediction of RNA secondary structure

It shut like a box.
—Terence Hanbury White, The Once and Future King

This paper describes a method for efficiently evaluating internal loops in RNA
secondary structure prediction. The method is used to investigate the soundness
of a commonly used heuristic. The results were presented at the Third Annual
International Conference on Computational Molecular Biology and a short ver-
sion of the paper, not describing the application to calculating partition func-
tions and the timing experiments comparing the method to the commonly used
method, is published in the proceedings of this conference [95]. Another short
version, not describing the investigation of the heuristic, has been published in
Bioinformatics [93], and the full version has been published as a technical report
in the BRICS report series [94]. The method has been implemented and source
code is available at http://www.daimi.au.dk/∼rlyngsoe/zuker/index.html.
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An improved algorithm for
RNA secondary structure prediction

Rune B. Lyngsø∗ Michael Zuker† C. N. S. Pedersen‡

Abstract

Though not as abundant in known biological processes as proteins, RNA
molecules serve as more than mere intermediaries between DNA and pro-
teins, e.g. as catalytic molecules. Furthermore, RNA secondary structure
prediction based on free energy rules for stacking and loop formation re-
mains one of the few major breakthroughs in the field of structure pre-
diction. We present a new method to evaluate all possible internal loops
of size at most k in an RNA sequence, s, in time O(k|s|2); this is an
improvement from the previously used method that uses time O(k2|s|2).
For unlimited loop size this improves the overall complexity of evaluating
RNA secondary structures from O(|s|4) to O(|s|3) and the method applies
equally well to finding the optimal structure and calculating the equilib-
rium partition function. We use our method to examine the soundness of
setting k = 30, a commonly used heuristic.

7.1 Introduction

Structure prediction remains one of the most compelling, yet elusive areas of
computational biology. Not yielding to overwhelming numbers and resources
this area still poses a lot of interesting questions for future research. For RNA,
if one restricts attention to the prediction of unknotted secondary structures,
much progress has been achieved. Dynamic programming algorithms combined
with the nearest neighbour model and experimentally determined free energy
parameters give rigorous solutions to the problems of computing minimum free
energy structures, structures that are usually close to real world optimal fold-
ings, and partition functions that yield exact base pair probabilities.

Secondary structure in RNA is the list of base pairs that occur in a three
dimensional RNA structure. According to the theory of thermodynamics the
optimal foldings of an RNA sequence are those of minimum free energy, and
thus the native foldings, i.e. the foldings encountered in the real world, should
correspond to the optimal foldings. Furthermore, thermodynamics tells us that
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rlyngsoe@daimi.au.dk. Work done in part while visiting the Institute for Biomedical Com-
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the folding of an RNA sequence in the real world is actually a probability distri-
bution over all possible structures, where the probability of a specific structure
is proportional to an exponential of the free energy of the structure. For a set
of structures, the partition function is the sum over all structures of the set of
the exponentials of the free energies.

Information on the secondary structure of an RNA molecule can be used as
a stepping-stone to modelling the full structure of the molecule, which in turn
relates to the biological function. As recent experiments have shown that RNA
molecules can undertake a wide range of different functions [66], the prediction
of RNA secondary structure should continue to be important for biomolecule
engineering.

A model was proposed in [142, 141] to calculate the stability (in terms of
free energy) of a folded RNA molecule by adding independent contributions
from base pair stacking and loop destabilising terms from the secondary struc-
ture. This model has proven a good approximation of the forces governing
RNA structure formation, thus allowing fair predictions of real structures by
determining the most stable structures in the model of a given sequence.

Based on this model, algorithms for computing the most stable structures
have been proposed e.g. in [167, 112]. Zuker [164] proposes a method to deter-
mine all base pairs that can participate in structures with a free energy within
a specified range from the optimal. McCaskill [101] demonstrates how a related
dynamic programming algorithm can be used to calculate equilibrium parti-
tion functions, which lead to exact calculations of base pair probabilities in the
model.

A major problem for these algorithms is the time required to evaluate pos-
sible internal loops. In general, this requires time O(|s|4) which is often circum-
vented by assuming that only ‘small’ loops need to be considered (e.g. [101]).
This risks missing some optimal large internal loops, especially when folding at
high temperatures, but the time required for evaluating internal loops is reduced
to O(|s|2) thus reducing the overall complexity to O(|s|3). If the stability of an
internal loop can be assumed only to depend on the size of the internal loop,
Waterman et. al. [153] describes how to reduce the time requirement to O(|s|3)1.
This is further improved to O(|s|2 log2 |s|) for convex free energy functions by
Eppstein et.al. [39]. Affine free energy functions (i.e. of the form a+ bn, where
n is the size of the loop) allows for O(|s|2) computation time by borrowing a
simple method used in sequence alignment [46].

Unfortunately the currently used free energy functions for internal loops
are not convex, let alone affine. Furthermore, the technique described in [39]
hinges on the objective being to find a structure of maximum stability, and thus
does not translate to the calculation of the partition function of [101] where a
Boltzmann weighted sum of contributions to the partition function is calculated.

In this paper we will describe a method based on a property of current free
energy functions for internal loops that allows all internal loops to be evaluated

1This method is also referred to by [101] where a combination of the above methods is
proposed – a free energy function only dependent on loop size is used for large loops, while
small loops are treated specially.
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in time O(|s|3). This method is applicable both to determining the most stable
structure and to calculating the partition function.

The rest of this paper is structured as follows. In section 7.2 we briefly
review the basic dynamic programming algorithm for RNA secondary struc-
ture prediction and introduce the notation we will be using. In section 7.3 we
present a method yielding cubic time algorithms for evaluating internal loops
for certain free energy functions. We argue that this method can be used with
currently used free energy functions in section 7.3.2, and describe how the same
technique can be used to calculate the contributions to the partition function
from structures with internal loops in section 7.3.3. In section 7.4 we com-
pare our method to the previously used method, and in section 7.5 we present
an experiment using the new algorithm to analyse a hitherto commonly used
heuristic. In section 7.6 we discuss some future directions for improvements.

7.2 Basic dynamic programming algorithm

A secondary structure of an RNA sequence s is a set S of base pairs i · j with
1 ≤ i < j ≤ |s|, such that ∀i · j, i′ · j′ ∈ S : i = i′ ⇔ j = j′. Thus, any base can
take part in at most one base pair. We will further assume that the structure
does not contain pseudo-knots. A pseudo-knot is two “overlapping” base pairs,
that is, base pairs i · j and i′ · j′ with i < i′ < j < j′.

One can view a pseudo-knot free secondary structure S as a collection of
loops together with some external unpaired bases (see figure 7.1). Let i < k < j
with i ·j ∈ S. Then k is said to be accessible from i ·j if for all i′ ·j′ ∈ S it is not
the case that i < i′ < k < j′ < j. The base pair i · j is said to be the exterior
base pair of (or closing) the loop consisting of i · j and all bases accessible from
it. If i′ and j′ are accessible from i ·j and i′ ·j′ ∈ S – observe that for a structure
without pseudo-knots either both or none of i′ and j′ will be accessible from
i · j if i′ · j′ ∈ S – then i′ · j′ is called an interior base pair of the loop and is said
to be accessible from i · j. If there are no interior base pairs the loop is called a
hairpin loop. With one interior base pair it is called a stacked pair if i′ = i+ 1
and j′ = j − 1, and otherwise it is called an internal loop (bulges are a special
kind of internal loops with either i′ = i + 1 or j′ = j − 1). Loops with more
than one interior base pair are called multibranched loops. Unpaired bases and
base pairs not accessible from any base pair are called external.

RNA secondary structure prediction is the problem of determining the most
stable structure for a given sequence. We measure stability in terms of the free
energy of the structure. Thus we want to find a structure of minimal free
energy which we will also call an optimal structure. The energy of a secondary
structure is assumed to be the sum of the energies of the loops of the structure
and furthermore the loops are assumed to be independent, that is, the energy
of a loop only depends on the loop and not on the rest of the structure [141].

Based on these assumptions one can specify a recursion to calculate the
energy of the optimal structure for a sequence s [167, 112]. Before presenting
our improvement to the part of the algorithm dealing with internal loops, we
will briefly review the hitherto used method. We use the same notation as
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Figure 7.1: An example RNA structure. Bases are depicted by circles, the RNA
backbone by straight lines and base pairings by zigzagged lines.

in [143]. Four arrays2 – W , V , VBI and VM – are used to hold the minimal
free energy of certain restricted structures of subsequences of s. The entries
of these arrays are interdependent and can be calculated recursively using pre-
specified free energy functions – eS, eH, eL and eM – for the contributions
from the various types of loops as follows.

• The energy of an optimal structure of the subsequence from 1 through i:

W (i) = min{W (i− 1), min
1<j≤i

{W (j − 1) + V (j, i)}}.

• The energy of an optimal structure of the subsequence from i through j
closed by i · j:

V (i, j) = min{eH(i, j), eS(i, j) + V (i+ 1, j − 1), VBI(i, j), VM(i, j)}

where eH(i, j) is the energy of a hairpin loop closed by i · j and eS(i, j)
is the energy of stacking base pair i · j with i+ 1 · j − 1.

• The energy of an optimal structure of the subsequence from i through j
where i · j closes a bulge or an internal loop:

VBI(i, j) = min
i<i′<j′<j

i′ − i + j − j′ > 2

{eL(i, j, i′, j′) + V (i′, j′)}

where eL(i, j, i′, j′) is the energy of a bulge or internal loop with exterior
base pair i · j and interior base pair i′ · j′.

2Actually two arrays – V and W – suffices, but we will use four arrays to simplify the
description. Below we will introduce a fifth array WM that will also be needed in an efficient
implementation.
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• The energy of an optimal structure of the subsequence from i through j
where i · j closes a multibranched loop:

VM(i, j) = min
i<i1<j1<

···
<ik<jk<j

{eM(i, j, i1 , j1, . . . , ik, jk) +
k∑

l=1

V (il, jl)}

where k > 1 and eM(i, j, i1, j1, . . . , ik, jk) is the energy of a multibranched
loop with exterior base pair i · j and interior base pairs i1 · j1, . . . , ik · jk.

When all entries of these arrays have been filled out, W (|s|) contains the free
energy for optimal structures and an optimal structure can be determined by
backtracking the calculations that led to this free energy.

To make the problem of determining the optimal secondary structure tractable
the following simplifying assumption is often made. The energy of multi-
branched loops can be decomposed into linear contributions from the num-
ber of unpaired bases in the loop, the number of branches in the loop and a
constant [166]3, that is

eM(i, j, i1, j1, . . . , ik, jk) =

a+ bk + c
(
i1 − i− 1 + j − jk − 1 +

k−1∑
l=1

(il+1 − jl − 1)
)
. (7.1)

We introduce an extra array

• The energy of an optimal structure of the subsequence from i through
j that constitutes part of a multibranched loop structure, that is, where
unpaired bases and external base pairs are penalised according to equa-
tion 7.1:

WM(i, j) = min{V (i, j) + b,WM(i, j − 1) + c,WM(i + 1, j) + c,

min
i<k≤j

{WM(i, k − 1) +WM(k, j)}}

which enables us to restate the calculation of the energy of the optimal multi-
branched loop as

VM(i, j) = min
i+1<k≤j−1

{WM(i + 1, k − 1) +WM(k, j − 1) + a}.

Based on these recurrence relations we can by dynamic programming calculate
the energy of the optimal structure in time O(|s|3) – assuming that the free
energy functions can be evaluated in constant time – except for the calculation
of the entries of VBI which requires O(|s|4) in total. The bottleneck of finding
the optimal structures is thus the evaluation of internal loops. In the following
section we will present a method to reduce the time used calculating the entries
of VBI from O(|s|4) to O(|s|3), thereby improving the time complexity of the
overall RNA secondary structure prediction algorithm from O(|s|4) to O(|s|3).

3It is known that the stability of a multibranched loop also depends on the stacking effects
of the base pairs in the loop and their neighbouring unpaired bases. These effects can also be
handled efficiently, but for simplicity we have omitted the details here.
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7.3 Efficient evaluation of internal loops

Examining the recursion for internal loops one observes that two base pairs,
i · j and i′ · j′, may be compared as candidates for the interior base pair for
numerous exterior base pairs. If V (i, j)� V (i′, j′), it is evident that we would
not have to consider i′ · j′ as a candidate interior base pair for any entry of VBI
where i · j would also be a candidate interior base pair.

Though it would often in practice be the case that we could a priori discard
many candidate interior base pairs by the above observation, we can not in
general guarantee this to be the case. To get an improvement in the worst
case performance of the evaluation of internal loops, we thus have to examine
properties of the energy functions for internal loop stability that will allow us
to group base pairs and entries of VBI, such that we only have to make one
comparison between i · j and i′ · j′ to determine which one would yield the more
stable structure for the entire group of entries. In this section we will exploit
such properties of currently used energy functions leading to an algorithm for
evaluating internal loops requiring worst case time O(|s|3).

Currently used energy rules for internal loop stability (cf. [163]) split the
contributions into three parts:

• An entropic term that depends on the size of the loop.

• Stacking energies for the mismatched base pairs adjacent to the enclosing
(exterior and interior) base pairs.

• An asymmetry penalty for asymmetric loops.

With this separation we can rewrite the internal loop energy function as

eL(i, j, i′, j′) = size(i′ − i+ j − j′ − 2)+
stacking(i · j) + stacking(i′ · j′)+
asymmetry(i′ − i− 1, j − j′ − 1).

(7.2)

Figure 7.2 gives a graphical representation of these components of the internal
loop energy function. In the following we will further assume that the lopsided-
ness and the size dependence of the asymmetry function can be separated out,
or more specifically that

asymmetry(k + 1, l + 1) = asymmetry(k, l) + g(k + l) (7.3)

holds. The change of the asymmetry function when varying the size while
maintaining lopsidedness thus only depends on the size of the loop. This is
equivalent to assuming that

asymmetry(k, l) = lopsidedness(|k − l|) + size′(k + l), (7.4)

where one can observe that the g term in equation 7.3 corresponds to changes in
the size′ term in equation 7.4. This size-dependence of the asymmetry function
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Figure 7.2: The energy function for internal loops can be split into a sum of
independent contributions.

can be moved to the size-function of the overall internal loop energy function,
thus allowing us to restate the assumption of equation 7.3 as

asymmetry(k + 1, l + 1) = asymmetry(k, l). (7.5)

In the rest of this paper we will therefore omit the g term, but the formulation
of equation 7.3 might be useful when specifying or recognising an asymmetry
function obeying the assumption.

7.3.1 Finding optimal internal loops

If the assumption of equation 7.3 holds, we propose algorithm 7 as an efficient
alternative to compute the VBI(i, j) entries in the dynamic programming algo-
rithm for predicting RNA secondary structure. The algorithm is an extension
of the ideas in [153] where an O(n3) method for calculating the entries of VBI,
assuming that the stability of an internal loop only depends on the size of the
loop, was presented. The rationale behind the algorithm is, that when we ex-
tend loops while retaining lopsidedness we can reuse comparisons as depicted in
figure 7.3. Thus for a pair of indices, i and j, the algorithm does not compute
the V BI(i, j) entry. Instead, if we denote all internal loops with a specific size
and exterior base pair as a class of internal loops, the algorithm evaluates all
classes of internal loops where i · j is the middle candidate base pair, that is,
choosing i · j as the interior base pair results in a symmetric loop (or almost
symmetric – loops of odd size will always have a lopsidedness of at least one).

Proposition 3 Algorithm 7 computes VBI correctly under the assumption of
equation 7.3. Furthermore, the time required to compute the entire table is O(n3).

The time complexity of O(n3) is easy to see, since the algorithm for each of
the O(n2) pairs of indices, i and j, uses time O(n). To prove the correctness
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Figure 7.3: The difference in destabilising energy when extending a loop from
being closed by i · j to being closed by i− 1 · j + 1 is determined solely by the
size of the loop and the change in stacking stability of the closing base pair.
We can thus reuse comparisons between different choices of interior base pairs,
e.g. i′ · j′ and i′′ · j′′.

of the algorithm, we will start by sketching a simpler algorithm for which the
correctness is obvious, but that has the drawback of using space O(n3). Then
we will argue that algorithm 7 is similar to this algorithm except for the order in
which the computations are carried out, that is, the order in which the different
candidate interior loops for a specific entry of VBI are evaluated. Hence, the
correctness of the simpler algorithm implies the correctness of algorithm 7.

We define a new array VBI ′ such that VBI ′(i, j, l) is the minimal energy
of an internal loop of size l with exterior base pair i · j. The following lemma
establishes a useful relationship between the entries of VBI ′.

Lemma 10 If equation 7.3 holds, then for l > 2

VBI ′(i, j, l) = min




VBI ′(i+ 1, j − 1, l − 2)+
size(l)− size(l − 2)+
stacking(i · j)− stacking(i+ 1 · j − 1)

V (i+ 1, j − l − 1) + eL(i, j, i + 1, j − l − 1)
V (i+ l + 1, j − 1) + eL(i, j, i + l + 1, j − 1).

(7.6)

Proof. By definition

VBI ′(i, j, l) = min
i<i′<j′<j

i′ − i + j − j′ − 2 = l

{eL(i, j, i′ , j′) + V (i′, j′)}. (7.7)
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The last two entries of equation 7.6 handle the cases where this minimum is
obtained by a bulge, that is at i′ = i+ 1 or j′ = j− 1. Otherwise the minimum
is the minimum over

eL(i, j, i′, j′) + V (i′, j′)
= size(l) + asymmetry(i′ − i− 1, j − j′ − 1)

+ stacking(i · j) + stacking(i′ · j′) + V (i′, j′)
= size(l) + asymmetry(i′ − i− 2, j − j′ − 2)

+ stacking(i · j) + stacking(i′ · j′) + V (i′, j′)
= size(l − 2) + asymmetry(i′ − i− 2, j − j′ − 2)

+ stacking(i+ 1 · j − 1) + stacking(i′ · j′) + V (i′, j′)
+ size(l)− size(l − 2)
+ stacking(i · j)− stacking(i+ 1 · j − 1)

for all i′ < j′ with i′ > i+ 1, j′ < j− 1 and i′− (i+ 1)+ (j − 1)− j′− 2 = l− 2.
The last two lines of the last equation are independent of i′ and j′, and can
thus be moved out of the minimum. The minimum of the first two lines over i′

and j′ satisfying the above constraints is exactly VBI ′(i + 1, j − 1, l − 2), thus
proving the lemma. 2

Lemma 10 yields the basic recursion needed to compute each entry of VBI ′

in constant time4. It is easily observed that VBI ′ contains O(n3) entries and
that VBI can be calculated from VBI ′ as

VBI(i, j) = min
l
{VBI ′(i, j, l)}, (7.8)

each of the O(n2) entries being computable in time O(n). Thus VBI can be
computed in time O(n3) including the time used to compute VBI ′. Unfortu-
nately the table VBI ′ requires space O(n3), thus rendering this method some-
what impractical. However, it can be observed that we only need VBI ′(i, j, l)
at most twice, namely when

• determining whether it is a candidate for VBI(i, j).

• calculating the value of VBI ′(i− 1, j + 1, l + 2).

This is used in algorithm 7 to avoid maintaining the VBI ′ table. Instead we
use E to hold the value5 that should otherwise be stored in one of the entries of
VBI ′. We use this value to check it as a candidate for the relevant entry of VBI,
according to equation 7.8, in the second minimum of the for-loop in algorithm 7.
After this check we only need the value to calculate the value corresponding to
another entry of VBI ′; this is done in the first minimum in the next iteration of
the for-loop. Now the value can safely be discarded as it is no longer needed.

4This is of course assuming that entries of V are ready at hand when we need them. The
cost of computing the entries of V can however be charged to V , and thus we don’t have to
consider it here.

5To avoid having to keep adding and subtracting the size and external stacking terms in
algorithm 7 we defer adding these terms until the value is considered as a candidate for one
of the VBI entries.
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Algorithm 7 Evaluation of classes of internal loops with size 2l+a and exterior
base pair i− l · j + l + a.

/* When a = 0 loops of even size are handled and when a = 1 loops of odd
size are handled; this is necessary as we increase the loop size by two in each
iteration. */
for a = 0 to 1 do

/* E maintains the energy of the optimal loop except for size and external
stacking contributions. */
E =∞
/* Iterate through the exterior base pairs. For even sized loops we skip
l = 1 as this yields a stacked base pair. */
for l = 2− a to min{i− 1, |s| − j − a} do

/* Examine the two new candidate interior base pairs, i.e. the interior
base pairs next to the currently considered exterior base pair. */
E = min{E, V (i− l + 1, j − l + 1)+

asymmetry(0, 2l + a− 2)+
stacking(i− l + 1, j − l + 1),

V (i+ a+ l − 1, j + a+ l − 1)+
asymmetry(2l + a− 2, 0)+
stacking(i+ a+ l − 1, j + a+ l − 1)}

/* Update VBI for the currently considered exterior base pair. */
VBI(i− l, j + a+ l) = min{VBI(i− l, j + a+ l),

E + size(2l + a− 2) + stacking(i− l, j + a+ l)}
end for

end for

It is straightforward to verify that the value that should otherwise have been
stored in VBI ′(i′, j′, l) is handled when algorithm 7 is invoked with i = i′ + b l

2c
and j = j′ − d l

2e. The correctness of the value maintained in E can easily be
proved by induction, using lemma 10.

7.3.2 The Asymmetry Function Assumption

The assumption of equation 7.3 might seem somewhat unrealistic as, for one
thing, we treat bulges just as if they were normal internal loops. If equation 7.3
only holds for min(k, l) ≥ c− 1 we can however modify the algorithm to handle
this situation, a modification that does lead to an increase in time complexity
by a factor of c, for a total time complexity of O(cn3).

This is done simply by examining all the O(cn3) loops with a stem of un-
paired bases shorter than c separately, and then applying the technique of
extending loops while retaining lopsidedness to the rest of the loops, starting
the iteration at l = c and adding or subtracting c − 1 from the indices of the
interior base pairs considered, including where they partake in the parameters
of the asymmetry function. Thus bulges can be treated specially while only
doubling the time complexity.

Papanicolaou et. al. [114] propose an asymmetry penalty function on the
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form

asymmetry(k, l) = min{K,Nk,lf(Mk,l)}, (7.9)

usually called Ninio type asymmetry penalty functions, with Nk,l = |k − l|
and Mk,l = min{k, l, c}. The constants K and c and the function f are pa-
rameters of the penalty function. We observe that Nk+1,l+1 = Nk,l and that
Mk+1,l+1 = Mk,l if min{k, l} ≥ c. For min{k, l} ≥ c it thus follows that
asymmetry(k + 1, l + 1) = asymmetry(k, l), and thus asymmetry functions on
this form adheres to the above relaxed assumption, allowing us to solve the RNA
secondary structure prediction problem using Ninio type asymmetry penalty
functions in time O(cn3). In [114] an asymmetry function with c = 5 was pro-
posed. A modification of the parameters based on thermodynamic studies was
proposed in [120]. With these parameters c = 1 thus allowing us to treat only
bulges specially6.

7.3.3 Computing the partition function

In [101] it is described how to compute the full equilibrium partition functions
and thus the probabilities of all base pairs. The method used closely mimics
the free energy calculation described above, and thus it should be of no surprise
that the method presented in this paper also applies to the calculation of the
partition functions. In this section we will briefly sketch how to compute the
internal loops’ contribution to the partition functions. The reader is refered
to [101] for the full details on how to calculate the partition functions.

In [101] Qi,j denotes the partition function on the segment from base i
through base j, while Qb

i,j denotes the restricted partition function for the
same sequence segment with the added constraint that bases i and j form a
base pair7. We will specify how to calculate the contributions from structures
with an internal loop closed by i · j.

From [101, equations 4 and 7] it is seen that the contributions from these
structures – if we consider a stacked pair to be an internal loop of size 0 – are

∑
i<h<l<j

e−eL(i,j,h,l)/kTQb
h,l , (7.10)

where [101, equation 7] uses F2(i, j, h, l) to gather the energies of all structures
with an internal loop with base pairs i · j and h · l, thus reducing the terms of
the sum to e−F2(i,j,h,l)/kT .

Similar to the approach in section 7.3.1 we define Qil
i,j,l to be the partition

function for all structures with an internal loop of size l closed by i · j, thus
corresponding to VBI ′(i, j, l) in the energy calculations in section 7.3.1. Now
it can be proved that

6Sequence dependent destabilising energies are available for internal loops of size three.
These – and similar specific energy functions for small loops – can be handled as a special
case without affecting the general method for calculating internal loop stability though.

7Thus Qb
i,j corresponds to V (i, j) in energy calculations.
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Algorithm 8 Evaluation of classes of internal loops with size 2l+a and exterior
base pair i− l · j + l + a.

/* Make sure to handle both even sized and odd sized loops. */
for a = 0 to 1 do

/* Q maintains the partition function contribution for the current class of
internal loops except for size and external stacking factors. */
Q = 0
/* Iterate through the exterior base pairs. For even sized loops we skip
l = 1 as this yields a stacked base pair. */
for l = 2− a to min{i− 1, |s| − j − a} do

/* Add contributions from the two new interior base pairs, i.e. the inte-
rior base pairs next to the currently considered exterior base pair. */
Q = Q+Qb

i−l+1,j−l+1e
−(asymmetry(0,2l+a−2)+stacking(i−l+1·j−l+1))/kT

+Qb
i+a+l−1,j+a+l−1e

−(asymmetry(2l+a−2,0)+stacking(i+a+l−1·j+a+l−1))/kT

/* Update Qb with contributions from the currently considered class of
internal loops. */
Qb

i−l,j+a+l = Qb
i−l,j+a+l +Qe−(size(2l+a−2)+stacking(i−l·j+a+l))/kT

end for
end for

Qil
i,j,l = Qil

i+1,j−1,l−2e
(size(l−2)−size(l)+stacking(i+1·j−1)−stacking(i·j))/kT

+Qb
i+1,j−l−1e

−eL(i,j,i+1,j−l−1)/kT +Qb
i+l+1,j−1e

−eL(i,j,i+l+1,j−1)/kT (7.11)

by similar arguments as in the proof of lemma 10. There is a slight problem if
stacking(i · j) = ∞ or stacking(i+ 1 · j − 1) = ∞ – that is, if bases i and j or
bases i+1 and j−1 does not form a base pair – but in the proof of equation 7.11
this can be handled by assuming that all stacking energies are finite. In the
algorithm we handle it by postponing the multiplication with the exponential
of the stacking energies until adding the contribution of Qil

i,j,l to Qb
i,j. We can

now rewrite equation 7.10 as

j−i−2∑
l=0

Qil
i,j,l , (7.12)

and based on equations 7.11 and 7.12 we can now proceed to present algorithm 8
to handle internal loop contributions to the partition function; the observant
reader will notice the close similarity between algorithms 7 and 8. Again it is
an easy observation that the time complexity is O(n3), and the correctness of
algorithm 8 can be proven by arguments similar to the proof of the correctness
of algorithm 7.
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7.4 Implementation

The method described in this paper has been implemented in ZUKER8, a C
program to find the optimal structure of an RNA sequence based on energy
rules. To be able to compare the performance of this method to previously
used methods, compiler directives determines whether the compiled code will
use complete enumeration of all internal loops or the method described here,
and whether only to consider loops smaller than a specified size. By this we
hope to have eliminated most of the noise due to differences in implementations
so as to get a comparison of the underlying methods.

We decided to test our method against the complete enumeration method,
both when using a cutoff size of 30 for internal loops (a commonly used cutoff
size) and when allowing loops of any size. All four methods were tested with
random sequences of length 500 and 1000, respectively, and the results are sum-
marised in Table 7.1. As expected a huge increase in performance is obtained
when allowing internal loops of any size, but even when limiting internal loops
to size at most 30, our method obtains a speedup of 30 – 40 % compared to the
complete enumeration method.

Sequence length 500 1000
Complete enumeration, unlimited loop size 2,119 s 35,988 s
Our method, unlimited loop size 127 s 1,123 s
Complete enumeration, loop size ≤ 30 48 s 264 s
Our method, loop size ≤ 30 30 s 182 s

Table 7.1: Comparison of different methods to evaluate internal loops. The
running times are as reported by the Unix time command on a Silicon Graphics
Indigo 2.

The current implementation encompasses the method for calculating the
optimal substructure on the parts of the sequence excluding the substring from
i through j, thus allowing the prediction of suboptimal structures as described
in [164] and calculation of base pair probabilities based on partition functions
as described in [101]. We are currently working on adding coaxial stacking
modifications to the multibranched loop evaluations, and on extending the pro-
gram to take other parameters, e.g. mutual information or base pair confidences
obtained from alignments, into account.

7.5 Experiments

To make the problem of determining the optimal secondary structure for an
RNA sequence more tractable it has hitherto been common practice to limit
the size of internal loops. The mfold server has a built-in limit of 30 and in [65]
a limit of 30 is also hinted at. With the ability to make a rigorous search for the
optimal structure, we decided to see whether this limit has been reasonable.

8ZUKER – Unlimited Ken Energy-based RNA-folding, the name reflecting that no limit is
imposed on how far to look for the closing base pair of an internal loop.
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(a) Maximum loop size 30;Energy:
−29.6 kcal/mol

(b) No maximum loop size; Energy:
−42.9 kcal/mol

Figure 7.4: Foldings of the sequence GGGGGGGGGGAAAAAAAAAAAAAAAAAAAA

GGGGGGGGGGAAAAACCCCCCCCCCAAAAAAAAAAAAAAACCCCCCCCCC

7.5.1 A constructed ‘mean’ sequence

The easiest way to find a loop of size larger than 30 is of course to construct
it yourself. We constructed a sequence of length 80 consisting only of C’s, G’s
and A’s (but no U’s), designed to fold into two stems of 10 base pairing C’s
and G’s separated by an internal loop of 35 unpaired A’s, and with a hairpin
loop consisting of 5 A’s. The result of folding this sequence at 37 ◦C with and
without a size limit of 30, respectively, is shown in figure 7.4

One can observe that the prediction with a cutoff size of 30 does in fact pair
most of the C’s with G’s – but instead of having the A’s in one big internal
loop they are folded out as two bulges. A further observation is that there
can indeed be a major increase in stability by choosing one large internal loop
instead of two smaller bulges.

Though this example may be cute, the interesting question of course is
whether RNA sequences for which the optimal structure contains a large inter-
nal loop occur naturally. The reason that a cutoff size of 30 has been deemed
reasonable is of course that no internal loops even close to this size are observed
in a standard structure prediction at 37 ◦C. But when the temperature is in-
creased, base pairs become less stable which may cause short stems of stacking
base pairs to break up. We thus decided to look at a couple of sequences for
which structure prediction at higher temperatures would be interesting.
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Figure 7.5: Dot-plot of the prediction of the Qβ structure at 65 ◦C. The absence
of long range base pairings (dots far away from the diagonal) is apparent.

7.5.2 Qβ

Jacobson [71] reported on some experiments on determining structural features
in Qβ denatured to various extents. It is believed that denaturing effects relates
to temperature effects, and we thus chose to fold this sequence at nine different
temperatures in the range from 45 ◦C to 100 ◦C to see whether we would find
any of the structural features reported by Jacobson.

None of these predicted foldings showed any signs of the features Jacobson
reported – at higher temperatures the structure simply came apart as small
structural fragments, usually covering less than 100 nucleotides. Furthermore
we did not observe any internal loops larger than size 25. An example prediction
is shown in figure 7.5.

7.5.3 Thermococcus celer

Thermococcus celer is an organism that lives in solfataric marine water holes of
Vulcano, Italy, at temperatures around 90 ◦C; its optimal growth temperature
is reported to be around 88 ◦C [162]. Furthermore, the structure of the 23S
subunit exhibits an internal loop of size 33 closed by base pairs 1139 · 1268 and
1155 · 1249, cf. [55, 54].

Folding this sequence at 88 ◦C we did (almost) get the inner stem of this
internal loop but the outer stem came apart as two single strands (cf. fig-
ure 7.6(b)). When lowering the temperature to 75 ◦C we did get both stems,
but the internal loop was split into two loops of size 2 and 27, respectively, by
a short stem consisting of the base pairs 1141 · 1266 and 1142 · 1265 (cf. fig-
ure 7.6(c)).

We then tried to search the range of temperatures between 75 ◦C and 88 ◦C,
and at 82 ◦C we did in fact correctly predict the internal loop of size 33 (cf. fig-
ure 7.6(d)). At this temperature we on the other hand missed the structure
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(a) Fragment of the structure be-
tween bases 1112 and 1288.
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(b) Prediction of the same frag-
ment at 88 ◦C.
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(c) Prediction of the same frag-
ment at 75 ◦C.
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(d) Prediction of the same frag-
ment at 82 ◦C.

Figure 7.6: Known and Predicted structures for thermococcus celer.

inside the inner stem, a structure that is quite well predicted at 75 ◦C; no tem-
perature thus seemed decisively best for predicting this structural fragment.
Generally, as with the Qβ predictions, these predictions missed long-range base
pairings and predicted structures consisting of fragments covering less than 300
bases.

It should however be mentioned that a prediction at 82 ◦C with a cutoff
size of 30 completely misses the outer stem and thus makes a prediction of this
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fragment identical to the prediction at 88 ◦C. Thus we get a decisively better
prediction at this temperature when examining internal loops of all sizes than
when using a cutoff size of 30.

7.6 Discussion

It is well known that heuristics may speed up the evaluation of internal loops
in practice. One way to do this, is for all subsequences to keep track of the
most stable structure of any of its subsequences. This is then used to cut off
the evaluation of large loops closed by a specific base pair, when it is evident
that they can not be more stable than the most stable structure closed by that
base pair found so far.

As the method described in section 7.3 actually evaluates the internal loops
closed by a specific base pair in order of decreasing size, the above heuristic can
not be combined with our method. We have instead implemented a heuristic
based on determining upper bounds for the free energy of the optimal multi-
branched loop closed by some base pair. This heuristic unfortunately does not
seem to have a positive effect for sequences shorter than 1000 nucleotides, as,
for all but very long sequences, the time spent determining when to stop further
evaluation exceeds the time that would have been spent evaluating the rest of
the loops.

It would of course be more interesting to obtain further improvements on
the worst-case behaviour of the algorithm, possibly by applying some advanced
search techniques similar to those described in [39]. This is not a straightforward
task though, as our method has shifted the focus from the exterior (closing)
base pair to the interior base pair of an internal loop. The same interior base
pair might be optimal for several choices of exterior base pairs. Furthermore,
the exterior base pair that yields the most stable substructure with a specific
interior base pair might not even be one of them. Thus it is of no use just to
search for the exterior base pair yielding the most stable substructure.

Our studies of structure predictions at high temperatures did not show an
abundance of internal loops larger than the hitherto used cutoff size. There is
thus no reason to suspect that predictions using this cutoff size are generally
erroneous. We were however able to predict one internal loop that exceeds this
size limit. Furthermore we predicted a number of internal loops with size larger
than 20. This indicates that the cutoff size of 30 is probably a little bit to small
for safe predictions at high temperatures. Especially if also suboptimal foldings,
cf. [164], are sought for, or if calculating the partition functions as in [101], the
cutoff size – if used at all – should be set somewhat higher.

Another observation is that the energy parameters estimated for higher tem-
peratures by extrapolation of parameters experimentally determined at lower
temperatures do not seem to allow for a prediction of the long range base pair-
ings. One reason for this might be that structures at higher temperatures tend
to have more unpaired bases in multibranched loops. The effect of the number
of unpaired bases on the stability of multibranched loops should theoretically
be logarithmic but are modelled by a linear function for reasons of computa-
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tional efficiency. This might be acceptable for multibranched loops with only
a few unpaired bases but becomes prohibitive as the number of unpaired bases
grows.

Finally it should be mentioned that current methods for energy based RNA
secondary structure prediction only consider structures that do not contain
pseudo knots. Probably the open question of RNA secondary structure predic-
tion is to put forth a model including pseudo knots that allows fair predictions
within reasonable resources. Currently known methods suffer from either being
too time- and space-consuming (time O(n6) and space O(n4) for the method
presented in [125] and time O(n5) and space O(n3) for a restricted class of
pseudo knots presented in [88]) or shifting the focus from stability of loops
back to stability of pairs, cf. [136].
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Chapter 8

Protein folding in the 2D HP model

– That’s circular reasoning.
– I prefer to think of it as having no loose ends.

—Scott Adams, Dilbert

This paper describes attempts to improve on an approximation algorithm for
protein structure prediction in the two dimensional HP model. The paper is
based on a mandatory assignment hand-in [89], and has been published as a
technical report in the BRICS report series [90].
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Protein folding in the 2D HP model

Rune B. Lyngsø∗ Christian N. S. Pedersen†

Abstract

We study folding algorithms in the two dimensional Hydrophobic-Hydro-
philic model (2D HP model) for protein structure formation. We consider
three generalizations of the best known approximation algorithm. We show
that two of the generalizations do not improve the worst case approxima-
tion ratio. The third generalization seems to be better, and the analysis
of its approximation ratio leads to an interesting combinatorial problem.

8.1 Introduction

Proteins are polymer chains of amino acids. An interesting feature of nature
is that even though there are an infinite amount of amino acids, only twenty
different amino acids are used in the formation of proteins. The amino acid
sequence of a protein can thus be abstracted as a string over an alphabet of
size twenty. In nature proteins are of course not one dimensional strings but
fold into three dimensional structures. The three dimensional structure of a
protein is not static, but vibrates around an equilibrium known as the native
state. Famous experiments by Anfinsen et al. [8] showed that a protein in its
natural environment folds into, i.e. vibrates around, a unique three dimensional
structure, the native conformation, independent of the starting conformation.
The native conformation of a protein plays an essential role in the functionality
of the protein, and it is widely believed that the native conformation of a protein
is determined by the amino acid sequence of the protein. As experimental
determination of the native conformation is difficult and time consuming, much
work has been done to predict the native conformation computationally.

To predict the structure of a protein computationally it is necessary to model
protein structure formation in the real system, i.e. in the proteins natural en-
vironment. A model is relevant if it reflects some of the properties of protein
structure formation in the real system. One obvious property could be visual
equivalence between the native conformations in the model and the native con-
formations in the real system. Another more subtle, but useful property, could
be behavioral equivalence between protein structure formation in the model and
protein structure formation in the real system. As the laws of thermodynamics
state that the native state of a protein is the state of least free energy, the real
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system is often modeled by a free energy model that specifies an energy function
that assigns a free energy to every conformation in a set of legal conformations.
The native conformation of a protein is then predicted to be a conformation
that minimizes the energy function over the set of legal conformations.

The hydrophobic-hydrophilic model proposed by Dill [33] is a free energy
model that models the belief that a major contribution to the free energy of
the native conformation of a protein is due to interactions between hydrophobic
amino acids that tend to form a core in the spatial structure shielded from the
surrounding solvent by hydrophilic amino acids. In the model the amino acid
sequence of a protein is abstracted as a binary sequence of hydrophobic and
hydrophilic amino acids. Even though some amino acids cannot be classified
clearly as being either hydrophobic or hydrophilic, the model disregards this
fact to achieve simplicity. The model is usually referred to as the HP model
where H stands for hydrophobic and P stands for polar.

The HP model is a lattice model, so called because the set of legal confor-
mations is embeddings of the abstracted amino acid sequence in a lattice, in
this case the two or three dimensional square lattice. In legal conformations
amino acids that are adjacent in the sequence occupy adjacent grid points in
the lattice, and no grid point in the lattice is occupied by more than one amino
acid. Depending on the dimension of the square lattice we refer to the model
as the 2D or 3D HP model. The free energy of a conformation depends on the
number of non-adjacent hydrophobic amino acids that occupy adjacent grid
points in the lattice. Figure 8.1 shows a conformation in the 2D HP model
where 9 non-adjacent hydrophobic amino acids occupy adjacent grid points.

Despite the simplicity of the HP model, the folding process in the model
have behavioral similarities with the folding process in the real system [34],
and the model has been used by chemists to evaluate new hypothesis of protein
structure formation [129]. The success of the HP model as a tool for chemists
partly stems from the fact that the discrete set of legal conformations makes it
possible to enumerate and consider all conformations of small proteins. Many
attempts have been made to predict the native conformation, i.e. the confor-
mation of lowest free energy, of a protein in the HP model [146, 160]. Most
interestingly, the HP model was the first relevant model for protein folding
for which approximation algorithms for the structure prediction problem, i.e.
algorithms that find a conformation with free energy guaranteed close to the
free energy of the native conformation, were formulated [57]. For a while it
was believed that the structure prediction problem in the HP model would be
solvable in polynomial time, but recently it was shown NP-complete [17, 28].

In this paper we describe three attempts to improve the best known approx-
imation algorithm for the structure prediction problem in the 2D HP model.
We show that two generalizations of this algorithm, the U-fold algorithm and
S-fold algorithm, do not improve on the best known 1/4 worst case approxi-
mation ratio. The approximation ratio of the third generalization, the C-fold
algorithm, seems to be better. We prove that the worst case approximation ra-
tio of the C-fold algorithm is at most 1/3 and observe that it is closely related to
an interesting combinatorial problem which we examine experimentally. Most
of the work described in this paper was done in the Spring 1996 as part of a
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graduate course [89]. Independently of our work Mauri et al. [100] observe ex-
perimentally that the approximation ratio of an algorithm similar to our C-fold
algorithm seems to be around 3/8.

The rest of this paper is organized as follows. In Section 8.2 we formally
describe the 2D HP model and bound the free energy of the native conformation
of a protein in the model. In Section 8.3 we describe three attempts to improve
the currently best approximation algorithm for the structure prediction problem
in the 2D HP model. In Section 8.4 we describe and examine experimentally
an interesting problem that is related to the approximation ratio of one of the
approximation algorithms described in Section 8.3.

8.2 The 2D HP model

In the 2D HP model a protein, i.e. an amino acid sequence, is abstracted as
a string describing the hydrophobicity of each amino acid in the sequence.
Throughout this paper we will use S to denote the abstraction of an amino acid
sequence of length n, that is, S is a string of length n over the alphabet {0, 1}
where S[i], for i = 1, 2, . . . , n, is 1 if the ith amino acid in the sequence is
hydrophobic and 0 if it is hydrophilic. We will use the term “hydrophobic
amino acid” to refer to a 1 at some position in S, and say that the parity of
the 1 is even if its position in S is even, and odd if its position in S is odd.

A folding of a protein in the 2D HP model is an embedding of its ab-
straction S in the 2D square lattice such that adjacent characters in S occupy
adjacent grid points in the lattice, and no grid point in the lattice is occupied
by more than one character. We say that two 1’s in S form a non-local 1-1 bond
if they occupy adjacent grid points in the lattice but are not adjacent in S. Fig-
ure 8.1 shows a folding of the string 111010100101001001 in the 2D HP model
with nine non-local 1-1 bonds. The free energy of a folding of S is the number
of non-local 1-1 bonds in the folding multiplied by some constant ε < 0. The
free energy function models the belief that the driving force of protein structure
formation is interactions between hydrophobic amino acids.

We say that the score of a folding of S is the number of non-local 1-1 bonds
in it, and that the optimal score of a folding of S, OPT(S), is the maximum
score of a folding of S. The simple energy function implies that the native
conformation of a protein in 2D HP model is a folding of its abstraction with
optimal score. The structure prediction problem in the 2D HP model is thus to
find a folding of S in the 2D square lattice with optimal score. This problem has
recently been shown to be NP-complete [17, 28], which makes it interesting to
look for approximation algorithms that find a folding of S with score guaranteed
to be some fraction of the optimal score of a folding of S. To issue such a
guarantee for a folding algorithm, we need an upper bound on OPT(S). To
derive an upper bound on OPT(S) we make two observations.

The first observation is that a hydrophobic amino acid can form at most two
non-local 1-1 bonds in the 2D square lattice except if it is the first or the last
amino acid in the sequence, in which case it can form at most three non-local
1-1 bonds. The second observation is that two hydrophobic amino acids, S[i]
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Figure 8.1: A conformation in the 2D HP model with 9 non-local 1-1 bonds.

and S[j], can occupy adjacent grid points in the 2D square lattice, i.e. form a
non-local 1-1 bond, if and only if i is even j is odd or vice versa. If we define
EVEN(S) as the set of even positions in S containing a hydrophobic amino
acid, i.e. {i | i is even and S[i] = 1}, and ODD(S) as the set of odd positions
in S containing a hydrophobic amino acid, i.e. {i | i is odd and S[i] = 1}, then
the two observations gives

OPT(S) ≤ 2 ·min{|EVEN(S)|, |ODD(S)|} + 2. (8.1)

This upper bound was first derived by Hart and Istrail [57], who used it in
the performance analysis of a simple folding algorithm that guarantees a folding
with score 1/4 of the optimal score. This algorithm and various attempts to
improve it is the topic of the next section.

8.3 The folding algorithms

A simple strategy for folding a string in the 2D square lattice is to find a
suitable folding point that divides the string into two parts, a prefix and a
suffix, that we fold against each other. This creates a “U” structure in which
non-local 1-1 bonds can be formed between 1’s on opposite stems of the “U”.
Loops protruding from the two stems of the “U” can be used to increase the
number of non-local 1-1 bonds between the stems by contracting parts of the
stems. We say that a folding created this way is a U-fold. Figure 8.2 shows
a schematic U-fold and the left part of Figure 8.3 shows a U-fold of the string
1001001010010101000011 with four non-local 1-1 bonds between the stems and
five non-local 1-1 bonds in total.

Hart and Istrail [57] present a folding algorithm that computes a U-fold
of S with a guaranteed number of non-local 1-1 bonds between the stems.
By a simple argument they show that the folding point can always be chosen
such that at least half of the 1’s with position in EVEN(S) are on one stem
and at least half of the 1’s with position in ODD(S) are on the other stem.
Since there is an odd number of characters between any two characters in S
with positions in either EVEN(S) or ODD(S), loops can be used to contract
each stem such that every second character on the contracted stem is a 1 with
even or odd parity depending on the stem. As each contracted stem contains
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Figure 8.2: A schematic U-fold.

at least min{|EVEN(S)|, |ODD(S)|}/2 1’s with equal parity placed in every
second position along stem, the number of non-local 1-1 bonds between the
stems of the created U-fold is at least min{|EVEN(S)|, |ODD(S)|}/2, so except
for a constant term the created U-fold scores at least 1/4 of the upper bound
on OPT(S) given by (8.1). We say that the asymptotic approximation ratio of
the algorithm is 1/4. By being a little bit more careful in the choice of folding
point Hart and Istrail are able to formulate the folding algorithm such that the
create a U-fold, for every string S, scores at least 1/4 of the upper bound on
OPT(S). We say that the absolute approximation ratio of the algorithm is 1/4.
The folding algorithm runs in time O(n) where n is the length of S.

Our first attempt to improve the approximation ratio of the folding algo-
rithm by Hart and Istrail, is to count all non-local 1-1 bonds between the two
stems of the U-fold, and not only those where the 1’s on each stem have equal
parity. More precisely, we want to compute a U-fold of S with the maximum
number of non-local 1-1 bonds between the stems, i.e. a U-fold of S with op-
timal score between the stems. Computing such a U-fold is not difficult. As
illustrated in Figure 8.3, the trick is to observe that a U-fold of S, with folding
point k, that maximizes the number of non-local 1-1 bonds between the stems,
corresponds to the an alignment of the prefix S[1 .. k−1] with the reversed suffix
S[k + 2 .. n]R that maximizes the number of matches between 1’s, and allows
gaps to be folded as loops.

Such an alignment corresponds to an optimal similarity alignment between
S[1 .. k − 1] and S[k + 2 .. n]R, where a match between two 1’s score 1, and all
other matches and gaps score 0. To allow gaps to be folded out as loops, all
gaps must have even length and between any two gaps in the same string there
must be at least two matched characters. These additional rules on gaps can
be enforced without increasing the running time of the alignment algorithm,
so a U-fold of S with folding point k and optimal score between the stems can
be computed in the time required to compute an optimal similarity alignment,
i.e. in time O(n2) where n is the length of S. By considering every folding
point this immediately gives an algorithm, the U-fold algorithm, that computes
a U-fold with optimal score between the stems in time O(n3). By observing
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Figure 8.3: Left: Alignment of the prefix 1001001010 of the string
1001001010010101000011 with the rest of the string and the corresponding U-
fold. Right: An example of an alignment with illegal gaps. The transformation
to a folding implies that two loops protrude from the same element.

An optimal folding A U-fold

Figure 8.4: A string of the form (10)i0(10)i00(10)i00(10)i(01)i. For these strings
the U-fold with optimal score between the stems is only 1/4 of the score of the
optimal folding.

that the best folding point k corresponds to an entry (k − 1, n − k − 1) with
maximum value in the alignment matrix resulting from an alignment of S and
SR with the above parameters, i.e. matches between 1’s score 1, everything else
score 0, and gaps have to be expressible as loops, we can reduce the running
time of the U-fold algorithm to O(n2).

As the foldings considered by the folding algorithm by Hart and Istrail are
a subset of the foldings considered by our U-fold algorithm, the approximation
ratio of the U-fold algorithm is at least 1/4. Unfortunately it is no better in the
worst case. As illustrated in Figure 8.4, this follows because any string of the
form (10)i0(10)i00(10)i(01)i, i > 0, when folded as a U-fold with optimal score
between the stems only scores 1/4 of the score of an optimal folding. The 1/4
approximation ratio of our U-fold algorithm and the folding algorithm by Hart
and Istrail is thus tight. An obvious way to try to improve the approximation
ratio of the U-fold algorithm would be to also count and maximize the number
of non-local 1-1 bonds occurring between 1’s on the loops. Unfortunately, as
above, a set of strings can be constructed such that when folded this way they
only score 1/4 of the score of an optimal fold.
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(a) S-fold (b) C-fold

Figure 8.5: Two ways to generalize the U-fold.

Another way to try to improve the approximation ratio of the U-fold algo-
rithm is to consider a larger set of foldings than U-folds. Figure 8.5 illustrates
two ways to do this. The first way is to allow multiple bends of the string and
loops on the outer stems. This gives rise to what we call S-folds. The second
way is to allow two bends of the string that fold the two ends of the string
towards each other and loops on the two stems. This gives rise to what we call
C-folds. Both the S-fold and the C-fold with optimal score between the stems
can be computed in time O(n3) using dynamic programming. For the C-fold it
is easy to see how. A C-fold of S is a U-fold of a prefix, S[1 .. k], and a U-fold of
a suffix, S[k + 1 .. n], glued together to form a C-fold. As there are less than n
ways to divide the string, the best C-fold can be found by computing and gluing
together 2n U-folds. As each of these U-folds can be computed in time O(n2),
the best C-fold can be computed in time O(n3). The computation of the best
S-fold in time O(n3) is somewhat more technical. We choose to omit the details
of the S-fold algorithm as it, as explained below, unfortunately turns out that
its approximation ratio is no better than 1/4.

As S- and C-folds are supersets of U-folds, the approximation ratio of both
the S- and C-fold algorithm is at least 1/4. Unfortunately this approxima-
tion ratio is tight for the S-fold algorithm because any string of the form
(10)i(02i+11)4i(10)i, i > 0, when folded as a S-fold with optimal score be-
tween the stems only scores 1/4 of the score of an optimal folding. Similar to
U-folds, we can show that counting and maximizing the number of non-local
1-1 bonds occurring between 1’s on the loops of the S-fold does not improve
the worst case approximation ratio of the folding algorithm. In contrast to U-
and S-folds, we have not been able to find a set of strings that show that the
1/4 approximation ratio of the C-fold algorithm is tight. In fact experiments
indicates, as explained in the next section, that the approximation ratio of the
C-fold algorithm is somewhat better than 1/4. This is also observed in [100].

In our analysis of the approximation ratio of the C-fold algorithm we came
up with a relation to an interesting matching problem. This is the topic of the
next section. We end this section by summarizing the presented results.
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Figure 8.6: An example of a matching in a balanced string

Theorem 5 The score of the best U- and S-fold of string S is at least, and at
most in the worst case, 1/4 of the score of an optimal fold of S. The score of
the best C-fold of string S is at least 1/4 of the score of the optimal fold of S.

8.4 The circle problem

Let P ∈ {+,−}∗ be a string that contains equally many +’s and −’s. We say
that P is a balanced string of length n = |P |. Consider P wrapped around the
perimeter of a circle. A matching in P is obtained by dividing the circle by
a line and connecting +’s with −’s using non-crossing lines that all intersect
the dividing line. The size of the matching is the number of non-crossing lines
connecting +’s with −’s that intersect the dividing line. Figure 8.6 shows an
example of a matching of size 6. A maximum matching in P is a matching in P
of maximum size. We use M(P ) to denote the size of a maximum matching
in P and we use M(n) to denote the minimum of M(P ) over all balanced
strings P of length n, that is

M(n) = min
P :|P |=n

M(P ).

The matching problem in balanced strings, or the circle problem as we call it,
is closely related to the approximation ratio of our C-fold algorithm. To see the
relation, we introduce the parity labelling of a string.

The parity labelling of a string S ∈ {0, 1}∗ is a string PS ∈ {+,−}∗ in which
the ith character indicates the parity of the ith 1 in S, e.g. the parity labelling of
100101110101 is −++−+++. A balanced parity labelling of S is a maximum
length subsequence of PS that contains equally many +’s and −’s. From the
definition of EVEN(S) and ODD(S) follows that PS contains |EVEN(S)| +’s
and |ODD(S)| −’s, so a balanced parity labelling of S is obtained by removing∣∣|EVEN(S)| − |ODD(S)|∣∣ +’s or −’s from PS . The length of a balance parity
labelling of S is 2 ·min{|EVEN(S)|, |ODD(S)|}, but the labelling is not unique
as there can be several ways to choose the +’s or −’s to remove from PS , e.g.
the parity labelling − + + − + + + gives − + +−, − + −+ and − − ++ as
possible balanced parity labellings.
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Figure 8.7: A folding of a string of the form (01)i000(01)i(010)2i(10)i000(10)i.
Only the two 1’s indicated with arrows have less than the optimal two
non-local bonds. The total number of non-local bonds in this folding is
2 · min{|EVEN(S)|, |ODD(S)|} − 1 = 4i − 1 and thus, by the balanced par-
ity labelling argument, the optimal score between the stems in a C-fold of this
string is approximately 1/3 of the score of the optimal folding.

Upper bounding the C-fold approximation ratio

To get the relation to C-folds, we observe that a C-fold of S with k non-local
1-1 bonds between the stems corresponds to a matching of size k in a bal-
anced parity labelling of S. This implies that an upper bound on M(n) is
also an upper bound on the score between the stems of C-folds of strings with
balanced parity labellings of length n. In other words, if M(n) ≤ αn then
the score between the stems of a C-fold of S is upper bounded by α multi-
plied by the length of a balanced parity labelling of S, i.e. upper bounded by
α · 2 · min{|EVEN(S)|, |ODD(S)|}. Since the length of a balanced parity la-
belling of S is equal to the upper bound on OPT(S) given by (8.1), M(n) ≤ αn
implies that the approximation ratio of the C-fold algorithm, with respect to
the upper bound on OPT(S) given by (8.1), is at most α.

It is easy to prove that M(+i −i (+−)i −i +i) = 2i + 1 for any i > 0.
Hence, M(n) ≤ n/3 + 1, so the asymptotic approximation ratio of our C-fold
algorithm is at most 1/3 if analyzed with respect to the upper bound on OPT(S)
given by (8.1). Fortunately, as illustrated in Figure 8.7, for any i > 0 there
exists a string (01)i000(01)i(010)2i(10)i000(10)i with balanced parity labelling
+i−i(+−)i−i+i for which OPT(S) deviates from the upper bound of (8.1) by at
most a constant term. This example shows that the asymptotic approximation
ratio of the C-fold algorithm is at most 1/3.

Lower bounding the C-fold approximation ratio

To use a matching in a balanced parity labelling of S to improve on the 1/4
approximation ratio of the C-fold algorithm, two requirements must be met.
First, we need to be able to transform a matching in a balanced parity labelling
of S into a C-fold of S with a number of non-local bonds proportional by some
factor β to the size of the matching. Secondly, we need to lower bound the
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Figure 8.8: An example where the obvious transformation from a matching of
a balanced parity labelling of a string to a C-fold, trying to place two 1’s with
connected labels opposite each other on the stems of a C-fold, fails.
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Figure 8.9: Possible hydrophobic loops of eight consecutive 1’s. The positions
of the embedding of the last 1 in the stretch is indicated with an arrow.

asymptotic ratio of M(n)/n by some constant γ > 1/(4 · β). This would yield
an asymptotic approximation ratio of the C-fold algorithm of β · γ > 1/4. We
have not yet solved these problems but will in the following report on some
promising approaches and experiments.

The task of transforming a matching in a balanced parity labelling of S
to a C-fold of S is not as straightforward as transforming the non-local bonds
between the stems of a C-fold of S to a matching in one of the balanced parity
labellings of S. Though one can identify the labels with 1’s it will not always
be the case that there is a legal C-fold of S where the non-local bonds between
the stems corresponds to the connections between the corresponding labels in
a matching in a balanced parity labelling of S.

To observe this, consider the two strings S′ = 12i and S′′ = (100)2i−11, both
with balanced parity labellings PS′ = PS′′ = (−+)i. Assume that S contains
S′ and S′′ as substrings and that the labels of these two substrings have been
connected with each other in the matching in a balanced parity labelling of S.
As illustrated in Figure 8.8, we get the same problem as in the right-hand
example in Figure 8.3 with two loops protruding from the same element if we
try to make the obvious transformation of this matching to a C-fold of S. We
observe that the obvious transformation only fails when we have stretches of
consecutive 1’s in one of the stems. One approach to solve the problem of
transforming a matching in the balanced parity matching of S to a C-fold of S
would thus be to ‘eliminate’ or at least ‘shorten’ consecutive stretches of 1’s by
removing 1’s while ensuring compensatory non-local bonds.
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This can be done in much the same way as when contracting the stems of
a C-fold by folding out loops. As illustrated in Figure 8.9 we can fold out a
stretch of an even number of consecutive 1’s in a hydrophobic loop such that
only two 1’s remains along the stem. In such a loop where 2i 1’s have been
removed, i of which are at positions in EVEN(S) and i of which are at positions
in ODD(S), there will be i non-local bonds. As long as β · γ ≤ 1/2 we can thus
ensure compensatory non-local bonds. This allows us to remove the 1’s that
can be folded out in hydrophobic loops from S before finding a matching of a
balanced parity labelling of the modified sequence.

Two problems still remain, though. First, the hydrophobic loops make the
sequence less flexible since we cannot contract the stems immediately after a
hydrophobic loop simply by folding out another loop. As indicated in Figure 8.9
we can however choose the position of the embedding of the last 1 in the stretch
of 1’s folded out rather freely which allows almost any contracting by an even
number of amino acids immediately after a hydrophobic loop. Only when the
loop removes 2i 1’s with i odd there is a problem with contracting the stem
by i + 1 amino acids as we have to round the corner of the loop from the
position furthest away from the stem where we can embed the last 1. Secondly,
we have not eliminated stretches of consecutive 1’s but merely limited them
to being of length at most three. Though we find this approach promising we
have not yet been able to carry through with the rigorous case-by-case analysis,
an analysis that will require additional tricks besides the hydrophobic loops to
handle special cases, of the various situations that can arise when trying to
transform a matching of a balanced parity labelling of S to a C-fold of S.

To lower bound the asymptotic ratio of M(n)/n it is easy to observe that
M(n) ≥ n/4. Unless we, unrealistically, hope to transform a matching in the
balanced parity labelling of S into a C-fold of S with more non-local bonds
than connections in the matching this lower bound does not say anything we
do not already known, namely that the approximation of the C-fold algorithm
is at least 1/4. Narrowing the gap between the trivial lower bound M(n) ≥ n/4
and the upper bound M(n) ≤ n/3 + 1 presented above has turned out to be a
very difficult problem.

To get an impression of whether or not the trivial lower bound is tight, we
did two experiments. First, we computed the value of M(n) for all n ≤ 34.
As illustrated in Figure 8.10, this showed that M(n) ≥ n/3 for all n ≤ 34.
Secondly, we computed M(n) for a large number of randomly selected larger
balanced strings. This random search did not produce a string in which the size
of the maximum matching was less than n/3. Combined these two experiments
lead us to believe that M(n) ≥ n/3.

To help prove a non-trivial lower bound, one might consider the restricted
matching problem where the dividing line must be chosen such that it divides
the circle into two halfs. This restriction does not seem to affect the lower
bound, as rerunning the experiment presented in Figure 8.10 gives the same
results. It might also be helpful to consider other formulations of the problem.
We observe that a dividing line in the circular representation of P corresponds
to a partition XYZ of P , where the one side of the divided circle is Y and the
other side is ZX. The maximum size of a matching in P given a partition XYZ
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Figure 8.10: The minimum size of the maximum matching in balanced strings
with length up to 34.

is the length of the longest common subsequence of Y and ZXR, so

M(P ) = max
XYZ : P=XYZ

|LCS(Y,ZXR)|.

In this terminology the above restriction of the problem, i.e. that the circle
should be divided into two halfs, corresponds to only maximizing over partitions
XYZ of P where |Y | = |ZX|. Another formulation of the problem follows from
the observation that part of LCS(Y,ZXR) is a subsequence of a prefix Y and
X

R and the rest is a subsequence of the rest of Y and ZR. We can thus split Y
according to this and reformulate the calculation of M(P ) as

M(P ) = max
X1,X2

{|X1|+ |X2| | X1X1
R
X2X2

R is a subsequence of P}.

This lends an immediate generalization of the problem as we can define

Mk(P ) = max
X1,...,Xk

{
k∑

i=1

|Xi| | X1X1
R
. . . XkXk

R is a subsequence of P},

where M(P ) = M2(P ) and M1(P ) is the corresponding problem for the U-fold
(equivalent to fixing one end-point of the dividing line in the circle formulation
of the problem). One can observe that Mk(n) < n/2 for any k because the
string P = + + + − − + −− gives that Mk(P ) = M1(P ) = 3, but apart from
this we have not been able to come up with any non-trivial bounds for Mk(n).

8.5 Conclusion

We have presented three generalizations of the best known approximation algo-
rithm for structure prediction in the 2D HP model. We have shown that two of
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these generalization do not improve the worst case approximation ratio, while
the third generalization might be better. The future work is clear. First, prove
that a matching in a balanced string can be transformed to a C-fold with score
equal to the size of the matching. Secondly, prove or disprove that M(n) ≥ αn
for some α > 1/4. Combined this would give whether or not our C-fold algo-
rithm improves the best known 1/4 approximation ratio for structure prediction
in the 2D HP model. We conjecture that the approximation ratio of our C-fold
algorithm where non-local bonds in the loops are considered is 1/3.
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