Swa)SAS uolewlou| ul 21607 feJodwa] :uewoy ¥ oIwoyD T-26-S1SDIdg

BRICS

Basic Research in Computer Science

Temporal Logic in Information Systems

Jan Chomicki
David Toman

BRICS Lecture Series LS-97-1
ISSN 1395-2048 November 1997

See back inner page for a list of recent BRICS Lecture Series publica-
tions. Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory LS/97/1/

Temporal Logic in Information Systems

Jan Chomicki
David Toman

Jan Chomicki David Toman

Dept. of Computer Science BRICS, Dept. of Comp. Sci.
Monmouth University University of Aarhus
chomicki@moncol.monmouth.edu david@brics.dk

November 4, 1997

* Notes to accompany graduate lectures at BRICS, Basic Research in Computer Science Centre of the
Danish National Research Foundation, 1997. (© Jan Chomicki and David Toman, 1997. Full version of
this notes to appear in: Logics for Database and Information Systems, Chomicki and Saake (eds.), Kluwer

Academic Publishers, 1998.

Abstract

Temporal logic is obtained by adding temporal connectives to
a logic language. Explicit references to time are hidden inside
the temporal connectives. Different variants of temporal logic
use different sets of such connectives. In this chapter, we survey
the fundamental varieties of temporal logic and describe their
applications in information systems.

Several features of temporal logic make it especially attractive as
a query and integrity constraint language for temporal databases.
First, because the references to time are hidden, queries and in-
tegrity constraints are formulated in an abstract, representation-
independent way. Second, temporal logic is amenable to efficient
implementation. Temporal logic queries can be translated to an
algebraic language. Temporal logic constraints can be efficiently
enforced using auxiliary stored information. More general lan-
guages, with explicit references to time, do not share these prop-
erties.

Recent research has proposed various implementation techniques
to make temporal logic practically useful in database applica-
tions. Also, the relationships between different varieties of tem-
poral logic and between temporal logic and other temporal lan-
guages have been clarified. We report on these developments and
outline some of the remaining open research problems.

Contents

1 Introductiono 1
2 Temporal Databases 2
2.1 Abstract Temporal Databases 3
2.2 Relational Database Histories)
3 Temporal Querieso 6
3.1 Abstract Temporal Query Languages 6
3.2 Expressive Power oL 11
3.3 Space-efficient Encoding of Temporal Databases 13
3.4 Concrete Temporal Query Languages 16

3.5 Evaluation of Abstract Query Languages using Com-
pilation oo 17
3.6 SQL and Derived Temporal Query Languages 18
4 Temporal Integrity Constraints 23
4.1 Notions of constraint satisfaction 24
4.2 Temporal Integrity Maintenance 25
4.3 Temporal Constraint Checking 27
) Multidimensional Time 29
5.1 Why Multiple Temporal Dimensions? 30

5.2 Abstract Query Languages for Multi-dimensional Time 30
5.3 Encoding of Multi-dimensional Temporal Databases . . 32
6 Beyond First-order Temporal Logic 33
7 Conclusion 36

vii

INTRODUCTION 1

1 Introduction

Time is ubiquitous in information systems. Almost every enterprise faces
the problem of its data becoming out of date. However, such data is often
valuable, so it should be archived and some means to access it should be pro-
vided. Also, some data may be inherently historical, e.g., medical, cadastral,
or judicial records. Temporal databases provide a uniform and systematic
way of dealing with historical data. Many languages have been proposed for
temporal databases, among others temporal logic. Temporal logic combines
abstract, formal semantics with the amenability to efficient implementation.
This chapter shows how temporal logic can be used in temporal database
applications. Rather than presenting new results, we report on recent de-
velopments and survey the field in a systematic way using a unified formal
framework [GHR94, Cho94]. The handbook [GHR94] is a comprehensive
reference on mathematical foundations of temporal logic.

In this chapter we study how temporal logic is used as a query and in-
tegrity constraint language. Consequently, model-theoretic notions, partic-
ularly formula satisfaction, are of primary interest. Axiomatic systems and
proof methods for temporal logic [GHR94] have found so far relatively few
applications in the context of information systems. Moreover, one needs to
bear in mind that for the standard linearly-ordered time domains temporal
logic is not recursively axiomatizable [GHR94], so recursive axiomatizations
are by necessity incomplete.

Databases are inherently first-order structures and thus in this chapter
we are primarily interested in first-order temporal logic. This is in sharp
contrast with another major application area of temporal logic, program
verification, where the formalisms studied are usually propositional [MP92,
Pnu86.

We introduce here a number of fundamental concepts and distinctions
that are used throughout the chapter. First, there is a choice of temporal
ontology, which can be based either on time points (instants) or intervals (pe-
riods). In most database applications the point-based view is more natural
and thus we concentrate on it in this chapter. However, in section 5 we briefly
discuss interval-based temporal logic. (Intervals are predominant in Al ap-
plications.) Second, time can be single-dimensional or multi-dimensional.
Multiple time dimensions can occur if, for example, multiple kinds of time
(e.g., transaction time and valid time [SA86]) are required in an applica-
tion. In addition we show that multiple temporal dimensions are necessary
to evaluate general first-order temporal queries. Except for section 5, we
adopt the single-dimensional view. Finally, there is a choice of linear vs.

2 TEMPORAL LOGIC IN INFORMATION SYSTEMS

nonlinear time, i.e., whether time should be viewed as a single line or rather
as a tree [Eme90], or even an acyclic graph [Wol89]. Although nonlinear
time is potentially applicable to some database problems like version con-
trol or workflows, there has been very little work in this area. Therefore, in
this chapter we concentrate on temporal domains that are linearly ordered
sets.

Definition 1 (Temporal Domain) A single-dimensional linearly ordered
temporal domain is a structure Tp = (T, <), where T is a set of time instants
and < is a linear order on T

Often, a temporal domain has also a distinguished element 0, typically stand-
ing for the beginning of time. For full generality, we allow also negative time.
The standard temporal domains are: natural numbers N = (IV, 0, <), inte-
gers Z = (Z,0,<), rationals Q = (Q,0, <), and reals R = (R, 0, <).

The rest of the chapter is organized as follows. Section 2 shows several
ways to introduce time into the standard relational model and defines the
fundamental notions of temporal databases. It also shows how such databases
naturally arise as histories of ordinary relational databases. Section 3 intro-
duces temporal logic as a query language for temporal databases and shows
its place among other temporal query languages. It also introduces tech-
niques needed for efficient query evaluation over compact representations
of temporal databases and in the end discusses more practical temporal
query languages and their relationship to temporal logic. Section 4 shows
how temporal logic can be used a language for specifying temporal integrity
constraints and discusses the issues involved in the maintenance of such con-
straints. Sections 5 and 6 focus on the limitations of a single-dimensional
first-order temporal logic and on different ways of overcoming these limi-
tations. Section 5 introduces multidimensional temporal connectives and
section 6 discusses non-first-order extensions of temporal logic. Section 7
contains brief conclusions.

2 Temporal Databases

Before we discuss temporal logic and other temporal query languages we
need to introduce the underlying data model—temporal databases. We fo-
cus on temporal databases defined as natural extensions of the standard
relational model. A standard relational database is a first-order structure
built from a data domain D, usually equipped with a built-in equality (diag-
onal) relation. This domain is extended to a relational database by adding to
it a finite instance (ri,...,ry) of a user-defined relational database schema

TEMPORAL DATABASES 3

p = (r1,...,7) over D. A natural first-order query language over such
databases—the relational calculus—coincides with first-order logic over the
vocabulary (=,r1,...,rt) of the above extended structure. An answer to a

query in relational calculus is the set of valuations (tuples) that make the
query true in the given relational database. Domain independent relational
calculus queries (those that depend only on the instance of p and not on
the underlying domain of values D) can be equivalently expressed in rela-
tional algebra [Cod72|. In this way the relational model provides a natural
declarative paradigm for representing and querying information stored in
a relational database, as well as the possibility of efficient implementation
of queries through relational algebra. The choice of the relational model is
very natural for studying first-order temporal logic because the semantics
of that language is commonly defined with respect to a particular temporal
extension of first-order relational structures.

2.1 Abstract Temporal Databases

It is useful to introduce a distinction between the representation-independent
meaning of a temporal database and its concrete, finite representation. The
former is termed an abstract temporal database and the latter a concrete
one. Concrete databases are discussed in Section 3.3. Some query lan-
guages, including temporal logic, have their semantics defined in terms of
abstract temporal databases—they will be termed abstract as well. Other
languages whose semantics is defined in terms of concrete databases will be
appropriately called concrete. Abstract query languages are discussed in
Section 3.1, concrete ones in Section 3.4.

One obtains an abstract temporal database by linking a standard rela-
tional database with a temporal domain. There are several alternative ways
of doing that [Cho94]:

The timestamp model is defined by augmenting all tuples in relations by an
additional temporal attribute.

The snapshot model is defined as a mapping of the temporal domain to the
class of standard relational databases. This gives a Kripke structure
with the temporal domain serving as the accessibility relation.

The parametric model considers the values stored in individual fields of tu-
ples in the database to be functions of time.

We do not consider the parametric model in this chapter as it is not directly
relevant to temporal logic.

4 TEMPORAL LOGIC IN INFORMATION SYSTEMS

Definition 2 (Abstract Temporal Database) Let p = (r1,...,7) be a
database schema, D a data domain and Tp a temporal domain.

A relation symbol R; is a temporal extension of the symbol r; if it contains
all attributes of r; and a single additional attribute t of sort Tp (w.l.o.g. we
assume it is the first attribute). The sort of the attributes of R; is Tp X
Darity(rs)

A timestamp temporal database is a first-order structure D U Tp U
{Ri1...,Ry}, where R; are temporal relations— instances of the tempo-
ral extensions R;. In addition we require that the set {a : (t,a) € R;} be
finite for everyt € Tp and 0 <i < k.

A snapshot temporal database over D, Tp, and p is a map DB : Tp —
DB(D, p), where DB(D, p) is the class of finite relational databases over D
and p.

It is easy to see that snapshot and timestamp abstract temporal databases
are merely different views of the same data and thus can represent the same
class of temporal databases.

Example 3 A head-hunting company Brains 'R Us is introducing a
new kind of service for its corporate customers: All the job seekers’
resumes are put in a temporal database that the customers can sub-
sequently query. We discuss here only a fragment of this database,
consisting of two relations Work(Year,Name,Company) and Educa-
tion(Year,Name,Degree,Major,School).

These two relations represent the user view of the database. They will likely
be stored in a different, more space-efficient format that uses time intervals.
A example instance is shown in Figure 1.

Here are several historical queries that can be expressed in temporal
logic:

e find all people who have worked for only one company.
e find all people whose terminal degree is from MIT.

e list all UofT PhD’s in computer science that have been continuously
employed by IBM since their graduation.

e find all job-hoppers—people who never spent more than two years in
one place.

TEMPORAL DATABASES 5

Work
Year Name Company
1990 John IBM

Education
133; ioﬁn %gﬁ Year Name Degree Major School
. 1980 Johm BS CS MIT

1993 John Microsoft
... John Microsoft
1984 Mary DEC
1985 Mary DEC
1990 Mary IBM

1986 John MS CS Stanford
1990 John PhD CS Stanford
1984 Mary BS CS UofT
1990 Mary PhD CS UofT
1990 Steve MS BA Harvard

e Mary IBM
1990 Steve HP
Steve HP

Figure 1: Instance of a temporal database from Example 3.

2.2 Relational Database Histories

Relational databases are updatable and it is natural to consider sequences
of database states resulting from the updates.

Definition 4 (History) A history over a database schema p and a data
domain D is a sequence H = (Hy, ..., Hy, Hyt1,...) of database instances
(called states) such that

1. all the states Hy,...,Hy, Hypy1,... share the same schema p and the
same data domain D,

2. Hy is the initial instance of the database,
3. H; results from applying an update to H;_1, 1 > 1,

A finite history is defined like a general history except that the sequence of
states is finite.

There is a clear correspondence between histories over D and p and snapshot
temporal databases over D, N (natural numbers), and p (see Definition 2).
Consequently, any query language L for abstract temporal databases can
also be used to query database histories. However, there is a difference in the
restrictions placed on updates: while there are no a priori limitations placed
on snapshot temporal database updates (they can involve any snapshot),
histories are append-only (the past cannot be modified).

6 TEMPORAL LOGIC IN INFORMATION SYSTEMS

A finite history is a finite sequence of finite states and thus can be rep-
resented in finite space. However, in most applications it is impractical to
store all the past database states and some encoding is used. For integrity
checking it is often the case that the encoding is lossy (to obtain significant
space savings) and completely determined by the integrity constraints to be
maintained. For an example of such an encoding see section 4.3.

3 Temporal Queries

In this section we establish the place of First-order Temporal Logic among
various query languages for temporal databases. Rather than concentrating
solely on temporal logic, we show the relationships among various temporal
extensions of the relational model. In this way we contrast the features and
shortcomings of temporal logic with other temporal query languages.

First, we discuss two major approaches to introducing time into rela-
tional query languages. Both of them are developed in the context of ab-
stract temporal databases and thus lead to abstract query languages. The
first approach uses explicit variables (attributes) and quantifiers over the
temporal domain; the second adds modal temporal connectives and hid-
den temporal contexts. We report on the relative expressive power of these
extensions.

In the second part we concentrate on concrete temporal databases: space-
efficient encodings of abstract temporal databases necessary from the prac-
tical point of view. First, we explore in detail the most common encoding
of time based on intervals and the associated concrete query languages. We
introduce semantics-preserving translations of abstract temporal query lan-
guages to their concrete counterparts. We also introduce a generalization of
such encodings using constraints. We conclude the section with a discussion
of SQL-derived temporal query languages.

3.1 Abstract Temporal Query Languages

The two different ways of linking time with a relational database (Defini-
tion 2) lead to two different temporal extensions of the relational calculus
(first-order logic). The snapshot model gives rise to special temporal con-
nectives. On the other hand, the timestamp model requires the introduction
of explicit attributes and quantifiers for handling time. The first approach
is especially appealing because it encapsulates all the interaction with the
temporal domain inside the temporal connectives. In this way the manipu-
lation of the temporal dimension is completely hidden from the user, as it

TEMPORAL QUERIES 7

is performed on implicit temporal attributes.

Historically, many different variants of temporal logic based on different
sets of connectives have been developed [GHR94]. Some of the connectives,
like & (“sometime in the future”), O (“always in the future”), or until are
well-known and have been universally accepted. But in general any appro-
priate first-order formula in the language of the temporal domain (or, as
we will see in Section 6, even a second-order one) can be used to define a
temporal connective.

Definition 5 (First-order Temporal Connectives) Let k > 0 and
O:::ti<tj’O/\O‘—'O‘Hti.O‘Xi

the first-order language of Tp extended with propositional variables X;, 0 <
i < k. We define a (k-ary) temporal connective to be an O-formula with
exactly one free variable tg and k free propositional variables X1, ..., Xg.
We assume that t; is the only temporal variable free in the formula to be
substituted for X;.

We define € to be a finite set of definitions of temporal connectives: pairs
of names w(X1,...,Xx) and (definitional) O-formulas w* for temporal con-
nectives.

We call the variables t; the temporal contexts: to defines the outer temporal
context of the connective that is made available to the surrounding formula;
the variables t1, ..., t; define the temporal contexts for the subformulas sub-
stituted for the propositional variables X1, ..., Xj.

The above definition allows only first-order temporal connectives. This
is sufficient to define the common temporal connectives since, until, and
their derivatives.

Example 6 The common binary temporal connectives are defined as fol-
lows:

X1 until X2

X since X

dto.tg < ta A Xo /\th(to <t <ty — Xl)
dtg.tg > ta A Xo /\th(t() >ty >ty — Xl)

> >

The commonly used unary temporal connectives, < (“sometime in the fu-
ture”), O (“always in the future”), ® (“sometime in the past”), and B (“al-
ways in the past”) are defined in terms of since and until as follows:

A A

&X1 = true until X, 0X; = -0-X,
A . AN

€ .X, = true since X mX; = <oXy

8 TEMPORAL LOGIC IN INFORMATION SYSTEMS

For a discrete linear order we also define the O (next) and @ (previous)
operators as

OXléEhfl.tl =to+1ANXy OXléEItl.t1+1:t0AX1

Clearly, all the above connectives are definable in the first-order language of
Tp (the successor +1 and the equality = on the domain Tp are first-order
definable in the theory of discrete linear order).

The connectives since, ¢, B, and @ are called past temporal connec-
tives (as they refer to the past) and until, &, O, and O future temporal
connectives.

Example 7 Real-time temporal connectives, in which specific bounds on
time are imposed, can also be defined in the same framework. For example,
the connective O, r,) s defined as:

A
O[kl,kg}Xl = di1tg+ k1 <t1 <tg+ ko AN X7.

Propositional temporal logic with real-time temporal connectives has been
extensively used for the specification and verification of real-time systems
[AH92, Koy89]. The first-order version of this logic has been applied to the
specification of real-time integrity constraints [Cho95], and real-time logic
programs [Brz93, Brz95]. Similarly to the O and ® connectives the real time
connectives (with integral bounds) are first-order definable in the theory of
discrete linear order.

We discuss the use of a more expressive language, e.g., monadic second-
order logic over the signature of Tp, to define a richer class of temporal
connectives in Section 6.

First-order Temporal Logic

The modal query language—first-order temporal logic—is defined to be the
original single-sorted first-order logic (relational calculus) extended with a
finite set of temporal connectives.

Definition 8 (First-order Temporal Logic: syntax) Let) be a finite
set of (names of) temporal connectives. First-order Temporal Logic (FOTL)
LY over a schema p is defined as:

Fo=r(zy,...,z) | zi=2; | FANF | -F|w(F,...,F) | 3z.F

where r € p and w € ().

TEMPORAL QUERIES 9

A standard linear-time temporal logic can be obtained from this definition
using the temporal connectives from Example 6:

Example 9 The standard FOTL language Lisince:untill i dofined qs
Fo=r(zy,...,2) |z =2; | FANF|-F | Fy since F> | Fy until F | 3z.F

where since and until are the names for the connectives defined in Exam-
ple 6.

Example 10 We show here how various temporal connectives are used to
formulate the queries from Fxample 3. The query “find all people who have
worked for only one company” is formulated as

*O(Je. Work(z, ¢) A =3 .(O® Work(x,) A # c).

The query “find all people whose terminal degree is from MIT and the year
of their graduation” is formulated as

3d.3m.Education(x,d,m, MIT) A —=>3d'.3m’ 3s'. Education(z,d ,m’, s')

To list all UofT PhD’s in CS who have been continuously employed by IBM
since their graduation including the years of employment we use the query

Work(x, IBM) since Education(x, PhD,CS,UofT).

Finally, the query “find all job-hoppers—people who never spent more than
two years in one place” is expressed as:

BO(—3c. Work(z, c) AN OWork(z,c) N OO Work(z, c)).
The standard way of giving semantics to such a language is as follows.

Definition 11 (FOTL: semantics) Let DB be a snapshot temporal data-
base over D, Tp, and p, ¢ a formula of L}, t € Tp, and 0 a valuation. We
define a relation DB, 0,t = ¢ by induction on the structure of ¢:

DB, 0, | (i, ... x5) if 15 € p, (0(x,), .., 0(xs,)) € ;"0

DB, H,t li T = T if 0(.7)1) = 9(.%'])

DB,0,t = p Ay if DB, 6,t = ¢ and DB, 0,t = ¢

DB, 0,t = —p if not DB, 0,t = ¢

DB, 0,t = Jz;.@ if there is a € D such that DB, 0[z; — al,t = ¢

DB,0,t = w(Fi,...,Fy) if Tp,[to — t] | w* where
Tp,d = X, is interpreted as DB, 6,4(t;) = F;

10 TEMPORAL LOGIC IN INFORMATION SYSTEMS

DB(t)

where r; is the interpretation of the relation symbol r; in DB at time t.

We assume the rigid interpretation of constants (it does not change over
time). The answer to a query ¢ over DB is the set of tuples ¢(DB) :=
{#,0/pv(p)) : DB,0,t = ¢} where 0py () is the restriction of 0 to the free
variables of .

Example 12 The above definition applied to the standard language
Lisinceuntily oi06 the usual semantics of the since and until connectives:

D,0,i=puntil ¢ if 3j.j >iAD,0,j =AYk >k>i— D0k

Two-sorted first-order logic

The second natural extension of the relational calculus to a temporal query
language is based on explicit variables and quantification over the temporal
domain Tp. It is just the two-sorted version of first-order logic (2-FOL) over
D and T p, with the limitation that the relations can have only one temporal
argument [BTK91].

Definition 13 (2-FOL: syntax) The two-sorted first-order language L¥
over a database schema p is defined by:

M = R(ti,xil,...,xik) ’ti <t ‘ T = Tj ‘ MANM ’ --M ’ dx; M ’ dt;. M
where R is the temporal extension of r for r € p.
Similarly to FOTL we can use 2-FOL to formulate temporal queries:

Example 14 The query “find all people who have worked for only one
company” is formulated in 2-FOL as

Je, t. Work(t,z, c) A =3, t'.(Work(t',z,) A # ¢).
The semantics for this language is defined in the standard way, similarly to
the semantics of relational calculus [AHV95].

Definition 15 (2-FOL: semantics) Let DB be a timestamp temporal da-
tabase over D, Tp, and p, ¢ a formula in L¥, and 0 a two-sorted valuation.
We define the satisfaction relation DB, 6 = ¢ as follows:

DB, 0): R]'(ti,l‘il, e ,mik) if R]' cp, (H(ti),ﬂ(mil), ce ,9($Zk)) S R?B

DB,@): t; < tj if G(tz) < a(t]‘)

DB, 0): Ty = Ty if 0(.7)1) = 9(.%'])

DB,0 = ¢ Ay if DB,6 = ¢ and DB, 0 = ¢

DB, 0 = - if not DB, 6§ = ¢

DB, 0 = Jt;.p if there is s € Tp such that DB, 0[t; — s] E ¢

DB, 0 = 3z if there is a € D such that DB, 0[z; — a] = ¢

TEMPORAL QUERIES 11

where R?B is the interpretation of the relation symbol R; in the database
DB.

A LY query is a LY formula with exactly one free temporal variable.

An answer to a L¥ query ¢ over DB is the set ¢(DB) := {0y (,) : DB, 6 |=
@} where 0 py () is the restriction of the valuation ¢ to free variables of ¢.

The restriction to a single temporal attribute in the signature of queries
guarantees closure over the universe of single-dimensional temporal rela-
tions.

3.2 Expressive Power

In the remainder of this section we compare the expressive power of FOTL
and 2-FOL. First we define a mapping Embed : L — L¥ to show that the
L% formulas can be expressed in the L language:

Definition 16 (Translation) Let Embed be a mapping of L formulas to
LY formulas defined as follows:

Embed(r;i(z1,...,2y,)) = Ri(to,z1,...,%y;)

Embed(z; =]) = ;=2

Embed(F AN 2) = Embed(Fl) AN Embed(Fg)

Embed(—F) = - Embed(F)

Embed(3z.F) = Jz.Embed(F)

Embed(w(Fi,...,F;)) = w*(Embed(F1)[to/t1],...,Embed(Fy)[to/tk])
where w(Xy,...,Xk) is the name of w* in Q and F[to/t;] is a substitution

of t; forty in F.

We know that we can freely move between snapshot and timestamp repre-
sentations (see Definition 2). Definition 16 allows us to translate queries in
L% to queries in L¥ while preserving their semantics.

Theorem 17 Let DBy be a snapshot temporal database and DBs an equiv-
alent timestamp database. Then DB1,0,s = ¢ <= DBy, 0ty — s]
Embed(p) for all ¢ € L.

Therefore Definition 16 can also be used to define the semantics of L queries
over timestamp temporal databases.

Another consequence of Definition 16 and Theorem 17 is that L? is at
least as expressive as L (denoted by L T L¥). What is the relationship
in the other direction?

12 TEMPORAL LOGIC IN INFORMATION SYSTEMS

Expressive Incompleteness of First-order Temporal Logic

While both snapshot and timestamp temporal models can be used to repre-
sent temporal databases equivalently, we show that the corresponding query
languages cannot express the same queries. This is a major difference from
the propositional case where linear-time temporal logic has the same ex-
pressive power as the monadic first-order logic over linear orders. The lat-
ter result was established by Kamp for complete linear orders, extended
by Stavi for all linear orders, and later reproved several times using var-
ious proof techniques [Kam68, Sta79, GHR94, IK89]. On the other hand
Kamp also proved the following separation result in a first-order setting
[L{since.until} — p{sinceuntilnow} — P for dense linearly ordered time (T
denotes the “strictly weaker than” relationship of languages). Thus on gen-
eral structures Lisince:until}l jg strictly weaker than L [Kam71]. However,
the proof of this fact uses structures that can not be modeled as abstract
temporal databases because they are infinite in both the data and temporal
dimensions. Also, the proof technique does not consider arbitrary temporal
connectives. Moreover, it is not clear if this proof technique can be adapted
to discrete linear orders [Kam71].

Thus there was a hope that the gap in expressive power could be bridged
by introducing additional connectives and/or by restricting the structures
to abstract temporal databases that are finite at every moment of time.
However, two recent independent results show that this is not the case, and
that for all practical purposes L — L¥:

Theorem 18 [AHVAB96] Lisinceuntilt — 1P oyer the class of finite times-
tamp temporal databases.

Theorem 19 [TN96] Let 2 be an arbitrary finite set of first-order temporal
connectives. Then L T LY for the class of timestamp temporal databases
over a dense linear order.

In both cases the language of temporal logic L is shown not to be able
to express the query “are there two distinct time instants at which a unary
relation R contains exactly the same values?” On the other hand, this query
can be easily expressed in LY using the formula

dt1,ta.t1 < to /\V.CC.R(tl,.CL‘) <~ R(tg,.’L‘).

This result has several very unpleasant consequences: A single-dimensional
first-order complete temporal query language can not be subquery closed.
This means that in general we can not define all queries to be combinations
of simpler single-dimensional queries.

TEMPORAL QUERIES 13

This fact also prevents us from decomposing large queries into views
(virtual relations defined by queries). An even more serious problem is that
there is no relational algebra defined over the universe of single-dimensional
temporal relations that is able to express all first-order temporal queries.

Temporal Relational Algebra

Similarly to relational algebra, a Temporal Relational Algebra is a (finite)
set of (first-order definable) operators defined on the universe of single-
dimensional temporal relations.

Example 20 [TC90] A temporal relational algebra (TRA) is a set of alge-
braic operators my,op, X, U, —, S,U over the universe of single dimensional
temporal relations defined by:

my(R) = {t,0)y : DB,0,t = R}
O’F(R) :{t,9|FV(R)ZDB,9,t|:R/\F}
(R)):DB,G,t):R/\S}
(R)):DB,G,t):R\/S}
R-S :{t,9|FV(R)UFV(S)ZDB,G,t):R/\—'S}
(R)) : DB,0,t = R since S}
(R)):DB,G,t):RuntilS}

where R and S are the interpretations of the symbols R and S in the database
DB.

The above definition allows us to translate (domain-independent) formulas
in L{sinceuntil} ¢, TRA However, this is also the reason why TRA with
arbitrary finite set of first-order definable operators can not express all first-
order queries (an immediate consequence of Theorems 18 and 19). This fact
causes major problems when implementing query processors for temporal
query languages as the common (and efficient) implementations inherently
depend on the equivalence of relational algebra and calculus to be able to
execute all queries [AHV95, UlI89].

3.3 Space-efficient Encoding of Temporal Databases

While abstract temporal databases provide a natural semantic domain for
interpreting temporal queries, they are not immediately suitable for the im-
plementation, as they are possibly infinite (e.g., when the database contains
a fact holding for infinitely many time instants). Even for finite abstract
temporal databases a direct representation may be extremely space ineffi-
cient: tuples are often associated with a large number of time instants (e.g.,

14 TEMPORAL LOGIC IN INFORMATION SYSTEMS

Abstract Temporal Databases

Images of Concrete Temporal Databases

DB: »(DB):
(Lo, @a), |e=Rtoat<w| {(La)(2a),
(370')?' . } "'?(70')}
| E1]| |E2 || Il Il
{([1,5],a), eval(p)(E1) {([1,5],a),
6, 00, a) ([6.9].0) }
([L, 00],)} eval(e)() ((11,9],0)}

Concrete Temporal Databases

FEq and Es are two concrete temporal databases that represent
the same abstract temporal database DB.

Figure 2: Abstract and Concrete Timestamp Temporal Databases

a validity interval). In addition, changes in the granularity of time may
affect the size of the stored relations.

Our goal in this section is to develop a compact encoding for (a sub-
class of) abstract temporal databases that makes it possible to efficiently
store such databases in finite space. The most common approach to such an
encoding is to use intervals as codes for convex 1-dimensional sets of time
instants. The choice of this representation is based on the following (empiri-
cal) observation: Sets of time instants describing validity of a particular fact
in the real world can be often described by an interval or a finite union of
intervals. We briefly discuss other encodings at the end of this section. For
simplicity from now on we assume a discrete integer-like structure of time.
However, dense time can also be accommodated by introducing open and
half-open intervals. All the results in this section carry over to the latter
setting.

Definition 21 (Interval-based Domain Ty) Let Tp = (T,<) be a dis-
crete linearly ordered point-based temporal domain. We define the set

I(T) ={(a,b):a<bjac TU{—o0},becTU{c0}}

TEMPORAL QUERIES 15

where < is the order over Tp extended with {(—o0,a), (a,00),(—00,00) :
a € T} (similarly for <). We denote the elements of I1(T') by [a,b] (the
usual notation for intervals). We also define four relations on the elements
of I(T):

([a,b] <—_ [d,V]) <= a<d (la,b] <4_ [a,V]) <= b<d
([a,b] <—4 [d,V]) <= a <V (la,b] <j4 [d,V]) <= b<V

for [a,b],[a',b'] € I(T). The structure Tr = (I(T),<__, <4—,<_4,<44) 18
the Interval-based Temporal Domain (corresponding to Tp).

A concrete (timestamp) temporal database is defined analogously to the
abstract (timestamp) temporal database. The only difference is that the
temporal attributes range over intervals (T;) rather than over the individual
time instants (Tp).

Definition 22 (Concrete Temporal Database) A concrete temporal
database is a finite first-order structure D U Tr U {R;..., Ry}, where R;
are the concrete temporal relations which are finite instances of R; over D
and Ty.

Clearly the values of the interval attributes can be encoded as pairs of their
endpoints which are elements of T'U {—o00, 00}. However, it is important to
understand that both Tp and T; model the same structure of time instants,
a single-dimensional linearly ordered time line. This requirement is the
crucial difference between the use of intervals in temporal databases and
in various interval-based logics (cf. Section 5). The meaning of concrete
temporal databases is defined by a mapping to the class of abstract temporal
databases.

Definition 23 (Semantic Mapping ||.||) Let DBy be an abstract tempo-
ral database and DBo a concrete temporal database over the same schema p.
We say that DBs encodes DB if

RPP(t,x) <= e TLRPP(Ix)Atel

for all r; in p, t € Tp, and x € DAty (ri) - yhere R?B s the interpretation
of the relation symbol R; in the database DB. This correspondence defines a
map ||.|| from the class of concrete temporal databases to the class of abstract
temporal databases as an extension of the mapping of the relations in DBo
to the relations in DB;.

16 TEMPORAL LOGIC IN INFORMATION SYSTEMS

Note that |.|| is neither injective nor onto. Therefore there is no unique
canonical concrete temporal database that encodes a given abstract tempo-
ral database (cf. Figure 2). If only a single temporal dimension is allowed
however, we can define a canonical form for concrete temporal relations us-
ing coalescing: A single-dimensional temporal relation is coalesced if every
fact is associated only with maximal non-overlapping intervals. A concrete
temporal database is coalesced if all the user-defined relations are coalesced.
Unfortunately, such a canonical normal form does not generalize to higher
dimensions and Theorems 18 and 19 show that we can not restrict our at-
tention to the single-dimensional case.

3.4 Concrete Temporal Query Languages

The simplest query language over concrete temporal databases is the two-
sorted first-order logic where variables and quantifiers of the temporal sort
range over the domain T rather than Tp.

Definition 24 (Interval-based Language L!) Let p be a database
schema and

L:=Ri(I,x)|LANL|-L|3x.L|3].L|x1 =m2|1] <15
where R; is the temporal extension of r; € p and I* € {I*, 1" }.

The language L' uses I} < I3 instead of the symbols <__, <, <, , <.,
from the actual structure of T;. However, it is easy to see that, e.g., I~ < J~
can be expressed as I <__ J, etc., and the new notation is thus merely
syntactic sugar. We could also equivalently use Allen’s algebra operators
[A1183]. The resulting language is equivalent to L’.

We assume the usual Tarskian semantics for formulas in L!. Therefore L!
is fairly easy to implement using standard relational techniques. However,
it is crucial to understand that this semantics of L is not point-based—
the elements of T correspond to points in the two-dimensional plane (cf.
Section 5). Thus L! can not be immediately used as a query language
over interval-based encodings of point-based abstract temporal databases
because, among other things, it can easily express representation-dependent
queries. Consider the following example:

Example 25 Let DB{,DBy be two concrete temporal databases over
the schema (r(z)) defined by RPB®1 = {(]0,2],a),([1,3],a)} and RPB2 =
{(]0,3],a)}. Then the formula 31, J.3x(R(I,x) AN R(J,x) N1 # J) is true in
DBj but false in DBs.

TEMPORAL QUERIES 17

This observation leads to the following definition:

Definition 26 (||.||-generic Queries) Let ||.| be the semantics mapping
and ¢ € L1. Then we say that ¢ is ||.||-generic if |DB1| = ||DBs]| implies
lo(DB1)|| = ||¢(DB2)|| for all concrete temporal databases DBy, DBa.

Most interval-based query languages (e.g., TQuel or SQL/Temporal; cf. Sec-
tion 3.6) are directly based on the language L! (or some of its variants).
This choice inherently leads to the possibility of expressing non ||.||-generic
queries.

3.5 [Evaluation of Abstract Query Languages using Compi-
lation

A desirable solution is to use one of the abstract query languages for querying
concrete temporal databases. However, the semantics of these languages is
defined over the class of abstract temporal databases (and we can not simply
apply the queries to the images of the concrete temporal databases under ||. ||,
as this would completely defy the purpose of using the concrete encodings
and we would have to face the possibility of handling infinite relations). Thus
we need to evaluate abstract queries directly over the concrete encodings.
This goal is achieved using compilation techniques that transform abstract
queries to formulas in LY while preserving meaning under ||.||:

Theorem 27 [Tom96] There is a (recursive) mapping F : L¥ — LI such
that ¢(|DBJ|) = ||[F(p)(DB)|| for all ¢ € LY and all concrete temporal
databases DB.

Moreover we can show that when using the interval-based encoding L’ can
express all ||.||-generic queries in L’:

Theorem 28 [Tom96] For every ||.||-generic ¢ € L there is 1 € LY such
that ||@(DB)|| = ¢ (||DB||) for all concrete temporal databases DB.

The mapping from Theorem 27 can be also used for L by composing it with
the Embed map from Definition 16. However, we may ask if there is a more
direct way from L% to L? The following theorem gives a direct mapping of
L% to ATSQL (which is essentially a SQL version of L; cf. Section 3.6):

Theorem 29 [BCST96] There is a (recursive) mapping G : L — LT such
that o(|DB|)) = ||G(¢)(DB)| for ¢ € L? and DB an arbitrary coalesced
concrete temporal database.

18 TEMPORAL LOGIC IN INFORMATION SYSTEMS

This mapping is considerably simpler than the indirect way through L*.
However, we pay the price for simplicity by having to maintain coalesced
temporal relations, including all intermediate results during the bottom-up
evaluation of the query. Note that the use of coalescing is possible due to
the inherent single-dimensionality of L.

The mappings defined in Theorems 27 and 29 bring up an interesting
point: what are the images of the temporal connectives themselves? It
turns out that the results of such translations can be considered to be the
equivalents of the original connectives that operate on concrete temporal
relations:

Example 30 Let UNTIL = Ar.\s.F o Embed(r until s) and ¢ and
two queries in L. Then (¢ until 1)(||[DB||) = ||(F oEmbed(¢) UNTIL Fo
Embed(v))(DB)|| for all concrete temporal databases DB.

A similar trick can be used to define the remaining temporal connectives.
For coalesced databases we can use G in place of F'o Embed. This definition
can be used to define an algebra over concrete relations that preserves the ||. |
mapping and is thus suitable for implementing L. This algebra can serve

as the concrete counterpart of the temporal relational algebra introduced in
Example 20 [TC90].

Constraint Encoding

A careful analysis of Definition 21 reveals that the intervals are essentially
quantifier-free formulas in Th(<pr;) with exactly one free variable. This
idea can be generalized to more general classes of constraints [KKR95]: Let
(T, o) be a point-based temporal domain with the signature o. Then we can
define the set of formulas C, = {¢(t) : ¢ € Ly A FV(¢p) = {t}} where L, is
the set of finite conjunctions of atomic formulas in the language of o. The
set C, can serve as the basis of the temporal domain for a class of concrete
temporal databases, similarly to intervals in Definition 21. An example of
an alternative encoding is the use of periodic constraints [KSW95|, or linear
arithmetic constraints [KKR95]. It is important to note that the use of
different constraint theory as the basis of the encoding results in a different
class of concrete temporal databases, often incomparable with the class of
concrete temporal databases based on intervals.

3.6 SQL and Derived Temporal Query Languages

Up to this point we have only discussed temporal query languages based on
logic. In this section we focus on the proposals for temporal extensions of

TEMPORAL QUERIES 19

more practical query languages, especially SQL [ISO92]. When designing
such an extension we need to overcome several obstacles:

1. The semantics of SQL and other practical languages is commonly
based on a bag (duplicate) semantics rather than on a set (Tarskian)
semantics. Therefore we need to design our extension to be consistent
with the semantics of the language we started with. This also means
that we need to deal with various non first-order features of the origi-
nal language, e.g., with aggregation (the ability to count the number
of tuples in a relation or to compute the sum of values in an attribute
of the relation over all tuples).

2. We need to design the extension in a way that consistently supports
the chosen model of time. This point is often not emphasized enough
and many of the proposals drift from the intended model of time in
order to accommodate extra features. However, such design decisions
lead to substantial problems in the long run, especially when a precise
semantics of the extension has to be spelled out (this is one of the rea-
sons why only informal semantics exist for many of these languages).

3. To obtain a feasible solution we need to use a compact encoding of
temporal databases introduced in Section 3.3. Therefore we need
an efficient query evaluation procedure the chosen class of concrete
databases.

We would like to point out that vast majority of practical temporal query
languages assume a point-based model of time (i.e., the truth of facts is as-
sociated with single time instants rather than with sets of time instants)
[Cho94]. Unfortunately (and also in most cases) the syntaz is based on the
syntax of L! or some of its variants, e.g., languages that use Allen’s inter-
val algebra operators [All83]. This discrepancy leads to a tension between
the syntactic constructs used in the language and the intended semantics of
queries. While we focus mostly on temporal extensions of SQL, our obser-
vations are general enough to apply to temporal extensions of other query
languages, e.g., TQuel [Sno87].

Example 31 We demonstrate the differences between the approaches using
the following query: List all persons who have been unemployed between
jobs. This query can be easily formulated in temporal logic as follows:

&3y Works(z,y) A =3y.Works(z,y) A ©Jy.Works(z, y).

The query could also be equivalently expressed using future (or past) temporal
connectives only, see Example 36.

20 TEMPORAL LOGIC IN INFORMATION SYSTEMS

The temporal extensions of SQL can be divided into two major groups based
on the syntactic constructs added to support temporal queries:

Languages based on L!

This group contains the majority of current proposals, in particular the
SQL/Temporal proposal to the ANSI/ISO SQL standardization group
[SBJS96] and ATSQL [SJB95], the applied version of TSQL2 [Sno93] . Both
these languages are directly based on L! with Allen’s algebra operators
dressed in SQL syntax and using bag (duplicate) semantics.

Let us try to formulate the query from Example 31 in such a language,
e.g., TSQL2 of its successor, SQL/Temporal. The the solution which most
people come up with is the query below (we use an intuitive and simplified
syntax to make our point; for full details on syntax of SQL/Temporal see
[STB95, SBJS96]):

Example 32 The query from Ezample 31 in SQL/Temporal:

select rl.Name
from Work rl1, Work r2
where rl.Name = r2.Name
and rl.time before r2.time

Note that the time attributes range over intervals and the before relation-
ship denotes the before relationship between two intervals. For a similar
example in TQuel see [Cho94].

Strangely enough, this query accesses the relation Work only twice while
the original query in Example 31 needs to access the relation three times.
This is often considered to be a feature of the L!-based proposals and is
attributed to the use of interval-based temporal attributes. It is also very
appealing due to savings in the query evaluation cost. However, a closer
scrutiny reveals that the above SQL/Temporal query is incorrect. Indeed,
it also returns names of all people who held at least three consecutive jobs
even if there was no gap between the jobs. This result is consistent with
the two-dimensional interval-based semantics of L!. Similarly we can show
many innocent-looking queries to be non-generic (in sense of Definition 26)
and therefore necessarily incorrect with respect to their intended meaning.
On the other hand the access to the interval endpoints (the nonsequenced
semantics [SBJS96]) is essential to write non-trivial temporal queries in
SQL/Temporal.

There are two principal approaches that try to avoid the incorrect and
unexpected behavior by modifying the semantics of the above languages.

TEMPORAL QUERIES 21

Coalescing The first (and historically oldest) approach is based on coa-
lescing: the assumption that timestamps are represented by maximal non-
overlapping intervals (see Section 3.3). This is also a commonly made as-
sumption when queries like the one in Example 32 are formulated. Coalesc-
ing attempts to produce a normal form of temporal relations over which the
semantics of queries could be (uniquely) defined. The formal justification
of this approach lies in realization that the intended semantics of the lan-
guage is point-based and therefore we can evaluate queries over any of the
||.]l-equivalent temporal databases (one of which is the coalesced one). For
detailed discussion of coalescing in temporal databases see [BSS96].

The most prominent representatives of this approach are TQuel [Sno87,
Sno93|, and TSQL2 [Sno95, SAAT94]. However:

e Coalescing does not solve the problem with the above query: if a
person works for three different companies she is still in the answer
to the query. The query is correct if the Work relation is coalesced
after projecting out the attribute Company. This is not done in the
(informal) semantics of TQuel or TSQL2. It also means that the
performance gain attributed to the use of interval-valued attributes
does not exist as we need to re-coalesce temporal relations on the fly.

e While coalescing preserves ||.||-equivalence in the set-based semantics
it is incompatible with the use of duplicate semantics as it inherently
removes duplication. This is the main reason why the newer propos-
als, e.g., SQL/Temporal or ATSQL, do not use coalescing in order to
preserve compatibility with SQL’s duplicate semantics.

However, the most serious problem with coalescing-based approaches is ex-
posed by Theorems 18 and 19: the theorems show that we cannot evaluate
all first-order queries using only one temporal dimension. This result is fa-
tal to the coalescing-based approaches as there is no unique coalescing for
temporal dimension higher than one.

Folding and Unfolding The second approach is based on two additional
operations: fold and unfold [Lor93]. These two operations allow us to explic-
itly convert a concrete temporal relation with interval-based timestamps to a
temporal relation with point-based timestamps. The query from Example 31
can be correctly formulated using fold/unfold, as it now becomes possible
to refer to unfolded temporal relations (with duplicates). Lp (modified to
handle duplicates). However, the use of these operations is prohibitively
expensive:

22 TEMPORAL LOGIC IN INFORMATION SYSTEMS

Example 33 Consider a temporal relation R containing a single tuple
(a,[—2™,2"]) for some n > 0. Clearly, this relation can be stored in 2n+ |a
bits. However, unfolding this relation gives us {(a,i) : —2" <1 <2"}. This
relation needs space 2" - |a| which is exponential in the size of the original
relation R.

Such a cost clearly disqualifies the above approach as a basis for a practical
temporal query language. In addition, unfolding of a concrete relation that
represents an infinite abstract relation (e.g., unfolding a relation containing
a single tuple ([0, 00])) is not possible.

Languages based on LP

While query languages based on L were often considered to be inherently
inefficient, recent results (especially Theorem 27 [Tom96]) allow us to define
a point-based extension of SQL that can be efficiently evaluated over the con-
crete interval-based temporal databases. The proposed language, SQL/TP,
is a clean temporal extension of SQL [Tom97]:

e The syntax and semantics of SQL/TP are defined as a natural exten-
sion of SQL with an additional data type based on the point-based
temporal domain Tp.

e On the other hand, the use of Theorem 27 avoids the problems in
Example 33: the result of the F map is an ordinary query in L!
(or SQL). Therefore it can be efficiently evaluated over the concrete
temporal databases based on interval encoding of timestamps (like any
other SQL query).

The SQL/TP proposal also includes a definition of meaningful duplicate
semantics and aggregation operations that are compatible with standard
SQL [Tom97]. The query from Example 31 can be formulated in SQL/TP
in the expected way:

select rl.Name
from Work rl1l, Work r2
where rl.Name = r2.Name
and rl.time < r2.time
and not exists (
select *

from Work r3
where 1r3.Name

and rl.time

and r3.time

rl.Name
r3.time
r2.time)

TEMPORAL INTEGRITY CONSTRAINTS 23

It is easy to see that the above formulation is is very similar to the declarative
formulation of the query in the language L¥ or in temporal logic.

Languages based on L%

Other possible temporal extension of SQL can be based on the language L
for some finite set of temporal connectives (2. The temporal connectives can
be introduced in the language similarly to set operations, e.g., the union
operation.

Example 34 (SQL/{since, until}) The extended language is defined as
follows. Every SQL query is also a SQL/{since,until} query. In addition
if Q1 and Q2 are two queries (fullselects) then

Q1 since Q2 Q1 until Q2

are also SQL /{since, until} queries. The semantics of this language is based
on a natural extension of Definition 11.

We can use Theorem 29 to evaluate queries in this language efficiently over
coalesced interval-encoded concrete temporal databases [BCST96]. Note
that in this case all temporal relations have only one temporal attribute and
therefore we can use coalescing.

Alternatively we can compose the mappings defined in Definition 16 with
Theorem 27 to obtain a query evaluation procedure for L*2. This time we do
not have to enforce coalescing of concrete temporal relations, as Theorem 27
allows to evaluate queries over arbitrary concrete temporal databases (based
on interval encoding).

4 Temporal Integrity Constraints

In this section we show how temporal logic can be used as a language for
specifying temporal integrity constraints in relational databases. We have
shown in Section 2 how the notion of a temporal database occurs naturally
in the context of relational database histories. Here, we discuss different
notions of temporal constraint satisfaction and various approaches to the
problem of temporal integrity maintenance. Then we summarize the existing
results about the computational complexity of checking temporal integrity
constraints and sketch an efficient evaluation method for a class of such
constraints.

24 TEMPORAL LOGIC IN INFORMATION SYSTEMS

4.1 Notions of constraint satisfaction

Definition 35 (Constraint Satisfaction) Given an abstract tem-
poral query language L, a closed formula C € L, and a history
H = (Hy,...,Hy,Hyy1,...), we say that C is satisfied by H if H,i = C
for every i > 0.

This definition assumes some standard notion of temporal formula satisfac-
tion, e.g., Definition 11.

Example 36 Consider the following constraint Cy: ”a student cannot grad-
uate with honors if he retook any course”. This constraint can be expressed
as a temporal logic formula with future connectives:

—3Jx.Jy.takes(x,y) A O(takes(z,y) A Ohonors(z))
or as a formula with past connectives:
—3Jx.3y.honors(z) N ®(takes(x,y) N ®takes(z,y))

Temporal integrity constraints are imposed on the current history of a da-
tabase, i.e., the sequence of states up to the current one. Such a history is
of course finite. However, the satisfaction of a temporal integrity constraint
is defined with respect to an infinite history representing a possible future
evolution of the database. The notion of potential constraint satisfaction
(called also potential validity [LS8T7]) reconciles those two views.

Definition 37 (Potential Constraint Satisfaction) Given a closed for-
mula C € L, C 1is potentially satisfied at instant t if the current fi-
nite history (Ho, Hy,...,H) can be extended to an infinite history H =
(Ho,Hy,...,Hy,...) that satisfies C'.

In other words, a constraint is potentially satisfied after an update if the
history ending in the state resulting from the update has an (infinite) exten-
sion to a model of the constraint. Notice that from the above definition it
follows that if a constraint is potentially satisfied at a given instant, it was
also potentially satisfied at all the earlier instants.

In the database context, considering infinite sequences of states means
that the database is infinitely updatable. This seems like a desirable char-
acteristic, even though in real applications databases have only a finite life-
time. Similarly, in concurrent systems one often studies infinite behaviors,
although every practical program runs only for a finite time. In both cases
infinity provides a convenient mathematical abstraction.

TEMPORAL INTEGRITY CONSTRAINTS 25

4.2 Temporal Integrity Maintenance

We discuss now three different scenarios for temporal integrity maintenance:
constraint checking, temporal triggers, and transaction validation. In this
context, we also review the well-known distinction between safety and live-
ness properties [Pnu86].

Constraint Checking [Cho95, CT95, Ger96, HS91, LS87]

The assumption here is that updates are arbitrary mappings producing finite
states. An update is committed if in the resulting history all the constraints
are potentially satisfied and aborted otherwise.

Temporal Triggers [SW95]
Again, the basic assumption is that updates are arbitrary.

Definition 38 (Trigger Firing) Let (Ho, H1,...,H;) be a finite history
and T' a Condition-Action trigger of the form ‘if C then A”[WC96]. Then
T fires at instant t for a (ground) substitution 0 to the free variables of C
if =CO (the result of applying the substitution 6 to —C') is not potentially
satisfied at t. The action executed is Af.

Intuitively, a trigger fires after an update if no extension of the history
ending in the state resulting from the update can make the trigger condition
false. So we can see that the notion of trigger firing is dual to potential
constraint satisfaction. That corresponds to the intuition that integrity
checking triggers should fire when the integrity is violated. However, it
is up to the trigger designer to guarantee that the integrity be restored
by appropriately programming the action part of the trigger. There are
currently no tools, formal or otherwise, that could help him in this task.
The work on automatically generating triggers from constraint specifications
[CW90] and declarative specification of constraint maintenance [BCP94] can
perhaps be generalized to temporal integrity constraints and triggers.

Transaction Validation [dCCF82, Kun85, Lip90]

Here the assumption is that the database will only be updated by a fixed set
of transactions. The transactions are analyzed in advance. De Castilho et al.
[dCCF82] proposed to check whether the transactions are always guaranteed
to preserve the integrity constraints using theorem proving techniques. Kung
[Kun85] presented a model-checking [Eme90] approach to testing the consis-
tency of transaction specifications with integrity constraints. Completeness,

26 TEMPORAL LOGIC IN INFORMATION SYSTEMS

decidability, and computational complexity issues were not addressed in ei-
ther work. It would be interesting to see whether recent advances in model
checking and theorem proving techniques can be applied in this area. In a
related work, Lipeck [Lip90] shows how to refine transaction specifications,
so that temporal integrity constraints are never violated.

Safety vs. Liveness

Does every temporal logic formula make sense as a temporal integrity
constraint? Here the distinction between safety and liveness formulas
[AS85, Pnu86| is very helpful. Intuitively, safety formulas say that “nothing
bad ever happens” and liveness formulas — that “something good will hap-
pen”. An example of a safety formula is O Jz.p(z), of a liveness formula
<& Jz.p(z).

Definition 39 (Property) Any set of histories over a single schema can
be considered a property. A property P is defined by a (closed) formula A
if P is the set of histories that satisfy A.

Definition 40 (Safety) [AS85] A property P is called a safety property if
for all histories H = (Hy, H1, Ha,...) the following holds: if H does not
belong to P, then some prefix (Hy, Hi,...,H;) of H cannot be extended to
any history in P. A formula defining a safety property is called a safety
formula.

Definition 41 (Liveness) [AS85] A property P is a liveness property if
any finite history H = (Hy, H1, Ha, ..., Hy) can be extended to an element
of P. A formula defining a liveness property is called a liveness formula.

A violation of a safety formula can thus be always detected as a violation
of its potential satisfaction in some finite history. Consequently, safety for-
mulas are particularly suitable to the constraint checking scenario. On the
other hand, liveness formulas are always potentially satisfiable. (A detailed
discussion of safety vs. liveness in the database context can be found in
[CNO95], and in the context of proving properties of concurrent programs in
[MP92].)

Similar considerations apply to temporal triggers, although because of
the duality negations of safety formulas are of interest there. In the trans-
action validation scenario, both safety and liveness formulas are meaningful
as constraints, because restricting updates to a fixed set of transactions pre-
vents liveness formulas from being potentially satisfied in a trivial way. In

TEMPORAL INTEGRITY CONSTRAINTS 27

the first two scenarios, future states can be arbitrary, while in the third
they are partially determined by the given transactions. It may be interest-
ing to investigate whether the methodology of proving safety and liveness
properties developed by Manna and Pnueli [MP92] can be applied in the
transaction validation scenario.

4.3 Temporal Constraint Checking

We summarize here the results about restricted classes of temporal integrity
constraints expressed in temporal logic. Lipeck and Saake [LS87] proposed
the class of biquantified formulas (without using this specific term). Biquan-
tified formulas allow only future temporal operators and restricted quantifi-
cation in the following sense: the quantifiers can be either ezternal (not in
the scope of any temporal connective) or internal (no temporal connective
in their scope). Moreover, all external quantifiers are universal. Chomicki
[Cho95] proposed the class of past temporal formulas, in which the only
temporal connectives are ® and since and their derivatives, without any
restrictions on quantification. The main theoretical results are as follows.

Theorem 42 [CN95] For biquantified safety formulas with no internal
quantifiers (called universal), potential constraint satisfaction is decidable
(in exponential time). For biquantified safety formulas with a single inter-
nal quantifier, potential constraint satisfaction is undecidable

Theorem 43 [Cho95] For past formulas potential constraint satisfaction is
undecidable.

Notice that the first formulation of the constraint Cy (Example 36) is a
universal biquantified formula, while the second is a past formula. As far
as we know the above results are still the only known characterizations
of the computational complexity of checking temporal integrity constraints
formulated in temporal logic.

For past formulas, Chomicki [Cho95] proposed a practical method for
checking temporal logic constraints. As potential constraint satisfaction
is undecidable for this class of constraints, a different notion of constraint
satisfaction is used, namely the adaptation of Definition 35 to finite histories.
(Such an adaptation is possible because past formulas refer only to the
current history which is finite.) This notion is in general strictly weaker
than potential satisfaction but for most practical constraints the two notions
coincide. In Chomicki’s method, every state H; is augmented with new
auziliary relations to form an extended state H,. Only the last extended state
is stored and used for checking constraints. For a fixed set of constraints,

28 TEMPORAL LOGIC IN INFORMATION SYSTEMS

the number of auxiliary relations is fixed and their size is polynomial in
the cardinality of the active domain of the current history. The method
provides a lossy encoding of the current history: The given constraints can
be accurately checked but arbitrary temporal queries cannot be precisely
answered.

The method works as follows. For every constraint C, the extended
database schema contains, in addition to database relations, an auziliary
relation r, for every temporal subformula o of C'. For each free variable of
a, there is a different attribute of .

Example 44 Consider the second formulation of the constraint Cy from
Ezxample 36. The auxiliary relations for this constraint are defined as follows:

Ty (T,Y) < ®takes(x,y)
Tay (2, y) & ®(takes(z,y) Ao, (2,Y))

Given ro, and rqo,, the constraint Cy can be evaluated as the following
query:
—3Jx.3y.(honors(z) A ro,(x,y)).

An auxiliary relation r, at time ¢ should contain exactly those domain values
that make « true at 7. Thus, auxiliary relations are defined inductively.
First, their instances at time 0 are defined, and then it is shown how to
obtain the instances at time ¢ + 1 from those at time ¢. The inductive
definitions are automatically obtained from the syntax of the constraints.

Example 45 Consider again the constraint Cy from Erample 36. We ob-
tain the following definition of the auxiliary relation rq, :
S (z) 2 False

it (e, y) S vy (2,0) V takes' (@, y).

Similarly:
o, (z) 2 False

. A . .
ritl(z,y) = i, (z,y) V takes' (z,y) Ar, (z,y).

The relation symbols with the superscript ¢ + 1 denote relations in the ex-
tended state after the update, and those with ¢ denote relations in the ex-
tended state before the update. Moreover, the inductive definitions do not
depend on the value of i itself, thus can be used as definitions of relational

MULTIDIMENSIONAL TIME 29

views that reference relations in the states before and after the update.
These views should be materialized in every state, except for the first one,
in the same way. In the first state, the views are initialized with empty rela-
tions. An implementation of the above method has been completed [CT95].

While in principle any temporal query language can be used to express
temporal integrity constraints, in practice only temporal logic has been stud-
ied in this context. Why is it the case? The following property seems to be
crucial: Each subformula of a temporal logic formula is associated with a
single temporal context. This property is responsible for the limited expres-
siveness of temporal logic (see section 3) but also makes possible associating
auxiliary (nontemporal) relations with subformulas and efficiently updating
those relations according to the flow of time. Two-sorted first-order logic
does not share this property and thus it seems unlikely that it will prove
useful as a practical temporal constraint language.

There remain many open problems in the area of temporal database
integrity. For example, one should consider more expressive constraint lan-
guages that use non-first-order constructs (see Section 6) or temporal aggre-
gation. It seems that Chomicki’s method [Cho95] can be adapted to handle
at least some of those extensions. Another topic is the semantics and im-
plementation of evolving sets of constraints. For a more detailed discussion
of open problems in this area see [Cho95].

5 Multidimensional Time

In Section 3 we considered only single-dimensional temporal databases: tem-
poral relations were allowed only a single temporal attribute. However, we
have also seen that a single temporal dimension is not sufficient for the
evaluation of first-order queries, as Theorems 18 and 19 show that higher
temporal dimensions are necessary to represent the intermediate results dur-
ing query evaluation. In this section we consider lifting the restriction to a
single temporal dimension. There are two cases to consider:

e temporal models with fixed number of dimensions (> 1), and

e temporal models with a varying number of temporal dimensions with-
out an upper bound.

The main result in this section is that that from the expressive power point
of view, these two approaches are not equivalent (and this should not be a
surprise anymore).

30 TEMPORAL LOGIC IN INFORMATION SYSTEMS

5.1 Why Multiple Temporal Dimensions?

To motivate the introduction of multiple temporal dimensions in the context
of temporal databases, consider the following examples:

e Bitemporal databases: with each tuple in a relation two kinds of time
are stored. The valid time (when a particular tuple is true) and the
transaction time (when the particular tuple is inserted/deleted in the
database) [JSS94].

e Spatial databases: multiple dimensions over an interpreted domain
can be used for representing spatial data where multiple dimensions
serve as coordinates of points in a k-dimensional Euclidean space.

Most of the data modeling techniques require only fixed-dimensional data.
However, the true need for arbitrarily large dimensionality of data models
originates in the requirement of having a first-order complete query language
(see Theorem 48).

5.2 Abstract Query Languages for Multi-dimensional Time

The representation of multiple temporal dimensions in abstract temporal
databases is quite straightforward: We merely index relational databases
by the elements of an appropriate self-product of the temporal domain (in
the case of snapshot temporal databases), or add the appropriate number
of temporal attributes (in the case of timestamp temporal databases).

To define multidimensional temporal query languages we essentially fol-
low the development of Section 3.

It is easy to see that the language LY is inherently multi-dimensional:
we simply abandon the restriction on the number of free temporal variables
in queries. To define the multidimensional counterpart of L we first define
the multidimensional temporal connectives.

Definition 46 (Multidimensional Temporal Connective) Let m > 0
and k > 0. A k-ary m-dimensional temporal connective is a formula in the
first-order language of the temporal domain T with exactly m free variable
t(l), .., 5" and k free relation variables X1, ..., Xy (we assume that tzl, NN
are the only temporal variables free in the formula substituted for X;).

Similarly to Definition 5 we define € to be a finite set of definitions of tem-

poral connectives: pairs of names w(Xi,...,Xy) and definitional formulas

w*.

MULTIDIMENSIONAL TIME 31

The language L™ is a (single-sorted) first-order logic extended with a
finite set ©(m) of m-dimensional temporal connectives. The semantics of
L™ queries is defined using the satisfaction relation

DB,H,tl,...,tm)ZQO

similarly to Definition 11: the only difference is that now we use m evaluation
points t1,...,t, instead of a single evaluation point ¢. This definition can
be used to define most of the common multi-dimensional temporal logics,

e.g.,
e the temporal logic with the now operator [Kam71],
e the Vlach and Aqvist system [Aqv79], and
e most of the interval logics [All84, vB83].

Again, Definition 46 allows only logics with first-order definable temporal
connectives. It also clarifies the difference between two distinct uses of
intervals in temporal databases:

1. intervals as encodings of convex 1-dimensional sets, or
2. intervals as a representation of 2-dimensional points.

These two approaches assume completely different meaning to be assigned to
the same construct—a pair of time instants—in different contexts. Consider
the following two examples:

Example 47 First consider the following fragment of a concrete temporal
database:

king("Charles Iv", "Czech Kingdom", [1347, 1378])
king("Casimir III", "Poland", [1333, 1370])

In this case the intervals serve as encodings of their internal points: Charles
IV was indeed the King of the Czech Kingdom every year (every time in-
stant) between 1347 and 1378. In this setting the set operations on intervals
correspond to their boolean counterparts: to find out at what time both
Charles IV and Casimir III were kings we can simply take the intersection
of [1347,1378] and [1333, 1370].

On the other hand, consider another fragment of a temporal database:

electricity("Jones A.", 40, 05/15/96, 06/15/96)
electricity("Smith J.", 35, 05/01/96, 06/01/96)

32 TEMPORAL LOGIC IN INFORMATION SYSTEMS

A tuple in the above relation stores the information about the electricity
charges incurred by a customer in a given period of time. It is easy to see
that here the intervals do not represent the sets of their internal points, but
rather individual points in a 2-dimensional space. Thus applying set-based
operations on these intervals does not have a clear and intuitive meaning.

Note that in Section 3 we used solely the first paradigm. The second
paradigm often corresponds to languages L2 [All84, vB8&3|.

To compare the expressive power of temporal logics with respect to the
dimension of the temporal connectives we use the following observation.
The L™ language can be used over a n-dimensional temporal database
for n < m by modifying the definition of the satisfaction relation as follows:

DB,0,s1,...,8m E R(t1,...,th,X) <= (81,...,5,,0(x)) € R

Similarly we can assume that all temporal formulas from L™ can be used as
subformulas in L™, Thus L™ © L") gyer m-dimensional temporal
databases. It is also easy to see that a natural extension of the Embed map
to m dimensions, Embed,,, gives us L9m) [P The following theorem
shows that all of the inclusions are proper:

Theorem 48 [TN96| L) = L2HD) for m > 0 and an arbitrary finite
set of m-dimensional temporal connectives (m).

As a consequence L™ = LP for all m > 0. Thus L” is the only first-order
complete temporal query language (among the languages discussed in this
chapter). On the other hand, for any fixed query ¢ € L we can find an
m > 0 such that there is an equivalent query in L™ . Thus, e.g., the query

that was used to separate FOTL from 2-FOL in Section 3 can be expressed
in L9,

5.3 Encoding of Multi-dimensional Temporal Databases

Similarly to the single-dimensional case, storing the abstract multi-
dimensional temporal databases directly may induce enormous space
requirements. Thus we need to use encodings for multiple temporal
dimensions. However, the introduction of multiple dimensions brings new
challenges. The choice of encoding for sets of points in the multidimensional
space is often much more involved than taking products of the encoding
designed for the single-dimensional case. Assume that we attempt to
represent the sets of points by hyper-rectangles—the multi-dimensional
counterparts of intervals. It is easy to see that we can write first-order
queries that do not preserve closure over this encoding:

BEYOND FIRST-ORDER TEMPORAL LOGIC 33

Example 49 Consider the query o(t1,t2) = R(t1) A R(t2) Aty < ta. This
query evaluated over the database R = {([1,10])} returns a triangle-like
region where, for all the points in the region, the first coordinate is less then
the second coordinate.

There are several ways of dealing with this issue:

e We can choose a multi-dimensional temporal logic where all the intro-
duced connectives preserve closure over the chosen encoding.

e We can introduce closure restriction for formulas in L¥ [CGK96,
Tom97]. Such a restriction is designed to guarantee attribute inde-
pendence of the free variables in the query and subsequently closure
over an encoding obtained by taking an appropriate number of carte-
sian (self-)products of the single-dimensional encoding.

e We can use a more general encoding using constraints in some suitable
constraint language [KKR95].

Another problem with using a multi-dimensional view of time is that it is
much harder to define normal forms for temporal relations: in the single-
dimensional case the coalesced relations provide a unique normal form (for
the interval based encoding). However in two or more dimensions, such
a normal form does not exist anymore (even when we only use hyper-
rectangles).

6 Beyond First-order Temporal Logic

We survey here a number of temporal query languages whose expressive
power goes beyond that of temporal logic. We have already seen one such
formalism in section 3, namely two-sorted first-order logic L¥. Most of
those languages have only recently been proposed and thus their relative
expressive power is not completely known and implementation techniques
(in particular compilation to concrete query languages) have yet to be devel-
oped. In all likelihood such an implementation will require the development
of more powerful concrete query languages, as the present languages like
TQuel or TSQL2 are not sufficiently expressive to serve as the targets of the
compilation.

Second-order Temporal Connectives

The definition of temporal connectives (Definition 5) can be extended with
monadic second-order quantification over the temporal domain (over sub-

34 TEMPORAL LOGIC IN INFORMATION SYSTEMS

sets of the domain). This approach provides extra expressive power. For
example, the unary connective “any time at an even distance from now” can
be defined as (X7 is a placeholder for the formula to which the connective

applies):

=YX 2 Jt1.X7 A3S.tg € SNty € S A closed(S)
AVS'(tg € S" A closed(S") = S C S')

where
closed(S) 2 Vi(te Set+2eS).

For the temporal domain (N, <), the above extension is identical in expres-
sive power to ETL, temporal logic with temporal connectives defined using
regular expressions, studied by Wolper [Wol83] (the propositional case) and
Abiteboul et al. [AHVAB96] (the first-order case). The latter paper also
shows that the expressive power of ETL is incomparable to that of L.
For other temporal domains, the expressive power of temporal logic with
monadic second-order connectives has not yet been studied.

Fixpoints

For a general discussion of fixpoint query languages, see [LLM98] A number
of temporal fixpoint query languages have recently been recently proposed
by Abiteboul et al. [AHVdB95]:

e TS-FIXPOINT: the extension of L¥ with inflationary fixpoints,

e T-FIXPOINT: the extension of temporal logic with inflationary fix-
points and some additional constructs: moves back and forth in time,
and local and non-inflationary variables (for details, see [AHVAB95]).

Abiteboul et al. [AHVdB95] also proposed the corresponding non-
inflationary versions of those languages, and showed that T'S-FIXPOINT is
at least as expressive as T-FIXPOINT and that the relationship in the other
direction depends on some unresolved questions in complexity theory. On
the other hand, T-FIXPOINT is more expressive than L¥. These languages
appear to be mainly of theoretical interest. Fixpoint temporal logic u7'L
[Var88] has been extensively used in program verification, although only
in the propositional case. The first-order version of uT'L remains to be
studied. In particular, its relationship to T-FIXPOINT and TS-FIXPOINT
needs to be elucidated.

BEYOND FIRST-ORDER TEMPORAL LOGIC 35

Temporal Logic Programming

Another way to escape the limitations of temporal logic is to keep its syn-
tax but use different semantics for its Horn subset. This is analogous to
the move from first-order logic to logic programming. Indeed, propos-
als by Abadi and Manna [AM89], Baudinet [Bau92, Bau95|, and Brzoska
[Brz91, Brz93, Brz95] have been made to extend the language of Horn
clauses with temporal connectives in such a way that there is still some no-
tion of least model and resolution-based operational semantics, see [Con98].
Not surprisingly, those languages can be usually translated to the standard
logic programming languages. For instance, the temporal connectives in
Templog [AM89, Bau92, Bau95] can be simulated in Prolog using an addi-
tional predicate argument that can contain the successor function symbol
[BCW93, CI88]. In this way, an exact correspondence is obtained between
function-free Templog and Datalog g, an extension of Datalog with the suc-
cessor function symbol in one predicate argument. More sophisticated tem-
poral connectives involving numeric bounds on time [Brz91, Brz93, Brz95]
can be simulated using arithmetic constraints in the Constraint Logic Pro-
gramming paradigm of Jaffar and Lassez [JL87]. One can also study the
extensions of the above Horn clause languages with various kinds of nega-
tion [AB94]. Recently, Datalog;s with negation has been used to define the
operational semantics of active database systems: see [Con98]. Temporal
logic programming languages are directly amenable to efficient implementa-
tion using the existing logic programming technology.

As far as the expressive power is concerned, it is not difficult to see
that Datalogis is subsumed by T-FIXPOINT and incomparable to ETL.
Datalog, g with stratified negation strictly subsumes ETL but its relationship
to T-FIXPOINT is unclear.

None of the above deductive or fixpoint languages operates on concrete
temporal databases, as discussed in Section 3.3. Datalog over constraint
encodings has been studied in [KKR95, TCR94].

We conclude this discussion by showing a real-life query expressible in
the temporal logic programming languages and temporal fixpoint query lan-
guages mentioned above but not in any variant of temporal logic, includ-
ing those with monadic second-order definable connectives. Intuitively, this
query involves “recursion through time”, and thus is also not definable in
any first-order language, including L*.

Example 50 Find all the computers at risk—potentially infected by a
virus—where “being at risk” is defined in the following way: a computer
is at risk at a given time if it has been earlier infected by a virus or com-

36 TEMPORAL LOGIC IN INFORMATION SYSTEMS

municating with a computer already at risk. The formulation in Datalogis
is as follows:

atRisk(T + 1, X) < infected(T, X).
atRisk(T 4+ 1, X) <+ atRisk(T + 1, X).
atRisk(T 4 1, X) < communicate(T, X,Y), atRisk(T,Y).

7 Conclusion

Recent research has produced a better understanding of the mathematical
foundations of temporal query languages and temporal integrity constraints.
Also, practical implementation techniques for a number of semantically clean
languages have been proposed. Temporal logic constitutes one of the focal
points of this research.

Throughout this chapter, we have outlined some of the remaining open
issues that deal with temporal language design, analysis, and implementa-
tion. Much work remains still to be done before temporal logic and related
languages can fulfill their promise and become as ubiquitous in databases
and information systems as time is.

References

[AB94] K. R. Apt and R. N. Bol. Logic Programming and Negation:
A Survey. Journal of Logic Programming, 19-20:9-71, 1994.

[AH92] R. Alur and T. A. Henzinger. Logics and Models of Real-Time:
A Survey. In Real-Time: Theory in Practice, pages 74—106.
Springer-Verlag, LNCS 600, 1992.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[AHVdB95] S. Abiteboul, L. Herr, and J. Van den Bussche. Temporal
Connectives versus Explicit Timestamps in Temporal Query
Languages (preliminary report). In International Workshop
of Temporal Databases, Ziirich, Switzerland, September 1995.
Springer-Verlag.

[AHVdB96] S. Abiteboul, L. Herr, and J. Van den Bussche. Temporal Ver-
sus First-Order Logic to Query Temporal Databases. In ACM
Symposium on Principles of Database Systems, pages 49-57,
Montréal, Canada, June 1996.

REFERENCES 37

[A1183]
[Al184]
[AMS9]

[Aqv79]

[AS85]

[Bau92]

[Bau95]

[BCPY4]

[BCST96]

[BCW93]

[Brz91]

J. F. Allen. Maintaining Knowledge about Temporal Intervals.
Communications of the ACM, 26(11):832-843, November 1983.

J. F. Allen. Towards a General Theory of Action and Time.
Artificial Intelligence, 23:123-154, 1984.

M. Abadi and Z. Manna. Temporal Logic Programming. Jour-
nal of Symbolic Computation, 8(3):277-295, September 1989.

L. Aqvist. A Conjectured Axiomatization of Two-Dimensional
Reichenbachian Tense Logic. J. Philosophical Logic, 8:1-45,
1979.

B. Alpern and F. B. Schneider. Defining Liveness. Information
Processing Letters, 21:181-185, 1985.

M. Baudinet. A Simple Proof of the Completeness of Temporal
Logic Programming. In L. Farinas del Cerro and M. Penttonen,
editors, Intensional Logics for Programming. Oxford University

Press, 1992.

M. Baudinet. On the Expressiveness of Temporal Logic Pro-
gramming. Information and Computation, 117(2):157-180,
1995.

E. Baralis, S. Ceri, and S. Paraboschi. Declarative Specifica-
tion of Constraint Maintenance. In International Conference on
Entity-Relationship Approach, pages 205-222. Springer-Verlag,
LNCS 881, 1994.

M. Béhlen, J. Chomicki, R. T. Snodgrass, and D. Toman.
Querying TSQL2 Databases with Temporal Logic. In Inter-
national Conference on FExtending Database Technology, pages
325-341, Avignon, France, 1996. Springer Verlag, LNCS 1057.

M. Baudinet, J. Chomicki, and P. Wolper. Temporal Deductive
Databases. In Tansel et al. [TCG193], chapter 13, pages 294
320.

Ch. Brzoska. Temporal Logic Programming and its Relation
to Constraint Logic Programming. In Vijay Saraswat and
Kazunori Ueda, editors, International Logic Programming Sym-
posium, pages 661-677. MIT Press, 1991.

38

[Brz93|

[Brz95]

[BSS96]

[BTKO1]

[CGK96]

[Cho94]

[Cho95]

[CI88)]

[CN95)]

[CodT2]

[Con9s]

TEMPORAL LOGIC IN INFORMATION SYSTEMS

Ch. Brzoska. Temporal Logic Programming with Bounded Uni-
versal Modality Goals. In David S. Warren, editor, Interna-
tional Conference on Logic Programming, pages 239-256. MIT
Press, 1993.

Ch. Brzoska. Temporal Logic Programming in Dense Time.
In John W. Lloyd, editor, International Logic Programming
Symposium, pages 303-317. MIT Press, 1995.

M. Bohlen, R. T. Snodgrass, and M. D. Soo. Coalescing in Tem-
poral Databases. In International Conference on Very Large
Data Bases, pages 180-191, 1996.

F. Bacchus, J. Tenenberg, and J. A. Koomen. A Non-Reified
Temporal Logic. Artificial Intelligence, 52(1):87-108, 1991.

J. Chomicki, D. Goldin, and G. Kuper. Variable Independence
and Aggregation Closure. In ACM Symposium on Principles of
Database Systems, pages 40-48, Montréal, Canada, June 1996.

J. Chomicki. Temporal Query Languages: A Survey. In D. M.
Gabbay and H. J. Ohlbach, editors, Temporal Logic, First In-
ternational Conference, pages 506-534. Springer-Verlag, LNAI
827, 1994.

J. Chomicki. Efficient Checking of Temporal Integrity Con-
straints Using Bounded History Encoding. ACM Transactions
on Database Systems, 20(2):149-186, June 1995.

J. Chomicki and T. Imieliriski. Temporal Deductive Databases
and Infinite Objects. In ACM Symposium on Principles of Da-
tabase Systems, pages 61-73, Austin, Texas, March 1988.

J. Chomicki and D. Niwinski. On the Feasibility of Checking
Temporal Integrity Constraints. Journal of Computer and Sys-
tem Sciences, 51(3):523-535, December 1995.

E. F. Codd. Relational Completeness of Data Base Sub-
Languages. In R. Rustin, editor, Data Base Systems, pages
33—64. Prentice-Hall, 1972.

S. Conrad. A Logic Primer. In Chomicki and Saake [CS98],
chapter 2.

REFERENCES 39

[CS98]

[CT95]

[CW90]

[dCCF82]

[Eme90]

[Ger96]

[GHR94]

[HS91]

[IK89]

[1S092]

[JL87]

J. Chomicki and G. Saake, editors. Logics for Databases and
Information Systems. Kluwer Academic Publishers, Boston,
1998.

J. Chomicki and D. Toman. Implementing Temporal Integrity
Constraints Using an Active DBMS. IEEFE Transactions on
Knowledge and Data Engineering, 7(4):566-582, August 1995.

S. Ceri and J. Widom. Deriving Production Rules for Con-
straint Maintenance. In Dennis McLeod, Ron Sacks-Davis, and
Hans-Joerg Schek, editors, International Conference on Very
Large Data Bases, pages 566-577, 1990.

J. M. V. de Castilho, M. A. Casanova, and A. L. Furtado. A
Temporal Framework for Database Specifications. In Interna-
tional Conference on Very Large Data Bases, pages 280291,
1982.

E. A. Emerson. Temporal and Modal Logic. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science,
volume B, chapter 16, pages 995-1072. Elsevier/MIT Press,
1990.

Gertz, M. and Lipeck, U. Deriving Optimized Integrity Moni-
toring Triggers from Dynamic Integrity Constraints. Data and
Knowledge Engineering, 20(2):163-193, 1996.

D. M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic:
Mathematical Foundations and Computational Aspects. Oxford
University Press, 1994.

K. Hilsmann and G. Saake. Theoretical Foundations of Han-
dling Large Substitution Sets in Temporal Integrity Monitoring.
Acta Informatica, 28(4), 1991.

N. Immerman and D. Kozen. Definability with Bounded
Number of Bound Variables. Information and Computation,
83(2):121-139, November 1989.

ISO. Database Language SQL. ISO/IEC 9075:1992, Interna-
tional Organization for Standardization, 1992.

J. Jaffar and J-L. Lassez. Constraint Logic Programming. In
ACM Symposium on Principles of Programming Languages,
pages 111-119, 1987.

40

[7SS94]

[Kam68]

[Kam?71]

[KKRO5]

[Koy89]

[KSW95]

[Kun85]

[Lip90]

[LLMOYS]

[Lor93]

[LS87]

[MP92]

TEMPORAL LOGIC IN INFORMATION SYSTEMS

C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Tempo-
ral Data Models via a Conceptual Model. Information Systems,
19(7):513-547, 1994.

J. A. W. Kamp. Tense Logic and the Theory of Linear Order.
PhD thesis, University of California, Los Angeles, 1968.

J. A. W. Kamp. Formal Properties of 'now’. Theoria, 37:227—
273, 1971.

P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint
Query Languages. Journal of Computer and System Sciences,
51(1):26-52, August 1995.

R. Koymans. Specifying Message Passing and Time-Chritical
Systems with Temporal Logic. PhD thesis, Technische Univer-
siteit Eindhoven, 1989.

F. Kabanza, J-M. Stevenne, and P. Wolper. Handling Infinite
Temporal Data. Journal of Computer and System Sciences,
51(1):3-17, August 1995.

C. H. Kung. On Verification of Database Temporal Constraints.
In ACM SIGMOD International Conference on Management of
Data, pages 169-179, Austin, Texas, 1985.

U. Lipeck. Transformation of Dynamic Integrity Constraints
into Transaction Specifications. Theoretical Computer Science,
76(1):115-142, 1990.

G. Lausen, B. Ludascher, and W. May. On Logical Foundations
of Active Databases. In Chomicki and Saake [CS98], chapter 12.

N. A. Lorentzos. The Interval-Extended Relational Model
and Its Application to Valid-time Databases. In Tansel et al.
[TCG193], pages 67-91.

U. W. Lipeck and G. Saake. Monitoring Dynamic Integrity
Constraints Based on Temporal Logic. Information Systems,
12(3):255-269, 1987.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag, 1992.

REFERENCES 41

[Pnu86]

[SAS6]

[SAA*O4]

[SBJS6]

[STBY5)

[Sno87]
[Sno93]
[Sno95]
[Sta79]

[SW95]

[TCY0]

A. Pnueli. Applications of Temporal Logic to the Specifica-
tion and Verification of Reactive Systems: a Survey of Current
Trends. In Current Trends in Concurrency, pages 510-584.
Springer-Verlag, LNCS 224, 1986.

R. T. Snodgrass and I. Ahn. Temporal Databases. IEEE Com-
puter, 19(9), 1986.

R. T. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Clifford,
C. E. Dyreson, R. Elmasri, F. Grandi, C. S. Jensen, W. Kafer,
N. Kline, K. Kulkarni, T. Y. C. Leung, N. Lorentzos, J. F. Rod-
dick, A. Segev, M. D. Soo, and S. A. Sripada. TSQL2 language
specification. SIGMOD Record, 23(1):65-86, March 1994.

R. T. Snodgrass, M. H. Bohlen, C. S. Jensen, and
A. Steiner. Adding Valid Time to SQL/Temporal. ISO/IEC
JTC1/SC21/WG3 DBL MAD-146r2 21/11/96, (change pro-
posal), International Organization for Standardization, 1996.

R. T. Snodgrass, C. S. Jensen, and M. H. Bohlen. Evaluating
and Enhancing the Completeness of TSQL2. Technical Report
TR 95-5, Computer Science Department, University of Arizona,
1995.

R. Snodgrass. The Temporal Query Language TQuel. ACM
Transactions on Database Systems, 12(2):247-298, June 1987.

R. T. Snodgrass. An Overview of TQuel, chapter 6, pages 141—
182. In Tansel et al. [TCG93], 1993.

R. T. Snodgrass, editor. The TSQL2 Temporal Query Lan-
guage. Kluwer Academic Publishers, 1995.

J. Stavi. Functional Completeness over Rationals. Unpublished
manuscript, Bar-Ilan University, Israel, 1979.

A. P. Sistla and O. Wolfson. Temporal Triggers in Active
Databases. IEEE Transactions on Knowledge and Data FEn-
gineering, 7(3):471-486, 1995.

A. Tuzhilin and J. Clifford. A Temporal Relational Algebra
as a Basis for Temporal Relational Completeness. In Dennis
McLeod, Ron Sacks-Davis, and Hans-Joerg Schek, editors, In-
ternational Conference on Very Large Data Bases, pages 13—23,
1990.

42

[TCG+93]

[TCR94]

[TN96]

[Tom96]

[Tom97]

[U1189)

[Vargs)

[vB83]

[WC96]

[Wol83]

[Wol89)]

TEMPORAL LOGIC IN INFORMATION SYSTEMS

A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T.
Snodgrass, editors. Temporal Databases: Theory, Design, and
Implementation. Benjamin/Cummings, 1993.

D. Toman, J. Chomicki, and D. S. Rogers. Datalog with In-
teger Periodicity Constraints. In Maurice Bruynooghe, editor,
International Logic Programming Symposium, pages 189-203.
MIT Press, 1994. Full version to appear in Journal of Logic
Programming.

D. Toman and D. Niwinski. First-Order Queries over Temporal
Databases Inexpressible in Temporal Logic. In International
Conference on Extending Database Technology, pages 307-324,
Avignon, France, 1996. Springer-Verlag, LNCS 1057.

D. Toman. Point vs. Interval-based Query Languages for Tem-
poral Databases. In ACM Symposium on Principles of Database
Systems, pages 5867, Montréal, Canada, June 1996.

D. Toman. Point-based Temporal Extensions of SQL. In
International Conference on Deductive and Object-Oriented
Databases, 1997.

J. D. Ullman. Principles of Database and Knowledge-Base Sys-
tems, volume 2. Computer Science Press, 1989.

M. Y. Vardi. A Temporal Fixpoint Calculus. In ACM Sympo-
sium on Principles of Programming Languages, pages 250259,
1988.

J. F. A. K. van Benthem. The Logic of Time. D. Reidel, 1983.

J. Widom and S. Ceri, editors. Active Database Systems. Mor-
gan Kaufmann, 1996.

P. Wolper. Temporal Logic Can Be More Expressive. Informa-
tion and Control, 56:72-99, 1983.

P. Wolper. On the Relation of Programs and Computations
to Models of Temporal Logic. In B. Baniegbal, B. Barringer,
and A. Pnueli, editors, Temporal Logic in Specification, pages
75-123. Springer-Verlag, LNCS 398, 1989.

Recent BRICS Lecture Series Publications

LS-97-1 Jan Chomicki and David Toman.Temporal Logic in Information
Systems November 1997. viii+42 pp. Full version to appear in:
Logics for Database and Information Systems, Chomicki and
Saake (eds.), Kluwer Academic Publishers, 1998.

LS-96-6 Torben Braiiner. Introduction to Linear Logic. December 1996.
iiiv+55 pp.

LS-96-5 Devdatt P. Dubhashi.What Can't You Do With LP? December
1996. viii+23 pp.

LS-96-4 Sven Skyum.A Non-Linear Lower Bound for Monotone Circuit
Size December 1996. viii+14 pp.

LS-96-3 Kristoffer H. Rose. Explicit Substitution — Tutorial & Survey
September 1996. v+150 pp.

LS-96-2 Susanne Albers. Competitive Online Algorithms September
1996. iix+57 pp.

LS-96-1 Lars Arge. External-Memory Algorithms with Applications in Ge-
ographic Information SystemsSeptember 1996. iix+53 pp.

LS-95-5 Devdatt P. DubhashiComplexity of Logical TheoriesSeptember
1995. x+46 pp.

LS-95-4 Dany Breslauer and Devdatt P. Dubhashi. Combinatorics for
Computer ScientistsAugust 1995. viii+184 pp.

LS-95-3 Michael I. Schwartzbach. Polymorphic Type Inference June
1995. viii+24 pp.

LS-95-2 Sven Skyum. Introduction to Parallel Algorithms June 1995.
viii+17 pp. Second Edition.

LS-95-1 Jaap van OostenBasic Category TheoryJanuary 1995. vi+75
Pp.

