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Motivation & Background:
Formal Guarantees and ‘trust’?

√
Background for this work. . .

? Access-control (decision making) in GC systems.
→ Traditional mechanisms fail.

? Reputation systems.
→ Dynamic: ‘trust’ changes as behaviour is observed.
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Motivation & Background:
Formal Guarantees and ‘trust’?

√
Background for this work. . .

? Access-control (decision making) in GC systems.
→ Traditional mechanisms fail.

? Reputation systems.
→ Dynamic: ‘trust’ changes as behaviour is observed.

√
Can one give any ‘security guarantees’ in
trust/reputation-based systems?
? e.g. “if principal p gains access to resource r at time t,

then the past behaviour of p up until time t, satisfies
requirement ψr”.
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Expected Plan
√

Formalising ‘behavioural information’:
? Event Structures

√
A declarative language for writing ‘interaction
policies’.

√
Implementation: Dynamic Algorithms.
? A dynamic algorithm for model-checking of pure-past

linear temporal logic.
? A dynamic algorithm for

pure-past-linear-temporal-logic model-checking ;-)

√
Language extensions and comments . . .
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Model of behaviour
By example: E-Bay

√
E-Bay: Online Auction-House
? Seller and Bidders.
? A feedback mechanism: a simple reputation system.

√
Post-auction protocol:
? Buyer (B) sends payment of amount due.
? Seller (S) sends a receipt to confirm payment, then

ships item.
? Optionally, both B and S may leave feedback:

→ positive, neutral, negative + possibly a comment.
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E-Bay – buyer observations
√

From the buyers point-of-view, various events
may occur:
? B may choose to pay for item (pay):

→ S may send a receipt (confirm).
→ S may not send a receipt within a certain time-limit

(time-out).
→ . . .

? B may choose not to pay (ignore).
? At any time, S may leave feedback about transaction.

→ Positive (positive).
→ Neutral (neutral).
→ Negative (negative).

? . . .
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Structure of observations
√

The information obtained as a result of running a
protocol can be described by a set of observable
events, E.
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Structure of observations
√

The information obtained as a result of running a
protocol can be described by a set of observable
events, E.

√
These events have structure.
? Conflict: both cannot occur.

→ e.g. positive vs. negative.

? Dependency: a pre-condition for an event to occur.
→ e.g. pay before confirm.

? Independence: none of the above.
→ e.g. negative and ignore.
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Modelling observations.
√

Model: Event structures.
? ES = (E,≤,#).
? E models the set of ‘observable events’.
? ≤ ⊆ E × E: dependency relation.
? # ⊆ E × E: conflict relation.

√
Example:

S : confirm /o/o/o/o/o/o/o S : time-out

B : pay /o/o/o/o/o/o/o/o/o/o/o/o/o

eeLLLLLLLLLL

99rrrrrrrrrr

B : ignore

S : positive
1q 1q 1q 1q 0p 0p 0p 0p /o /o /o /o /o .n .n .n .n -m -m -m -m

/o/o/o/o/o/o/o S : neutral /o S : negative
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Modelling behavioural information.
√

Information about one session consitutes a
configuration – a set of (observed) events
satisfying:
? Conflict Free.
? Causally Closed.

√
Examples and non-examples:
? Ex.: ∅, {pay,positive} and
{pay,confirm,positive}

? n-Ex.:{pay,confirm,positive,negative} and
{confirm}

√
Maximality: a configuration is maximal if no
event can be added to obtain a new configuration.
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Interface
√

For simplicity assume one ‘observer’/‘server’ and
one ‘subject’/‘client’.

√
An interaction history is a sequence
h = x1x2 · · · xN , where xi ∈ CES .

√
Our observation model will support two
operations:
new() and update(e, i), performed on its
history:
? h.new() = h · ∅

? h.update(e, i) = x1x2 · · · xi−1 · (xi ∪{e}) ·xi+1 · · · xN
√

This will be the interface used by any system
generating events.
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Policies for Interaction
√

Whether the ‘server’ will interact with the ‘client’
or not, is a policy decision.

√
Policies will state exact criteria on the past
behaviour of an entity, required for interaction.

√
Decisions are binary (‘yes’/‘no’).

√
Ideally, policies are written in a declarative
language.
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Policy examples
√

Consider E-Bay again.
? Policy: “only bid on auctions run by a seller which has

never failed to ship items from won and paid auctions in
the past”.

√
Log-in server:
? Policy: “attempting login is not allowed for 30 seconds

if there have been three consecutive failed
login-attempts”.
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Policy examples
√

Consider E-Bay again.
? Policy: “only bid on auctions run by a seller which has

never failed to ship items from won and paid auctions in
the past”.

√
Log-in server:
? Policy: “attempting login is not allowed for 30 seconds

if there have been three consecutive failed
login-attempts”.

√
Logic is declarative and natural for policies.

√
It seems natural to phrase policies in a
“past tense” form.
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Language for Policies
√

In fact, we already know what models are.
? Finite linear Kripke structures, h = x1 · · · xN .

√
Pure-past linear temporal logic.
? ψ ::= e | 3e | ψ0 ∧ ψ1 | ¬ψ | X

−1ψ | ψ0 S ψ1

√
Given a history h, checking if h satisfies the
requirements of policy ψ is the model checking
problem: h |= ψ.
? Interpreted from last session, “towards” first, that is,
x1x2 · · · xN |= ψ ⇐⇒ (x1x2 · · · xN , N) |= ψ
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Examples Revisited
√

E-Bay policy: “only bid on auctions run by a seller which
has never failed to ship items from won and paid auctions in
the past”.
? ψbuy ≡ ¬F−1(time-out)

√
furthermore, “seller has never provided negative feedback
in auctions where payment was made”.
? ψbuy ≡ . . . ∧ G−1(negative→ ignore)

√
Log-in server: “attempt-login is not allowed for 30 seconds
if there have been three consecutive failed login-attempts”

?

ψattempt-login ≡ ¬
(
X−1fail ∧ X−1X−1fail

∧ X−1X−1X−1fail
)
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Recursive Semantics
√

Let h = x1x2 · · · xN , and ψ be a policy. Define
the usual satisfaction relation (h, i) |= ψ in an
unusual way.
? if i = 1 then . . .

? if 1 < i ≤ N , assume that (h, i− 1) |= ψ is defined.
Define (h, i) |= ψ by structural induction:

→ ψ = e : (h, i) |= e ⇐⇒ e ∈ xi

→ ψ = 3e : (h, i) |= e ⇐⇒ it is not the case that e # xi

→ ψ = ψ0 ∧ ψ1,¬ψ
′ : . . .

→ ψ = X−1ψ′ : (h, i) |= X−1ψ′ ⇐⇒ (h, i− 1) |= ψ′

→ ψ = ψ0 S ψ1 : (h, i) |= ψ0 S ψ1 ⇐⇒ ((h, i) |= ψ1) or

((h, i− 1) |= ψ0 S ψ1 and (h, i) |= ψ0)
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Dynamic Model Checking
√

The recursive semantics gives rise to an efficient algorithm
for checking h |= ψ (Havelund).

√
The algorithm extends to the dynamic problem, i.e.
supporting operations
h.new(), h.update(e, i), h.check().

√
Assume that h = x1x2 · · · xi xi+1 · · · xN

︸ ︷︷ ︸

k

, and there is a

suffix k active sessions.
√

Store k + 1 arrays B0, B1, . . . , Bk.
? B0 summarises x1 · · · xi with respect to ψ, i.e.
B0[j] = true ⇐⇒ x1 · · · xi |= ψj .

? Similarly, Bl[j] = true ⇐⇒ x1 · · · xi+l |= ψj .
? When xi → xi ∪ {e}, start at i− 1, and update arrays.
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Summary
√

We have
? A model of behavioural information – event structures.
? The core of a declarative language for specifying

requirement of an interaction history – Pure Past LTL.
? A dynamic algorithm for policy checking –

→ check() : O(1).

→ new() : O(|ψ|).

→ update(e, i) : O(k · |ψ|).

→ Space required: O(k · |ψ|) + model.
√

What now?
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A slightly different view
√

Consider x1x2 · · · xN as a string over the alphabet
CES .

√
For any pure past ψ, the language
{h ∈ C∗ES | h |= ψ} is regular.

√
Consider a deterministic finite automaton
Aψ = (S,Σ, s0, F, δψ)

? S = 2ψ ∪ {s0},Σ = CES, F = {s ∈ 2ψ | ψ ∈ s}

? δψ : S × CES → S (given by the recursive semantics)
√

Of course the theorem is:
L(Aψ) = {h ∈ C∗ES | h |= ψ}.
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Model checking with automata
√

Consider a new algorithm for the dynamic model
checking problem: let
h = x1x2 · · · xmxm+1 · · · xm+k=n

? Pre-computation: construct Aψ.
? Store k + 1 references to Aψ states,s0, s1, . . . , sk, where
k is the number of active sessions, i.e.
si = δ̂(sinit, x1x2 . . . xmxm+1 . . . xm+i).

? new(): set sk+1 = δ(sk, ∅).
? check(): iff sk ∈ F .
? update(e, i): start automata in state si−1, run on
(xi ∪ {e})xi+1 · · · xN , recording the states.

√
Cost?
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Tailoring the logic
(a.k.a. ‘ad-hoc’ extensions)

√
(At least) Two aspects of usual ‘reputation
systems’ are not expressible by our policies.
? Referencing.

→ ψbuy ≡ . . . ∧ G−1(negative→ ignore)

–“and the same for all my friends p1, p2, . . . , pn.”

? Quantitative statements.
→ ψbuy ≡ ¬F−1(time-out)

– “well, most of the time, anyway. . . ”.
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Tailoring the logic
(a.k.a. ‘ad-hoc’ extensions)

√
(At least) Two aspects of usual ‘reputation
systems’ are not expressible by our policies.
? Referencing.

→ ψbuy ≡ . . . ∧ G−1(negative→ ignore)

–“and the same for all my friends p1, p2, . . . , pn.”

? Quantitative statements.
→ ψbuy ≡ ¬F−1(time-out)

– “well, most of the time, anyway. . . ”.
√

A policy π is given by π ::= p : ψ | π0 ∧ π1 | ¬π.
? Referencing!
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More ‘ad-hoc’ extensions
√

Introduce a counting operator,
ψ ::= . . . | Rk

j (#ψ1,#ψ2, . . . ,#ψk).
? meaning of #ψ: count the number of states in the past

(relative to current state) which satisfy ψ.
? symbolsRk

j denoting efficiently computable k-ary
relations JRk

j K, for each arrity k.
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More ‘ad-hoc’ extensions
√

Introduce a counting operator,
ψ ::= . . . | Rk

j (#ψ1,#ψ2, . . . ,#ψk).
? meaning of #ψ: count the number of states in the past

(relative to current state) which satisfy ψ.
? symbolsRk

j denoting efficiently computable k-ary
relations JRk

j K, for each arrity k.
√

Examples:

?

πbuy
p ≡ p : G−1(negative→ ignore) ∧

∧

q∈{p,p1,...,pn}
q : ¬F−1(time-out)
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More ‘ad-hoc’ extensions
√

Introduce a counting operator,
ψ ::= . . . | Rk

j (#ψ1,#ψ2, . . . ,#ψk).
? meaning of #ψ: count the number of states in the past

(relative to current state) which satisfy ψ.
? symbolsRk

j denoting efficiently computable k-ary
relations JRk

j K, for each arrity k.
√

Examples:

?

πbuy
p ≡ p : G−1(negative→ ignore) ∧

∧

q∈{p,p1,...,pn}
q : ¬F−1(time-out)

? πclient-dl
p ≡ p : (#dl ≤ 3 ·#ul)
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More ‘ad-hoc’ extensions
√

Introduce a counting operator,
ψ ::= . . . | Rk

j (#ψ1,#ψ2, . . . ,#ψk).
? meaning of #ψ: count the number of states in the past

(relative to current state) which satisfy ψ.
? symbolsRk

j denoting efficiently computable k-ary
relations JRk

j K, for each arrity k.
√

Examples:

?

πbuy
p ≡ p : G−1(negative→ ignore) ∧

∧

q∈{p,p1,...,pn}
q : ¬F−1(time-out)

? πclient-dl
p ≡ p : (#dl ≤ 3 ·#ul)

? πprobab
p ≡ p : #ev

#ev+#∼ev+1
≥ 3

4
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Extending the algorithm
√

Essentially the same algorithm for dynamic
model-checking works:
? J#ψK(h,i+1) can be computed given

→ value of J#ψK(h,i) (last time); and

→ truth of (h, i) |= ψ (in current state).

? q : ψ : e.g. register ψ with q, and when required as q
about the truth of ψ.

√
Finite Automata-based approach doesn’t work,
i.e. language is non regular.
? e.g. ψ ≡ p : #pay > #access.
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Concluding
√

A model of behavioural information.
? Supports “partial information”.

√
Pure-Past temporal logic for policies.
? Extensions to include referencing, and quantitative

policies.

√
Efficient dynamic policy-checking.
? ‘Plain’ and automata-based algorithms.
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