
A Formal Framework for
Concrete Reputation-Systems

Karl Krukow

BRICS, University of Århus, Denmark

(joint work (in progress!) with Mogens and
Vladimiro Sassone, Uni. of Sussex)

A Formal Framework forConcrete Reputation-Systems – p. 1/22

Motivation & Background:
Formal Guarantees and ‘trust’?

√
Background for this work. . .

? Access-control (decision making) in GC systems.
→ Traditional mechanisms fail.

? Reputation systems.
→ Dynamic: ‘trust’ changes as behaviour is observed.

A Formal Framework forConcrete Reputation-Systems – p. 2/22

Motivation & Background:
Formal Guarantees and ‘trust’?

√
Background for this work. . .

? Access-control (decision making) in GC systems.
→ Traditional mechanisms fail.

? Reputation systems.
→ Dynamic: ‘trust’ changes as behaviour is observed.

√
Can one give any ‘security guarantees’ in
trust/reputation-based systems?
? e.g. “if principal p gains access to resource r at time t,

then the past behaviour of p up until time t, satisfies
requirement ψr”.

A Formal Framework forConcrete Reputation-Systems – p. 2/22

Expected Plan
√

Formalising ‘behavioural information’:
? Event Structures

√
A declarative language for writing ‘interaction
policies’.

√
Implementation: Dynamic Algorithms.
? A dynamic algorithm for model-checking of pure-past

linear temporal logic.
? A dynamic algorithm for

pure-past-linear-temporal-logic model-checking ;-)

√
Language extensions and comments . . .

A Formal Framework forConcrete Reputation-Systems – p. 3/22

Model of behaviour
By example: E-Bay

√
E-Bay: Online Auction-House
? Seller and Bidders.
? A feedback mechanism: a simple reputation system.

√
Post-auction protocol:
? Buyer (B) sends payment of amount due.
? Seller (S) sends a receipt to confirm payment, then

ships item.
? Optionally, both B and S may leave feedback:

→ positive, neutral, negative + possibly a comment.

A Formal Framework forConcrete Reputation-Systems – p. 4/22

E-Bay – buyer observations
√

From the buyers point-of-view, various events
may occur:
? B may choose to pay for item (pay):

→ S may send a receipt (confirm).
→ S may not send a receipt within a certain time-limit

(time-out).
→ . . .

? B may choose not to pay (ignore).
? At any time, S may leave feedback about transaction.

→ Positive (positive).
→ Neutral (neutral).
→ Negative (negative).

? . . .

A Formal Framework forConcrete Reputation-Systems – p. 5/22

Structure of observations
√

The information obtained as a result of running a
protocol can be described by a set of observable
events, E.

A Formal Framework forConcrete Reputation-Systems – p. 6/22

Structure of observations
√

The information obtained as a result of running a
protocol can be described by a set of observable
events, E.

√
These events have structure.
? Conflict: both cannot occur.

→ e.g. positive vs. negative.

? Dependency: a pre-condition for an event to occur.
→ e.g. pay before confirm.

? Independence: none of the above.
→ e.g. negative and ignore.

A Formal Framework forConcrete Reputation-Systems – p. 6/22

Modelling observations.
√

Model: Event structures.
? ES = (E,≤,#).
? E models the set of ‘observable events’.
? ≤ ⊆ E × E: dependency relation.
? # ⊆ E × E: conflict relation.

√
Example:

S : confirm /o/o/o/o/o/o/o S : time-out

B : pay /o/o/o/o/o/o/o/o/o/o/o/o/o

eeLLLLLLLLLL

99rrrrrrrrrr

B : ignore

S : positive
1q 1q 1q 1q 0p 0p 0p 0p /o /o /o /o /o .n .n .n .n -m -m -m -m

/o/o/o/o/o/o/o S : neutral /o S : negative

A Formal Framework forConcrete Reputation-Systems – p. 7/22

Modelling behavioural information.
√

Information about one session consitutes a
configuration – a set of (observed) events
satisfying:
? Conflict Free.
? Causally Closed.

√
Examples and non-examples:
? Ex.: ∅, {pay,positive} and
{pay,confirm,positive}

? n-Ex.:{pay,confirm,positive,negative} and
{confirm}

√
Maximality: a configuration is maximal if no
event can be added to obtain a new configuration.

A Formal Framework forConcrete Reputation-Systems – p. 8/22

Interface
√

For simplicity assume one ‘observer’/‘server’ and
one ‘subject’/‘client’.

√
An interaction history is a sequence
h = x1x2 · · · xN , where xi ∈ CES .

√
Our observation model will support two
operations:
new() and update(e, i), performed on its
history:
? h.new() = h · ∅

? h.update(e, i) = x1x2 · · · xi−1 · (xi ∪{e}) ·xi+1 · · · xN
√

This will be the interface used by any system
generating events.

A Formal Framework forConcrete Reputation-Systems – p. 9/22

Policies for Interaction
√

Whether the ‘server’ will interact with the ‘client’
or not, is a policy decision.

√
Policies will state exact criteria on the past
behaviour of an entity, required for interaction.

√
Decisions are binary (‘yes’/‘no’).

√
Ideally, policies are written in a declarative
language.

A Formal Framework forConcrete Reputation-Systems – p. 10/22

Policy examples
√

Consider E-Bay again.
? Policy: “only bid on auctions run by a seller which has

never failed to ship items from won and paid auctions in
the past”.

√
Log-in server:
? Policy: “attempting login is not allowed for 30 seconds

if there have been three consecutive failed
login-attempts”.

A Formal Framework forConcrete Reputation-Systems – p. 11/22

Policy examples
√

Consider E-Bay again.
? Policy: “only bid on auctions run by a seller which has

never failed to ship items from won and paid auctions in
the past”.

√
Log-in server:
? Policy: “attempting login is not allowed for 30 seconds

if there have been three consecutive failed
login-attempts”.

√
Logic is declarative and natural for policies.

√
It seems natural to phrase policies in a
“past tense” form.

A Formal Framework forConcrete Reputation-Systems – p. 11/22

Language for Policies
√

In fact, we already know what models are.
? Finite linear Kripke structures, h = x1 · · · xN .

√
Pure-past linear temporal logic.
? ψ ::= e | 3e | ψ0 ∧ ψ1 | ¬ψ | X

−1ψ | ψ0 S ψ1

√
Given a history h, checking if h satisfies the
requirements of policy ψ is the model checking
problem: h |= ψ.
? Interpreted from last session, “towards” first, that is,
x1x2 · · · xN |= ψ ⇐⇒ (x1x2 · · · xN , N) |= ψ

A Formal Framework forConcrete Reputation-Systems – p. 12/22

Examples Revisited
√

E-Bay policy: “only bid on auctions run by a seller which
has never failed to ship items from won and paid auctions in
the past”.
? ψbuy ≡ ¬F−1(time-out)

√
furthermore, “seller has never provided negative feedback
in auctions where payment was made”.
? ψbuy ≡ . . . ∧ G−1(negative→ ignore)

√
Log-in server: “attempt-login is not allowed for 30 seconds
if there have been three consecutive failed login-attempts”

?

ψattempt-login ≡ ¬
(
X−1fail ∧ X−1X−1fail

∧ X−1X−1X−1fail
)

A Formal Framework forConcrete Reputation-Systems – p. 13/22

Recursive Semantics
√

Let h = x1x2 · · · xN , and ψ be a policy. Define
the usual satisfaction relation (h, i) |= ψ in an
unusual way.
? if i = 1 then . . .

? if 1 < i ≤ N , assume that (h, i− 1) |= ψ is defined.
Define (h, i) |= ψ by structural induction:

→ ψ = e : (h, i) |= e ⇐⇒ e ∈ xi

→ ψ = 3e : (h, i) |= e ⇐⇒ it is not the case that e # xi

→ ψ = ψ0 ∧ ψ1,¬ψ
′ : . . .

→ ψ = X−1ψ′ : (h, i) |= X−1ψ′ ⇐⇒ (h, i− 1) |= ψ′

→ ψ = ψ0 S ψ1 : (h, i) |= ψ0 S ψ1 ⇐⇒ ((h, i) |= ψ1) or

((h, i− 1) |= ψ0 S ψ1 and (h, i) |= ψ0)

A Formal Framework forConcrete Reputation-Systems – p. 14/22

Dynamic Model Checking
√

The recursive semantics gives rise to an efficient algorithm
for checking h |= ψ (Havelund).

√
The algorithm extends to the dynamic problem, i.e.
supporting operations
h.new(), h.update(e, i), h.check().

√
Assume that h = x1x2 · · · xi xi+1 · · · xN

︸ ︷︷ ︸

k

, and there is a

suffix k active sessions.
√

Store k + 1 arrays B0, B1, . . . , Bk.
? B0 summarises x1 · · · xi with respect to ψ, i.e.
B0[j] = true ⇐⇒ x1 · · · xi |= ψj .

? Similarly, Bl[j] = true ⇐⇒ x1 · · · xi+l |= ψj .
? When xi → xi ∪ {e}, start at i− 1, and update arrays.

A Formal Framework forConcrete Reputation-Systems – p. 15/22

Summary
√

We have
? A model of behavioural information – event structures.
? The core of a declarative language for specifying

requirement of an interaction history – Pure Past LTL.
? A dynamic algorithm for policy checking –

→ check() : O(1).

→ new() : O(|ψ|).

→ update(e, i) : O(k · |ψ|).

→ Space required: O(k · |ψ|) + model.
√

What now?

A Formal Framework forConcrete Reputation-Systems – p. 16/22

A slightly different view
√

Consider x1x2 · · · xN as a string over the alphabet
CES .

√
For any pure past ψ, the language
{h ∈ C∗ES | h |= ψ} is regular.

√
Consider a deterministic finite automaton
Aψ = (S,Σ, s0, F, δψ)

? S = 2ψ ∪ {s0},Σ = CES, F = {s ∈ 2ψ | ψ ∈ s}

? δψ : S × CES → S (given by the recursive semantics)
√

Of course the theorem is:
L(Aψ) = {h ∈ C∗ES | h |= ψ}.

A Formal Framework forConcrete Reputation-Systems – p. 17/22

Model checking with automata
√

Consider a new algorithm for the dynamic model
checking problem: let
h = x1x2 · · · xmxm+1 · · · xm+k=n

? Pre-computation: construct Aψ.
? Store k + 1 references to Aψ states,s0, s1, . . . , sk, where
k is the number of active sessions, i.e.
si = δ̂(sinit, x1x2 . . . xmxm+1 . . . xm+i).

? new(): set sk+1 = δ(sk, ∅).
? check(): iff sk ∈ F .
? update(e, i): start automata in state si−1, run on
(xi ∪ {e})xi+1 · · · xN , recording the states.

√
Cost?

A Formal Framework forConcrete Reputation-Systems – p. 18/22

Tailoring the logic
(a.k.a. ‘ad-hoc’ extensions)

√
(At least) Two aspects of usual ‘reputation
systems’ are not expressible by our policies.
? Referencing.

→ ψbuy ≡ . . . ∧ G−1(negative→ ignore)

–“and the same for all my friends p1, p2, . . . , pn.”

? Quantitative statements.
→ ψbuy ≡ ¬F−1(time-out)

– “well, most of the time, anyway. . . ”.

A Formal Framework forConcrete Reputation-Systems – p. 19/22

Tailoring the logic
(a.k.a. ‘ad-hoc’ extensions)

√
(At least) Two aspects of usual ‘reputation
systems’ are not expressible by our policies.
? Referencing.

→ ψbuy ≡ . . . ∧ G−1(negative→ ignore)

–“and the same for all my friends p1, p2, . . . , pn.”

? Quantitative statements.
→ ψbuy ≡ ¬F−1(time-out)

– “well, most of the time, anyway. . . ”.
√

A policy π is given by π ::= p : ψ | π0 ∧ π1 | ¬π.
? Referencing!

A Formal Framework forConcrete Reputation-Systems – p. 19/22

More ‘ad-hoc’ extensions
√

Introduce a counting operator,
ψ ::= . . . | Rk

j (#ψ1,#ψ2, . . . ,#ψk).
? meaning of #ψ: count the number of states in the past

(relative to current state) which satisfy ψ.
? symbolsRk

j denoting efficiently computable k-ary
relations JRk

j K, for each arrity k.

A Formal Framework forConcrete Reputation-Systems – p. 20/22

More ‘ad-hoc’ extensions
√

Introduce a counting operator,
ψ ::= . . . | Rk

j (#ψ1,#ψ2, . . . ,#ψk).
? meaning of #ψ: count the number of states in the past

(relative to current state) which satisfy ψ.
? symbolsRk

j denoting efficiently computable k-ary
relations JRk

j K, for each arrity k.
√

Examples:

?

πbuy
p ≡ p : G−1(negative→ ignore) ∧

∧

q∈{p,p1,...,pn}
q : ¬F−1(time-out)

A Formal Framework forConcrete Reputation-Systems – p. 20/22

More ‘ad-hoc’ extensions
√

Introduce a counting operator,
ψ ::= . . . | Rk

j (#ψ1,#ψ2, . . . ,#ψk).
? meaning of #ψ: count the number of states in the past

(relative to current state) which satisfy ψ.
? symbolsRk

j denoting efficiently computable k-ary
relations JRk

j K, for each arrity k.
√

Examples:

?

πbuy
p ≡ p : G−1(negative→ ignore) ∧

∧

q∈{p,p1,...,pn}
q : ¬F−1(time-out)

? πclient-dl
p ≡ p : (#dl ≤ 3 ·#ul)

A Formal Framework forConcrete Reputation-Systems – p. 20/22

More ‘ad-hoc’ extensions
√

Introduce a counting operator,
ψ ::= . . . | Rk

j (#ψ1,#ψ2, . . . ,#ψk).
? meaning of #ψ: count the number of states in the past

(relative to current state) which satisfy ψ.
? symbolsRk

j denoting efficiently computable k-ary
relations JRk

j K, for each arrity k.
√

Examples:

?

πbuy
p ≡ p : G−1(negative→ ignore) ∧

∧

q∈{p,p1,...,pn}
q : ¬F−1(time-out)

? πclient-dl
p ≡ p : (#dl ≤ 3 ·#ul)

? πprobab
p ≡ p : #ev

#ev+#∼ev+1
≥ 3

4

A Formal Framework forConcrete Reputation-Systems – p. 20/22

Extending the algorithm
√

Essentially the same algorithm for dynamic
model-checking works:
? J#ψK(h,i+1) can be computed given

→ value of J#ψK(h,i) (last time); and

→ truth of (h, i) |= ψ (in current state).

? q : ψ : e.g. register ψ with q, and when required as q
about the truth of ψ.

√
Finite Automata-based approach doesn’t work,
i.e. language is non regular.
? e.g. ψ ≡ p : #pay > #access.

A Formal Framework forConcrete Reputation-Systems – p. 21/22

Concluding
√

A model of behavioural information.
? Supports “partial information”.

√
Pure-Past temporal logic for policies.
? Extensions to include referencing, and quantitative

policies.

√
Efficient dynamic policy-checking.
? ‘Plain’ and automata-based algorithms.

A Formal Framework forConcrete Reputation-Systems – p. 22/22

	Motivation & Background:\{
ormalsize Formal Guarantees and `trust'?}
	Motivation & Background:\{
ormalsize Formal Guarantees and `trust'?}

	Expected Plan
	Model of behaviour\{
ormalsize By example: E-Bay}
	E-Bay -- buyer observations
	Structure of observations
	Structure of observations

	Modelling observations.
	Modelling behavioural information.
	Interface
	Policies for Interaction
	Policy examples
	Policy examples

	Language for Policies
	Examples Revisited
	Recursive Semantics
	Dynamic Model Checking
	Summary
	A slightly different view
	Model checking with automata
	Tailoring the logic\ (a.k.a. `ad-hoc' extensions)
	Tailoring the logic\ (a.k.a. `ad-hoc' extensions)

	More `ad-hoc' extensions
	More `ad-hoc' extensions
	More `ad-hoc' extensions
	More `ad-hoc' extensions

	Extending the algorithm
	Concluding

