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Abstract

This thesis is concerned with formal semantics and models for concurrent computational
systems, that is, systems consisting of a number of parallel computing sequential systems,
interacting with each other and the environment. A formal semantics gives meaning to com-
putational systems by describing their behaviour in a mathematical model. For concurrent
systems the interesting aspect of their computation is often how they interact with the envi-
ronment during a computation and not in which state they terminate, indeed they may not
be intended to terminate at all. For this reason they are often referred to as reactive systems,
to distinguish them from traditional calculational systems, as e.g. a program calculating your
income tax, for which the interesting behaviour is the answer it gives when (or if) it termi-
nates, in other words the (possibly partial) function it computes between input and output.
Church’s thesis tells us that regardless of whether we choose the lambda calculus, Turing
machines, or almost any modern programming language such as C or Java to describe calcu-
lational systems, we are able to describe exactly the same class of functions. However, there
is no agreement on observable behaviour for concurrent reactive systems, and consequently
there is no correspondent to Church’s thesis. A result of this fact is that an overwhelming
number of different and often competing notions of observable behaviours, primitive opera-
tions, languages and mathematical models for describing their semantics, have been proposed
in the litterature on concurrency.

The work presented in this thesis contributes to a categorical approach to semantics
for concurrency which have been developed through the last 15 years, aiming at a more
coherent theory. The initial stage of this approach is reported on in the chapter on models
for concurrency by Winskel and Nielsen in the Handbook of Logic in Computer Science, and
focuses on relating the already existing models and techniques for reasoning about them.
This work was followed by a uniform characterisation of behavioural equivalences from the
notion of bisimulation from open maps proposed by Joyal, Winskel and Nielsen, which was
applicable to any of the categorical models and shown to capture a large number of existing
variations on bisimulation. At the same time, a class of abstract models for concurrency was
proposed, the presheaf models for concurrency, which have been developed over the last 5
years, culminating in the recent thesis of Cattani.

This thesis treats three main topics in concurrency theory: independence, fairness and
non-deterministic dataflow.

Our work on independence, concerned with explicitly representing that actions result from
independent parts of a system, falls in two parts. The first contributes to the initial work
on describing formal relationships between existing models. The second contributes to the
study of concrete instances of the abstract notion of bisimulation from open maps. In more
detail, the first part gives a complete formal characterisation of the relationship between two
models, transition systems with independence and labelled asynchronous transition systems
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respectively, which somehow escaped previous treatments. The second part studies the bor-
derline between two well known notions of bisimulation for independence models such as 1-safe
Petri nets and the two models mentioned above. The first is known as the history-preserving
bisimulation (HPB), the second is the bisimulation obtained from the open maps approach,
originally introduced under the name hereditary history-preserving bisimulation (HHPB) as a
strengthening of HPB obtained by adding backtracking. Remarkably, HHPB has recently been
shown to be undecidable for finite state systems, as opposed to HPB which is known to be
decidable. We consider history-preserving bisimulation with bounded backtracking, and show
that it gives rise to an infinite, strict hierarchy of decidable history-preserving bisimulations
seperating HPB and HHPB.

The work on fairness and non-deterministic dataflow takes its starting point in the work on
presheaf models for concurrency in which these two aspects have not been treated previously.

Fairness is concerned with ruling out some completed, possibly infinite, computations as
unfair. Our approach is to give a presheaf model for the observation of infinite as well as
finite computations. This includes a novel use of a Grothendieck topology to capture unique
completions of infinite computations. The presheaf model is given a concrete representation
as a category of generalised synchronisation trees, which we formally relate to the general
transition systems proposed by Hennessy and Stirling for the study of fairness. In particular
the bisimulation obtained from open maps is shown to coincide with their notion of extended
bisimulation. Benefitting from the general results on presheaf models we give the first de-
notational semantics of Milners SCCS with finite delay that coincides with his operational
semantics up to extended bisimulation.

The work on non-deterministic dataflow, i.e. systems communicating assynchronously via
buffered channels, recasts dataflow in a modern categorical light using profunctors as a gener-
alisation of relations. The well known causal anomalies associated with relational semantics of
indeterminate dataflow are avoided, but still we preserve much of the intuitions of a relational
model. The model extends the traditional presheaf models usually applied to semantics for
synchronous communicating processes described by CCS-like calculi, and thus opens up for
the possibility of combining these two paradigms. We give a concrete representation of our
model as a category of (unfolded) monotone port automata, previously studied by Panan-
gaden and Stark. We show that the notion of bisimulation obtained from open maps is a
congruence with respect to the operations of dataflow. Finally, we use the categorical formu-
lation of feedback using traced monoidal categories. A pay off is that we get a semantics of
higher-order networks almost for free, using the geometry of interaction construction.
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Chapter 1

Introduction

The lack of a universal computational model for concurrency has led to the proposal of a
large number of different and often competing mathematical models in which to describe
concurrent computational systems.

This thesis contributes to a categorical approach to semantics for concurrency aiming at a
more coherent theory for concurrency, centered around the notion of bisimulation from open
maps and presheaf models for concurrency. My goal is to extend earlier work on independence
models for concurrency, and to take the first steps towards including two central topics in
concurrency, viz. fairness and dataflow, not treated before in this framework.

A result of the categorical approach will be that we can draw on the same general tech-
niques to obtain and reason about models and semantics capturing different notions of ob-
servable behaviour and operational primitives.

Although we have only taken the first steps, we hope to convey that the categorical
approach extends naturally to include both fairness and dataflow. In both cases, models
suggested by more ad hoc approaches reappear in the abstract setting, only on a much stronger
fundament given by the general theory developed through the last five years for presheaf
models for concurrency.

1.1 Structure of the Thesis

The thesis is divided into two parts. The first part serves as an overview and the second con-
sists of the papers I have authored (or co-authored) during my PhD studies. Chapter 1 gives
a brief introduction to semantics for computational systems and concurrency in particular,
covering the issues of particular relevance to the work presented in this thesis.

In Ch. 2 we give a brief survey of the categorical approach to semantics for concurrency,
taking its starting point in the work of Winskel and Nielsen to which the work in this thesis
contributes.

Finally, the intention of Ch. 3 is to summarise and relate the work presented in Part II,
consisting of the following papers divided between the three main topics in focus of this thesis:

• Independence

[60] Chapter 4: Comparing Transition Systems with Independence and
Asynchronous Transition Systems.
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Co-authored with Vladimiro Sassone. The results of this paper are published in Pro-
ceedings of 7th International Conference on Concurrency Theory, CONCUR ’96, LNCS
1119, 1996. The present version is a slightly revised version also appearing as a BRICS
report, RS-96-18.

[61] Chapter 5: Transition Systems with Independence and Multi-Arcs.
Co-authored with Vladimiro Sassone. The results of this paper are published in Pro-
ceedings of Partial Order Methods in Verification, POMIV ’96, Vol. 29 of Dimacs, AMS,
1996. The present version is essentially appearing as BRICS report, RS-97-10, except
the introduction is shortened to avoid unnecessary repetition from Ch. 4.

[42] Chapter 6: On Plain and Hereditary History-Preserving Bisimulation.
Co-authored with Sibylle Fröschle. The results of this paper are published in Proceed-
ings of the 24th International Symposium on Mathematical Foundations of Computer
Science, MFCS’99, LNCS. The present version is a full version available as BRICS
Report, RS-99-4.

• Fairness

[58] Chapter 7: A Fully Abstract Presheaf Semantics of SCCS with Finite Delay.
The results of this paper are published in Proceedings of the 8th conference on Category
Theory and Computer Science, CTCS’99, 1999. The present version is a full version
available as BRICS Report, RS-99-28.

• Dataflow

[59] Chapter 8: A Relational Model of Non-Deterministic Dataflow.
Co-authored with Prakash Panangaden and Glynn Winskel. The results of this paper
are published in Proceedings of the 9th International Conference on Concurrency The-
ory, CONCUR ’98, LNCS 1466, 1998. The present version is a full version. To be
submitted to a journal.

1.2 Semantics for Concurrency

A formal semantics gives meaning to computational systems by describing their behaviour in
a mathematical model at an appropriate level of abstraction. The choice of model and level of
abstraction depends among other things on the intended use of the semantics and what we
wish to observe from computations.

Two classical types of semantics suitable for different uses appear in this thesis, respec-
tively operational semantics and denotational semantics. An operational semantics always
describes the behaviour of a system in a model having character of a, more or less, abstract
or idealized machine. Consequently, it captures some low-level, intensional aspects of the
behaviour which (depending on how abstract the machine is) can be useful in the process of
implementation. It then comes along with a notion of observable, or extensional behaviour,
defining when two systems looks the same to any external observer and so should be consid-
ered as behavioural equivalent. A minimal requirement is that two equivalent systems should
not give rise to inequivalent systems if placed in the same context.

A denotational semantics describes the behaviour of a system by a compositional map from
the syntactical descriptions of systems (i.e. the programs of the given programming language)

3



to a mathematical model. Two systems are taken to be equivalent if they get mapped to
the same object of the model, that is, the denotational semantics is assumed to capture
the extensional behaviour of systems. The word compositional refers to the fact that the
behaviour of a system is described in terms of the behaviours of its subcomponents, making it
possible to reason compositionally about systems. To support a denotational semantics often a
richer mathematical structure is required of the model. This can lead to deeper understanding
of the programming language at hand and strong mathematical proof techniques.

Having both a denotational and operational semantics for the same language, it becomes
important to relate the two to each other. The denotational semantics should only equate
operationally behavioural equivalent systems, which is referred to as adequacy of the denota-
tional semantics. Ideally exactly the operationally behavioural equivalent systems are equated
by the denotational semantics, in which case it is said to be fully abstract.

A concurrent system consists of a number of parallel computing sequential systems, in-
teracting with each other and the environment, and possibly distributed between different
locations. What is interesting to observe of their behaviour is often how they interact with
the environment during a computation and not in which state they terminate, indeed they
may not be intended to terminate at all. Systems of this kind are often referred to as reactive
systems, a term introduced by Pnueli in [109] to distinguish them from traditional calcula-
tional systems for which the interesting behaviour is the answer they give when (or if) they
terminate. A typical example of a concurrent reactive system is given by a system composed
of a nuclear power plant running in parallel with a safety monitoring system.

For calculational systems, the observable behaviour can reasonably be taken to be the
(possibly partial) function they compute between input and output and Church’s, or Church-
Turing thesis, formulated by Alonzo Church [30] long before the existence of computers, then
tells us that all of the many different computational models proposed at that time as capturing
effective computation as e.g. the lambda-calculus, µ-recursive functions and Turing machines
are able to describe exactly the same class of functions. Today we can add almost any modern
programming language, such as C or Java to the list.

However, there is no agreement on observable behaviour or operational primitives for
concurrent systems, and thus no correspondent to Church’s thesis. Consequently, an over-
whelming number of different and often competing notions of observable behaviours, primitive
operations, languages and mathematical models for describing their semantics, have been pro-
posed in the literature on concurrency.

Below we recall Milner’s Calculus of Communicating Systems (CCS) with its standard
transition semantics and the important concept of bisimulation due to Park. They represent
an important choice of operational primitives and observable behaviour for concurrency that
serves as a reference throughout the thesis. We then discuss some alternative choices focusing
on those related to independence, fairness and dataflow.

1.2.1 CCS and Bisimulation Equivalence

Milner’s CCS is one of the pioneering approaches to semantics of concurrent reactive systems.
The term calculus indicates that one of the main objectives in the development of CCS was
to give a careful treatment of the structural properties of such systems, offering an algebraic
theory for concurrency. The primary reference is the book [90] which also includes a short
description of related approaches and the development leading to CCS.

Agents with finite behaviour are constructed via the basic operators of action prefixing,

4
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Figure 1.1: Operational semantics for CCS

non-deterministic choice, asynchronous parallel composition, restriction and relabelling, as
described by the BNF-grammar:

t ::= α.t | Σi∈Iti | t1|t2 | t\L | t[f ],

where α ∈ Act is an element of a set of actions Act = L ] {τ}, where L = A ] Ā is a set
of labels, partioned in a set A of input actions and a corresponding set Ā = {ā | a ∈ A}
of output actions (or coactions), and τ is a distinguished internal action. The set I is a
(possibly infinite) index set, L ⊆ L is just a subset of labels, and f : A → A is a relabelling
function which is extended to Act by f(ā) = f(a), for a ∈ A and f(τ) = τ . As usual the
summation sign is usually omitted for a unary sum, the infix summation t1 + t2 is used as
short notation for the binary sum. The term 0 was introduced as a short notation for the
empty sum, representing an agent with no actions.

One of the ways of introducing agents with infinite behaviour given in [90] is to add process
variables and a constructor for recursion, extending the grammar by

t ::= . . . | x | rec x.t,

where x is a process variable.
The standard operational semantics of CCS is given by a Plotkin-style structural opera-

tional semantics [107] as shown in Fig. 1.1, consisting of a set of syntax directed inference
rules for deriving labelled transitions between agents.

Formally, a labelled transition system is a 4-tuple 1

(S, s,−→, L),

with S being a set of states, s ∈ S a distinguished initial state, L a set of labels or actions
and −→⊆ S × L× S a transition relation.

For a CCS-agent t, the labelled transition system

(St, t,−→ccs ∩(St ×Act× St), Act),
1Unlike in [90], we assume that transition systems have a distinguished initial state.
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for St = {t′ | t −→∗
ccs t

′} is referred to as the derivation graph for t. The tree obtained by ig-
noring repetition of states, i.e. ‘unfolding’ the derivation graph, is referred to as the derivation
tree for t. In this context, labelled trees, i.e. acyclic, reachable labelled transition systems
with no two transitions pointing to the same state are also referred to as synchronisation
trees [141].

The transition semantics has a clear operational intuition: the agent α.t can perform an
α-action and then behave like the agent t, the agent Σi∈Iti non-deterministically choose to
behave like one of the agents ti, the agent t1|t2 can either progress asynchronously by one
of the agents perform an action, or perform a synchronisation action by one of the agents
perform an action and the other (synchronously) the corresponding coaction. Finally, the
agent t\L can progress as the agent t except only actions which are not in L are allowed.

However, even if one abstracts from the agents lying at the nodes, the derivation graphs or
derivation trees are too detailed to be taken as observable behaviour; they do not reflect the
intended algebraic properties of CCS. A simple example from [90] illustrating this is given by
the two agents a.b.0 and a.b.0+a.(b.0+ b.0) which get assigned the two, different, derivation
trees

•

•

OO

b

•

OO
a

a.b.0

and

• • •

•

OO

b

•

OO

b
??

b

~~~~

•

OO
a

44

a

jjjjjjjjjjjjj

a.b.0 + a.(b.0 + b.0)

, (1.1)

but by two applications of the intuitive equational law (which is one of the monoid laws [87])

P = P + P,

the second agent is easily transformed to the first:

a.b.0 + a.(b.0 + b.0) = a.b.0 + a.(b.0)
= a.b.0 + a.b.0

= a.b.0 .

(1.2)

So we need a behavioural equivalence which is coarser than just isomorphism of derivation
trees. A first attempt might be to regard the derivation trees as finite automata (taking states
with no outgoing transitions as accepting states) and take language equality as behavioural
equivalence, indeed the automata corresponding to the two terms above accept the same
language (they have the same linear-time behaviour, cf. the discussion in Sec. 1.2.2 below).
However the (by now standard) example from [90] given by the two agents a.(b.0 + c.0) and
a.b.0 + a.c.0 shows that this equivalence is too coarse if safety properties such as deadlock
should be represented correctly. The two agents get assigned the derivation trees

• •

•

hh

b

PPPPPPPPP

66
c nnnnnnnnn

•

OO
a

a.(b.0 + c.0)

• •

•

OO

b

•

OO
c

•

hh

a

PPPPPPPPP

66
a nnnnnnnnn

a.b.0 + a.c.0

, (1.3)
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however by disallowing the action c (i.e. placing each agent in the context (−)\{c}), we get
the derivation trees

•

•

ii

b

SSSSSSSSSSS

•

OO
a

a.(b.0 + c.0)\{c}

•

•

OO

b

•

•

ii

a

TTTTTTTTTTTT

55
a

jjjjjjjjjjjj

(a.b.0 + a.c.0)\{c}

, (1.4)

which does not accept the same language (the second process can get stuck after having per-
formed an a-action), i.e. language equality fails to be a congruence with respect to restriction.

The examples given above lead in [90] to the definition of an equivalence called strong
equivalence which is finer than language equality but coarser than isomorphism of derivation
trees. Strong equivalence is proven to be a congruence with respect to all of the operators of
the calculus and allows to prove all of the algebraic laws treating the τ -action as any other
action. Moreover, the meanings of (guarded) recursion are shown to be given by unique fixed
points up to strong bisimulation in the model of synchronisation trees.

Another congruence is given which treats τ as an unobservable action, e.g. identifying the
agents a.τ.0 and a.0 and thus making more identifications than the strong congruence. This
congruence is called the observational or weak congruence.

The two equivalences were noted by Park to be captured by his notion of bisimulation
introduced (for finite automata) in [104]. Bisimulation has since become a widely used tech-
nique for defining and proving behavioural equivalences in concurrency theory. Below we
recall the notion of bisimulation capturing the strong equivalence, which is referred to as
strong bisimulation.

Definition 1.2.1 Let T1 = (S1, i1,−→1, L) and T2 = (S2, i2,−→2, L) be labelled transition
systems. A relation R ⊆ S1 × S2 is a bisimulation between T1 and T2 if

1. i1 R i2,

2. if s1 R s2 and s1
a−→1 s

′
1 then there exists s′2 ∈ S2 such that s2

a−→2 s
′
2 and s′1 R s′2,

3. if s1 R s2 and s2
a−→2 s

′
2 then there exists s′1 ∈ S1 such that s1

a−→1 s
′
1 and s′1 R s′2.

Two agents t and t′ are then said to be strong bisimilar if there exists a bisimulation between
their derivation graphs (or equivalently, their derivation trees). A key property of strong
bisimulation is that it is decidable [75] for finite state systems which is useful for automatic
verification.

A simple observation is that bisimulation can be defined as a relation between paths.
This becomes useful when considering variations of bisimulation, as e.g. the bisimulations
considered in Ch. 6.

For a transition system T , let Seq(T ) be the set of finite paths starting at the initial
state. For t̄ ∈ Seq(T ), let |t̄| denote the length of the sequence and ε ∈ Seq(T ) be the empty
sequence.

Definition 1.2.2 Let T1 = (S1, i1,−→1, L) and T2 = (S2, i2,−→2, L) be labelled transition
systems. A relation R ⊆

{
(t̄, t̄′) ∈ Seq(T1) × Seq(T2) | |t̄| = |t̄′|

}
is a bisimulation between

paths of T1 and T2 if
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1. ε R ε,

2. if t̄1 R t̄2 and t̄1(s1, a, s′1) ∈ Seq(T1) then there exists t̄2(s2, a, s′2) ∈ Seq(T2) such that
t̄1(s1, a, s′1) R t̄2(s2, a, s′2),

3. if t̄1 R t̄2 and t̄2(s2, a, s′2) ∈ Seq(T2) then there exists t̄1(s1, a, s′1) ∈ Seq(T1) such that
t̄1(s1, a, s′1) R t̄2(s2, a, s′2),

Strong bisimulation has many other useful alternative characterisations, more different to the
first characterisation above. One is via Hennessy-Milner temporal logic [56]. Another is by
games as in e.g. [96]. Strong bisimulation has also been shown to arise naturally in quite
different settings: within final coalgebra semantics (e.g. [117]), and from span of open maps
([71]) as we will describe in Ch. 2.

1.2.2 Some Dichotomies in Concurrency Theory

As mentioned earlier, there exists many other choices of observable behaviours, primitive
operations and mathematical models, than the choice represented by CCS and its standard
transition semantics.

We list here a few main distinctions in concurrency, representing choices between whether
or not a particular aspect of the system and its behaviour is explicitly represented in the
model. We focus on the distinctions central to the work presented in this thesis. The first
three are treated in [146] where more details and pointers to the literature on representative
models can be found.

Behavioral versus system models. A behavioral model is a model that abstract from
repetition of system states. Language models as Hoare languages [63] and Mazurkiewicz
trace languages [85, 86], synchronisation trees [141], and event structures [137, 142] are all
examples of behavioral models. Models that allow an interpretation of repetition of system
states are referred to as system models. The models of labelled transition systems [77] and
Petri nets [106] are prime examples of such models.

System models are most suited for giving operational semantics. The fact that a system
model can offer finite descriptions of systems with infinite behaviour is exploited in various
techniques for model-checking and automatic verification of reactive systems. For giving
denotational semantics, in which infinite behaviour is often described as a limit of finite
approximants, a behavioural model is usually more suitable.

Linear-time versus branching-time. A branching-time model is a model in which it
is possible to represent when non-deterministic choices are resolved during a computation.
Models that abstract from such information are called linear-time models. The language
models mentioned above are typical examples of linear-time models, where the model of
synchronisation trees, event structures and Petri nets are all examples of branching-time
models.

In some cases, a linear-time model can be exactly what is needed. An example of this
is given by Jonsson’s full abstraction result [68] for non-deterministic dataflow. As we will
recall in Sec. 1.2.1 below, some branching information is necessary to reflect safety conditions
such as e.g. deadlock freedom in semantics of synchronously communicating systems.
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Interleaving versus independence. In models like labelled transition systems or syn-
chronisation trees, there is no way of interpreting that actions result from independent parts of
the system, and thus may happen concurrently. Consequently, semantics given in these mod-
els reduce concurrency of actions to a nondeterministic choice between any of their sequential
interleavings, why they are referred to as interleaving models. This level of abstraction is
appropriate for many applications, as indicated by the wide use of CCS and related calculi
equipped with transition semantics.

However, in some situations a semantics that retains information about independence
may be desirable. One example of this is in connection with action refinement [131]. Another
use of independence information is to identify unfair computations [102, 26]. Independence
semantics have also been applied to tackle the state space explosion problem in automatic
verification [129, 46, 48, 47], referring to the fact that there is exponentially many interleavings
of a set of concurrent actions, which might not all be necessary to investigate, if the paths
are known to represent concurrency.

The models of event structures, Petri nets and Mazurkiewicz trace languages mentioned
above are all examples of independence models. So are the more direct extensions of transition
systems as e.g. asynchronous transition systems ([11] and [122]) and transition systems with
independence ([146]), which are studied in Ch. 4 and Ch. 5.

Finite versus infinite observations. In the majority of models for reactive systems,
including all we have mentioned so far, infinite behaviours are completely determined by the
finite behaviours. However in semantics for concurrent systems, it is often the case that some
infinite computations are considered as inadmissible, even if all finite parts of them are ad-
missible, referring to some kind of fairness condition [39]. This leads us to consider models
allowing an explicit representation of infinite computations. The first approaches to seman-
tics of fair concurrency were inspired by language theory, using ω-languages or (variations
of) Büchi automata [104]. Later more direct extensions of the traditional models for finite
observations were proposed, such as the model of general transition systems [54] which appear
in Ch. 7 and the generalised synchronisation trees [139]. Also the semantics of fair dataflow
in [68] uses sets of finite and infinite traces representing completed observations.

Global versus local interaction This distinction is essentially the one made by Abramsky
in [3]. By global interaction we refer to the situation when independent agents of a concurrent
system communicate via globally shared resources. A prime example are systems described
in CCS-like calculi, where agents communicate via shared names, usually referred to as ports.
An important point is, that when an agent performs an action, it is not a priori determined
with which other agent (if any) it will interact. Local interaction refers to the situation when
communication takes place through interfaces which are local to two fixed agents, meaning
that interaction can be modelled by composition. Dataflow networks [74, 33] as studied
in Ch. 8 are classical examples of locally interacting systems. Local interaction has been
advocated lately through the interaction semantics programme [6, 4, 5, 3] as the right setting
for studying typed concurrency, opening up to a Curry-Howard paradigm for concurrency.

Others. The list above is far from complete. Among other distinctions and aspects of be-
haviour are: deterministic versus non-deterministic (or probabilistic) systems, asynchronous
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versus synchronous communication, discrete versus continuous-time (or hybrid systems), mo-
bility, ...

Variations on Bisimulation

Variations in expressiveness of the semantics, e.g. as described above, combined with a need
for branching-time semantics have led to the adoption of bisimulation for a large number of
variations on transition-based models. In many cases logical or game-theoretical characteri-
sations have been adopted as well and decidability has been retained for finite state systems.

Examples of particular relevance for the work presented in this thesis are bisimulations
for independence (or causality), fairness (or completed observations) and non-deterministic
dataflow (or explicit I/O). Independence bisimulations include pomset bisimulation, history-
preserving bisimulation (introduced by Rabinovich and Trakhtenbrot [115], Degano, De Nicola
and Montanari [32] and Best, Devillers, Kiehn and Pomello [14] under the name of respectively
behaviour structure, mixed ordering and fully concurrent bisimulation) and hereditary history-
preserving bisimulation (introduced by Bednarczyk [12] and reappearing from the categorical
approach described in next chapter). An interesting fact is that the hereditary history-
preserving bisimulation represents one of the few bisimulations which is undecidable for finite
state systems, as recently proved by Nielsen and Jurdzinsky [72].

Bisimulations for fairness include Parks original definition of bisimulation given for Omega
automata [104], Milner’s fortification equivalence [88], the extended bisimulation of Hennessy
and Stirling [54] and a related bisimulation arising from the final co-algebra approach to se-
mantics (Aczel [7]). As shown in Ch. 7, the extended bisimulation reappears in the categorical
approach described in the next chapter.

Traditionally being described in linear-time models, there are quite few equivalences or
variations of bisimulation for dataflow. Stark has given a CCS-like calculus of dataflow with
a notion of buffer bisimilarity [127], in [120] Selinger proposes a bisimulation for transition
systems with Input/Output and in Ch. 8 we give a notion of bisimulation for (unfolded)
monotone port-automata.

Examples of bisimulations for models not considered in this thesis are the timed bisimu-
lation in e.g. [25, 97] and the probabilistic bisimulation of Larsen and Skou [80].
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Chapter 2

The Categorical Approach

In this chapter we give a short survey of the primary background for the thesis. This is a
categorical approach to semantics for concurrency, which have been developed through the
last 15 years, aiming to bring models of different expressiveness together in a more coherent
theory.

The initial stage of the development is reported on in the chapter on models for con-
currency by Winskel and Nielsen in the Handbook of Logic in Computer Science [146], and
focuses on relating the already existing models and techniques for reasoning about them. In
Sec. 2.1 below we recall a few results, trying to give an impression of the general idea.

A new stage began with a uniform characterisation of behavioural equivalences from the
notion of bisimulation from open maps proposed by Joyal, Winskel and Nielsen [71], which
was applicable to any of the categorical models and shown to capture a large number of
existing variations on bisimulation[28, 27, 97]. In Sec 2.2 we recall the basic definitions and
standard examples.

The paper [71] also suggested a class of abstract models for concurrency, the presheaf
models for concurrency, which came with a canonical notion of bisimulation from open maps.
The general theory of presheaf models have been developed over the last 5 years [71, 22, 143,
147, 21, 144, 19, 24, 37], culminating in the recent thesis of Cattani. We summarise some of
the most important results in Sec. 2.3.

2.1 Models for Concurrency

The work reported in the chapter [146] was initiated by work of Winskel [140], followed by
work of Nielsen, Rozenberg and Thiagarajan [99] and Sassone et al. [119, 118]. Focus of this
work was to find formal relationships between some of the many different models existing in
the literature, describing their common structure.

One of the aims declared in [146] is to set the scene for a formal classification of models for
concurrency, taking as starting point some of the established distinctions of which we gave a
few in the previous section and demonstrate that the categorical approach makes it possible
to give a universal description of operators corresponding to some important constructions in
process calculi. A hope was to identify the minimum categorical structure required to model
such constructions.
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Branching Time, Behavioral

Branching Time, Behavioral

Petri Nets,
Transition systems
with independence,
Asynchronous transition
systems.

Languages

Mazurkievicz trace
languages

Event structures

Synchronisation trees Transition systems
Interleaving

Independence
Linear Time, Behavioral

Linear Time, Behavioral

System

System

Figure 2.1: Some of the models considered in the handbook chapter and their informal clas-
sification

Being impossible to treat everything from scratch, focus was put on the three first dis-
tinctions described in Ch. 1 and a few representative models were chosen. Figure 2.1 shows
some of these models and their informal classification. The arrows indicate the direction of
increase in expressiveness to be expected from the discussion in Sec. 1.2.2. Another choice
was to concentrate on giving a categorical description of process constructions similar to those
of CCS or CSP. It was therefore natural that all the models considered were based on the
central idea of having a set of atomic actions over which the behaviour of systems are defined,
i.e. with which agents communicate.

The first place where category theory comes in to play is with the notion of morphisms
between agents, 1 describing how the behaviour of one agent is related to that of another.
Ensuring an associative composition of morphisms and the existence of identities makes the
model into a category having agents as objects.

Remark 2.1.1 Approaches that focus on local communication as discussed in Ch. 1 naturally
take processes themselves to be arrows of a category with objects representing interface types
and composition of arrows representing communication. For fixed input and output interface,
morphisms between agents typically give rise to a 2-categorical or bi-categorical structure [15,
76]. With focus on CCS-like constructions and thus global communication, this view was not
taken in [146]. This is also reflected by the fact that the sets of atomic actions on which all
the models treated in [146] are based were not assumed to have any structure, in particular
not explicitly divided between input and output actions. The work presented Ch. 8 address
how the present approach can be generalised to the 2- or bi-categorical setting.

To describe process constructions categorically, the morphisms should be able to express the
relationship between an agent and its components. The approach taken to formalise the

1the term agent is used generally to refer to a representation of a process in a given model, e.g. a term of
a calculus, a transition system etc.
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structure and relationship between the different models was then to begin with the more
familiar interleaving models and use this as a guide when moving to the more expressive
independence models. To give a feeling of the idea we repeat here the definition of morphisms
for labelled transition systems as we defined in Sec. 1.2.1.

Definition 2.1.2 A morphism from a transition system T = (ST , iT ,−→T , LT ) to transition
system T ′ = (ST ′ , iT ′ ,−→T ′ , LT ′) is a pair of maps (σ, λ), where λ : LT ⇀ LT ′ is a partial
map of actions and σ : ST → ST ′ is a map of states, such that

• σ(iT ) = iT ′ and

• s a−→T s
′ implies

{
σ(s)

λ(a)−→T ′ σ(s′) if λ(a) is defined,
σ(s) = σ(s′) otherwise.

We will let TS refer to the category with objects being labelled transition systems and arrows
given by the definition above. There is a functor L : TS→ Set∗, where Set∗ is the category of
sets and partial functions, given by

TS

�� L
Set∗

T
(σ,λ)−→ T ′

_
��

LT
λ
⇀ LT ′

, (2.1)

which forms a fibration [13]. For a fixed set of labels, e.g. Act, the fiber over Act is the
subcategory TSAct induced by the transition systems with label set Act and (total) label
preserving morphisms.

The category TS is rich in structure, allowing the interpretations of the operations: re-
striction (as (strong) cartesian liftings), relabelling (as (strong) cocartesian liftings), parallel
composition (as products) and non-deterministic choice (as fibre coproducts). The parallel
composition as interpreted by product corresponded to a “most general” parallel composition
in which all conceivable synchronisations and non-synchronisations are allowed. The usual
parallel operators of e.g. CCS and TCSP can be derived by such a parallel composition
followed by a restriction and relabelling (reflecting a synchronisation algebra [138, 141]).

Being just particular labelled transition systems, the above definition of morphisms ob-
viously restricts to labelled trees, making the model of synchronisation trees into a full sub-
category of TS which we denote by ST. The inclusion ST ↪→ TS is in fact a left adjoint
to a functor unf : TS → ST mapping a transition systems T to its unfolding unf(T ). The
fact that the unfolding of a tree gives the same tree back means that the adjunction is a
coreflection, aka the category ST is a coreflective subcategory of TS.

Similarly, a synchronisation tree S naturally projects to a language comp(S) consisting of
all the finite computations of S, i.e. the sequences of actions labelling finite paths beginning at
the root of S. The model of languages can be made into a category L making this projection
into a functor, which is left adjoint to a full and faithful embedding of L to ST, meaning that
the adjunction is a reflection. The two adjunctions

L � � // ST
oo

comp

⊥ � � // TS
oo

unf

> .

express formally how the model of languages are more abstract than the model of synchroni-
sation trees, and how this model again is more abstract than the model of labelled transition
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systems. The fact that coreflections and reflections are known to have nice preservation
properties makes it possible to relate semantics given by universal constructions in different
categories.

The independence models was made into categories by giving appropriate definitions of
morphisms and shown to be similarly related. Moreover, the resulting categories were shown
to be equally rich structure, and thus supporting the same process constructions. The step
from interleaving models to independence models was also described via coreflections, e.g. the
category of synchronisation trees was shown to be a coreflective subcategory of the category
of labelled event structures.

Note that for models based on a notion of events, such as asynchronous transition systems
and event structures, there is a choice in whether the events are the observable actions of the
system or if they express a lower level distinction and thus carry an additional labelling. This
issue is also addressed in [146] and plays an important role in the work presented in Ch. 4
and Ch. 5.

2.2 Bisimulation from Open Maps

The development so far gives an account of the structural relationships between different
models up to the level of (most of) the process constructions in a CCS-like language. The
next stage of the development began with the paper [71] by Joyal, Nielsen and Winskel,
introducing a general notion of bisimulation defined via open maps as studied by Joyal and
Moerdijk [69]. This gives a uniform approach to bisimulation equivalences for models for
concurrency, in principle applicable to any of the categorical models. In [71] it was applied
to synchronisation trees and labelled event structures, in e.g. [95, 28, 100, 97] the notion of
open maps is applied to a large number of other existing models.

Given a model category M (or more precisely a fiber for a fixed set of actions Act), the
basic idea is to identify a path category P : P → M (in [71] assumed to be a subcategory).
The objects of the path category are to be thought of as the kind of behaviours that can be
observed in a single observation. The arrows then express how observations relate to each
other, in particular how an observation extend to a bigger observation.

Having fixed a path category P : P→ M, a map f : X → Y in M is then said to be P-open
(P-open if P is an inclusion, or just open if the path category is clear from the context), if
it satisfies the following path lifting property: Whenever for two path objects P,Q of P and
morphism m,p, q such that the diagram

P //
p

��

m

X

��

f

Q //
q

??

h

Y

commutes, there exists a morphism h : Q → X as indicated by the dotted line, making the
two triangles commute. Open maps are sometimes indicated by f : X //◦ Y .

Two objects X and Y is then said to be P-open map bisimilar if they are related by a
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span of P-open maps

Z

~~

◦
f1 ~~

~

~~
~

��

◦
f2@@

@

@@
@

X Y

,

assuming the model category M has pullbacks 2.
As argued in [71], it is often the case that there is a natural choice of path category,

typically the subcategory of deterministic, i.e. conflict free processes.
For the categories TSAct and STAct of respectively Act-labelled synchronisation trees and

transition systems, a natural choice of observations is to take the trees consisting of just a
single finite branch, i.e. the subcategory equivalent to the (partial order) category FinAct =
(Act∗,≤) having as objects the set of all finite sequences of actions from Act and arrows
the usual prefix ordering. For this choice of path category, the open maps are simply the
functional bisimulations, or zig-zag morphisms, and open map bisimulation indeed coincides
with the classical strong bisimulation of Milner and Park.

For the category of Act-labelled event structures, a natural choice of observation is the
subcategory of configurations, i.e. conflict free, finite event structures. This category is
equivalent to a category PomAct, with objects being pomsets, i.e. partially ordered multi
sets, over Act. The PomAct-open map bisimulation turns out to agree with the hereditary
history-preserving bisimulation, which is the subject of study in Ch. 6.

The paper [28] shows how to capture a large number of variations on bisimulations pro-
posed in the literature for various transition based models, e.g. Milner’s weak bisimulation,
Milner and Sangiorgi’s barbed bisimulation and Larsen and Skou’s probabilistic bisimulation
as mentioned in Sec. 1.2.1. Timed bisimulation as given in e.g. [25] is characterised from open
maps in [97].

2.3 Presheaf Models for Concurrency

The development so far identifies a categorical structure which is suitable to interpret the
operators of a CCS-like language: Fibred Categories (over a category of (label) sets and
partial functions) which have e.g. coproducts, products and pullbacks. Moreover, the open
maps approach gives a uniform way of presenting bisimulation equivalence. However, there
are still independent choices to be made:

• For each model the notion of simulations must be carefully defined for the resulting
category to posses the right categorical structure and the presence of such needs to be
proven.

• There is no a priori way of identifying the “right” notion of observation in a given
model category, e.g. which are a non-trivial, adequate congruence with respect to the
operations of the language.

The two extremes in choice of path category illustrates the last point above: If the model
category itself is chosen as path-category the open map bisimulation will coincide with iso-
morphism, if the empty category is chosen as path-category any two objects will be open map
bisimilar.

2If M does not have pullbacks just the existence of a sequence of spans is required, e.g. see [147].
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As a possible solution to this problem, presheaf categories were suggested in [71] as abstract
models for concurrency, known to be rich in structure and equipped with a canonical notion
of bisimulation equivalence from open maps.

The basic idea is that the only choice to be made is that of a path category P of observable
computations, without reference to any model category. We will assume that path categories
always haven an initial object and let P+ refer to the category obtained from P by removing
the initial object(s).

Starting from a path category P, the category P̂+ of presheaves over P+ is then interpreted
as a branching-time model of non-deterministic processes with the path shapes of P.

The category P̂+ has as objects all functors X : P+op → Set (where Set is the category of
all small sets and functions between them) and as arrows natural transformations between
such. An important fact is that P̂+ is a concrete representation of the free colimit completion
of P+, i.e. the category obtained (up to equivalence) by freely adding all colimits to P+. This
means that any functor F : P+ → Q for Q a cocomplete category (i.e. a category having
all colimits), can be extended freely (as a left Kan extension [82]) to a (colimit preserving)
functor F! : P̂+ → Q making the diagram

P+

Q

P̂+
� � //
YP+

��
F ??

??
??

??

��

F! (2.2)

commute, where YP+ : P+ ↪→ P̂+ is the well known Yoneda embedding. Writing Y◦
P : P ↪→ P̂+

for the strict extension of YP+, mapping the initial object(s) of P to the empty presheaf, a
map is Y◦

P-open in P̂+ if and only if it is surjective and YP+-open, which is the canonical
choice for open-map bisimulation in a presheaf category [71].

As shown in [71], presheaf models subsume more traditional categorical models and bisim-
ulations.

Synchronisation trees. The category F̂inAct
+ obtained from the path category FinAct =

(Act∗,≤) given in the previous section is equivalent to the category STAct of Act-labelled
synchronisation trees and the canonical bisimulation coincides with strong bisimulation.

Labelled event structures. The category ̂PomAct
+ obtained from the path category

PomAct from the previous section has the category of Act-labelled event structures as a full
subcategory (characterised abstractly in [145]), and the canonical bisimulation coincides with
the hereditary history-preserving bisimulation for labelled event structures.

An operational reading, games and temporal logics. The construction of a synchro-
nisation tree from a presheaf in F̂inAct

+ can be described via the standard construction of the
category of elements of a presheaf [83]. Since this construction apply to any presheaf category,
so does the idea of representing a presheaf as a transition system as described in [147].

This does not mean that we could just as well work with transition systems. As we will
see below, the rich mathematical structure of presheaf categories is indeed what makes them
especially attractive. However, the operational reading can provide a helpful intuition. For
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instance, it allows to give game theoretical and (tense) temporal logic characterisations of the
canonical bisimulation as shown in [147].

In the work presented in Ch. 7 and Ch. 8 the operational reading was indeed a valuable key
to understanding how respectively fairness and feedback could be interpreted operationally
correct in the abstract presheaf models.

Bisimulation congruence and a domain theory for concurrency. The work on
presheaf models which have followed [71], in particular the recent thesis of Cattani [24], has
redeemed many of the initial promises and intuitions.

From the view of presheaf categories as a concrete representations of free colimit comple-
tions (or connected colimit completions), it follows that they can themselves can be naturally
related in a category of cocontinuous, i.e. colimit preserving functors (or in the larger cat-
egory of connected colimit preserving functors. A very important result of [24] is then that
all connected colimit preserving functors between presheaf categories preserve surjective open
maps with respect to the Yoneda embedding, and thus the canonical notion of bisimulation
for presheaf categories. It has been shown that interpretations of the usual operators of CCS-
like languages: action-prefix, sum, restriction, and parallel composition can be obtained quite
elegantly from the left Kan extension as described in (2.2) above, in the case where Q is it
self a presheaf category [23, 24].

Another important fact is that for any two fixed path categories P and Q, the category
of colimit (or connected colimit) preserving functors between P̂+ and Q̂+ and natural trans-
formations between them is equivalent to the presheaf category ̂P+op × Q+ (or ̂Pop ×Q+).
Presheaves in ̂P+op × Q+ are also referred to as profunctors between P+ and Q+, which forms
the arrows of a bicategory Prof and the equivalence above gives an equivalence between Prof
and the category of colimit preserving functors[15, 24]. This opens up for a domain theory for
concurrency as explored in [22, 143, 18], replacing domains and Scott continuous functions
with presheaf models and cocontinuous (or connected colimit preserving) functors.

This line of work is followed in [144], proposing a meta-language for (linear) higher-order
CCS-like languages which can be given a categorical semantics [31] in the category of presheaf
categories and connected colimit preserving functors, which seems like a natural setting in
which to study typed concurrency.

The dataflow semantics presented in Ch. 8 is given in a subcategory of the category of
connected colimit preserving functors.

Further work. Recently it has been shown in [37] how the notion of weak bisimulation
can be described abstractly in presheaf models, exploiting the view of presheaf categories
as discrete fibrations. In the case of synchronisation trees Milner’s observational congruence
appears naturally from the abstract definition. For the more expressive model obtained
from the path category of pomsets one gets a notion of weak hereditary history-preserving
bisimulation.
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Chapter 3

Summary

The intention of this chapter is to summarize and relate the papers included in Part II. The
papers all build on and contribute to the categorical approach to concurrency as summarised
in the previous chapter. They are naturally divided between the three topics: Independence,
fairness, and non-deterministic dataflow.

3.1 Independence

The work on independence falls in two parts. The first part consists of the papers included in
Ch. 4 and Ch. 5. They contribute to the initial work on describing formal relationships be-
tween existing models, giving a complete formal characterisation of the relationship between
two models, transition systems with independence and labelled asynchronous transition sys-
tems respectively, which somehow escaped previous treatments. The second part consists of
the paper included in Ch. 6. It contributes to the study of concrete instances of the abstract
notion of bisimulation from open maps, investigating the borderline between the history-
preserving bisimulation and the hereditary history-preserving bisimulation with an emphasis
on the question of decidability.

3.1.1 On the Relationship between Transition Systems with Independence
and Labelled Asynchronous Transition Systems

Several efforts have been devoted to the search for independence models based on the model of
(labelled) transition systems, e.g., transition systems enriched with additional features that
make expressing concurrency explicitly possible (cf., e.g., [111, 130, 50, 51, 133, 20]). An
important motivation is to find models suitable for giving structural operational semantics to
e.g. process calculi that takes independence information into account. The work in Ch. 4 and
Ch. 5 investigate the formal relationship between two similar approaches, respectively the
model of asynchronous transition systems, introduced independently by Bednarczyk [11] and
Shields [122], and the model of transition systems with independence, proposed by Winskel
and Nielsen [146]. Both models have been applied to give SOS style independence semantics
to CCS-like calculi, respectively by Mukund and Nielsen in [93] using labelled asynchronous
transition systems and Winskel and Nielsen in [146] using transition systems with indepen-
dence. Intuitively the basic idea of these approaches is to be able to distinguish whether or
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not diagrams such as

•

•

??b ~~~~
•

__ a@@@@

•

__

a

@@@@
??

b

~~~~
, (3.1)

represent the arbitrary interleaving of two independent actions, and thus the opposite facing
transitions represents the ‘same’ action, or a choice between either an a-action that enables a
b-action or vice-versa. In both models this is achieved using the idea from Mazurkiewicz trace
theory in which the structure is enriching by a binary, irreflexive, symmetric independence
relation on actions which describes their causal relationships. The model of asynchronous
transition systems is obtained from the model of labelled transition systems by thinking of
the labels as events, adding an independence relation on events and adding axioms expressing
the intended meaning of events and independence: That events are deterministic, and that if
two independent events can be observed in one order they can also be observed in the other
(for the precise definition see e.g. [146] or Ch. 4). This approach is completely analogous to the
situation in Mazurkiewicz trace languages, however it suffers in one aspect having to do with
representing branching structure (which is not an issue in trace languages): Since events are
deterministic it is not possible to represent a choice between two actions with the same label,
e.g. the CCS agents a.b.0 + a.c.0 and a.(b.0 + c.0) from Sec. 1.2.1 cannot be distinguished.
The straightforward solution to this problem, which is the one chosen in [93], is to add an
additional labelling structure on top of the events, getting the model of labelled asynchronous
transition systems [93, 146]. Now the two different interpretations of the transition system in
(3.1) can be represented by, e.g. the two labelled asynchronous transition systems

•

•

??be3 ~~~~
•

__ ea
1

@@@@

•
__

ae2

@@@@
??

e0b

~~~~
and

•

•

??be0 ~~~~ ∼ •

__ ea
1

@@@@

•
__

ae1

@@@@
??

e0b

~~~~
,

where ∼ indicates that the events e0 and e1 are independent. Although doing the job, this
solution actually adds more expressiveness to the model than just what is needed to solve the
above problem. For instance, it is possible to have two transitions with the same underlying
event but not depending on the same transitions, e.g. we could have a diamond like the one
above to the right in which the two events were not independent. The additional structure is
not limited to these situations, e.g. the semantics given in [93] use the events to represent the
low level concept of locations of actions, from which the independence information is derived.
Consequently, if we only want to represent concurrency information, the explicit assignment
of events in the model of labelled asynchronous transition systems clearly introduces some
redundancies and a possible overhead in explicit identifying a notion of events. The model
of transition systems with independence was proposed in [146] as a solution to this problem.
Here the independence relation is imposed directly on the transitions of a ‘simply-labelled’
transition system and a set of axioms corresponding to those of asynchronous transition
systems are then imposed, guaranteeing that a notion of events can be derived from the inde-
pendence information, i.e. two facing edges of a diamond of independent transitions represent
the same event. The semantics in [146] demonstrates how it now becomes a relatively sim-
ple task to give a SOS style independence semantics, inferring the independence information
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directly from the structure of the terms without needing to introduce lower level concepts as
e.g. locations. Consequently, the two different interpretations of the transition system (3.1)
each has a unique representation.

Summary of our work

The derived notion of events makes the achieved expressive power of transition systems with
independence comparable to that of labelled asynchronous transition systems, indeed it gives
an immediate embedding of the category TSI of transition systems with independence into the
category LATS of labelled asynchronous transition systems (cf. [146] or Ch. 4). The apparent
differences induced on the two models by the choice of a primitive versus a derived notion
of events, that seem to make them suitable for different applications, opens up the issue of
investigating formally their analogies and differences following the line of work carried out in
the first stage of the development described in the previous chapter.

Comparing Transition Systems with Independence and Asynchronous Transition
Systems. The contribution of the work presented in Ch. 4 is to give an exhaustive analysis
of the relationship between the two models, which, actually, escaped the thorough analysis of
models for concurrency carried out in [146, 119, 118]. We begin by looking for a functor ad-
joint to the obvious embedding TSI ↪→ LATS and identify the category of extensional labelled
asynchronous transitions systems, eLATS, as the largest subcategory of LATS which admits
TSI as a coreflective subcategory. We then prove that the category of transition systems
with independence is equivalent to the category meLATS of so-called event-maximal labelled
asynchronous transition systems, yielding a complete description of TSI in terms of LATS
which can be useful in practise to translate back and forth between the two models when the
application one has in mind requires it. The event-maximal labelled asynchronous transition
systems can be seen at the same time as those transition systems that make as few identifica-
tions of transitions as possible, i.e., contain no confusion about event identities, and as those
in which such identities are derivable from the independence relation, i.e., reduce the redun-
dancy. It is worth mentioning that the converse does not hold: the asynchronous transitions
systems for which the independence relation is in turn derivable from the structure of events,
and therefore redundant, are slightly less general. They correspond to the transitions systems
with independence for which ‘independence is concurrency’ considered in [119, 118]. The
following commutative diagram summarize the results of the paper, making completely for-
mal and precise the relationships between transition systems with independence and labelled
asynchronous transition systems.

TSI
� � //� v

))RRRRRRRRRRRRRR� _

��

∼=

LATS

meLATS
?�

OO

� � // eLATS
?�

OO
ii

at
⊥

RRRRRRRRRRRR .

Transition Systems with Independence and Multi-Arcs. The starting point of
work presented in Ch. 5 is the question whether or not the need to restrict to extensional
asynchronous transition systems is a consequence of the intrinsic differences between the two
notions of events considered. In other words, if it is necessary to assign events explicitly to
be able to model situations ruled out by the extensionality constraints.
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One of the situations ruled out is that of multi-arcs, i.e. the presence of multiple tran-
sitions with the same label between a pair of states. While being obviously redundant in
the standard interleaving semantics, multi-arcs are relevant for independence semantics. For
instance it allows ‘quotienting’ of the state-space while retaining full information about events
and causality, as illustrated in Fig. 5.1.

We show that explicit events are not crucial to allow multiarcs. More precisely, we relax
the definition of transition systems with independence by making the transitions ‘first class’
entities, yielding the new notion of transition systems with independence and multi-arcs and
prove that, except for relaxing the restriction to systems withour multi-arcs, the category TSIm
of transition systems with independence and multi-arcs bears exactly the same relationships
as TSI to LATS. More precisely, we prove that TSIm is coreflective in the category dLATS of the
diamond-extensional labelled asynchronous transition systems — intuitively, those transition
systems that make no confusion about the identities of the events carried by transitions
facing each other in independence-diamonds. Similarly to the case of TSI, dLATS is the
largest subcategory of LATS for which such a result holds. Moreover, among the diamond-
extensional, we again identify the event-maximal labelled asynchronous transition systems
and prove that they induce the largest full subcategory of LATS, mdLATS, for which the
coreflection cuts down to an equivalence. This yields a precise characterisation of TSIm in
terms of LATS that extends the relationships between TSI and LATS discussed above: in fact,
the category of eLATS and its full subcategory meLATS are, respectively, the full subcategories
of dLATS and mdLATS consisting of transition systems without multi-arcs. Summing up, the
paper in Ch. 5 presents the following diagram of formal relationships between the new model
of transition systems with independence and multi-arcs and labelled asynchronous transition
systems.

TSIm
� � //� x

**VVVVVVVVVVVVVVVVVV� _

��

∼=

LATS

TSI
� y

++WWWWWWWWWWWWWWWWWWWWWWWW
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Comments and Related Work

The analysis carried out in this paper helps in deciding when it is necessary to move to a
more ‘intensional’ framework (a lower level of abstraction) in which further distinctions of
events are introduced by assigning them explicitly. The definition of transition systems with
independence and multi-arcs raises the threshold by allowing a derived notion of event also
when multi-arcs are required.

As already remarked, there have been proposed several other independence models which
are based on the idea of enriching transition systems or graphs. The two studied here
are among the simplest, applying ideas from Mazurkievicz trace theory. The approaches
in [111, 130, 50, 51, 35] use ideas from algebraic topology. Intuitively, the idea is to make
the distinction between independency squares and non-independency sqaures by respresening
them as respectively a filled square, i.e. a surface or an empty square, i.e. just the bounding
edges. This gives a very appealing geometric intuition for independence and opens up for
potential uses of general results from algebraic topology, cf. e.g. [35]. One limitiation of the
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models we have considered, which is usually mentioned in favour for using e.g. the more
geometric models, is that independence is based on a binary relation between transitions.
This does not naturally allow us to describe the situation of having more than two actions
that are pairwise independent, but cannot occur together. On a certain level of abstraction,
a system of three computers trying to access two printers can be viewed as such a situation.
In the geometric models, this situation is modelled very intuitively as a hollow cube.

The approach in [125] is to complete transition systems so they become categories, in
which commutativity of squares can be interpreted as independency squares. These transi-
tion systems are related to the transition systems obtained from the category of elements
construction for presheaves (over path-categories with independence) mentioned in Ch. 2.
However, no investigation of the relationship has been carried out.

3.1.2 On Plain and Hereditary History-preserving Bisimulation

Many attempts have been made to answer the question what the appropriate generalisation
of the interleaving bisimulation to independence models is. The work in Ch. 6 is a compar-
ative study of two well known bisimulations for independence models, the history-preserving
bisimulation (HPB) and the hereditary history-preserving bisimulation (HHPB). Intuitively,
HPB extends the path formulation of bisimulation given in Def. 1.2.2 by requiring that any
two related paths must have the “same” independence structure. As mentioned in Sec. 7.4,
HPB was introduced in [115] and [32] under the name of behaviour structure bisimulation,
and mixed ordering (mo) bisimulation respectively. The term history-preserving originates
from [131], where Goltz and vanGlabbeek define the notion for event structures and prove the
key property of HPB, namely that it is preserved under action refinement. This result has
given history-preserving bisimulation its prominent place among independence bisimulations.
In [14] the notion is introduced as fully concurrent bisimulation. There it is independently
shown that HPB preserves action refinement for the more general model of Petri nets.

As recalled in the previous chapter, HHPB is the independence bisimulation obtained
from the open maps approach. However, it first appeared in [12], where Bednarczyk studies
several history-preserving bisimulations with a downwards closure condition. He calls sets
that satisfy this condition hereditary. Intuitively, the downwards closure condition imposes a
backtracking condition on the bisimulation: for any two related paths, the paths obtained by
removing, i.e. backtracking, the ith transition from each path must be related too, if no later
transitions in the path causally depends on the ith transition. The standard example showing
two Petri nets which are history-preserving but not hereditary history-preserving bisimilar is
given in Fig. 6.1.

Altogether a fair amount of work has been done already in studying both HPB and
HHPB. In [132] it is suggested that HPB and HHPB may be respectively the coarsest and
finest bisimulations preserving causality, branching and their interplay. However, very few
attempts have been made to formally demarcate the two notions from each other. Though,
as already noted in Sec. 7.4, Nielsen and Jurdzinsky have recently proven that HHPB is in
fact undecidable for finite systems [72]. This distinguish it radically from HPB, that has been
proven to be decidable for finite systems by Vogler [134]. The decidability problem for HHPB
remained open for more than 5 years despite many attacks (cf. e.g. [29, 26, 57]). Indeed, one
of the motivations for the work presented in Ch. 6 was to provide a stepping stone for the
solution to this problem, hoping to prove decidability. In the light of the undecidability result,
our contribution can be viewed as an investigation of the borderline between decidability and
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undecidability.

Our Approach

We first characterise the difference between HPB and HHPB in trace-theoretical terms. In
more detail, we view bisimulations between two given systems as languages over the transi-
tion set of thier synchronous product. We then show that the hereditary history-preserving
bisimulations are exactly the history-preserving bisimulations which are trace-consistent with
respect to the independence relation of the synchronous product of the two systems. This
supports an intuition that HPB is (just) a bisimulation for causality, while HHPB is a bisim-
ulation for concurrency.

We then set out to explore the frontier zone between the two notions of independence
bisimulation, with an emphasis on decidability. We do this by considering hereditary history-
preserving bisimulation with bounded backtracking. More precisely, for a fixed bound n ∈ ω,
we let (n)-HHPB refer to the hereditary history-preserving bisimulation in which backtracking
is restricted to the last n+1 transitions. Now HHPB is the intersection of all of the bounded
HHPBs, (n+1)-HHPB is obviously at least as strong as (n)-HHPB for any n, and (0)-HHPB
coincides with HPB. In other words, we get an infinite hierarchy

HHPB ⊆ . . . ⊆ (n+ 1)-HHPB ⊆ (n)-HHPB ⊆ . . . ⊆ HPB.

For any fixed n, we prove that (n)-HHPB is decidable. However, we also prove that the
hierarchy is strict. Figure 6.2 shows two concrete Petri-nets which are (n)-bounded hereditary
history-preserving bisimilar but not (n+1)-bounded hereditary history-preserving bisimilar.

We end by considering subclasses of systems for which HHPB can be decided by reducing
the problem to (n)-HHPB for a known n. We show that one such class is given by the systems
with transitive independence relation, i.e. systems for which any two different transitions that
are both independent of a third transition are independent of each other.

Comments and Related Work

There is still undiscovered territory in the zone between plain and hereditary HPB, which is
studied further in work of Fröschle [40, 41]. Here interesting subclasses have been found for
which the two notions can be proven to respectively coincide or not coincide.

Another interesting challenge is to find an operator which is both intuitive and useful,
such as e.g. action refinement, for which HHPB but not HPB is a congruence.

Finally, it should be mentioned, that the trace characterisation and the decidability result
of Ch. 6 is due to Sibylle Fröschle, though the idea of the decidability result was found
independently and present in the work reported in [57].

3.2 Fairness

Fairness is a property of completed computations: a typical fairness property asserts that
something (good) will eventually happen during the computation1, which of course cannot
be judged without observing the complete computation. As e.g. described in the book of
Francez [39] there is a large number of different notions of fairness. The work presented

1making fairness a liveness property in the sense of [79]
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in Ch. 7 does not in particular focus on how computations are deemed unfair, but follow
the line of work in e.g. [54, 7] and consider models that more generally allow an explicit
representation of completed computations, and thus the possibility of ruling out those which
for some reason are considered inadmissible. Indeed the model of general transition systems
proposed in [54] consists of transition systems equipped with a, suitably closed, subset of their
(possibly infinite) computations, indicating which are admissible.

A benefit of the more general approach is that it allows us to study e.g. behavioural
equivalences and temporal logics for fairness, independent of the choice of fairness. Of course
the models should ultimately be tested against one or more fair operators to see if they
allow natural interpretations. Here we focus on the extension of Milner’s Synchronous CCS
(SCCS) with a finite delay operator as proposed in [88]. Finite delay offers an economical
way of introducing inadmissible infinite computations. Yet, it is strong enough to be able to
derive an asynchronous calculus with a fair parallel operator guaranteeing that two processes
in parallel will both eventually make progress, usually called progress fairness, or concurrency
fairness.

3.2.1 Finite Delay

Syntactically the finite delay of an agent t is written εt. The agent εt can perform an un-
bounded number of 1-actions εt 1−→ εt (delays) but must eventually perform an action εt a−→ t′

if t can perform an action t a−→ t′ or stop if t cannot perform any actions. Defining a (possibly
infinite) delay operator δ by

δt = rec x.(1:x + t),

it is easy to see that εt has the same immediate actions as δt, in particular both agents are
solutions to the equation

x ∼= (1 : x+ t). (3.2)

This tells us that process equations will not have unique solutions as it is the case in CCS
(with guarded recursion). It also suggests, as studied in [64], that one could consider a more
general fair recursion or finite recursion operator recfin x. with the same operational semantics
as the usual recursion, except that any computation with infinitely many unfoldings of the
recursion is inadmissible. Then finite delay can be defined by εt = recfin x.(1:x+ t). This idea
is consistent with the semantics given in Ch. 7.

3.2.2 Behavioural Equivalences

To deal with agents in which only some infinite computations are admissible, one must read-
dress the issue of how to represent the behaviour of agents. The operational semantics now in
fact assigns a general transition system to each term, i.e. a transition system with an indica-
tion of which infinite paths are admissible. Now, since strong bisimulation will identify agents
that only differ on whether some infinite computations are admissible or not (in particular εt
is identified with δt for any term t) we need a stronger equivalence.

In [89], Milner proposes a behavioural preorder called fortification, which is designed such
that (1) it induces an equivalence which distinguishes the two notions of delay and coincides
with strong bisimulation for “standard” agents, (2) recursive processes are least fixed points
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of the associated process equations and (3) the equivalence is a congruence with respect to
all the operators of the language (assuming guarded recursion).

The two last points are as one could wish for. However although the two delays are
distinguished, the fortification equivalence is too weak. As pointed out by Aczel in [7], it
makes some non-desirable identifications of agents. An example of this is given by the two
agents

δ(a :0 + δ0) and ε(a :0 + δ0). (3.3)

Intuitively, the two agents should not denote the same process, since the first agent can delay
infinitely remaining able to perform an a-action, while the second agent must eventually reach
a state in which it cannot perform an a-action. To see that these agents are identified by the
fortification equivalence, it sufficient to consider an extension of the strong bisimulation which
is stronger than fortification, but still identifies too much. The bisimulation we have in mind
is the symmetric generalisation of fortification, extending Def. 1.2.1 by the extra conditions

1. if s1 R s2 and s1
a1−→1 s1,1

a2−→1 s1,2 . . .
an−→1 s1,n . . . is an admissible computation path,

then there exists an admissible computation path s2
a1−→2 s2,1

a2−→2 s2,2 . . .
an−→2 s2,n . . . .

2. if s1 R s2 and s2
a1−→2 s2,1

a2−→2 s2,2 . . .
an−→2 s2,n . . . is an admissible computation path,

then there exists an admissible computation path s1
a1−→1 s1,1

a2−→1 s1,2 . . .
an−→1 s1,n . . . .

The conditions simply say, that any two related agents must be able to produce the same set
of infinite action sequences. If we label nodes of derivation trees by the sets of admissible,
infinite, action sequences for the underlying agents, it is easy to see that the two agents above
are identified, since they both get assigned the tree

•∅

•{1ω}
1

OO
a

1

•∅ •{1ω}

1

•{1ω}

dd

1

JJJJJ
OO

a
::1 ttttt
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1
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ee

1

JJJJJ
OO

a
991 ttttt

. (3.4)

However, an intuitive strengthening will give us a bisimulation that do distinguish the
two agents. The idea is to require, that any two corresponding states of the infinite paths in
the conditions above must be in the relation too, i.e. that s1,n R s2,n for any n ∈ ω. This is
exactly the extended bisimulation proposed by Hennessy and Stirling in [54]. It turns out to
be the canonical bisimulation arising in the presheaf model we propose in Ch. 7.

Our Approach

Our starting point is the work on presheaf models for concurrency. We have two goals: The
first is to extend the categorical approach to models for infinite observations, in which to
interpret fairness. The second is to give a denotational semantics for SCCS with finite delay,
which agrees with the operational semantics up to a behavioural equivalence similar to the
extended bisimulation given above. In the following two sections we summarise how these
two goals are met.
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A presheaf model for infinite observations. Recall from the previous chapter, that
starting from the partial order category FinAct = (Act∗,≤), the category F̂inAct

+ is equivalent
to the category STAct of Act-labelled synchronisation trees. Moreover, the typical construc-
tions of a CCS-like language can be expressed as functors preserving the canonical equivalence.

In this light, it was natural to consider the path category InfAct = (Act∗∪Actω,≤) obtained
simply by adding all infinite sequences of actions to the category FinAct. The categories
F̂inAct

+ and ̂InfAct
+ are related by two obvious functors

FinAct InfAct� � //

inf

oo fin

, (3.5)

where fin simply projects to the finite paths, and inf extends a presheaf in F̂inAct
+ to a presheaf

in ̂InfAct
+ with empty sets for any infinite path.

Assuming that X is a presheaf in ̂InfAct
+, an element x ∈ X(α) for α ∈ Actω will specify a

unique infinite path in the synchronisation tree corresponding to fin(X). We wish to represent
that an infinite path is admissible by the presence of such a limit point, and that it is
inadmissible by the absence of a limit point. With this interpretation, the model is a bit
too general; it allows an infinite path to have two or even more limit points, not representing
anything more than if it had only one limit point. We take the subcategory of presheaves with
at most one limit point for any infinite sequence as our model, which is in fact the category
Sp( ̂InfAct

+) of separated presheaves over InfAct
+ with respect to the canonical Grothendieck

topology for InfAct. In the standard terminology, the infinite paths and unique limit points
are respectively matching families and unique amalgations.

Moreover, we can recover the category F̂in within Înf, as being equivalent to the category
Sh(Înf) of sheaves over Inf for the same topology. In our case, a separated presheaf is a
sheaf if it has exactly one limit point for any infinite path. Thus, a sheaf will correspond
to a synchronisation tree in which any infinite path is admissible, i.e. a limit closed syn-
chronisation tree, which is just the standard interpretation made explicit. Sheaves, separated
presheaves and presheaves are known to be closely related and rich in structure [83, 148],

in particular the category Sh( ̂InfAct
+) is a reflective subcategory of Sp( ̂InfAct

+), which is a

reflective subcategory of ̂InfAct
+. Since the objects of InfAct

+ are trivially sheaves under the
Yoneda embedding we get the same, usual canonical bisimulation for all three categories. The
relationships between the different categories just described are summarized in the diagram
below.

F̂inAct
+

Sh( ̂InfAct
+) Sp( ̂InfAct

+) ̂InfAct
+

InfAct
+

� s

%%

⊥
inf LLLLLLLLLLLL

ee

fin

LLLLLLLLLLLL

� � //⊥
oo

� � //⊥
oo

?�

OO

YInfAct
+

��

OO

∼=

. (3.6)
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We give a concrete representation of Sp( ̂InfAct
+) as a category of generalised synchroni-

sation trees, which is shown to be coreflective in a category of generalised transition systems,
with objects being general transition systems as defined in [54] in which any finite computa-
tion is admissible. The relationship between the finitary models as described in Ch. 2 is lifted
to the infinitary models as summarised in the diagram below.

Sp( ̂InfAct
+)

GST GTS

ST TS

� � //>
oo

� � //>
oo?�

OO

a
��

fin

?�

OO

a
��

fin

OO

��

∼=

(3.7)

Finally, we show that the extended bisimulation for generalised synchronisation trees as
defined in [54] coincides via the equivalence with the canonical bisimulation obtained for

Sp( ̂InfAct
+).

Semantics of SCCS with finite delay. We first give an operational semantics of SCCS
with finite delay in the generalised transition systems capturing exactly the definition of
inadmissible computations given in terms of waiting subcomputations in [88]. We then give a
denotational semantics in the presheaf model which we prove to be equationally fully abstract
with respect to extended bisimulation. In this process we greatly benefit from the categorical
presentation. Unbounded non-determinism is represented simply by (infinite) coproducts.
The remaining basic operators of SCCS is interpreted as functors constructed using left Kan
extensions, for which congruence properties follow almost for free. As meanings of recursion
we take final coalgebras, corresponding to greatest fixed points and the finite delay operator
is simply obtained as an initial algebra corresponding to a least fixed point of the process
equation (3.2) given above. This is analogous to work on finite and infinite data-types, cf.
e.g. [38].

Finally, the categorical relationships between the different models and the general theory
of bisimulation from open maps reduce the problem of relating the two semantics to finding
an open map within the category of generalised transition systems.

Comments and Related Work

As already mentioned, our approach is closely related to the work of Hennessy and Stirling on
general transition systems and extended bisimulation and the work of Aczel in []. A number
of other people have proposed models for non-deterministic processes with inadmissibility
of infinite computations and given denotational semantics of SCCS with finite delay and
m [7, 65, 53, 54, 139]. The semantics given in [65] is also shown to be fully abstract, but
with respect to the fortification equivalence, so it makes the non-intuitive identifications
described above. Moreover, it only covers bounded non-determinism as obtained from terms
in which only a binary sum is allowed. The semantics of [53] is also based on the fortification
equivalence. Common to the models given in [65, 53, 139] is that the approximation order
between agents treats infinite observations opposite than finite observations as the fortification
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preorder of [88]. This means that for two related agents the largest will be the one with fewest
admissible infinite computations. This ordering allows the usual interpretation of least fixed
points as recursion, but by forcing this to be possible it seems that one introduce the counter-
intuitive properties we illustrated for the fortification equivalence.

A number of questions remain to be explored. An obvious question is if one could gen-
eralise the finite delay to a fair recursion as in [64]. The proposed notion of open natural
transformations for functors between presheaf categories should be explored further. Work
is in progress on a notion of open maps between denotations of open terms stronger than
the one in [22], for which open map bisimulation is a congruence with respect to recursion.
The characteristic HML-like path logic [71] for extended bisimulation which can be obtained
from the open maps approach should be compared to the characteristic logic given in [54].
It is worth remarking that both logics makes crucially use of tense temporal operators. Here
comes the question about decidability of extended bisimulation. As remarked on in the pa-
per by slightly altering the annotation of finite delay agents in the operational semantics an
interesting subclass of agents will always be assigned finite (generalised) transition systems.
Along a totally different line it would be interesting to explore if there is any relationship
between the present approach and the more domain theoretical approaches to fairness and
countable non-determinism in [108, 1]. Finally, we hope to be able to extend the presheaf
model for (finitary) non-deterministic dataflow summarised in the following section to infinite
observations along the lines of the present work, giving a model of dataflow in which fairness,
maybe even fair merge [101], can be expressed.

3.3 Dataflow

Assuming some fixed set of values, which could be taken to be the set of actions Act, a dataflow
network is a reactive system with a number of input ports and a number of output ports,
interacting with the environment by reading and producing values on respectively its input
and output ports. A network N with input ports X and output ports Y can be represented
graphically as a box

YNX

,

where arrows represent a (possibly empty) collection of ports, which might be explicitly split
between more arrows. The observable behaviour of a dataflow network is traditionally taken
to be the input-output relation it computes between streams (possibly infinite sequences) of
values from Act on respectively input and output channels. An assignment of streams to a
set X of ports, i.e. a function h : X → Act∗ ∪Actω, is traditionally referred to as a history on
X and we will let HX refer to the set of histories on X. The model of relations between such
sets of histories is often referred to as the history model.

An essential idea of the dataflow paradigm is that a collection of networks can be combined
into a single larger network, possibly connecting some of the free input and output ports as
illustrated in Fig. 3.1. A connection between two ports of the same network is referred to
as a feedback loop. Usually it is assumed that two wires cannot be connected to the same
port. Note that the effect of connecting one output port to two input ports can be obtained
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N2N1

N3

Figure 3.1: An example of a dataflow network

by assuming the existence of fork boxes

X X

X , (3.8)

that simply copies the values read at each input port to two output ports.
Traditionally wires are assumed to behave like unbounded FIFO-buffers and the smaller

networks, sometimes referred to as nodes, assumed to compute asynchronously, driven by
the arrival of values at their input ports. Kahn [74] observed that the behaviour of dataflow
networks built from only deterministic nodes (and not able to test for completion of the input)
could be captured denotationally in the history model, representing networks with input ports
X and output ports Y as Scott continuous functions between domains of histories

N : HX →cont HY , (3.9)

ordering histories point-wise by the prefix order on streams. The key point was then, that
composition could be defined as a least fixed point of a set of equations describing the com-
ponents. This was later shown formally by several authors, e.g. Faustini [36], Lynch and
Stark [81].

3.3.1 Traced Monoidal Categories and a Calculus of Boxes and Wires

Independent of how networks behave, we can identify a calculus of boxes and wires describing
structural equalities (or isomorphisms) between networks, expressing that the order in which
ports are connected does not matter. That is, two networks should behave the same if they are
isomorphic as (directed) graphs with labelled nodes and ordered sets of ingoing and outgoing
edges. If the basic primitives for forming networks are taken to be sequential composition,
parallel composition, crossing of wires and feedback as shown in Fig. 3.2, such a calculus
is naturally interpreted in a traced symmetric monoidal category [70]. The notion of traced
monoidal category abstracts the notion of trace of a matrix from multi-linear algebra. However
it has emerged in a variety of new contexts including the study of feedback systems [9, 3],
knot theory [67] and recursion [52]. In the context of dataflow, objects of the category are
interpreted as interface types (which might simply be a natural number representing the
number of ports in the interface), arrows are interpreted as dataflow networks and sequential
composition is interpreted as composition in the category. The symmetric monoidal structure
is then interpreted as parallel composition and crossing of wires, and the trace is interpreted
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Figure 3.2: Dataflow primitives as in a Traced Symmetric Monoidal Category
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Figure 3.3: Bi-functoriality of ⊗ in terms of boxes and wires

as feedback loops. Recall that a (strict) monoidal category is a category C equipped with a
bi-functor ⊗ : C × C → C usually referred to as the tensor product, which is associative, and
has an object I which is a left and right unit for ⊗ In the calculus of boxes and wires, the
object I is an empty interface, i.e. an interface with no ports, and the bi-functoriality of ⊗
simply amounts to the intuitive equality shown in Fig. 3.3.

A monoidal category is symmetric if its equipped with (symmetry) isomorphisms σA,B : A⊗
B → A⊗B natural in A and B which again are required to satisfy some commutativity con-
ditions (which make them the right candidates for interpretations of crossings of wires). A
trace in a monoidal category consists of a family of maps

TrUX,Y () : C(X ⊗ U, Y ⊗ U)→ C(X,Y ),

required to satisfy some algebraic properties. In the calculus of boxes and wires these prop-
erties correspond to invariance under (any) rearrangement of boxes which might stretch or
shorten wires but does not change or break any connections2. The axiomatization for traced
monoidal categories as given by Joyal, Street and Verity in [70] is presented in Ch. 8, slightly
simplified and specialized to strict symmetric monoidal categories as in [52].

Remark 3.3.1 The requirement of associativity of ⊗ and the equalities for the unit object
might be relaxed to only assuming the existence of natural isomorphisms (accompanied with
some commutativity conditions, cf. [82]) giving just a monoidal structure and not a strict
monoidal structure. Similarly, the associativity of (sequential) composition of arrows, and
the equalities of composition with identities might be relaxed (accompanied with some com-
mutativity conditions, cf. [15]) resulting in a bicategory rather than a category. This is the
case for one of the models for dataflow described in 8.

It is important to note that simply by being a traced (symmetric) monoidal category, a
category does not necessarily allow an adequate interpretation of the behaviour of dataflow
networks. An extreme example illustrating this point is provided by the (final) category with
just one object and one arrow (the identity). This category is trivially a traced symmetric
monoidal category, but also a quite trivial model of dataflow. A more interesting example is
provided by the traced monoidal category (Rel,×, 1,Tr) of sets and relations, with the tensor
product given by the cartesian product and the trace for a relation R ⊆ (X × Z)× (Y × Z)
given by

(x, z) ∈ TrZX,Y (R) iff ∃z ∈ Z.
(
(x, z), (y, z)

)
∈ R.

2In fact, as remarked in [121] the axioms are sound and complete for graph isomorphism for the kind of
graphs mentioned in the previous footnote.
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By using the equivalence HX×HY ∼= HX ] Y the traced monoidal structure of (Rel,×, 1,Tr) re-
stricts to the history model. However, if one considers the input/output relation

{(
h, (h1, h2)

)
∈

Ha × (Hb × Hc) | h = h1 = h2

}
of the (deterministic) fork network given in (3.8) above, it is

easy to see that TrXX,X(Fork) = Hb, i.e. the relation describing the behaviour of the network
that can output any sequence on its output port. However, for any value to be produced on
the feedback wire or the output port the same value must first be read from the feedback
wire. Consequently (assuming that the wire is initially empty) no values can be produced at
the feedback wire, and so no values can be produced on the output port. In other words, the
operationally correct trace operator should yield the empty relation.

Higher order structure from trace: Geometry of Interaction. The Geometry
of interaction program was invented by Girard in his analysis of the fine structure of cut
elimination [44, 45]. His basic insight was that higher order structure could be understood in
terms of trace but this understanding was hidden in the mathematical setting - Hilbert spaces
and traces of operators - that he used. In [70] Joyal, Street, and Verity and independently
Abramsky [3] (see also [6]) gave the categorical expression of the idea which was that a traced
monoidal category could be ”completed” to yield a compact closed category. As such it
gives a method for realizing higher-order constructs in terms of feedback, for more details see
Sec. 8.4.2

3.3.2 Relational Semantics of Non-deterministic Dataflow

As described in the introduction, Kahn’s semantics somehow marks a border between when
the behaviour of dataflow systems can be described compositionally purely by its input/output
relation between a domain of input values and a domain of output values and when a more
detailed mathematical model is required. Brock and Ackerman [17] proved that if the non-
deterministic primitive fair-merge was added to the calculus it was no longer possibly to
give a compositional semantics in the history model. As we recall in Sec. 8.1.1 Russell [116]
later showed that the history model is insufficient also if just the simpler [102] primitive
non-deterministic choice is added to the calculus. A solution to the problem of giving a
compositional semantics for non-deterministic dataflow was provided by Jonsson [68], and
independently Kok [78], who gave a fully abstract denotational semantics for dataflow with
fair-merge. The model of Jonsson represents the behaviour of networks by sets of (possibly
infinite) sequence of input/output events, each sequence recording in which order values
are read and produced on the ports during a particular, completed computation. In [116]
Russell shows that the model of Jonsson is fully abstract even for the calculus with just
non-deterministic choice and no fair primitives.

Although giving a fully abstract semantics, the solution based on language models has left
the conceptually simple view of networks in Kahn’s semantics in which networks are repre-
sented by functions (or relations) and feedback/network composition described by least fixed
points. Moreover, where the computable behaviours in Kahn’s semantics could reasonably be
taken to be the (Scott) continuous functions (if one do not care about finite representations),
there is no obvious way of identifying what languages in the model of Jonsson that can be
realized as behaviour of (a possibly infinite) dataflow network. Consequently, it became a
goal to provide a compositional semantics of non-deterministic dataflow that retains the con-
ceptual view of processes as relations and allows network composition to be described by a
kind of fixed point, generally referred to as Kahn’s principle [81, 2].
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Summary of our approach

The work on dataflow presented in Ch. 8 has two goals: To take up the challenge of giving a
relational semantics for non-deterministic dataflow and to demonstrate how dataflow primi-
tives, i.e. communication by composition and feedback, could be included in the framework
of presheaf models for concurrency, using the notion of traced monoidal categories.

Russell’s “anomaly” shows that it is already a challenge to give a relational semantics for
non-deterministic networks without any kind of fair primitives, so for simplicity we consider
only semantics for finite, partial computations. Consequently, in the rest of the section HX ,
for a set of port names X, will refer to the partial order of functions h : X → Act∗.

Our starting point (Sec. 8.2.2) is to give a model similar to that of Jonsson, representing
networks by (prefix closed) sets of (finite) event sequences. We assume these sets are closed
under permutations of independent events as in Mazurkiewicz trace languages. These pro-
cesses is shown form the arrows of a traced monoidal category in which feedback is modelled
causally correct by the trace operator. We call this category Kahn and refer to the arrows, as
given by trace languages, for Kahn-processes.

The next step (Sec. 8.3) is to look for a traced monoidal category that is both “relational”,
i.e. a generalisation of the history model, and a generalisation of the category Kahn.

Having the category of (connected) colimit preserving functors mentioned in Sec. 2.3 in
mind, it is natural to try replacing relations between (partially ordered sets of) histories by
profunctors, regarding the partially ordered sets of histories as categories (Sec. 8.3). Recall
that a profunctor F from HX to HY , written F : HX //+ HY , is a presheaf in ̂Hop

X × HY , i.e. a
bi-functor F : HX × Hop

Y → Set.
Profunctors are a categorical generalisation of sets and relations, and as mentioned in

Sec. 2.3 they form the arrows of a (bi-)category Prof, in which objects are small categories.
Composition is given by a coend [82],

X;Y (p, q) =
∫ u

X(p, u)× Y (u, q) , (3.10)

which generalises relational composition.
We let PProf denote the subcategory induced by objects being partial order categories of

histories, which we refer to as the category of port profunctors.
One way to illustrate how a profunctor F : HX ×Hop

Y → Set is a categorical generalisation
of a relation F ⊆ HX × HY is by regarding the relation as a function

F : HX → P(HY )

and noting that the profunctor can equivalently be regarded as a functor

F : HX → ĤY .

The “generalisation” then amounts to considering the partial orders HX and HY as categories,
replacing the powerset (or powerdomain) operator by the free colimit completion (cf. Ch. 2)
and taking F to be a functor. It is a fact that Prof can be equipped with a tensor product
and a trace, which generalises the traced monoidal structure on (Rel,×, 1), and satisfy the
axioms of a traced monoidal category up to isomorphism. As for Rel the traced monoidal
structure restricts to PProf.
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Similarly to the work on fairness, our way to investigate if PProf supports natural in-
terpretations of dataflow was to consider the operational reading given by the category of
elements construction (Sec. 8.3.2).

The encouraging result was that profunctors of the kind F : HX //+ HY
+ (corresponding

to connected colimit preserving functors from ĤX
+ to ĤY

+ as mentioned in Sec. 2.3) in this
way could be concretely represented as a category of (unfolded) monotone port automata as
introduced by Stark and Panangaden [103].

The concrete representation gave an immediate functor Seq from the category of rooted
port profunctors to Kahn simply mapping a rooted profunctor to the set of finite runs of its
associated port automaton. This made the category PProf look promising as a “relational”
model of non-deterministic dataflow.

However, the functor Seq does not preserve the trace of PProf as given by the coend. The
trace suffers from being a generalisation of the trace in (Rel,×, 1), indeed the (counter)example
with the fork network given for Rel in the previous section carries over to PProf, showing that
it is not a “causally” correct trace.

The solution was found by realising from the operational reading of profunctors as port
automata that the “correct” trace appeared as a (rooted) subprofunctor of the trace as given
by the coend in PProf, essentially obtained by removing all parts profunctor which in the
associated automaton are not reachable by a secured computation, that is, a computation in
which any token on the feedback channels appear as output before it appears as input. By
restricting attention to the category PProfs of stable profunctors PProfs, which is the category
with arrows being pullback preserving functors F : HX → ĤY

+, the subprofunctor indeed
gives a well defined trace, which is preserved by the functor Seq : PProfs → Kahn. Notably,
the trace can be defined, using the standard construction of the subdivision category, as the
composition of two functors, the first restricting the functor to secured states, the second
being the usual colimit.

As a consequence of being presheaf categories, we automatically get (Sec. 7.4) a notion of
bisimulation from (surjective) open maps between stable port profunctors for a fixed choice
of input and output ports. This bisimulation is proven to be a congruence with respect to
parallel composition, sequential composition and feedback. In proving this we benefit from
the general congruence properties mentioned in Sec. 2.3.

From the traced monoidal structure of the two categories, Kahn and PProfs, we get models
of (linear) higher-order dataflow using the Geometry of Interaction construction to construct
compact closed categories G(Kahn) and G(PProfs), which we denote by HKahn and HPProfs.
However, strictly speaking the construction do not immediately apply to PProfs. Since it is
a bicategory, only satisfying the axioms of a TMC up to isomorphism. G(PProfs) will not be
a category, e.g. composition is only associative up to isomorphism. One solution is consider
the quotient of PProfs with respect to open map bisimulation, analogous to the definition
of the category ASProc in [4, 43]. That is, instead of PProfs use the category with objects
being path categories as usual, but taking arrows to be equivalence classes with respect to
open map bisimulation. By the congruence result, this is indeed well defined and it is easy to
check that we get a traced (strict) symmetric monoidal category.
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Comments on Future and Related Work

We would like to emphasise the view of the profunctor model of dataflow summarised above
as an extension of the presheaf model for synchronous communication, adding asynchronous
input and independence. This can be seen by first considering (stable) profunctors of the form
F : H∅ //+ H1

+ for 1 being the one-element set, to be interpreted as networks with no input and
just one output port. The homcategory PProf[H∅,H1], is trivially equivalent to the category

F̂inAct
+ corresponding to synchronisation trees, and the construction of port automata indeed

just specialise to the one for synchronisation trees. Now we can add a set X of asynchronous
input ports, considering profunctors in PProf[HX ,H1]. From such profunctors, profunctors
modelling networks with more than one output port can be obtained by parallel composition.

In this sense our dataflow semantics unifies asynchrony and synchrony.
The above considerations suggest a small calculus for dataflow similar to the one in [127].

The idea is to take a pair (α, t), where t is an CCS agent with action set HX×Act and α ∈ HX
is an input buffer, to represent agents with asynchronous input ports X and one output port.
The operational semantics is then given by the rules

(α, t)
i 〈x, v〉
−→ (〈x, v〉α, t)

,
t

(α′,b)−→ ccs t
′

(αα′, t) o b−→ (α, t′)
.

These agents, together with agents corresponding to the fork process in (3.8), can then
be taken to be the basic components of a calculus with parallel composition, sequential com-
position and feedback given as in the category of profunctors. This idea is basis for future
work.

It remains to explore systematically the full family of models for dataflow, relating au-
tomata, event structure and traces-based models to the relational model, following the pattern
set in [146].

The higher-order models should be compared to the work in [4].
It would be very interesting to compare the abstract profunctor model to the more concrete

models of scenarios (Brock and Ackerman [17, 16]). A comparison with the semantics in [123],
which unfortunately just recently have come to our attention, should also be carried out.

Early attempts have been made to incorporate fairness into the calculus sketched above
and the profunctor model. It is hoped to exploit independence along the lines in [26] and
include infinite observations as the work in 7.

Recent work of Selinger [121] takes the first steps in trying to axiomatise the structure
of a traced monoidal category in which trace do model a “causally” correct trace, which he
refers to as being “loop-like”. He gives a characterisation of uniform traces as corresponding
to loop-like traces, which is able to distinguish the two traces in Rel (cf. Sec. 8.2.1). We hope
to be able to show, that his axiomatisation distinguish the two traces in PProf as well.
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Chapter 4

Comparing Transition Systems with Independence
and Asynchronous Transition Systems

Abstract: Transition systems with independence and asynchronous transition systems
are noninterleaving models for concurrency arising from the same simple idea of decorating
transitions with events. They differ for the choice of a derived versus a primitive notion of
event which induces considerable differences and makes the two models suitable for differ-
ent purposes. This opens the problem of investigating their mutual relationships, to which
this paper gives a fully comprehensive answer. In details, we characterise the category of
extensional asynchronous transitions systems as the largest full subcategory of the category
of (labelled) asynchronous transition systems which admits TSI, the category of transition
systems with independence, as a coreflective subcategory. In addition, we introduce event-
maximal asynchronous transitions systems and we show that their category is equivalent to
TSI, so providing an exhaustive characterisation of transition systems with independence in
terms of asynchronous transition systems.
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Introduction

Following the leading idea of CCS [90] and related process calculi [62, 8, 91, 55], the behaviour
of concurrent systems is often specified extensionally by describing their ‘state-transitions’
and the observable behaviours that such transitions produce. The simplest formal model of
computation able to express naturally this idea is that of labelled transition systems, where
the labels on the transitions are thought of as the actions of the system at its ‘external ports’,
or, more generally, the observable part of its behaviour.

Transition systems are an interleaving model of concurrency, which means that they do
not allow to draw a natural distinction between interleaved and concurrent execution of
actions. More precisely, transition systems do not model the fact that concurrent actions can
overlap in time and reduce concurrency to a nondeterministic choice of action interleavings,
so losing track of the casual dependencies between actions and, consequently, of the fact
that computations that differ only for the order of independent actions represent, actually,
the same behaviour. In other words, interleaving models abstract away from the difference
between the factual temporal occurrence order and the more conceptual causal ordering of
actions. The simplest exemplification of this situation is provided by the CCS terms a | b and
a.b+ b.a, both described by the following transition system.

•

•
??b ~~~~ •

__ a@@@@

•

__

a

@@@@
??

b

~~~~

(4.1)

Although for many applications this level of abstraction is appropriate, for several other kinds
of analysis a model may be desirable that takes full account of concurrency. For instance,
apart from any philosophical consideration about the semantic relevance of cause/effect rela-
tionships, knowing that different interleavings represent the same behaviour can reduce con-
siderably the state-space explosion problem when checking system properties such as safety
properties and fairness [46, 129, 105].

Several efforts have been devoted to the search of transition-based noninterleaving models,
e.g., transition systems enriched with additional features that make expressing concurrency
explicitly possible (cf., e.g., [111, 130, 50, 51, 133, 20]). The present paper focuses on two
such models, namely asynchronous transition systems, introduced independently by Bednar-
czyk [11] and Shields [122], and transitions systems with independence, proposed by Winskel
and Nielsen [146]. These two competing approaches are, among the others, those building
on the simplest idea: endow transition systems with some formal notion of ‘similarity’ of
transitions that enables to distinguish whether or not the opposite edges in diagrams such
as (4.1) represent the same action. Intuitively, this is achieved in both approaches by thinking
of transitions as occurrences of events, two transitions representing the same event if they
correspond to the same action. However, the differences induced on the models by the dif-
ferent choices of how to assign events to transitions are definitely not trivial. And so are the
relationships that these models bear to each other.

Getting to the details, asynchronous transition systems assign events to transitions explic-
itly and enrich the structure further by adding an independence relation on the events which
describes their causal relationships. This clearly makes distinguishing nondeterminism and
concurrency possible; a.b + b.a and a|b can be represented respectively by, e.g., the follow-
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•

??be′ ~~~~ •

__ ea@@@@

•

__
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@@@@
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e′b
~~~~

•

•

??be′ ~~~~ ∼ •

__ ea@@@@

•

__

ae

@@@@
??

e′b
~~~~

Figure 4.1: Non-determinism vs. independence in labelled asynchronous transition systems
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Figure 4.2: Non-determinism vs. independence in transition systems with independence

ing labelled asynchronous transition systems, where ∼ indicates whether or not the events e
and e′ (labelled by a and b) are independent.

Observe that here and in the rest of the paper we consider labelled asynchronous transition
systems [11, 146], i.e., asynchronous transition systems with a further labelling of events, as
the proper extension of labelled transition systems.

The expressive power of asynchronous transition systems is clearly not limited to the ex-
ample above; for instance, Bednarczyk [11] and Mukund and Nielsen [93] have shown that
noninterleaving related issues for CCS processes—such as localities—can be modelled faith-
fully using this model. However, it can be argued that assigning both the independence
relation and the decoration of transitions with events explicitly means assigning too much. In
fact, this obviously introduces some redundancies in the model: there are, for instance, many
non-isomorphic variations of the asynchronous transitions systems above which can still be
reasonably thought as models of a|b and a.b + b.a. Moreover, although it is usually easy to
tell about independence of transitions, in many important cases it is at least not immediate
to assign events to transitions: it might very well be the goal of the entire semantic analysis
to understand what the events of the system and their mutual relationships are. This con-
sideration seems to indicate that asynchronous transitions systems cannot have a significant
impact in Plotkin’s SOS style semantics, unless the independence relation is promoted to a
greater role.

Transition systems with independence are an attempt to answer to the previous observa-
tion. Here events are not introduced explicitly. They are rather derived from the structure
of the ‘simply-labelled’ transitions, upon which the independence relation is directly layered.
In such a model, each of the CCS terms discussed above admits only one transition system
which can faithfully represent it, viz., respectively, The implicit information about events can
be easily deduced from the presence (or the absence) of ∼, making the achieved expressive
power comparable to that of asynchronous transition systems. Moreover, avoiding a primitive
notion of event makes providing a ‘noninterleaving’ operational semantics in the SOS style a
relatively simple task (cf. [146]).

However, in order to be consistent with the computational intuition, the axiomatics of
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transition systems with independence involves (apparently necessarily [118]) one condition
expressed ‘globally’ in terms of all the transitions representing occurrences of the same event.
This contrasts with the ‘local’ conditions defining asynchronous transition systems and can
make hard checking that a given structure is a transitions system with independence. Thus,
the differences induced on the two models by the choice of a primitive versus a derived no-
tion of event are far-reaching and seem to make them suitable for different applications.
This indicates that it is not wise to choose once and for all between asynchronous transition
systems and transition systems with independence, which, in turn, opens the issue of inves-
tigating formally their analogies and differences. The contribution of this paper is to answer
exhaustively such a question, which, actually, escaped the thorough analysis of models for
concurrency carried out in [146, 119, 118]. Precisely, we prove that transition systems with
independence besides being nicely related to a class of asynchronous transition systems that
we call extensional, are equivalent to the so-called event-maximal asynchronous transition
systems. These latter can be seen at the same time as those transition systems that make as
few identifications of transitions as possible, i.e., contain no confusion about event identities,
and as those in which such identities are derivable from the independence relation, i.e., reduce
the redundancy. It is worth mentioning that the converse does not hold: the asynchronous
transitions systems for which the independence relation is in turn derivable from the struc-
ture of events, and therefore redundant, are slightly less general. They correspond to the
transitions systems with independence for which ‘independence is concurrency’ considered
in [119, 118].

Concerning the organization of the paper and its technical contributions, after recalling
in Section 4 the definitions of LATS and TSI, respectively the categories of labelled asyn-
chronous transitions systems and of transitions systems with independence, in Section 4.1
we look for a functor adjoint to the obvious embedding TSI ↪→ LATS. In particular, we
identify the category of extensional asynchronous transitions systems, eLATS, as the largest
subcategory of LATS which admits TSI as a coreflective subcategory. It is worth noticing
here that at : eLATS → TSI, the right adjoint of the coreflection, complements and corrects
a non-well-defined construction sketched in [146]: as a matter of fact, due to the greater
generality of asynchronous transition systems, eLATS happens to be the largest subcategory
of LATS on which such a construction makes sense. Finally, Section 4.2 introduces event-
maximal asynchronous transitions systems and their category meLATS, providing the proof
of the equivalence TSI ∼= meLATS. This yields a complete description of TSI in terms of LATS
which can be useful in practise to translate back and forth between the two models when the
application one has in mind requires it.

Summing up our results, this paper presents the following commutative diagram, which
makes completely formal and precise the relationships between transition systems with inde-
pendence and asynchronous transition systems.

TSI
� � //� v

))RRRRRRRRRRRRRR� _

��

∼=

LATS

meLATS
?�

OO

� � // eLATS
?�

OO
ii

at
⊥

RRRRRRRRRRRR
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Preliminaries

In this section we recall briefly the definitions of asynchronous transition systems, transition
systems with independence, and their respective categories [11, 146].

As discussed in the introduction, asynchronous transition systems are simply transition
systems whose transitions are decorated by events equipped with an independence relation.
Four axioms (A1–A4) are needed to guarantee the intended meaning for the events and the
independence relation.

Definition 4.0.2 (Labelled Asynchronous Transition Systems) A labelled asynchronous
transition system (lats for short) is a structure

A = (SA, iA, EA,TranA, IA, LA, `A),

where (SA, iA, EA,TranA) is a transition system with set of states SA, initial state iA ∈ SA,
and transitions TranA ⊆ SA × EA × SA, and where EA is a set of events, LA a set of labels,
`A : EA → LA a labelling function, and IA ⊆ EA × EA, the independence relation, is an
irreflexive, symmetric relation such that

A1. e ∈ EA ⇒ ∃s1, s2 ∈ SA. (s1, e, s2) ∈ TranA;

A2. (s, e, s1), (s, e, s2) ∈ TranA ⇒ s1 = s2;

A3. e1 IA e2, (s, e1, s1), (s, e2, s2) ∈ TranA ⇒
∃u. (s1, e2, u), (s2, e1, u) ∈ TranA;

s

s1
���

e1
��

s2
??

? e2
��

ue2 �� e1��

IA

A4. e1 IA e2, (s, e1, s1), (s1, e2, u) ∈ TranA ⇒
∃s2. (s, e2, s2), (s2, e1, u) ∈ TranA.

s

s1
���

e1
��

s2

e2
��

u

???
e2 �� e1��

IA

In the rest of the paper we shall let I(e) denote the set {e′ | e IA e′} and, for convenience,
use (s, ea, s′) as a shorthand for a transition (s, e, s′) with `A(e) = a.

The following is the standard definition of morphisms for lats, which essentially captures
the idea of simulation (cf. [11, 146]).

Definition 4.0.3 (Asynchronous Transition System Morphisms) For A and A′ lats,
a morphism from A to A′ is a triple of (partial) functions1 (σ : SA → SA′ , η : EA ⇀ EA′ , λ : LA ⇀
LA′), where (σ, η) is a morphism of labelled transition systems, i.e.,

. σ(iA) = iA′;

. (s1, e, s2) ∈ TranA, η(e)↓ ⇒
(
σ(s1), η(e), σ(s2)

)
∈ TranA′ ;

(s1, e, s2) ∈ TranA, η(e)↑ ⇒ σ(s1) = σ(s2);
1We use, respectively, f : A → B and f : A ⇀ B to indicate total and partial functions. For f a partial

function, f(x)↓ (f(x)↑) means that f is (un)defined at x.
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which preserves the labelling, i.e., makes the following diagram commutative

EA /
η

��
`A

EA′

��
`A′

LA /

λ
LA′ ;

and the independence, i.e.,

e1 IA e2, η(e1)↓, η(e2)↓ ⇒ η(e1) IA′ η(e2).

It is immediate to see that lats and their morphisms form a category, which we shall refer
as LATS.

Starting from Definition 4.0.2, transition systems with independence attempt to simplify
the structure retaining explicitly only the independence, now layered directly on the tran-
sitions. As already mentioned, the notion of event becomes implicit, determined by the
independence relation through the equivalence ∼.

Definition 4.0.4 (Transition Systems with Independence) A transition system with in-
dependence (tsi for short) is a structure

T = (ST , iT , LT ,TranT , IT ),

where (ST , iT , LT ,TranT ) is a transition system and IT ⊆ TranT × TranT , the independence
relation, is an irreflexive, symmetric relation, such that, denoting by ≺ the binary relation on
transitions given as

(s, a, s1) ≺ (s2, a, u) ⇔
∃b ∈ LT . (s, a, s1) IT (s, b, s2),

(s, a, s1) IT (s1, b, u), (s, b, s2) IT (s2, a, u)

and by ∼ the least equivalence on transitions which includes it, we have

T1. (s, a, s1) ∼ (s, a, s2) ⇒ s1 = s2;

T2. (s, a, s1) IT (s, b, s2) ⇒ ∃u. (s, a, s1) IT (s1, b, u), (s, b, s2) IT (s2, a, u);

T3. (s, a, s1) IT (s1, b, u) ⇒ ∃s2. (s, a, s1) IT (s, b, s2), (s, b, s2) IT (s2, a, u);

T4. (s, a, s1) ≺ ∪� (s2, a, u) IT (w, b,w′) ⇒ (s, a, s1) IT (w, b,w′).

The ∼-equivalence classes, in the following denoted by [(s, a, s′)], for (s, a, s′) a represen-
tative of the class, are to be thought of as events, i.e., t1 ≺ t2 means that t1 and t2 are part of
a ‘concurrency diamond’, whilst t1 ∼ t2 means that they are occurrences of the same event.
Concerning the axioms, notice then that T1 (the global condition mentioned earlier) corre-
sponds to A2 and axioms T2 and T3 correspond, respectively, to A3 and A4. The role of T4
is to ensure that the independence relation is actually well defined as a relation on events. In
the rest of the paper we shall see that this view of [(s, a, s′)] agrees with the notion of events
for lats and that, in fact, it identifies an interesting subclass of them.

Using I(t) to denote the set {t′ | t IT t′}, we can state the following lemma which will be
useful later on. As a matter of notations, we shall use πi to denote projections, i.e., if t is
(s, a, s′), then π1(t) = s, π2(t) = a and π3(t) = s′.
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Lemma 4.0.5 Axiom T4 is equivalent to

t1 ∼ t2 ⇒ I(t1) = I(t2). (T4′)

Proof. Easy, by induction. 2

The following definition of morphisms for transition systems with independence resembles
closely that given earlier for lats.

Definition 4.0.6 (Transition System with Independence Morphisms) For T and T ′

tsi, a morphism from T to T ′ consists of a pair of (partial) functions (σ : ST → ST ′ , λ : LT ⇀
LT ′) which is a morphism of transition systems and, in addition, preserves independence, i.e.,

(s1, a, s2) IT (s′1, b, s
′
2), λ(a)↓, λ(b)↓ ⇒(

σ(s1), λ(a), σ(s2)
)
IT ′

(
σ(s′1), λ(b), σ(s′2)

)
.

We shall use TSI to denote the category of tsi and their morphisms.
The following lemma states that tsi morphisms are well defined as maps of events, an easy

consequence of the fact that they preserve independence that we shall use in order to embed
TSI into LATS.

Lemma 4.0.7 (Morphisms map Events to Events) For (σ, λ) : T → T ′ a morphism of
tsi and (s1, a, s2) ∼ (s′1, a, s

′
2) equivalent transitions of T , if λ(a)↓, then

(
σ(s1), λ(a), σ(s2)

)
∼(

σ(s′1), λ(a), σ(s′2)
)
, i.e., tsi morphisms preserve ∼.

4.1 From LATS to TSI: a coreflection

The scene is now set to expose the adjunction between TSI and a full subcategory of LATS.
First, we define an inclusion ta : TSI ↪→ LATS in the obvious way.

On the objects, ta acts by decorating each transition with the event identified by the
∼-class the transition belongs to. The label of such an event is, of course, the label originally
carried in the tsi by the transition. Observe that, in force of Definition 4.0.4 of ∼, this labelling
is well defined. Finally, the independence relation of ta(T ) is inherited directly from the one
of T . The formal definition is as follows.

Definition 4.1.1 (TSI ↪→ LATS) For T a tsi, let ta(T ) be the structure (ST , iT , E,Tran , I, LT , `),
where, denoting by ∼ the equivalence relation induced by IT as in Definition 4.0.4,

. E = TranT /∼, the set of ∼-classes of TranT ;

. Tran =
{(
s1, [(s1, a, s2)], s2

) ∣∣ (s1, a, s2) ∈ TranT
}
;

. [(s1, a, s2)] I [(s′1, a, s
′
2)] if and only if (s1, a, s2) IT (s′1, a, s

′
2);

. `
(
[(s1, a, s2)]

)
= a.

It follows from Lemma 4.0.5 that the definition of the independence on the events of ta(T )
is well given. It is now easy to verify the following.
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Figure 4.3: A lats that does not yield a tsi by abstracting from the events

Proposition 4.1.2 The transition system ta(T ) is a lats. Proof. Axiom A1 is trivially sat-
isfied. Axiom A2 is satisfied because of T1, for, by definition of ta, two transitions carry the
same event if and only if they belong to the same ∼-class in T . Concerning A3 and A4, they
correspond directly to T2 and T3. 2

In order to define ta as a functor, we need to assign its action on the morphisms in TSI.

Definition 4.1.3 (TSI ↪→ LATS) For (σ, λ) : T → T ′ a morphism of tsi, let ta
(
(σ, λ)

)
be

(σ, η, λ), where

η
(
[(s, a, s′)]

)
=

{[
(σ(s), λ(a), σ(s′))

]
if λ(a)↓,

undefined if λ(a)↑.

That Definition 4.1.3 is well given follows from Lemma 4.0.7; it is then easy to check that
ta is a full and faithful functor, i.e., an embedding of TSI in LATS.

The obvious idea for a map at left inverse to ta, as hinted also in [146], is to forget the
events and bring the independence from the events down to the transitions, i.e., for A a lats,
to take at(A) to be (SA, iA, LA,Tran , I), where

. (s, a, s′) ∈ Tran if and only if (s, ea, s′) ∈ TranA,

. (s, a, s1) I (s2, b, s3) if and only if (s, ea1 , s1), (s2, e
b
2, s3) ∈ TranA, e1 IA e2.

This construction, however, contrarily to the claims of [146], is not well defined on the whole
LATS, since the interplay between the explicitly given independence and events in lats al-
lows rather complicated situations—of dubious computational significance—which cannot be
expressed with tsi. A counterexample is illustrated in Fig. 4.3.
The independent events are e IA e1, e3 IA e1, e IA e2, and e2 IA e3, i.e., the system consists
of four independency diamonds ‘on top of each other’. It is easy to check that this is an
object of LATS. However, by applying at we create a ‘ghost’ independency diamond (the one
highlighted by the dotted lines), so violating condition T1. In fact, (s, a, s3) ∼ (s, a, s1) with
s1 6= s3. This demonstrates that the combination of independence and events makes it hard
to define ‘uniformly’ a map from LATS to TSI to act as left inverse to ta : TSI ↪→ LATS.

However, it is not hard to check that things go smoothly for those lats belonging to the
image of ta. In such a case, at lands in TSI and, of course, we have the following result.
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Lemma 4.1.4 For any T in TSI, we have at ◦ ta(T ) = T .

At this point, the issue arises of identifying suitable conditions which, imposed on lats,
constrain them down to a category which bears good relationships with TSI. Possibly, one
should also like to find a nice characterisation of the image of ta in LATS. We shall do so
next, by focusing on extensional asynchronous transition systems.

We start by considering lats A satisfying

(s1, ea1 , s2) 6= (s1, eb2, s2) ∈ TranA ⇒ a 6= b. (Ex)

In words, these are lats where no two transitions between the same states can carry the same
label. This is a kind of extensionality condition that, in view of Definition 4.0.4, is clearly
necessary for our purposes. In fact, without (Ex), the one-to-one correspondence between
morphisms of the kinds ta(T )→ A and T → at(A)—required by the adjointness conditions—
would not exist. Next, we let the counterexample discussed above guide us to identify two
simple additional conditions—strengthening A3 and A4 with uniqueness criteria—that we
shall prove to be necessary and sufficient in order for at to be well defined on lats satisfying
(Ex). As a notation, for (s, ea, s′) ∈ TranA, we shall use at(s, ea, s′) to refer to the (unique)
transition (s, a, s′) ∈ Tranat(A) it corresponds to.

Proposition 4.1.5 For A a lats satisfying (Ex), at(A) belongs to TSI if and only if

1. for e1 IA e2 and (s, ea1, s1), (s, e
b
2, s2) ∈ TranA, there exists a unique pair (s1, xb2, u), (s2, x

a
1, u) ∈

TranA such that e1 IA x2, e2 IA x1, and x1 IA x2.

2. for e1 IA e2 and (s, ea1, s1), (s1, e
b
2, u) ∈ TranA, there exists a unique pair (s, xb2, s2), (s2, x

a
1, u) ∈

TranA such that e1 IA x2, e2 IA x1, and x1 IA x2.

Proof. The pairs of transitions in i) and ii) exist because of axioms A3 and A4. If at(A) ∈ TSI,
their uniqueness is needed in order for at(A) to satisfy axiom T1. Suppose that, on the con-
trary, in case i) there are two pairs (s1, xb2, u), (s2, x

a
1, u) and (s1, yb2, w), (s2, ya1 , w) satisfying

the condition. Since A satisfies (Ex), we have w 6= u, which implies that at(s, eb2, s2) ≺
at(s1, yb2, w) and at(s, eb2, s2) ≺ at(s1, xb2, u), i.e., that at(s1, xb2, u) ∼ at(s1, yb2, w), which con-
tradicts T1. The case for ii) can be proved along the same lines, thus showing the necessity
of the conditions.

Concerning their sufficiency, the extensionality guarantees that Iat(A) is irreflexive, whilst
the property of symmetry for Iat(A) is inherited from IA. It remains check that the axioms T1–
T4 defining tsi hold for at(A). Axioms A3, A4 and conditions i) and ii) above ensure that
if at(t) ≺ at(t′), then π2(t) = π2(t′), i.e., t and t′ represent the same event. It follows
then by induction that at(t) ∼ at(t′) implies π2(t) = π2(t′), for all at(t), at(t′) ∈ Tranat(A).
If in addition π1

(
at(t)

)
= π1

(
at(t′)

)
, then also π1(t) = π1(t′) and axiom A2 implies that

π3(at(t)) = π3(at(t′)). So T1 is satisfied. Actually, this also implies that T4 holds. For,
since the independence in at(A) is inherited from that on the events in A, and t and t′ carry
the same event, we have that at(t) ∼ at(t′) implies I(at(t)) = I(at(t′)). This, as proved by
Lemma 4.0.5, is equivalent to T4. Finally, T2 and T3 hold because of the corresponding A3
and A4. 2

We call extensional the lats satisfying (Ex) and the conditions of Proposition 4.1.5, and
we denote by eLATS the full subcategory of LATS they determine.
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Clearly, at can be extended to a functor from eLATS to TSI which simply ‘forgets’ the
event component of LATS morphisms, i.e., for (σ, η, λ) : A→ A′, take at

(
(σ, η, λ)

)
to be (σ, λ).

We shall see next that such a functor is right adjoint to ta : TSI ↪→ eLATS.

Proposition 4.1.6 (ta a at : TSI ⇀ eLATS) For any A ∈ eLATS and any morphism m : T →
at(A) in TSI, there exists a unique morphism mT : ta(T )→ A such that at(mT ) = m. Proof.
Let m be (σ, λ). Clearly, by definition of at, mT must be of the form (σ, γ, λ) for some
γ : Eta(T ) → EA. It is easy to realize that the only possible choice for γ is the following:
for (s, a, s′) ∈ TranT and λ(a)↓, let γ([(s, a, s′)]) be the event e ∈ EA of the unique transi-
tion

(
σ(s), eλ(a), σ(s′)

)
∈ TranA. This is a well given definition, for Lemma 4.0.7 ensures

that m maps all transitions in [(s, a, s′)] to the same ∼-class of Tranat(A), and the proof of
Proposition 4.1.5 shows that if two transitions belong to the same ∼-class of Tranat(A), they
originate from transitions in TranA carrying the same event. This proves both existence and
uniqueness of mT . 2

Proposition 4.1.6 proves that the identity natural transformation

η =
{
idT : T → at ◦ ta(T )

}
T∈TSI

is the unit of an adjunction involving ta and at . Moreover, since η is an isomorphism, by
standard results in category theory, we have that the adjunction ta a at : TSI ⇀ eLATS is a
coreflection, i.e., TSI is coreflective in eLATS. This, together with Proposition 4.1.5 and the
discussion at the beginning of the present section, shows that eLATS is the largest subcategory
of LATS on which at can be defined as a functor to TSI, yielding a right adjoint to ta.

4.2 meLATS: A category of LATS equivalent to TSI

In this section we identify the replete image of ta in LATS, i.e., the full subcategory meLATS
of eLATS consisting of the objects isomorphic to ta(T ), for some T ∈ TSI. In addition, we
characterise those lats for which the independence can be recovered from the structure of
events, and relate them to a relevant subcategory of TSI considered in [119, 118].

Recall from basic category theory that meLATS is determined by the coreflection: it
consists of those A ∈ eLATS for which the corresponding component εA of the counit of
ta a at is iso. Applying standard categorical results to derive ε from (−)T and η, we find that
it is the natural transformation

ε =
{
(idSA

, γ, idLA
) : ta ◦ at(A)→ A

}
A∈eLATS

,

where for (s, a, s′) ∈ Tranat(A), γ([(s, a, s′)]) =def e, for e ∈ EA the event of the unique
(s, ea, s′) ∈ TranA. Clearly, εA is iso if and only if γ is such, i.e.,

∀t, t′ ∈ TranA, π2(t) = π2(t′) ⇒ at(t) ∼ at(t′),

which means that two transitions carry the same event if and only if they belong to the same
∼-class of A (viewed as a tsi). Although this characterises meLATS ⊂ LATS equivalent to
TSI, it would of course be better to find a more direct description of it, one not referring to
at(A). This is the purpose of the notion of event-maximal asynchronous transitions systems
introduced next.
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Intuitively, a lats is event-maximal if its events and independence are ‘tightly coupled’, so
that one cannot ‘split’ events without destroying the global lats structure. More precisely, A
is event-maximal if for any ē ∈ EA and any subset T of transitions carrying ē, the structure
resulting from replacing ē on the transitions in T by a fresh event ẽ is no longer a lats.

Definition 4.2.1 (Event-Maximal Asynchronous Transition Systems) For A a LATS,
ē ∈ EA, and T ⊂ Tē = {t ∈ TranA | π2(t) = ē}, let A[T ] denote the replacement of ē on the
transitions in T for a fresh event ẽ 6∈ EA, i.e., A[T ] = (SA, iA, EA∪{ẽ},Tran , I, LA, `), where

. Tran =
(
TranA r T

)
∪

{
(s1, ẽ, s2)

∣∣ (s1, ē, s2) ∈ T
}
;

. I = IA ∪ IT ∪ I−1
T , IT =

{
(ẽ, e)

∣∣ ē IA e};

. `(e) =

{
`A(e) if e ∈ EA,
`A(ē) if e = ẽ.

A lats A is event-maximal if for each ē ∈ EA and each nonempty T ⊂ Tē, the transition
systems A[T ] is not a lats.
The category meLATS is the full subcategory of LATS consisting of the extensional, event-
maximal lats.

Observe that the interesting, nontrivial choices for T are those such that ∅ ⊂ T ⊂ Tē, i.e.,
those in which at least one ẽ-transition is added and at least one ē-transition is kept in A[T ].
The definition above, stating that any such structure must fail to be a lats, is our way to
express that—as remarked in the introduction—the identity of the events in event-maximal
lats is forced by the independence relation. This provides us with the direct characterisation
of TSI in terms of LATS that we sought.

Proposition 4.2.2 (meLATS ∼= TSI) meLATS is equivalent to TSI. Proof. Let A be an ex-
tensional lats. We prove that the counit εA is iso if and only if A belongs to meLATS. To this
purpose, let γ be the event component of εA.

If γ is iso, i.e., for all t, t′ ∈ TranA we have that π2(t) = π2(t′) implies at(t) ∼ at(t′), for
any choice of ē ∈ EA and any ∅ ⊂ T ⊂ Tē, then the condition in Definition 4.2.1 is satisfied,
since, by the extensionality of A, either A3 or A4 must fail for A[T ]. In fact, in order for A[T ]
to be a LATS, extensionality implies that t′ ∈ T whenever a at(t′) ∼ at(t) for some t ∈ T ,
i.e., by the hypothesis on γ, T should be Tē. So A is event-maximal.

If γ is not iso, i.e., if there exist t and t′ such that at(t) 6∼ at(t′) but π2(t) = π2(t′), then
T = {t′′ | at(t′′) ∼ at(t)} ⊂ Tπ2(t) is a nonempty set for which the ‘splitting’ of π2(t) yields a
lats, i.e., A is not event-maximal. 2

To conclude this exposition, we observe that the independence relation in event-maximal
lats is not uniquely determined by rest of the structure. This is due to the fact that the
independence on events is still rather intensional notion: events may be independent and still
never occur in the same path, i.e., intuitively, be mutually exclusive. Observing that such
situations have little computational relevance, one may consider on lats the property

e1 IA e2 ⇒ ∃(s, e1, s1), (s, e2, s2) ∈ TranA, (E)
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which can be seen as an extensionality condition on IA. It is easy to prove that, ifA ∈ meLATS
satisfies (E), then e1 IA e2 if and only if there exists a square in A involving e1 and e2, i.e.,

s1

!!

e2
BB

BB

s

>>e1 }}}}

  e2
AA

AA
u

s2

==

e1

||||

Thus, for such lats the independence is completely redundant and can be omitted: all the
information is already contained in (SA, iA, EA,TranA, LA, `A).

It is worth remarking here that a condition corresponding to (E) for TSI—viz., whenever
t IT t′, there exist (s, a, s′) ∼ t and (s, b, s′′) ∼ t′ in TranT—was identified in [119, 118]
while investigating the tight relationships between tsi and event structures. Such a condition
yields TSIE, a very good-behaved full subcategory of TSI for which we can state the following
corollary of Proposition 4.2.2, which concludes the paper. Here we use meLATSE to denote
the full subcategory of meLATS consisting of the structures satisfying (E).

Proposition 4.2.3 ( meLATSE
∼= TSIE) meLATSE is equivalent to TSIE.
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Chapter 5

Transition Systems with Independence and Multi-Arcs

Abstract: We extend the model of transition systems with independence in order to provide
it with a feature relevant in the noninterleaving analysis of concurrent systems, namely multi-
arcs. Moreover, we study the relationships between the category of transition systems with
independence and multi-arcs and the category of labeled asynchronous transition systems,
extending the results recently obtained by the authors for (simple) transition systems with
independence (cf. Proc. CONCUR’96 ), and yielding a precise characterisation of transition
systems with independence and multi-arcs in terms of (event-maximal, diamond-extensional)
labeled asynchronous transition systems.
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Introduction

An exhaustive analysis of the relationship between asynchronous transition systems and tran-
sition systems with independence was carried out by the authors in [60], showing that transi-
tion systems with independence, besides being nicely related to a class of asynchronous tran-
sition systems called extensional, are equivalent to the so-called event-maximal asynchronous
transition systems. The results of loc. cit. are summarized by the following diagram, where
TSI, LATS, eLATS, and meLATS are, respectively, the categories of transitions systems with
independence, labeled, extensional, and event-maximal asynchronous transitions systems, and
where ↪→, ⊥, and ∼= stand respectively for embeddings, coreflections, and equivalences.

TSI
� � //� v

))RRRRRRRRRRRRR� _

��

∼=

LATS

meLATS
?�

OO

� � // eLATS
?�

OO
ii

at
⊥

RRRRRRRRRRRR

Essentially, the extensionality condition refers to the existence of a unique way to ‘com-
plete’ pairs of independent transitions to ‘independence-diamonds’. Also, it excludes multi-
arcs, i.e., multiple transitions with the same label between the same two states. Event-
maximality, on the other hand, can be seen at the same time as identifying those transition
systems that make as few identifications of transitions as possible, i.e., contain no confusion
about event identities, and those in which such identities are derivable from the independence
relation, i.e., reduce the redundancy. It is worth noticing here that at : eLATS → TSI, the
right adjoint of the coreflection, complements and corrects a non-well-defined construction
sketched in [146]: as a matter of fact, due to the greater generality of asynchronous transition
systems, eLATS happens to be the largest subcategory of LATS on which such a construction
makes sense.

A question left open by [60] is whether or not the need to restrict to extensional asyn-
chronous transition systems is a consequence of the intrinsic differences between the two
notions of events considered, i.e., if in order to be able to model situations ruled out by the
extensionality constraints it is necessary to assign events explicitly. This paper addresses
such a question; namely, we remove the restriction to transition systems without multi-arcs,
relaxing the definition of transition systems with independence, and yielding the new notion
of transition systems with independence and multi-arcs (nonextensional transition systems
with independence would probably be a better name, though).

This represents, in our view, an interesting enhancement of the model. In fact, in noninter-
leaving semantics, to be able to treat multi-arcs is clearly very relevant. In a sense, it can be
seen as allowing ‘quotienting’ of the state-space while retaining full information about events
and causality. As an example, consider the CCS term (a.0|b.0)+a.b.0, traditionally described
by the transition system to the left in Fig. 5.1. It is common (see e.g. [91, 93] among others)
to quotient the state-space by some structural congruence that, e.g., collapses respectively
the states b and 0|b and the states 0|0 and 0, obtaining the more compact representation —
with multi-arcs — shown to the right.

Observe that, contrarily to the interleaving case, it is vital here to have two different a-
transitions (and b-transitions), since they represent different events: one a-transition is part
of the independence-diamond and is, therefore, independent of b; the other is not.

In order to justify our definition, we prove that, except for the extensionality condition,
the category TSIm of transition systems with independence and multi-arcs bears exactly the
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Figure 5.1: In non-interleaving semantics multi-arcs can be essential if the state space is
quotiented

same relationships as TSI to LATS. More precisely, we prove that TSIm is coreflective in the
category dLATS of the diamond-extensional asynchronous transition systems — intuitively,
those transition systems that make no confusion about the identities of the events carried by
transitions facing each other in independence-diamonds. Similarly to the case of TSI, dLATS is
the largest subcategory of LATS for which such a result holds. Moreover, among the diamond-
extensional, we identify the event-maximal asynchronous transition systems and prove that
they induce the largest full subcategory of LATS, mdLATS, for which the coreflection cuts
down to an equivalence. This yields a precise characterisation of TSIm in terms of LATS that
extends the relationships between TSI and LATS discussed above: in fact, the category of
eLATS and its full subcategory meLATS are, respectively, the full subcategories of dLATS and
mdLATS consisting of transition systems without multi-arcs.

Summing up, this paper presents the following diagram of formal relationships between
the new model of transition systems with independence and multi-arcs and asynchronous
transition systems which can be useful in practise to translate back and forth between the
two models when the application one has in mind requires it.

TSIm
� � //
� x

**VVVVVVVVVVVVVVVVVV
� _

��

∼=

LATS

TSI
� y

++WWWWWWWWWWWWWWWWWWWWWWW
* 


77pppppppppp
mdLATS
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� � // dLATS

jj
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meLATS
?�

OO
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ooooo

oo
oo

� � // eLATS

kk
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⊥

WWWWWWWWWWWWWWWWWWWWWWW
+ �

99sssssssss

Although the technical development here goes along the lines of [60], and therefore, strictly
speaking, this paper is simply an extension of loc. cit., we believe that the definition of TSIm
is a relevant contribution on its own.

5.1 Comparing LATS with TSI: Considering multi-arcs

In this section we first recall the results of the comparison of TSI and LATS carried out by the
authors in [60], and then, reconsidering a restriction used in loc. cit., we introduce the notion
of transition systems with independence and multi-arcs — i.e., tsi in which multiple transitions
carrying the same label are allowed between the same two states. In the next section we shall
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then perform an analysis matching that of [60], investigating the relationship between such a
category and LATS, and showing that, in a precise sense, our definition provides a minimal,
conservative way to extend tsi with multi-arcs.

The starting point of the analysis in [60] is the obvious inclusion ta : TSI → LATS which
acts on objects by decorating each transition with the event identified by the ∼-class the
transition belongs to, and by inheriting the independence relation directly from the tsi. On
the opposite direction, we considered the ‘abstraction’ at from LATS to TSI that forgets the
events and brings the independence from the events down to the transitions. However, a
simple argument shows that the presence of multi-arcs in LATS makes it impossible for at to
be well-defined as a map to TSI. Thus, the very first step of [60] is to consider only those lats
A satisfying

(Ex) (s1, ea1 , s2) 6= (s1, eb2, s2) ∈ TranA ⇒ a 6= b,

whose purpose is to forbid multi-arcs. This allows to prove that the diamond-extensional
asynchronous transition systems, whose definition follows, are exactly those lats A such that
at(A) belongs to TSI.

Definition 5.1.1 (Diamond-Extensional lats) A diamond extensional labeled asynchronous
transition system (dlats for short) is a lats that satisfies

A!3. e1 IA e2, (s, ea1 , s1), (s, e
b
2, s2) ∈ TranA ⇒

∃! pair (s1, xb2, u), (s2, x
a
1, u) ∈ TranA. e1 IA x2, e2 IA x1, x1 IA x2;

A!4. e1 IA e2, (s, ea1 , s1), (s1, e
b
2, u) ∈ TranA ⇒

∃! pair (s, xb2, s2), (s2, x
a
1, u) ∈ TranA. e1 IA x2, e2 IA x1, x1 IA x2.

The category dLATS is the full subcategory of LATS consisting of the diamond-extensional
lats.

We call extensional the diamond-extensional lats that in addition satisfy (Ex), and we
denote by eLATS the full subcategory of dLATS that they determine. We can now give the
formal definitions of the functors ta : TSI→ LATS and at : eLATS→ TSI.

Definition 5.1.2 (TSI ↪→ LATS) For T a tsi, let ta(T ) be the structure

(ST , iT , E,Tran , I, LT , `),

where, denoting by ∼ the equivalence relation induced by IT as in Definition 4.0.4,

I E = TranT /∼, the set of ∼-classes of TranT ;

I Tran =
{(
s1, [(s1, a, s2)]∼, s2

) ∣∣ (s1, a, s2) ∈ TranT
}
;

I [(s1, a, s2)]∼ I [(s′1, a, s
′
2)]∼ if and only if (s1, a, s2) IT (s′1, a, s

′
2);

I `
(
[(s1, a, s2)]∼

)
= a.

For (σ, λ) : T → T ′ a morphism of tsi, let ta
(
(σ, λ)

)
be (σ, η, λ), where

η
(
[(s, a, s′)]∼

)
=

{[
(σ(s), λ(a), σ(s′))

]
∼ if λ(a)↓,

undefined if λ(a)↑.
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The proof that ta is well defined follows easily from Lemma 4.0.7. Actually, ta is a full
and faithful functor, i.e., an embedding of TSI in LATS. In the following, when no confusion
is possible, we may occasionally omit the index ∼ from the notation for ∼-classes.

Definition 5.1.3 (eLATS ↪→ TSI) For A a lats, let at(A) be the structure

(SA, iA, LA,Tran , I),

where

I (s, a, s′) ∈ Tran if and only if (s, ea, s′) ∈ TranA,

I (s, a, s1) I (s2, b, s3) if and only if (s, ea1, s1), (s2, e
b
2, s3) ∈ TranA, e1 IA e2.

For (σ, η, λ) : A→ A′ a morphism of lats, let at
(
(σ, η, λ)

)
be (σ, λ).

The result of [60] is that ta and at form a coreflection of TSI in eLATS.

Proposition 5.1.4 (ta a at : TSI ⇀ eLATS) TSI is coreflective in eLATS. Proof. Subsumed
by that of the forthcoming Proposition 5.2.8. X

The lats corresponding to tsi are characterised as the event-maximal lats. Intuitively, a
lats is event-maximal if its events and independence are ‘tightly coupled’, so that one cannot
‘split’ events without destroying the global lats structure. In other words, the identity of the
events in event-maximal lats is forced by the independence relation. This will provide a direct
characterisation of tsi in terms of lats

Definition 5.1.5 (Event-Maximal lats) For A a lats, ē ∈ EA, and T ⊂ Tē, where Tē =
{(s, e, s′) ∈ TranA | e = ē}, let A[T ] denote the replacement of ē on the transitions in T for
a fresh event ẽ 6∈ EA, i.e.,

A[T ] = (SA, iA, EA ∪ {ẽ},Tran , I, LA, `),

where

I Tran =
(
TranA r T

)
∪

{
(s1, ẽ, s2)

∣∣ (s1, ē, s2) ∈ T
}
;

I I = IA ∪ IT ∪ I−1
T , IT =

{
(ẽ, e)

∣∣ ē IA e};

I `(e) =

{
`A(e) if e ∈ EA,
`A(ē) if e = ẽ.

A lats A is event-maximal if for each ē ∈ EA and each nonempty T ⊂ Tē, the transition
systems A[T ] is not a lats.
The category mdLATS is the full subcategory of LATS consisting of the diamond-extensional,
event-maximal lats.

The definition above, stating that any structure obtained by ‘rearranging’ events non-
trivially must fail to be a lats, is our way to express that — as remarked before — the
identity of the events in event-maximal lats is forced by the independence relation.

Now, if we denote by meLATS the restriction of mdLATS to the full subcategory induced
by the objects satisfying (Ex), we can state the final result of [60].
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Proposition 5.1.6 (meLATS ∼= TSI) meLATS is equivalent to TSI. Proof. Subsumed by that
of the forthcoming Proposition 5.2.9. X

Technically, the contribution of this paper is to re-address the choice of condition (Ex)
which forbids multiple transitions with the same label between the same two states. Namely,
instead of restricting lats in order to get a well-defined functor at to TSI, we relax the definition
of tsi to allow multi-arcs, proposing below the notion of transition systems with independence
and multi-arcs. This represents an interesting evolution of tsi, whose relevance goes beyond
the comparison of tsi and lats; morally, it constitutes the main contribution of this paper. In
other words, we propose here transition systems with independence and multi-arcs and justify
their definition by showing how their multi-arcs relates to those of lats.

Formally, we extend tsi in the simplest possible way: transitions are represented by a map
assigning to each element of a set Tran of transitions a triple consisting of its source, label,
and target. This allows to have more transitions between the same two states with the same
label simply by having more elements of Tran mapped to the same triple. The independence
relation and the defining axioms are the obvious translations of those of tsi.

Definition 5.1.7 (tsi with Multi-Arcs) A transition system with independence and multi-
arcs (tsim for short) is a structure

T = (ST , iT , LT ,TranT , 〈 − 〉T , IT ),

where 〈 − 〉T : TranT → ST × LT × ST and (ST , iT , LT , 〈TranT 〉T ) is a transition system and
IT ⊆ TranT × TranT , the independence relation, is an irreflexive, symmetric relation, such
that, denoting by ≺ the binary relation on transitions given as

t ≺ t′ if and only if 〈t〉T = (s, a, s1), 〈t′〉T = (s2, a, u),
∃t1, t2 ∈ TranT . 〈t1〉T = (s, b, s2), 〈t2〉T = (s1, b, u),

with t IT t1, t IT t2, t1 IT t′,

and by ∼ the least equivalence on transitions that includes ≺, we have

Tm1. t ∼ t′, 〈t〉T = (s, a, s1), 〈t′〉T = (s, a, s2) ⇒ t = t′;

Tm2. t IT t′, 〈t〉T = (s, a, s1), 〈t′〉T = (s, b, s2) ⇒
∃t1, t2. 〈t1〉T = (s2, a, u), 〈t2〉T = (s1, b, u), t IT t2, t′ IT t1;

Tm3. t IT t′, 〈t〉T = (s, a, s1), 〈t′〉T = (s1, b, u) ⇒
∃t1, t2. 〈t1〉T = (s2, a, u), 〈t2〉T = (s, b, s2), t IT t2, t1 IT t2;

Tm4. t ≺ ∪� t′ IT t′′ ⇒ t IT t
′′.

As for tsi, the ∼-equivalence classes — in the following denoted by [t]∼, for t a represen-
tative of the class — are to be thought of as events. The axioms are recast to fit with the
indirect way of assigning source, label, and target to transitions. Notice that a global axiom
like Tm1 is still necessary, since the intended notion of events still cannot be determined lo-
cally. Axiom Tm4 ensures that the independence relation determines a well-defined relation
on events.
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In the rest of the paper we shall see that this view of [t]∼ agrees with the notion of events
for lats and that, in fact, tsim relates well to the category of diamond-extensional lats.

Using I(t) to denote the set {t′ | t IT t′}, we can state the following lemma which will
be useful later on. As a matter of notations, we shall use 〈 − 〉i, i = 1, . . . , 3, to denote the
composition of 〈 − 〉T with the appropriate projection, i.e., if 〈t〉T = (s, a, s′), then 〈t〉1 = s,
〈t〉2 = a, and 〈t〉3 = s′.

Lemma 5.1.8 Axiom Tm4 is equivalent to

(Tm4′) t1 ∼ t2 ⇒ I(t1) = I(t2).

Proof.
Easy, by induction. X

The definition of morphisms for transition systems with independence and multi-arcs
necessarily involves a (partial) function on transitions, which, of course, must respect the
mapping of states and labels.

Definition 5.1.9 (tsim Morphisms) For T and T ′ tsim, a morphism from T to T ′ consists
of a triple of (partial) functions

(σ : ST → ST ′ , λ : LT ⇀ LT ′ , τ : TranT ⇀ TranT ′)

that respects sources, targets, and labels, i.e., that makes the following diagram commute

TranT /τ

��
〈−〉T

TranT ′

��
〈−〉T ′

ST × LT × ST /

<σ,λ,σ>
ST ′ × LT ′ × ST ′ ,

preserves independence, i.e.,

t IT t
′, τ(t)↓, τ(t′)↓ ⇒ τ(t) IT ′ τ(t′),

and preserves the ‘diamond relation’ �, i.e.,

t � t′, τ(t)↓ (or τ(t′)↓) ⇒ τ(t) � τ(t′).

We shall use TSIm to denote the category of tsim and their morphisms.
Observe that in the definition above it is necessary to consider the reflexive closure � of

the relation ≺, since morphisms can be partial and, therefore, collapse diamonds.
Concerning the relationships between TSI and TSIm, every tsi can be regarded as a tsim

simply by defining the map 〈 − 〉T to act as the ‘identity’, i.e., interpreting transitions as
themselves. Such a mapping extends to an inclusion functor tm : TSI ↪→ TSIm by defining
tm

(
(σ, λ)

)
to be (σ, λ, τ), where τ

(
(s, a, s′)

)
= (σ(s), λ(a), σ(s′)). It follows immediately from

the last condition in Definition 5.1.9 that τ is well defined as a map of events, a fact that we
shall use in later on to embed TSIm into LATS.

Lemma 5.1.10 (Morphisms map Events to Events) For (σ, λ, τ) : T → T ′ a morphism
of tsim and t ∼ t′ equivalent transitions of T , if τ(t)↓, then τ(t) ∼ τ(t′), i.e., tsim morphisms
preserve ∼.

55



In general, it is not possible to define a map from TSIm to TSI that forgets multi-arcs
and preserves independence. This is shown by the following example in which collapsing the
a-multi-arcs would make the two a-labeled transitions sticking out of s break axiom T1

•

•

55
b

∼ •
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ii
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UU
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II

a
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This means that the embedding tm : TSI ↪→ TSIm does not have a right adjoint. Dually, it
can be proved that tm cannot have a left adjont either (a proof that we shall omit, though).
Thus, TSI is neither reflective nor coreflective in TSIm.

5.2 From LATS to TSIm: A coreflection

Now that all the bricks are in play, we can complete the picture showing how to extend the
functors ta and at to a pair of adjoint functors ma and am forming a coreflection between
TSIm and dLATS. There is only one reasonable way to define the embedding ma.

Definition 5.2.1 (TSIm ↪→ dLATS) For T a tsi, let ma(T ) be the structure

(ST , iT , E,Tran , I, LT , `),

where, denoting by ∼ the equivalence relation induced by IT as in Definition 5.1.7,

I E = TranT /∼, the set of ∼-classes of TranT ;

I Tran =
{(
〈t〉1, [t]∼, 〈t〉3

) ∣∣ t ∈ TranT
}
;

I [t]∼ I [t′]∼ if and only if t IT t
′;

I `
(
[t]∼

)
= 〈t〉2.

It follows from Lemma 4.0.5 and the definition of ∼ that the definition of the independence
and labels on the events of ma(T ) is well given. It is now easy to verify the following.

Proposition 5.2.2 The transition system ma(T ) is a dlats.
Proof. Axiom A1 is trivially satisfied. Axiom A2 is satisfied because of Tm1, for, by definition
of ma, two transitions carry the same event if and only if they belong to the same ∼-class
in T . Concerning A3 and A4, they correspond directly to Tm2 and Tm3, and the uniqueness
criteria imposed by A!3 and A!4 are a direct consequence of T1. X

In order to define ma as a functor, we need to define its action on the morphisms of TSIm.

Definition 5.2.3 (TSIm ↪→ dLATS) For (σ, λ, τ) : T → T ′ a morphism of tsim, let ma
(
(σ, λ, τ)

)
be (σ, η, λ), where

η
(
[t]∼

)
=

{[
t′]∼ if τ(t) = t′,

undefined if τ(t)↑.

56



That Definition 5.2.3 is well given follows from Lemma 5.1.10; it is also easy to check that
ma is a full and faithful functor, i.e., an embedding of TSIm in dLATS.

The obvious way to define the ‘abstraction’ am to TSIm on the objects of LATS is, for a
lats A, to make the transitions TranA the elements of the transition set Tranam(A) and then
interpret them (via 〈 − 〉am(A)) simply by replacing the event with its label. We shall prove
that this gives a well-defined object-map from the category of diamond-extensional lats to
TSIm, and that dLATS is actually the largest full subcategory of LATS whose every object is
mapped by am to a tsim.

Definition 5.2.4 (dLATS ↪→ TSIm) For A a lats, let am(A) be the structure

(SA, iA, LA,Tran , 〈 − 〉, I),

where,

I (s, ea, s′) ∈ Tran if and only if (s, ea, s′) ∈ TranA,

I 〈(s, ea, s′)〉 = (s, a, s′),

I (s, ea1 , s1) I (s2, eb2, s3) if and only if e1 IA e2.

Proposition 5.2.5 For A a lats, am(A) belongs to TSIm if and only if A belongs to dLATS.
Proof. The pairs of transitions in A!3 and A!4 exist because of axioms A3 and A4. If
am(A) ∈ TSIm, their uniqueness is needed in order for am(A) to satisfy axiom Tm1. Sup-
pose that, on the contrary, in the case of A!3 there are two pairs (s1, xb2, u), (s2, x

a
1, u) and

(s1, yb2, w), (s2, ya1 , w) satisfying the condition. Assume, without loss of generality, that y2 6=
x2. Then we have (s1, yb2, w)
6= (s1, xb2, u), but we also have that (s, eb2, s2) ≺ (s1, yb2, w) (as transitions of am(A)) and
(s, eb2, s2) ≺ (s1, xb2, u), i.e., that (s1, xb2, u) ∼ (s1, yb2, w), which contradicts Tm1. The case
for A!4 can be proved along the same lines, thus showing the necessity of the uniqueness
conditions.

Concerning their sufficiency, the property of symmetry and irreflexivity for Iam(A) is in-
herited from IA. It remains to check that the axioms Tm1–Tm4 defining tsim hold for am(A).
Axioms A3, A4 and A!3, A!4 ensure that if (s, ea1 , s1) ≺ (s2, ea2, s3), then e1 = e2. It follows
then by induction that (s, ea1, s1) ∼ (s2, ea2 , s3) implies e1 = e2, for all (s, ea1, s1), (s2, e

a
2, s3) ∈

Tranam(A). If in addition s = s2, then axiom A2 implies that s1 = s3, and so (s, ea1, s1) =
(s2, ea2 , s3), i.e., Tm1 is satisfied. Actually, this also implies that Tm4 holds. For, since the
independence in am(A) is inherited from that on the events in A, we have that (s, ea1, s1) ∼
(s2, ea2 , s3) implies I

(
(s, ea1, s1)

)
= I

(
(s2, ea2, s3)

)
. This, as proved by Lemma 4.0.5, is equiva-

lent to Tm4. Finally, Tm2 and Tm3 hold because of the corresponding A3 and A4. X

The definition of am on morphisms depends on the fact that LATS morphisms preserve
independence on events.

Definition 5.2.6 (dLATS ↪→ TSIm) For (σ, η, λ) : A→ A′ a morphism of lats, let am
(
(σ, η, λ)

)
be (σ, λ, τ), where

τ
(
(s, ea, s′)

)
=

{(
σ(s), η(e)λ(a), σ(s′)

)
if η(e)↓,

undefined if η(e)↑.

57



By inspecting Definition 5.2.4, it is easy to verify that the above definition makes the
diagram in Definition 5.1.9 commute. Moreover, it preserves �, since axioms A!3 and A!4
ensure that e1 = e2, whenever (s, ea1, u) � (s′, ea2, u

′), i.e., since η preserve independence,
am

(
(σ, η, λ)

)
is well defined.

In order to prepare for our main proof, we first prove the following lemma.

Lemma 5.2.7 For any T in TSIm, we have that am ◦ma(T ) is isomorphic to T .
Proof. (Sketch) We show that there is a bijection θ between TranT and Tranam◦ma(T ) such
that (idS, idL, θ) and (idS , idL, θ−1) are morphisms of TSIm, respectively from T to am◦ma(T )
and vice versa, inverses of each other. The obvious choice for θ(t) is (〈t〉1, [t]〈t〉2 , 〈t〉3). Observe
that this gives an injective map because of axiom Tm1. X

The isomorphisms of 5.2.7 directly extends to a natural transformation

η =
{
(idS , idL, θ) : T → am ◦ma(T )

}
T∈TSIm

: 1TSIm =⇒ am ◦ma .

We shall prove now that such a transformation is the unit of an adjunction involving ma
and am, i.e., that am is right adjoint to ma : TSIm ↪→ dLATS.

Proposition 5.2.8 (ma a am : TSIm ⇀ dLATS) For any A ∈ dLATS and any morphism
m : T → am(A) in TSIm, there exists a unique morphism
mT : ma(T )→ A in dLATS such that am(mT ) ◦ ηT = m.
Proof. Let m be (σ, λ, τ). Clearly, by definition of am, mT must be of the form (σ, γ, λ) for
some γ : Ema(T ) → EA. It is easy to realize that the only possible choice for γ is the following:
for t ∈ TranT and τ(t)↓, let γ([t]) = e, if τ(t) = (s, ea, s′). This is a well given definition, for
Lemma 5.1.10 ensures that m maps all transitions in [t] to the same ∼-class of Tranam(A),
and the proof of Proposition 5.2.5 shows that if two transitions belong to the same ∼-class
of Tranam(A), they originate from transitions in TranA carrying the same event. This proves
both existence and uniqueness of mT . Finally, it immediate to check that am(mT ) ◦ ηT = m.
X

Since η is an isomorphism, by standard results in category theory, we have that the
adjunction ma a am : TSIm ⇀ dLATS is a coreflection, i.e., TSIm is coreflective in dLATS.

Concerning the coreflection described in the previous section, it is immediate to verify
that the functors obtained by composing ma and am with the inclusion tm : TSI ↪→ TSIm and
with the obvious inclusion of eLATS into dLATS coincide, respectively, with ta followed by
eLATS ↪→ dLATS and with at followed by tm , as illustrated in the following diagram.

TSIm
,,

ma

dLATSll

am

TSI
,,

ta?�

OO

eLATSkk

at

?�

OO

This supports our claim of TSIm being a conservative and minimal extension of TSI, since
regarding tsim as lats, the extension corresponds exactly to removing the constraint (Ex).

To complete our analysis, we identify the replete image of ma in LATS, i.e., the full
subcategory mdLATS of dLATS consisting of the objects isomorphic to ma(T ), for some T ∈
TSIm.

58



Recall from basic category theory that mdLATS is determined by the coreflection: it
consists of those A ∈ dLATS for which the corresponding component εA of the counit of
ma a am is iso. Applying standard categorical results to derive ε from (−)T and η, we find
that it is the natural transformation

ε =
{
(idSA

, γ, idLA
) : ma ◦ am(A)→ A

}
A∈dLATS

: ma ◦ am =⇒ 1dLATS,

where, for (s, ea, s′) ∈ Tranam(A), γ([(s, ea, s′)]) = e. Clearly, εA is iso if and only if γ is such,
i.e.,

(s, e1, s1), (s2, e2, s3) ∈ TranA, e1 = e2 ⇒ (s, e1, s1) ∼ (s2, e2, s3) ∈ Tranam(A),

which means that two transitions carry the same event if and only if they belong to the same
∼-class of A (viewed as a tsim). Expressed purely in terms of LATS, this is, as it was the case
for TSI, exactly the event-maximal LATS. Observe that in Definition 5.1.5 the interesting,
nontrivial choices for T are those such that ∅ ⊂ T ⊂ Tē, i.e., those in which at least one
ẽ-transition is added and at least one ē-transition is kept in A[T ].

Proposition 5.2.9 (mdLATS ∼= TSIm) mdLATS is equivalent to TSIm. Proof. Let A be a
diamond-extensional lats. We prove that the counit εA is iso if and only if A belongs to
mdLATS. To this purpose, let γ be the event component of εA.

If γ is iso, i.e., for all (s, e1, s1), (s2, e2, s3) ∈ TranA we have that e1 = e2 implies
(s, e1, s1) ∼ (s2, e2, s3), for any choice of ē ∈ EA and any ∅ ⊂ T ⊂ Tē, then the condition in
Definition 5.1.5 is satisfied, since, by the diamond-extensionality of A, either A3 or A4 must
fail for A[T ]. In fact, in order for A[T ] to be a LATS, diamond-extensionality implies that we
must have (s, e1, s1) ∈ T whenever a (s, e1, s1) ∼ (s2, e2, s3) for some (s2, e2, s3) ∈ T , i.e., by
the hypothesis on γ, T should be Tē. So A is event-maximal.

If γ is not iso, i.e., if there exist (s, e, s1) and (s2, e, s3) such that (s, e, s1) 6∼ (s2, e, s3),
then T = {(s, e′, s′) | (s, e′, s′) ∼ (s, e, s1)} ⊂ Te is a nonempty set for which the ‘splitting’ of
e yields a lats, i.e., A is not event-maximal. X

5.3 Conclusion

Based on a comparison between the model of asynchronous transition systems (a model
with explicitly defined events) and the model of transition systems with independence (a
more abstract model, with a derived notion of events) carried out by the authors in [60], we
have introduced the transition systems with independence and multi-arcs — a conservative
and minimal extension of transition systems with independence that features multi-arcs —
showing that the ability of asynchronous transition systems to model multi-arcs does not
depend inherently on the choice of having explicitly given events.

Adding multi-arcs to transition systems with independence constitutes a valuable enhance-
ment to the model, which allows to model important situations in which multiple transitions
between the same states represent different events with different causal histories.

Investigating the relationship between the category of transition systems with indepen-
dence and multi-arcs and the category of labeled asynchronous transition systems that matches
the one in [60], we have shown that the former is coreflective in the category of diamond-
extensional labeled asynchronous transition systems, which intuitively are those transition
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systems that make no confusion about the identities of the events carried by transitions facing
each other in independence-diamonds. This coreflection provides a way to translate semantics
forth and back between the two models. Finally, we have identified the event-maximal la-
beled asynchronous transition systems as the largest class of asynchronous transition systems
for which the coreflection cuts down to an equivalence, so providing a precise characterisa-
tion of transition systems with independence and multi-arcs in terms of labeled asynchronous
transition systems.

The analysis carried out in this paper helps in deciding when it is necessary to move to
a more ‘intensional’ framework (a lower level of abstraction) in which further distinctions of
events are introduced by assigning them explicitly. The definition of transition systems with
independence and multi-arcs raises the threshold by allowing a derived notion of event also
when multi-arcs are required.
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Chapter 6

On Plain and Hereditary History-Preserving Bisimulation

Abstract: We investigate the difference between two well-known notions of independence
bisimilarity, history-preserving bisimulation and hereditary history-preserving bisimulation.
We characterise the difference between the two bisimulations in trace-theoretical terms, ad-
vocating the view that the first is (just) a bisimulation for causality, while the second is
a bisimulation for concurrency. We explore the frontier zone between the two notions by
defining a hierarchy of bounded backtracking bisimulations. Our goal is to provide a stepping
stone for the solution to the intriguing open problem of whether hereditary history-preserving
bisimulation is decidable or not. 1 We prove that each of the bounded bisimulations is decid-
able. However, we also prove that the hierarchy is strict. This rules out the possibility that
decidability of the general problem follows directly from the special case. Finally, we give a
non trivial reduction solving the general problem for a restricted class of systems and give
pointers towards a full answer.

1As already remarked in Sec. 3.1, this question has recently been settled in [72].
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Introduction

Bisimulation equivalence for concurrent systems was introduced by Park and Milner [104, 87]
as a way of describing when two systems can be considered to denote the same process.
The idea was to identify systems that could not be distinguished by interaction with an
environment, and notably, this took into account the branching structure of systems. It was
defined for models for process algebras like e.g. CCS and CSP in which concurrency is treated
as non-deterministic interleaving of actions. However, for some situations, a more detailed
description of the causal ordering between actions is needed. One example is when action
refinement is considered, as studied by e.g. Vogler [135], Glabbeek and Goltz [131]. Models of
this kind, that do not abstract from concurrency, are commonly referred to as independence,
partial order or true concurrency models. Examples of these are labelled event structures,
Petri nets and asynchronous transition systems, e.g. see [146].

Many attempts have been made to answer the question what the appropriate generalisa-
tion of the interleaving bisimulation to independence models is. Two interesting bisimulations
for independence models are history-preserving bisimulation (HPB) and hereditary history-
preserving bisimulation (HHPB). HPB was introduced in [115] and [32] under the name of
behaviour structure bisimulation, and mixed ordering (mo) bisimulation respectively. The
term history-preserving originates from [131], where Goltz and vanGlabbeek define the notion
for event structures and prove the key property of HPB, namely that it is preserved under
action refinement. This result has given history-preserving bisimulation its prominent place
among independence bisimulations. In [14] the notion is introduced as fully concurrent bisim-
ulation. There it is independently shown that HPB preserves action refinement for the more
general model of Petri nets.

The notion of HHPB first appears in [12], where Bednarczyk studies several history-
preserving bisimulations with a downwards closure condition. He calls sets that satisfy this
condition hereditary. HHPB has also been introduced in [71] under the name of strong history-
preserving bisimulation. This paper describes a uniform way of defining a bisimulation equiva-
lence across a wide range of different models by applying category-theoretical ideas. For many
concrete models, the abstract bisimulation specializes to already known equivalences [28]. In
particular, one gets classical bisimulation for standard transition systems. For independence
models, the abstract bisimulation specializes to HHPB suggesting that this notion is a very
natural independence bisimulation. This is further confirmed by the results of [95]. Rela-
tional, logical and game-theoretical characterizations are found which come as conservative
extensions of the corresponding characterizations of classical bisimulation.

Altogether a fair amount of work has been done already in studying both, HPB and
HHPB. However, very few attempts [132] have been made to demarcate the two notions from
each other. Moreover, an intriguing question remains unsolved: Is HHPB decidable for a
reasonable class of systems? In contrast, HPB has been shown to be decidable for finite
1-safe Petri nets by Vogler [134], DEXPTIME-complete by Jategaonkar and Meyer [66] and
decidable for n-safe nets by Montanari and Pistore [92]. But there is no straightforward
adaption of these proofs to HHPB, and it seems that the hereditary condition brings about
new dimensions. This justifies a deeper investigation of the difference between plain and
hereditary HPB, which is the goal of this paper.

One statement we want to put forward is that hereditary HPB is a bisimulation for con-
currency as opposed to plain HPB (just) being a bisimulation for causality. Intuitively, HPB
is an equivalence notion that relates systems with the same causal branching structure. It
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Figure 6.1: Two labelled nets N and N ′ that are HP bisimilar but not HHP bisimilar. The
transitions are labelled by the actions {a, b, c, d} as the names suggest, e.g. a1 is labelled by
a

extends the classical notion of bisimulation with the requirement, that any two related runs
must have the same causal dependency between actions, that is the same history. Heredi-
tary HPB additionally imposes a backtracking condition: for any two related runs, the runs
obtained by backtracking a pair of related transitions, must be related, too. We allow back-
tracking not only in the order which is laid down by the related runs; as long as no other
transitions depend on a particular transition, it can be backtracked. Thereby it is ensured
that the matching is not dependent on the order in which independent actions are linearized.
Intuitively this is what we expect from a bisimulation for concurrency.

Figure 6.1 shows the standard example from [95] of two systems that are plain but not
hereditary HP bisimilar. Both systems have an a-action (b-action) that can be followed by
a dependent c-action (d-action) or an independent (not competing on any places) b-action
(a-action). And both have an a-action (a b-action) which can be followed by an independent
b-action (a-action). Consequently, the two systems are HP bisimilar. However, observe that
in any HPB we can find, the matching of the parallel a- and b-transitions depends on the
order in which they appear in the runs to match. So, the systems are not hereditary HP
bisimilar. Note that the c transition dictates that we have to match a1 to a′1, and so a1.b1
to a′1.b

′
1. Then the backtracking condition requires that b1 and b′1 are related. But from this

point, the system N ′ can make a d transition which N cannot match, so b1 and b′1 can clearly
not be related runs.

After stating the necessary definitions in Sec. 6.1, we present a trace-theoretical char-
acterisation of the difference between HHPB and HPB in Sec. 6.2. This will confirm our
view of HHPB as a bisimulation for concurrency as opposed to HPB as a bisimulation for
causality. In Sec. 6.3, we consider the effect of restricting HHPB, by bounding how far back
in two related runs one can pick transitions to backtrack. Remarkably, we prove in Sec. 6.3.1
that for a fixed bound, each such bisimulation is decidable. However, in Sec. 6.3.2 we find
that the bounded bisimulations form a strict hierarchy, all trivially stronger than HPB but
also strictly weaker than hereditary HPB. In Sec. 6.4 we apply our results to approach the
decidability of HHPB (for finite-state systems). After noting that decidability follows almost
immediately for the class of bounded asynchronous nets, we present a non-trivial reduction in
Sec. 6.4.2 showing that HHPB is decidable for systems with transitive independence relation.
In the end, we remark on other partial results and give directions for further progress.

Let us note that one can also consider hidden actions in the context of HPB and HHPB.
To avoid confusion with this standard use of strong and weak in the context of bisimulation,
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we prefer the name hereditary HPB over strong HPB. The weak version of HPB has been
proved to be decidable in [66] and [136]. Here we will restrict our attention to (hereditary)
HPB without hidden actions.

As our model of computation we choose 1-safe Petri nets. However, e.g. by using the
results of [146], our results can equally be formulated for other suitable independence models,
as for example transition systems with independence or labelled asynchronous transition
systems.

6.1 Preliminaries

The following definitions are standard and/or can be found in [66], [94], or [134], perhaps in
a slightly varied form.

Petri nets. A labelled Petri net N is a tuple (SN , TN , FN , initN , lN ), where

• SN is the set of places,

• TN is the set of transitions,

• FN : (SN × TN ) ∪ (TN × SN )→ {0, 1} is the flow relation,

• initN : SN → IN0 is the initial marking, and

• lN : TN → Act is the labelling function, where Act is a set of actions.

A net N is finite iff SN and TN are finite sets.
The pre-set of an element x ∈ SN ∪ TN , •x, is defined by {y | FN (y, x) > 0}, the post-set

of x, x•, similarly is {y | FN (x, y) > 0}.
A marking M of N is a map SN → IN0. We say M enables a transition t ∈ TN if

M(s) ≥ F (s, t) for every s ∈ SN . If t is enabled at M it can occur. The resulting marking M ′

is defined by M ′(s) = M(s)− F (s, t) + F (t, s) for all s ∈ SN . We denote this by M t→M ′.
We say that w = t1 . . . tn, is a transition-sequence of N . We write |w| for the length of w,

that is |w| = n. If M t1→ · · · tn→ M ′ we use M w→ M ′ as short notation. For any transition t
we write w.t for the sequence t1 . . . tnt.

A net N is 1-safe if for every marking M that is reachable from initN , we have: M(s) ≤ 1
for every s ∈ SN . Thus, in 1-safe nets a marking can be viewed as a set of places. We say
s ∈ SN holds at marking M iff s ∈ M . We will always refer to this net class whenever we
speak of ‘nets’ or ‘Petri nets’ in the following.

Runs. A run of a net N is a possibly empty transition-sequence r such that initN
r→M ′ for

some M ′. Let Runs(N) denote the set of all runs of a net N . When we have r ∈ Runs(N),
t ∈ TN , and two markings M , M ′, such that initN

r→M and M t→M ′, then we write r t→ r.t.

Independence of Transitions. We say two transitions t and t′ of a net N are independent
in N , denoted by t IN t′, iff their neighbourhoods of places do not intersect, i. e. iff (•t ∪
t•) ∩ (•t′ ∪ t′•) = ∅.
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Pomsets. A pomset is a labelled partial order.2 It is a tuple p = (Ep, <p, Lp, lp), where Ep
is a set of events, <p a partial order relation on Ep, Lp is a set of labels, and lp a labelling
function lp : Ep → Lp. A function f is an isomorphism between pomset p and pomset q iff
f : Ep → Eq is a bijection, such that we have lp = lq ◦ f , and e <p e

′ iff f(e) <q f(e′) for all
e, e′ ∈ Ep.

Transition-pomsets. The transition-pomset of a run r = t1 . . . tn, denoted by trPom(r),
has as events the integers from 1 to n, where the label of event i is ti and the partial ordering is
the transitive closure of the following “proximate cause” relation: event i proximately causes
event j iff i < j and ti and tj are not independent in N . The pomset of r, denoted by pom(r),
is the transition-pomset of r, where the label of each event i is lN (ti), the label of ti, rather
than ti itself.

Trace Theory. A trace alphabet is a pair (Σ, I), where the alphabet Σ is a finite set, and
I ⊆ Σ× Σ is an irreflexive and symmetric independence relation. Let Σ∗ be the set of finite
words over Σ, and let r, r′ range over Σ∗. For T ⊆ Σ, let r ↑ T denote the projection of
r onto T , i. e. the sequence obtained by erasing all occurrences of letters which are not in
T . The independence relation I induces a relation ∼I ⊆ Σ∗ × Σ∗ defined by r ∼I r′ iff
r↑{a, b}= r′ ↑{a, b} for all a, b ∈ Σ such that ¬(a I b). Clearly, ∼I is an equivalence relation.
The ∼I equivalence classes are usually referred to as (Mazurkiewicz’s) traces. For r ∈ Σ∗, [ r ]
stands for the trace containing r. Σ∗/∼I represents the set of all traces over (Σ, I).

Petri nets and Trace Theory. We can associate the trace alphabet (ΣN , IN ) to a Petri
net N , where ΣN = TN , and IN is as defined above. Transition-pomsets of a net N cor-
respond one-to-one to traces in Runs(N)/∼IN ⊆ Σ∗

N/∼IN . A trace [r] ∈ Runs(N)/ ∼IN
corresponds to trPom(r) and a transition-pomset p of N corresponds to the trace {r |
r is a linearization of p}.

6.2 (Hereditary) History-Preserving Bisimulation

and Trace Theory

We are now ready for the two notions which are central to this paper, HPB and HHPB.
Originally, these bisimulations have been defined on structures that represent the partial
order explicitly. By employing the notion of synchronous runs from [66], and the notion of
backwards enabled transitions introduced in [95] we can define (hereditary) HPB on runs,
instead. This gives a characterization closely related to work in [32] and [95].

Definition 6.2.1 Let r1 and r2 be runs of nets N1 and N2, respectively. We say that r1 and
r2 are synchronous iff the identity function on {1, 2, . . . , |r1|} is an isomorphism between the
pomset of r1 and the pomset of r2.

Intuitively, two runs are synchronous if their induced pomsets are isomorphic, and both
runs correspond to the same linearization of the associated pomset isomorphism class.

2This is not the original definition, but the convention used in [66].
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Definition 6.2.2 Let N be a net, and (ΣN , IN ) the associated trace alphabet. Let r =
t1 . . . tn ∈ Runs(N). For t ∈ ΣN , we say t is backwards enabled in r, written t ∈ BEn(r),
iff there is i ∈ {1, . . . , n} s. t. ti = t, and ∀j ∈ {i+ 1, . . . , n}. tj IN ti. This means that i is
a maximal element in pom(r). If t ∈ BEn(r) we define δ(r, t) to be the result of deleting the
last occurrence of t in r, i. e. δ(r, t) = t1 . . . ti−1ti+1 . . . tn iff last(r, t) = i, where last(r, t)
denotes the position of the last occurrence of t in r. That is last(r, t) = i iff ti = t and tj 6= t
for all j ∈ {i+ 1, . . . , n}.

Definition 6.2.3 A HPB between two nets N1 and N2 consists of a set H ⊆ Runs(N1) ×
Runs(N2) of pairs (r1, r2) such that

(i) Whenever (r1, r2) ∈ H, then r1 and r2 are synchronous.

(ii) (ε, ε) ∈ H.

(iii) Whenever (r1, r2) ∈ H and r1
t1→ r1.t1 for some t1, then there exists t2, such that

r2
t2→ r2.t2 and (r1.t1, r2.t2) ∈ H.

(iv) Vice versa.

A HPB is hereditary when it further satisfies

(v) Whenever (r1, r2) ∈ H and t1 ∈ BEn(r1) and t2 ∈ BEn(r2) for some t1, t2 such that
last(r1, t1) = last(r2, t2), then (δ(r1, t1), δ(r2, t2)) ∈ H.

We say two nets are (hereditary) HP bisimilar iff there is a (hereditary) HPB relating them.

It is trivial that one can regard a relation R ⊆ { (r1, r2) ∈ T ∗
N1
× T ∗

N2
| |r1| = |r2|} as a

language over the alphabet TN1 × TN2 , and vice versa. With this in mind, we can regard
a (hereditary) HPB H as a language over the trace alphabet TN1,N2 . We define TN1,N2 as
TN1,N2 = (Σ, I), where Σ = TN1 × TN2 , and I is defined as (t1, t2) I (t′1, t

′
2) iff t1 IN1 t

′
1 ∧

t2 IN2 t
′
2.

We will now characterize the difference between HPB and HHPB in trace-theoretical
terms. For this we consider two properties of languages.

Definition 6.2.4 We say a language L ⊆ Σ∗ is prefix-closed iff r.t ∈ L implies r ∈ L.
We say L is trace-consistent w. r. t. an independence relation I on Σ iff r ∼I r′ ∈ L

implies r ∈ L. For L ⊆ Σ∗, let L∼I
denote the smallest trace language including L, i. e.

L∼I
= {r ∈ Σ∗ | ∃r′ ∈ L. r′ ∼I r}.

By definition every HHPB is prefix-closed. This does not generally apply for HPBs. But
as prefix-closed HPBs correspond to bisimulations that have been built up inductively from
(ε, ε) without adding “any redundant tuples”, we can extract from any given HPB one that
is prefix-closed.

Proposition 6.2.5 Two nets are (hereditary) HP bisimilar iff there exists a prefix-closed
(hereditary) HPB language relating them.

A HPB language H is not necessarily trace-consistent, neither is a HHPB. But this can
always be obtained.
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Observation 6.2.6 Let H be a (hereditary) HPB language between two nets N1 and N2.
Let TN1,N2 = (Σ, I), then H∼I

is a (hereditary) HPB too.

Prop. 6.2.5 ensures, that it is safe to consider only prefix-closed HPBs. Note that if
this property is fixed, an analogue to Obs. 6.2.6 is no longer possible. In general, if H is a
prefix-closed HPB, H∼I

is not necessarily prefix-closed. However, if H is hereditary, this will
still be true.

Interestingly, if a prefix-closed HPB is also trace-consistent, it is in fact hereditary. So,
if one takes as part of the definition that a HPB is prefix-closed, one can regard hereditary
HPBs as the class of trace-consistent HPBs.

Proposition 6.2.7 Two nets are hereditary HP bisimilar iff there exists a trace-consistent
prefix-closed HPB relating them.

Proof. “⇒” By Obs. 6.2.6, we can extend every prefix-closed HPB H to the trace-consistent
HPB H∼I

. If H is hereditary we have that H∼I
is still prefix-closed.

“⇐” Let H be a trace-consistent and prefix-closed HPB relating the two nets N1, N2. We
only need to check property (v) of definition 6.2.3. Note that we can use BEn and δ for joint
runs and transitions of N1 and N2 in the obvious way. Then to prove property (v) we assume
r ∈ H and t ∈ BEn(r), and have to show that δ(r, t) ∈ H.

So assume r ∈ H, and t ∈ BEn(r). As H is trace-consistent, we have r′ ∈ H such that r′

corresponds to r with the last occurrence of t reshuffled to last position. As H is prefix-closed,
we get δ(r′, t) = δ(r, t) ∈ H. 2

Remark: Conversely, from Obs. 6.2.6 it follows that one could take as part of the definition
that a HPB is trace-consistent. Then HHPBs become the class of prefix-closed HPBs. This is
exactly the approach taken in the original definition of HHPB, since HPBs defined on partial
orders correspond precisely to the class of trace-consistent HPBs defined on runs. We find
the view we have put forward more natural. Taking trace-consistency as part of the definition
disguises how the linearized runs of the two systems are matched to each other. Since in HPBs
the matching can be dependent on the order in which independent actions are linearized, this
is information we do not want to hide away in a HPB.

With the property of prefix-closure we merely restrict our attention to HPBs that have
been inductively built up. Hence, defining HPB on synchronous runs and fixing prefix-closure
as part of the definition seems very natural. The interpretation of HHPBs as the class
of (prefix-closed) HPBs that are trace languages expresses then nicely that in HHPB the
matching does not depend on the order of how independent transitions are linearized.

It is not difficult to capture the conditions (i)-(iv) of the definition of HPB in terms of
languages as well. Together with the results above, this gives a purely language-theoretical
characterisation of HPB and HHPB, which can be found in [40].

6.3 History-Preserving Bisimulation and Bounded Backtrack-

ing

We define a hierarchy of backtracking bisimulations by bounding the number of transitions
which one can backtrack over to an arbitrary number n.
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Definition 6.3.1 A HPB H is (n)-hereditary when it further satisfies

(v) Whenever (r1, r2) ∈ H and t1 ∈ BEn(r1) and t2 ∈ BEn(r2) for some t1, t2 such that
last(r1, t1) = last(r2, t2) ≥ |r1| − n, then
(δ(r1, t1), δ(r2, t2)) ∈ H.

Note that (0)-hereditary HPBs are exactly the prefix-closed HPBs.
It is easy to give a dynamic condition on nets, which guarantees that (n)-hereditary HP

bisimilarity coincides with hereditary HP bisimilarity.

Definition 6.3.2 Let N be a net. We say that N is (n)-bounded asynchronous if for any
r = t1t2 . . . tk ∈ Runs(N) such that ti ∈ BEn(r), it holds that k − i ≤ n.

Proposition 6.3.3 Let N and N ′ be two (n)-bounded asynchronous nets. Then N and N ′

are hereditary HP bisimilar iff N and N ′ are (n)-hereditary HP bisimilar.

6.3.1 Decidability of (n)-Hereditary History-Preserving Bisimilarity

For any fixed n, (n)-HHP bisimilarity is decidable for finite systems. The idea behind our
proof is that we can define HHPB and (n)-HHPB in a ‘forward fashion’. At each tuple we
keep a matching directive that prescribes how transitions are going to be matched from this
point onwards. The matching directive allows us to express the backtracking requirement as
a property of the matching directives of two connected tuples.

To characterize HHPB in this manner we need to record the matching of the entire future.
Because of this the forwards characterization merely shifts the difficulty of the decidability of
HHPB from the past to the future: now we are confronted with an infinite amount of possible
futures. This is not the case for (n)-HHPB. But we shall see that it is sufficient to record
future matchings of length n. Our proof builds on this fact and insights gained in the proofs
of the decidability of HPB [134, 66].

Below is the definition of (n)-D HPB, our forwards characterization of (n)-HHPB.

Convention. For a pair of synchronous runs (r1, r2) of two nets N1 and N2, we use r as a
short notation. Similarly, we write t for a pair of transitions (t1, t2) when t1 and t2 correspond
to each other in a pair of synchronous runs (r1, r2). We also write r t→ r′ when we have two
pairs of synchronous runs (r1, r2), (r′1, r

′
2), and a pair of transitions (t1, t2), such that r1

t1→ r′1
and r2

t2→ r′2.

Definition 6.3.4 A (n)-D HPB between two nets N1 and N2 consists of a set HD of triples
(r1, r2,D) such that

(i) r1 is a run of N1, r2 is a run of N2, and r1 and r2 are synchronous. The matching
directive D is a non-empty and prefix-closed set of pairs of words (w1, w2), such that
w1 is a transition-sequence of N1, w2 of N2 respectively, and |w1| = |w2| ≤ n.

(ii) For some D, (ε, ε,D) ∈ HD.

(iii) Whenever (r1, r2,D) ∈ HD, and w ∈ D for some w, such that |w| < n, and for some
t1, r1.w1

t1→ r1.w1.t1, then there is some t2 such that (w1.t1, w2.t2) ∈ D.

Note that (ε, ε) ∈ D because D is prefix-closed and non-empty.
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(iv) Vice versa.

(v) Whenever (r1, r2,D) ∈ HD, and (t1, t2) ∈ D, then there is some D′, such that (r1.t1, r2.t2,D′) ∈
HD and

(a) ∀w s. t. |w| < n. tw ∈ D ⇔ w ∈ D′.

(b) ∀w′. w′ ∈ D′ ∧ t I t′ for all t′ ∈ w′ ⇒ w′ ∈ D.

We now prove that (n)-D HPB is indeed equivalent to (n)-HHPB. As in Sec. 6.2 it is
sufficient to consider only prefix-closed (n)-D HPBs since they correspond to bisimulations
that are built up inductively from the empty runs without adding any “redundant tuples”.
Prefix-closure for (n)-D HPB is defined as follows.

Definition 6.3.5 We say a (n)-D HPB HD is prefix-closed iff whenever
(r1.t1, r2.t2,D′) ∈ HD, then there is (r1, r2,D) ∈ HD for some D such that t ∈ D and

1. ∀w s. t. |w| < n. tw ∈ D ⇔ w ∈ D′.

2. ∀w′. w′ ∈ D′ ∧ t I t′ for all t′ ∈ w′ ⇒ w′ ∈ D.

Lemma 6.3.6 Two nets are (n)-hereditary HP bisimilar iff they are (n)-D HP bisimilar.

Proof. For one direction let H be a (n)-HHPB relating N1 and N2. It is also safe to assume
prefix-closure of H. We define HD by assigning a matching directive D to every pair (r1, r2).
We take D = {w | |w| ≤ n ∧ r.w ∈ H}. Prefix-closure of D is given by prefix-closure of
H, hence property (i) of definition 6.3.4 clearly holds. Properties (ii), (iii), and (iv) are also
trivial.

To see that property (v) holds, let (r1, r2,D) ∈ HD and (t1, t2) ∈ D. Then, due to the
way D is defined there is D′ such that (r.t,D′) ∈ HD. Condition (a) is also immediate by
the way matching directives are added to the tuples. To check condition (b) assume we have
w′ ∈ D′ ∧ t I t′ for all t′ ∈ w′. But then we have r.t.w′ ∈ H with t being backtrack enabled.
The fact that |w′| ≤ n together with property (v) of definition 6.3.1 implies that r.w′ ∈ H.
Hence, by definition of D we have w′ ∈ D as required.

For the other direction assume HD to be a prefix-closed (n)-D HPB. Define H by simply
ignoring the matching directive D of triples (r1, r2,D) ∈ HD. It is clear that properties (i),
(ii), (iii) and (iv) of the definition of (n)-HHPB are satisfied. To prove property (v), let
r.t.w ∈ H such that t is backtrack enabled, and |w| ≤ n. By prefix-closure of HD we have
(r,D), (r.t,D′) ∈ HD for some D, D′ such that t ∈ D, w ∈ D′, and the two conditions of
property (v) of definition 6.3.4 are satisfied. But then we have w ∈ D by condition (b), and
thus (r.w,D′′) ∈ HD for some D′′ as required. 2

Now that we have expressed the backtracking condition in a forwards fashion, we can
proceed along the lines of the decidability proofs for HPB [134, 66]. We will sketch these
proofs, and thereby explain the remaining steps of our decidability proof.

For this we need a further definition from [66].

Definition 6.3.7 Let p = (Ep, <p, Lp, lp) be a pomset and e, e′ ∈ Ep. Event e′ is a maximal
cause of event e in p iff e′ <p e and there is no event e′′ ∈ Ep such that e′ <p e′′ <p e.
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The key insight of the proofs of the decidability of HPB is the following fact: two isomor-
phic pomsets stay isomorphic after the addition of a pair of transitions iff the maximal causes
of the new events are the same (up to isomorphism) in the resulting pomsets. This means
that we do not need to keep the entire history, but it is sufficient to record only those events
that can act as maximal causes.

The next step is to find a notion that contains this most-recent history, but is finite in the
sense that there are only finitely many instances of it. In any partial order run the events that
can act as maximal causes correspond to distinct transitions. This is so because a transition
cannot be independent of itself. Thus, as one possibility we can take pomsets whose events
have distinct transitions as labels. As we consider only finite nets there are clearly only finitely
many such pomsets. What we have just described is the notion of growth-sites defined by
Jategaonkar and Meyer. Vogler develops a different concept called ordered markings (OM),
where the most-recent history is captured by imposing an order on the markings of a net.

Instead of defining HPB on runs we can now base HPB on growth-sites or OMs. The
resulting bisimulations are called gsc-bisimulation, and OM-bisimulation, respectively. Jate-
gaonkar and Meyer show that gsc-bisimulation is indeed equivalent to HPB. Vogler proves
the analogue for OM-bisimulation. As there are only finitely many growth-sites or OMs for
a system, these bisimulations can be decided by exhaustive search. The decidability of HPB
is then immediate.

We can define a growth-sites or OM bisimulation that corresponds to (n)-D HPB just
as well, and call the resulting notions (n)-D gsc-bisimulation and (n)-D OM-bisimulation.
The proof that (n)-D gsc- and (n)-D OM-bisimulation indeed coincide with (n)-D HPB is a
straightforward adaptation of the proofs in [66] and [134]. Since there are only finitely many
matching directives of size n, (n)-D gsc- and (n)-D OM-bisimilarity can also be decided by
exhaustive search. Consequently, (n)-D HP bisimilarity is decidable and with it (n)-HHP
bisimilarity.

Theorem 6.3.8 For any fixed n, it is decidable whether two finite nets are (n)-HHP bisimi-
lar.

6.3.2 Strictness of the Hierarchy

It is a simple consequence of the definition, that HHP bisimilarity implies (n)-HHP bisimilarity
for any n, which again implies (n’)-HHP bisimilarity for n′ < n. Given the result of the
previous section, an obvious question to ask is whether HHP bisimilarity coincides with (n)-
HHP bisimilarity for some fixed bound n. The example of Fig. 6.1 shows that (0)-HHP
bisimilarity is weaker than (1)-HHP bisimilarity. Fig. 6.2 shows an elegant generalisation,
which discriminates (n)-hereditary from (n+1)-hereditary HP bisimilarity. Despite its simple
appearance, it was not at all trivial to find.

Let us first argue why no HHPB relates N and N ′. In any HHPB we must match ai with
a′i, and bi with b′i for 1 ≤ i ≤ n. Then one option in N ′ is to perform a′n+1 and b′n+1. These
transitions have to be matched with either an+1 and bn+1, or an+2 and bn+2 respectively.
Suppose we choose the match an+1, bn+1. We can now backtrack all the a-transitions such
that d becomes enabled in N ′. But no d action is possible in N . If we choose an+2, bn+2 as
our match, we can backtrack all the b-transitions. Then c becomes possible in N ′, but not in
N . The systems are clearly (n+1)-bounded asynchronous, so by Prop. 6.3.3 N and N ′ are
not (n+1)-HHP bisimilar either.

70



N
a

1 1

n n

n+2

n+2

n+1

n+1

a

c

a b

d

a

b

b

b

1 1

c’

a’

b’

d’

N’

b’

b’

b’

a’

n n

n+1

n+1

a’

a’

n+2

n+2

Figure 6.2: Two nets N and N ′ that are (n)-HHP bisimilar but not (n+1)-HHP bisimilar.
Note that for n = 0 one gets the two systems given in Fig. 6.1

The above counter-strategy does not apply for (n)-HHPB, but we can use the following
strategy to match the critical n + 1 transitions. Say we have to match a′n+1, and b′n+1 has
not been fired yet, i. e. we can still choose between an+1 and an+2 as a match. We make our
match dependent on the first transition in the history. Assume it is an a-transition. Then it
is safe to match a′n+1 with an+1, which determines that b′n+1 is later matched with bn+1. For
d to become enabled in N ′, we need to backtrack all the a-transitions, however there will be
n+1 b-transitions following the first a, so this is not possible. Similar, it is safe to match a′n+2

with an+2. A symmetrical argument applies if the first action was a b-action, and similar for
the remaining cases.

Lemma 6.3.9 For all n ∈ IN0, there exist two finite nets that are (n)- but not (n+1)-HHP
bisimilar.

Theorem 6.3.10 For all n ∈ IN0, (n)-HHP bisimilarity is strictly weaker than (n+1)-HHP
bisimilarity, and hence (unbounded) HHP bisimilarity.

6.4 Applications to the Decidability Problem of
Hereditary History-Preserving Bisimulation

In the previous section we have shown that the hierarchy of (n)-HHPBs is strict. However,
for any two fixed finite systems the hierarchy collapses, and so the decidability of the general
problem would follow immediately, if the bound can be effectively computed for any two given
systems. That this might not be possible in general is indicated by the fact, that the problem
of hereditary history-preserving simulation has recently been shown to be undecidable [98].
Though, even if the general problem turns out to be undecidable, it is interesting to investigate
for which classes of systems deciding HHPB does reduce to deciding (n)-HHPB. Below, we
will give some restricted classes of systems, for which this is indeed the case.

6.4.1 Bounded Asynchronous Systems

We say that a net N is bounded asynchronous, if there exists some natural number n such that
N is (n)-bounded asynchronous. It is easy to see, that a finite 1-safe net fails to be bounded
asynchronous if and only if there is a reachable marking M and a loop, M t1→M1 · · ·

tn→Mn =
M such that every marking Mi in the loop enables a transition t which is independent of all

71



transitions in the loop, i.e. t IN ti for all i. Since finite 1-safe nets have only finitely many
markings we get the following lemma.

Lemma 6.4.1 It is decidable if a finite 1-safe net is (n)-bounded asynchronous for some n,
and the bound n can be computed.

With Prop. 6.3.3 the decidability of HHPB for bounded asynchronous systems follows
immediately.

Proposition 6.4.2 HHP bisimilarity is decidable for bounded asynchronous nets.

6.4.2 Systems with Transitive Independence Relation

Definition 6.4.3 An independence relation I over an alphabet Σ is transitive if, for every
distinct t, t′, t′′ ∈ Σ, t I t′ ∧ t′ I t′′ implies t I t′′.

Let N be a net. A transition t ∈ TN is a self-loop iff •t = t•. Intuitively, a self-loop is
a transition that can be repeated immediately, i. e. independently of the occurrence of other
transitions. Note that the existence of a run r = r′.t.t implies that t is a self-loop (in our
context of 1-safe nets).

Let us first draw our attention to systems with transitive independence relation that do
not contain any self-loops. It is easy to see that for such systems the number of transitions over
which can be backtracked is bound by the size of the maximal independence clique. In other
words, a system with maximal independence clique of size k is (k)-bounded asynchronous,
and hence decidability for finite systems of this subclass is immediate.

If a system contains a self-loop that can occur concurrently with another transition, then
this system is clearly not bounded asynchronous. However, we can transfer the decidability
result to the full class of finite systems with transitive independence relation with the help of
another key observation. In every (H)HPB between two systems with transitive independence
relation, concurrently occurring self-loop transitions have always to be matched to self-loops.
Hence, we do not need to consider the unfoldings of such self-loops. It is sufficient to match
the first occurrence of such a transition, when we make sure that the match is indeed a self-
loop. But then the number of transitions over which one can backtrack is again bound by the
size of the maximal independence clique, and so we have established decidability. The precise
definition of what it means for a self-loop to occur concurrently in a given context, and the
details of the proof can be found in the appendix.

Theorem 6.4.4 For finite systems with transitive independence relation, HHP bisimilarity
is decidable.

6.5 Final Remarks

There is still undiscovered land in the zone between plain and hereditary HPB. One possibility
to advance the frontier is to identify system classes for which the two notions coincide. Several
classes of such systems have already been found. The most interesting one is the system class
of BPP in full standard form [40]. Plain and hereditary HPB for the class of free-choice nets
have recently been shown not to coincide by the first author, disproving a conjecture in [27].
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The trace-theoretical characterization looks promising for approaching the decidability
problem of HHPB, see [40] for more details.
Acknowledgements. The first author would like to thank Julian Bradfield and Anca
Muscholl for helpful discussions and Walter Vogler for valuable comments on an earlier draft
of this paper. The second author would like to acknowledge the lot of people who have
contributed with their view on this problem, in particular Marcin Jurdziński.

6.6 Appendix: Proofs for Section 6.4.2

Here we will give the detailed proof of the decidability of HHPB for the full class of finite
systems with transitive independence relation. As described in Sec. 6.4.2 the essence of the
proof is the observation that concurrently occurring self-loops have always to be matched to
self-loops. We will first give the precise definition of what it means for a self-loop to occur
concurrently, and then formulate and prove the corresponding lemma.

Definition 6.6.1 Assume a given net N . Let t be a self-loop transition of N , and let r be
some run of N . We say the self-loop t is concurrently occurring at r iff

• t is enabled at r, and

• there exists t′, s. t. t I t′ and we have r t′→ r.t′ or BEn(r, t′).

Lemma 6.6.2 Let H be a history-preserving bisimulation relating two nets with transitive
independence relation, N1, N2.

• Whenever (r1.t1, r2.t2) ∈ H, and t1 is a concurrently occurring self-loop at r1, then t2
is a self-loop as well.

• Vice versa.

Proof. To prove the first part of the lemma let (r1.t1, r2.t2) ∈ H and let t1 be a concurrently

occurring self-loop at r1. First assume we have t′1 I t1, such that r1
t′1→ r1.t

′
1. Clearly we

have (r1.t1.t1, r2.t2.t∗2) ∈ H for some t∗2 D t2, and (r1.t1.t1.t′1, r2.t2.t
∗
2.t

′
2) ∈ H for some t′2, s. t.

t′2 I t2 and t′2 I t
∗
2. With transitivity of independence the latter leads to a contradiction with

the requirement t∗2 D t2, unless t∗2 = t2. But if t∗2 = t2, then t2 must be a self-loop because it
can occur twice consecutively.

Secondly, assume we have t′1 I t1, such that BEn(r1, t′1). A similar argument shows that
t2 must be a self-loop, too.

The second part of the lemma can be proved by a symmetric argument. 2

This lemma ensures that we do not need to consider the unfoldings of concurrently oc-
curring self-loops. It is sufficient to match one instance of a concurrently occurring self-loop
transition, and to make sure it is really matched to a self-loop.

This idea is translated into what we shall call ‘No Self-loop Unfolding’ (NSU) HPB. After
giving the definition we will show that for systems with transitive independence relation this
new kind of bisimilarity indeed coincides with (hereditary) history-preserving bisimilarity.

Note that in the following we will make use of the convention introduced in Sec. 6.3.1.
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Definition 6.6.3 A NSU (No Self-loop Unfolding) history-preserving bisimulation between
two nets N1 and N2 consists of a set HNSU of pairs (r1, r2) such that

(i) Whenever (r1, r2) ∈ HNSU , then r1 is a run of N1, r2 is a run of N2, and r1 and r2 are
synchronous.

(ii) (ε, ε) ∈ HNSU .

(iii) Whenever (r1, r2) ∈ HNSU and r1
t1→ r1.t1 for some t1, such that t1 is not a concurrently

occurring self-loop at r1, then there exists t2, such that r2
t2→ r2.t2 and (r1.t1, r2.t2) ∈

HNSU .

(iv) Vice versa.

(v) Whenever (r1, r2) ∈ HNSU and r1
t1→ r1.t1 for some t1, such that t1 is a concurrently

occurring self-loop at r1, and there exists no x2 such that (t1, x2) ∈ BEn(r), then there
exists t2, such that t2 is a self-loop, r2

t2→ r2.t2, and (r1.t1, r2.t2) ∈ HNSU .

(vi) Vice versa.

A NSU history-preserving bisimulation is hereditary when it further satisfies

(vii) Whenever (r1, r2) ∈ HNSU and t1 ∈ BEn(r1) and t2 ∈ BEn(r2) for some t1, t2 such
that last(r1, t1) = last(r2, t2), then (δ(r1, t1), δ(r2, t2)) ∈ HNSU .

We say two nets are (hereditary) NSU history-preserving bisimilar iff there is a (hereditary)
NSU HPB relating them.

Lemma 6.6.4 Two nets with transitive independence relation are (hereditary) history-preserving
bisimilar iff they are (hereditary) NSU history-preserving bisimilar.

Proof. With lemma 6.6.2 it is easy to check that every (hereditary) HPB is also a (hereditary)
NSU HPB.

For the non-trivial direction let HNSU be a (hereditary) NSU HPB. Define H by unfolding
self-loop matches inductively as follows:

Base Step H = HNSU ,

Inductive Step Whenever rr′ ∈ H and t1, t2 is a pair of concurrently occurring self-loops
at r1, r2, s. t. (t1, t2) ∈ BEn(r) then r.t.r′ ∈ H.

It is easy to check that H is a (hereditary) HPB. 2

We can restrict our attention to the special class of minimal (hereditary) NSU HPBs,
which strictly do not contain any unfoldings of concurrently occurring self-loops.

Definition 6.6.5 A (hereditary) NSU HPB HNSU is minimal iff

• Whenever r.t.r′ ∈ HNSU and t1 is a concurrently occurring self-loop at r1, then there
exists no x2 such that (t1, x2) ∈ BEn(r).

• Vice versa.
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Lemma 6.6.6 Two nets are (hereditary) NSU history-preserving bisimilar iff there exists a
minimal (hereditary) NSU history-preserving bisimulation.

Proof. We can simply ‘collapse’ any given (hereditary) NSU HPB HNSU to a minimal one:
erase all tuples that violate the above conditions from HNSU . Clearly, the result is still a
(hereditary) NSU HPB. 2

Minimal (hereditary) NSU HPBs between systems of our subclass look exactly like (hered-
itary) HPBs of systems with transitive independence relation and no self-loops. They meet
all characterisics that made it possible to find a decision procedure for the latter subclass. In
particular, the number of joint transitions which one can backtrack over is bound by the size
of the maximal independence clique. So, we get the following result.

Lemma 6.6.7 Hereditary NSU HP bisimilarity is decidable for finite systems with transitive
independence relation.

Proof. By lemma 6.6.6 it is sufficient to check whether there exists a minimal hereditary NSU
history-preserving bisimulation. But this is clearly decidable for our subclass. We only need
to adapt the steps of the proof of the decidability of (n)-hereditary HPB to show that the
corresponding notion of (n)-hereditary NSU HPB is decidable for our subclass. 2

With this and lemma 6.6.4 we immediately get decidability for the whole class of finite
systems with transitive independence relation.
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Chapter 7

A Fully Abstract Presheaf Semantics of SCCS with Finite
Delay

Abstract: We present a presheaf model for the observation of infinite as well as finite
computations. We apply it to give a denotational semantics of SCCS with finite delay, in
which the meanings of recursion are given by final coalgebras and meanings of finite delay
by initial algebras of the process equations for delay. This can be viewed as a first step in
representing fairness in presheaf semantics. We give a concrete representation of the presheaf
model as a category of generalised synchronisation trees and show that it is coreflective in a
category of generalised transition systems, which are a special case of the general transition
systems of Hennessy and Stirling. The open map bisimulation is shown to coincide with the
extended bisimulation of Hennessy and Stirling. Finally we formulate Milners operational
semantics of SCCS with finite delay in terms of generalised transition systems and prove that
the presheaf semantics is fully abstract with respect to extended bisimulation.
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Introduction

When reasoning about and describing the behaviour of concurrent agents it is often the case
that some infinite computations are considered unfair and consequently ruled out as being
inadmissible. An economical way of studying this situation was proposed by Milner in [89]
showing how to express a fair parallel composition in his calculus SCCS (synchronous CCS)
by adding a finite, but unbounded delay operator. Syntactically the finite delay of an agent t
is written εt. The agent εt can perform an unbounded number of 1-actions εt 1−→ εt (delays)
but must eventually perform an action εt

a−→ t′ if t can perform an action t
a−→ t′ or stop if

t cannot perform any actions. In other words, its actions are the same as for (the possibly
infinite delay) δt = rec x.(1 : x + t), except that infinite unfolding of the recursion is not
allowed.

To deal with agents in which only some infinite computations are admissible, one must
readdress the issue of how to represent the behaviour of agents and so when two agents behave
equally, i.e. they denote the same process. The approach used for CCS and SCCS, taking two
agents to be equivalent if their derivation trees are strong bisimilar [87], will identify agents
that only differ on whether some infinite computations are admissible or not, in particular
εt is identified with δt for any term t. Moreover, (by definition) both εt and δt should be
solutions to the equation

x ∼= (1 : x+ t) (7.1)

(up to equivalence) so process equations will not have unique solutions as it is the case in
CCS and SCCS (with guarded recursion).

In [89], Milner proposes a behavioural preorder called fortification, which is designed such
that (1) it induces an equivalence which distinguishes the two notions of delay and coincides
with strong bisimulation for “standard” agents, (2) recursive processes are least fixed points of
the associated process equations and (3) the equivalence is a congruence with respect to all the
operators of the language (under an assumption of guarded recursion). This approach works
reasonably, but is not completely satisfactory. As pointed out by Aczel in [7], the fortification
equivalence makes some non desirable identifications of agents due to the fact that infinite
computations are treated totally separately from finite computations. For example, the two
agents δ(a : 0 + δ0) and ε(a : 0 + δ0) (where 0 is the agent without any actions) are identified
by the fortification equivalence. Both agents get assigned the derivation tree
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•

__

1
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??

1

~~~~ ◦ • 1

•

__

1
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1
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, (7.2)

for which the admissible infinite action sequences of the agents underlying the nodes are the
same: For a black node, the underlying agent is either the original agent or the agent δ0,
for which 1ω is the only admissible infinite action sequence. The underlying agent of a white
node is the agent 0, which has no action sequences at all. So, the isomorphism between the
derivation trees of the two agents is a bisimulation satisfying that the underlying agents of any
two related nodes have the same set of admissible infinite action sequences. This implies the
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fortification equivalence. However, for a true branching equivalence, the two agents should
not be equivalent. The first agent can delay infinitely remaining able to perform an a-action
at any time, while the second agent must reach a state in which it cannot perform an a-action.
Aczel [7] proposes a final-coalgebra semantics, which gives a bisimulation closely related to
the extended bisimulation introduced by Hennessy and Stirling in [54] for general transition
systems. This bisimulation indeed distinguishes the two agents given above.

The background of the present paper is the work on presenting models for concurrency
categorically as initiated by Winskel and Nielsen [146] and developed further in the work on
bisimulation from open maps [71] and presheaf models for concurrency [24, 22, 59, 144]. Our
goal is twofold: We want to extend the categorical approach (in which the issue of infinite
computations and fairness has been absent so far) to models for infinite computations and we
want to give a denotational semantics to SCCS with finite delay which captures a behavioural
equivalence similar to the extended bisimulation of [54]. As we will see, these two goals can
indeed be met.

One of the forces of describing models for concurrency within the language of category
theory is that different models suitable for different purposes, can be formally related to each
other. E.g. in [146] the category of synchronisation trees suitable for giving denotational
semantics to CCS-like process calculi is shown to be a coreflective subcategory of the cate-
gory of transition systems suited for operational semantics. Another force was added by the
notion of bisimulation from open maps introduced in [71], from which one gets an abstract
behavioural equivalence by choosing a path category, i.e. a subcategory of the model at issue
identifying the observable computations. The open maps approach increased its worth through
the further development [24, 22, 21, 144] of the presheaf models for concurrency proposed
in [71]. Here one starts with a path category P and then takes the category P̂ of presheaves
over P as model, justified categorically by being the free colimit completion of P [22]. Now
any presheaf model P̂ comes with a canonical notion of bisimulation, taking P as the path
category. In [22, 144, 24] it is shown that presheaf models themselves can be related within a
category in which arrows are (connected) colimit preserving functors. Such functors preserve
the canonical bisimulation and general techniques for their construction are provided.

Perhaps the simplest example of a presheaf model is obtained from the category Fin of
all finite sequences of actions from a set Act ordered by the usual prefix ordering. The cate-
gory F̂in is equivalent to the category of (Act) labelled synchronisation trees and the typical
constructions of a CCS-like language can be expressed as functors preserving the canonical
equivalence [71, 22]. In this light, it was natural to approach a generalisation of the categor-
ical models to models for infinite computations by studying the presheaf category Înf, where
Inf = Fin∪Actω is the path category obtained by adding all infinite sequences of actions to the
category Fin. With the help of a simple Grothendieck topology we get indeed a suitable model
for infinite computations from the category of separated presheaves [83] over Inf. A careful
generalisation of the models of synchronisation trees and transition systems lifts the relation-
ship between the “standard” finitary models to the infinitary models and gives a concrete
representation of the presheaf model for infinite computations as generalised synchronisation
trees, coreflective in a category of generalised transition systems. The generalised transition
systems are defined as instances of the general transition systems of [54] and it turns out that
the extended bisimulation defined in [54] coincides with the abstract bisimulation obtained
from open maps. We show how to give an operational semantics of SCCS with finite delay
in the generalised transition systems capturing exactly the definition of inadmissible com-
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putations given in terms of waiting subcomputations in [88]. We then give a denotational
semantics in the presheaf model which we prove to be equationally fully abstract with respect
to extended bisimulation.

In all of the steps above we greatly benefit from the categorical presentation. Unbounded
non-determinism is represented simply by (infinite) coproducts. By utilizing the general
techniques from [24] we get very simple definitions of the denotations for prefixing and syn-
chronous product, for which congruence properties follow almost for free. As meanings of
recursion we take final coalgebras, corresponding to greatest fixed points and the finite delay
operator is simply obtained as an initial algebra corresponding to a least fixed point of the
process equation (7.1) given above. Finally, the categorical relationships between the different
models and the general theory of bisimulation from open maps reduce the problem of relat-
ing the two semantics to finding an open map within the category of generalised transition
systems.

A number of papers [7, 65, 53, 54, 139] have already proposed denotational semantics for
SCCS with finite delay and models for non-deterministic processes with infinite computations.
As mentioned above, the approach we take is closely related to the work in [7] and [54].
However, the admissible infinite computations in [7] appear to be identified in a rather syntax
dependent way as opposed to simply arising from the use of final coalgebras in giving meanings
to recursion. The semantics given in [65] is also shown to be fully abstract, but with respect
to the fortification equivalence, so it makes the non-intuitive identifications described above.
Moreover, it only covers bounded non-determinism as obtained from terms in which only a
binary sum is allowed. The semantics given in [53] focuses on the fortification equivalence
too. Also, for all the models given in [65, 53, 139] the order relation between elements is
designed such that meanings of recursion can be given by least fixed points using a reverse
ordering on infinite observations.

The structure of the paper is as follows. In Sec. 7.1 we give some preliminary definitions
and recall the categorical concepts used in the paper. In Sec. 7.2 we recall the calculus
SCCS [89], the finite delay operator and how to derive a fair parallel [88]. In Sec. 7.3 we
introduce respectively the new presheaf model and the transition system models for infinite
computations. Section 7.4 is devoted to the bisimulation obtained from open maps and its
relationship to the extended bisimulation of [54]. In Sec. 7.5 we formulate Milner’s operational
semantics of SCCS with finite delay in terms of the generalised transition systems introduced
in Sec. 7.3 and in Sec. 7.6 we give the presheaf semantics and the full abstraction result.
Comments on future work is given in Sec. 7.7. The appendixes contain details on Grothendieck
topologies and the proof of full abstraction.

7.1 Preliminaries

Notation 7.1.1 For a set S, let S∗ denote the set of finite, (possibly empty) sequences and
S+ the set of finite non-empty sequences. Let Sω denote the set of infinite sequences and
define S∞ = S+∪Sω, i.e. the set of non-empty finite or infinite sequences. We will let Roman
letters range over elements and Greek letters range over sequences. Let |α| denote the length
of α. If j ∈ ω and |α| ≥ j + 1, let α(j) = α0α1 . . . αj , i.e. the first j actions of α. For α,α′

such that |α| < ω we write αα′ for the composition of the two sequences. If β ∈ S∗ and β ≤ α
in S∗ ∪ Sω, we will write β ≤f α for β is finite and below α.

Assume a fixed set Act of actions. We will consider finite or possibly infinite sequences of
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actions from Act ordered by the standard prefix order. In particular we will let Fin and Inf
refer to the two partial order categories Act+ and Act∞ (i.e. Act+ ∪ Actω) obtained in this
way. They will play the key role as path categories of presheaf models for the observation of
respectively finite and possibly infinite computations.

7.1.1 Presheaf Models, Bisimulation from Open Maps and Transition Sys-
tems

Presheaf categories were suggested in [71] as abstract models for concurrency, equipped with
a canonical notion of bisimulation equivalence.

The basic idea is to start from a (partial order) category P defining the observable com-
putations or path shapes of interest. The category P̂ of presheaves over P is then taken as the
category of processes with such path shapes. The category P̂ is the free colimit completion of
P, i.e. the category obtained (up to equivalence) by freely adding all colimits to P. It has as
objects all functors X : Pop → Set (where Set is the category of all small sets and functions
between them) and as arrows natural transformations between such. Any functor F : P→ Q
for Q a cocomplete category (i.e. a category having all colimits), can be extended freely (as
a left Kan extension [82]) to a (colimit preserving) functor F! : P̂→ Q making the diagram

P

Q

P̂
� � //

YP

��
F ??

??
??

??

��

F!

commute. The functor YP : P ↪→ P̂ is the well known Yoneda embedding mapping p of P to
the presheaf P[−, p]. This extension will be used in Sec. 7.6, in the special case where Q is a
presheaf category.

Notation 7.1.2 If q ≤ p in a partial order category P, let [q, p] denote the unique arrow in P
and [p, q] the unique arrow in Pop. We will employ the standard notation [83], writing x · [q, p]
for the element X([p, q])x, i.e. the restriction of x to the path q.

The categorical presentation of models for concurrency comes with a general notion of
bisimulation from open maps introduced in [71]. Given a model M, the idea is to identify
a path category P ↪→ M as a subcategory of M. A map f : X → Y in M is then said to be
P-open (or just open if the path category is clear from the context) if whenever for two path
objects P,Q of P and morphism m,p, q such that the diagram

P //
p

��

m

X

��

f

Q //
q

??

h

Y

commutes, there exists a morphism h : Q → X as indicated by the dotted line, making the
two triangles commute. Intuitively this says that at any point in the simulation described by
f , any path extension in Y simulates a corresponding extension in X, i.e. f is like a functional
bisimulation. Two objects X and Y is said to be P-bisimilar if they are related by a span of

P-open maps f1, f2, i.e. X Zoo
f1

//
f2

Y.
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From the embedding YP : P ↪→ P̂, we get a canonical path category and thus a canonical
notion of bisimulation from open maps for any presheaf category P̂.

In [71], focus was put on rooted presheaves, i.e. presheaves such that X(⊥) is the singleton
set if ⊥ is an initial element of the path category. In particular, it was remarked that the
category of rooted presheaves over Act∗ is equivalent to the category ST of synchronisation
trees (with label set Act) and Act∗-bisimulation was shown to coincide with the usual HM-
bisimulation [89] on labelled transition systems.

Definition 7.1.3 ([146]) A transition system T (with label set Act) is a quadruple

(ST , iT ,−→T , Act),

where

• ST is a set of states,

• iT ∈ ST is the initial state, and

• −→T⊆ ST ×Act× ST is a transition relation.

As usual we write s a−→T s
′ for ∃(s, a, s′) ∈−→T . For a transition t ∈−→T , let do(t), co(t), act(t)

refer to respectively the domain, codomain and action of t. Let Comp(T ) = {φ ∈−→∞
T | ∀0 <

j < |φ|.co(φj−1) = do(φj)}, i.e. the set of non-empty (finite or infinite) computations of T
and let Compfin(T ) = Comp(T )∩ −→+

T , i.e. the finite computations. Define Run(T ) = {φ ∈
Comp(T ) | do(φ0) = iT }, Runfin(T ) = Run(T )∩ −→+

T and Runinf(T ) = Run(T )∩ −→ω
T .

Transition systems (with label set Act) form the objects of a category TS, with arrows
being simulations. A simulation from T to T ′ is a mapping σ : ST → ST ′ of states, such that

• σ(iT ) = iT ′ and

• s a−→T s
′ implies that σ(s) a−→T ′ σ(s′).

Say a transition system is reachable if any state is reachable from the initial state.
A synchronisation tree is a transition system for which the transition relation is acyclic

and any state is reachable from the initial state by a unique sequence of transitions. The
synchronisation trees (with label set Act) induces a full subcategory ST of TS.

The equivalence between rooted presheaves in Âct∗ and synchronisation trees is given formally
in [147]. Given a rooted presheaf X in Âct∗, its corresponding synchronisation tree El(X) =
(SX , iX ,−→X , Act) under the equivalence is constructed as follows 1. The set of states is
defined by SX =

{
(α, x) | α ∈ Act∗ and x ∈ X(α)}, i.e. the disjoint union of all the sets of

elements. The initial state (the root) is given by iX = (⊥, ∗), where ⊥ is the empty sequence
in Act∗ and ∗ the unique element of X(⊥). There will be a transition (α, x) a−→ (αa, x′) iff
x′ ·[α,αa] = x, i.e. if x′ ∈ X(αa), x ∈ X(α), and x′ restricts to x.

Note that Act∗ is equivalent to the category obtained from Inf by adding a bottom element
(the empty sequence). In general, if P is a partial order, let P⊥ denote the partial order
obtained by adding a new bottom element. It is then easy to see, that P̂ is equivalent to
the category of rooted presheaves over P⊥, so in particular F̂in is equivalent to the category

1The category freely generated by the synchronisation tree corresponding to a presheaf X is equivalent to
the category of elements [83] of X.
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ST. Let b−c : P̂ ↪→ P̂⊥ be the functor mapping a presheaf in P̂ to its corresponding rooted
presheaf in P̂⊥. Let d−e : P̂⊥ → P̂ be the converse mapping, discarding the root(s). If P̂⊥
is restricted to rooted presheaves this gives the equivalence mentioned above and the open
maps between rooted presheaves in P̂⊥ via the equivalence are exactly the surjective open
maps in P̂. Instead of considering rooted presheaves of a category with bottom, one can thus
work with full presheaf categories (not necessarily having a bottom element) and surjective
open maps.

By composing the Yoneda embedding with d−e we get an embedding Y◦
P : P⊥ ↪→ P̂, the

strict extension of YP, mapping the bottom element in P⊥ to the empty presheaf. In fact
P̂,Y◦

P is the free connected colimit completion of P⊥. (A connected colimit is a colimit of a
non-empty connected diagram). The following proposition [19, 144, 24] is one of the most
important results about open map bisimulation in presheaf models.

Proposition 7.1.4 Let F : P̂ → Q̂ be a connected colimit preserving functor. Then F pre-
serves surjective open maps, i.e. if m : X → Y is surjective open in P̂ then F (m) : F (X) →
F (Y ) is surjective open in Q̂.

7.1.2 Initial Algebras and Final Coalgebras

Below we recall the categorical analogues of pre- and post-fixed points [10].

Definition 7.1.5 Let F : P → P be an endofunctor on a category P. A co-algebra for F is
a pair (p,m) of an object and a morphism of P such that m : p → F (p). Dually, an algebra
for F is a pair (p,m) such that m : F (p) → p. The co-algebras of F form the objects of a
category FcoAlg, with arrows f : (p,m)→ (q, n) being arrows f : p→ q of P such that

p //m

��

f

F (p)

��

F (f)

q //n
F (q)

commutes. Dually, algebras for F form the objects of a category FAlg.

Initial and final objects in FAlg and FcoAlg are the categorical analogues of minimal and
maximal fixed points of F .

Lemma 7.1.6 Let F : P → P be an endofunctor on a category P. If (p,m) is an initial
algebra for F , i.e. an initial object in the category of F -algebras, then m : F (p) → p is an
isomorphism. Moreover if (q, n) is another initial algebra for F , q is isomorphic to p. The
dual statement holds for final co-algebras. If F has an initial algebra, let µF denote the
(unique up to isomorphism) initial algebra. Similarly, let νF denote the final co-algebra of F
if it exists.

The following lemma is the main technique in proving existence of final co-algebras.

Lemma 7.1.7 Let P be a category with terminal object > and F : P→ P an endofunctor on
P. If the ωop-chain

> ← F (>)← F 2(>)← . . .← Fn(>)← . . .
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has a limiting cone (P, {pn : P → Fn(>)}n∈ω) and F preserves this limit, i.e.

(F (P ), {! : F (P )→ >} ∪ {F (pn) : F (P )→ Fn+1(>)}n∈ω)

is a limiting cone too, then the unique mediating (iso)morphism m : P → F (P ) is a final
coalgebra.

The above lemma is the dual of the following lemma for construction of initial algebras,
as found in e.g. [10].

Lemma 7.1.8 Let P be a category with initial object ⊥ and F : P→ P an endofunctor on P.
If the ω-chain

⊥ → F (⊥)→ F 2(⊥)→ . . .→ Fn(⊥)→ . . .

has a colimit P and F preserves this colimit, then the unique mediating (iso)morphism
m : F (P )→ P is an initial algebra.

Since limits are computed point-wise in a presheaf category P̂, the terminal object in P̂
is the presheaf > : Pop → Set that yields the one element set (the terminal object in Set) for
any object p in P. Dually, the initial object ⊥ : Pop → Set is the empty presheaf, yielding the
empty set for all objects p in P.

7.2 SCCS, Finite Delay and Fair Parallel

In this section we recall Milner’s calculus SCCS [89] of synchronous CCS and the definition
of a fair parallel composition via a finite delay operator [88]. Assume a distinguished element
1 ∈ Act such that (Act, •, 1) is an Abelian monoid with 1 being the identity. The basic
operators of SCCS are action prefixing, synchronous product, non-deterministic choice and
restriction. Formally, the terms are given by

t ::= a :t | t1 × t2 | Σi∈Iti | t�A,

where a ∈ Act, A ⊆ Act and I is an index set. With the basic operators we can build processes
with only finite behaviour. As usual, we will write 0 for an empty sum, omit the summation
sign for a unary sum and write t1 + t2 for a binary sum.

To be able to define processes with possibly infinite runs, we add a recursion operator,
extending the grammar by

t ::= . . . | x | rec x.t,

where x is a process variable and rec x. binds the variable x in t. We will let T refer to the
set of closed terms of the calculus SCCS.

The rules given in Fig. 7.1 defines the operational semantics of SCCS, from which we get
a derivation transition system for any closed term t as defined below.

Definition 7.2.1 Let t be a term in T . Then the derivation transition system for t is the
(reachable) transition system D(t) = (S, t,−→t, Act), where S =

{
t′ ∈ T | t −→∗ t′

}
, i.e.

all states reachable from t by the relation −→ defined by the rules in Fig. 7.1 and −→t=−→
∩S ×Act× S.
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a :t a−→ t
,

tj
a−→ t′

Σi∈Iti
a−→ t′

(j ∈ I), t1
a−→ t′1 t2

b−→ t′2

t1 × t2
a•b−→ t′1 × t′2

,

t
a−→ t′

t�A a−→ t′�A
(a ∈ A),

t[rec x.t/x] a−→ t′

rec x.t
a−→ t′

.

Figure 7.1: Operational semantics of SCCS

εt
1−→ εt

(Wait) and
t

a−→ t′

εt
a−→ t′

(Fulfill).

Figure 7.2: Derivation Rules for Finite Delay

Note that in the synchronous product, both processes must perform an action, and the result-
ing action is the monoid product of the two individual actions. Recursion acts by unfolding
and t[rec x.t/x] is the usual substitution of rec x.t for the free variable x in t.

An important derived operator introduced in [89] is the delay operator δ. For a process
t, define δt = rec x.(1:x+ t). In the standard semantics, δt is the (unique up to bisimulation)
fixed point of the process equation

x ∼ (1:x+ t). (7.3)

As an economical way to be able to express that some infinite runs are inadmissible, Milner
introduces in [88] a finite, but unbounded delay operator ε (expectation). Its immediate actions
are the same as for the derived delay operator, which can be described by the rules given in
Figure 7.2.

However, infinite waiting is ruled out as inadmissible. In other words, fulfillment of
the delay is always expected. The idea is that finite delay is the only operator giving rise
to inadmissible infinite runs. Recursion will as usual give rise to admissible infinite runs.
This is sufficient to capture weak fairness of an asynchronous parallel composition. For
processes t and t′, the fair asynchronous parallel composition [88] of t and t′ is defined by
t||t′ = (εt × t′) + (t × εt′). The composition is asynchronous in the sense that one process
can delay while the other progress; it is fair in the sense that no process can delay this way
forever.

We will let SCCSε and Tε refer to respectively the calculus SCCS extended with the finite
delay operator ε and the set of terms of the extended calculus.

In the next section we will introduce two closely related categorical models, suitable for
giving respectively denotational and operational semantics in which inadmissibility of infinite
computations can be expressed.
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7.3 Observing Infinite Computations

We approach a categorical model for infinite computations by studying the presheaf model
obtained by adding infinite paths to the path category Fin, resulting in the category Inf. This
fits with the spirit of [54], where experiments on systems are allowed to consist of infinite
computations. Categorically, it can be seen as a completion of the path category with all
directed colimits.

7.3.1 A Presheaf Model for Infinite Computations

To get a better understanding of presheaves X : Infop → Set in Înf, one can try first to
construct a synchronisation tree, as described in Sec. 7.1.1, for the finite part of X, i.e. the
restriction of X to Fin. For α ∈ Actω, an element x ∈ X(α) will then specify a unique infinite
path in the tree. To be more precise, if α ∈ Actω and x ∈ X(α) then we will say that x is a
limit point of the infinite path given by the elements x ·[β, α] for β ≤f α, i.e. the restrictions
of x to finite observations. We wish to represent that an infinite path is admissible by the
presence of such a limit point, and that it is inadmissible by the absence of a limit point.
With this interpretation, the model is a bit too general; it allows an infinite path to have two
or even more limit points, not representing anything more than if it had only one limit point.
We take the subcategory of presheaves with at most one limit point for any infinite sequence
as our model. This category is not as ad hoc as it might seem. Actually, it comes about as the
category of separated presheaves over Inf with respect to a simple Grothendieck topology for
Inf, which is often referred to as the sup topology. (In the standard terminology, the infinite
paths and limit points are respectively matching families and (unique) amalgations).

Definition 7.3.1 Let Sp(Înf) denote the separated presheaves, which is the full subcategory
of Înf induced by the presheaves X satisfying that for all x, x′ ∈ X(α), α ∈ Actω

• (Separated)(∀β ≤f α.x ·[β, α] = x′ ·[β, α])⇒ x = x′.

Moreover, we can recover the category F̂in (i.e. of synchronisation trees) within Înf, as
being equivalent to the category Sh(Înf) of sheaves over Inf for the same topology. In our case,
a separated presheaf is a sheaf if it has exactly one limit point for any infinite path. Thus, a
sheaf will correspond to a synchronisation tree in which any infinite path is admissible, i.e. a
limit closed synchronisation tree. But this is just the standard interpretation made explicit.

Proposition 7.3.2 The category F̂in is equivalent to the category Sh(Înf), of sheaves over
Inf with respect to the sup topology.

Sheaves, separated presheaves and presheaves are known to be closely related and rich in
structure [83, 148]. We will especially make use of the fact, that they are related by a sequence
of reflections, i.e. the inclusions Sh(Înf) ↪→ Sp(Înf) and Sp(Înf) ↪→ Înf both have left adjoints
(reflectors). In our case the reflections are particularly simple. The reflector sp : Înf → Sp(Înf)
acts by unifying limit points that specify the same infinite path. The reflector from Sp(Înf)
to Sh(Înf) acts by completing with limit points of all infinite sequences.

We also have that the objects of Inf under the Yoneda embedding are sheaves. In fact the
Grothendieck topology we use is the canonical topology for Inf [83], which simply means that
it is the largest topology with this property. Together with Prop. 7.3.2, this gives a formal
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relationship between the path category Inf, the presheaf model F̂in of finite observations and
the models Sp(Înf) and Înf of possibly infinite observations as summarized in the diagram
below.

F̂in

Sh(Înf) Sp(Înf) Înf

Inf

� p

!!

⊥
inf BB

BB
BB

BB
BB
aa

fin

BBBBBBBBBB

� � //⊥
oo

� � //⊥
oo

?�

OO

��

OO

∼=

( �

55

YInf

lllllllllllllllllll

(7.4)

Note that this also implies (a general fact) that the category Sp(Înf) has all limits and
colimits. In particular, it shows that limits are computed as in Înf and similarly for colimits,
except for being followed by the reflector, identifying redundant limit points. As indicated in
the diagram, we will let fin a inf refer to the reflection between F̂in and Sp(Înf) obtained via
the equivalence between Sh(Înf) and F̂in.

For more details on Grothendieck topologies, sheaves and separated presheaves see [83].
The special, and simpler case for a Grothendieck topology on a partially ordered set is given
in the appendix, together with the definition of the Grothendieck topology relevant for this
paper.

7.3.2 Generalised Transition Systems

A generalised transition systems is a transition system in which the admissible infinite com-
putations are represented explicitly. More precisely, we take a generalised transition system
to be a transition system together with a set C ⊆ Comp(T ) such that C = C•, where
C• ⊆ Comp(T ) be the least set including C such that

C1: (composition) if φ, φ′ ∈ C• and φφ′ ∈ Comp(T ) then φφ′ ∈ C•,

C2: (pre- and suffix) if φφ′ ∈ C• and φ is finite then φ, φ′ ∈ C• and

C3: (finite) Compfin(T ) ⊆ C•.

The two first conditions ensure that the definition fits with that of general transition systems
in [54]. The last condition restricts attention to the special case where any finite computa-
tion is admissible. It is easy to show that if every state is reachable, the set of admissible
computations is determined by a unique set of infinite runs as stated in the lemma below.

Lemma 7.3.3 Let T be a reachable transition system and C ⊆ Comp(T ). If C = C• then
there exists a unique set A ⊆ Run(T )\Runfin(T ) such that C = A•.

Definition 7.3.4 A generalised transition system (gts) G (with label set Act) is a five-
tuple (SG, AdmG, iG,→G, Act), such that T = (SG, iG,→G, Act) is a transition system (with
label set Act) and AdmG ⊆ Comp(T ), the set of admissible computations, satisfies that
AdmG = AdmG

•. If G = (SG, AdmG, iG,→G, Act) is a generalised transition system let
fin(G) = (SG, iG,→G, Act), i.e. the underlying transition system. Generalised transition
systems (with label set Act) forms the objects of a category GTS. A morphism from G to G′

is given by a map σ : SG → SG′ such that
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• σ(iG) = iG′ ,

• s a−→T s
′ implies that σ(s) a−→T ′ σ(s′) and

• σ∞(AdmG) ⊆ AdmG′ ,

where σ∞ is the map from →∞
G to →∞

G′ mapping a sequence φ ∈→∞
G to the sequence φ′, such

that |φ| = |φ′| and for all i < |φ|, if φi = (s, a, s′) then φ′i =
(
σ(s), a, σ(s′)

)
. A generalised

synchronisation tree (gst) is a generalised transition system for which the underlying transition
system is a synchronisation tree. Generalised synchronisation trees (with label set Act) induces
a full subcategory GST of the category GTS.

Lemma 7.3.5 Let σ : SG → SG′ be a map between the state sets of two generalised transition
systems G and G′. Then the following conditions are equivalent

1. σ : G→ G′ is a morphism of generalised transition systems,

2. • σ(iG) = iG′ and

• σ∞(AdmG) ⊆ AdmG′ ,

3. • σ : fin(G)→ fin(G′) is a morphism of transition systems and

• σω(AdmG\Compfin(G)) ⊆ AdmG′ ,

In particular, the morphisms of GTS restrict to morphisms of the underlying transition
systems, so the map fin extends to a functor fin : GTS → TS. In fact fin : GTS → TS
is a reflector for the inclusion of TS into GTS that maps a plain transition system to the
corresponding limit closed generalised transition system (called standard in [54]).

Proposition 7.3.6 The functor fin : GTS → TS defined on objects in Def.7.3.4 (and leav-
ing morphisms unchanged) is a left adjoint to the inclusion inf : TS ↪→ GTS which maps a
transition system T = (ST , iT ,−→T , Act) to the (limit closed) generalised transition system
(ST , iT ,−→T , Comp(T ), Act) and leaves morphisms unchanged.

In [146] it is shown that the category ST is a coreflective subcategory of the category TS
of transition systems; the inclusion ST ↪→ TS is shown to have a right adjoint unf : TS→ ST
which acts on objects by unfolding the transition system. This coreflection generalises to one
between between GST and a category GTS.

Proposition 7.3.7 The inclusion functor GST ↪→ GTS has a right adjoint gunf : GTS →
GST such that the diagram

GST GTS

ST TS

oo
gunf

oo
unf��

fin

��

fin

commutes, where unf is the unfolding of transition systems defined in [146].
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In fact we have that all four squares in the diagram

GST GTS

ST TS

� � //>
oo
gunf

� � //>
oo

unf
?�

OO

a
��

fin

?�

OO

a
��

fin

commutes.
We will now generalise the equivalence between F̂in and ST mentioned in Sec.7.1 to an

equivalence between Sp(Înf) and GST, giving the promised concrete representation of the
presheaves in Sp(Înf). There is an immediate embedding e : Inf ↪→ GST of Inf into the category
of generalised synchronisation trees (and so the category of generalised transition systems),
which maps a finite (or infinite) sequence to the tree with exactly the one corresponding,
finite (or infinite, admissible) branch. This gives a canonical functor [71] from GTS to Înf,
that maps a generalised transition system G to the presheaf GTS[e(−), G]. It is not difficult
to check that this will always give a separated presheaf.

Lemma 7.3.8 Let G be a generalised transition system and e : Inf ↪→ GST ↪→ GTS the
embedding described above. Then GTS[e(−), G] is a presheaf in Sp(Înf).

Restricted to generalised synchronisation trees the canonical functor can equivalently be de-
fined as the functor mapping G to GST[e(−), G], which gives us one direction of the equiva-
lence.

Theorem 7.3.9 The categories GST and Sp(Înf) are equivalent. In one direction the equiv-
alence is given by the (canonical) functor sps : GST → Sp(Înf) that maps a gst G to the
separated presheaf GST[e(−), G]. In the other direction the equivalence is given by a func-
tor El : Sp(Înf) → GST generalising the functor El : F̂in → ST defined in Sec. 7.1. For X
in Sp(Înf), let (S, i,−→, Act) = El(finX), i.e. the synchronisation tree corresponding to the
finite part of X. We then define El(X) = (S, i,−→, Adm,Act), where

Adm = {φ ∈−→ω| ∃α ∈ Actω∃x ∈ bXc(α).∀j ∈ ω.do(φj) =
(
α(j), x · [α(j), α]

)
}•.

Note that, restricted to synchronisation trees, the functors fin, inf are just (up to iso-
morphism) the concrete representation of the reflection between F̂in and Sp(Înf) given in
Diagram (7.4).

7.4 Extended Bisimulation from Open Maps

As described in Sec.7.1, we get a canonical notion of bisimulation from open maps in the
presheaf category Înf. From Diagram (7.4) it follows that the notion of Inf-bisimulation re-
stricts to the subcategories Sh(Înf) and Sp(Înf) of sheaves and separated presheaves. Since
the category Inf can be viewed as a subcategory of the category of generalised transition sys-
tems as shown in the previous section, we also get a notion of Inf-bisimulation for generalised
transition systems. We show that this bisimulation coincides with the extended bisimulation
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defined for general transition systems in [54]. Since Inf-bisimulation for generalised synchroni-
sation trees coincides with the Inf-bisimulation in Sp(Înf) this gives a concrete representation
of the canonical bisimulation in Sp(Înf) as well.

First let us give a characterisation of the Inf-open maps of GTS, generalising the “zig-zag”
morphisms in [71].

Proposition 7.4.1 Let T = (S, i,−→, Adm,Act) and U = (SU , iU ,−→U , AdmU , Act) be
generalised transition systems and σ : T → U . Then σ is Fin-open if and only if for all
reachable states s of T

• if σ(s) a−→U s
′
1 then s

a−→ s1 and σ(s1) = s′1 for some state s1 ∈ S,

and σ is Inf-open if and only if moreover

• if φ′ ∈ AdmU and φ′ = σ(s) a1−→U s′1
a2−→U s′2

a3−→U . . .
an−→U s′n

an+1−→U . . . then there
exists φ ∈ Adm such that φ = s

a1−→ s1
a2−→ s2

a3−→ . . .
an−→ sn

an+1−→ . . . and for all j ∈ ω,
σ(sj) = s′j

Now we give the definition of extended bisimulation from [54] reformulated as a relation
between two generalised transition systems (and exploiting condition C3).

Definition 7.4.2 ([54]) Let T and T ′ be generalised transition systems. Then T and T ′ are
extended bisimilar if there exists a relation R ⊆ ST × ST ′ such that (iT , iT ′) ∈ R and if
(s, s′) ∈ R then

E1. if there exists a computation φ ∈ AdmT s.t. φ0 = s, then there exists a computation
φ′ ∈ AdmT ′ s.t. |φ| = |φ′| and φ′0 = s′ and for 0 ≤ j < |φ|, act(φj) = act(φ′j) and
(φj , φ′j) ∈ R,

E2. if there exists a computation φ′ ∈ AdmT ′ s.t. φ′0 = s′, then there exists a computation
φ ∈ AdmT s.t. |φ| = |φ′| and φ0 = s and for 0 ≤ j < |φ|, act(φj) = act(φ′j) and
(φj , φ′j) ∈ R,

Note that (by condition C3) extended bisimulation specialises to the standard HM-bisimulation
on transition systems if only sequences φ and φ′ of length one is considered in E1 and E2.
Also note that (by the conditions C1 and C2) one could equivalently have formulated the
bisimulation considering only sequences being infinite or of length one. From these consider-
ations and Prop. 7.4.1 it follows that extended bisimulation coincides with Inf-bisimulation
for generalised transition systems.

Proposition 7.4.3 Let G and G′ be generalised transition systems. Then G and G′ are
Inf-bisimilar if and only if G and G′ are extended bisimilar.

It is an easy fact that Inf-bisimulation in GST under the equivalence coincides with Inf-
bisimulation in Sp(Înf), so we get the following corollary.

Corollary 7.4.4 Let X and X ′ be presheaves in Sp(Înf). Then X and X ′ are Inf-bisimilar
if and only if El(X) and El(X ′) are extended bisimilar.

Remark that from the coreflection given in the previous section and Lem. 6 in [71] it
follows that two generalised transition systems are Inf-bisimilar if and only if their unfoldings
as generalised synchronisation trees are Inf-bisimilar.
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εnt
1→ εn+1t

(Wait) and
t
a→ t′

εnt
a→ t′

(Fulfill).

Figure 7.3: Derivation rules for annotated finite delay

7.5 Operational Semantics

In this section we will express Milner’s operational semantics of SCCS with finite delay [88]
in terms of generalised transition system. First the two rules in Figure7.2 are added to
the rules of Figure7.1. Next the inadmissible infinite computations are identified via the
notions of waiting computations, subagents and subcomputations. Put briefly: A computation
t0 −→ t1 −→ t2 −→ . . . of an agent t0 is waiting if ti = εt for all i and every transition is
inferred solely from the (Wait) rule for finite delay. Agents a : t, rec x.t, Σi∈Iti and εt have
only themselves as subagent, t�A has the subagents of t and t1 × t2 has the subagents of t1
and t2. Any computation of an agent t is then inferred from computations of the subagents,
which are referred to as subcomputations. A computation is defined to be admissible if it is
finite or has no sequel (i.e. suffix) with an infinite waiting subcomputation.

To define a derivation transition system in which we can distinguish admissible from
inadmissible infinite runs we thus need to record if the (Wait) rule was used to infer an action
of a subagent. Consequently, we will annotate terms of the form εt with a number n ∈ ω
written εnt, which indicates for how long they have been delaying. In the following Tε will
generally refer to the set of annotated closed terms of SCCSε. Note that any function with
domain T can be regarded as a function with domain Tε by discarding the annotations. For
simplicity we will let ε0t and εt refer to the same agent. The derivation rules of Figure7.2 is
then replaced by the rules in Figure7.3.

The position of a subagent is formalised as follows.

Definition 7.5.1 Define Pos = {1, 2}∗, a set of positions, and let nil ∈ Pos denote the
empty sequence (the top position). Any term t in Tε define a partial function t : Pos ⇀ Tε,
given inductively (in the length of the position and the structure of t) by

t(nil) =


t if t ≡ a :t′, t ≡ rec x.t′, t ≡ Σi∈Iti or t ≡ εt′ for some t′,
t′(nil) if t ≡ t′�A,
undef otherwise,

t(ip) =


ti(p) if t ≡ t1 × t2,
t′(ip) if t ≡ t′�A,
undef otherwise.

For p ∈ Pos and t an annotated term, we will say that t(p) is waiting if t(p) = εnt
′ for some

term t′ and n > 1.

Now, we can define when an infinite computation is inadmissible.

Definition 7.5.2 An infinite computation t0
α0→ t1

α1→ t2
α2→ . . . derivable by the rules in

Figure7.1 and Figure7.3 is inadmissible if and only if there exist j ∈ ω and a position p ∈
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{1, 2}∗ such that ∀j′ ≥ j, tj′(p) is waiting. We say that a computation is admissible if it is
not inadmissible.

It is not difficult to verify that a computation is inadmissible by the definition above if and
only if it has a suffix with a waiting subagent which continues to wait forever, so the definition
of admissibility coincides with that of [88] which we briefly gave in the beginning of the section.

The derivation transition systems for terms in Tε are generalised transition systems with
the set of admissible computations given by Def. 7.5.2 above.

Definition 7.5.3 Let t be a term in Tε. Then the derivation transition system for t is
the reachable generalised transition system Oε(t) = (S, t,−→t, Adm,Act), where S = {t′ |
t →∗ t′}, −→t=→ ∩ ⊆ S × Act × S is the relation defined by the rules in Figure7.1 and
Figure7.3 restricted to states in S, and Adm ⊆ Comp

(
(S, t,−→t, Act)

)
is the set of admissible

computations as defined in Def. 7.5.2.

Remark 7.5.4 Though it is not important for the present paper, note that we do not need
to record exactly how many steps a delay has waited, just if has waited zero, one or more
than one step continuously. This means that we could replace the first rule in Figure7.3 by
the rule εnt

1→ εmin{n+1,2}t and only allow the numbers 0, 1 and 2 in annotations. The latter
set of rules has the benefit of not giving rise to infinite graphs just because of the presence of
a finite delay, which e.g. could be relevant in connection with model checking.

7.6 Presheaf Semantics

In this section we will see that the category of separated presheaves Sp(Înf) is well suited to
give denotational semantics to SCCSε.

7.6.1 Semantics of Basic Operators

The denotation of sum is simply given by the coproduct in Sp(Înf). The denotations of
the remaining basic operators, restriction, action prefix, and synchronous product, can be
obtained from the underlying functions on sequences using the free extension (−)! described
in Sec. 7.1, in the case where Q = Sp(Înf).

For A ⊆ Act, the restriction on sequences (−)�A : Inf → Inf⊥ maps a sequence α to the
(possible empty) sequence α′ ≤ α being the longest prefix of α in A∗, i.e. the sequence α′ ≤ α
such that if α = α′aα′′ then a 6∈ A.

For a ∈ Act, the action prefix on sequences a : Inf⊥ → Inf maps a (possibly empty)
sequence α to aα.

The synchronous product on sequences, • : Inf × Inf → Inf is the extension of the monoid
product to sequences, i.e. for α, β ∈ Inf, α • β = γ, where γ is the unique sequence such that
|γ| = min{|α|, |β|} and γi = αi • βi.

It is easy to see that the above mappings are monotone, and thus functors between partial
order categories. By (implicitly) composing with the embeddings Y◦

Inf⊥ : Inf⊥ ↪→ Sp(Înf)

and YInf : Inf ↪→ Sp(Înf), we get functors (−) �A : Inf → Sp(Înf), a : Inf⊥ → Sp(Înf) and
• : Inf × Inf → Sp(Înf). Applying the extension (−)! we get the following denotations of basic
operators.
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Basic operators: For closed terms t, t′ and ti, define

I[[Σi∈Iti]] = Σi∈II[[ti]], (7.5)
I[[a :t]] = sp(a! ◦ bI[[t]]c), (7.6)
I[[t× t′]] = sp(I[[t]](•! ◦ w)I[[t′]]), (7.7)
I[[t�A]] = I[[t]]�A!, (7.8)

where a! : Înf⊥ → Sp(Înf) is precomposed with the lifting functor b−c : Înf ↪→ Înf⊥ de-
fined in Sec. 7.1 and •! : ̂Inf × Inf → Sp(Înf) is precomposed with the (connected colimit-
preserving [22]) functor w : Înf × Înf → ̂Inf × Inf defined (on objects) by w(X,Y )(α, β) =
X(α) × Y (β). The semantic functions are extended in the obvious way to terms t with free
variables in a set V, yielding functors

I[[t]]V :
∏
x∈V

Sp(Înf)→ Sp(Înf).

Since the functors are build up from connected colimit preserving functors it follows that they
themselves preserve connected colimits.

The first three definitions (7.5)-(7.7) above only give the denotation up to isomorphism. It
is helpful, e.g. in showing correspondence with the operational semantics, to give an explicit
semantics [[t]] such that [[t]] ∼= I[[t]]. We will just give the action on objects. The tags sum and
× are used to indicate clearly how an element came about, which we will use in App. 7.9.

[[Σi∈Iti]]α =
{
(sum i, (α, e)) | i ∈ I and e ∈ [[ti]]α

}
. (7.9)

[[a :t]]α =

{
b[[t]]cα′ if α = aα′,

∅ otherwise,
(7.10)

where we choose to represent b−c : Înf ↪→ Înf⊥ explicitly by

bXcα =

{
{∗} if α = ⊥,
Xα otherwise.

(7.11)

[[t1 × t2]]α = {(β, e1)× (γ, e2) |
β, γ ∈ Inf.β • γ = α and e1 ∈ [[t1]]β and e2 ∈ [[t2]]γ}.

(7.12)

[[t�A]]α = {e | α ∈ A∞ and e ∈ [[t]]α}. (7.13)

7.6.2 Semantics of Recursion

For recursion we need to take care. In a “standard” semantics one would take least fixed
points, i.e. initial algebras as the meanings of recursion. However in Sp(Înf), this would
not reflect that it is admissible to unfold a recursion infinitely. An explicit example that
illustrates this is given below, showing that the initial algebra of the functor corresponding
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to the delay equation given in Sec. 7.2 will be the proper denotation of finite delay and not
the delay operator derived using recursion. The solution is to take final co-algebras as the
meanings of recursion.
Infinite recursion: For a term t with one free variable x, define

I[[rec x.t]] = νI[[t]],

i.e. (the object of) a final co-algebra of the endofunctor I[[t]] : Sp(Înf) → Sp(Înf). For this
to be well defined, we must show existence of final co-algebras for all functors. We will use
Lem. 7.1.7 given in Sec. 7.1 to construct final co-algebras for all relevant endofunctors as
limits of ωop-chains. The definition is then extended to processes with more than one variable
in the usual way as a limit with parameters [82]. From the explicit definitions given in Eq.
(7.13)-(7.12) we can show that all basic operators preserve ωop-limits. From the general fact
that limits commute with limits [82] we get that recursion preserves ωop-limits as well, i.e. if
rec x.t has free variables then I[[rec x.t]] preserves ωop-limits.

Lemma 7.6.1 Let t be a (possibly open) term of SCCS with free variables in V. If

I[[t]]V :
∏
x∈V

Sp(Înf)→ Sp(Înf)

(is well defined and) preserves ωop-limits then

I[[t�A]]V :
∏
x∈V

Sp(Înf)→ Sp(Înf)

(is well defined and) preserves ωop-limits, and similarly for sum, prefix, synchronous product
and recursion.

As for the basic operators, we can give an explicit denotation of recursion [[rec x.t]] ∼=
I[[rec x.t]]. First we choose an explicit representation of a final presheaf > by defining >α =
{∗}. Now we use the explicit definition of limits in the category Set to define

[[rec x.t]]α =
{
〈e0, e1, . . . , en, . . . 〉 ∈

∏
n∈ω

[[t]]n(>)α | [[t]]n(τ)αen+1 = en
}
, (7.14)

where τ : [[t]](>)→ > is the natural transformation given by τα(e) = ∗ for any e ∈ [[t]](>)α. We
have projections πn : [[rec x.t]]→ [[t]]n(>) and by universality we get an (explicit) isomorphism
ρt : [[rec x.t]]→ [[t]]([[rec x.t]]), such that

[[rec x.t]]

��

ρt

//
πn+1

[[t]]n+1(>)

[[t]]([[rec x.t]])

77

[[t]](πn)

ooooooooooo

(7.15)

commutes for any n ∈ ω. Note that, in general if t has free variables V ] {x} then ρt and πn
are natural transformations.

We have now given semantics to all operators in SCCSε except for finite delay. It is
worth remarking, that already at this stage it is clear that this semantics will not (in general)
correspond to the operational semantics given in Sec. 7.5. A simple example showing this is
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provided by the (disastrous) term rec x.x. According to the operational semantics, this term
denotes the process that cannot perform any actions, which is also the process denoted by the
empty sum 0. It is not difficult to compute the appropriate limit finding that I[[rec x.x]] ∼= >,
i.e. (the) final object in Înf, which in no sensible way can be equated to the denotation of
the empty sum, which is the initial object in Înf. (Note that this is indeed the result if one
constructs the initial algebra instead).

However, as we will see below, we get the desired correspondence if we restrict the language
to only allow guarded recursion.

7.6.3 Semantics of Finite Delay

As mentioned above, the denotation of finite delay comes about as the initial algebra of the
functor corresponding to the delay equation.
Finite delay: For a closed term t, define

I[[εt]] = µI[[1 :x+ t]],

i.e. (the object of) an initial algebra of the endofunctor I[[1 : x + t]] : Sp(Înf) → Sp(Înf).
This initial algebra exists by Lem. 7.1.8 since the denotation of prefixing preserves connected
colimits and the denotation of sum all colimits. The definition is extended to open terms (in
which t is not free) as a colimit with parameters.

From the explicit definition of colimits in Set, we find that we can take

[[εt]]α =
{(

del n, (α′, e)
)
| n ∈ ω, α = 1nα′ and e ∈ b[[t]]cα′} (7.16)

as explicit definition of finite delay on objects (again the tag del is used to indicate clearly
that the element arise from the denotation of a finite delay). For β ≤ α, define [[εt]]([α, β]) by

(
del n, (α′, e)

)
·[β, α] =

{(
del n, (β′, e ·[β′, α′])

)
if β = 1nβ′,(

del m, (⊥, ∗)
)

if β = 1m for m < n,

for n ∈ ω, α = 1nα′ and e ∈ b[[t]]cα′.
To guarantee that the denotation of recursion is still well-defined, we need to check that the

denotations of finite delay preserve ωop-limits. This can be done from the explicit definition
given above.

Lemma 7.6.2 Let t be a (possibly open) term of SCCSε with free variables in V. If

I[[t]]V :
∏
x∈V

Sp(Înf)→ Sp(Înf)

(is well defined and) preserves ωop-limits then

I[[εt]]V :
∏
x∈V

Sp(Înf)→ Sp(Înf)

(is well defined and) preserves ωop-limits.

This completes the definition of our denotational semantics of SCCSε in the category of
separated presheaves Sp(Înf).
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7.6.4 Extended Bisimulation Congruence

From the fact that the denotations (in Înf) of all basic operators are built from connected
colimit preserving functors, it follows that they preserve open maps in Înf. Using the fact
that the inclusion of Sp(Înf) in Înf is full, together with proposition 5 in [71] we get that this
holds in Sp(Înf) as well. It is easy to show from the explicit definition that the denotations
of finite delay preserve open maps as well (alternatively one could use the same technique
as used in [22] for showing that denotations of recursions (given by initial algebras) preserve
open maps).

Proposition 7.6.3 Extended bisimulation is a congruence with respect to all basic operators
of SCCSε as well as finite delay.

However, when it comes to recursion we meet a problem: What is the “right” notion of
bisimulation (from open maps) for denotations of open terms, i.e. functors between presheaf
categories? In [22] the notion of open maps is extended to open natural transformations,
being natural transformations for which all components are open maps. This is shown to
be sufficient to guarantee that open map bisimulation is a congruence with respect to the
denotations of recursion (given by initial algebras) in a CCS-like calculus. In [144, 24] is
suggested a slightly stronger notion of open maps between (connected) colimit preserving
functors between presheaf categories which them self can be regarded as objects of a presheaf
category and thus comes with a canonical notion of open maps. The second notion requires
all functors to be (connected) colimit preserving functors, which is not known to be the
case in our setting (because of the use of final co-algebras). The notion of open natural
transformations could be used, but we have not yet been able to show that it is sufficient to
give the desired congruence property.

7.6.5 Full Abstraction

Using the representation theorem in Sec. 7.3 we can express the denotational semantics given
above in terms of generalised synchronisation trees, defining Dε(t) = El([[t]]). This allows us
to relate the denotational semantics directly to the operational semantics given in Sec. 7.5
within the category GTS. First of all we will restrict attention to terms with only guarded
recursion. Recall from e.g. [89] that a recursion rec x.t is guarded, if all free occurrences of x
in t is guarded, that is, within a subterm a : t′ of t for some action a ∈ Act. Let Tg refer to
the set of all closed, possibly annotated terms of SCCSε with only guarded recursion. We will
say that a term t in Tg is standard if for all subterms ent′ it holds that n = 0. We will then
show, that if we quotient by open map bisimulation, the denotational semantics for standard
terms in Tg is in fact equationally fully abstract with respect to extended bisimulation. This
means that for any two standard terms t and t′ of Tg, the presheaves [[t]] and [[t′]] are bisimilar
if and only if the generalised transition systems Oε(t) and Oε(t′) arising from the operational
semantics are extended bisimilar. As remarked in Sec. 7.6.2 above, we cannot obtain this
result for all terms of SCCSε.

The proof (see App. 7.9 for a more detailed proof outline) goes by showing that there
exists an Inf-open morphism of generalised transition systems from Dε(t) to Oε(t) for any
term t in Tg.
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Proposition 7.6.4 Let t be a standard term in Tg. Then there exists an Inf-open morphism
of generalised transition systems Ft : Dε(t)→ Oε(t).

From the proposition above and Prop. 7.4.3 and Cor. 7.4.4 in Sec. 7.4 we can now deduce
the desired result.

Theorem 7.6.5 Let t and t′ be terms in Tg. Then [[t]] and [[t′]] are open map bisimilar if and
only if Oε(t) and Oε(t′) are extended bisimilar.

7.7 Conclusion and Future Work

This paper has two main contributions. The first is a generalisation of the categorical models
for concurrency as developed in [146, 71, 24], providing both a generalised transition system
and a presheaf model for infinite computations, suitable for agents with a notion of fairness or
inadmissible infinite computations. The generalised transition systems are instances of those
proposed in [54] and the extended bisimulation given there is shown to coincide with the
abstract bisimulation from span of open maps in our model. The second main contribution
is that we give both an operational semantics and a denotational semantics for SCCS with
finite delay, representing the notion of inadmissible infinite computations precisely as given
in [88] allowing behaviours to be discriminated up to extended bisimulation. This notion of
bisimulation is a strictly finer, and as argued in the present paper and in [7], more intuitive,
equivalence than the one obtained from the fortification preorder in [88], which except for [7]
has been the basis for previous semantics of SCCS with finite delay [53, 65, 64]. Benefit-
ting from the categorical presentation, our semantics appears to give a conceptually simpler
treatment of infinite computations than the one in [7].

A number of questions remains to be explored. An obvious question is if one could
generalise the finite delay to a fair recursion as in [64]. Work is in progress on a notion of open
maps between denotations of open terms stronger than the one in [22], for which open map
bisimulation is a congruence with respect to recursion. We get a characteristic HML-like path
logic [71] for extended bisimulation from the open maps approach, which should be compared
to the characteristic logic given in [54]. Here comes the question about decidability of extended
bisimulation. If one restricts attention to agents for which products and restrictions are
disallowed within recursions and change the operational semantics according to the remark
in Sec. 7.5 all agents will be assigned finite (generalised) transition systems. It would be
interesting to explore if there is any relationship between the present approach and the more
traditional domain theoretical approach to fairness and countable non-determinism as in
e.g. [108]. Finally, we hope to be able to extend the presheaf model for (finitary) dataflow
given in [59] to infinite computations along the lines of the present paper, giving a model of
dataflow in which fairness, maybe even fair merge [101], can be expressed.

Acknowledgements: Thanks to Glynn Winskel, Marcelo Fiore and Prakash Panangaden
for helpful and encouraging discussions.

7.8 Grothendieck topology for a partial order

Here we give the definitions from [83] of a Grothendieck topology for a category P and the
sup topology, specialised to the case where P is a partial order. Let P be a partial order and
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p ∈ P . Define p↓= {p′ ∈ P | p′ ≤ p}. A sieve S on p is then a set S ⊆ p↓, i.e. a downwards
closed set below p.

Definition 7.8.1 (Grothendieck topology for a partial order) A Grothendieck topol-
ogy for a partial order P, is a function J which assigns to each object p of P a set J(p) of
sieves on p, in such a way that

C1: (maximal sieve) p↓∈ J(p),

C2: (stability) if S ∈ J(p) and q ≤ p then q↓ ∩S ∈ J(q),

C3: (transitivity) if S ∈ J(p) and R is any sieve on p such that q↓ ∩R ∈ J(q) for all q ∈ S,
then R ∈ J(p).

Assume J is a topology for a partial order P . We will now describe when a presheaf X : Pop →
Set in P̂ is a sheaf with respect to J . Assume p is an element of P and S ∈ J(p), i.e. a sieve
covering p. A matching family for S of elements of X is a function that assigns to each
element q ∈ S an element xq ∈ X(q) such that xq ·[r, q] = xr for any r ≤ q. Given such a
matching family, an element x ∈ X(p) is an amalgation, if x ·[q, p] = xq for all q ∈ S. Then X
is respectively a separated presheaf or a sheaf with respect to J if for any object p ∈ P , any
matching family for any sieve S ∈ J(p) has respectively at most one or a unique amalgation.

Definition 7.8.2 (separated presheaves and sheaves) For a partial order P and a Grothendieck
topology J on P, let SpJ(P̂) and ShJ(P̂) be the full subcategories of P̂ induced by respectively
the separated presheaves and the sheaves with respect to J . If the topology J is clear from
the context, we will just write respectively Sp(P̂) and Sh(P̂).

For a sequence α in Inf (as defined in Sec. 7.1), a sieve on α is simply a prefix closed set
of sequences below α. We only use the sup topology on Inf, which to each sequence α assigns
the set {S | S is a sieve on α and

⊔
S = α}, i.e. of all sieves that have α as supremum. It is

easy to check that this satisfy the conditions in Def. 7.8.1, and that it works for any partial
order. This topology is in fact the canonical topology for Inf, being the largest topology such
that YInfα is a sheaf for any α.

Definition 7.8.3 (sup topology for Inf) For the partial order Inf, the sup topology J is
given by J(α) = {α↓, {β | β ≤f α}}, for α ∈ Inf

Note that if α is finite then J(α) contains just α↓, i.e. the maximal sieve on α.

7.9 Proof of Full Abstraction

We will here give a more detailed proof outline for Prop. 7.6.4 of Sec. 7.6.5 as repeated below.
Recall that Tg refer to the set of all closed terms of SCCSε with only guarded recursion and
that a term is standard if for all subterms εnu′′, n = 0. Let T og refer to the set of, possible
open, terms of SCCSε with only guarded recursion.

Proposition 7.9.1 (Prop. 7.6.4 of Sec. 7.6.5) Let t be a standard term in Tg. Then there
exists an Inf-open morphism of generalised transition systems Ft : Dε(t)→ Oε(t).
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We will need some preliminary definitions. For t a term in SCCSε, FV (t) will denote the
set of free variables in t. As in [88] 2 we define gd(t), the guard-depth of t by

• gd(x) = gd(a :t) = 0,

• gd(Σi∈I ti) = sup{gd(ti) + 1 | i ∈ I},

• gd(t1 × t2) = max{gd(t1) + 1, gd(t2) + 1}, and

• gd(rec x.t) = gd(t�A) = gd(εt) = gd(t) + 1.

This is a well defined ordinal, but not necessarily a finite number because sums can be infinite.
As in [88] the following is a key property of gd for use in inductive proofs in the guard depth
of terms with only guarded induction.

Lemma 7.9.2 If x is guarded in t then gd(t[t′/x]) = gd(t).

Proof. By a straightforward structural induction. 2

For a term t in Tε we define sd(t), the subagent depth of t by

• sd(a :t) = sd(Σi∈Iti) = sd(rec x.t) = sd(εt) = 0,

• sd(t1 × t2) = 1 + max{sd(t1), sd(t2)}, and

• sd(t�A) = 1 + sd(t).

This is simply the maximal depth of a subagent and thus always finite.
For a gst T = (S, i,−→, Adm,Act) and s ∈ S we define the gst above s in T by Ts/ =

(Ss/, s,−→s/, Adms/, Act), where

• Ss/ = {s′ | s −→∗ s′},

• −→s/ =−→ ∩ (Ss/ ×Act× Ss/) and

• Adms/ = Adm ∩ −→∞
s/.

For any term t in Tε, let Dε(t) = (Sd(t), (⊥, ∗),−→t, Admd(t), Act). Recall that Sd(t) =
{
(α, e) |

α ∈ Inf and e ∈ b[[t]]c(α)} and ∗ is the unique element of b[[t]]c(⊥). Let Oε(t) = (So(t), t,→
, Admo(t), Act). Note that if t′ is a closed term and t is a term with one free variable, say x,
then [[t[t′/x]]] = [[t]]([[t′]]). For t a term in Tg and s = (α, e) ∈ Sd(t) define the height of s by
h(s) = |α| ∈ ω. Note that if h(s) = n then (⊥, ∗) −→n s.

We are now ready to define the underlying maps of states ft : Sd(t) → So(t) for the mor-
phisms Ft : Dε(t)→ Oε(t).

Definition 7.9.3 Let ST = {(s, t) | s ∈ Sd(t) and t ∈ Tg}. Define f : ST → Tg by well
founded recursion as follows (writing ft(s) for f(s, t))

• ft(⊥, ∗) = t,

• fa:t(aα, e) = ft(α, e),
2However, we use the convention from [84] that λ + 1 is the successor of λ.
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• fΣi∈I ti

(
α, (sum i, s)

)
= fti(s),

• ft1×t2(α, s1 × s2) = ft1(s1)× ft2(s2),

• frec x.t(s) = ft[rec x.t/x]

(
El(ρt)s

)
if h(s) > 0,

• ft A(s) = ft(s)�A if h(s) > 0,

• fεnt
(
1n

′
, (del n′, (⊥, ∗))

)
= εn+n′t,

• fεnt
(
1n

′
α, (del n′, s)

)
= ft(s) if |α| > 0.

where ρt : [[rec x.t]]→ [[t]]([[rec x.t]]) is the isomorphism defined in Sec.7.6.2 and the well founded
order on ST is the lexicographical order given by (s1, t1) < (s2, t2) if h(s1) < h(s2) or h(s1) =
h(s2) and gd(t1) < gd(t2).

It is not difficult to check from the definitions in Sec. 7.6 that ft is only applied to states in
Sd(t) on the right hand side of the defining equations above.

From the map f : ST → Tg we get a collection of maps {ft : Sd(t) → Tg | t ∈ Tg} that are
nicely related to each other.

Lemma 7.9.4 Let {ft : Sd(t) → Tg | t ∈ Tg} be the collection of maps given above. Then
there exists a collection of isomorphisms of generalised synchronisation trees {σt,s : Dε(t)s/ →
Dε

(
ft(s)

)
| t ∈ Tg and s ∈ Sd(t)} such that if s −→∗

t s
′ in Dε(t) then

(ft(s) = t′)⇒ ft(s′) = ft′
(
σt,s(s′)

)
, (7.17)

Proof. (Sketch) We proceed by induction in the height of the states s. First we define
σt,s : Dε(t)s/ → Dε

(
ft(s)

)
for t ∈ Tg and s = (⊥, ∗) ∈ Sd(t), i.e. for all roots. Then Dε(t)s/ =

Dε(t) and ft(s) = t so we can define σt,s = 1Dε(t). We then define σt,s : Dε(t)s/ → Dε
(
ft(s)

)
for t ∈ Tg, s ∈ Sd(t) and h(s) = 1 by transfinite induction in gd(t). For the induction
step, assume t ∈ Tg, s ∈ Sd(t) and h(s) = n + 1. Then there exists a unique sn such that
sn −→t s and h(sn) = n. For s −→∗

t s
′ define σt,s(s′) = σft(sn),σt,sn (s)(σt,sn(s′)). It is not

difficult to verify that this indeed defines an isomorphism from Dε(t)s/to Dε
(
ft(s)

)
. Assuming

ft(s) = t′ and ft(sn) = t′′ we get by induction ft′′
(
σt,sn(s)

)
= t′ and ft(s′) = ft′′

(
σt,sn(s′)

)
=

ft′
(
σt′′,σt,sn (s)(σt,sn(s′))

)
= ft′

(
σt,s(s′)

)
. 2

From the lemma below it follows that the maps just defined are the underlying maps of
Fin-open morphisms from fin(Dε(t)) to fin(Oε(t)).

Lemma 7.9.5 Let {ft : Sd(t) → Tg | t ∈ Tg} be the collection of maps given in Def. 7.9.3
above. If ft(s0) = t0 for s0 ∈ Sd(t) then(

∃s1 ∈ Sd(t).s0
a−→t s1 and ft(s1) = t1

)
if and only if t0

a→ t1 , (7.18)

where −→ is the transition relation given by the operational semantics in Fig. 7.1 and Fig.7.3.

Proof. We first show by transfinite induction in gd(t) that(
∃s1 ∈ Sd(t).(⊥, ∗)

a−→t s1 and ft(s1) = t1
)

if and only if t a→ t1 .

Then (7.18) follows for s0 ∈ Sd(t) and ft(s0) = t0 by using (7.17) of Lem. 7.9.4. 2
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Corollary 7.9.6 The maps ft as given above defines for t ∈ Tg a map ft : Sd(t) → So(t) which
is the underlying map of a Fin-open morphism from fin(Dε(t)) to fin(Oε(t)).

To show that the maps ft define maps of generalised transition systems we show that
they preserve admissible computations. For an infinite admissible computation φ of Dε(t) we
can always find a non-empty prefix of the image of φ under ft, in which all initially waiting
subagents are fullfilled.

Lemma 7.9.7 Let t be a term in Tg and φ ∈ Admd(t)∩ −→ω an infinite admissible computa-
tion of Dε(t). Assume φn = (sn, an, sn+1) for n ∈ ω and ft(sn) = tn. Then there exists n > 0
such that

∀p ∈ Pos,∃m ≤ n.tm(p) is not waiting.

Proof. Easy induction in sd(t0) using Lem. 7.9.4. 2

It follows by a simple mathematical induction that ft preserves admissibility.

Lemma 7.9.8 Let t be a term in Tg. Then ft∞(Admd(t)) ⊆ Admo(t), where ft∞ is the
extension of ft to computations as given in Def. 7.3.4.

We can now conclude from Lem. 7.3.5, Cor. 7.9.6 and Lem. 7.9.8 that ft defines a morphism
of generalised transition systems.

Proposition 7.9.9 Let t be a term in Tg. Then ft : So(t) → Sd(t) is the underlying map of
states of a morphism of generalised transition systems which we will refer to as Ft : Dε(t)→
Oε(t).

To show that Ft : Dε(t) → Oε(t) is an Inf-open morphism we neet to check the two zig-
zag conditions of Prop. 7.4.1 in Sec. 7.4. As already mentioned above, the first condition
follows directly from Lem. 7.9.5. To show the second condition, it suffices to show that
ft : So(t) → Sd(t) reflects admissible computations, i.e. that Admf d(t) ⊆ Admd(t), where
Admf d(t) = ft

−1
∞ (Admo(t)) = {φ ∈ Comp

(
Dε(t)

)
| ft∞(φ) ∈ Admo(t)}. The proof goes by

structural induction in t and for the case t = rec x.t′ we will add a term > to the calculus
SCCSε. The operational semantics is extended by adding the rule

> a→ >
(a ∈ Act).

As denotation of > we take the explicit terminal element of Sp(Înf), i.e. [[>]]α = {∗}.
The map f> : Sd(>) → So(>) and isos σ>,s : Dε(>)s/ → Dε(f>(s)) for s ∈ Sd(>) extending
Def. 7.9.3 and Lem. 7.9.4 are defined in the obvious way, i.e. f>(s) = > for all s ∈ So(>) and
σ>,(α,∗)(αα′, ∗) = (α′, ∗). We then use the following property of the maps ft in connection
with substitution.
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Lemma 7.9.10 Let t be a term of T og such that FV (t) = {x}. If m : [[t′]]→ [[t′′]] is a morphism
such that

∀s ∈ Sd(t′),∀p ∈ Pos,∀n > 1(
∃u′′.ft′′(El(m)s)p = εnu

′′ ⇒ ∃u′.ft′(s)p = εnu
′)

then

∀s ∈ Sd(t[t′/x]),∀p ∈ Pos,∀n > 1(
∃u′′.ft[t′′/x](El([[t]]m)s)p = εnu

′′ ⇒ ∃u′.ft[t′/x](s)p = εnu
′)

Proof. Assume that m : [[t′]]→ [[t′′]] is a morphism such that

∀s ∈ Sd(t′),∀p ∈ Pos,∀n > 1(
∃u′′.ft′′(El(m)s)p = εnu

′′ ⇒ ∃u′.ft′(s)p = εnu
′)

By well founded induction we prove for s ∈ Sd(t[t′/x]) and t ∈ T og with FV (t) = {x} that

∀p ∈ Pos,∀n > 1
(
∃u′′.ft[t′′/x](El([[t]]m)s)p = εnu

′′ ⇒ ∃u′.ft[t′/x](s)p = εnu
′)

The well founded order is, as in Def. 7.9.3, given by (s1, t1) < (s2, t2) if h(s1) < h(s2) or
h(s1) = h(s2) and gd(t1) < gd(t2). 2

We only use the lemma in two special cases, giving the two corollaries below.

Corollary 7.9.11 Let t be a term in T og such that FV (t) = {x} and m : [[t′]] → [[>]] the
unique morphism into the terminal presheaf. Then

∀φ ∈ Comp(Oε(t[t′/x])),
ft[>/x]∞(El([[t]]m)∞φ) is inadmissible ⇒ ft[t′/x]∞(φ) is inadmissible.

For t a standard term in T og such that FV (t) = {x} we define t0 = x and tn+1 = tn[t/x].

Corollary 7.9.12 Let t be a standard term in T og such that FV (t) = {x} and let ρt : [[rec x.t]]→
[[t[rec x.t/x]]] be the isomorphism given in Sec. 7.6.2. Then ∀n ∈ ω,∀φ ∈ Comp(Oε(tn[rec x.t/x])),

ftn+1[rec x.t/x]∞(El([[t]]nρt1)∞φ) is inadmissible ⇒ ftn[rec x.t/x]∞(φ) is inadmissible.

Proof. By definition frec x.t(s) = ft[rec x.t/x]

(
El(ρt)s

)
if h(s) > 0 and since t is a standard term

we have ∀p ∈ Pos, ft[rec x.t/x](⊥, ∗)p = εnu ⇒ n = 0, so we get that ∀s ∈ Sd(t[rec x.t/x])∀p ∈
Pos∀n > 1, ft[rec x.t/x]

(
El(ρt)s

)
p = εnu⇒ frec x.t(s)p = εnu and the desired result follows from

Lem. 7.9.10 and Def. 7.5.2, by noting that tn+1[rec x.t/x] = tn[t[rec x.t/x]/x] and [[t]]n = [[tn]].
2

101



Lemma 7.9.13 Let t be a term in T og such that FV (t) = {x}. Then

∀t′ ∈ Tg ∪ {>},Admf d(t′) ⊆ Admd(t′) ⇒ Admf d(t[t′/x]) ⊆ Admd(t[t′/x])

implies

∀t′ ∈ Tg ∪ {>},∀n ∈ ω,
Admf d(t′) ⊆ Admd(t′) ⇒ Admf d(tn[t′/x]) ⊆ Admd(tn[t′/x])

Proof. By an easy induction in n. 2

Proposition 7.9.14 Let t be a standard term in T og such that FV (t) ⊆ {x}. Then for all t′

in Tg ∪ {>}, Admf d(t′) ⊆ Admd(t′) implies Admf d(t[t′/x]) ⊆ Admd(t[t′/x]).

Proof. (Sketch) By structural induction in t, using Lem. 7.9.12, Lem. 7.9.11 and Lem 7.9.13
above in the case for recursion. 2

If we take t to be a closed term in the proposition above and e.g. t′ = > then t[t′/x]) = t
so we get that ft∞ reflects admissibility, which was what we wanted to show.

Corollary 7.9.15 Let t be a standard term in Tg. Then Admf d(t) ⊆ Admd(t).
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Chapter 8

A Relational Model of Non-Deterministic Dataflow

Abstract: We recast dataflow in a modern categorical light using profunctors as a gener-
alisation of relations. The well known causal anomalies associated with relational semantics
of indeterminate dataflow are avoided, but still we preserve much of the intuitions of a re-
lational model. The development fits with the view of categories of models for concurrency
and the general treatment of bisimulation they provide. In particular it fits with the recent
categorical formulation of feedback using traced monoidal categories. The payoffs are: (1) ex-
plicit relations to existing models and semantics, especially the usual axioms of monotone IO
automata are read off from the definition of profunctors, (2) a new definition of bisimulation
for dataflow, the proof of the congruence of which benefits from the preservation proper-
ties associated with open maps and (3) a treatment of higher-order dataflow as a biproduct,
essentially by following the geometry of interaction programme.
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Introduction

A fundamental dichotomy in concurrency is the distinction between asynchronous commu-
nication and synchronous communication. In the present paper we unify the analysis of
these situations in the framework of a categorical presentation of models for concurrency as
initiated by Winskel and Nielsen [146]. In particular we have given a treatment of indetermi-
nate dataflow networks in terms of (a special kind of) profunctors which is very close to the
treatment of synchronous communication. This new semantical treatment has a number of
benefits

1. the general functoriality and naturality properties of presheaves automatically imply
the usually postulated axioms for asynchronous, monotone automata [103, 120]

2. we get a notion of bisimulation, which is crucial when one includes both synchronous
and asynchronous primitives together,

3. it is closely connected to the extant models [68] expressed in terms of trace sets, but
also provides a relational viewpoint which allows one to think of composing network
components as a (kind of) relational composition,

4. gives a semantics of higher-order networks almost for “free” by using the passage from
traced monoidal categories to compact-closed categories [3, 70] (the “geometry of inter-
action” construction).

The categorical presentation is critical for all these points. Without the realization that
Kahn processes can be described as a traced monoidal category and knowledge of the results
in [3, 70] it would be hard to see how one could have proposed our model of higher-order
processes. It is notable that the profunctor semantics of dataflow yields automatically the
axioms for monotone port automata used in modeling dataflow [103] in contrast to the work
in [124]. At the same time we have to work to get a correct operation on profunctors to model
the dataflow feedback; “the obvious” choice of modeling feedback by coend doesn’t account
for the subtle causal constraints which plague dataflow semantics.

The background for our paper includes work done on presenting models for concurrency
as categories, as summarised in [146]. This enabled a sweeping definition of bisimulation
based on open maps applicable to any category of models equipped with a distinguished
subcategory of paths [71]. It also exposed a new space of models: presheaves. Presheaf
categories possess a canonical choice of open maps and bisimulation, and can themselves be
related in the bicategory of profunctors. This yields a form of domain theory but boosted to
the level of using categories rather than partial orders as the appropriate domains.

One argument for the definition of bisimulation based on open maps is the powerful
preservation properties associated with it. Notable is the result of [23] that any colimit
preserving functor between presheaf categories preserves bisimulation, which besides obvious
uses in relating semantics in different models with different notions of bisimulation is, along
with several other general results, useful in establishing congruence properties of process
languages. By understanding dataflow in terms of profunctors we are able to exploit the
framework not just to give a definition of bisimulation between dataflow networks but also in
showing it to be a congruence with respect to the standard operations of dataflow.

A difficulty has been in understanding the operational significance of the bisimulation
which comes from open maps for higher-order process languages (where for example pro-
cesses themselves can be passed as values). Another gap, more open and so more difficult
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to approach, is that whereas both interleaving models and independence models like event
structures can be recast as presheaf models, as soon as higher-order features appear, the
presheaf semantics at present reduce concurrency to nondeterministic interleaving. A study
of nondeterministic dataflow is helpful here as its compositional models are forced to account
for causal dependency using ideas familiar from independence models; at the same time the
models are a step towards understanding higher-order as they represent nondeterministic
functions from input to output.

The idea that non-deterministic dataflow can be modeled by some kind of generalised
relations fits with that of others, notably Stark in [124, 126]. Bisimulation for dataflow is
studied in [127]. That dataflow should fit within a categorical account of feedback accords
for instance with [76, 3]. But in presenting a semantics of dataflow as profunctors we obtain
the benefits to be had from placing nondeterministic dataflow centrally within categories of
models for concurrency, and in particular within presheaf models. One of our future aims is
a dataflow semantics of hardware-description languages, like for instance Verilog HDL [49],
which presently only possesses a non-compositional, operational definition. The semantics of
a language of this richness requires a flexible yet abstract domain theory of the kind presheaf
models seem able to support.

8.1 Models for Indeterminate Dataflow

The Dataflow paradigm for parallel computation, originated in work of Jack Dennis and oth-
ers in the mid-sixties [74, 33]. The essential idea is that data flows between asynchronous
computing agents, that are interconnected by communication channels acting as unbounded
buffers. Traditionally, the observable behaviour is taken to be the input-output relation be-
tween sequences of values on respectively input and output channels, sometimes referred to
as the history model [68]. For dataflow networks built from only deterministic nodes, Kahn
[74] has observed that their behaviour could be captured denotationally in the history model,
defining network composition by the least fixed point of a set of equations describing the
components, which was later shown formally by several authors, e.g. Faustini [36], Lynch
and Stark [81]. Subsequently, different semantics have been described as satisfying Kahn’s
principle when they are built up compositionally along similar lines.

8.1.1 The Need for Causality

For indeterminate networks, the situation is not so simple. Brock and Ackerman[17] showed
the fact, referred to as the “Brock-Ackerman anomaly”, that for networks containing the non-
deterministic primitive fair merge, the history model preserves too little information about
the structure of the networks to support a compositional semantics. Later, Trakhtenbrot
and Rabinovich [112, 113, 114], and independently, Russell [116] gave examples of anoma-
lies showing that this is true even for the simplest nondeterministic primitive1 the ordinary
bounded choice. We present a similar example to illustrate what additional information is
needed. It works by giving two simple examples of automata A1 and A2, which have the
same input-output relation, and a context C[−] as shown in the figure, in which they behave
differently. The context consists of a fork process F (a process that copies every input to
two outputs), through which the output of the automata Ai is fed back to the input channel.

1See [103, 102] for a study of the differences between the nondeterminate primitives.
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FAiC[Ai]=

Figure 8.1: The automata Ai inserted in context C[−] consisting of a fork process F and a
feedback loop

Automaton A1 has the following (deterministic) behaviour: It outputs a token; waits for a
token on input and then outputs another token. Automaton A2 has the choice between two
behaviours: Either it outputs a token and stops, or it waits for an input token, then outputs
two tokens. For both automata, the IO-relation relates empty input to zero or one output
token, and non-empty input to zero, one or two output tokens, but C[A1] can output two to-
kens, whereas C[A2] can only output a single token, choosing the first behaviour of A2. This
example shows the need for a model that records a more detailed causality relation between
individual data tokens than the history model.

Jonsson [68] and Kok [78] have independently given fully abstract models for indeterminate
dataflow. Jonsson’s model is based on trace2 sets, which are sets of possible interaction
sequences, finite or infinite, between a process and its environment. Kok’s model turned out
to be equivalent. Rabinovich and Traktenbrot analyzed the same issues from the point of view
of finite observations and came up with general conditions under which a Kahn-like principle
would hold [112, 113, 114]. Abramsky has generalised Kahn’s principle to indeterminate
networks [2].

8.2 A Traced Monoidal Category of Kahn Processes

In this section we summarize the basic theory of traced monoidal categories and describe a
category of Kahn processes as an instance of a traced monoidal category. The notion of traced
monoidal category abstracts the notion of trace of a matrix from multi-linear algebra. However
it has emerged in a variety of new contexts including the study of feedback systems [9], knot
theory [67] and recursion [52]. The axiomatization presented below is the definition of Joyal,
Street and Verity [70], slightly simplified and specialized as in [52] to the context of (strict)
symmetric monoidal categories so that the axioms appear simpler; in particular we do not
consider braiding or twists. In the Joyal, Street and Verity paper the fact that trace models
feedback (or iteration) is attributed to Bloom, but as far back as 25 years ago Bainbridge
had been studying trace in the context of feedback in systems and control theory. Indeed
Bainbridge had noticed that there were two kinds of trace (associated with two different
monoidal structures) in Rel, the category of sets and binary relations. Furthermore he noted
that one of the traces corresponds to feedback in what are essentially memoryless Kahn
networks. 3

2This word commonly used in the literature unfortunately clashes with “trace” in linear algebra. Normally
this is not a problem but the present paper uses this word in both senses, we hope the reader will be able to
disambiguate from the context.

3We are indebted to Samson Abramsky for pointing this reference out to us.
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8.2.1 Traced Monoidal Categories

In this section we give the axioms for a strict symmetric monoidal category equipped with a
trace. We assume that the reader is familiar with the notion of a (strict) symmetric tensor
product. We write ⊗ for the tensor product and σXY : X ⊗ Y → Y ⊗ X for the natural
isomorphism (the symmetry) in this case.

Definition 8.2.1 A trace for a symmetric monoidal category C is a family of functions

TrUX,Y () : C(X ⊗ U, Y ⊗ U)→ C(X,Y )

satisfying the following conditions

1. Bekic: f : X ⊗ U ⊗ V → Y ⊗ U ⊗ V and g : X → Y

TrU⊗V
X,Y (f) = TrUX,Y (TrVX⊗U,Y⊗U (f)) and TrIX,Y (g) = g .

2. Yanking: TrUU,U (σUU ) = IU .

3. Superposing: Given f : X ⊗ U → Y ⊗ U

TrUZ⊗X,Z⊗Y (IZ ⊗ f) = IZ ⊗ TrUX,Y (f) .

4. Naturality: Given g : Z ⊗ U → Y ⊗ U , f : X → Z and h : Y →W

TrUX,W ((h ⊗ IU ) ◦ g ◦ (f ⊗ IU )) = h ◦ TrUZ,Y (g) ◦ f .

5. Dinaturality: Given f : X ⊗ U → Y ⊗ V and g : V → U

TrUX,Y ((IY ⊗ g) ◦ f) = TrVX,Y (f ◦ (IX ⊗ g)) .

The intuition of a traced symmetric monoidal category as a category with feedback becomes
clear when the axioms are presented graphically as in Fig. 8.2. The symmetry is indicated by
a cross inside the box, swapping the channels and identities just as straight arrows.

The following proposition is an easy consequence of the yanking and naturality conditions,
keeping in mind functoriality of ⊗ and naturality of symmetries. It shows how composition
can be defined from trace and tensor as illustrated by Fig. 8.3.

Proposition 8.2.2 Given g : U → Y and f : X → U we have

TrUX,Y (σUY ◦ (f ⊗ g)) = g ◦ f .

This could be viewed as a generalisation of the yanking condition.
It is instructive to consider the two well-known examples of trace in Rel. In the first case

one takes the tensor product to be the cartesian product of the underlying sets and in the
second case one takes the tensor product to be disjoint union of sets (with the evident action
on relations); we call these structures (Rel,×) and (Rel,+) respectively. The trace in (Rel,×)
is given by

TrUX,Y (R)(x, y) = ∃u ∈ U.R(x, u, y, u) ,
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where R is a binary relation from X × U to Y × U . This is very close to the trace in
linear algebra - the sum along the diagonal - here it is an existential quantification along the
“diagonal.” Now for the other structure one proceeds as follows. Let R be a binary relation
from X ] U to Y ] U . This can be seen as consisting of 4 pieces, namely the relations RXY ,
RXU , RUY and RUU . For example we say that RXY (x, y) holds for x ∈ X, y ∈ Y iff R(x, y)
holds. Now the trace is given by

TrUX,Y (R) = RXY ∪RXU ;R∗
UU ;RUY ,

where we are using the standard relational algebra concepts; ∗ for reflexive, transitive closure,
; for relational composition and ∪ for union of the sets of pairs in the relation. Intuitively
this is the formula expressing feedback: either x and y are directly related or x is related to
some u and that u is related to y (once around the feedback loop) or, more generally, we can
go around the “feedback loop” an indefinite number of times.

8.2.2 The Kahn Category

The basic intuitions behind Kahn networks are, of course, due to Kahn [74] and a formal
operational semantics in terms of coroutines is due to Kahn and McQueen [73]. The particular
axiomatisation presented here builds on the ideas of Stark [124] but using the formalism
of traces presented in [102]. No originality is claimed for the trace model, it was Bengt
Jonsson [68] who showed that traces form a fully abstract model of dataflow networks and
there were several others with similar ideas at the time.

We have a fixed set V of values. A dataflow network then processes values on a finite
set of input ports producing values on a finite set of output ports. Following [127](Stark:
Dataflow calculus) we will not assume a fixed set of port names as in [], but simply refer to
the nth port by the number n ∈ ω. By doing this we need not consider questions as e.g. name
clashes and can work with the simpler categorical structures of strict monoidal categories.
An event is a triple 〈a, i/o, v〉 where a ∈ ω (the number of the channel) and v ∈ V. We
say that 〈a, v〉 is the label of the event 〈a, i/o, v〉. An event of the form 〈a, o, v〉 is called an
output event and one of the form 〈a, i, v〉 is called an input event. We consider sequences of
these events. If α is a sequence of events we write l(α) for the sequence of labels obtained by
discarding the input/output tags. We write α|o (or α|i) for the sequence of output (or input)
events discarding the input (or output) events. For n ∈ ω we write α|<n for the sequence
obtained from α by keeping only the input events on the ports below n. We write α|≥n for
the sequence obtained from α by keeping the input events on the ports higher or equal n,
subsequently renumbered by subtracting n from the port number. We define α|<n and α|≥n
similarly just for output events. Finally, we allow all combinations of these restrictions, e.g.
α|<n≥m is the sequence obtained by keeping the input events on ports below n and output events
on ports above or equal m, and subsequently renumbering the ports of the output events by
subtracting m from the port number.

We extend these notations to sets of sequences. For m ≤ n ∈ ω let [m. . . n] = {m,m +
1, . . . , n− 1} and [n] = [0 . . . n]. We write In for the set [n] × {i} × V of all input events on
ports below n and similarly On for [n] ×{o} × V. Finally, we write Ln for the set [n] ×V of
labels on ports below n.

Definition 8.2.3 A process of sort (n,m), is a non-empty prefix closed set of finite se-
quences over the alphabet In∪Om. The set of sequences, say S, satisfies the following closure
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Figure 8.4: The shuffle of processes S : n→ m and S′ : n′ → m′.

properties, α and β are sequences of events:

K1. If α〈b, o, v〉〈a, i, u〉β ∈ S then α〈a, i, u〉〈b, o, v〉β ∈ S.

K2. If α〈b, o, v〉〈b′, o, u〉β ∈ S and if b 6= b′ then α〈b′, o, u〉〈b, o, v〉β ∈ S.

K3. If α〈a, i, u〉〈a′, i, v〉β ∈ S and if a 6= a′ then α〈a′, i, v〉〈a, i, u〉β ∈ S.

K4. If α ∈ S then α〈a, i, v〉 for all 〈a, v〉 ∈ LA.

We say that n is the input arity of S and m is the output arity of S.

The last condition above is called receptivity, a process could receive any data on its input
ports; unlike with synchronous processes. Receptivity is the basic reason why traces suf-
fice to give a fully-abstract model for asynchronous processes; in calculi with synchronous
communication one needs branching information.

The first three conditions express concurrency conditions on events occurring at different
ports. Note an asymmetry in the first condition. If an output occurs before an input then it
could also occur after the input instead. However, if an output occurs after an input then the
pair of events cannot be permuted because the output event may be in response to the input.
Furthermore we are assuming, again in (1), that the arrival of input does not disable already
enabled output. In an earlier investigation [103] these were called monotone automata and
it was shown that many common primitives, such as fair merge, timeouts, interrupts and
polling cannot be expressed as monotone automata. However, as we will see in the end of this
section, monotonicity and receptivity together imply that the IO-relations of Kahn processes
are buffered in a formal sense. This makes them reasonable assumptions for the type of
networks we consider. The restriction to finite sequences is a simplification, which is not
necessary for the results in this section, but simplifies the exposition in the following section.
In the model of Jonsson infinite sequences are used to express fairness properties.

Given processes as sets of sequences we define a strict symmetric monoidal category of
Kahn processes. We write S : n→ m for “S is a process of sort (n,m)”. We begin by defining
the shuffle of two processes, which corresponds to putting the two processes next to each
other as illustrated in Fig. 8.4.

Definition 8.2.4 Given two processes S : n → m and S′ : n′ → m′. We define the set
S∆S′ : (n + n′) → (m + m′) (read, S shuffle S′) as the set of all sequences γ of sort (n +
n′,m+m′) s.t. γ|<n′

<m′ ∈ S′ and γ|≥n
′

≥m′ ∈ S .

We then define composition of two processes with matching output and input arity to be the
shuffle of the two processes, from which we have picked the sequences with the right causal
precedence of events on the connected ports and then discarded these, now “internal”, events.
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Definition 8.2.5 Given processes f : n→ m and g : m→ p we define the composite f ; g : n→
p of f and g by f ; g = S|≥m<p , where S ⊆ f∆g is the largest set s.t. ∀δ ∈ S. l(δ|<m) = l(δ|≥p) &
∀δ′ ≤ δ. l(δ′|<m) ≤ l(δ′|≥p).

Definition 8.2.6 The category Kahn of Kahn processes has as objects natural numbers and
as morphisms from n to m, processes of sort (n,m) Composition of morphisms is defined
by composition of processes as defined above. For n ∈ ω, the identity on n is given by
1n = {α ∈ (In ∪ On)∗ | ∀α′ ≤ α, l(α′|o) ≤ l(α′|i)}.

A strict monoidal structure is given by sum on objects and for f : n → m and f ′ : n′ → m′,
f ⊗ f ′ : n + n′ → m + m′ is given by f∆g. The trace construction is as follows. Given
f : n+ p→ m+ p we define Trpn,m(f) : n→ m as the set of all sequences γ such that there is
a sequence δ ∈ f with

1. δ|≥p≥p = γ ,

2. l(δ|<p) = l(δ|<p) and

3. ∀δ′ ≤ δ. l(δ′|<p) ≤ l(δ′|<p) ,

i.e. for all 0 ≤ i < p, the values on output channel i are fed back into input channel i.

Theorem 8.2.7 With the structures given above, Kahn is a traced (strict) symmetric monoidal
category.

The generalised yanking property can be interpreted in this category as saying that com-
position can be obtained as a combination of parallel composition (that is, shuffling) and
feedback. This is a well-known fact in dataflow folklore.

8.2.3 From Kahn Processes to Input-output Relations

The category of Kahn processes can be related to the history model by a functor to a category
of buffered relations between histories. Given a set of port indices [n] for n ∈ ω, let Hn, the
histories on [n] , be the elements in the free partially commutative monoid L∗n/∼ [34], where
∼ is the smallest equivalence relation such that α〈a′, v′〉〈a, v〉β ∼ α〈a, v〉〈a′, v′〉β if a 6= a′.
This is an example of a Mazurkiewicz trace language, why we will also refer to histories as
traces. For a sequence α ∈ L∗n let α denote its trace. A trace α can also be viewed as a
function α : [n] → V∗ which is the traditional representation of histories [68]. An IO-relation
R with input arity n and output arity m is a subset R ⊆ Hn ×Hm.

The traces in Hn can be partial ordered by α v β ∈ L∗n/∼ iff ∃γ ∈ L∗n such that αγ = β
(see Sect.7 of [146]). Viewed as functions the ordering is just the point-wise prefix ordering.
Let εn (or just ε if the arity n is clear from the context) denote the empty trace in Hn.
Given the ordering on traces, we can define a buffer Bn ⊆ Hn × Hn for each arity n ∈ ω,
as the relation {(α, β) ∈ Hn × Hn | β v α}. Inspired by the work in [120], we say that an
IO-relation R ⊆ Hn ×Hm is buffered if it satisfies that R = Bn;R;Bm, i.e. adding buffers to
input and output makes no difference. The lemma below gives a characterisation of buffered
IO-relations.

Lemma 8.2.8 Let R ⊆ Hn ×Hm. Then the relation R is buffered if and only if
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• If (α, β) ∈ R and α v α′ then (α′, β) ∈ R.

• If (α, β) ∈ R and β′ v β then (α, β′) ∈ R.

Proof. Straightforward. 2

From the fact that Bn;Bn = Bn for any n ∈ ω it follows that we can define a category
Hist of buffered IO-relations, in which the identities are given by the buffers.

Definition 8.2.9 Let Hist be the category with objects Hn for n ∈ ω and morphisms being
buffered IO-relations.

We can define a symmetric monoidal structure as in (Rel,×). Using the immediate isomor-
phism Hn+m

∼= Hn ×Hm, in one direction mapping δ in Hn+m to (δ|≥m≥m, δ|<m<m), we define a
strict symmetric monoidal structure with tensor on objects given by Hn ⊗Hm = Hn+m. In
the remaining part of this paper we will often implicitly use this isomorphism, writing (α, β)
for the history δ in Hn ⊗Hm such that α = δ|≥m≥m and β = δ|<m<m.

A Kahn process S defines naturally a relation between input and output sequences by
considering the set H(S) = { (γ, δ) | ∃α ∈ S. γ = l(α|i) & δ = l(α|o)}. It can be shown that
H extends to a buffered relation between traces and preserves composition.

Proposition 8.2.10 There is a symmetric monoidal functor H : Kahn → Hist that maps
arities n to Hn and a Kahn process S of sort (n,m) to the relation { (γ, δ) | ∃α ∈ S. γ =
l(α|i) & δ = l(α|o)}.

Proof. We must show that for all n ∈ ω, H(1n) = Bn and that H(f ; g) = H(f);H(g) for
f : n → m and g : m → p. The first part follows almost immediately from the definition of
identities in the two categories. For the second, we will only show that H(f ; g) ⊆ H(f);H(g),
the other direction follows by reversing all implications. Assume (γ, δ) ∈ H(f ; g). Then there
exists α ∈ f ; g such that

γ = l(α|i) & δ = l(α|o). (8.1)

By Def. 8.2.5 there exists φ ∈ f∆g such that

α = φ|≥m<p , (8.2)

l(φ|<m) = l(φ|≥p) and (8.3)

∀φ′ ≤ φ. l(φ′|<m) ≤ l(φ′|≥p).

But this implies by Def. 8.2.4 that φ|<m<p ∈ g and φ|≥m≥p ∈ f . Let φg = φ|<m<p , φf = φ|≥m≥p and
β = l(φ|<m). Now from (8.1) and (8.2) above it follows that l(φf |i) = γ and l(φg|o) = δ.
From (8.3) it follows that l(φg|i) = l(φf |o) = β. But then (γ, β) ∈ H(f) and (β, δ) ∈ H(g) so
(γ, δ) ∈ H(f ; g). 2
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8.3 Generalising Relations

Kahn processes are typical of the solutions to the problem of obtaining a compositional seman-
tics for nondeterministic dataflow. A correct compositional semantics is got by representing
processes as interaction sequences, keeping track of the causal dependency between events.
However, this seems far removed from the relational model. In this section we will describe
another solution that contains the Kahn processes, which comes about as a natural (categor-
ical) extension of the history model. Moreover, it gives a branching semantics, which opens
the way to e.g. synchronous network primitives.

For n ∈ ω, let Hn refer to the partial order category given by Hn and the ordering v on
traces defined in the previous section. If α v γ in Hn, let [α, γ] : α → γ and [γ, α] : γ → α
denote the unique arrows in respectively Hn and Hn

op. We will refer to these categories as
the path categories.4

The key observation is that buffered IO-relations between Hn and Hm correspond exactly
to functors Hn × Hm

op → 222, where 222 is the category consisting of two objects 0 and 1 and
only one non-identity arrow 0→ 1. This is an immediate categorical analogy to characteristic
functions Hn × Hm → {0, 1} of relations. Viewing the relations in this way, composition of
R : Hn ×Hm

op → 222 and R′ : Hm × Hp
op → 222 can be written as

R;R′(α, γ) =
∨
β∈Hm

R(α, β) ∧R′(β, γ) , (8.4)

where we make use of the obvious join and meet operations on 222.
This defines a category BRel of buffered relations, with path categories as objects, arrows

being relations and composition as defined above. The category BRel can be equipped with a
strict symmetric monoidal structure as in Hist, and as stated below, BRel is just an alternative
presentation of the category Hist given in the previous section.

Proposition 8.3.1 The category Hist is (strict symmetric monoidal) equivalent to the cate-
gory BRel.

Proof. Follows easily from Lem. 8.2.8. 2

A trace in BRel can be defined as in (Rel,×), that is for R : Hn+p × Hm+p
op → 222, define

for (α, β) in Hn ×Hm
op,

Tr
Hp

Hn,Hm
(R)(α, γ) =

∨
β∈Hp

R((α, β), (γ, β)) , (8.5)

where we have implicitly used the isomorphisms Hn+p
∼= Hn × Hp and Hm+p

∼= Hm × Hp.
However, the anomaly given in Sec. 8.1.1 shows that there is no way of defining a trace on

BRel such that the functor H given in the last section preserves the trace of Kahn. It must be
possible to represent different dependencies between input and output for a particular input-
output pair in the relation. This is precisely what moving to the bicategory of profunctors
does for us.

4The traces can also be viewed as a specific kind of pomsets [110] and the path categories as a subcategory
of the category of pomsets given in [71].
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8.3.1 Profunctors

The (bi)category Prof of profunctors, (or bimodules, or distributors [15]) are a categorical
generalisation of sets and relations. The objects of Prof are small categories and arrows are
profunctors; profunctors are like the buffered relations above but with the category 222 replaced
by Set.

Definition 8.3.2 Let P and Q be small categories. A profunctor X : P //+ Q is a bifunctor
X : P× Qop → Set (or equivalently, a presheaf in ̂Pop × Q).

When defining profunctors from basic functors we will use sans serif letters as formal param-
eters, ranging over both objects and arrows. E.g. composition of profunctors X : P→ U and
Y : U→ Q is given by the coend [82]

X;Y (p, q) =
∫ u

X(p, u)× Y (u, q) , (8.6)

for Y : P //+ U and Z : U //+ Q. This defines composition only to within isomorphism, explaining
why we get a bicategory. Note how (8.6) generalises the expression for relational composition
given by (8.4) earlier.

Identities IP : P //+ P are given by hom-functors as

IP (p, p′) = P[p′, p].

The tensor product is given by the product of categories on objects and set-theoretic product
on arrows. This defines a symmetric monoidal structure on Prof.

Definition 8.3.3 Let P,P′ and Q,Q′ be small categories and X : P //+ Q, Y : P′ //+ Q′ profunc-
tors. Define P⊗P′ = P×P′ and X ⊗ Y = X × Y : P⊗P′ //+ Q⊗Q′, so (X ⊗ Y )(p, p′, q, q′) =
X(p, q) × Y (p′, q′). The symmetry σPP ′ : P⊗ P′ //+ P′ ⊗ P is defined in the obvious way from
hom-functors, so σPP ′((p, p′), (q′, q)) = P×P′[(q, q′), (p, p′)].

The obvious choice of trace on Prof is to take the trace of a profunctor X : P⊗U //+ Q⊗U
to be given by

TrUP,Q(X)(p, q) =
∫ u

X((p, u), (q, u)) , (8.7)

which satisfies the properties of a trace (up to isomorphism). In particular, we can prove the
generalised yanking property.

Proposition 8.3.4 Given X : P→ U and Y : U→ Q we have a (natural) isomorphism

TrUP,Q((X ⊗ Y );σUQ) ∼= X;Y .
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Proof. By unfolding the definitions we get

TrUP (Q)(X ⊗ Y );σUQ(p, q) =
∫ u

(X ⊗ Y );σUQ((p, u), (q, u))

=
∫ u∫ (u′,q′)

X ⊗ Y ((p, u), (u′, q′))× σUQ((u′, q′), (q, u))

=
∫ u∫ (u′,q′)

X ⊗ Y ((p, u), (u′, q′))× U×Q[(u, q), (u′, q′)]

=
∫ u

(X ⊗ Y ); IU⊗Q((p, u), (u, q))

∼=
∫ u

X(p, u) × Y (u, q) ,

where the isomorphism comes from the (natural) isomorphism in Prof between an arrow and
the arrow composed with the identity. 2

Since we are working with functors into Set, the coend in Eq. (8.7) has an explicit definition.
For p and q objects of respectively P and Q, we have∫ u

X(p, u, q, u) ∼=
⊎
u∈U

{x ∈ X((p, u), (q, u))}/∼ , (8.8)

where ∼ is the symmetric, transitive closure of the relation  defined as follows. For x ∈
X(p, u, q, u) and x′ ∈ X(p, u′, q, u′), let x  x′ if ∃m : u → u′ and y ∈ X(p, u, q, u′) such
that X(p, u, q,m)y = x and X(p,m, q, u′)y = x′. For f : p → p′ and g : q′ → q arrows of
respectively P and Q, we have∫ u

X((f, u), (g, u))[x]∼ = [X((f, 1u), (g, 1u))x]∼ for x ∈ X((p, u), (q, u)). (8.9)

For our purpose, we focus on the subcategory PProf of Prof induced by the path categories,
generalising the buffered IO-relations. A tensor product is given by Hn ⊗ Hm = Hn+m with
unit I = H0. Via the isomorphism Hn+m

∼= Hn × Hm the category PProf inherits the traced
symmetric monoidal structure (up to isomorphism) of Prof. We will refer to the symmetries
by σn,m : Hn⊗Hm → Hm⊗Hn. Recall that the category H1 is equivalent to the category V∗ and
so a profunctor X : I → H1 is simply a presheaf over V∗. As shown in [71, 147], the category
of (rooted) presheaves over V∗ is equivalent to a category of synchronisation trees with label
set V. In this way, the hom-categories in PProf can be viewed as a direct generalisation of
the presheaf models used in giving semantics to synchronously communicating systems [23],
adding (asynchronous) input channels and independency between distinct channels. In the
section below we will generalise the concrete representation of presheaves given in [147], which
will give a more operational reading of port profunctors. However, first we will note that the
trace as given by the coend fails to satisfy the causal constraints of feedback, that a token
must appear as output before it appears as input on a feedback channel, as stated in the
third requirement of the trace in Kahn. This is not surprising, bearing in mind the close
relationship to the trace in (Rel,×).

Consider the fork process F : H1
//+ H1 ⊗ H1 used in the example of Sect. 8.1.1, which is

just a buffer copying each input to two output channels. The port profunctor corresponding
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to F is constructed from hom-functors, on objects defined by F
(
α, (β, γ)

)
= [β, α] × [γ, α].

Connecting one of the output channels to the input channel should result in a process with no
input channels and one output channel, that can output nothing but the empty trace. This
is indeed the result in Kahn. However, from the explicit definition of the coend given in (8.8)
it is not difficult to compute that

TrH1
H0,H1

(F)(β) ∼=
⊎
α∈H1

{x ∈ [β, α]× [α,α]}/∼

∼= {α | β ≤ α ∈ H1} ,
(8.10)

which means that TrH1
H0,H1

(F) can output any sequence.

8.3.2 An Operational Reading

In this section we shall see that it is possible to adopt the causal constraint on the trace in
Kahn to the trace in port profunctors. To begin with, we will restrict attention to rooted
profunctors X : Hn

//+ Hm, which are the profunctors satisfying that X(α, ε) is the singleton
set for any α in Hn. As mentioned above, the hom-category of rooted profunctors PProf[I,H1]
can be shown to be equivalent to the category of synchronisation trees with label set V using
a construction on presheaves given in [147]. For a rooted port profunctor X : Hn

//+ Hm, we
define its associated port automaton as follows. In fact this is a special case of a (generalised)
Grothendieck construction given in [128].

Definition 8.3.5 Let X : Hn
//+ Hm be a rooted port profunctor. Define its associated (n,m)-

port automaton A(X) to be the quintuple (S, r,−→, [n] , [m] ), where

• S = {
(
(α, β), x

)
| x ∈ X(α, β)} is a set of states,

• r =
(
(ε, ε), x

)
for x ∈ X(ε, ε) is the (unique) initial state,

• [n] and [m] are sets of resp. input ports and output ports, and

• −→⊆ S × Act× S, for Act = {i} × [n] × V ∪ {o} × [m] × V, is a transition relation,
given by

–
(
(α, β), x

) i a,v−→
(
(α〈a, v〉, β), y

)
, if X([α,α〈a, v〉], β)x = y ,

–
(
(α, β), x

) o b,v−→
(
(α, β〈b, v〉), y

)
, if X(α, [β〈b, v〉, β])y = x .

Define Seq(X) = {φ ∈ (In∪Om)∗ | r φ0−→ s1
φ1−→ s2 . . .

φn−1−→ sn}, i.e the set of finite sequences
of events labelling sequences of transitions of A(X) beginning at the initial state r.

Figure 8.5 below shows (the initial parts of) the two port automata associated to the profunc-
tors representing the networks given in Sect. 8.1.1. All vertical arrows are output transitions
and horizontal arrows are input transitions, the dotted lines indicate that the networks can
receive more input tokens. Note how the two runs in process A2, with same input-output
relation but different dependencies, are represented

We can restore the category of elements of the presheaf X from its associated port au-
tomaton, which thus determines X up to isomorphism [83], allowing us to work with the more
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A1 :

•

•

OO

• •oo

i

OO

• oo
OO

A2 :
•

•

OO

• •oo

i

OO

• oo
OO

**TT

.

Figure 8.5: The initial parts of the two port automata associated to the profunctors repre-
senting the networks given in Sec. 8.1.1

concrete representation when convenient. Thus, we can freely confuse elements x ∈ X(α, β)
with their corresponding states in A(X).

Remarkably the axioms usually postulated for monotone port automata [103] follow for
port automata of profunctors simply by functoriality.

Proposition 8.3.6 Let X : Hn
//+ Hm be a rooted port profunctor and A(X) = (S, r,−→

, [n] , [m] ) its associated port automaton. Then

A1. Receptivity: ∀〈a, i, v〉 ∈ In & s ∈ S. ∃!s′ ∈ S. s i a,v−→ s′ ,

A2. Monotonicity: If s
o b,v−→ t & s

i a,v′−→ t′ then ∃!u ∈ S. t i a,v′−→ u & t′
o b,v−→ u ,

A3. Commutativity: If c 6= c′ & s
i c,v−→ t

i c′,v′−→ u (or s
o c,v−→ t

o c′,v′−→ u) then ∃!t′ ∈ S. s
i c′,v′−→

t′
i c,v−→ u (or s

o c′,v′−→ t′
o c,v−→ u) .

As a consequence of the receptivity axiom, the monotonicity axiom A2 can equivalently be
stated as an asymmetric commutativity axiom between input and output arrows.

Proposition 8.3.7 Assuming axiom A1, axiom A2 of proposition 8.3.6 is equivalent to the
axiom

A2’. If s
o b,v−→ t & t

i a,v′−→ u then ∃!t′ ∈ S. s i a,v′−→ t′ & t′
o b,v−→ u .

Proof. Assume axiom A1 and A2. If s
o b,v−→ t & t

i a,v′−→ u, then by axiom A1 one gets that

∃!t′ ∈ S. s
ia,v′−→ t′ and from axiom A2 it follows that ∃u′ ∈ S. t′

o b,v−→ u′ and t
ia,v′−→ u′.

Axiom A1 implies that u = u′. For the other direction, assume axiom A1 and A2’. If

s
o b,v−→ t & s

i a,v′−→ t′, then by axiom A1 one gets ∃u ∈ S. t ia,v′−→ u and from axiom A2’ it follows

that ∃!t′′ ∈ S. s i a,v′−→ t′′ & t′′
o b,v−→ u. Axiom A1 gives that t′ = t′′. 2

As a corollary, we get a mapping from port profunctors to Kahn processes.

Corollary 8.3.8 Let X : Hn
//+ Hm be a rooted port profunctor. Then Seq(X) is a Kahn

process of sort (n,m).

The above observations make rooted port profunctors look promising as a model of
dataflow. However, they are a bit too general to define a causally secured trace operation.
We therefor restrict attention to the class of stable (rooted) port profunctors. These are the
profunctors for which the associated port automaton satisfies the additional axiom
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A4. Stability: If s 6= s′, s
i a,v−→ t & s′

i a′,v′−→ t then a 6= a′ & ∃!u. u ia′,v′−→ s & u
i a,v−→ s′ ,

Categorically, Ax. A4 is equivalent to requiring that the profunctor (when regarded as a
functor X : Hn → Ĥm) preserves pullbacks.

Stable rooted port profunctors define a sub symmetric monoidal category of PProf, which
we will refer to as PProfs. We will use the notation X : Hn

//⊥ Hm to indicate that X is a
profunctor in PProfs. Remark that for any Kahn process S there exists a stable rooted port
profunctor XS such that Seq(XS) = S, i.e. the set of sequences for XS as defined in Def. 8.3.5
equals the original process S. The profunctor XS can be defined by simply letting XS(α, β)
be the subset of S consisting of all sequences that restricted to only input (or output) events
gives α (or β). This construction gives a functor between hom-categories Kahn[n,m] and
PProfs[Hn,Hm] with Seq as left inverse, but it does not extend to a functor between the full
categories, for one thing, it does not map identities to identities.

The trace as given by the coend in (8.7) is not well defined in PProfs, e.g. the result
of taking the trace will not always be a rooted profunctor as illustrated by the example
given in the end of the previous section, which gives a presheaf with infinitely many roots.
Below we will define a trace in PProfs which intuitively restricts the coend to causally secured
states. Observe that the relation  defined in the explicit definition of the coend given
by (8.8) can be interpreted as a relation between states connected by a chain of internal
communications within a port automaton. More precisely, if x and x′ are states of a profunctor
X : Hn ⊗ Hp

//+ Hm ⊗ Hp we will let x =⇒p x
′ denote that x

o c,v−→ i c,v−→ x′ for c < p, i.e. x′ is
reachable from x by by two transitions, the first outputs a value on a port below p and the
second inputs the same value on the corresponding input port. If we now take P, Q and U in
Eq. (8.8) to be respectively Hn, Hm and Hp we get that x x′ if and only if x =⇒∗

p x
′. This

leads to the following definition.

Definition 8.3.9 Let X : Hn ⊗ Hp
//⊥ Hm ⊗ Hp and A(X) = (S, r,−→, [n + p], [m + p]). Let

N = [p . . . n + p − 1] and M = [p . . .m + p − 1]. Let iN−→=−→ ∩S × ({i} ×N × V) × S and
oM−→=−→ ∩S × ({o} ×M × V)× S. We say that s ∈ S is p-secured if

r
iN−→∗ =⇒∗

p
oM−→∗s .

Before giving the definition of the trace in PProfs, we will explore the structure of port
automata obtained from port profunctors. On can easily show that they are reachable, acyclic
and have at most one transition between any two states. Moreover, they satisfy two “trace-
unfolding” axioms.

Lemma 8.3.10 Let X : Hn
//⊥ Hm and A(X) = (S, r,−→, [n] , [m] ). Then

U1. If t 6= t′ & t
o b,v−→ u & t′

o b′,v′−→ u then b 6= b′ & ∃!s ∈ S. s o b′,v′−→ t & s
o b,v−→ t′ ,

U2. If t 6= t′ & t
i a,v−→ u & t′

o b′,v′−→ u then ∃!s ∈ S. s o b′,v′−→ t & s
i a,v−→ t′ .

From the unfolding axioms U1 and U2 and stability A4 we get the following lemma.

Lemma 8.3.11 Let X : Hn ⊗ Hp
//⊥ Hm ⊗ Hp and A(X) = (S, r,−→, [n + p], [m + p]). Then

if t =⇒p u and t′ =⇒p u, for t =
(
(α, γt, β, γt), x

)
∈ S and t′ =

(
(α, γt′ , β, γt′), x′

)
∈ S, then

there exists a state z =
(
(α, γt ∧ γt′ , β, γt ∧ γt′), x′′

)
∈ S such that z =⇒∗

p t and z =⇒∗
p t

′.
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Let ∼p denote the reflexive, symmetric and transitive closure of =⇒p. The following property
can be shown by induction using the lemma above.

Lemma 8.3.12 Let X : Hn ⊗ Hp
//⊥ Hm ⊗ Hp and A(X) = (S, r,−→, [n + p], [m + p]). Then

if t ∼p t′, for t =
(
(α, γt, β, γt), x

)
∈ S and t′ =

(
(α, γt′ , β, γt′), x′

)
∈ S, then there exists a

state z =
(
(α, γt ∧ γt′ , β, γt ∧ γt′), x′′

)
∈ S such that z =⇒∗ t and z =⇒∗ t′.

Observation 8.3.13 Let X : Hn ⊗Hp
//⊥ Hm ⊗Hp and A(X) = (S, r,−→, [n+ p], [m+ p]). If

s =⇒∗
p t for s =

(
(α, γs, β, γs), x

)
and t =

(
(α, γt, β, γt), x′

)
then γs v γt, and if γs = γt then

s = t.

We are now ready to show the crucial property, that for any∼p-equivalence class, there exists a
minimal state from which any other state in the class is reachable by internal communication.

Lemma 8.3.14 Let X : Hn ⊗ Hp
//⊥ Hm ⊗ Hp and A(X) = (S, r,−→, [n + p], [m + p]). Then

for any s =
(
(α, γ, β, γ), x

)
∈ S there exists a unique state s.p in [s]∼p such that s.p =⇒∗

p t
for any t ∼p s.

Proof. By Obs. 8.3.13 and Lem. 8.3.12 we get that if s ∼p t for s =
(
(α, γ, β, γ), x

)
and t =(

(α, γ, β, γ), x′
)

then s = t. This implies that the number of elements of any ∼p-equivalence
class is bounded by the number of objects in Hp, which is countable. Let s0, s1, . . . , si, . . .
be the elements of [s]∼p. By induction in i, we construct by using Lem. 8.3.12 elements
t0, t1, . . . , ti, . . . such that ti =⇒∗

p sj for j ≤ i. More precisely, let t0 = s0, and assuming we
have defined t0, . . . , ti, let ti+1 be the element given by Lem. 8.3.12 such that ti+1 =⇒∗

p ti and
ti+1 =⇒∗

p si+1. If ti =
(
(α, γi, β, γi), x

)
then γi+1 v γj in Hp. Since the category Hp is well

founded, it follows that there exists a k ∈ ω s.t. γi = γk for all i ≥ k and thus by Obs. 8.3.13
that ti = tk, and we can then let s.p = tk. For uniqueness, suppose s1 6= s2 are both minimal
states. Then s1 =⇒∗

p s2 and s2 =⇒∗
p s1, which by Obs. 8.3.13 implies that s1 = s2, 2

The securedness condition has some useful equivalent formulations.

Lemma 8.3.15 Let X : Hn⊗Hp
//⊥ Hm⊗Hp and A(X) = (S, r,−→, [n+ p], [m+ p]). Let iN−→

and oM−→ be defined as in Def.8.3.9. Then the following statements are equivalent

1) s ∈ S is p-secured,

2) r
iN−→∗ ∼p oM−→∗s,

3) r( iN−→ ∪ ∼p ∪
oM−→)∗s,

4) there exists a sequence r −→ s0 −→ s1 −→ . . . −→ sn = s, such that if si =(
(αi, γi, βi, δi), xi

)
then γi v δi and γn = δn.

Proof. It follows directly that 1) implies 2), that 2) implies 3) and that 1) implies 4). That
3) implies 2) follows by repeated use of the axioms A2’ and A3. To show that 2) implies 1),
assume that r iN−→∗t ∼p t′ oM−→∗s. Then, by Lem. 8.3.12 there exists z such that z =⇒∗

p t and
z =⇒∗

p t
′. Since t =

(
(α, ε, ε, ε), x

)
, it follows from Obs. 8.3.13 that t = z. That 4) implies 3)

can be shown by an induction in the length of γn, using axioms A2’ and A3. 2
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We will now finally define a trace on PProfs satisfying the causal constraints of feedback.

Definition 8.3.16 Let X : Hn ⊗ Hp
//⊥ Hm ⊗ Hp. Define Tr

Hp

Hn,Hm
(X) : Hn

//⊥ Hm, the trace of
X to be given by

Tr
Hp

Hn,Hm
(X)(α, β) ∼=

⊎
γ∈Hp

{x ∈ X(α, γ, β, γ) | x is p-secured}/∼p
, (8.11)

where the action on arrows is defined as for the coend. We will often abbreviate Tr
Hp

Hn,Hm
to

Trpn,m or just Trp.

For the above definition to be well defined we must first show that if h : γ → γ′ and
j : δ′ → δ are arrows of respectively Hn and Hm and x ∈ X

(
(γ, α), (α, δ)

)
is p-secured,

then y = X
(
(h, 1α), (1α, j)

)
x is p-secured as well. Assume x is p-secured and let z =

X
(
(h, 1α), (1α, 1δ)

)
x, so y = X

(
(1γ′ , 1α), (1α, j)

)
z. Then x

iφ1−→ iφ2−→ · · · iφn−→ z for γ ′ =

γφ1φ2 . . . φn and y
oψ1−→ oψ2−→ · · · oψn−→ z for δ = δ′ψ1ψ2 . . . ψn. By the assumption that x is p-

secured it follows directly from 3) of Lem. 8.3.15 that z is p-secured. Using 2) of Lem. 8.3.15
and Ax. U1 repeatedly one can then easily show that y is p-secured as well. Finally we
must show that if τ : X → Y is a natural transformation in PProfs[Hn ⊗ Hp,Hm ⊗ Hp] and
x ∈ X

(
(γ, α), (α, δ)

)
is p-secured, then y = τ(γ,α),(α,δ)x ∈ Y

(
(γ, α), (α, δ)

)
is p-secured as well.

If

rX
iN−→ n1 =⇒n2

p
oM−→ n3x ,

one can show that

rY
iN−→ n1 =⇒n2

p
oM−→ n3y ,

by a simple induction in n1 + n2 + n3 using naturality of τ and the property of the stability

axiom A4 that if s 6= s′, s
ia,v−→ t & s′

ia′,v′−→ t then a 6= a′.
The trace can be expressed on port automata as follows.

Proposition 8.3.17 Let X : Hn ⊗ Hp
//⊥ Hm ⊗ Hp and A(X) ∼= (S, r,−→, [n + p], [m + p]).

Then A(Trpn,m(X)) = (S∼p, [r]∼p,−→∼p, [n] , [m] ), S∼p = {s ∈ S | s is p-secured}/∼ and

[s]∼p
ia,v−→∼p [s′]∼p if s

ia+p,v−→ s′, for a ∈ [n] and

[s]∼p
o b,v−→∼p [s′]∼p if s

o b+p,v′−→ s′, for b ∈ [m].

By quotienting the state space by the equivalence relation ∼p, a forward computation in the
traced automaton may originate from a computation in which internal transitions can be
made backwards. However, using Lem. 8.3.14 we can replace the equivalence classes with
the minimal representatives given in the lemma, obtaining the formulation below where any
forward computation in the traced automaton originates from a forward computation in the
underlying automaton.
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Lemma 8.3.18 Let X : Hn ⊗Hp
//⊥ Hm ⊗ Hp and A(X) = (S, r,−→, [n + p], [m+ p]).

s∼p
i a+p,v−→ ∼ps′, for a ∈ [n] if and only if s.p

ia+p,v−→ s′.p, for a ∈ [n] and (8.12)

s∼p
o b+p,v−→ ∼ps′, for b ∈ [m] if and only if s.p =⇒∗

p
i b+p,v−→ s′.p, for b ∈ [m]. (8.13)

Proof. The if direction of both (8.12) and (8.13) is immediate. For the only if direction of

(8.12) we first show that if s.p
i a+p−→ t then t = t.p by contradiction. Suppose that there exists

t′ such that t′ =⇒p t. Then by axioms U1, U2 it follows that there exists s′ =⇒p s.p. But
this contradicts the minimality of s.p, so we conclude that there exists no t′ such that t′ =⇒p t
,i.e. t = t.p. 2

Proposition 8.3.19 Let X : Hn ⊗ Hp
//⊥ Hm ⊗ Hp and A(X) = (S, r,−→, [n + p], [m + p]).

Then A(Trpn,m(X)) ∼= (Sp, r,−→p, [m] , [n] ), Sp = {s.p ∈ S | s is p-secured}, where s.p is
given as in Lem. 8.3.14 and

s.p
ia,v−→p s

′
.p if s.p

i a+p,v−→ s′.p, for a ∈ [n] and

s.p
o b,v−→p s

′
.p if s.p =⇒∗

p
o b+p,v′−→ s′.p, for b ∈ [m].

Proof. Follows from Prop. 8.3.17 and Lem. 8.3.18.
2

Intuitively this expresses that internal computation cannot be observed in itself.
We are now ready to state the main theorem, that the trace operator given in Def. 8.3.16

satisfy the axioms of a traced monoidal category up to isomorphism. The proof can be found
in App. 8.6

Theorem 8.3.20 With the trace operator given in Def. 8.3.16, PProfs satisfies up to isomor-
phism the axioms of a traced monoidal category.

Proposition 8.3.21 The map Seq given in Def. 8.3.5 defines the action on arrows of a
functor Seq : PProfs → Kahn, that preserves the traced monoidal structure, on objects mapping
Hn to n. Proof. (Sketch) To show that trace is preserved, we use Lem. 8.3.15 formulation 4)
of securedness and Prop. 8.3.19. 2

We end this section with an important remark, namely that the secured trace can be defined
as the composition of two functors on hom-categories; first a functor restricting to secured
states and then a colimit, by using a standard construction of the subdivision category [82]
which allows any coend to be expressed as a colimit. The details of this definition of the trace
operator can be found in App. 8.7. Below we will benefit from the colimit formulation of the
trace.
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8.4 Some Consequences

We will briefly go through some of the consequences of the categorical semantics of dataflow
given in the two previous sections.

8.4.1 A Bisimulation Congruence

The presentation of models for concurrency as categories allows us to apply a general notion
of bisimulation from spans of open maps proposed in [71]. The general idea is to identify a
path category P ↪→ M as a subcategory of the model M, with objects representing runs or
histories and morphisms compatible extensions of these. For a presheaf model P̂ the canonical
choice of path category is the category P under the Yoneda embedding. A morphism is then
said to be open if it reflects extensions of histories, and two objects are said to be open map
bisimilar if they are connected by a span of (surjective) open maps.

Definition 8.4.1 Let f : X → Y be a morphism in P̂. Then f is open if for any arrow
e : P → Q of P the square

X(Q) //Xe

��

fQ

X(P )

��

fP

Y (Q) //Y e
Y (P )

is a quasi-pullback. Two presheaves X and Y in P̂ are open map bisimilar if they are related
by a span of surjective open maps.

Recall that a port profunctor X : Hn
//⊥ Hm can be viewed as a presheaf in ̂Hn

op × Hm and
so we get a canonical notion of bisimulation from open maps as defined above.

As for the presheaves as transition systems in [147], the open map bisimulation can be
characterised as a back-&-forth bisimulation between the associated port automata.

Proposition 8.4.2 Let Xi : Hn
//⊥ Hm and A(Xi) = (Si, ri,−→i, [n] , [m] ) for i ∈ {1, 2}. X1

and X2 are open map bisimilar iff A(X1), A(X2) are back-&-forth bisimilar: There exists a
relation R ⊆ S1 × S2 such that (r1, r2) ∈ R and

• (s, s′) ∈ R & t
φ−→1 s⇒ ∃t′. t′

φ−→2 s
′ & (t, t′) ∈ R,

• (s, s′) ∈ R & s
φ−→1 t⇒ ∃t′. s′

φ−→2 t
′ & (t, t′) ∈ R,

• (s, s′) ∈ R & t′
φ−→2 s

′ ⇒ ∃t. t φ−→1 s & (t, t′) ∈ R,

• (s, s′) ∈ R & s′
φ−→2 t

′ ⇒ ∃t. s φ−→1 t & (t, t′) ∈ R.

It is important to check that our notion of bisimulation on PProfs is a congruence with
respect to the operations tensor and trace. Here we can exploit some general properties of
open maps and so bisimulation on presheaves: the product of (surjective) open maps in a
presheaf category is (surjective) open [69]; any colimit-preserving functor between presheaf
categories preserves (surjective) open maps [23]. The proof that trace on PProfs preserves
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f
A+

A−

B+

B−
f

A+ B+

B− A−is implemented by

Figure 8.6: A process with bi-directional I/O implemented by an uni-directional process.
Dotted lines indicate channels that play the opposite role in the higher-order model

bisimulation uses the latter property, exploiting the fact that trace can be expressed as a
colimit, first showing that S as a functor between presheaf categories preserves open maps.
The proof of the corresponding result for tensor rests on a construction of tensor from more
basic functors, which are all colimit-preserving and so preserve (surjective) open maps. Using
the simple fact that bisimulation is a congruence with respect to sequential composition with
a symmetry together with the generalised yanking property we can conclude that bisimulation
is a congruence with respect to all of the operations on networks as stated in the theorem
below. The details of the proof can be found in App. 8.7.

Theorem 8.4.3 Open map bisimulation in PProfs is a congruence with respect to sequential
composition, tensor and trace.

By placing dataflow within profunctors and the broader class of presheaf models, con-
structions of dataflow could be mixed with constructions from other paradigms of concurrent
computation such as those traditionally from CCS-like process calculi. As an example, a kind
of synchronous communication can be represented by the product of presheaves. In this richer
world of constructions bisimulation would appear to be the more suitable equivalence.

8.4.2 Higher-order Dataflow via Geometry of Interaction

The Geometry of interaction program was invented by Girard in his analysis of the fine
structure of cut elimination [44, 45]. His basic insight was that higher order structure could
be understood in terms of trace but this understanding was hidden in the mathematical
setting - Hilbert spaces and traces of operators - that he used. In [70] Joyal, Street, and
Verity and independently Abramsky [3] (see also [6]) gave the categorical expression of the
idea which was that a traced monoidal category could be ”completed” to yield a compact
closed category. As such it gives a method for realizing higher-order constructs in terms of
feedback. In our setting one takes the categories Kahn and PProfs and constructs compact-
closed categories HKahn and HPProfs which then serve as the interpretations of higher-order
Kahn processes and port profunctors.

We will just give the main definition, for more details see [70, 3]. Essentially, one obtains
a higher-order model by working with processes with bi-directional “input” and “output”.
These processes are implemented by uni-directional processes of the underlying category in
the obvious way, regarding negative, i.e. reversed, input channels as output channels and
negative output as input.

Definition 8.4.4 Given a traced monoidal category C we define a new category G(C) as
follows. The objects of G(C) are pairs of objects (A+, A−) of C. A morphism f : (A+, A−)→
(B+, B−) of G(C) is a C-morphism f : A+ ⊗ B− → B+ ⊗ A−, as illustrated in Fig. 8.6.
Composition is implemented using composition, trace and symmetries of C to connect channels
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f g
A+ C+

B−

B+

C− A−

Figure 8.7: Implementation of composition in the higher-order model using symmetries and
trace

f
A+

A−

B+

B−
f

B−

B+

A−

A+

Figure 8.8: The duality is obtained by swapping the roles of the channels

with same polarity, ie. for g : (B+, B−) → (C+, C−), f ; g is implemented, as illustrated in
Fig. 8.7, by

TrB
−

A+⊗C−,C+⊗A−((IA+ ⊗ σ); (f ⊗ IC−); (IB+ ⊗ σ′); (g ⊗ IA−); (IC+ ⊗ σ′′)) ,

for the appropriate symmetries σ, σ′ and σ′′.

Note that C embeds into G(C) as arrows with no negative flow, mapping objects A to (A, I).
A symmetric monoidal structure � is defined on objects by (A+, A−) � (B+, B−) = (A+ ⊗
B+, B− ⊗ A−). An obvious duality is defined on objects by (A+, A−)∗ = (A−, A+), and on
arrows by swapping the roles of channels as illustrated in Fig. 8.8.

This defines a contravariant functor (−)∗ : G(C) → G(C). Internal hom sets are given
by (A+, A−) −◦ (B+, B−) = (B+, B−) � (A+, A−)∗, giving an involution as illustrated by
Fig. 8.9.

We can now directly apply the above construction to the category Kahn, obtaining a
category G(Kahn) of higher order Kahn processes, which we will denote by HKahn. Since
PProfs is a bicategory, only satisfying the axioms of a TMC up to isomorphism, G(PProfs)
will not be a category, e.g. composition is only associative up to isomorphism. There may be
several ways around this problem. It is likely to be the case, that by making precise what it
means to be a traced monoidal bicategory one can show that G(PProfs) is a compact closed
bicategory. This should be related to the work in [76]. Another possibility is to consider the
quotient of PProfs with respect to open map bisimulation, analogous to the definition of the
category ASProc in [4, 43]. That is, instead of PProfs use the category with objects being
path categories as usual, but taking arrows to be equivalence classes with respect to open

f
A+

A−

B+

B−
f

A+ ⊗B−

B+ ⊗A−

Figure 8.9: Involution
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Ai F

Figure 8.10: The fork process F regarded as a higher-order process, applied to the automata
Ai

map bisimulation. By Thm. 8.4.3 this is indeed well defined and it is easy to check that we
get a traced (strict) symmetric monoidal category.

Below we will simply let HPProfs refer to a higher order (possibly bi)category constructed
using the G construction without making explicit how the problem is managed.

Since the functor Seq from PProfs to Kahn preserves tensor and trace it extends to one
between the higher-order categories.

Proposition 8.4.5 We have a functor HSeq : HPProfs → HKahn, defined using Seq on the
base category.

The higher order structure of HKahn and HPProfs has a very intuitive interpretation in the
underlying categories Kahn and PProfs as plugging networks into contexts. As an example,
the fork process F : H1

//⊥ H1 ⊗ H1 which was used in definining the context C[−] of Sect.
8.1.1 implements the higher order process F : (H1,H1) → (H1, I) which can be regarded as
the process F : (H1 −◦ H1)→ H1 writing H1 as short for (H1, I). The processes Ai : H1

//⊥ H1

implements higher order processes Ai : (H1, I) → (H1, I) which by the involution can be
regarded as processes Ai : I → (H1 −◦ H1) (again writing H1 as short for (H1, I)). Now
the processes C[Ai] are simply the processes Ai;F obtained by composition as illustrated in
Fig. 8.10.

8.5 Concluding Remarks

The upshot of the work in this paper is a treatment of dataflow that unifies different phenom-
ena - asynchrony and synchrony in our case - and different viewpoints of dataflow networks:
dataflow composition as relational composition, dataflow processes as categorical constructs
and the concrete views of dataflow networks as port automata and as sequences of events en-
coding causality. In particular, dataflow feedback is shown as an instance of a trace operation
in a category and this allows one to adapt the ideas from the geometry of interaction program
to give a smooth treatment of higher-order processes. The higher-order models should be
compared to the work in [4]. It also remains to explore systematically the full family of mod-
els for dataflow, relating automata, event structure and traces-based models to the relational
model, following the pattern set in [146]. Work is underway on a bicategory of (higher order)
port automata. This will provide further operational support to the trace on port profunctors
and help in the understanding of independence at higher-order. Early attempts have been
made to incorporate fairness into the profunctor model; it is hoped to exploit independence
along the lines in [26] and include maximal or completed observations.
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8.6 Traced Monoidal Properties of PProfs

We begin with a lemma stating the simple fact that symmetries correspond simply to re-
ordering of channels when viewed as automata. Recall that we refer to symmetries by
σn,n′ : Hn ⊗Hn′ → Hn′ ⊗Hn. We will abuse notation and also use σn,n′ : [n+ n′]→ [n′ + n] to
refer to the corresponding permutation on [n + n′], mapping j ∈ [n + n′] to j + n′ if j < n
and to j − n if j ≥ n.

Lemma 8.6.1 Let X : Hn ⊗ Hn′ → Hm ⊗ Hm′ and A(X) = (S, r,−→, [n + n′], [m + m′]).
Then A(σn′,n;X;σm,m′ ) ∼= (S, r,−→σ, [n′ + n], [m′ +m]), where the transition relation −→σ

is defined by

• s i av−→σ s
′ if s i a′v−→ s′, for a′ = σn′,n(a) and

• s o bv−→σ s
′ if s o b′v−→ s′, for b = σm,m′(b′).

We now show that the generalised yanking condition is satisfied.

Lemma 8.6.2 Let X : Hn → Hp and Y : Hp → Hm. Then there is a (natural) isomorphism

Trp((X ⊗ Y );σp,m) ∼= X;Y .

Proof. Using Lem. 8.6.1 it is easy to show that for all s =
(
(α, γ, β, γ), x

)
of A

(
(X⊗Y );σp,m

)
,

s is p-secured. This gives that Trp((X ⊗ Y );σp,m) = Tr
Hp

Hn,Hm
((X ⊗ Y );σp,m). The desired

result then follows from Prop. 8.3.4. 2

This is the first step in showing that the trace as given by Def. 8.3.16 satisfies all the properties
of a traced monoidal category. Next we show that trace distributes through tensor.

Lemma 8.6.3 Let X : Hn ⊗ Hp
//⊥ Hm ⊗ Hp and Y : Hn′ → Hm′ . Then there is a (natural)

isomorphism

Trpm′+m,n′+n(Y ⊗X) ∼= Y ⊗ Trpm,n(X) .

Proof. Let N = [p . . . n + p − 1], M = [p . . . m + p − 1], N ′ = [n + p . . . n′ + n + p − 1],

M ′ = [m+ p . . .m′ + n+ p− 1] and define iN−→, iN ′
−→, oM−→ and oM ′

−→ as in Def. 8.3.9. We then
show that for all states s of A

(
Y ⊗X

)
, it holds that

r
iN∪N ′
−→ ∗t =⇒p

∗t′
oM∪M ′
−→ ∗s

if and only if

r
iN−→∗t =⇒p

∗t′
oM−→∗ iN ′

−→∗ oM ′
−→∗s .

It follows that the (natural) isomorphism

Trpm′+m,n′+n(Y ⊗X) ∼= Y ⊗ Trpm,n(X) ,

which holds for the trace as given by the coend restricts to one for the restricted coend. 2
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The proof of the Bekic property follows the same procedure, showing that the (natural)
isomorphism existing in PProf expressing the Bekic property5 restricts to a (natural) isomor-
phism in PProfs. Here we make crucial use of the stability condition. Indeed there exist a
simple, non-stable port profunctor for which the Bekic property is not satisfied.

Lemma 8.6.4 Let X : Hn ⊗ Hp ⊗ Hq
//⊥ Hm ⊗ Hp ⊗ Hq. Let x be a state of A(X). Then

x is (p+q)-secured ⇔ [x]∼q is a p-secured state in Trqn+p,m+p(X).

Proof. Let N = [p + q . . . n + p + q − 1], M = [p + q . . .m + p + q − 1] and P = [q . . . p +

q − 1]. Let =⇒p∼q=def (∼q
o c,v−→∼q

i c,v−→∼q)∪ ∼q, for c ∈ P . This can be read as “feedback of
(atmost) one value on a port in P upto back&forth communication on the ports below q”.

Let iN−→∼q=def∼q
i a,v−→∼q for a ∈ N and oM−→∼q=def∼q

o b,v−→∼q for b ∈ M . Let iN−→ and oM−→ be
defined as in Def. 8.3.9. From Lem. 8.3.15 it is not difficult to get that [x]∼q is p-secured in
Trqn+p,m+p(X) if and only if

r(iN∪P−→ ∪ ∼q ∪
oM∪P−→ )∗x and r( iN−→∼q ∪ ∼p∼q ∪

oM−→∼q)∗x (8.14)

where ∼p∼q denote the reflexive, symmetric and transitive closure of =⇒p∼q . The first
part simply says that [x]∼q is a state of Trqn+p,m+p(X). From Lem. 8.3.18 it follows that

∼q
o c,v−→∼q

i c,v−→∼q=∼q
o c,v−→ i c,v−→∼q, for c ∈ P . Since by definition ∼q⊆∼p+q we get ∼p∼q=∼p+q.

This implies that (8.14) is equivalent to

r(iN∪P−→ ∪ ∼q ∪ oM∪P−→ )∗x, and r( iN−→ ∪ ∼p+q ∪ oM−→)∗x (8.15)

which by definition is equivalent to

r( iN−→ ∪ ∼p+q ∪ oM−→)∗x, (8.16)

which by Def. 8.3.9 is equivalent to saying that x is (p+q)-secured. 2 The lemma above

gives us that the Bekic property holds for the restricted coend in PProfs as stated below.

Proposition 8.6.5 Let X : Hn⊗Hp⊗Hq
//⊥ Hm⊗Hp⊗Hq. Then there is a (natural) isomor-

phism

Trqn+p,m+p(X) ∼= Trpn,m(Trqn+p,m+p(X))

Proof. It is a fact [82] that there is a (natural) isomorphism

Trqn+p,m+p(X) ∼= Trpn,m(Trqn+p,m+p(X))

in PProf. By Lem. 8.6.4 it follows that this isomorphism restricts to the desired isomorphism
in PProfs. 2 Using the results above and those of Sec. 8.3.2 we can now show

that the axioms of a traced monoidal category as given in Def. 8.2.1 are satisfied by PProf
and the trace operator given in Def. 8.3.16 up to isomorphism. The yanking axiom follows
directly from Lem. 8.6.2 taking both X and Y to be identities. Superposing follows directly
from Lem. 8.6.3 taking Y to be an identity. The Bekic (I) axiom is proven in Prop. 8.6.5 and
the Bekic (II) axiom is easily shown to hold. The naturality axioms can be shown following
the same pattern as the other axioms, restricting the corresponding (natural) isomorphisms
that are known to exist in PProf.

5That a “double integral” can be obtained as an “iterated” integral (dual to the proposition p.226 [82])
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8.7 Colimit formulation of Trace

We give here the formal colimit definition of the trace operator in PProfs mentioned in the
end of Sec. 8.3.2. The intuition is that the trace can be defined as the composition of two
functors on presheaf categories, the first restricting to secured states and the the second, a
colimit, hiding the internal communication.

We begin with the standard construction of the subdivision category [82] for a category
Hp. Note the definition here is the dual to that in [82] since we are concerned with coends and
not ends. For a category Hp, the subdivision category Hp

§ has as objects all arrows f : α→ β
of Hp (i.e. f = [α, β].) For each such object f , it has two arrows fo : f → 1α and fi : f → 1β ,

i.e. [α,α] [α, β]oo
fo

//
fi

[β, β]. These are the only non-identity arrows. Now we define a
functor S : PProfs[Hn ⊗ Hp,Hm ⊗ Hp] → Prof[Hn × Hp

§,Hm] as in the standard construction,
except we restrict to secured states. Let X be a profuncor in PProfs[Hn ⊗ Hp,Hm ⊗ Hp], i.e.
X : Hn⊗Hp× (Hm ⊗ Hp)op → Set. Define a functor S(X) : Hn×Hp

§×Hm
op → Set as follows.

For (γ, [α, β], δ) an object in Hn × Hp
§ × Hm

op define

S(X)(γ, [α, β], δ) = {x ∈ X
(
(γ, α), (β, δ)

)
| X

(
(1γ , 1α), ([β, α], 1δ)

)
x is p-secured },

where we have implicitly used the equivalence between Prof[Hn+p,Hm+p] and Prof[Hn ×
Hp,Hm × Hp].

For h : γ → γ′ and j : δ′ → δ arrows of respectively Hn and Hm, define for x ∈ S(X)(γ, [α, β], δ)

S(X)(h, [α, β]o, j)x = X
(
(h, 1α), ([β, α], j)

)
x and

S(X)(h, [α, β]i, j)x = X
(
(h, [α, β]), (1β , j)

)
x.

For τ : X → Y is a natural transformation in PProfs[Hn ⊗Hp,Hm ⊗Hp] define S(τ) : S(X)→
S(Y ) by

S(τ)(γ,[α,β],δ)x = τ(γ,α,β,δ)x,

for (γ, [α, β], δ) an object in Hn × Hp
§ × Hm

op.
To check this is well defined we proceed as for Def. 8.3.16 and in addition use the fact that if

x ∈ X
(
(γ, α), (β, δ)

)
and X

(
(1γ , 1α), ([β, α], 1δ)

)
x is p-secured, then X

(
(1γ , [α, β]), (1β , 1δ)

)
x

is p-secured.

Proposition 8.7.1 Let X : Hn ⊗ Hp
//⊥ Hm ⊗ Hp. Then

Trpn,m(X) ∼= ColimHp
§S(X), (8.17)

where Hp
§ is the subdivision category of Hp as defined above.

Proof. As for the standard construction. 2
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8.8 Congruence Properties of Bisimulation

We here prove that trace and tensor preserves open maps as promised in Sec. 7.4. This
implies that open map bisimulation is a congruence with respect to feedback and parallel
composition.

The crucial property we will use is that any colimit-preserving functor between presheaf
categories preserves (surjective) open maps [23].

We first show that the trace operator preserves open maps. Recall that the notion of
open maps apply canonically to any presheaf category, why we also get a notion of open map
between presheaves over (Hn × Hp

§)op×Hm. The desired result then follows from Prop. 8.7.1
if we can show that the functor S defined in App. 8.7 preserves open maps.

Lemma 8.8.1 Let X,Y : Hn⊗Hp
//⊥ Hm⊗Hp. If f : X → Y is an open natural transformation

then S(f) : S(X)→ S(Y ) is open too.

Proof. Let f : X → Y be an open natural transformation. This means that for any arrow
e : P → Q of (Hn × Hp

§)op × Hm the square

X(Q) //Xe

��

fQ

X(P )

��

fP

Y (Q) //Y e
Y (P )

(8.18)

is a quasi-pullback. We must then show that for any arrow e : P → Q of (Hn × Hp
§)op × Hm

the square

S(X)(Q) //
S(X)e

��

S(f)Q

S(X)(P )

��

S(f)P

S(Y )(Q) //
S(Y )e S(Y )(P )

(8.19)

is a quasi-pullback. It is enough to do this for a class of arrows from which all arrows can be
obtained by composition, so it suffices to consider the cases

1. e is an iso, i.e. e = (1γ , 1[α,β], 1δ) : (γ, [α, β], δ)→ (γ, [α, β], δ),

2. e = ([γ, γ′], 1[α,β], 1δ) : (γ, [α, β], δ)→ (γ′, [α, β], δ), for γ′ ≤ γ in Hn, or

3. e = (1γ , 1[α,β], [δ, δ
′]) : (γ, [α, β], δ)→ (γ, [α, β], δ′), for δ ≤ δ′ in Hm, or

4. e = (1γ , gi, 1δ) : (γ, [β, β], δ) → (γ, [α, β], δ), for gi the opposite of [α, β]i : [α, β] → [β, β]
in Hp

§ or

5. e = (1γ , go, 1δ) : (γ, [α,α], δ)→ (γ, [α, β], δ), for go the opposite of [α, β]o : [α, β]→ [α,α]
in Hp

§.

Case 1 is trivial. Intuitively, case 2 and case 3 express respectively that backtracking of input
on ports in Hn and extension of output on ports in Hm in S(Y ) can be matched in S(X).
Similarly, case 4 and case 5 express respectively that backtracking of input(communication) on
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ports in Hp and extension of output(communication) on ports in Hp in S(Y ) can be matched
in S(X).

For the cases 2-5, we use that the diagram 8.18 is a quasi-pullback and use axioms U1, U2
repeatedly. We will only go through case 2, the other cases are treated in a similar fashion.

We want to show that

S(X)(γ ′, [α, β], δ) //
S(X)([γ′,γ],1[α,β],1δ)

��

S(f)(γ′,[α,β],δ)

S(X)(γ, [α, β], δ)

��

S(f)(γ,[α,β],δ)

S(Y )(γ ′, [α, β], δ) //
S(Y )([γ′,γ],1[α,β],1δ)

S(Y )(γ, [α, β], δ)

(8.20)

is a quasi-pullback. Assume that x ∈ S(X)(γ, [α, β], δ), y ∈ S(Y )(γ, [α, β], δ) and y′ ∈
S(Y )(γ ′, [α, β], δ), such that S(f)(γ′,[α,β],δ)x = y and S(Y )([γ ′, γ], 1[α,β], 1δ)y

′ = y. We must
then show that there exists x′ ∈ S(X)(γ ′, [α, β], δ) such that

S(X)([γ ′, γ], 1[α,β], 1δ)x
′ = x (8.21)

and

S(f)(γ,[α,β],δ)x
′ = y′. (8.22)

Now, by using the definition of S the assumption gives us that x ∈ X
(
(γ, α), (β, δ)

)
, y ∈

Y
(
(γ, α), (β, δ)

)
and y′ ∈ Y

(
(γ ′, α), (β, δ)

)
, such that f(γ′,α,β,δ)x = y and Y

(
([γ ′, γ], 1α), (1β , 1δ)

)
y′ =

y. Furthermore we have that w = X
(
(1γ , 1α), ([β, α], 1δ)

)
x is p-secured. By Eq. 8.18 being

a quasi-pullback, there exists an x′ ∈ X
(
(γ ′, α), (β, δ)

)
such that X

(
([γ ′, γ], 1α), (1β , 1δ)

)
x′ =

x and f(γ,α,β,δ)x
′ = y′. If we can show that x′ ∈ S(X)(γ ′, [α, β], δ) then Eq. 8.22 and

Eq. 8.21 follows by definition and the proof is completed. We only need to show that
w′ = X

(
(1γ′ , 1α), ([β, α], 1δ)

)
x′ is p-secured. Now, note that w

oφ1−→ oφ2−→ · · · oφn−→ x for β =

αφ1φ2 . . . φn, and x′
iψ1−→ iψ2−→ · · · iψn−→ x for γ = γψ1ψ2 . . . ψn. By repeated use of Ax. U2 we

get z
oφ1−→ oφ2−→ · · · oφn−→ x′ such that z

iψ1−→ iψ2−→ · · · iψn−→ w. Since w is p-secured it finally follows
by repeated use Axioms U1, U2 and A4 that z is p-secured. Finally, since w′ oφ1−→ oφ2−→ · oφn−→ x′

it follows by repeated use of Ax. U1 that w′ = z. 2 2

Proposition 8.8.2 Let X,Y : Hn ⊗ Hp
//⊥ Hm ⊗ Hp. If f : X → Y is an open natural trans-

formation then Trpn,m(f) : Trpn,m(X)→ Trpn,m(Y ) is open too.

Proof. Note that ColimHp
§ is obviously a colimit preserving functor between presheaf cat-

egories, i.e. it preserves open maps. The desired result then follows from Prop. 8.7.1 and
Lem. 8.8.1. 2

The proof that tensor preserves open maps is simpler than the one for trace, we simply
show that tensor can be defined from colimit preserving functors.

Proposition 8.8.3 Let X,X ′ : Hn1
//⊥ Hm1 and Y, Y ′ : Hn2

//⊥ Hm2 . If f : X → X ′ and g : Y →
Y ′ are open natural transformations then f ⊗ g : X ⊗ Y → X ′ ⊗ Y ′ is open too.
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Proof. The tensor of X : Hn1
//⊥ Hm1 and Y : Hn2

//⊥ Hm2 can be expressed as a product of
presheaves over Hn1

op × Hm1 × Hn2
op × Hm2 :

X ⊗ Y = (π∗1X)× (π∗2Y )

where e.g.

π∗1 : [Hn1 × Hm1
op,Set]→ [Hn1 × Hm1

op × Hn2 × Hm2
op,Set]

is obtained by composition with the projection

π1 : Hn1 × Hm1
op × Hn2 × Hm2

op → Hn1 × Hm1
op,

so π∗1(X)(α1, β1)(α2, β2) = X(α1, β1). For general reasons π∗1 has a right adjoint (constructed
as a right Kan extension - see [82, 23]). Thus π∗1 and, similarly, π∗2 are left adjoints and so
preserve (surjective) open maps. Combined with the similar fact about product of presheaves
we deduce that ⊗ preserves (surjective) open maps. 2
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