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Abstract

In this thesis we are concerned with constructing algorithms that address prob-
lems of biological relevance. This activity is part of a broader interdisciplinary
area called computational biology, or bioinformatics, that focuses on utiliz-
ing the capacities of computers to gain knowledge from biological data. The
majority of problems in computational biology relate to molecular or evolu-
tionary biology, and focus on analyzing and comparing the genetic material of
organisms. One deciding factor in shaping the area of computational biology
is that DNA, RNA and proteins that are responsible for storing and utilizing
the genetic material in an organism, can be described as strings over finite al-
phabets. The string representation of biomolecules allows for a wide range of
algorithmic techniques concerned with strings to be applied for analyzing and
comparing biological data. We contribute to the field of computational biology
by constructing and analyzing algorithms that address problems of relevance to
biological sequence analysis and structure prediction.

The genetic material of organisms evolves by discrete mutations, most promi-
nently substitutions, insertions and deletions of nucleotides. Since the genetic
material is stored in DNA sequences and reflected in RNA and protein se-
quences, it makes sense to compare two or more biological sequences to look
for similarities and differences that can be used to infer the relatedness of the
sequences. In the thesis we consider the problem of comparing two sequences
of coding DNA when the relationship between DNA and proteins is taken into
account. We do this by using a model that penalizes an event on the DNA by
the change it induces on the encoded protein. We analyze the model in de-
tail, and construct an alignment algorithm that improves on the existing best
alignment algorithm in the model by reducing its running time by a quadratic
factor. This makes the running time of our alignment algorithm equal to the
running time of alignment algorithms based on much simpler models.

If a family of related biological sequences is available, it is natural to derive
a compact characterization of the sequence family. Among other things, such
a characterization can be used to search for unknown members of the sequence
family. One widely used way to describe the characteristics of a sequence family
is to construct a hidden Markov model that generates members of the sequence
family with high probability and non-members with low probability. In the
thesis we consider the general problem of comparing hidden Markov models.
We define novel measures between hidden Markov models, and show how to
compute them efficiently using dynamic programming. Since hidden Markov
models are widely used to characterize biological sequence families, our mea-
sures and methods for comparing hidden Markov models immediately apply to
comparison of entire biological sequence families.



Besides comparing sequences and sequence families, we also consider prob-
lems of finding regularities in a single sequence. Looking for regularities in a
single biological sequence can be used to reconstruct part of the evolutionary
history of the sequence or to identify the sequence among other sequences. In
the thesis we focus on general string problems motivated by biological applica-
tions because biological sequences are strings. We construct an algorithm that
finds all maximal pairs of equal substrings in a string, where each pair of equal
substrings adheres to restrictions in the number of characters between the oc-
currences of the two substrings in the string. This is a generalization of finding
tandem repeats, and the running time of the algorithm is comparable to the
running time of existing algorithms for finding tandem repeats. The algorithm
is based on a general technique that combines a traversal of a suffix tree with
efficient merging of search trees. We use the same general technique to con-
struct an algorithm that finds all maximal quasiperiodic substrings in a string.
A quasiperiodic substring is a substring that can be described as concatenations
and superpositions of a shorter substring. Our algorithm for finding maximal
quasiperiodic substrings has a running time that is a logarithmic factor better
than the running time of the existing best algorithm for the problem.

Analyzing and comparing the string representations of biomolecules can
reveal a lot of useful information about the biomolecules, although the three-
dimensional structures of biomolecules often reveal additional information that
is not immediately visible from their string representations. Unfortunately, it is
difficult and time-consuming to determine the three-dimensional structure of a
biomolecule experimentally, so computational methods for structure prediction
are in demand. Constructing such methods is also difficult, and often results
in the formulation of intractable computational problems. In the thesis we
construct an algorithm that improves on the widely used mfold algorithm for
RNA secondary structure prediction by allowing a less restrictive model of
structure formation without an increase in the running time. We also analyze
the protein folding problem in the two-dimensional hydrophobic-hydrophilic
lattice model. Our analysis shows that several complicated folding algorithms
do not produce better foldings in the worst case, in terms of free energy, than
an existing much simpler folding algorithm.
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Chapter 1

Introduction

We’ll start the war from right here.
— Theodore Roosevelt, Jr., Utah Beach, June 6, 1944.

An algorithm is a description of how to solve a specific problem such that the
intended recipient of the description can follow it in a mechanical fashion to
solve the problem addressed by the algorithm. With the advent of automated
computing devices such as modern computers, an algorithm has in most con-
texts become synonymous with a description that can be turned into a computer
program that instructs a computer how to solve the problem addressed by the
algorithm. The ability of modern computers to perform billions of simple calcu-
lations per second and to store billions of bits of information, makes it possible
by using the proper computer programs to address a wide range of problems
that would otherwise remain out of reach. Such possibilities have spawned sev-
eral interdisciplinary activities where the objective is to utilize the capacities of
computers to gain knowledge from huge amounts of data. An important part
of such activities is to construct good algorithms that can serve as basis for the
computer programs that are needed to utilize the capacities of computers.

1.1 Computational Biology

The work presented in this thesis is concerned with constructing algorithms that
address problems with biological relevance. Such work is part of an interdisci-
plinary area called computational biology which is concerned with utilizing the
capacities of computers to address problems of biological interest. Computa-
tional biology spans several classical areas such as biology, chemistry, physics,
statistics and computer science, and the activities in the area are numerous.
From a computational point of view the activities are ranging from algorithmic
theory focusing on problems with biological relevance, via construction of com-
putational tools for specific biological problems, to experimental work where a
laboratory with test tubes and microscopes is substituted with a fast computer
and a hard disk full of computational tools written to analyze huge amounts of
biological data to prove or disprove a certain hypothesis.

The area of computational biology is also referred to as bioinformatics. The
two names are used interchangeably, but there seems to be a consensus forming
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where computational biology is used to refer to activities which mainly focus on
constructing algorithms that address problems with biological relevance, while
bioinformatics is used to refer to activities which mainly focus on constructing
and using computational tools to analyze available biological data. It should be
emphasized that this distinction between computational biology and bioinfor-
matics only serves to expose the main focus of the work. This can be illustrated
by the work presented in Chapter 6. There we focus on constructing an effi-
cient algorithm for comparing hidden Markov models, but we also implement
the constructed algorithm and perform experiments on biological data in order
to validate the biological relevance of the algorithm. The work thus contains
aspects of both computational biology and bioinformatics.

The work of constructing algorithms that address problems with biological
relevance, that is, the work of constructing algorithms in computational biology,
consists of two interacting steps. The first step is to pose a biological interesting
question and to construct a model of the biological reality that makes it possible
to formulate the posed question as a computational problem. The second step
is to construct an algorithm that solves the formulated computational problem.
The first step requires knowledge of the biological reality, while the second
step requires knowledge of algorithmic theory. The quality of the constructed
algorithm is traditionally measured by standard algorithmic methodology in
terms of the resources, most prominently time and space, it requires to solve
the problem. However, since the problem solved by the algorithm originates
from a question with biological relevance, its quality should also be judged by
the biological relevance of the answers it produces.

The quality of an algorithm that solves a problem with biological relevance
is thus a combination of its running time and space assumption and the bio-
logical relevance of the answers it produces. These two aspects of the quality
of an algorithm both depend on the modeling of the biological reality that led
to the formulation of the computational problem that is addressed by the algo-
rithm. Constructing a good algorithm that address a problem with biological
relevance is therefore an interdisciplinary activity that involves interchanging
between modeling the biological reality and constructing the algorithm, until a
reasonable balance between the running time and space assumption of the algo-
rithm, and the biological relevance of the answers it produces, is achieved. The
degree of interchanging between modeling and constructing of course depends
on how closely related the problem addressed by the algorithm is to a specific
biological application, and therefore how relevant it is to judge the algorithm
by the biological relevance of the answers it produces.

The details of a specific model and algorithm of course depend on the
questions being asked. Most questions in computational biology are related
to molecular or evolutionary biology and focus on analyzing and comparing the
composition of the key biomolecules DNA, RNA and proteins, that together
constitute the fundamental building blocks of organisms. The success of ongo-
ing efforts to develop and use techniques for getting data about the composition
of these biomolecules, most prominently DNA sequencing methods for extract-
ing the genetic material from DNA molecules, e.g. [39, 192, 202], has resulted
in a flood of available biological data to compare and analyze.
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Base’ Base” Base’

5" - Phosphate — Sugar — Phosphate — Sugar — Phosphate — Sugar 3’

Figure 1.1: An abstract illustration of a segment of a DNA or RNA molecule.
It shows that the molecule consists of a backbone of sugars linked together by
phosphates with an amine base side chain attached to each sugar. The two
ends of the backbone are conventionally called the 5" end and the 3’ end.

1.2 Biological Sequences

The genetic material of an organism is the blueprint of the molecules it needs for
the complex task of living. Questions about how the genetic material is stored
and used by an organism have been studied intensively. This has revealed that
the biomolecules DNA, RNA and proteins are the important players of the
game, and thus important components to model in any method for comparing
and analyzing the genetic material of organisms.

The DNA (deoxyribonucleic acid) molecule was discovered in 1869 while
studying the chemistry of white blood cells. The very similar RNA (ribonucleic
acid) molecule was discovered a few years later. DNA and RNA are chain-
like molecules, called polymers, that consist of nucleotides linked together by
phosphate ester bonds. A nucleotide consists of a phosphoric acid, a pentose
sugar and an amine base. In DNA the pentose sugar is 2-deoxyribose and
the amine base is either adenine, guanine, cytosine, or thymine. In RNA the
pentose sugar is ribose instead of 2-deoxyribose and the amine base thymine is
exchanged with the very similar amine base uracil. As illustrated in Figure 1.1
a DNA or RNA molecule is a uniform backbone of sugars linked together by the
phosphates with side chains of amine bases attached to each sugar. This implies
that a DNA or RNA molecule can be specified uniquely by listing the sequence
of amine base side chains starting from one end of the sequence of nucleotides.
The two ends of a nucleotide sequence are conventionally denoted the 5’ end
and the 3’ end. These names refer to the orientation of the sugars along the
backbone. It is common to start the listing of the amine base side chains from
the 5’ end of the sequence. Since there is only four possible amine base side
chains, the listing can be described as a string over a four letter alphabet.

Proteins are polymers that consists of amino acids linked together by pep-
tide bonds. An amino acid consists of a central carbon atom, an amino group,
a carboxyl group and a side chain. The side chain determines the type of the
amino acid. As illustrated in Figure 1.2 chains of amino acids are formed by
peptide bonds between the nitrogen atom in the amino group of one amino
acid and the carbon atom in the carboxyl group of another amino acid. A
protein thus consists of a backbone of the common structure shared between
all amino acids with the different side-chains attached to the central carbon
atoms. Even though there is an infinite number of different types of amino
acids, only twenty of these types are encountered in proteins. Similar to DNA
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Rl O R/l O Rl/l O R/l/

I I I I
NH—CH—C  NH—CH—C NH—CH—C  NH—CH—C

Figure 1.2: An abstract illustration of a segment of a protein. It shows that
the molecule consists of a backbone of elements shared between the amino acids
with a variable side chain attached to the central carbon atom in each amino
acid. The peptide bonds linking the amino acids are indicated by gray lines.

and RNA molecules, it is thus possible to uniquely specify a protein by listing
the sequence of side chains. Since there is only twenty possible side chains, the
listing can be described as a string over a twenty letter alphabet.

The chemical structure of DNA, RNA and protein molecules that makes it
possible to specify them uniquely by listing the sequence of side chains, also
called the sequence of residues, is the reason why these biomolecules are often
referred to as biological sequences. Referring to a biomolecule as a biological
sequence signals that the emphasis is only on the sequence of residues and not
on other aspects of the biomolecule, e.g. its three-dimensional structure. The
correspondence between biological sequences and strings over finite alphabets
has many modeling advantages, most prominently its simplicity. For example,
a DNA sequence corresponds to a string over the alphabet {A, G, C, T}, where
each character represent one of the four possible nucleotides. Similarly, an RNA
sequence corresponds to a string over the alphabet {A, G,C,U}. The relevance
of modeling biomolecules as strings over finite alphabets follows from the way
the genetic material of an organism is stored and used.

Probably one of the most amazing discoveries of this century is that the
entire genetic material of an organism, called its genome, is (with few excep-
tions) stored in two complementary DNA sequences that wound around each
other in a helix. Two DNA sequences are complementary if the one is the
other read backwards with the complementary bases adenine/thymine and gua-
nine/cytosine interchanged, e.g. ATTCGC and GCGAAT are complementary
because ATTCGC with A and T interchanged and G and C interchanged be-
comes TAAGCG, which is GCGAAT read backwards. Two complementary
bases can form strong interactions, called base pairings, by hydrogen bonds.
Hence, two complementary DNA sequences placed against each other such that
the head (the 5’ end) of the one sequence is placed opposite the tail (the 3’ end)
of the other sequence is glued together by base pairings between opposition
complementary bases. The result is a double stranded DNA molecule with the
famous double helix structure described by Watson and Crick in [201]. Despite
the complex three-dimensional structure of this molecule, the genetic material
it stores only depends on the sequence of nucleotides and can thus be described
without loss of information as a string over the alphabet {A,G,C,T}.

The genome of an organism contains the templates of all the molecules



1.2. Biological Sequences )

2nd
1st U C A G 3rd
PHE SeEr Tyr Cvs
PHE SeEr Tyr Cvs
U Leu Ser TC TC
Leu Ser TC Trp

Leu Pro His ARrc
Leu Pro His ARrc
C LEu Pro GLN ARG
LEu Pro GLN ARG

ILE THR ASN SER
ILE THR ASN SER
A IrE THR Lys ARc
MeET THR Lys ARG

VaL  Ara  Asp  GLy
VAL Ara Asp  GLy
G VAL Ara GLu GLy
VaL  Ara GLu GLy

QrFraoc QrFac QrFaoc QFad

Figure 1.3: The genetic code that describes how the 64 possible triplets of
nucleotides are translated to amino acids. The table is read such that the
triplet AUG encodes the amino acid MET. The three triplets UAA, UAG and
UGA are termination codons that signal the end of a translation of triplets.

necessary for the organism to live. A region of the genome that encodes a single
molecule is called a gene. A chromosome is a larger region of the genome that
contains several genes. When a particular molecule is needed by the organism,
the corresponding gene is transcribed to an RNA sequence. The transcribed
RNA sequence is complementary to the complementary DNA sequence of the
gene, and thus — except for thymine being replaced by uracil — identical to the
gene. Sometimes this RNA sequence is the molecule needed by the organism,
but most often it is only intended as an intermediate template for a protein.

In eukaryotes (which are higher order organisms such as humans) a gene
usually consists of coding parts, called exons, and non-coding parts, called
introns. By removing the introns and concatenating the exons, the intermediate
template is turned into a sequence of messenger RNA that encodes the protein.
The messenger RNA is translated to a protein by reading it three nucleotides at
a time. Each triplet of nucleotides, called a codon, uniquely describes an amino
acid which is added to the sequence of amino acids being generated.

The correspondence between codons and amino acids are given by the almost
universal genetic code shown in Figure 1.3. For example, the RNA sequence
UUC CUC is translated to the amino acid sequence PHE LEU. Finding the genes
in a genome are of immense interest. It is difficult and not made any easier by
the fact that every nucleotide in the genome can be part of up to six different
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genes. This follows because a nucleotide can end up in any of the three positions
in a codon depending on where the transcription starts, combined with the fact
that the genome can be transcribed in both directions.

1.3 Outline of Thesis

The rest of this thesis is divided into two parts. The first part of the thesis is a
partial overview of the field of computational biology with focus on the results
in biological sequence analysis and structure prediction that are described in
the papers presented in the second part of the thesis.

The first part consists of three chapters. In Chapter 2 we consider prob-
lems of comparing biological sequences and biological sequence families. We
focus on methods for comparing two biological sequences in order to determine
their evolutionary relatedness, and on methods for comparing entire biological
sequence families. This involves the more abstract problem of comparing two
hidden Markov models. In Chapter 3 we consider problems of finding regulari-
ties in strings. We focus on methods for finding tandem repeats, maximal pairs
and maximal quasiperiodic substrings. The methods we present are general
string algorithms that can be applied to biological sequence analysis because
biological sequences are strings. In Chapter 4 we consider problems in struc-
ture prediction concerned with predicting elements of the full three-dimensional
structure of a biomolecule from its description as a biological sequence. We fo-
cus on methods for predicting the secondary structure of RNA sequences, and
on methods for predicting the tertiary structure of proteins.

The second part consists of Chapters 5 through 10. Each of these six chap-
ters contains a reprint of a paper that present research done during my Ph.D.
program. Each chapter is self-contained and begins with a short description of
the publication status of the results presented in the chapter.



Part 1

Overview






Chapter 2

Comparison of Sequences

This was their finest hour.
— Winston S. Churchill, House of Commons, June 18, 1940.

Sequences of characters are among the primary carriers of information in our
society. Textual sources such as books, newspapers and magazines document
almost every corner of society and provide information for future generations.
Reading and comparing the information contained in fragments of old textual
sources help historians to reconstruct the history of objects and events.

For a biologist interested in the history of life, fragments of biological se-
quences that describe the genetic material of organisms serve much the same
purpose as fragments of old texts to a historian. Just as new texts are printed
everyday and old texts disappear, the genetic material evolves by small dis-
crete changes, called mutations or evolutionary events, that over the course of
evolution result in a multitude of different organisms. Mutations that result
in organisms that are unfit to survive in the real world most likely result in a
branch of evolution that quickly wither away. As the genetic material is stored
in DNA sequences and reflected in RNA and protein sequences, it makes sense
to compare two or more biological sequences that are believed to have evolved
from the same ancestral sequence in order to look for similarities and differ-
ences that can help to infer knowledge about the relatedness of the sequences
and perhaps to reconstruct part of their common evolutionary history.

For a historian who has to dig through thousands of pages of text in order
to establish the circumstances of a historical event the amount of information
available can seem staggering, but usually it is nothing compared to the amount
of information that face a biologist in terms of known biological sequences. Cur-
rently (in July 1999) GenBank, which is a database of known DNA sequences,
contains approximately 2.975.000.000 characters distributed in 4.028.000 se-
quences. This corresponds to a book of 743.750 pages each containing 50 lines
of 80 characters. The amount of available data is staggering and grows fast,
e.g. in [7] it is referred that plans are that the complete human genome consist-
ing of approximately 3.500.000.000 characters will be sequenced and available
for analysis by the end of year 2001. (On June 26, 2000, Celera Genomics,
www.celera.com, announced the first assembly of the complete human genome
consisting of 3.12 billion base pairs.) To dig through such an amount of data
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one cannot expect to get far by manual methods. Computational methods to
analyze the data are needed. In this Chapter we focus on methods that can be
applied to compare biological sequences. In Section 2.1 we focus on the com-
parison of two sequences in order to determine their evolutionary relatedness.
This relates to the work in our paper Comparison of Coding DNA presented in
Chapter 5. In Section 2.2 we focus on the comparison of more sequences with
an emphasis on comparing families of sequences. This relates to the work in
our paper Measures on Hidden Markov Models presented in Chapter 6.

2.1 Comparison of Two Sequences

When comparing two objects a direct approach is to look for similarities in their
appearance. For example, to compare people by their eye colors or the shape of
their noses. A more indirect approach is to look for similarities in their history.
For example, to compare people by their genealogies. Which approach should
be taken depends on the objects and the purpose of the comparison. When
comparing two biological sequences both approaches are applicable. The direct
approach makes sense because similarities between biological sequences indicate
common functionality or three dimensional structure. The indirect approach
makes sense because differences between biological sequences can be explained
by evolution of the genetic material. Because similarity and evolutionary relat-
edness of biological sequences are highly correlated it is difficult to draw a clear
line between the two approaches.

We focus on the problem of comparing two biological sequences in order to
determine their relatedness based on the evolution that has occurred between
them. The evolution of a biological sequence is commonly explained as a se-
ries of evolutionary events that have transformed an ancestral sequence into
the sequence. Two sequences are said to be homologous if they have evolved
from a common ancestral sequence. The evolution between two homologous
sequences, called their evolutionary history, can be explained as the evolution-
ary events that have occurred in the evolution from the common ancestor to
the two sequences. The answer to the question of the evolutionary relatedness
of two sequences should be based on their evolutionary history. Most often
we can only guess on the evolutionary history of two homologous sequences
because no information about the common ancestor or the occurred events is
available. To make an educated guess we can use an evolutionary model that
models the evolution of sequences in such a way that the evolutionary history
according to the evolutionary model can be inferred computationally. In the
following sections we first describe a widely used way of modeling evolution and
formalizing evolutionary relatedness, and then review methods for computing
the evolutionary relatedness of two sequences based on this formalization.

2.1.1 Evolutionary Models

An evolutionary model is an abstraction of evolution in nature; biological se-
quences are abstracted as strings over a finite alphabet X, evolutionary events
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TTGCTG

insert TGC
TTG TTGCTC

insert TGC

TTC

Figure 2.1: Two possible evolutions from TTG to TTGCTC.

are limited to events from a set £ of allowed events, and evolution is quanti-
fied by a score function that assigns a score to every possible way of evolving
one string into another by a sequence of allowed events. For example, DNA
sequences are usually abstracted as strings over the alphabet {A,G,C, T} and
the evolutionary events acting on them limited to substitutions, insertions and
deletions of characters. Figure 2.1 shows two possible evolutionary paths from
TTG to TTGCTC that both involves one substitution and one insertion.

To predict evolution we need a guideline. A biological reasonable guideline
is the parsimony principle which says that evolution in nature follows the path
of least resistance. Hence, if we construct the score function of an evolutionary
model such that the cost cost(x £ y) of evolving string = into string y by a
sequence F of events is a measure of the believed resistance of the corresponding
evolutionary path in nature, then the parsimony principle tells us that the most
likely evolutionary path chosen by nature to evolve one string into another is
a sequence of events of minimum cost. This leads to the definition of the
parsimony cost of evolving string x into string y as the minimum cost of a
sequence of events that evolves x into y, that is

evol(x,y) = min{ cost(z £ y) | Ee&*}. (2.1)

Two homologous sequences a and b are not necessarily related by a direct
evolutionary path but rather via a common ancestor ¢ that has evolved into a
and b respectively. The total parsimony cost evol(c,a) + evol(c,b) of evolving
the common ancestor ¢ into the sequences a and b is thus a measure of the
evolutionary relatedness of a and b. An evident problem of this measure is that
the common ancestor c is usually unknown. The parsimony principle yields a
solution saying that since nature is cheap, a good guess on a common ancestor
is a sequence that minimizes the total parsimony cost of evolving into a and b.
This leads to the definition of the evolutionary distance between two homologous
sequences a and b as the minimum total parsimony cost of evolving a common
ancestor into a and b, that is

dist(a,b) = min{evol(c,a) + evol(c,b) | ¢ € £*}. (2.2)
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The evolutionary distance is a widely used way of formalizing the evolution-
ary relatedness of biological sequences, e.g. [171, 173, 102, 78, 19]. Most often it
is formulated under two reasonable assumptions that simplify its computation
by eliminating the need to minimize over all possible common ancestors.

The first assumption is that the score function is additive. Since we have
already assumed that evolution can be explained as discrete events it seems
reasonable to define the cost of a sequence of events as the sum of the costs of
each event. Let cost(x > ) be a function that assigns costs to transforming =
into y by a single event e. Let E be a sequence of events ey, es,..., e, that
transforms one string z(*) into another string 2 as (0 £ z(1) & ... K (k)
The cost of evolving string (9 into string %) by the sequence of events E is

k
cost (z¥) £ 2y = Z cost(z01) & 200y (2.3)
i=1

The second assumption is that events are reversible, that is, for any event e
that transforms z into y, there is an event ¢/ that transforms y into x such that
cost(z = y) = cost(y < x), then instead of considering the possible evolutions
from ¢ to a and from ¢ to b, we can reverse the direction and consider the
possible evolutions from «a to ¢ and from ¢ to b. Combined with the assumption
of an additive score function this simplifies Equation 2.2 to

dist(a,b) = min{evol(a, c) + evol(c,b) | c € £*}
¢) + cost(c E b) | ceX*and E,E' € £&*} (2.4)
b) | E€ &}

= min{cost(a £
= min{ cost(a LA

The hardness of computing the evolutionary distance between two strings a
and b and its relevance as a measure of the evolutionary relatedness of the
corresponding biological sequences depends entirely on the parameters of the
underlying evolutionary model. The allowed events should be chosen to reflect
the events that are believed to have been important in the evolution of the
biological sequences in nature and the score function should be chosen to reflect
the believed frequency of these events.

In nature evolutionary events affect DNA sequences directly and are re-
flected in the encoded RNA and protein sequences. The most frequent evo-
lutionary events are substitution of a nucleotide with another nucleotide, and
insertion or deletion of a small block of consecutive nucleotides. Less frequent
evolutionary events are events that change larger segments of a DNA sequence
such as inversion that replace a segment with the reversed segment, transposi-
tion that moves a segment, and translocation that exchanges segments between
the ends of two chromosomes, and duplication that copies a segment.

When considering the most frequent events substitutions, insertions and
deletions, the problem of computing the evolutionary distance is usually for-
mulated as an alignment problem. We return to this approach in the next
section. When considering the less frequent events, e.g. inversion, the problem
of computing the evolutionary distance is usually called genome rearrangement
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T G
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Figure 2.2: An alignment of TTG and TTGCTC.

to indicate that these events rearrange larger parts of the genome. Most work
in this area has been done on computing the so called inversion (or reversal) dis-
tance between a sequence of genes. The general idea is to abstract the genome
as an integer sequence where each integer represent an encoded gene. Given
two integer sequences (the one can without loss of generality be assumed to be
the sorted sequence) that describe the order of the same genes in two genomes,
the problem is to determine the minimum number of inversions that translate
the one sequence into the other. For example, 3241 can be transformed into
1234 by two inversions as 3241 — 3214 — 1234. The problem of computing the
inversion distance between two integer sequences has been shown NP complete
in [35]. Variations of the problem have been studied, e.g. [63, 27, 187], and
several approximation algorithms have been formulated, e.g. [103, 18].

The modeling of sequence evolution and the derived measure of evolutionary
distance as presented in this section is of course not the only approach to
formalize the evolutionary relatedness of sequences, but it is probably the most
widely used due to its connection to the alignment problem addressed in the
next section. Another approach is to model evolution as a stochastic process and
to define the score of a sequence of events as the likelihood of that sequence
of events as the outcome of the stochastic process. The evolution between
two sequences is then predicted as the most likely sequence of events under
assumption of the model. One such model is presented by Thorne, Kishino and
Felsenstein in [182]. An advantage of the stochastic approach is that it provides
a statistical framework that allows us to talk about the likelihood of different
evolutionary paths. This makes it more natural to model that evolution in
nature most likely, but not necessarily, follows the path of least resistance.

2.1.2 Pairwise Alignment

An alignment of two strings is a way to communicate a comparison of the two
strings. Formally, an alignment of two strings a and b over an alphabet ¥ is a 2 x
¢ matrix where the entries are either characters from the alphabet or the blank
character “—” such that concatenating the non-blank characters in the first and
second row yields the strings a and b respectively. Two non-blank characters
in the same column of an alignment are said to be aligned, or matched, by the
alignment. A maximal block of columns in an alignment where one row consists
of only blank characters is called a gap in the alignment. Figure 2.2 shows an
alignment of TTG and TTGCTC with three matches and one gap. Columns
of two blank characters are normally not allowed in an alignment because they
have no meaning in most interpretations of an alignment.
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An alignment score function is a function that assigns a score to each possi-
ble alignment that describes its quality with respect to some criteria. Depending
on the score function, we say that an alignment of @ and b with either minimum
or maximum score has optimal score and is an optimal alignment of a and b.
The alignment problem for a given alignment score function is to compute an
optimal alignment of two strings a and b.

The alignment notation has been used to compare biological sequences to
such an extend that the word “alignment” in many contexts is synonymous
with the phrase “comparison of two biological sequences”. Responsible for this
success is that the alignment notation is useful both as a way to emphasize
similarities between strings, and as a way to explain differences between strings
in terms of substitutions, insertions and deletions of characters. The success is
also due to the fact that efficient methods to solve the alignment problem for
biological reasonable score functions have been known since the late 1960’s. We
review these methods in the next section.

It should come as no surprise that there are many opinions on how to con-
struct a biological reasonable alignment. Much work has been done to construct
alignment score functions that attempt to capture how an “expert” would align
two sequences. In the rest of this section we review how to formulate an align-
ment score function that connects the alignment problem with the problem of
computing the evolutionary distance cf. Equation 2.4. We take a slightly more
general approach than what is common in the literature, e.g. [171, 173], because
we want to emphasize the connection between the alignment problem using a
classical score function and the alignment problem using the more complicated
score function presented in Chapter 5 by explaining how both score functions
are instances of the same general score function.

The idea is to view an alignment of two strings a and b as describing a set of
substitutions, insertions and deletions of characters that explain the difference
between a and b. The aligned characters describe substitutions, and the gaps
describe insertions and deletions. For example, the alignment in Figure 2.2
explains the difference between TTG and TTGCTC by a substitution and an
insertion that can transform TTG into TTGCTC as shown in Figure 2.1. We
define the score of an alignment of a and b as the cheapest way of transforming a
into b by a sequence of the events described by the alignment, that is, the score
of an alignment A of a and b that describes events eq,es, ..., e is

score(A) = min{cost(a EN b) | E=m(e1,ea,...,ex)}, (2.5)
and the score of an optimal alignment of a and b is
align(a,b) = min{score(A) | A is an alignment of a and b} . (2.6)

The function cost(x LA y) that assigns costs to transforming x into y by
a sequence F of events is defined cf. Equation 2.3, that is, defined in terms
of a function cost(z — y) that assigns costs to transforming z into y by a
single event e. Since an event is either a substitution, insertion or deletion, this
cost function is commonly specified by two functions; the substitution cost that
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assigns costs to transforming x into y by a single substitution, and the gap cost
that assigns costs to transforming x into y by a single insertion or deletion.

The optimal alignment score of a and b defined by Equation 2.6 is almost
the same as the evolutionary distance between a and b defined by Equation 2.4
when allowed evolutionary events are limited to substitutions, insertions and
deletions. However, there is a subtle difference because different sequences of
events are considered. When computing the evolutionary distance cf. Equa-
tion 2.4 we minimize over all possible sequences of substitutions, insertions,
and deletions that can transform a into b. When computing the optimal align-
ment score cf. Equation 2.6 we only minimize over sequences of substitutions,
insertions, and deletions that can be expressed as an alignment. This excludes
sequences of events where several events act on the same position in the string,
e.g. a substitution of a character followed by a deletion of the character. Ex-
cluding such sequences of events can be justified by the parsimony principle by
saying that nature is unlikely to use two events if one is enough.

For most biological reasonable choices of score function, i.e. substitution
and gap cost, the difference in definition between optimal alignment score and
evolutionary distance is thus irrelevant because the score function ensures that
the cheapest sequence of events which yields the evolutionary distance is not a
sequence excluded when computing the optimal alignment score. For example,
Wagner and Fisher in [196], and Sellers in [173], show that if the substitution
cost is a metric that only depends on the characters being substituted, and the
gap cost is a sub-additive function that only depends on the length of the inser-
tion or deletion, then the cheapest sequence of events that transform one string
into another can always be expressed as an alignment. This can be generalized
to most reasonable score functions including the one presented in Chapter 5.
We will not delve by this issue but concentrate on the algorithmic aspects of
computing an optimal alignment using the score function in Equation 2.6 for
various choices of substitution and gap cost. The structure of these functions
decides the complexity of computing an optimal alignment.

Pairwise Alignment using a Classical Score Function

If the substitution cost is given by a function d : ¥ x ¥ — R such that d(o, o)
is the cost of changing character o to character ¢/, and the gap cost is given
by a function g : N — R such that g(k) is the cost of insertion or deletion of k
characters, then we say that the score function is a classical score function.

A classical score function implies that the score of an alignment cf. Equa-
tion 2.5 is the sum of the costs of each event described by the alignment. This
eliminates the need to minimize over all possible orders of the events described
by an alignment when computing the score of the alignment, e.g. the score of
the alignment in Figure 2.2 is d(T,T)+¢(3)+d(T,T)+d(G, C). We say that the
classical score of an alignment does not depend on the order in which the events
described by the alignment take place. This is a significant simplification that
makes it possible to compute an optimal alignment of two strings efficiently.

Let D(i,j) denote the score of an optimal alignment of the prefixes a[l .. 1]
and b[1..j] of the two strings a and b of lengths n > m. The score of an
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optimal alignment of a and b is D(n,m). Since the score of an alignment does
not depend on the order of the events, we can choose to compute it as the sum
of the cost of the rightmost event and the costs of the remaining events. The
rightmost event in the alignment in Figure 2.2 is the substitution of G with C
described by the rightmost column and the remaining alignment are the events
described by the other five columns. We can thus compute the score D(, j) of an
optimal alignment of a[1 .. 4] and b[1 .. j] by minimizing the sum of the cost of the
rightmost event and the optimal cost of the remaining events over all possible
rightmost events. The rightmost event is either a substitution, an insertion of
length k, or a deletion of length k. This leads to the following recurrence for
computing D(i, j), where D(0,0) = 0 is the terminating condition.

D(i—1,j — 1) +d(ali],blj]) ifi>0,;j>0

D(i,j) =min{ Min{D(i—kj)+g(k)}  ifi>0,7=0 (2.7)
Oglm (D) gk} ii>0,7>0

By using dynamic programming, i.e. storing the score D(i,j) in a table
entry when computed for the first time, this recurrence gives an algorithm that
in time O(n3) computes the optimal score D(n,m) of an alignment of a and b.
By using the table storing the scores D(i,7) for 0 < i <n and 0 < j < m that
was built during the computation of the optimal score D(n,m), we can compute
an optimal alignment of a and b, and not only its score, by backtracking the
steps of the computation of D(n,m) to successively decide what was chosen as
the rightmost event. For each step in the backtracking we have to decide among
O(n) possible rightmost events, so backtracking takes time O(n?).

The ideas of this dynamic programming method to compute the optimal
score of an alignment of two strings were presented by Needleman and Wunsch
n [149]. Their motivation for developing the method was not to compute the
evolutionary distance, but to detect similarities between amino acid sequences.
In their presentation of the method they want to maximize a similarity instead
of minimizing a cost. The original method by Needleman and Wunsch is cleanly
explained by Waterman, Smith and Byers in [200].

In many cases the structure of the gap cost allows for a more efficient com-
putation than the one just outlined. If the gap cost is linear, i.e. g(k) = ak for
a > 0, then the cost of a gap of length k is equal to the cost of k gaps of length
one. In this case the score of an alignment can be computed by considering
the columns of the alignment independently. Using the above terminology, the
rightmost event is either a substitution, an insertion of length one, or a deletion
of length one. This leads to the following simplification of the above recurrence
where we avoid to consider all possible gap lengths.

D(i— 1,5 —1) +d(ali],b[j]) ifi>0,j>0
D(i,j) =min{ D(i—1,j) +a ifi>0,j>0 (2.8)
D(i,j—1)+a ifi>0,j>0
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By using dynamic programming this simplified recurrence gives an algorithm
that in time O(n?) computes an optimal alignment of two strings a and b of
lengths at most n using linear gap cost. The score of an optimal alignment
of two strings using linear gap cost is often referred to as the weighted edit
distance cf. [196], or the weighted Levenshtein distance cf. [117], between the
two strings. (If the gap cost only counts the number of inserted or deleted
characters, i.e. g(k) = k, and the substitution cost only depends on the equality
of the characters, i.e. d(z,y) = 0 if z = y and d(z,y) = 1 if = # y, then the
prefix “weighted” is removed.)

Distance measures between strings similar to the weighted edit distance, and
dynamic programming methods based on recurrences similar to Equation 2.8,
have been presented independently by several authors in areas such as speech
processing, molecular biology, and computer science. Kruskal in [112, pp. 23—
29] gives a good overview of the history and the various discoveries of methods
to compute measures similar to the weighted edit distance. These methods are
the founding algorithms of computational biology and one feels tempted to de-
scribe the period of their discovery by the quote beginning this chapter. Sankoff
in [171] formulates a method motivated by comparison of biological sequences.
He also describes a variation of the method that makes it possible to specify a
bound on the maximum number of insertions and deletions allowed. Wagner
and Fisher in [196] formulate a method motivated by automatic spelling cor-
rection. They also note that the method for a particular choice of substitution
and gap cost can be used to compute the longest common subsequence of two
strings. Sellers in [173] considers the mathematical properties of the weighted
edit distance and shows that if the substitution cost is a metric on characters,
then the weighted edit distance is a metric on strings.

Biologists tend to believe that longer gaps (insertions or deletions) are more
common than shorter gaps, e.g. [55, 65, 23]. To model this belief the gap cost
should penalize shorter gaps and favor longer gaps. A commonly used way
to do this is to use an affine gap cost function, i.e. a function of the form
g(k) = ak +  for o, > 0. Gotoh in [67], and others in [61, 3], show how
to compute an optimal alignment of two strings of lengths at most n using
affine gap cost in time O(n?). A more general way is to use a concave gap cost
function, i.e. a function g where g(k + 1) — g(k) < g(k) — g(k — 1) as proposed
by Waterman in [198]. Both Miller and Myers in [140], and Eppstein, Galil and
Giancarlo in [52], show how to compute an optimal alignment of two strings
of lengths at most n using concave gap cost in time O(n?logn). Choosing a
biological reasonable gap cost is difficult. Biologists want to use a gap cost
function that results in the best alignment according to an “experts opinion”.
Many empirical studies have been done, e.g. Benner et al. in [23] propose a
concave gap cost function g(k) = 35.03 —6.88logqd + 17.021og, k for aligning
proteins (where the parameter d is chosen to indicate how much the proteins
are believed to have diverged during evolution).

From an algorithmic perspective it is interesting to note that the align-
ment problem for certain non-trivial choices of substitution and gap cost can
be solved more efficient than using the simple quadratic time dynamic pro-
gramming method. Hunt and Szymanski in [93] show how to compute the
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A1 A2 Ag A4 A5
1.1.1 2.2 2 3,33 4.4 4 5,.5.5
a1a2a3 a1a2a3 - - - a1a2a3 a1a2a3 ______ a1a2a3

a: a%a%aé a%a%ag a?l’a%ag a‘lla%ag a‘?agag

A A1A2A3A4A5

Figure 2.3: If the coding DNA sequence a of a gene encodes a protein A then
each amino acid in A is encoded by a triplet of consecutive nucleotides in a.
A triplet of nucleotides that encodes an amino acid is called a codon. Because
of introns (non-coding parts of the genome) the codons in the coding DNA
sequence of the gene are not necessarily consecutive in the genome.

longest common subsequence of two strings a and b of lengths at most n in
time O(rlogn) where r = |{(¢,7) | a[i] = b[j]}|.- In the worst case the param-
eter r is O(n?) but if a and b are strings over a large alphabet then it can be
expected to be much smaller. In the worst case the method is thus slower than
the simple dynamic programming method but if the alphabet size is large it
can be expected to perform better. Masek and Paterson in [133] show how to
compute the edit distance between two strings a and b of lengths at most n
in time O(n?/log?n). They use a general technique to speed up dynamic pro-
gramming methods introduced in [13] that is commonly known as the “Four
Russians” technique. This technique is also used by Myers in [146, 147] to
formulate efficient methods for regular expression pattern matching.

So far we have only been concerned with the time it takes to compute an
optimal alignment but space consumption is also important. The dynamic
programming methods presented above to compute an optimal alignment of
two strings of lengths at most n uses space O(n?) to store the table of scores
D(i,j) used during backtracking. If we avoid backtracking, and only want to
compute the score of an optimal alignment, then the space consumption can
be reduced to O(n) by observing that the table of scores can be computed row
by row. The observation follows because the content of a row only depends on
the content of the previous row. It is however not obvious how to compute an
optimal alignment, and not only its score, in space O(n).

Hirschberg in [86] presents how to compute the longest common subsequence
of two strings of lengths at most n in time O(n?) and space O(n). The method
he uses to compute the longest common subsequence is a dynamic program-
ming method based on a recurrence similar to Equation 2.8. The space-saving
technique can thus be used to compute an optimal alignment of two strings of
lengths at most n using linear gap cost in time O(n?) and space O(n). The
technique is generalized by Myers and Miller in [148] to compute an optimal
alignment of two strings of lengths at most n using affine gap cost in time O(n?)
and space O(n). The technique has become a “common trick” to reduce the
space consumption of dynamic programming methods based on recurrences sim-
ilar to Equation 2.8. A different formulation of the space-saving technique is
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presented by Durbin et al. in [46, Section 2.6]. This formulation makes it easier
to adapt the technique to more complicated dynamic programming alignment
methods, e.g. the alignment method based on the DNA /Protein score function
presented in Chapter 5 and reviewed in next section.

The applications and variations of the alignment methods reviewed in this
section are too many to mention. One very popular application is to use align-
ment methods to search among known sequences stored in a database for se-
quences that are similar, or closely related, to a new sequence. Heuristic align-
ment methods such as BLAST [4, 5] and FASTA [118, 119] are probably some
of the most used programs in biological sequence analysis. These heuristics
achieve a significant speedup compared to the exact dynamic programming
method reviewed in this section. This speedup is vital for a biologist who want
to search large sequence databases such as GenBank several times a day.

Pairwise Alignment using the DNA /Protein Score Function

In Section 1.2 we explained how proteins are encoded by genes. Figure 2.3
illustrates that each triplet of nucleotides, called a codon, in the coding DNA
sequence of a gene encodes an amino acid of the encoded protein cf. the genetic
code. The redundancy of the genetic code makes it possible for very different
looking DNA sequences to encode the same protein. For example, the two
DNA sequences TTGTCT CGC and CTT AGC AGG both encode the same
amino acids LEU SER ARG. This shows that many mutations can occur in a
DNA sequence with little or no effect on the encoded protein and implies that
proteins evolve slower than the underlying coding DNA sequences.

If we want to compare two DNA sequences that both encode a protein it
is difficult to decide whether to compare the DNA sequences or the encoded
proteins. If we chose to compare the DNA sequences we risk missing similari-
ties that are only visible in the slower evolving proteins, on the other hand, if
we chose to compare the proteins there is no way of telling how alike the un-
derlying codons of two amino acids are and we restrict ourselves to insertions
and deletions of amino acids instead of nucleotides. It would be desirable to
consider the DNA sequences and the encoded proteins simultaneously.

Hein in [83] presents an algorithm that aligns coding DNA sequences us-
ing a score function that models that an event on a coding DNA sequence
also influences the encoded protein. We refer to this score function as the
DNA /Protein score function. Hein shows how to compute an alignment of two
strings of lengths at most n with minimum DNA /Protein score in time O(n?).
In Chapter 5 we examine the DNA /Protein score function in details and present
an improved algorithm that computes an alignment of two strings of lengths
at most n with minimum DNA /Protein score in time O(n?). The alignment
problem using score functions derived from the DNA /Protein score function is
considered by Arvestad in [14] and Hua, Jiang and Wu in [89].

The DNA /Protein score function is a hierarchical score function that pe-
nalizes a substitution, insertion or deletion of a nucleotide on the DNA level
and on the protein level. Let a be a DNA sequence that encodes a protein A
as illustrated in Figure 2.3. An event that transforms a to o’ affects one or
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LeEUu Leu

TTGCTG

insert TGC

Leu LEU

TTGCTC

LEU

TTG

insert TGC

PHE

TTC

ca(G,C) + g4(3) + dist,(LEU, LEU LEU) + dist,(LEU LEU, LEU LEU)

cd(G,C) + g4(3) + dist,(LEU, PHE) + dist,(PHE LEU, LEU LEU)

Figure 2.4: The alignment of TTG and TTGCTC in Figure 2.2 describes the
substitution G — C and the insertion of TGC. These two events can occur in
two different orders with different DNA /Protein score. The DNA /Protein score
of the alignment thus depends on the order in which the events take place.

more codons and therefore also transforms the encoded protein from A to A’.
Because of the redundancy in the genetic code it is possible that A and A’ are
equal. The cost of an event is the sum of its DNA level cost and its protein level
cost. The DNA level cost should reflect the difference between a and a’. This
is done by a classical score function that specifies the DNA level cost of sub-
stituting a nucleotide x with y as the DNA level substitution cost c4(z,y), and
the DNA level cost of inserting or deleting k& nucleotides as the DNA level gap
cost g4(k). The protein level cost should reflect the difference between A and A’'.
This is done by defining the protein level cost of an event that changes A to A’
as the distance between A and A’ given by the score of an optimal alignment
of A and A" when using a classical score function with substitution cost ¢, and
gap cost gp. We use dist,(A, A’) to denote this distance and say that ¢, is the
protein level substitution cost and that g, is the protein level gap cost.

The DNA /Protein score of an alignment of two strings is defined cf. Equa-
tion 2.6 as the cheapest way of transforming the one string into the other string
by a sequence of the events described by the alignment, where the cost of each
event is given by the DNA /Protein score function. Figure 2.4 illustrates that
in contrast to the classical score of alignment, the DNA /Protein score of an
alignment depends on the order in which the event take place. The reason is
that the protein level cost dist,(A, A’) of an event that changes A to A’ can
depend on all the characters in A and A’, and therefore can depend on all the
events that have occurred before it. An important step towards formulating an
efficient alignment algorithm using the DNA /Protein score function is to reduce
this dependency. Two reasonable assumptions make this possible.
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The first assumption is to restrict insertions and deletions to lengths that
are divisible by three. The reason for this assumption is that an insertion or
deletion of length not divisible by three changes the reading frame and causes a
frame shift. Figure 5.1 on page 72 illustrates that a frame shift in a sequence of
coding DNA has the power to change the entire suffix of the encoded protein.
The assumption to disregard frame shifts can be justified by their rareness in
nature that is due to their dramatic effects. The absence of frame shifts implies
that an event on a sequence of coding DNA only changes the encoded protein
locally, that is, if an event affects only nucleotides in codons that encode a
segment X of A, then it changes A = UXV to A’ = UX'V. The second
assumption is restrictions on the protein level substitution and gap cost such
that the protein level cost of an event only depends on the amino acids that
are encoded by codons affected by the event, that is, such that the protein level
cost of an event that changes A = UXV to A’ = UX'V only depends on X
and X’. The details are stated in Section 5.2.3 and Lemma 5.1 on page 74.

These two assumptions make it possible to compute the protein level cost
of an event as illustrated in Figure 5.3 on page 73. In Section 5.3 we explain
how this simplification of the protein level cost makes it possible to decompose
an alignment into codon alignments and compute the DNA /Protein score of
the alignment by summing the DNA /Protein score of each codon alignment.
A codon alignment is a minimal part of the alignment which aligns an inte-
ger number of codons. Figure 2.5 shows an alignment decomposed into codon
alignments. Figure 5.5 on page 76 shows another example of an alignment de-
composed into codon alignments. The DNA /Protein score of each codon align-
ment can be computed independently by minimizing over all possible orders of
the events described by the codon alignment. Hence, if each codon alignment
describes at most some fixed number events independent of the total number
of events in the alignment, then the DNA /Protein score of the alignment can
be computed in time proportional to the number of codon alignments in the
decomposition. This would be a significantly speedup compared to consider-
ing all possible orders of the events described by the entire alignment, and an
important step towards an efficient alignment algorithm.

Unfortunately, as explained in Section 5.3, a codon alignment in the decom-
position of an alignment can describe as many events as the alignment itself.
The way to circumvent this problem is to consider only alignments that can
be decomposed into (or built of) codon alignments that describe at most some
fixed number of events. In the appendix after Section 5.7 we show that if the
combined gap cost g(k) = ga(3k) + gp(k) is affine, i.e. g(k) = ak+ 3, and obeys
that o > 24 > 0, then an alignment with minimum DNA /Protein score can
always be decomposed into codon alignments that describe at most five events.
The fifteen different types of codon alignments that describe at most five events
are shown in Figure 5.7 on page 77 and Figure 5.14 on page 89.

If we adhere to this assumption on the combined gap cost, the alignment
problem using the DNA /Protein score function is thus reduced to computing
an alignment of minimum DNA /Protein score that can be decomposed into
codon alignments that describe at most five events. The fifteen types of codon
alignments that describe at most five events are thus the building blocks of the
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Figure 2.5: Splitting an alignment into codon alignments.

alignments we have to consider in order to find an optimal alignment. When
using a classical score function we can compute the score of an alignment as the
sum of the cost of the rightmost event and the costs of the remaining events.
Similarly, when using the DNA /Protein score function we can compute the score
of an alignment as the sum of the cost of the rightmost codon alignment and the
costs of the remaining codon alignments, where the cost of a codon alignment is
its DNA /Protein score. This observation suggests a simple algorithm for com-
puting an optimal alignment using the DNA /Protein score function presented
by Hein in [83] and summarized in Section 5.4.

The general idea of the algorithm is similar to Equation 2.8. We construct
a table D where entry (7, ) holds the score of an optimal alignment of a[l .. 3i
and b[1..3j]. To compute entry (i,j) we minimize over all possible rightmost
codon alignments of an alignment of a[1 .. 3¢] and b[1 .. 3j], the sum of the cost of
the rightmost codon alignment and the optimal cost of the remaining alignment.
The cost of the rightmost codon alignment can be computed in constant time
as it describes at most five events. The optimal cost of the remaining alignment
is D(i',j), where i and j’ depend on the choice of rightmost codon alignment.
By using dynamic programming this implies that we can compute entry (i, 7)
in time proportional to the number of possible rightmost codon alignments in
an alignment of a[l..3i] and b[1..3;]. This number is bounded by O(i% + j2).
In total this gives an algorithm that computes an alignment of two strings of
lengths at most n with minimum DNA /Protein score in time O(n*).

In Section 5.5 we describe how to construct an alignment that computes
an alignment of two strings of lengths at most n with minimum DNA /Protein
score in time O(n?). The general idea of the algorithm is similar to the above
algorithm. The problem is to avoid having to minimize over all possible right-
most codon alignments. This problem is solved by a lot of bookkeeping in
arrays that, so to say, keep track of all possible future situations in such a way
that we can pick the best rightmost codon alignment in constant time when
the future becomes the present. The idea of keeping track of future situations
is vaguely inspired by Gotoh [67] who uses three arrays to keep track of future
situations when computing an optimal alignment with affine gap cost. Our
bookkeeping is albeit more complicated. By being careful we “only” have to
keep approximately 400 arrays. This roughly implies that the constant factor
of the O(n?) running time of our method is about 400 times bigger than the
constant factor of the O(n?) running time of an alignment method based on
Equation 2.8. The algorithm as described in Section 5.5 only considers codon
alignments of types 1-11. Extending the algorithm to consider also codon align-
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ments of types 12-15 is not difficult and is done in a recent implementation of
the algorithm available at www.daimi.au.dk/~cstorm/combat.

Using this implementation we have performed some preliminary experiments
to compare the DNA /Protein score function to simpler score functions that ig-
nore the protein level in order to determine the effects of taking the protein level
into account. These experiments indicate that aligning using the DNA /Protein
score function is better than aligning using a score function that ignores the
protein level when there are few changes on the protein compared to the changes
on the underlying DNA. This is not surprising when taking into account how
the DNA /Protein score function is designed. We choose not to describe the
experiments, or the results, in further details because they are preliminary.

2.2 Comparison of More Sequences

A sequence family is a set of homologous sequences. Members of a sequence
family diverge during evolution and share similarities, but similarities that span
the entire family might be weak compared to similarities that span only few
members of the family. When comparing any two members of the family the
faint similarities that span the entire family are thus likely to be shadowed
by the stronger similarities between the particular two members. To detect
similarities that span an entire sequence family it is therefore advisable to use
other methods than just pairwise comparisons of the members.

Comparison of several sequences is a difficult problem that involves many
modeling choices. The comparison of several sequences is typical communi-
cated using a multiple alignment that express how the sequences relate by
substitutions, insertions, and deletions. In this section we focus on methods to
compute multiple alignments and ways to extract a compact characterization
of a sequence family based on a comparison of its members. Such a charac-
terization can be used to search for unknown members of the family, and for
comparison against the characterizations of other families. This relates to the
work presented in Chapter 6.

2.2.1 Multiple Alignment

A multiple alignment of a set of strings S1,S5s,....Sk over an alphabet X is a
natural generalization of a pairwise alignment. A multiple alignment is a k x ¢
matrix A = (a;;), where the entries a;;, 1 < i < kand 1 < j </, are either
symbols from the alphabet or the blank symbol “—”, such that the concatena-
tion of the non-blank characters in row ¢ yields S;. Figure 2.6 shows a multiple
alignment of five strings. Computing a good multiple alignment of a set of
strings is a difficult and much researched problem. Firstly, it involves choosing
a score function that assigns a score to each possible multiple alignment describ-
ing its quality with respect to some criteria. Secondly, it involves constructing
a method to compute a multiple alignment with optimal score.

The sum-of-pairs score function introduced by Carillo and Lipman in [36]
defines the score of a multiple alignment of k strings as the sum of the scores
of the k(k — 1)/2 pairwise alignments induced by the multiple alignment. It
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Figure 2.6: A multiple alignment of five strings.

is difficult to give a reasonable biological justification of the sum-of-pairs score
function but nonetheless it has been widely used, e.g. [16, 68, 145]. If a clas-
sical score function with linear gap cost is used to compute the score of the
induced pairwise alignments, then an optimal sum-of-pairs multiple alignment
of k strings of lengths at most n can be computed in time O(2* - n¥) and space
O(n¥) by a generalization of the dynamic programming method for computing
an optimal pairwise alignment. Despite the simplicity of this multiple alignment
method, its steep running time and space consumption makes it impractical
even for modestly sized sets of relatively short strings.

Wang and Jiang in [197] show that the problem of computing a multiple
alignment with optimal sum-of-pairs score is NP hard. However, the need for
good multiple alignments has motivated several heuristics and approximation
algorithms for computing a multiple alignment with a good sum-of-pairs score.
For example, Feng and Doolittle in [54] present a heuristic based on combining
good pairwise alignments. Combining good pairwise alignments is also the
general idea of the approximation algorithm presented by Bafna et al. in [17]
which in polynomial time computes a multiple alignment of k strings with a
sum-of-pairs score that for any fixed [ < k is at most a factor 2 — [/k from
the optimal score. The approximation algorithm is a generalization of ideas
presented by Gusfield in [73] and Pevzner in [163].

Many score functions other than sum-of-pairs, and corresponding methods
for computing an optimal multiple alignment, have been proposed in the liter-
ature. For example, to construct a multiple alignment of biological sequences
it seems natural to take the evolutionary relationships between the sequences
into account. Hein in [82] presents a heuristic which simultaneously attempts
to infer and use the evolutionary relationships between members of a sequence
family to guide the construction of a multiple alignment of the members of the
sequence family. Krogh et al. in [111] present a popular and successful heuristic
for computing multiple alignments, which use profile hidden Markov models to
describe the relationships between members of a sequence family. We return to
profile hidden Markov models in Section 2.2.2.

A multiple alignment of a set of strings is useful for many purposes. The
relationships between strings expressed by a multiple alignment is used to guide
many methods that attempt to infer knowledge such as evolutionary history, or
common three-dimensional structure, from a set of biological sequences. On the
other hand, knowledge about the evolutionary history, or the common three-
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dimensional structure, of a set of biological sequences can also be used to pro-
duce a good multiple alignment. As mentioned above, the method by Hein
in [82] attempts to incorporate the correspondence between evolutionary his-
tory and multiple alignments into a single method for constructing a multiple
alignment while reconstructing the evolutionary history.

In the rest of this section we will not focus on any specific application of
multiple alignments, but instead focus on the problem of deriving a compact
characterization of a set of strings from a multiple alignment of its members. If
the set of strings is a biological sequence family, such a compact characterization
has at least two interesting applications. Firstly, it can be used to search a
sequence database for unknown members of the family. Secondly, it can be
used to compare sequence families by comparing their characterizations rather
than comparing the individual members of the families.

The consensus string of a set of strings S1,59,...,S5, is a string that at-
tempts to capture the essence of the entire set of strings. There is no consensus
on defining a consensus string, but if a multiple alignment of the set of strings
is available it seems natural to use the relationships expressed by the multiple
alignment to construct the consensus string. Most often this is done by extract-
ing the dominant character from each column in the multiple alignment. In the
simplest case the dominant character is chosen as the most frequent occurring
character, where ties are broken arbitrarily. Because blanks are not part of the
alphabet of the strings, it is common to ignore columns where the dominant
character is a blank. This implies that each position in the consensus string
corresponds to a column in the multiple alignment, but that columns in the
multiple alignment where the dominant character is blank do not correspond
to positions in the consensus string. Using this definition a possible consensus
string of the multiple alignment in Figure 2.6 is the string CTGAGG, where the
sixth column does not correspond to a position in the consensus string because
the most frequent character in this column is a blank.

If the aligned set of strings is a biological sequence family, then the extracted
consensus string is usually referred to as the consensus sequence of the family. It
is natural to interpret the consensus sequence of a family as a possible ancestral
sequence from which each sequence in the family has evolved by substitutions,
insertions, and deletions of characters. Each row in the multiple alignment of
the family then describes how the corresponding sequence has evolved from the
consensus sequence; a character in a column that corresponds to a position in
the consensus sequence has evolved from that position in the consensus sequence
by a substitution; a blank in a column that corresponds to a position in the
consensus sequence indicates that the character in that position in the consensus
sequence has been deleted; a character in a column that does not correspond
to a position in the consensus sequence has been inserted.

The consensus sequence is a very compact characterization of a multiple
aligned sequence family. The simplicity of the consensus sequence characteri-
zation is attractive because it makes it possible to compare sequence families
by their consensus sequences using any method for sequence comparison. How-
ever, the consensus sequence characterization of a multiple aligned sequence
family is probably to coarse-grained because it abstracts away all information
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Figure 2.7: The profile of a multiple alignment in Figure 2.6. The entries of the
profile that are not filled are zero. An entry for a character in a column of the
profile is the frequency with which that character appears in the corresponding
column in the multiple alignment.

in the multiple alignment except for the dominant character in each column.
The profile of a multiple alignment as introduced by Gribskov et al. in [71, 70]
is a more fine-grained method to characterize a set of strings from a multiple
alignment of its members that attempts to remedy this problem.

A profile of a multiple alignment describes for each column the frequency
with which each character in the alphabet (and the blank character) appears
in the column. Figure 2.7 shows the profile of the multiple alignment in Fig-
ure 2.6. Gribskov et al. in [71, 70] show how to compare a profile and a string
in order to determine how likely it is that the string is a member of the set of
strings characterized by the profile. The general idea of the method is similar
to alignment of two strings. The profile is viewed as a “string” where each
column is a “character”. The objective is to compute an optimal alignment of
the string and the profile where the score reflects how well the string fits the
profile. This is done by using a position dependent scoring scheme that defines
the cost of matching a character from the string against a column in the profile
as the sum of the costs of matching the character to each character in alphabet
weighted with the frequency with which the character appears in the column
of the profile. For example, the cost of matching character G to the second
column of the profile in Figure 2.7 is 0.2-d(A,G) +0.4-d(C,G) +0.4-d(T, G),
where d(x,y) is the cost of matching character x with character y. An optimal
alignment of a string of length n and a profile of m columns can be computed in
time O(|X|nm), where |X| is the size of the alphabet of the string and profile.
Gotoh in [69] shows how to compare two profiles which makes it possible to
compare sequence families by their profile characterizations. The general idea
of the method is once again similar to alignment of two strings.

2.2.2 Hidden Markov Models

One of the most popular and successful way to characterize sequence families
is to use profile hidden Markov models, which are are simple types of hidden
Markov models. A hidden Markov model M over an alphabet Y describes a
probability distribution Pys over the set of finite strings S € ¥*, that is, Pys(S)
is the probability of the string S € ¥* under the model M. A hidden Markov
model M can be used to characterize a family of strings by saying that a string S
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is a member of the family if the probability Py (.S) is significant.

Similar to a Markov model, a hidden Markov model consists of a set of states
connected by transitions. Each state has a local probability distribution, the
state transition probabilities, over the transitions from that state. We use P,(q’)
to denote the probability of a transition from state ¢ to ¢’. The transition struc-
ture of a hidden Markov model is can be illustrated as a directed graph with a
node for each state, and an edge between two nodes if the corresponding state
transition probability is non-zero. Unlike a Markov model, a state in a hidden
Markov model can generate a character according to a local probability distri-
bution, the symbol emission probabilities, over the characters in the alphabet.
We use P;(0) to denote the probability of generating character o € 3 in state g.
A state that does not have symbol emission probabilities is a silent state.

It is convenient to think of a hidden Markov model as a generative model
in which a run generates a string S € ¥* with probability Py/(S). A run starts
in a special start-state, and continues from state to state according to the state
transition probabilities, until a special end-state is reached. Each time a non-
silent state is entered, a character is generated according to the symbol emission
probabilities of that state. A run thus follows a Markovian sequence of states
and generates a sequence of characters. The name “hidden Markov model” is
because the Markovian sequences of states, the path, is hidden while only the
generated sequence of characters, the string, is observable.

The basic theory of hidden Markov models was developed and applied to
problems in speech recognition in the late 1960’s and early 1970’s. Rabiner
in [166] gives a very good overview of the theory of hidden Markov models
and its applications to problems in speech recognition. Hidden Markov models
were first applied to problems in computational biology in the late 1980’s and
early 1990’s. Since then they have found many applications, e.g. modeling of
DNA [38], protein secondary structure prediction [15], gene prediction [110],
and recognition of transmembrane proteins [175]. Probably the most popular
application, introduced by Krogh et al. in [111], is to use profile hidden Markov
models to characterize a sequence family by modeling how the sequences relate
by substitutions, insertions and deletions to the consensus sequence of the fam-
ily. The prefix “profile” is because profile hidden Markov models address the
same problem as profiles of multiple alignments.

A profile hidden Markov model is characterized by its simple transition
structure. Figure 2.8 shows the transition structure of a small profile hidden
Markov model. The transition structure consists of repeated elements of match,
insert, and silent delete states. The number of repeated elements is the length
of the model. Each element of a match, insert and delete state models a position
in the consensus sequence of the sequence family, and describes how members
of the family deviate from the consensus sequence at that position. The match
state models that the generated character has evolved from the position in the
consensus sequence. The insert state models that the generated character has
been inserted between the two neighboring positions in the consensus sequence.
The self-loop on the insert state models that several consecutive characters can
be inserted between two positions in the consensus sequence. The delete state
models that the position has been deleted from the consensus sequence.



28 Chapter 2. Comparison of Sequences

Start End

Figure 2.8: The transition structure of a profile hidden Markov model. The
squares are the match-states, the diamonds are the insert-states and the circles
are the silent delete-states. This figure is copied from the paper in Chapter 6.

The parameters of a profile hidden Markov model M (the length and the
transition and emission probabilities) should be chosen to reflect the character-
istics of the modeled sequence family (the length of the consensus sequence and
how each member relates to the consensus sequence), such that the probability,
Pyr(S), that it generates a string S can be used to distinguish between members
and non-members of the family. The parameters can be chosen in consistence
with an existing multiple alignment of members of the sequence family by set-
ting the length of the model to the length of the consensus sequence of the
multiple alignment, and by setting the transition and emission probabilities ac-
cording to the frequency with which each character occurs in each column of the
multiple alignment. This approach is similar to constructing a standard profile
of a multiple alignment as discussed in the previous section. More interestingly,
the parameters can also be estimated from an unaligned set of members of the
sequence family. The estimation is done by setting the length of the model to
the believed length of the consensus sequence, and by successively adjusting the
transition and emission probabilities to maximize the probability of the model
having generated the known members of the family.

Adjusting the parameters of a hidden Markov model M to maximize the
probability, Pys(S), that it generates a given string S is a fundamental and
difficult problem. No exact method exists to decide, in general, the parame-
ters that maximize Pys(S). However, iterative methods that successively refine
the parameters of the model, such that Py/(S) is guaranteed to converge to a
local maximum, are available. Refining the parameters of a model M to max-
imize Pys(S) for a given string S is called training the model M with respect
to S. Many training methods use the forward algorithm (which is described
below) to compute for any pair of state ¢ and index 7, the probability of being in
state ¢ having generated prefix S[1..1] of the string S. This set of probabilities
is subsequently used to adjust the parameters of the model. Training methods
are addressed in details by Rabiner in [166], and by Krogh et al. in [111].
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Fundamental Algorithms for Hidden Markov Models

Many applications of hidden Markov models in speech recognition and compu-
tational biology are variations of two fundamental problems and their solutions.
The first problem is to determine the probability, Pys(S), that a model, M, gen-
erates a given string S. The second problem is to determine the most likely
path in a model M that generates a given string S. Because the ideas behind
the algorithms solving these problems are fundamental to many applications of
hidden Markov models, including the algorithms for comparing hidden Markov
models we present in Chapter 6, we present the algorithms in further details
below. In the presentation we assume that the transition structure of a model
contains no cycles of silent states. If the transition structure contains cycles
of silent states, the presentation of the algorithms is more technical, but the
asymptotic running times of the algorithms are unaffected by the presence of
cycles of silent states. The full details are described in [166, 46].

The first problem, i.e. computing the probability Pps(S) that model M
generates string S, is solved by the forward algorithm. The general idea of
the forward algorithm is to build a table, A, indexed by states from M and
indices from S, such that entry A(q,?) holds the probability of being in state ¢
in M having generated the prefix S[1..4] of S. The entry indexed by the end-
state and the length of S then holds the desired probability Pys(S) of being in
the end-state having generate S. To explain the algorithm we call state ¢’ a
predecessor of state ¢ in M, if the transition probability from ¢’ to ¢, Py(q), is
non-zero. The probability of being in state ¢ having generated S|[1..7] is then
the sum over all predecessors ¢’ of g of the probability of coming to state ¢ via
predecessor ¢’ having generated S[1..4]. There are two cases. If ¢ is a non-silent
state, the last character of S[1..1] is generated in ¢. In this case A(q,1) is the
sum over all predecessors ¢’ of ¢ of terms A(q’,i — 1) - Py(q) - Py(S[t]). If ¢ is a
silent state, no character is generated in ¢. In this case A(q,?) is the sum over
all predecessors ¢ of ¢ of terms A(¢, i) - Py(q). In summary we get:

> A(d,i—1)- Py(q) - Py(S[i]) if g is non-silent
Agiy=4 " " (29)
Z A(d',i) - Py(q) if ¢ is silent

q'—q

By using dynamic programming this recurrence yields an algorithm for com-
puting P/(S) with running time and space consumption O(mn), where m is
the number of transitions in M, and n is the length of S.

The second problem, i.e. computing the probability of the most likely path
in model M that generates string S, and the path itself, is solved by the Viterb:
algorithm. The only difference between the Viterbi algorithm and the forward
algorithm is that entry A(q,?) holds the probability of the most likely path to
state g that generates S[1..7]. This probability is the maximum, instead of
the sum, over all predecessors ¢ of ¢ of the probability of coming to state g
via predecessor ¢’ having generated S[1..i]. The entry indexed by the end-
state and the length of S holds the probability of the most likely path in M
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that generates S. The most likely path can be obtained by backtracking the
performed maximization steps. The running time and space consumption of
the Viterbi algorithm, including backtracking, is the same as the running time
and space consumption of the forward algorithm.

The forward and the Viterbi algorithms are both useful when applied to
profile hidden Markov models. The probability that a model generates a given
string, which is computed by the forward algorithm, and the probability of
the most likely path that generates a given string, which is computed by the
Viterbi algorithm, are both plausible measures of how likely it is that a string is
a member of the sequence family modeled by the profile hidden Markov model.
Both measures can be used to search a sequence database for new members of
the family, or inversely, to search a database of profile hidden Markov models
(families) for the model (family) that most likely describe a new sequence.

Another application of the Viterbi algorithm is to construct a multiple align-
ment. The idea is to interpret the most likely path in a profile hidden Markov
model M that generates the string S as an alignment of S against the consensus
sequence of sequence family modeled by M. The interpretation is as follows;
if the most like path passes the kth match state, such that S[i] is most likely
generated by the kth match state, then S[i] should be matched against the kth
character in the consensus sequence; if the most like path passes the kth insert
state, such that S[i] is most likely generated by the kth insert state, then S[i]
should be inserted between the kth and (k + 1)st character in the consensus
sequence; finally, if the most likely path passes the kth delete state, then the
kth character in the consensus sequence has been deleted from S. The most
likely path thus explains how to construct S by matching, inserting and deleting
characters from the consensus sequence, i.e. describes an alignment of S against
the consensus sequence. Alignments of several sequences against the consensus
sequence can be combined to a multiple alignment of the sequences.

Constructing multiple alignments using the Viterbi algorithm, combined
with training methods to construct profile hidden Markov models from un-
aligned set of sequences, is one of the most popular and successful heuristics
for multiple sequence alignment. It was also the primary application of profile
hidden Markov models by Krogh et al. in [111]. Other applications of profile hid-
den Markov models are described by Durbin et al. in [46], and Eddy in [48, 49].
Software packages, e.g. SAM [91] and HMMER [47], that implement methods
using profile hidden Markov models are widely used, and libraries, e.g. Pfam
(available at http://pfam.wustl.edu), that store multiple alignments and profile
hidden Markov models characterizations of sequences families are available and
growing. In July 1999, the Pfam library contained multiple alignments, and
profile hidden Markov models characterizations, of 1488 protein families. (In
June 2000, it contained 2290 protein families characterization.)

Algorithms for Comparing Hidden Markov Models

The availability of profile hidden Markov models characterizations, e.g. the
Pfam library, motivates the application of comparing entire protein families by
comparing their profile hidden Markov model characterizations. This applica-
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tion motivates the more general problem of comparing hidden Markov models.
A general method for comparing any systems that can be described by hidden
Markov models seems desirable, but the problem of comparing hidden Markov
models has not been studied in the literature. Perhaps because the motivation
for comparing hidden Markov models has not been apparent until the above
stated application of comparing entire biological sequence families by their pro-
file hidden Markov model characterizations.

In Chapter 6 we present measures and methods for comparing hidden Markov
models. The proposed measures and methods are not limited to profile hidden
Markov models, and are thus applicable to applications beyond comparison of
sequence families characterized by profile hidden Markov models.

We define the co-emission probability, A(My,Ms), of two hidden Markov
models, My and Ms, that generate strings over the alphabet X, as the proba-
bility that the two models independently generate the same string, that is

A(My, My) = Y Payy () Par, (S). (2.10)
Sexx

The co-emission probability is the building block of our measures. The
complexity of computing the co-emission probability depends on the transition
structure of the two models M7 and M. If the two models are profile hidden
Markov models, we can compute the co-emission probability using a dynamic
programming algorithm very similar to the forward algorithm. The idea is to
build a table, A, indexed by states from the two hidden Markov models, such
that entry A(q, q'), where ¢ is a state in M7, and in ¢’ is a state in My, holds the
probability of being in state g in M, and state ¢’ in M>, having independently
generated identical strings on the path to ¢ in Mj, and on the path to ¢’ in Ms.
The entry indexed by the two end-states then holds the probability of being
in the end-state in both models having generated identical strings, that is, the
co-emission probability, A(Mj, Ms), of the two models.

The details of computing A(q,q’) for a pair of states, (¢,¢’), in two profile
hidden Markov models, are described in Section 6.3. The general idea is to
compute A(q,q') by summing the probabilities of the possible ways of reaching
state ¢ in M, and state ¢’ in My, having generated the same strings. For a
pair of states, (g,¢’), we say that it is a predecessor pair of (g,q’), if there is
a transition from state g to state g in Mj, and a transition from state ¢’ to
state ¢ in Ms. The probability, to be stored in A(q,q’), of being in state ¢ in
My, and in state ¢’ in Ms, having generated the same strings, is the sum over
every possible predecessor pair (g,¢’) of (¢,¢") of the probability of reaching
(¢,q") via (g,¢') having generated the same strings. If we define

p:ZPq(U)'Pq’(U) (2'11)

oeX

as the probability of generating the same character in state ¢ in My, and in
state ¢/ in My, we can compute A(q,q’) by the following recurrence:
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Z p-Alg.9") - Py(d) - Py(q) if ¢, ¢’ are non-silent
9—q
g/_>q/
/ / 3 / 3
Alg.q) = ;} A(g,9") - Py(d) - Py(q) if ¢, ¢’ are silent (2.12)

g/_>q/

N if ¢ is silent, and
Z Alg,q) - Fy(q) ¢’ are non-silent
9—q

If every predecessor pair (g,¢’) of (q,¢') is different from (q,q’), the above
recurrence shows how to compute A(q, ") recursively. Unfortunately, if both ¢
and ¢ are insert states, the self-loops on insert states imply that (¢,q’) is a
predecessor pair of (g,q"), which seems to imply that we need to know A(q,q’)
in order to compute A(q, ¢'). The trick to circumvent this dilemma is to consider
how the path to state ¢ in M7, and the path to state ¢ in M>, loops in the
self-loop. More precisely, let Ax(q,¢’) denote the probability of being in insert
states ¢ in My, and in insert state ¢’ in M, having generated the same string,
under the additional assumption that one path, say the path to ¢, has looped
exactly k times in the self-loop, ant that the other path, say the path to ¢/,
has looped at least k times in the self-loop. The probability A(q, ¢") of being in
insert states ¢ in My, and in insert state ¢’ in Ms, having generated the same
strings is then the infinite sum over Ax(q,q’) for all k£ > 0.

It turns out that this infinite sum can be computed efficiently. The first
step is to observe that Ay(q,¢’) can be computed without considering (¢, q’) as
a possible predecessor pair of (¢,q’). The reason is that we know by definition
that one path, say the path to ¢, does not loop in the self-loop, so the predecessor
of ¢ cannot be ¢ itself. The details are in Equation 6.5 on page 98. The second
step is to observe that A(q,q') = rAr_1(q,¢") = r*Ao(q,q'), where r is the
probability of independently choosing the self-loops and generating the same
character in state ¢ and ¢/, cf. Equation 6.7 on page 99. The second observation
implies that the infinite sum over Ag(q,q’), for all k > 0, is a geometric series
that can be computed as A(q,q') = > 507" Ao(q,q") = Ao(q,¢')/(1 — 7).

The running time of the described algorithm for computing the co-emission
probability, A(M;i, Ms), of two profile hidden Markov models, M; and Mo, is
bounded by the time it takes to compute all entries in the table A. Since
an entry, A(q,q'), can be computed in time proportional to the number of
predecessor pairs of (g,q’), the running time is O(mims), where m; is the
number of transitions (edges in the transition structure) in M;.

The above algorithm for computing the co-emission probability for profile
hidden Markov models can also be used to compute the co-emission probability
for slightly more general hidden Markov models. The only property of the tran-
sition structures of the models required by the algorithm is that the states can
be numbered such that a transition from state 7 to state j implies that ¢ < j.
Hidden Markov models with this property are called left-right models cf. [166].
The transition structure of left-right models is, except for self-loops, a directed
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acyclic graph. In Section 6.5.1 we describe how to extend the algorithm further
to handle models, where each state is allowed to be on a single cycle in the
transition structure. The extension is quite technical but the running time of
the extended algorithm remains O(mimsg). In Section 6.5.2 we describe how
to approximate the co-emission probability for general hidden Markov models.
The approximation is an iterative process that is guaranteed to converge expo-
nentially fast to the co-emission probability of the models. More precisely, in k
rounds we can find an upper and lower bound on A(Mj, Ms) that differ by at
most a factor c® from A(M;y, M), where ¢ < 1 is a constant that depends on
M; and Ms. The running time of each round is O(mims).

More generally, it is possible to compute the exact co-emission probability
for any pair of hidden Markov models, My and Ms, in polynomial time. This is
not described in Chapter 6, only hinted at by Equation 6.22 on page 107. The
idea is to consider A(q, ¢') as a variable contributed by state ¢ in M; and state ¢’
in My, which value is the probability of being in state ¢ in M7, and in state ¢’ in
Ms>, having independently generated the same string. Two models M; and Ms
in total contribute nyny variables, where n; is the number of states in M;. Each
variable can be described in terms of other variables by a linear equation cf.
the recurrence in Equation 2.12. The result is a set of nine linear equations
with nyne unknowns, where the co-emission probability of M; and My is the
value of the variable A(q,q’), which corresponds to the pair of end-states. The
value of this variable can be computed by solving the set of linear equations.
The algorithm described above for computing the co-emission probability of
two profile hidden Markov models, and more generally, two left-right models,
can thus be seen as an efficient way of solving the set of linear equations when
the structure of the equations has special properties.

The co-emission probability has a nice mathematically interpretation as an
inner product in the infinite dimensional space spanned by all finite strings over
a finite alphabet. Consider a hidden Markov model, M, generating strings over
a finite alphabet 3. The probability distribution over the set of finite strings
S € ¥* described by the hidden Markov model can be seen as a vector in the
infinite dimensional space spanned by all finite strings over the alphabet 3,
where the coordinate corresponding to a string S in the probability, Py/(S), of
model M generating S. In this interpretation of hidden Markov models, the
co-emission probability A(M;, M) of two hidden Markov models, M; and Mo,
over the same alphabet, is simply the inner product, (My, Ma) = |M;||Ma| cos v,
of the models, where v is the angle between the models, and |M;| = /(M;, M;)
is the length of M;. This formulation of the co-emission probability implies
that the co-emission probability A(M;p, M3) is not itself a good measure of
the similarity of the models M; and Ms. To see why, consider A(M;, M;) =
|My||M;| and A(M;, My) = |M;||Msz|cosv, and observe that if |Ms|cosv >
| M|, then A(My, Msy) > A(My, My). It is thus perfectly possible, as describe
in Proposition 6.1 on page 100, that the model having the largest co-emission
probability with a specific model is not the model itself.

To circumvent the problems of the co-emission probability as a similarity
measure, we define in Section 6.4 four measures using the co-emission probabil-
ity as the building block. The four measures are summarized in Figure 2.9. The
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Dangle(My, M2) = arccos (A(Ml,Mz) /\/A(MlaMl)A(M2’M2)>

Daig(My, M) = +/A(My, M) + A(Ms, My) — 2A(M;, My)

S1(My, Mo

)
)
) = c0s(Dangle(M1, M>))
)

Ml, Mo = QA(Ml,MQ) /(A(Ml,Ml) + A(MQ,MQ))

Figure 2.9: The four measures between hidden Markov models M; and M,
defined in Chapter 6 using the co-emission probability as the building block.

first two measures are metrics, where Dyyg1e(My, M>) is the angle between the
two models, i.e. arccos ((My, Ms) /(|Mq]|Mz|)), and Dgig(Mi, Ms) is the Eu-
clidean norm of the difference between the two models, i.e. |M; — Ms|. The last
two measures, S1(My, My) and So(Mi, Ms), are similarity measures that fulfill
some useful properties stated and explained on page 102. All four measures can
be computed within the time it takes to compute the co-emission probabilities
A(Ml, Ml), A(MQ, Mg) and A(Ml, Mg)

To evaluate the four measures in practice, we have implemented the algo-
rithm for computing the co-emission probability for left-right models, such that
we can compute each of measures efficiently for this type of hidden Markov
models. In Section 6.6 we describe an experiment, where we compared fifteen
hidden Markov models for three classes of signal peptides. The fifteen models
are constructed such that they group into three groups of five models each. The
models in each group describe similar properties, and should therefore be more
similar, or closer, to each other than to the models in the other groups. To
test this hypothesis, we performed all pairwise comparisons between the fifteen
models using each of the four measures. The results are shown in Figure 6.4
and 6.5 on page 110 and 111, which show that all measures capture that models
within the same group are more alike than models from different groups.

An experiment we plan to perform is to use our measures to evaluate the
profile hidden Markov model training methods included in the software packages
SAM and HMMER. (Recall that training a (profile) hidden Markov model is
to estimate its parameters to maximize the probability of a set of strings being
generated by the model.) The general idea of the experiment is to take a
model, M, from the Pfam library of models, and use this model to generate a
set of strings, which are used to train a model, M’, using the traning methods
included in SAM and HMMER. Finally, the models M and M’ are compared
to see how similar, or close, the trained model is to real model. Performing the
experiment for different models and training methods, hopefully improves the
knowledge of how to train a model. For example, how many strings are needed
to make the trained model, M’, sufficiently similar to the real model, M, and
how do training methods perform if M and M’ do not contain the same number
of repeated elements, that is, if one model is longer than the other.
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Regularities in Sequences

Never was so much owed by so many to so few.
— Winston S. Churchill, House of Commons, August 20, 1940.

Regularities in experimentally obtained data often reveal important knowledge
about the underlying physical system. The physical system could be the quo-
tations on the stock market, the weekly lotto numbers, or biological sequences.
Regularities in a biological sequence can be used to identify the sequence among
other sequences such as explained below, or to infer information about the evo-
lution of the sequence such as explained in [24].

The genomes of eukaryotes, i.e. higher order organisms such as humans,
contain many regularities. Tandem repeats, or tandem arrays, which are con-
secutive occurrences of the same string, are the most frequent. For example, the
six nucleotides TTAGGG appear at the end of every human chromosome in tan-
dem arrays that contain between one and two thousand copies [144]. A number
of diseases, such as Fragile X syndrome, Huntington’s disease and Kennedy’s
disease, are all related to tandem repeated regions of the genome. These dis-
eases are caused by an increasing numbers of tandem repeats of a three base
long DNA sequence, which somehow interfere with the normal transcription of
particular proteins and thereby cause the disease.

Other tandem repeated regions of a genome, the so called variable number
of tandem repeat (VNTR) regions, are tandem arrays in which the number of
repeated DNA sequences varies highly between each individual. If the repeated
DNA sequence in a VINR region is short (between three and five bases), the
region is often referred to as a short tandem repeat (STR) region. VNTR and
STR regions occur frequently and regularly in many genomes, including the
human genome, and are very useful as genetic fingerprints because two genomes
can be distinguished with very high probability by only comparing the number
of repeated strings in a few VNTR or STR regions.

Genetic fingerprinting has many applications, most prominently as a tool in
forensics or as evidence is criminal or paternity cases. For example, the Dan-
ish Department of Justice decided in 1997 that the quality of paternity testing
should be such that the probability of an erroneous identification is at most
0.0001. In [142] it is reported that this quality can be achieved by looking at
only 9-12 STR regions (and in some cases up to eight other VNTR regions) in
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the genomes of the child and the potential father. The testing is done by taking
blood samples from the child and the potential father. The blood samples are
processed in a laboratory to produce data which are examined to “count” the
number of repeats in the examined regions. The paternity is decided by com-
paring the difference between the counts with the expected difference between
two random individuals. Genetic fingerprinting is a fascinating combination of
molecular, computational and statistical methods. The applications of genetic
fingerprinting are numerous and important, so it might turn out that the quote
of this chapter also applies to small repeated segments of DNA.

In this chapter we concentrate on the computational aspects of finding cer-
tain well defined regularities in strings over a finite alphabet. In Section 3.1
we review tools and methods that combine to a general technique for finding
regularities in strings that we apply in the following sections. In Section 3.2.1
we review methods for finding tandem repeats. In Section 3.2.2 we consider the
more general problem of finding pairs of identical substrings where the number
of characters between the substrings are bounded. This relates to the work in
our paper Finding Mazximal Pairs with Bounded Gap presented in Chapter 7.
In Section 3.2.3 we review methods for the problem of finding quasiperiodic
substrings which are substrings that can be constructed by concatenations and
superpositions of a shorter string. This relates to the work in our paper Finding
Mazimal Quasiperiodicities in Strings presented in Chapter 8.

The methods we present in this chapter can all be applied to biological
sequence analysis because biological sequences are strings. There are however
two typical objections against this application. The first objection is that most
repetitive structures in biological sequences are not exact repetitive structures,
but rather repetitions of nearly identical strings. The second objection is that
simpler brute force methods are sufficient to find the repetitive structures of
current interest in biological sequences. To a large extend these two objections
reflect that the methods we present in this chapter are not developed specifically
towards biological sequence analysis but rather as general string algorithms.

3.1 Tools and Techniques

In this section we present three useful tools for detecting regularities in strings;
suffix trees, height-balanced trees, and sums for analyzing the running time of
algorithms. When combined, these three tools imply a general technique for
finding regularities in a string S of length n in time O(nlogn) plus the time
it takes to report the detected regularities. In short, the general technique is a
traversal of the suffix tree, where we at each node compute and use a height-
balanced tree that stores the leaf-list of the node.

Throughout this chapter we will use S, «a, 3 and v to denote strings over
some finite alphabet ¥. We will let |S| denote the length of S, S[i] the ith
character in S for 1 < i < |S]|, and S[i..j] = S[i]S[i + 1]--- S[j] a substring
of S. If ¢ > j then S[i..j] is the empty string. We say that a string « occurs
at position ¢ in the string S if o = S[i..7 + |a| — 1].
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Figure 3.1: The suffix tree of the string Mississippi where each node, except
the root, is annotated with its leaf-list.

3.1.1 Tries and Suffix Trees

A trie is a tree-based data structure for storing a set of strings over some finite
alphabet. Every edge in a trie is labelled with a character from the alphabet.
The concatenation of the characters on the path from the root to a node v is
the path-label of v, and is denoted L(v). The labelling of the edges is such that
no two edges out of the same node are labelled with the same character, and
such that every path-label is a prefix of one or more of the stored strings. This
implies that every internal node in a trie has between one and the size of the
alphabet children, and that every string stored in a trie is equal to the path-
label of a single node. A compressed trie is a trie where chains of single-child
nodes are compressed into single edges. The edges in a compressed trie are
labelled with strings rather than single characters.

The concept of a trie-like structure to represent a set of strings was pre-
sented early in this century by Thue in [184]. Fredkin in [60] presented the trie
structure (almost) as done above. He also introduced the name “trie” from the
word “information retrieval”. Morrison in [143] presented a tree structure for
storing a set of strings based on a trie storing a binary representation of the
strings in the set. Knuth describes tries and their history in [105, Section 6.3].

For string matching problems a particular useful variant of the trie is the
suffix tree. The suffix tree T'(S) of a string S is the compressed trie of all
suffixes of the string S$, where $ ¢ ¥. The termination character “$” ensures
that no suffix of S$ is a prefix of another suffix of S$. This implies a one-to-
one correspondence between the leaves in the suffix tree and the suffixes of S$.
Each leaf in the suffix tree is annotated with an index ¢ that corresponds to its
path-label S[i..n|$, where n = |S|. The set of indices stored at the leaves in the
subtree rooted at node v is the leaf-list of v, and is denoted LL(v). Figure 3.1
shows the suffix tree of the string Mississippi, where each node, except the root,
is annotated with its leaf-lists.

The suffix tree T'(S) of a string S of length n has n+ 1 leaves and at most n
internal nodes. Each edge is labelled with a substring of S$ which can be
compactly represented by two indices into S$. The suffix tree T'(S) can thus be
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stored in O(n) space. The suffix tree T(S) can be constructed in time O(n?) by
building and compressing the trie of the strings S[i..n]$ fori =1,2,...,n+1in
the standard way as described in e.g. [105]. However, the n+ 1 strings, of total
length n(n 4 1)/2, which are stored in 7'(.S) are all suffixes of the same string.
This relationship has been exploited to construct algorithms that construct the
suffix tree T'(S) in linear-time O(n).

The first linear-time construction algorithm was presented by Weiner in [203]
in 1973. The algorithm was actually presented for the construction of position
trees, but was easily adapted for the construction of suffix trees. Few years
later, McCreight in [137] presented another linear-time construction algorithm
that excels in being more space efficient in practice than Weiner’s algorithm.
Several years later, Ukkonen in [189] presented an on-line linear-time construc-
tion algorithm that is much simpler than the earlier construction algorithms
by Weiner and McCreight. Ukkonen however suggested that his algorithm is
a heavily disguised version of McCreight’s algorithm. The connection is not
obvious to the untrained eye but explained in details by Giegerich and Kurtz
in [64]. Recently, Farach in [53] presented a construction algorithm that is well
suited for construction of suffix trees of strings over large alphabets.

The suffix tree can be used to solve complex string problems. Many appli-
cations are reported in [43, 74]. The immediate application of suffix trees is
for exact string matching, i.e. to decide if a pattern P of length m occurs in a
string S of length n. The classical Knuth-Morris-Pratt algorithm [106] solves
this problem in time ©(n + m). This time bound can also be achieved using
suffix trees. If P occurs in S, then P is a prefix of a suffix of S and there is
a path in T'(S) starting at the root that spells P. Constructing the suffix tree
T(S) takes time O(n). Searching for a path starting at the root that spells P
takes time O(m). For example, from the suffix tree in Figure 3.1 follows that
the pattern ¢ss occurs in the string Mississipi at position 2 and 5 because the
path that spells iss ends on the edge above the node with leaf-list {2,5}.

3.1.2 Bounding Traversal Time

The suffix tree T'(S) captures many of the regularities in S beca