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Abstract

The (in)equational properties of the least fixed point operation on
(ω-)continuous functions on (ω-)complete partially ordered sets are
captured by the axioms of (ordered) iteration algebras, or iteration
theories. We show that the inequational laws of the sum operation in
conjunction with the least fixed point operation in continuous additive
algebras have a finite axiomatization over the inequations of ordered
iteration algebras. As a byproduct of this relative axiomatizability re-
sult, we obtain complete infinite inequational and finite implicational
axiomatizations. Along the way of proving these results, we give a con-
crete description of the free algebras in the corresponding variety of
ordered iteration algebras. This description uses injective simulations

∗Partially supported by grant no. FKFP 247/1999 from the Ministry of Education of
Hungary and grant no. T30511 from the National Foundation of Hungary for Scientific
Research.

†The work reported in the paper was partly carried out while visiting BRICS
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of regular synchronization trees. Thus, our axioms are also sound and
complete for the injective simulation (resource bounded simulation) of
(regular) processes.
Keywords: equational logic, fixed points, synchronization trees, simu-
lation.

1 Introduction

Consider the language of µ-terms given by the syntax

T ::= x | σ(

n−times︷ ︸︸ ︷
T, . . . , T ) | T + T | 0 |µx.T,

where x ranges over a countably infinite set of variables, and for each n ≥ 0,
σ ranges over a set of n-ary function symbols of a signature Σ. Such terms
may be interpreted as (ω-)continuous functions on (ω-)continuous additive
algebras equipped with both an additive structure and a (ω-)complete par-
tial order such that addition and the functions induced by the letters of Σ
are ω-continuous, the additive neutral element 0 is also the least element
with respect to the partial order, and where terms of the form µx.t denote
least (pre-)fixed points. We show that under these interpretations the valid
(in)equations between µ-terms possess a finite axiomatization over the ax-
ioms of ordered iteration algebras (or iteration theories) [9, 19]. In fact, we
show that the following set of (in)equations is relatively complete.

x+ (y + z) = (x+ y) + z (1)

x+ y = y + x (2)

x+ 0 = x (3)

µx.x = 0 (4)

0 ≤ x (5)

µx.µy.x+ y + z = µx.x+ z (6)

(As usual, the scope of the prefix µx extends to the right as far as possible.)
Thus, using known completeness results on iteration algebras, see [9, 17, 19],
we obtain complete infinite equational and finite implicational axiomatiza-
tions. In fact, it follows that the system consisting of the above (in)equations,
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the two Conway identities

µx.t[t′/x] = t[µx.t′[t/x]/x] (7)

µx.t[x/y] = µx.µy.t (8)

and an equation associated with each finite (simple) group is complete (in
the ordered setting). Moreover, the implicational system consisting of (1) –
(4), (6), the fixed point equation

µx.t = t[µx.t/x] (9)

and the least pre-fixed point rule (or fixed point induction) [3, 32]

t[y/x] ≤ y ⇒ µx.t ≤ y (10)

is also complete. We also show that there is no finite equational axiomatiza-
tion. Along the way of proving these results, we give a concrete description
of the free algebras in the corresponding variety of iteration algebras. This
description uses injective simulations [33] of regular synchronization trees
[30]. Our results complement those proved in [10] and [20] to the effect that
isomorphism classes of regular synchronization trees form the free iteration
algebras satisfying equations (1) – (4) and (6) (see also [14] for a recent re-
lated result), bisimulation equivalence classes of regular synchronization trees
form the free ordered iteration algebras satisfying equations (1) – (4) and

µx.x+ y = y, (11)

and that simulation equivalence classes of regular synchronization trees form
the free algebras in the variety of iteration algebras satisfying (1) – (5) and
(11). As shown in [20], this latter variety is the same as that generated by the
“countinuous semilattice algebras” where + is the operation of taking binary
sups and 0 is the least element, and where the letters of Σ are interpreted as
continuous functions.

The paper is organized as follows. In Section 2 we define the various models
used in the sequel including ω-continuous additive algebras and (ordered)
iteration algebras. Section 3 contains the main completeness result Theo-
rem 3.1 and its corollaries. The proof of Theorem 3.1 given here relies on the
material proved in the subsequent sections, in particular on the description
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of the free algebras (Theorem 7.6) and the embedding theorem of Section 8.
In Section 4 we define the category of synchronization trees and (functional)
simulations, and establish a useful property of injective functional simula-
tions. In Section 5 we recall a general way of constructing iteration algebras
from initial algebras over categories. Applied to trees and functional sim-
ulations, this construction provides an iteration algebra of synchronozation
trees for each signature Σ and set A. In Section 6 we show that finite trees
equipped with the partial order defined by injective simulations form the free
algebras in a finitely axiomatizable variety of ordered algebras. Section 7
contains the corresponding result for regular trees. It is shown here that
for each signature Σ, injective simulation equivalence classes of regular trees,
equipped with the simulation order, form the free algebras in the variety of
ordered iteration algebras satisfying (1) – (6). In Section 8, we show that
every ordered iteration algebra of injective simulation equivalence classes of
synchronization trees can be embedded in an ω-continuous additive algebra.
Finally, in Section 9, we prove that for nontrivial signatures Σ, the variety
of ordered iteration algebras generated by the ω-continuous Σ-algebras and
axiomatized by the axioms of ordered iteration algebras and the equations
(1) – (6) cannot be defined by a finite number of equation schemes.

2 The models

2.1 Countably complete posets and continuous func-
tions

A poset (P,≤) is called ω-complete if P has a least element ⊥P and sups
∨
D

of all countable directed sets D ⊆ P (or sups of all ω-chains). It is clear that
the direct product

∏
i∈I Pi of any number of ω-complete posets Pi, i ∈ I,

equipped with the pointwise order, is ω-complete. In particular, any direct
power P I of an ω-complete poset is ω-complete. For ω-complete posets P
and Q, a function f : P −→ Q is called ω-continuous if it preserves the sup
of any countable directed set, or equivalently, the sup of any ω-chain. It
follows that any ω-continuous function is monotonic. Clearly, the composite
of ω-continuous functions is ω-continuous. When Pi, i ∈ I are ω-complete,
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the projections prj :
∏

i∈I Pi −→ Pj are ω-continuous, as is the target tupling
of ω-continuous functions.

Given a poset P and a monotonic function f : P −→ P , a pre-fixed point of
f is any element a ∈ P with f(a) ≤ a. If f(a) = a, then a is called a fixed
point. The least pre-fixed point of f , when exists, is unique, and necessarily
a fixed point. The following fact is well-known.

Proposition 2.1 Suppose that P and Q are ω-complete posets and f is
an ω-continuous function P −→ Q. Then for each b ∈ Q the ω-continuous
function fb = f(−, b) : P −→ P has a least pre-fixed point denoted f †(b).
Moreover, f † is an ω-continuous function Q −→ P .

In fact, f †(b) can be constructed as the sup of the ω-chain (fn
b (⊥P ))n≥0.

2.2 Additive algebras

A signature is a set Σ equipped with a rank function assigning a nonnegative
integer rank to each function symbol in Σ. For each n ≥ 0, we will write Σn

for the collection of all symbols of rank n. A Σ-algebra is a set A equipped
with an operation σA : An −→ A, for each n ≥ 0. We will write (A,Σ) or just
A to denote a Σ-algebra, and we will sometimes omit the subscript A on the
operations. Morphisms of Σ-algebras are defined in the usual way.

When Σ is a signature, let Σ+,0 denote the signature that results by adding to
Σ the symbol + of rank 2 and the symbol 0 of rank 0. An additive Σ-algebra
A = (A,Σ,+, 0) is both a Σ-algebra and a commutative monoid (A,+, 0).
An ordered additive Σ-algebra is an additive Σ-algebra A equipped with a
partial order ≤ such that the operations, including the sum operation, are
monotonic, and such that the inequation (5) holds, so that 0 is the least
element of A. Since the sum operation is monotonic, it follows that the
inequation

x ≤ x+ y (12)

holds in all ordered additive Σ-algebras. Note that additive Σ-algebras form
a variety of Σ+,0-algebras, and ordered additive algebras form a variety of

5



ordered Σ+,0-algebras. A morphism of (ordered) additive algebras is a (mono-
tonic) Σ-algebra morphism which also preserves the sum operation and the
constant 0. (For varieties of algebras see any standard text on universal
algebra such as [23]. For varieties of ordered algebras see [8].)

Any ordered additive Σ-algebra A may also be equipped with the sum order
[29] defined by

a v b ⇔ ∃c a+ c = b.

By (12), it follows that a ≤ b whenever a v b. The + operation is monotonic
with respect to the sum order. However, the other operations may not be
monotonic with respect to v.

2.3 ω-continuous additive algebras

An ω-continuous additive Σ-algebra A has three structures:

1. A Σ-algebra structure (A,Σ).

2. A commutative monoid structure (A,+, 0A).

3. An ω-complete partial order structure (A,≤,⊥A).

Moreover, it is required that ⊥A = 0A and that the operations σA as well as
the operation + be ω-continuous. Since ⊥A = 0A and ⊥A is least, (5) holds.
A morphism of ω-continuous additive algebras is an ω-continuous additive
Σ-algebra morphism.

In any ω-continuous additive Σ-algebra A, we may define all countable sums.
Indeed, if ai ∈ A for all i ∈ I, where I is countable, define∑

i∈I

ai =
∨
F

∑
i∈F

ai,

where the sup is taken over all finite sets F ⊆ I. It is easy to see that for all
countable sets I, J such that I is the disjoint union of sets Ij, for j ∈ J , and
for all families ai ∈ A, i ∈ I,∑

i∈I

ai =
∑
j∈J

∑
i∈Ij

ai.
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Thus, any ω-continuous additive Σ-algebra has an underlying countably com-
plete monoid [29, 27]. Moreover, any morphism of ω-continuous additive Σ-
algebras preserves all countable sums. Note that any ω-continuous additive
Σ-algebra is an ordered additive Σ-algebra. For general facts on continuous
algebras see [22, 24].

2.4 Preiteration algebras

Terms, or µ-terms over a signature Σ are defined by the syntax

T ::= x | σ(

n−times︷ ︸︸ ︷
T, . . . , T ) |µx.T,

where x ranges over a countably infinite set X of variables, and for each
n ≥ 0, σ ranges over Σn. Thus, the terms defined in the Introduction are
in fact terms over the signature Σ+,0. The sets of free and bound vari-
ables of a term are defined as usual. We identify any two µ-terms that
differ only in the names of the bound variables. Moreover, for any µ-terms
t, t1, . . . , tn and distinct variables x1, . . . , xn, we write t[t1/x1, . . . , tn/xn] or
t[(t1, . . . , tn)/(x1, . . . , xn)] for the term obtained by simultaneously substitut-
ing ti for xi, for each i ∈ [n] = {1, . . . , n}. Since we may assume that the
bound variables in t are different from the variables that have a free occur-
rence in the terms ti, no free variable in any ti may become bound as the
result of the substitution.

Terms over Σ+,0 can be interpreted in any ω-continuous additive Σ-algebra A.
For each term t, we define an ω-continuous map tA : AX −→ A by structural
induction.

1. If t is a variable x, then tA = prx is the corresponding projection
AX −→ A.

2. If t = σ(t1, . . . , tn), where σ ∈ Σn, n ≥ 0, and t1, . . . , tn are µ-terms,
then tA = σA ◦ 〈(t1)A, . . . , (tn)A〉, the composite of σA with the target
tupling of the functions (ti)A.

3. If t = t1 + t2, then tA = + ◦ 〈(t1)A, (t2)A〉.
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4. If t = 0, then tA is the constant function AX −→ A with value 0A.

5. If t = µx.t′, for some variable x and µ-term t′, then let Y = X − {x},
and let prx and prY denote the corresponding projections AX −→ A
and AX −→ AY . We define tA = f † ◦ prY , where f : A × AY −→ A is
the continuous function t′A ◦ 〈prx, prY 〉−1, i.e., the composite of t′A with
the inverse of the order isomorphism 〈prx, prY 〉 : AX −→ A× AY .

Thus, if t = µx.t′, then for each a ∈ AX , (µx.t)A(a) is the least pre-fixed
point of the continuous function A −→ A,

b 7→ t′A(ax
b ),

where ax
b ∈ AX agrees with a except that it maps x to b.

A preiteration Σ+,0-algebra is a set A together with an assignment of a func-
tion tA : AX −→ A to each term t over Σ+,0 subject to the following rules:

1. For each variable x and a ∈ AX , xA(a) = a(x), i.e., xA is the projection
AX −→ A corresponding to x.

2. If a, b ∈ AX are such that a(x) = b(x) for all variables x with a free
occurrence in t, then tA(a) = tA(b).

3. For all terms t, t1, . . . , tn and a ∈ AX ,

(t[t1/x1, . . . , tn/xn])A(a) = tA(b),

where b(xi) = (ti)A, i ∈ [n], and b(x) = a(x), if x 6∈ {x1, . . . , xn}.
4. For all terms t, t′ over Σ+,0, if tA(a) = t′A(a) for all a ∈ AX , then

also (µx.t)A(a) = (µx.t′)A(a), for all a ∈ AX , i.e., if tA = t′A, then
(µx.t)A = (µx.t′)A.

A morphism A −→ B of preiteration Σ+,0-algebras is a function h : A −→ B
such that the following square commutes for each term t:

BX B-
tB

AX A-tA

?

hX

?

h
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Here, hX denotes the function a 7→ a′ such that a′(x) = h(a(x)), for all
x ∈ X. If A and B are preiteration Σ+,0-algebras such that A is a subset
of B and the inclusion of A into B is a morphism, we call A a preiteration
subalgebra of B. Moreover, if h is a surjective morphism A −→ B, then we
call B a quotient of A.

An ordered preiteration Σ+,0-algebra is a preiteration Σ+,0-algebra A which
is a partially ordered set such that the function tA induced by any term t is
monotonic, and for any terms t, t′, if tA ≤ t′A in the pointwise order, then
(µx.t)A ≤ (µx.t′)A. Thus, any ordered preiteration Σ+,0-algebra satisfies the
implication

x ≤ y ⇒ t ≤ t[y/x].

(See below for a general treatment of (in)equations and implications.) A mor-
phism of ordered preiteration Σ-algebras is a monotonic preiteration Σ+,0-
algebra morphism. If A and B are ordered preiteration Σ+,0-algebras, we call
A an ordered preiteration subalgebra of B if A is a preiteration subalgebra of
B and the partial order on A is the partial order induced by the order on B,
i.e., when the inclusion of A into B is order reflecting. Moreover, we call B
a quotient of A if there is a surjective ordered preiteration algebra morphism
A −→ B. Note that every preiteration Σ+,0-algebra can be regarded as an
ordered preiteration Σ+,0-algebra equipped with the discrete partial order
which is preserved by any morphism. The following fact is clear.

Proposition 2.2 Every ω-continuous additive Σ-algebra is an ordered pre-
iteration Σ+,0-algebra. If A and B are ω-continuous additive Σ-algebras, and
if h : A −→ B is an ω-continuous additive Σ-algebra morphism, then h is an
ordered preiteration Σ+,0-algebra morphism.

Suppose that A and B are preiteration Σ+,0-algebras and h is a morphism
A −→ B. The kernel of h, denoted θh, is defined in the usual way. It is
immediate that θh is an equivalence relation on A that satisfies the following
condition: If a, b ∈ AX such that a(x) θh b(x), for all x ∈ X, then for any
µ-term t over Σ+,0, tA(a) θh tA(b). Moreover, if tA(a) θh t

′
A(a), for all a ∈ AX ,

then (µx.t)A(a) θh (µx.t′)A(a) for all a ∈ AX . An equivalence relation θ on A
with these properties is called a preiteration Σ+,0-algebra congruence, or just
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congruence, for short. It is clear that the quotient set A/θ can be turned
into a preiteration Σ+,0-algebra in a unique way such that the natural map
A −→ A/θ becomes a morphism. If A and B are ordered preiteration Σ+,0-
algebras and h : A −→ B is a morphism of ordered preiteration Σ+,0-algebras,
then h determines a preorder ≤h on A defined by a ≤h b iff h(a) ≤ h(b). This
preorder is compatible in the sense that if a, b ∈ AX such that a(x) ≤h b(x),
for all x ∈ X, then for any µ-term t over Σ+,0, t(a) ≤h t(b). Moreover, if
a, b ∈ A with a ≤ b, then a ≤h b, and if tA(a) ≤h t′A(a), for all a ∈ AX ,
then (µx.t)A(a) ≤h (µx.t′)A(a) for all a ∈ AX . If ≤′ is a preorder on A
satisfying these conditions, then let θ denote the equivalence relation induced
by ≤′ on A. The set A/θ, equipped with the partial order induced by ≤′

on the θ-equivalence classes, also denoted ≤′, can be turned into an ordered
preiteration algebra in a unique way such that the natural map A −→ A/θ
becomes an ordered preiteration Σ+,0-algebra morphism.

Suppose that t and t′ are terms over Σ+,0. We say that the equation (or
identity) t = t′ holds in a preiteration Σ+,0-algebra A, or that A satisfies the
equation t = t′, if for all a ∈ AX ,

tA(a) = t′A(a),

i.e., when the functions tA and t′A are equal. Similarly, we say that an in-
equation t ≤ t′ holds in an ordered preiteration Σ+,0-algebra A, or that A
satisfies t ≤ t′, if tA ≤ t′A in the pointwise order of functions. Thus, t = t′

holds in an ordered preiteration Σ+,0-algebra iff both t ≤ t′ and t′ ≤ t hold.
More generally, we say that the implication

t1 = t′1 ∧ . . . ∧ tn = t′n ⇒ t = t′ (13)

holds in a preiteration Σ+,0-algebra A, where t, t′, ti, t′i are terms over Σ+,0,
if for all a ∈ AX , if (ti)A(a) = (t′i)A(a), for all i ∈ [n], then tA(a) = t′A(a). In
a similar way, we can define that an implication

t1 ≤ t′1 ∧ . . . ∧ tn ≤ t′n ⇒ t ≤ t′ (14)

holds in an ordered preiteration Σ+,0-algebra.
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2.5 Iteration algebras

Some nontrivial (in)equations that hold in all ω-continuous additive Σ-al-
gebras are the (in)equations (1) – (9) given in the Introduction. To define
the group-equations, we need to extend the µ-notation to term vectors t =
(t1, . . . , tn). Let x = (x1, . . . , xn) be a vector of distinct variables. When
n = 1, µx.t is just the term vector whose unique component is µx1.t1. We
identify any term vector of dimension one with its component. If n > 1, let
x′ = (x1, . . . , xn−1), t

′ = (t1, . . . , tn−1) and s = t′[µxn.tn/xn]. (Substitution
into a term vector is defined component-wise.) We define

µx.t = (µx′.s, (µxn.tn)[µx′.s/x′]). (15)

The definition is motivated by the Bekić–de Bakker–Scott identity [6, 3].
Thus, for any ω-continuous Σ+,0-algebra A, term vector t = (t1, . . . , tn) of
dimension n, and for any x = (x1, . . . , xn) and a ∈ AX , (µx.t)A(a) is the
least pre-fixed point of the map An −→ An,

b = (b1, . . . , bn) 7→ tA(ax
b ),

where of course ax
b (xi) = bi, for all i ∈ [n], and ax

b (x) = a(x), if x 6∈
{x1, . . . , xn}.
Suppose that t = (t1, . . . , tn) and t′ = (t′1, . . . , t

′
n) are term vectors. We will

say that t ≤ t′ holds in an ordered preiteration Σ+,0-algebra if each inequation
ti ≤ t′i does. For later use, we note the following fact.

Lemma 2.3 If t ≤ t′ holds in an ordered preiteration Σ+,0-algebra A, then
µx.t ≤ µx.t′ also holds in A.

Proof. By induction on n using (15). The basis case n = 1 is part of the
assumption that A is an ordered preiteration Σ+,0-algebra. 2

Suppose now that G is a finite group of order n with multiplication denoted
◦. Moreover, suppose that the elements of G are the integers in the set [n].
Given a vector x = (x1, . . . , xn) of distinct variables and an integer i ∈ [n],
define

i ◦ x = (xi◦1, . . . , xi◦n).

11



Thus, i ◦ x is obtained by permuting the components of x according to the
ith row of the multiplication table of G. The group-identity or group-equation
associated with G is the equation

(µx.(t[1 ◦ x/x], . . . , t[n ◦ x/x]))1 = µy.t[y/x1, . . . , y/xn],

where t is any µ-term over Σ+,0 and y is a (new) variable, and where (µx.(t[1 ◦
x/x], . . . , t[n ◦ x/x]))1 is the first component of the term vector µx.(t[1 ◦
x/x], . . . , t[n ◦ x/x]).

An iteration Σ+,0-algebra is a preiteration Σ+,0-algebra satisfying the equa-
tions (7), (8), as well as any group-identity. A morphism of iteration algebras
is a preiteration algebra morphism. An ordered iteration Σ+,0-algebra is an
iteration Σ+,0-algebra which is an ordered preiteration Σ+,0-algebra. Mor-
phisms of ordered iteration Σ+,0-algebras also preserve the partial order. We
call an (ordered) preiteration subalgebra of an (ordered) iteration algebra
an (ordered) iteration subalgebra. Note that any quotient of an (ordered)
iteration algebra is an (ordered) iteration algebra. and every iteration Σ+,0-
algebra may be regarded as an ordered iteration Σ+,0-algebra equipped with
the discrete partial order.

We mention a generalization of the group-identities, called the commutative
identities. Suppose that ρ1, . . . , ρn are mappings [n] −→ [n], where n ≥ 1.
For each ρi, let xρi

= (x1ρi
, . . . , xnρi

). The commutative identity associated
with the ρi is the equation

(µx.(t[xρ1/x], . . . , t[xρn/x]))1 = µy.t[y/x1, . . . , y/xn],

where t is any term over Σ+,0 and y is a new variable. It is shown in [19] that
the commutative identities hold in all iteration algebras. (In fact, the original
axiomatization of iteration algebras was based on the Conway identities and
the “vector forms” of the commutative identities, cf. [9].)

Proposition 2.4 Any ω-continuous additive Σ-algebra is an ordered itera-
tion Σ+,0-algebra satisfying (1) – (6). Moreover, the least pre-fixed point rule
(10) holds in any ω-continuous additive Σ-algebra.

Proof. It is shown in [9, 17] that for any signature ∆, every ω-continuous
∆-algebra is an ordered iteration ∆-algebra. In fact, when ∆ = Σ+,0, or-
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dered iteration ∆-algebras satisfying (5) form the variety generated by the ω-
continuous ∆-algebras. (See below for the definition of varieties of (ordered)
preiteration algebras.) Applying the easy direction of this general result,
we obtain that every ω-continuous additive Σ-algebra is an ordered iteration
Σ+,0-algebra satisfying (5). It is also immeadiate that any ω-continuous ad-
ditive Σ-algebra A satisfies (1) – (4) and the least pre-fixed point rule (10).
As for (6), note that for any a ∈ A, both µx.µy.x + y + z and µx.x + z
evaluate to the sum of a countable number of copies of a, when z is given
the value a. 2

The least pre-fixed point rule may be weakened. We will say that an ordered
preiteration Σ+,0-algebra satisfies the weak least pre-fixed point rule if for all
terms t = t[x] and t′, if the inequation t[t′/x] ≤ t′ holds in A, then so does
µx.t ≤ t′, i.e. when (t[t′/x])A ≤ t′A implies (µx.t)A ≤ t′A.

Theorem 2.5 [17] Any ordered preiteration Σ+,0-algebra A satisfying the
fixed point identity (9) and the (weak) least pre-fixed point rule is an ordered
iteration algebra.

A variety of (ordered) preiteration Σ+,0-algebras is a class V of (ordered)
Σ+,0-algebras consisting of the models of some set E of (in)equations be-
tween terms over Σ+,0, i.e., such that an (ordered) preiteration Σ+,0-algebra
A belongs to V iff A satisfies any (in)equation in E. The set E is called an
(in)equational basis, or an (in)equational axiomatization of V . Thus, itera-
tion Σ+,0-algebras form a variety of preiteration Σ+,0-algebras. This variety is
axiomatized by the equations (7), (8) and the group-equations corresponding
to the finite groups. Similarly, ordered iteration Σ+,0-algebras are axioma-
tized, in the ordered setting, by the equational axioms of iteration algebras.
A variety of (ordered) iteration algebras is a variety of (ordered) preitera-
tion algebras contained in the variety of (ordered) iteration algebras. For a
general theory of varieties of iteration algebras we refer to [9]. It is shown
in op. cit. that all infinitely generated free algebras exist in any variety of
(pre)iteration algebras, but the finitely generated free algebras do not always
exist. In fact, for any subset M of the nonnegative integers there is a variety
V of iteration algebras such that for any nonnegative integer n, there is an
n-generated free algebra in V iff n ∈ M .
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3 The completeness results

Our main completeness result is the following theorem.

Theorem 3.1 An inequation holds in all ω-continuous additive Σ-algebras
iff it holds in all ordered iteration Σ+,0-algebras satisfying the (in)equations
(1) – (6).

Proof. One direction is a restatement of one part of Proposition 2.4. For the
opposite direction, we need to show that every inequation t ≤ t′ that holds in
all ω-continuous additive Σ+,0-algebras holds in any ordered iteration Σ+,0-
algebra A satisfying (1) – (6). But any such A is a quotient of (Σ, A)ISR,
the free ordered iteration Σ+,0-algebra on the set A satisfying (1) – (6), see
Theorem 7.6. By the Embedding Theorem, Theorem 8.2, (Σ, B)ISR is an
ordered iteration Σ+,0-subalgebra of a continuous additive Σ+,0-algebra C.
Since t ≤ t′ holds in C, it also holds in A. 2

Remark 3.2 The same results holds for continuous additive Σ-algebras hav-
ing an underlying cpo such that the operations preserve the sup of any directed
set. This follows from Theorem 3.1 and the fact that each ω-continuous ad-
ditive Σ-algebra can be embedded in a continuous additive Σ-algebra.

Corollary 3.3 An inequation holds in all ω-continuous additive Σ-algebras
iff it holds in all ordered preiteration Σ+,0-algebras satisfying (1) – (4), (6),
the fixed point equation (9), and the least pre-fixed point rule (10).

Proof. Suppose that an inequation t ≤ t′ holds in all ω-continuous additive
Σ-algebras. Then, by Theorem 3.1, t ≤ t′ holds in all ordered iteration
Σ+,0-algebras satisfying the (in)equations (1) – (6). But by Theorem 2.5,
any ordered preiteration Σ+,0-algebra A satisfying (9) and (10) is an ordered
iteration algebra. Moreover, by (4) and (9), each such algebra A satisfies
the inequation 0 = µx.x ≤ y. It follows that t ≤ t′ holds in any ordered
preiteration Σ+,0-algebras satisfying (1) – (4), (6), (9), (10).

Suppose now that t ≤ t′ holds in all ordered preiteration Σ+,0-algebras sat-
isfying (1) – (4), (6), (9), (10). Then, in particular, t ≤ t′ holds in all
ω-continuous additive Σ-algebras. 2
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The same argument proves

Corollary 3.4 An inequation holds in all ω-continuous additive Σ-algebras
iff it holds in all ordered preiteration Σ+,0-algebras satisfying (1) – (4), (6),
the fixed point equation (9), and the weak least pre-fixed point rule.

One can phrase the above results in several other ways. E.g., one possible
formulation of Theorem 3.1 is that the defining (in)equations of ordered it-
eration Σ+,0-algebras together with (1) – (6) form an axiomatization of the
variety generated by the ω-continuous additive Σ-algebras. Corollary 3.3
may be rephrased as the assertion that the variety of ordered preiteration
Σ+,0-algebras generated by the continuous additive Σ-algebras and the vari-
ety generated by the ordered preiteration Σ+,0-algebras satisfying (1) – (4),
(6), the fixed point equation (9) and the least pre-fixed point rule (10) are
the same. Syntactic formulations may be obtained by using deductive sys-
tems. An equivalent syntactic formulation of Theorem 3.1 is the assertion
that an inequation holds in all ω-continuous additive Σ-algebras iff it can be
derived from the (in)equations (1) – (6) and those defining ordered iteration
algebras using the usual rules of reflexivity and transitivity for manipulating
inequalities, the rule of substitution, and the congruence rules

s ≤ s′ ` t[s/x] ≤ t[s′/x] (16)

t ≤ t′ ` µx.t ≤ µx.t′. (17)

(Here, we consider each equation t = t′ as an abbreviation for the inequations
t ≤ t′ and t′ ≤ t.) In the same way, Corollary 3.3 is equivalent to the assertion
that an inequation holds in all ω-continuous additive Σ-algebras iff it can be
derived from (1) – (4), (6) and (9) by the above rules and the rule

t[s/x] ≤ s ` µx.t ≤ s.

(This system is irredundant, one may leave out the second congruence rule
(17).)

4 Trees

Suppose that Σ is a signature and A is a set disjoint from Σ. We extend
the rank function on Σ to Σ ∪ A by defining the rank of each letter in A to
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be 0. A (Σ, A)-labeled tree S = (V,E, r, λ) consists of a countable set V of
vertices, a (countable) set E of (hyper)edges, each having a source in V and
a target in V n, for some n ≥ 1, a distinguished vertex r ∈ V , and a labeling
function λ : E −→ Σ ∪ A. We require that (V,E, r) is a hypertree with root
r, so that each vertex v ∈ V is accessible from r by a unique path in the
underlying directed tree. We write e : v −→ (v1, . . . , vn) to indicate that e
is an edge with source v and target (v1, . . . , vn). The integer n is called the
rank of e. We assume that for each edge e of rank n, eλ ∈ Σn if n 6= 1,
and eλ ∈ Σ0 ∪ A ∪ Σ1 if n = 1. Moreover, we require that the target of any
edge labeled in Σ0 ∪ A is a leaf, i.e., not the source of any edge. Note that
each (Σ, A)-labeled tree determines an underlying directed tree obtained by
replacing each hyperedge e : v −→ (v1, . . . , vn) by n edges ei : v −→ vi, i ∈ [n].

If S = (V,E, r, λ) and S ′ = (V ′, E′, r′, λ′) are (Σ, A)-labeled trees, a simula-
tion [33] S −→ S ′ is a relation ρ : V −→ V ′ satisfying the following conditions.

• The roots are related, i.e., r ρ r′.

• For all e : v −→ (v1, . . . , vn) in S and v′ ∈ V ′, if v ρ v′ then there is an
edge e′ : v′ −→ (v′1, . . . , v

′
n) with eλ = e′λ′ and vi ρ v

′
i, for all i ∈ [n].

It follows that the domain of any simulation S −→ S ′ is the set V . A func-
tional simulation is a simulation which is a function. An injective functional
simulation is a functional simulation which is injective. Injective functional
simulations are closely related to the resource simulation of [14, 15]. The
following fact is immediate.

Proposition 4.1 If ρ : S −→ S ′ and ρ′ : S ′ −→ S ′′ are (functional) simula-
tions then the composite ρ′◦ρ is a (functional) simulation S −→ S ′′. Moreover,
if ρ are ρ′ are injective functional simulations, then so is their composition.

Thus (Σ, A)-labeled trees and their (functional) simulations form a category,
as do (Σ, A)-labeled trees and injective functional simulations. In either cat-
egory, the isomorphisms are those simulations which are bijective functions.

Suppose that S = (V,E, r, λ) is a (Σ, A)-labeled tree and v ∈ V . Let Vv

denote the set of all vertices accessible from v, so that a vertex u is in Vv iff
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there is a directed path from v to u in the underlying directed tree of S. Let
Ev denote the set of all edges e : u −→ (u1, . . . , un) such that u ∈ Vv (and
hence u1, . . . , un ∈ Vv), and let λv denote the restriction of λ to Ev. The
resulting tree Sv = (Vv, Ev, v, λv) is called the subtree of S rooted at v.

We let (Σ, A)T denote the category of all (Σ, A)-labeled trees and func-
tional simulations. We will sometimes refer to a functional simulation as a
morphism. Two subcategories of (Σ, A)T are also of interest: the category
(Σ, A)F determined by the finite trees, and the category (Σ, A)R determined
by the regular trees. We call a tree regular if it has, up to isomorphism, a
finite number of subtrees.

Proposition 4.2 [10] The category (Σ, A)T is countably cocomplete.

Colimits can be constructed in the expected way. For example, if Si =
(Vi, Ei, ri, λi), i ∈ I are trees, where I is a nonempty countable set, then the
coproduct

∑
i∈I Si is the disjoint union of the Si with the roots identified. The

coproduct injections are the obvious embeddings. Formally, the coproduct is
the tree S = (V,E, r, λ), where

V = {r} ∪ ⋃
i∈I

(Vi − {ri})

E =
⋃
i∈I

Ei

and for every e ∈ Ei, eλ = eλi. Moreover, each edge e ∈ Ei has the same
source and target in S as in Si, except when the source of e in Si is ri. In
that case, the source of e in S is the new root r. The empty coproduct, i.e.,
initial object is the tree ⊥, also denoted 0, with one vertex and no edges.

In addition to coproducts, we will use colimits of ω-chains (Sn, fn)n≥0, where
Sn = (Vn, En, rn, λn), but only in the particular case when the morphisms
fn : Sn −→ Sn+1 are injective. In fact, we may as well assume that Sn ⊆ Sn+1,
for all n ≥ 0, i.e., that Vn ⊆ Vn+1, En ⊆ En+1, rn = rn+1, and that each edge
e ∈ En has the same source, target and label in Sn as in Sn+1. Moreover, we
may assume that each fn is the inclusion. Then the colimit S = (V,E, r, λ)
is the union ∪n≥0Sn, where V = ∪n≥0Vn, E = ∪n≥0En, r = r0 and each edge
e ∈ En ⊆ E, e has the same sort, target and label in S as in Sn. The colimit
morphisms are the obvious injections.
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Let S = (V,E, r, λ), S ′ = (V ′, E′, r′, λ′) denote (Σ, A)-labeled trees. We call
a functional simulation ρ : S −→ S ′ normal if for all vertices v1, v2 ∈ V , if Sv1

and Sv2 are isomorphic and S ′
v1ρ and S ′

v2ρ are also isomorphic, then there exist
isomorphisms π : Sv2 −→ Sv1 and π′ : S ′

v1ρ −→ S ′
v2ρ such that ρv2 = π′ ◦ ρv1 ◦π.

In the next lemma, we write S ≤ S ′ to denote that there is an injective
simulation S −→ S ′.

Lemma 4.3 Suppose that S = (V,E, r, λ), S ′ = (V ′, E′, r′, λ′) are (Σ, A)-
labeled trees with S ≤ S ′. Then there exists an injective normal functional
simulation ρ : S −→ S ′.

Proof. Let {S1 = S, S2, . . .} and {S ′
1 = S ′, S ′

2, . . .} be full sets of represen-
tatives of isomorphism classes of subtrees of S and S ′, respectively. Thus,
for each vertex u ∈ V there exist an integer j ≥ 1 and an isomorphism
ϕu : Su −→ Sj, and similarly, for each vertex u′ ∈ V ′ there exist an integer
k ≥ 1 and an isomorphism ϕ′

u′ : S ′
u′ −→ S ′

k. For each pair of integers i, j ≥ 1
such that Si ≤ S ′

j , let ρij denote an injective functional simulation Si −→ S ′
j .

We define vρ, for v ∈ V , by induction on the depth1 of v. It will follow that
Sv ≤ S ′

vρ. When the depth is 0, i.e., when v = r, we define vρ = r′. Suppose
now that the depth of v is positive. Then there is an edge e : u −→ (v1, . . . , vp)
of S such that v appears in (v1, . . . , vp). Let Si denote the representative of
the isomorphism class of the subtree Su, and let S ′

j denote the representative
of the isomorphism class of S ′

uρ. We define

vρ = vϕuρijϕ
′
uρ.

It is clear that ρ is an injective simulation S −→ S ′. To prove that ρ is
normal, suppose that u1, u2 ∈ V such that Su1 is isomorphic to Su2 and S ′

u1ρ

is ismorphic to S ′
u2ρ. We need to construct isomorphisms π : Su2 −→ Su1 and

π′ : S ′
u1ρ −→ S ′

u2ρ with ρu2 = π′ ◦ ρu1 ◦ π. We only show how to construct π.

So let v denote a vertex of Su2 , i.e., let v ∈ Vu2 . When v = u2, define vπ = u1.
We proceed by induction on the depth of v. Our construction will guarantee
that Sv is isomorphic to Svπ. In the induction step, there exist an edge
w −→ (v1, . . . , vn) such that v is one of the v1, . . . , vn. Let Sw be isomorphic

1The depth of v is the length of the unique path from the root to v in the undelying
directed graph.
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to Si, so that we have the isomorphisms ϕw : Sw −→ Si and ϕwπ : Swπ −→ Si.
We define vπ = vϕwϕ

−1
wπ. 2

5 From categories to algebras

Recall from [5] that if C is a category and F is a functor C −→ C, then an
F -algebra (c, f) consists of an object c and a morphism f : Fc −→ c. Given
F -algebras (c, f) and (c′, f ′), an F -algebra morphism (c, f) −→ (c′, f ′) is a
C-morphism g : c −→ c′ such that the following square commutes:

Fc′ c′-
f ′

Fc c-f

?

Fg

?

g

Suppose that C is countably cocomplete, so that C has all countable colimits.
Moreover, assume that the functor + : C2 −→ C produces binary coproducts.
Since C is countably cocomplete, so is any direct power of C. Call a functor
F : C −→ D ω-continuous, where C and D are countably cocomplete, if F
preserves colimits of ω-diagrams. In particular, +C is a continuous functor
C2 −→ C. The following fact is well-known (see, e.g., [9]).

Proposition 5.1 Suppose that C and D are countably cocomplete categories
and F is an ω-continuous functor C×D −→ C. Then for each D-object d, the
endofunctor F (−, d) : C −→ C has an initial algebra (F †d, µd). Moreover, the
assignment d 7→ F †d is the object map of a unique functor D −→ C such that
µ = (µd : d ∈ D) is a natural transformation, in fact a natural isomorphism.
Finally, the functor F † is also ω-continuous.

The functor F † can be constructed as follows. Let g : d −→ d′ in D and let 0
denote a fixed initial object of C. Then let c0 = c′0 = 0 and define i0 and i′0
to be the unique morphisms c0 −→ F (c0, d) and c′0 −→ F (c′0, d

′), respectively.
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For n > 0, define

cn = F (cn−1, d)

c′n = F (c′n−1, d
′)

in = F (in−1, g)

i′n = F (i′n−1, g).

Thus, in : cn −→ cn+1 and i′n : c′n −→ c′n+1, for all n ≥ 0. Now F †d is
the colimit of the ω-diagram determined by the morphisms in, and F †d′ is
defined in the same way. Let (κn : cn −→ F †d) and (κ′n : c′n −→ F †d) denote
the appropriate colimit cocones. As for F †g, let f0 : c0 −→ c′0 be the identity
morphism 0 −→ 0, and let

fn = F (fn−1, g),

for all n > 0. It follows by induction that

fn+1 ◦ in = jn ◦ fn,

for all n ≥ 0. Thus, there results a unique morphism h : F †d −→ F †d′ with

h ◦ κn = κ′n ◦ fn,

for all n ≥ 0. We define F †g to be this morphism h.

Let Σ denote a signature and suppose that for each σ ∈ Σn, n ≥ 0 there is
an ω-continuous functor σC : Cn −→ C. Then, to any term t over Σ+,0, we can
assign an ω-continuous functor tC : CX −→ C in a canonical way. (Recall that
X denotes the set of variables.)

1. If t is a variable x, then tC is the corresponding projection functor
prx : CX −→ C.

2. If t = σ(t1, . . . , tn), where σ ∈ Σn and t1, . . . , tn are terms, then tC =
σC ◦ 〈(t1)C, . . . , (tn)C〉, i.e., tC is the composite of σC and the target
tupling of the functors (t1)C, . . . , (tn)C.

3. If t = t1 + t2, where t1 and t2 are terms, then tC = +C ◦ 〈(t1)C, (t2)C〉.
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4. If t = 0, then tC is the constant functor CX −→ C with value 0C, a fixed
initial object of C.

5. If t = µx.t′, then let Y = X − {x} and let prx and prY denote the
projections CX −→ C and CX −→ CY , respectively. Thus, 〈prx, prY 〉 is
an isomorphism CX −→ C × CY with inverse 〈prx, prY 〉−1. We define
tC = F † ◦ prY , where F is the functor

t′C ◦ 〈prx, prY 〉−1 : C × CY −→ C.

Proposition 5.2 For any countably cocomplete category C, and for any in-
terpretation of the symbols in Σ by ω-continuous functors, all of the iteration
algebra identities hold up to isomorphism, as do the equations (1) – (4) and
(6).

Proof. For a proof of the fact that the iteration algebra identities hold, see
[9]. The fact that (1) – (4) and (6) hold is obvious. 2

Thus, identifying any two isomorphic objects, we obtain an iteration Σ+,0-
algebra. For a generalization of Proposition 5.2, see [18].

Corollary 5.3 Suppose that C is a small countably cocomplete category
and for each σ ∈ Σn, n ≥ 0, σC is an ω-continuous functor Cn −→ C.
Then the object maps of the functors tC, for all terms t over Σ+,0, determine
an iteration Σ+,0-algebra on the isomorphisms classes of the objects of C,
satisfying the equations (1) – (4) and (6).

The above construction may be applied to the category C = (Σ, A)T of
(Σ, A)-labeled trees. The functor +(Σ,A)T : (Σ, A)T 2 −→ (Σ, A)T forms binary
coproducts as given above. When ϕi : Si −→ Ri, i = 1, 2, ϕ1 +ϕ2 : S1 +S2 −→
R1+R2 takes the root of S1+S2 to the root of R1+R2 and maps each nonroot
vertex v of Si to vϕi, i = 1, 2. The tree 0 was defined above. For each σ ∈ Σn,
we define the functor σ(Σ,A)T : (Σ, A)T n −→ (Σ, A)T as follows. Given trees
S1, . . . , Sn with distinguished vertices r1, . . . , rn, respectively, σ(S1, . . . , Sn)
is the tree obtained from the Si by taking their disjoint union and adding
a new vertex r and a new edge e : r −→ (r1, . . . , rn) labeled σ. Vertex r is
the new root. When σ ∈ Σ0, we define σ(Σ,A)T to be the constant functor
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determined by the tree which has a unique edge, which is labeled σ. On
morphisms, σ(Σ,A)T is defined in the expected way. See [9] for details.

Proposition 5.4 [10] Each functor σ(Σ,A)T is ω-continuous.

Corollary 5.5 [10] The isomorphism classes of (Σ, A)-labeled trees form
an iteration Σ+,0-algebra satisfying the equations (1) – (4) and (6).

We let (Σ, A)T denote this iteration Σ+,0-algebra. It was shown in [10] that
the regular trees determine an iteration Σ+,0-subalgebra of (Σ, A)T. We
denote this algebra by (Σ, A)R. Moreover, the finite trees determine an
additive Σ-algebra (Σ, A)F.

Corollary 5.6 (Σ, A)R is an iteration Σ+,0-algebra satisfying the equa-
tions (1) – (4) and (6). (Σ, A)F is a Σ+,0-algebra satisfying the equations
(1) – (3).

The following result gives an algebraic characterization of the iteration Σ+,0-
algebra (Σ, A)R. Let us identify each letter a ∈ A with the tree which has a
unique vertex and a unique edge, which is labeled a.

Theorem 5.7 [10] The iteration Σ+,0-algebra (Σ, A)R is freely generated by
the set A in the variety of all iteration Σ+,0-algebras satisfying the equations
(1) – (4) and (6).

The meaning of this result is that for any iteration Σ+,0-algebra satisfying
the equations (1) – (4), (6), and for any function h : A −→ B, there is a
unique iteration Σ+,0-algebra morphism h] : (Σ, A)R −→ B extending h.

Corollary 5.8 An equation holds in all (pre)iteration Σ+,0-algebras de-
rived from small countably complete categories as in Corollary 5.3 iff it holds
in all iteration Σ+,0-algebras satisfying (1) – (4) and (6).
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Suppose that t is a µ-term over Σ+,0 and n is a nonnegative integer. Below
we will write nt for the n-fold sum of t with itself, where we take advantage
of the associativity of +. When n = 0, we define nt to be the term 0.
Moreover, we define ∞t = µx.x + t, where x does not occur in t. We let
∞+ n = n+∞ = ∞ and n ≤ ∞ for all n ∈ {0, 1, . . . ,∞}. For later use, we
note two simple facts.

Corollary 5.9 The following equation holds in any iteration Σ+,0-algebra
satisfying (1) – (4) and (6):

ny +my = (n +m)y (18)

where n,m are nonegative integers or ∞. When n,m 6= ∞, (18) holds in all
additive Σ-algebras.

Proof. Equation (18) holds in all algebras (Σ, A)R. 2

Corollary 5.10 For all n ≤ m, the inequation

ny ≤ my (19)

holds in all ordered iteration Σ+,0-algebras satisfying (1) – (6). When n,m 6=
∞, (19) holds in all ordered additive Σ-algebras.

Proof. If n ≤ m, then there exits some k with n + k = m. Thus, by
Corollary 5.9, ny+ky = (n+k)y = my holds. But then ny ≤ my also holds,
by (12). 2

5.1 The injective simulation preorder

We will consider a preorder on trees. Suppose that S and T are (Σ, A)-labeled
trees. We define S ≤ T if there is an injective functional simulation S −→ T .
Moreover, we define S ≡ T if both S ≤ T and T ≤ S hold. The relation
≤ is called the injective simulation preorder and ≡ the injective simulation
equivalence.
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Example 5.11 There exist nonisomorphic regular trees S, T with S ≡ T .
For one example, let σ ∈ Σ1, and let S = σ(0)+∞σ(σ(0)) and T = ∞σ(σ(0)).

The following facts are obvious.

Lemma 5.12 Suppose that σ ∈ Σn and Si ≤ Ri, for i ∈ [n]. Then
σ(S1, . . . , Sn) ≤ σ(R1, . . . , Rn). In fact, if ϕi : Si −→ Ri, i ∈ [n] are in-
jective, then so is σ(ϕ1, . . . , ϕn) : σ(S1, . . . , Sn) −→ σ(R1, . . . , Rn).

Lemma 5.13 If S1 ≤ S2 and R1 ≤ R2, then S1 +S2 ≤ R1 +R2. Moreover, if
ϕi : Si −→ Ri, i = 1, 2 are injective, then so is ϕ1 + ϕ2 : S1 + S2 −→ R1 +R2.

Proposition 5.14 For all µ-terms t over Σ+,0 and for all families of (Σ, A)-
labeled trees S = (Sy)y∈X and R = (Ry)y∈X with Sy ≤ Ry for y ∈ X,
it holds that t(Σ,A)T (S) ≤ t(Σ,A)T (R). Moreover, if ϕ = (ϕy)y∈X such that
each functional simulation ϕy : Sy −→ Ry, y ∈ X is injective, then so is
t(Σ,A)T (ϕ) : t(Σ,A)T (S) −→ t(Σ,A)T (R).

Proof. We argue by induction on the structure of t. Our claim is obvious
when t is a variable or t = 0. If t is of the form σ(t1, . . . , tn), or t1 + t2,
the result follows by the previous lemmas. Assume finally that t = µx.t′, for
some variable x and term t′. Let F denote the functor (Σ, A)T −→ (Σ, A)T
defined by

f : U −→ V 7→ t′(Sx
f ) : t′(Sx

U) −→ t′(Sx
V ).

Here, Sx
f denotes the assignment that takes x to f and any variable y 6= x to

the identity Sy −→ Sy. Then t(S) is the colimit of the ω-diagram in : Un −→
Un+1, where U0 = 0 is the initial tree, Un+1 = FUn and in+1 = Fin. Of
course, i0 is the unique morphism U0 −→ U1. In the same way, t(R) is the
colimit of the ω-diagram jn : Vn −→ Vn+1 constructed in the same way using
the functor G : (Σ, A)T −→ (Σ, A)T

f : U −→ V 7→ t′(Rx
f ) : t′(Rx

U ) −→ t′(Rx
V ).

Since i0 and j0 are injective, it follows by the induction assumption that each
of the morphisms in and jn is also injective. Assume that ϕy : Sy −→ Ry is an
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injective functional simulation, for each y. Then let g0 denote the identity
functional simulation 0 −→ 0, and let

gn+1 = t′(ϕx
gn

), n ≥ 0.

By the induction assumption we have that these morphisms are also injective.
Since

gn+1 ◦ in = jn+1 ◦ gn,

for all n ≥ 0, there results a mediating morphism g : t(S) −→ t(R). We may
as well assume that the in and jn are inclusions, in which case t(S) is the
union of the Un and t(R) the union of the Vn, moreover, for any vertex u of
Un, n ≥ 0, we have g(u) = gn(u). Thus, g is injective, proving that t(ϕ) is
also injective. 2

Proposition 5.15 Let s, t denote µ-terms over Σ+,0. Suppose that for all
families R = (Ry)y∈X of (regular) (Σ, A)-labeled trees we have s(R) ≤ t(R).
Then also (µx.t)(R) ≤ (µx.t′)(R), for all families R of regular (Σ, A)-labeled
trees and for all x ∈ X.

Proof. For a family R = (Ry)y∈X of regular trees, let F denote the functor
(Σ, A)T −→ (Σ, A)T , defined on objects by S 7→ s(Rx

S). On morphisms, F
is defined in a similar way. Let G denote the corresponding functor using
term t. Then F † = (µx.s)(Ry/y) is the colimit of the ω-diagram F n(i0) :
F n(0) −→ F n+1(0), where 0 is the initial tree and i0 denotes the unique
functional simulation 0 −→ F (0). Also, G† = (µx.t)(Ry/y) is the colimit
of the ω-diagram Gn(j0) : Gn(0) −→ Gn+1(0) defined in the same way. By
Proposition 5.14, each F n(i0) and Gn(j0) is injective, so that we may assume
as before that each F n(i0) and Gn(j0) is an inclusion, and that F † and G†

are the unions of the F n(0) and the Gn(0), respectively. Suppose that S
is a finite tree with S ≤ F †. Then there is some n such that S ≤ F n(0).
But it follows from our assumption on s and t that F n(0) ≤ Gn(0), so that
S ≤ Gn(0) and S ≤ G†. Since F † and G† are regular, by Lemma 8.1, proved
independently, we have F † ≤ G†. 2

By the previous facts, the injective simulation equivalence classes of regular
(Σ, A)-labeled trees form an iteration Σ+,0-algebra. Let (Σ, A)ISR denote
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this iteration Σ+,0-algebra. In fact, identifying any tree with its isomorphism
class, ≤ induces a compatible preorder on (Σ, A)R, so that (Σ, A)ISR is the
quotient of (Σ, A)R under the natural map taking a tree T to its injective
simulation equivalence class T/≡. Equipped with the partial order induced
by ≤, (Σ, A)ISR is an ordered iteration Σ+,0-algebra. In fact, we have:

Proposition 5.16 (Σ, A)ISR is an ordered iteration Σ+,0-algebra satisfy-
ing (1) – (6).

Proof. We have already noted that (Σ, A)ISR is an ordered iteration Σ+,0-
algebra which is a quotient of (Σ, A)R. Thus, by Corollary 5.6, (1) – (4) and
(6) hold in (Σ, A)ISR. The inequation (5) is obvious. 2

Let (Σ, A)ISF denote the subalgebra of (Σ, A)ISR determined by the finite
trees. Clearly, (Σ, A)ISF is an ordered additive Σ-algebra.

6 Finite trees

In this section we show that the injective simulation equivalence classes of
finite (Σ, A)-labeled trees form the free ordered additive Σ-algebra on A. In
fact, we show that two finite trees are injective simulation equivalent iff they
are isomorphic. Thus, (Σ, A)ISF is just (Σ, A)F equipped the partial order
induced by injective simulations. First we consider the unordered case.

Proposition 6.1 [10] The algebra (Σ, A)F of isomorphism classes of fi-
nite (Σ, A)-labeled trees is freely generated by A in the variety of additive
Σ-algebras.

Proposition 6.2 If S and S ′ are finite (Σ, A)-labeled trees with S ≡ S ′

then S and S ′ are isomorphic.

Proof. Let ϕ and ψ be injective morphisms S −→ S ′ and S ′ −→ S, respectively.
Then the composite ψ ◦ ϕ is necessarily an isomorphism S −→ S, and ϕ ◦ ψ
is an isomorphism S ′ −→ S. But then ϕ and ψ are also isomorphisms. 2
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Remark 6.3 In the same way, for any “finitely branching” (Σ, A)-labeled
trees S, T , if S ≡ T then S is isomorphic to T .

We use the above results to prove

Proposition 6.4 The algebra (Σ, A)ISF, equipped with the partial order ≤,
is freely generated by A in the variety of ordered additive Σ-algebras.

Proof. We already know that (Σ, A)ISF is an ordered additive Σ-algebra.
By Proposition 6.2, (Σ, A)ISF may be represented as the ordered additive
Σ-algebra of isomorphism classes of finite trees, equipped with the partial
order ≤. We may as well identify each tree with its isomorphism class and
regard the elements of (Σ, A)ISF as finite (Σ, A)-labeled trees.

Suppose that B is an ordered additive Σ-algebra and h is a function A −→ B.
By Proposition 6.1, h extends to a unique additive Σ-algebra morphism h] :
(Σ, A)ISF −→ B. We need to show that h] preserves the partial order. Let S
and S ′ be finite trees with S ≤ S ′. We argue by induction on the depth of S
to show that h](S) ≤ h](S ′). When S = 0, our claim holds by (5). Suppose
now that the depth of S ′ is positive. We can write S as

S =
∑
i∈I

σi(Si1, . . . , Sini
),

where I is a finite nonempty set, and for each i ∈ I, σi is a symbol in Σ(A)ni

and Si1, . . . , Sini
are finite trees of depth less than the depth of S. Since

S ≤ S ′, we can also write

S ′ = T +
∑
i∈I

σi(S
′
i1, . . . , S

′
ini

),

where T and the S ′
ij, j ∈ [ni], i ∈ I are finite trees such that Sij ≤ S ′

ij, for all
i, j. Thus, using the induction hypothesis and the fact that the operations
are monotonic, as well as (12),

h](S) =
∑
i∈I

σi(h
](Si1), . . . , h

](Sini
))

≤ ∑
i∈I

σi(h
](S ′

i1), . . . , h
](S ′

ini
))

≤ h](T ) +
∑
i∈I

σi(h
](S ′

i1), . . . , h
](S ′

ini
))

= h](S ′). 2
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Corollary 6.5 Additive Σ-algebras and ordered additive Σ-algebras satisfy
the same equations.

7 Regular trees

Let Σ denote a signature and let A be a set. In this section we prove that
the algebra (Σ, A)ISR of injective simulation equivalence classes of regular
(Σ, A)-labeled trees, equipped with the injective simulation order, is freely
generated by A in the variety of ordered iteration Σ+,0-algebras satsifying (1)
– (6).

Given (Σ, A)-labeled trees S and S ′ and a functional simulation ρ : S −→ S ′,
for any vertex u of S let ρu denote the functional simulation Su −→ S ′

uρ

induced by ρ, so that ρu is the restriction of ρ to the vertices of Su.

A (Σ, A)-normal representation of dimension n in the variables x1, . . . , xn,
y1, . . . , yp is an ordered pair D = (t, a), where t = (t1, . . . , tn) is an n-
dimensional vector of terms over Σ+,0 in the free variables x1, . . . , xn, y1, . . . , yp,
and where a = (a1, . . . , ap) ∈ Ap. Moreover, each term ti is primitive, i.e., a
finite sum of terms of the form kσ(xj1 , . . . , xjm) or kyj , where k 6= 0, σ ∈ Σm,
m ≥ 0, j1, . . . , jm ∈ [n] and j ∈ [p]. (It is allowed that k = ∞, and we
take advantage of the associativity and commutativity of +.) Let us denote
x = (x1, . . . , xn) and y = (y1, . . . , yp). The behavior of D, denoted |D| is the
first component of (µx.t)(Σ,A)R(a/y). Thus, the behavior of D is a regular
tree in (Σ, A)R. The term µx.t itself will be called normal of dimension n.
The variables yj are called the parameters.

Each regular tree T ∈ (Σ, A)R is known to be the behavior of a normal
representation D = (t, a). To construct D, let T1, . . . , Tn be an enumeration
of the subtrees of T with T = T1, and let a1, . . . , ap be an enumeration of
those elements of A which appear as labels of some edges of T . We define
t = (t1, . . . , tn) and a = (a1, . . . , ap), where each ti corresponds to Ti in the
following manner. Each edge e : v −→ (v1, . . . , vm) whose source is the root
of Ti is labeled by some symbol σ ∈ Σ, or some component of a. Suppose
that e is labeled σ ∈ Σm, m > 0. Then let Tj1 , . . . , Tjm denote the subtrees
rooted at the vertices v1, . . . , vm, respectively, and let k denote the total
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number of edges v −→ (v′1, . . . , v
′
m) labeled σ ∈ Σm such that the subtrees

rooted at the vertices v′1, . . . , v
′
m are isomorphic to the trees Tj1 , . . . , Tjm ,

respectively. (If there are an infinite number of such edges, then k = ∞.)
Then kσ(xj1 , . . . , xjm) is a summand of ti. If σ ∈ Σ0, then kσ is a summand of
ti, where k is the number of those edges with source v labeled σ. Similarly, for
each aj, kyj is a summand of ti, where k is determined in the same way. The
term ti is the sum of all such summands. We call the normal representation D
constructed above the minimal representation of T . (Note that the minimal
representation is unique only up to a rearrangement of the components of t
and a and renaming of the variables.)

Example 7.1 Suppose that σ ∈ Σ1 and that T is a regular tree with non-
isomorphic subtrees T1, T2, where T1 is T , T2 is the tree 0, and where there
are 4 edges leaving the root. Two of the edges, labeled σ, lead to vertices
whose corresponding subtrees are isomorphic to T , a third edge, also labeled
σ, leads to a vertex with no outgoing edge, and the last edge is labeled a ∈ A.
Then the normal representation for T is

(µ(x1, x2).(2σ(x1) + σ(x2) + a, 0), a).

It is known that for each i, the ith component of (µx.t)(a) is the tree Ti. In
particular, we have:

Proposition 7.2 [9] For the normal representation D = (t, a) of the tree
T ∈ (Σ, A)R, it holds that |D| = T .

Given normal terms µx.t and µy.t′, of dimension n and m respecively, and
a function ρ : [n] −→ [m], where x = (x1, . . . , xn), y = (y1, . . . , ym), t =
(t1, . . . , tn) and t′ = (t′1, . . . , t

′
m), we define ρ ◦ t′ to be the term vector

(t′1ρ, . . . , t
′
nρ). Moreover, we define

t ◦ ρ = (t1[y1ρ/x1, . . . , ynρ/xn], . . . , tn[y1ρ/x1, . . . , ynρ/xn]).

Recall that when t = (t1, . . . , tn), t′ = (t′1, . . . , t
′
n) and A is a preiteration

Σ+,0-algebra, we say that t = t′ holds in A if each ti = t′i does. We use a
similar convention for inequations t ≤ t′.
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Lemma 7.3 Suppose that S and S ′ are trees with S ≤ S ′. Then there exist
normal representations (µx.t, a) and (µy.t′, a) for S and S ′ and a function
ρ : [n] −→ [m], where n denotes the dimension of µx.t and m denotes the
dimension of µy.t′, such that 1ρ = 1 and

t ◦ ρ ≤ ρ ◦ t′

holds in all ordered preiteration Σ+,0-algebras satisfying (1), (2), (3), (18)
and (19).

Proof. Let {S1 = S, S2, . . . , Sk} and {S ′
1 = S ′, S ′

2, . . . , S
′
m} denote full sets of

representatives of isomorphism classes of subtrees of S and S ′, respectively.
By Lemma 4.3, there is an injective normal morphism ϕ : S −→ S ′. Let I
denote the set of all ordered pairs (i, j), i ∈ [k], j ∈ [m] such that there is a
vertex u of S such that Su is isomorphic to Si and S ′

uϕ is isomorphic to S ′
j. Let

n denote the number of elements of the set I and let us fix an enumeration
of I starting with the pair (1, 1). Call an edge e : u −→ (v1, . . . , vp) of S an

(i, j) −→ ((i1, j1), . . . , (ip, jp))

type edge, where i, i1, . . . , ip ∈ [k] and j, j1, . . . , jp ∈ [m], if Su is isomorphic
to Si, Suϕ is isomorphic to S ′

j, and for each `, Sv`
is isomorphic to Si` and

S ′
v`ϕ

is isomorphic to S ′
j`
. Note that (i, j) is necessarily in I as are the ordered

pairs (i1, j1), . . . , (ip, jp).

We define the term µx.t. The components of the vector x correspond to the
elements of I in a bijective manner according to the fixed enumeration of I.
Let xij denote the variable corresponding to the ordered pair (i, j), and let
tij denote the corresponding component of t. Moreover, let a1, . . . , aq be all
the letters of A that appear in S or S ′, in some fixed enumeration, and let
z1, . . . , zq be variables corresponding to these letters. (We assume that these
variables are different from the components of x.) To define tij , consider a
vertex u of S such that Su is isomorphic to Si and S ′

uϕ is isomorphic to S ′
j .

For each σ ∈ Σp, p > 0, which appears as the label of an outgoing edge of
u, the root of Su, and for each sequence α = ((i1, j1), . . . , (ip, jp)) ∈ Ip, let
s = s(σ, (i, j) −→ α) denote the number of edges e : u −→ (v1, . . . , vp) labeled
σ and having type (i, j) −→ ((i1, j1), . . . , (ip, jp)). When σ0 ∈ Σ0, let s(σ0, i)
denote the total number of edges with source u labeled σ0. Moreover, for
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each ` ∈ [q], let si` denote the number of edges with source u labeled a`. We
define

tij =
∑
σ,α

s(σ, (i, j) −→ α)σ(xi1j1, . . . , xipjp) +
∑
σ0

s(σ0, i)σ +
∑

`

si`z`.

As for µy.t′, we take the minimal normal representation of S ′. Thus, the com-
ponents of y and t′ correspond to the subtrees of S ′, so that y = (y1, . . . , ym)
and t′ = (t′1, . . . , t

′
m) with yj and t′j corresponding to S ′

j , for each j ∈ [m].
Moreover, each t′j is given by

t′j =
∑
σ,β

s′(σ, j −→ β)σ(yj1, . . . , yjp) +
∑
σ0

s′(σ0, j) +
∑

`

s′`z`.

Here, σ ∈ Σp, p > 0 ranges over the symbols which appear as labels of out-
edges of the root of S ′

j , β = (j1, . . . , jp) ∈ [m]p, and where s′(σ, j −→ β) is the
number of outedges of the root of S ′

j labeled σ of type j −→ (j1, . . . , jp), i.e.,
whose targets determine a sequence of vertices whose corresponding subtrees
are isomorphic to S ′

j1
, . . . , S ′

jp
, respectively. Moreover, σ0 ranges over those

symbols in Σ0 that appear as labels of outedges of the root of S ′
j, s

′(σ0, j)
is the corresponding multiplicity, and for each ` ∈ [q], s′j` is the number of
outedges of the root of S ′

j labeled a`.

By Proposition 7.2, we have that |(µy.t′, a)| = S ′. Define the function ρ :
[n] −→ [m] such that it maps any integer in [n] corresponding to an ordered
pair (i, j) in the fixed enumeration of the set I to the integer j. Suppose
that (i, j) ∈ I. Since Si ≤ Sj , it is clear that for any σ ∈ Σp with p > 0 and
j1, . . . , jp,∑

i1,...,ip

s(σ, (i, j) −→ (i1, j1), . . . , (ip, jp)) ≤ s′(σ, j −→ (j1, . . . , jp)).

And for all σ0 ∈ Σ0 and ` ∈ [q],

s(σ0, i) ≤ s′(σ0, j),

and

si` ≤ s′j`,
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It follows that t ◦ ρ ≤ ρ ◦ t′ holds modulo (1), (2), (3), (18) and (19) and
the monotonicity of +, i.e., t ◦ ρ ≤ ρ ◦ t′ holds in any ordered preiteration
Σ+,0-algebra satisfying the (in)equations (1), (2), (3), (18) and (19).

To complete the proof, we still need to show that |(µx.t, a)| = S. But consider
the minimal normal representation (µx′′.t′′, a) for S. Here x′′ = (x′′1, . . . , x

′′
k),

t′′ = (t′′1, . . . , t
′′
k) such that for each i, x′′i and t′′i correspond to Si, i.e., the

ith component of (µx′′.t′′)(a) is isomorphic to Si. If τ denotes the function
[n] −→ [k] corresponding to the assignment I −→ [k], (i, j) 7→ i, then we
clearly have t◦ τ = τ ◦ t′′ modulo (1), (2), (3) and (18). Thus, by Lemma 7.5,
for each (i, j) in I, the (i, j)th component of (µx.t)(a) is isomorphic to the
ith component of (µx′′.t′′)(a). 2

Lemma 7.4 Let µx.t and µy.t′ be normal terms of dimension n and m, re-
spectively. Suppose that there is a function ρ : [n] −→ [m] with t ◦ ρ ≤ ρ ◦ t′
modulo (1), (2), (3), (18) and (19). Then there is a normal term µx.s of
dimension n such that t ≤ s and s ◦ ρ = ρ ◦ t′ hold modulo (1), (2), (3), (18)
and (19).

Proof. Assume that t = (t1, . . . , tn) and t′ = (t′1, . . . , t
′
m). For each i ∈ [n]

there is a term t′′i with (ti + t′′i ) ◦ ρ = t′iρ modulo (1), (2), (3) and (18).
Moreover, t′′i is the sum of primitive terms. Define si = ti + t′′i and s =
(s1, . . . , sn). Then t ≤ s modulo (1), (2), (3), (18) and (19). 2

Lemma 7.5 Suppose that µx.t and µy.t′ are normal terms of dimension n
and m in the parameters z = (z1, . . . , zp). Let ρ denote a function [n] −→ [m].
If t ◦ ρ = ρ ◦ t′, modulo (1), (2), (3) and (18), then for any a ∈ Ap and
i ∈ [n], the ith component of (µx.t)(a) is isomorphic to the (iρ)th component
of (µy.t′)(a). Thus, if 1ρ = 1, then trees represented by (µx.t, a) and (µy.t′, a)
are isomorphic.

Proof. We know that (µx.t)(a) is the colimit of the the ω-diagram (ik :
sk −→ sk+1)k≥0, where s0 is the n-tuple (0, . . . , 0), sk+1 = t(sk, a/x, z), ik+1 =
t(ik, a/x, z), k ≥ 0. Also, (µy.t′)(a) is the colimit of an ω-diagram (i′k : s′k −→
s′k+1)k≥0 constructed in the same way. But since t ◦ ρ = ρ ◦ t′, modulo the
associativity and commutativity of + and (18), we have that sk = ρ ◦ s′k,
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for all k ≥ 1, i.e., for any i ∈ [n], the ith component of sk is the same as
the (iρ)th component of s′k. In the same way, ik = ρ ◦ i′k. It follows that
(µx.t)(a) = ρ ◦ (µx.t′)(a). 2

Theorem 7.6 For each signature Σ and set A, the ordered iteration Σ+,0-
algebra (Σ, A)ISR is freely generated by A in the variety of ordered iteration
Σ+,0-algebras satisfying the (in)equations (1) – (6).

Proof. We already know that (Σ, A)ISR is an ordered iteration Σ+,0-algebra
satisfying (1) – (6), cf. Proposition 5.16. Suppose that B is another or-
dered iteration Σ+,0-algebra satisfying the equations (1) – (6). Let ϕ be a
function A −→ B. By Theorem 5.7, there is an iteration Σ+,0-algebra mor-
phism ϕ : (Σ, A)R −→ B extending ϕ. We show that for all trees S, S ′ in
(Σ, A)R, if S ≤ S ′, then ϕ(S) ≤ ϕ(S ′). By Lemma 7.3 there exist normal
representations (µx.t, a) and (µy.t′, a) of dimensions n and m in the param-
eters z = (z1, . . . , zp) with |(µx, t, a)| = S, |(µy.t′, a)| = S ′ and such that
for some ρ : [n] −→ [m] with 1ρ = 1, t ◦ ρ ≤ ρ ◦ t′ holds modulo (1), (2),
(3), (18), (19). Moreover, by Lemma 7.4, there is a normal representation
(µx.s, a) of dimension n such that t ≤ s modulo the same inequations, and
s ◦ ρ = ρ ◦ t′ modulo (1), (2), (3) and (18). By Lemma 7.5, |(µx.s, a)| = S ′.
Thus, denoting b = (b1, . . . , bp) with bi = aiϕ, i ∈ [p], by Lemma 2.3,

ϕ(S) = ϕ((µx.t)(Σ,A)R(a))

= (µx.t)B(b)

≤ (µx.s)B(b)

= ϕ((µx.s)(Σ,A)R(a))

= ϕ(S ′).

It is now easy to complete the proof. For each ≡-equivalence class S/≡ ∈
(Σ, A)R/≡, define ϕ](S/≡) = ϕ(S). By the above argument, ϕ] is a well-
defined ordered iteration Σ+,0-algebra morphism (Σ, A)ISR −→ B extending
ϕ. The uniqueness of ϕ] is obvious. 2
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8 An embedding theorem

In this section we show that for each set A, (Σ, A)ISR can be embedded
in an ω-continuous additive Σ-algebra. By Proposition 6.4, (Σ, A)ISF is
freely generated by A in the variety of all ordered additive Σ-algebras. It is
known, cf. [8, 24], that for each signature ∆ and each variety V of ordered ∆-
algebras, the ω-continuous algebras in V and their ω-continuous morphisms
form a reflective subcategory of V. Moreover, for each B ∈ V , there is an
order reflecting morphism from B into the free ω-continuous algebra gen-
erated by B. The free ω-continuous algebra on B may be constructed as
the completion of B by ω-ideals generated by countable directed subsets (or
ω-chains) of B. We show that when ∆ is Σ+,0 and V is the variety of ordered
additive Σ-algebras, the ordered iteration Σ+,0-algebra (Σ, A)ISR embeds in
the completion of (Σ, A)ISF.

Lemma 8.1 Suppose that S and T are (Σ, A)-labeled trees such that T is
regular and F ≤ T holds for all finite trees F with F ≤ S. Then S ≤ T .

Proof. Our claim is obvious when S is finite, so that below we assume that
S is infinite. Let F0, F1, . . . be an enumeration of finite trees Fi ⊆ S with
the property that every vertex of S appears in all but a finite number of the
Fi. By our assumption, for each i there is an injective functional simulation
ϕi : Fi −→ T . We show how to construct an injective functional simulation
ϕ : S −→ T . When v is the root of S, define vϕ to be the root of T . Suppose
now that ϕ has been defined on all vertices of S of depth not exceeding d
such that ϕ is injective on these vertices and for every vertex u of depth ≤ d,
Tuϕ is isomorphic to Tuϕi

for all i in an infinite set I of nonnegative integers.
Suppose that u has depth d. For simplicity, in the argument below we will
assume that each edge leaving u is labeled in Σ1. The generalization of the
argument is left to the reader. Let v0, v1, v2, . . . be an enumeration of the
successors of u. We define the pairwise different successors v0ϕ, v1ϕ, v2ϕ . . .
of uϕ such that for each k there exists an infinite set Ik ⊆ I with the following
property:

For all j < k and i ∈ Ik, the edges u −→ vj , uϕ −→ vjϕ and uϕi −→ vjϕi have
the same label and Tvjϕ is isomorphic to Tvjϕi

.

34



When k = 0, let I0 = I. Suppose that k > 0 and that we have already
defined v0ϕ, . . . , vk−1ϕ and Ik. Since vk is a vertex of all but a finite number
of the trees Fi, i ∈ I, there is an infinite set I ′ ⊆ Ik such that vkϕi is defined
for all i ∈ I ′. Since T is regular, we can select an infinite set Ik+1 ⊆ I ′ such
that the trees Tvkϕi

, i ∈ Ik+1 are all isomorphic and the edges uϕi −→ vkϕi,
i ∈ Ik+1 have the same label. Let i0 ∈ Ik+1. The vertices v0ϕi0 , . . . , vkϕi0 are
all distinct because ϕi0 is injective. Since Tuϕ is isomorphic to Tuϕi0

and for
each j = 0, . . . , k − 1, Tvjϕ is isomorphic to Tvjϕi0

, and the edges uϕ −→ vjϕ
and uϕi0 −→ vjϕi0 have the same label, there exists a successor v′ of uϕ
such that v′ 6∈ {v0ϕ, . . . , vk−1ϕ}, Tv′ is isomorphic to Tvkϕ0 and uϕ −→ v′ and
uϕi0 −→ vkϕi0 are labeled by the same letter. Define vkϕ = v′. 2

Let I(A) denote the collection of all ω-ideals of injective simulation equiva-
lence classes of finite (Σ, A)-labeled trees, i.e., sets of the form

(U ] = {F ∈ (Σ, A)ISF : ∃T ∈ U F ≤ T},
where U is any countable directed set of finite trees in (Σ, A)ISF. In fact,
it is easy to see that a set is in I(A) iff it is a countable ideal which is also
a directed set with respect to the injective simulation order. Given σ ∈ Σm

and I1 = (U1], . . . , Im = (Um], we define

σ(I1, . . . , Im) = ({σ(F1, . . . , Fm) : Fi ∈ Ui}].
Moreover, we define 0 = {0} = ({0}] and

I1 + I2 = ({F1 + F2 : Fi ∈ Ui}],

for all I1 = (U1] and I2 = (U2] in I(A). It can be shown that the operations
are well-defined and that I(A), equipped with the subset order is an ω-
continuous additive Σ-algebra.

Theorem 8.2 For each set A, there exist an ω-continuous additive Σ-algebra
B and an injective order reflecting iteration Σ+,0-algebra morphism
(Σ, A)ISR −→ B.

Proof. Let B = I(A) and consider the map A −→ B taking each letter a
into {a} = ({a}]. Since B is an ordered iteration Σ+,0-algebra satisfying

35



(1) – (6), by Theorem 7.6 this map extends to an ordered additive iteration
Σ+,0-algebra morphism h. We need to show that for any two regular trees
S, T , if Sh ⊆ Th, then S ≤ T . But it is easy to see that Sh is the set of all
finite trees ≤ S, and similarly for T . Thus, by Lemma 8.1, S ≤ T . 2

9 Further results

In this section we outline some further results. Firs we consider decidability
and nonfinite axiomatizability.

Suppose that t ≤ t′ is an inequation between µ-terms t, t′ over Σ+,0, where
Σ is a finite signature. Let T and T ′ denote the corresponding regular trees
in (Σ, X)R. Thus, T is the value of the function t(Σ,X)R induced by T when
each variable x is assigned the corresponding tree having a single edge which
is labeled x. By our previous results, the inequation t ≤ t′ holds in ω-
continuous additive Σ-algebras iff T ≤ T ′. This latter property is easily seen
to be decidable. Thus we have

Proposition 9.1 When Σ is finite, it is decidable whether an inequation
between µ-terms over Σ holds in all ω-continuous additive Σ-algebras.

Since each term is finite, the assumption on the finiteness of Σ is not impor-
tant. It can be shown that the problem is in fact in NP.

We have seen that for each Σ, the variety generated by ω-continuous additive
Σ-algebras can be axiomatized by an infinite number of equation schemes.

Theorem 9.2 Suppose that Σ contains a symbol of positive rank. Then the
variety of ordered iteration algebras generated by the ω-continuous additive
Σ-algebras cannot be axiomatized by a finite number of equation schemes.

Proof. It is sufficient to prove this fact in the case that Σ contains a single
symbol, say σ, and σ has rank 1.
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Let Rega denote the collection of all regular subsets of a∗. We may turn
Rega into an ω-continuous additive Σ-algebra by defining

L1 + L2 = L1 ∪ L2

0 = ∅
σ(L) = aL = {au : u ∈ L}

and

L1 ≤ L2 ⇔ L1 ⊆ L2,

for all L1, L2 ∈ Rega.

The result now follows from two observations. First, it is proved in [2, 16]
that the variety of ordered iteration algebras generated by Rega cannot be
defined by a finite number of equation schemes. (Actually, this is proved
in [2, 16] in an equivalent form using the regular operations of set union,
concatenation and Kleene star.) Second, it follows from results proved in
[34, 19, 16] that the valid inequations of Rega can be axiomatized, relatively
to the equations of ω-continuous Σ-algebras, by a finite number of equation
schemes. 2

When Σ is an arbitrary signature, define

σ(L1, . . . , Ln) =

{
aL1 if n > 0
∅ otherwise,

for all σ ∈ Σn, n ≥ 0, and L1, . . . , Ln ∈ Rega. The same argument shows
that when Σ 6= Σ0, no variety of ordered iteration Σ+,0-algebras contain-
ing the algebra Rega has an axiomatization by a finite number of equation
schemes.

It is natural to ask how our results change when the operations induced by
the letters in Σ are commutative, so that all equations

σ(x1, . . . , xn) = σ(x1π, . . . , xnπ) (20)

hold, where σ ∈ Σn and π is any permutation [n] −→ [n]. It can be seen
that the variety of ordered preiteration Σ+,0-algebras generated by the ω-
continuous additive Σ-algebras stisfying equations (20) can be axiomatized
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by the inequations that hold in ω-continuous additive Σ-algebras and the
equations (20). The free algebras in this variety can be described by injec-
tive simulations of the variant of (regular) synchronization trees where each
hyperedge has an unordered n-tuple as its target.
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[6] H. Bekić, Definable operations in general algebras, and the theory of
automata and flowcharts, Technical Report, IBM Laboratory, Vienna,
1969.

[7] D. Benson and J. Tiuryn, Fixed points in free process algebras, Theoret.
Comput. Sci., 63(1989), 275–294.

[8] S.L. Bloom, Varieties of ordered algebras, J. Comput. System Sci.,
13(1976), 200–212.

[9] S.L. Bloom and Z. Ésik, Iteration Theories, Springer–Verlag, 1993.

38
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Nested Simulation is not Finitely Equationally Axiomatizable.
August 2000. 13 pp.

RS-00-19 Vinodchandran N. Variyam. A Note onNP ∩ coNP/poly.
August 2000. 7 pp.

RS-00-18 Federico Crazzolara and Glynn Winskel.Language, Seman-
tics, and Methods for Cryptographic Protocols. August 2000.
ii+42 pp.

RS-00-17 Thomas S. Hune. Modeling a Language for Embedded Sys-
tems in Timed Automata. August 2000. 26 pp. Earlier version
entitled Modelling a Real-Time Languageappeared in Gnesi
and Latella, editors, Fourth International ERCIM Workshop
on Formal Methods for Industrial Critical Systems, FMICS ’99
Proceedings of the FLoC Workshop, 1999, pages 259–282.
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