YakYak: Parsing with Logical Side Constraints

Niels Damgaard * Nils Klarlund® Michael I. Schwartzbach*
damgaard@brics.dk klarlund@research.att.com mis@brics.dk
Abstract

Programming language syntax is often described by means of a context-free gram-
mar, which is restricted by constraints programmed into the action code associated
with productions. Without such code, the grammar would explode in size if it were
to describe the same language.

We present the tool YakYak, which extends Yacc with first-order logic for specifying
constraints that are regular tree languages. Concise formulas about the parse tree
replace explicit programming, and they are turned into canonical attribute grammars
through tree automata calculations. YakYak is implemented as a preprocessor for Yacc,
in which the transitions of the calculated tree automata are merged into the action
code. We provide both practical experience and theoretical evidence that the YakYak
approach results in fast and concisely specified parsers.

1 Introduction

We introduce a declarative notation, a first-order logic on trees, to specify efficient parsers
that require fewer attributes and less explicit programming than conventional parser gen-
erators. Our idea is to add concise specifications of regular tree language constraints
to the popular parser generator Yacc. Such generators are usually supplied with a rela-
tively simple context-free grammar that must be augmented with explicitly programmed
attribute calculations in action code. These calculations often do nothing but calculate
regular constraints.

In this paper, we show in theory and in practice how tree automata calculations make it
possible to use a declarative first-order language to specify such constraints, in a complete
analogy with how usual regular expressions are used to express finite-state automata on
strings. Thus, the declarative component of Yacc, namely the context-free grammar, can
be augmented with regular tree language constraints with little run time penalty.

Grammars and Side Constraints

Consider the following example grammar, which generates a tiny subset of the HTML
notation that we shall call HTMLO:

H:HE
| E

E : <a href=url> H </a>
| <b>H </b>
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| <i>H </i>
| <ul>L </ul>
| word

L : /* empty ¥/
| L<li>H

Here, the set of tokens is {<, >, a, href, =, url, /, b, i, ul, word, li}. There are many
reasonable constraints on HTMLO syntax not captured by this grammar. For example,
we should disallow nested anchor elements (an element is a named parenthetic structure
delimited by a begin tag < --- > and an end tag < \--- > (sometimes the end tag is
omitted)). The resulting context-free language can now be described only by a grammar
that doubles in size, since we have to introduce nonterminals H', E', and L’ that cannot
generate anchor elements:
H:HE H: H' E’
| E | E

E: <a href=url> H </a> E": <b>H </b>

| <b>H </b> | <i>H </i>
| <i>H </i> | <ul>L" </ul>
| <ul>L </ul> | word
| word ;
L: /* empty */ L': /* empty */

| L <li>H | L' <li>H

As another example, the simple constraint “lists may be nested only to a depth of three”
would require 12 nonterminals.

An even more interesting constraint is the stylistic requirement that if any part of
some anchor text is in boldface then all anchor texts must be boldface in their entirety. A
grammar capturing this language is quite complex, clearly something that is impractical
to spell out. If we furthermore impose all three constraints simultaneously, then their
respective nonterminals interfere and we are landed with a unwieldy grammar (with more
than 100 nonterminals) that is almost impossible to maintain.

In such a situation, most language implementors would prefer to construct a parser for
the simple base grammar and then to program the constraints by hand. But this approach
is not declarative and concise; the code could not easily be part of the formal specification
of the language; the code could be wrong; and it would have to be carefully rewritten if
the representation of the parse trees changes.

Parse Tree Logic

We propose an alternative approach where the underlying grammar is defined in the
usual way, but the constraints are specified in a concise, formal logic on parse trees.
In [7], we presented such a logic, called CDL, and demonstrated that it could be useful
for capturing design constraints for object-oriented programs. We developed a prototype
implementation that could transform constraints into simple attribute grammars that were
intended to be included into syntax-directed editors.

In the present work, we extend Yacc with constraints written in a similar logic. A
traditional parser is then automatically generated, where the grammar part is translated
as usual into an LR-parser, while each constraint is translated into a deterministic, bottom-



up tree automaton. Our use of a formal logic with unrestricted quantification is much more
succinct than the direct use of attribute grammars. In particular, the specification of a
constraint does not involve a laborious encoding of the flow of attribute values up and
down the tree. Rather, the formulas are translated into tree automata by the Mona tool
according to a decision procedure recently implemented [8]. The tree automata represent
low-level attribute grammars, which detail the minimum information flow implicit in the
formulas across the set of nonterminals.

The use of automata is essential to good runtime performance. Once the automata
have been calculated (a process that in our framework may take several minutes), the
resulting parser calculates in (almost) linear time the behavior of the automata on the
input of a tree. If there are n constraints, then the resulting parser makes moves in n
automata, each of which can be calculated in a few microseconds.

Related Work

To our knowledge, the idea of using a first-order like parse tree logic to generate attribute
grammars has been presented earlier only in our previous paper[7], which suggested how
such a logic can be used to enforce design constraints or software architectures. There, we
used an encoding of grammars that results in an inherent quadratic blowup, see Section 4.
Similar ideas of using parse tree logic have been pursued in formal linguistics, see [11, 14]
and in computer science logic [1], but no practical applications have been demonstrated.

Earlier work on the practical use of attribute grammars, like [13], tends to focus on
minimizing calculations under more general circumstances. In contrast, our work deals
with the generation of minimum grammars for the restricted class of synthesized attributes
over finite domains.

Recently, work within the W3C promotes the use of simple side constraints on parse
trees. For example, XML[3] offers a simple notation, based on regular expressions, for
restrictions on the occurrence of subelements within an element. Our notation is strictly
more expressive.

Extensions of Yacc-like parser generators are too numerous to mention—a quick search
on the web found 69 different implementations. They focus on supporting different tar-
get languages, handling EBNF notation, coping with larger classes of grammars, adding
attribute evaluations, or automatically building syntax trees. The ideas in YakYak could
be incorporated into all such proposals. Note that the approach is not restricted to LALR
parser generators even though our actual implementation is based on Bison.

Several other logic notations have been proposed for parsing. Definite Clause Gram-
mars [12] elegantly express both synthesized and inherited attributes. The backtracking
nature of the semantics may result in poor runtime performance, including lack of termi-
nation. ASTLOG/4] is another Prolog inspired programming notation, where for efficiency
reasons the parse tree is handled as a separate semantic object. Despite its declarative
look, this language is also Turing-complete, even if it in many cases result in reasonably
efficient parsers. The GENOA system[5] provides a scripting language dedicated to the
description of parse trees. A fragment of the notation expresses precisely PTIME parse
tree analysis programs. The reference [5] also discusses many other similar systems.

It appears that all such systems are less declarative than ours in the sense that they
explicitly model the information flow up and down the tree. Neither do they guarantee
linear run time performance of the generated parser. On the other hand, they are far more
expressive than our constraint formalism, which covers only the regular tree languages.



Plan

In Section 2, we discuss grammars and the parse tree logic; we formulate a simple type
system for formulas; and we discuss the strength of our notation. Next, we show in Sec-
tion 3 the concrete syntactic extensions that YakYak adds to Yacc. In Section 4, we provide
an explanation of the WS2S logic that is at the heart of the parse tree formulation and
our implementation; also, we formulate our main technical result that there is automaton
representation of well-formed parse trees that is linear in the size of the grammar. In
Section 5, we show how techniques are put together so that an ordinary Yacc specification
can be generated from a YakYak specification. Finally in Section 6, we discuss several
practical experiments, including compile time and run time statistics.

2 Grammars and Constraints

In the following, we need to talk about the various components of a Yacc-like grammar:
the root nonterminal is denoted root, the number of productions of the nonterminal N
is denoted |N|, and the i’th symbol in the right-hand side of the j’th production of the
nonterminal N is denoted N(j,7). For the base HTMLO grammar above, we have that

root=H, |E|=5, and L(2,5)=H.
Parse Tree Logic

The parse tree logic is a first-order logic that is interpreted over parse trees: first-order
terms denote nodes in trees and a formula is either true or false for a given tree. The
syntax involves terms, term types, and formulas. Terms denote nodes in a parse tree:

t:$$ the root
| t.3 the i’th child node of ¢
| « a first-order variable

A term type describes a set of nodes in a tree:

T: N any production of nonterminal N
| N[j] the j’th production of nonterminal N

A formula assigns a truth-value to a given tree:

bt <ty ancestor relation
| t1 =ty equality
| = negation

| $1 = ¢2 implication

| 1 A g2  conjunction

| #1V ¢2  disjunction

| Ja:7. existential quantification
| YVa:7.¢p  universal quantification

The constraint that a parse tree in the HTMLO grammar does not have nested anchors is
expressed as:
Va:E[1]. -3b:E[l]l.a < b
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Figure 1: Type Inference Rules

Nodes of type E[1] are anchors, and the formula simply states that no such node can
appear below another of the same kind.
The constraint that lists are nested to at most depth three is expressed as:

—3Ja,b,c,d:E[4l.a<bAb<cAc<d

Here, nodes of type E[4] are lists, and we forbid chains of length four.
Finally, the more intricate constraint that “if any part of an anchor text is in boldface
then all anchor texts must be entirely in boldface;” is expressed as:

Ja:E[1].3b:E[2].3w:E[5l.a<w A b<w

Y
Vw:E[5].(Ja:E[1].a<w) = (3b:E[2].b<w)

The antecedent of the implication states that there is some anchor node a and a word w
contained in a, and there is a boldface element b containing w. Notice that it may be
either the case that the boldface element encloses the anchor element or the case that the
anchor element encloses the boldface element. The consequent of the implication is that
any word that is enclosed in an anchor element is also enclosed in a boldface element.

Type System

A formula is required to be well-typed, which is determined by the inference rules in
Figure 1. The notation I' - ¢ means that ¢ is well-typed in the environment I' which
assigns types to free variables. The notation I' - ¢ : 7 means that ¢ is well-typed in I and
has type 7. A well-typed formula has the property that all term expressions perform only
sensible navigations in trees.

An example of an ill-typed term over the basic HTMLO grammar that is caught by the
type checker is $$.1, since the two H-productions have different first symbols.

Expressive Power and External Predicates

For reason of simplicity, we omitted monadic second-order variables from the logic pre-
sented above, even though they are more general than first-order variables, as discussed in
Section 4. With these variables, it can be shown that the parse tree logic exactly captures
the class of all regular tree languages. This class is usually defined as the set of languages
that are accepted by a finite-state tree automaton. It follows that a grammar restricted



by parse tree formulas still expresses a context-free language, albeit a language that may
require an explosive amount of nonterminals if expressed alone by a context-free grammar.

So although parse tree constraints extend the class of languages that may be conve-
niently expressed in a declarative manner, it is often desirable to impose constraints that
go beyond context-freeness. A telling, if contrived, example is to require that all integers
appearing in boldface must be prime numbers. For that purpose, we could introduce two
external predicates Num and Prime that decide if a word is a numeral and if a numeral is
a prime number. The required formula is then:

Vb:E[2].¥w:E[5].(b <w A Num(w.1)) = Prime(w.1)

The semantics of external predicates must be implemented in conventional C-code.

3 The YakYak Language

YakYak is an extension of Yacc. An example is:

Hleft '+ "=
hleft "' '/’

“eonstraint all p,q:exp[1].p==q

| exp =" exp
| exp '*" exp
| exp '/’ exp
| identifier

| intconst

exp : exp '+ exp
*

The %constraint is a global requirement. If it is violated, then yyerror() is invoked with
a suitable error message. The above constraint forbids the occurrence of more than one
plus operator. For some applications, we may want to act on the truth-value of a formula
rather than to generate a parsing error. For this use, one can write:
exp : exp '+ exp

| exp '-" exp [ex p:exp[6].Prime(p.1)]

| exp "*' exp

| exp '/’ exp

| identifier

| intconst

The formula is written in square brackets and is placed immediately before the action code.
The requirement is imposed only for the subtrees rooted by that particular production.
The truth-value (0 or 1) of the formula for the current subtree is available inside the
action code as the value of the variable $4—corresponding to the index of the formula in
the right-hand side of the rule.

The above formula decides if a prime number constant appears anywhere inside the
arguments of the minus operator. The predicate Prime is external, and to make it known
to YakYak we must declare:

%predicate Prime(int i);

since the %type of intconst is declared to be int. The implementation of the Prime predicate
must be available at link time.



term : " $$” formula : term relop term logop : && | || | => ] <=>

| term ".” number | id ( term ”)” ;
| id | 1" formula relop : <|==|!=]>|<=]|>=
; | formula Iogop formula ;
type : id | "all” " type ".” formula
| id "[" number "]" | "ex” |d " type’ formula
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e formula ")

Figure 2: YakYak Syntax for Parse Tree Logic

To stay in the spirit of Yacc, we have adopted a suitably C-like syntax of formulas
shown in Figure 2. In this syntax, the tiny HTMLO example looks like:

%eonstraint  all azelm[1].lex b:elm[1].a<b
%constraint  lex a,b,c,d:elm[4].a<b && b<c && c<d
eonstraint  (ex atelm[1].ex b:elm[2].ex w:elm[5].a<w && b<w)
=> (all w:elm[5].(ex a:elm[1].a<w) => (ex b:elm[2].b<w))
hh

html : html elm
| elm

elm :'<"’a’ HREF '="url >" html '<" '/" 'a’ >’
| <" 'b" "> html <" */7 'b" ">’
| <" > html </ >
| '<” UL "> list <’ '/" UL ">’
| WORD
list : /* empty */
| list '<" LI '>" html

4 Logic and Tree Automata

Formulas over parse trees can be reduced to tree automata if we encode parse trees as
simpler, labeled binary trees. First, we explain the connection between a simple logic,
WS2S, on binary trees and tree automata. Next, we discuss how this connection can be
extended in various ways to accommodate parse tree logic. To explain our encoding in
more detail, we then formalize the notion of automata and their languages, and we present
the conventional encoding and our new shape encoding. Finally, we show how the shape
encoding is efficiently supported by a special kind of tree automaton.

WS2S and Tree Automata

WS2S (Weak Second-order theory of 2 Successors) is a logic that in its most simple
form consists of formulas containing quantifiers, various set comparisons (D, =, ...) and
monadic second-order variables that range over finite subsets of the infinite, binary tree.
First-order variables, like the ones in parse tree logic, are treated as singleton second-order
variables, since singletoness can easily be encoded. The validity status of any WS2S for-
mula can in principle be checked by an automata-theoretic decision procedure, see [6, 15].
The decision procedure works by inductively calculating a tree automaton for each subfor-
mula. The language accepted by the automaton is exactly the interpretations that make



the formula hold. (Recall that an interpretation is an assignment of values to the free
variables.) In this manner, each logical connective corresponds to an automata-theoretic
operation; for example, existential qualification corresponds to the subset construction
for tree automata. The Mona tool provides an efficient implementation in the sense that
automata with thousands of states can be handled (although this is not always enough);
also, Mona uses binary decision diagrams to cope with large alphabets.

The decidability of WS2S rests on the simple observation that any subset of the infinite,
binary tree is expressible as a Boolean labeling, where each node is flagged according to
whether it is in the subset. A number ¢ of subsets can be expressed by a single labeling
with Boolean vectors in BY: a node v is in the i’th subset if and only if the 7’th component
of the label of v is 1. We regard B¢ as the alphabet of a tree automaton that arises with
any formula as follows. Take the WS2S formula X D Y as an example; it expresses that
the set of positions X is contained in the set of positions Y, and a particular interpretation
of free variables X and Y can be coded as a labeling of the infinite tree with labels in B2.
In WS2S, X and Y are required to denote finite subsets only. A tree automaton can easily
be exhibited that will read, in a deterministic and bottom-up manner, a finite labeled tree
T such that the state reached at the root is a final state if and only if X D Y holds, where
X and Y are interpreted by the labeling of T". This automaton has only two states: the
accepting state, which the automaton stays in as long as it has not seen a letter (0, 1)
in some node v (such a letter means that v € Y but v ¢ X, when we assume that the
first component encodes X and the second Y'), and a reject state. The decision procedure
details how this example can be extended to the construction of an automaton for each
formula.

A Simple Case of Parse Tree Logic

If our parse trees are just binary trees generated by a single, recursive production, we
could express the tree itself in WS2S by a free second-order variable T'. A formula WF
can be written that asserts that 7" is indeed a subset of nodes that constitute a parse tree.
WF must ensure that any node in T either is a leaf (i.e. no child is in T') or corresponds to
a recursive production (i.e. both children are in T'). Also, a predicate that distinguishes
between internal nodes and leaves can easily be defined. Any parse tree formula for this
grammar can then be expressed as a WS2S formula with T as the only free variable. The
corresponding automaton calculated according to the decision procedure then constitutes
an attribute grammar with one synthesized attribute that ranges over automata states.

Molding Grammars into Binary Trees

To decide the parse tree logic, we could construct a tree automaton concept that directly
reflects the heterogeneous nature of grammars. Such automata would read parse trees,
labeled with Boolean vectors representing free variables, in a bottom-up manner like the
binary tree automata just discussed. However, their implementation would be very compli-
cated and suffer from table size explosion. First, there would be many kinds of transition
functions, one for each nonterminal. Second, each transition function word would involve
multi-dimensional arrays with a number of entries exponential in the maximum number
of nonterminals in a right hand side of a production.

Instead, we consider here morphing the variably-branching grammar into an efficient
binary tree framework so that we can use the Mona tool to carry out the tree automata
calculations. Thus, we want to encode a grammar G over some coding alphabet 3 such



that any parse tree is uniquely represented as a finite, X-labeled, binary tree. Also, we
want each node in the parse tree to correspond to a node in the binary tree. However, it
will not be possible to maintain an inverse correspondence, since some nodes in the binary
tree act as intermediate nodes. Thus, any property of a parse tree, can be represented as a
subset of the nodes in the encoded binary tree. In this way, a tree automaton calculating
the truth-status of a formula will read a ¥ x Bf-labeled tree.

Note that the encoding of the grammar determines a set WF(G) of well-formed %-
labeled, binary trees, namely those that correspond to actual parse trees. The WEF-
automaton is the canonical automaton that recognizes this set. The WF-automaton is
essential to the WS2S translation of formulas, since any parse tree formula over Y-labeled
trees should be dependent only on the values of well-formed >-labeled, binary trees. For
example, if a programmer has specified a constraint in the parse tree logic that is translated
into a formula ¢ on binary trees, and if ¢ = —=WF holds (presumably unbeknownst to the
programmer), then the canonical automaton should not be that of ¢ for that automaton
could be arbitrarily big. Instead, we want a canonical automaton that expresses the prop-
erty “false” under the assumption WF. In fact, we choose to normalize all automata, also
the intermediate ones corresponding to subformulas 1), so that each automaton represents
the formula WF A 1.

Trees and Automata

At this point, we need to make our notions more precise. A binary tree T is a prefix-closed
subset of B*. A node v € T is a sequence of successors: 0 is called the left successor and 1
the right. The empty string e is called the root. T is a X-labeled tree if it is equipped with
a mapping x : T — 3. A tree automaton A = (3, S, s", F,§) consists of an alphabet %, a
finite state space S, an initial state s € S, a set of final states F' C S, and a transition
function ¢ : (S x S) — X — S. A run over a labeled tree (7, x) is an assignment of states
to the nodes in T" and to extra start nodes of the form v - b, where v € T', b € B, and
v-b ¢ T, such that (1) any start node is assigned s°, and (2) for any node v € T, v is
assigned to state d(s’,s”)(x(v)), where s’ and s” are the states assigned to the left and
right successor of v. The run so defined is unique for any labeled tree. The tree is accepted
if and only if the state assigned to the root is in F. The language L(.A) accepted by A is
the set of all trees (T, x) accepted. The class of regular tree languages (over binary trees)
is the class of all L(A). The size of a tree automaton is |S|?. This definition is reasonable
since the alphabet-part of the transition relation can often be compressed asymptotically
by the BDD representation, see [6].
For example, if ¥ = {a, b}, then a two-node X-labeled tree could look like:




It contains ordinary two nodes: €, labeled b, and 1 labeled a. The figure also shows how
the states of a run over the tree are calculated; note that the auxiliary start nodes (0, 10,
and 11) are shown in black.

A Conventional Encoding

We now outline a traditional encoding of parse trees over a binary tree, and we argue that
the asymptotic complexity is quadratic in the size of the grammar. For each nonterminal
N and each production j of N, let |[N[j]| be the number of terminals and nonterminals in
the right hand side (r.h.s.) of the jth production. We let the coding alphabet ¥ consist of
all terminal symbols; in addition, for each production N[j], we need a symbol (N, j,7) for
each position in the right hand side (except the last). A node v, in the binary tree, that
corresponds to a nonterminal N is labeled with (V,j,1), where j is the number of the
production used to rewrite N. Its left child, v - 0 is labeled according to the first symbol
of the right hand side of the production. If |N[j]| = 2, then the right child is labeled
according to the second one; otherwise, disregarding the case of |[N[j]| = 1, we make the
right child v -1 an intermediate node labeled (N, j,2). The left child v-10 of v- 1 is labeled
according to the second nonterminal, and the right child v - 11 is labeled according to the
third nonterminal if |N[j]| = 3; otherwise, the right child is labeled with (N, 7,3), and so
forth.

As an example, consider the expression grammar from Section 3. The string 2+3%4
would yield a parse tree whose binary representation is:

exp,l,l

intconst

intconst

intconst

It is natural to define the size of a grammar G as the total number of occurrences
of terminal and nonterminal symbols in its productions. Thus, the size of the encoding
alphabet Y. is approximately equal to that of the grammar.

It can now be shown that a tree automaton A with |X| + 2 states can be constructed
such that a labeled, binary tree satisfies WF if and only if it is accepted by A. In fact,
the labeling of the intermediate nodes can be shown to prevent exponential explosions in
the state space: we may choose the state space to be simply the alphabet ¥ itself plus a
couple of auxiliary states whereas without such labeling, the automaton would possibly
have to process many possible right hand sides at the same time until the nonterminal was
reached. (These arguments are standard in automata theory and can be shown through
Myhill-Nerode congruence arguments; see [9]). The automaton that we have described is
minimum. Thus, we have the following result:

Proposition 1 Under the conventional encoding, the size of a tree automaton recognizing
the well-formedness predicate is quadratic in the size of the grammar.



This is the encoding we used in the CDL design constraint tool[7], and which sometimes
prevented it from scaling to interesting grammars.

A Shape Encoding

We introduce here a representation that is by shape only. Thus, given a grammar G, we
define a subset WF of the finite, binary trees such that there is a bijective correspondence
between parse trees of G and WF. The idea is simple: instead of denoting the choice of
a production by a label, we denote it by a sequence of successors, that is, a path. For
example, consider the nonterminal exp. We observe that there are six production; let us
call them (exp,1),..., (exp,6). The six choices can be encoded as the sets of full paths
(those from the root to the leaves) of a tree:

exp,l1 exp,2 exp,3 exp,4 exp,5 exp,6

We call this the OR-tree for exp. With this OR-tree, the production for * corresponds to to
the path 010, which is shown in bold above. To explain the shape encoding, we still need
labels. Above, the root receives the name of the nonterminal, namely exp; the intermediate
nodes receive a name of the form (exp - «), where « is a sequence of successors; and the
leaves receive the names of the productions as just defined. In the shape representation,
the right-hand side of each production will similarly be molded into a binary AND-tree as
for the conventional encoding.

A parse tree is now converted into a binary tree as follows. Label the root of the
singleton, binary tree with the start symbol. Select one full path in the OR-tree for the
start symbol and add that path to the root. Then, the leaf of the path is labeled with
a production name. Expand the right-hand side of that production into an AND-tree,
the leaves of which denote terminals or nonterminals. For each nonterminal leaf, proceed
inductively as if it were a start symbol.

For example, the parse tree for 2+3*4 is unraveled into the binary tree fragment:

exp

intconst

exp

exp, 6

intconst intconst



Here, we have for the sake of clarity omitted the labels of intermediate nodes.

The set of well-formed trees has been designed to enjoy the property: any node v € B*
always has the same label whenever it occurs in a shape representation of a parse tree.
This property is easily proved by induction. Thus, we can a priori label the complete,
infinite, binary tree; descendants of nodes labeled with terminals do not receive a label.
And, any well-formed tree is then completely specified as a subset of the infinite, binary
tree. Moreover, we note that a deterministic, top-down automaton can calculate the
labeling of the tree: its state space is the set of labels, the initial state is the start symbol,
and the transitions are defined according to the local OR- and AND-trees. We call it
the labeling automaton D. It consists of state space D, which is identical to the set of
labels, root label d°, and a set of transitions of the form d — (d’,d"), one for each d € D.
For example, the labeling automaton for the expression grammar contains a transition
exp — (exp-0,exp-1). Each such transition will be called a transition type to distinguish
it from usual automata transitions.

Guided Tree Automata

The well-formedness property of the shape encoding can defined in WS2S, since both the
behavior of the labeling automaton as well as the various requirements on paths can be
expressed. But the size of the WF-automaton is potentially exponential in the size of the
grammar. The reason is that the automaton may have to maintain several assumptions
about what is the meaning of the subtree it has read, since it has been deprived of the
explicit labels used in the traditional encoding.

However, the labeling permits a factorization of the state spaces of any automaton
recognizing a regular tree language L over alphabet ¥ if we let each label d correspond to
a separate tree automaton state space Sy. The state space Sy is used only in the positions
labeled with d. In particular, if T(X) is the set of X-labeled finite trees and the congruence
~% on T(X) is defined as

T ~% » T' if and only if for all C, C[T] € L < C[T'] € L,

where C'is a contert, defined as a Y-labeled tree with a designated leaf and C[T'] is the tree
C with the designated leaf replaced by T, then the canonical state space for d is the set
T(X)/ ~% of equivalence classes of ~%. For each of the |D| transition types d — (d',d"),
a transition function of type (T(X)/ ~% x T(X)/ ~b) — T(T)/ ~% is naturally
defined, just as in the case of the Myhill-Nerode regular theorem for string languages.
Generalizations of the usual tree automata algorithms, such as the subset construction
and minimization, are described in [2], where these partitioned automata are called guided
tree automata. (They generalize the tree-shaped binary decision diagrams of [10], which
assign different state spaces to a fixed, finite tree.) The size of a guided tree automaton is
the sum of the table sizes, that is, Xy, (@ a)|Sar| - |Sgr|. It can now be shown that:

Proposition 2 Under the shape encoding, the size of a guided tree automaton recognizing
the well-formedness predicate is linear in the size of the grammar.

In fact, each state space has at most four states if the three-valued automata of Mona are
used.



exp : exp '+ exp [ex p:exp[5].$$.3<=p]
{ if ($4) printf("identifier in second argument"); }

exp : exp '+ exp
{$$ = make_exp_wrapper();
x1 = $1->state; x2 = $3->state;
ql = trans(auto_exp_1,x1,x2);
g2 = trans(auto_exp-or_00,ql,auto_exp_2_initial);
q3 = trans(auto_exp-or_0,q2,auto_exp_or_01_initial);
g4 = trans(auto_exp,q3,auto_exp_or_1);
$$->state = q4;
if (accept_exp($$->state)) printf("identifier in second argument");

}

Figure 3: Original and Instrumented Action Code

5 From YakYak to Yacc

A YakYak specification is transformed into a Yacc specification as follows. The encoding,
determining AND and OR trees for productions, is calculated from the context-free gram-
mar, and the labeling automaton is described in a Mona declaration. The WF-automaton
is described as a Mona formula, and parse tree formulas are also translated into Mona
formulas. This translation is easy, since for any label d Mona offers a built-in predicate
that tests whether a first-order variable denotes a node labeled d. Then Mona is run on
each parse tree constraint, and the resulting automata are written as C' data structures,
which become part of the produced Yacc parser. The Yacc productions are augmented
with action code that executes transitions of the tree automaton. Usually, several transi-
tions are necessary since the automaton must traverse both an AND-tree and an OR-tree.
A sketch of the code before and after instrumentation is shown in Figure 3.

Note that since each node in the parse tree is represented by several nodes in the binary
tree representation, there is potentially an induced logarithmic overhead. In practice,
however, the branching of the context free grammar is quite limited, so it is reasonable to
assume that each parse tree node is treated in constant time.

6 YakYak in Practice

We must investigate three aspects. How expensive is it to transform YakYak specifications
into equivalent Yacc specifications? How efficient are the instrumented parsers? And, can
we express interesting constraints? To answer these questions, we consider several example
grammars:

e EXP: the expression language (2 nonterminals, 8 productions, 2 tokens, size 18).

HTMLO: the HTML example (3 nonterminals, 10 productions, 12 tokens, size 19).

YAKYAK: the YakYak language itself (24 nonterminals, 79 productions, 52 tokens,
size 185).

JAVA: a large Java subset (66 nonterminals, 144 productions, 65 tokens, size 310).

HTML3: all of HTML3.0 (147 nonterminals, 368 productions, 204 tokens, size 698).



grammar | size | WF formula 1 formula 2 formulas 3 formulas 10 formulas
1sec 2 sec 3sec 4 sec 5sec
EXP 18 2MB 3MB 4 MB 4 MB 6 MB
68 states 100 states 200 states 206 states 837 states
1sec 3sec 4 sec 5sec 10 sec
HTMLO 19 3MB 7MB 7MB 7MB 9MB
77 states 142 states 348 states 468 states 1,061 states
4 sec 11sec 21 sec 27 sec 54 sec
YAKYAK | 185 12 MB 27 MB 34 MB 34 MB 55 MB
603 states 626 states 1,269 states 1,903 states 6,245 states
7 sec 39 sec 49 sec 57 sec 160 sec
JAVA 310 18 MB 48 MB 53 MB 54 MB 58 MB
988 states 1,086 states 2,116 states 3,140 states 10,757 states
16 sec 19 sec 134 sec 285 sec 584 sec
HTML3 698 39 MB 61 MB 117 MB 151 MB 171 MB
2,159 states 2,531 states 5,375 states 9,204 states 26,974 states
Figure 4: Generating Automata with Mona
seconds
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Figure 5: Running Times for Different JAVA Parsers

We have run YakYak on these grammars enriched with a varying number of formulas.
The results are summarized in Figure 4, where we for each entry give the running time in
seconds (on a 266 MHz Pentium II PC with 128MB RAM), the memory usage, and the
total number of states in the resulting automaton. The WF-column shows the computa-
tion of the well-formedness automaton, which must be done once for each grammar. It is
seen that the size as well as the time and space consumption of this automaton is linear
in the size of the grammar. The number of states shown is the total over all state spaces;
for example, WF for HTML3 has 2,159 states spread over 560 spaces (for an average of 3.9
states per space, cf. Proposition 2). The other columns total the additional computation
for an increasing number of formulas, each of which is similar in spirit to the ones shown
previously, involving at most a handful of quantifiers. These experiments clearly demon-
strate that our concept is feasible: for the largest grammar, the automata for 10 formulas
are computed in less than 10 minutes.

The efficiency of the generated parsers is described in Figure 5, which shows the running
times of YakYak parsers for the JAVA grammar with between 0 and 3 formulas. Each parser
is given a number of input programs ranging between 100 and 10,000 lines of code. As
a baseline, we show the running times for a parser generated by the Bison version of



Yacc. The YakYak parsing times all appear linear in the size of the input programs, but
they are somewhat slower than for the Bison version. We are working on optimizing the
instrumented action code further. The extra space usage at runtime is not significant.

As we would expect, the complexity of a constraint influences the time needed to
compute the corresponding automaton. However, the running time of an automaton is
virtually independent of its size, so complicated formulas are checked as quickly as simple
ones during parsing. For the present implementation of YakYak, the overhead works out
to 74 microseconds/formula/line of code (under the assumption we made at the end of
Section 5).

The expressiveness of our parse tree logic is best illustrated by an explanation of some
of the formulas in Figure 4. From the JAVA grammar, we mention: “Are the classes of
all abstract methods themselves declared to be abstract?” , “Do static methods refer to
this or super?”, “Does an expression have possible side-effects?”, and “Does a void method
contain a return with an expression?”. Examples from the HTML3 grammar are: “ Are
there nested anchors?”, “Is an anchor text only the word "here'?”, “Are there empty table
cells?”, “ Are there headers inside lists?”, and “ Does a boldface style extend beyond a
paragraph?”. These formulas reflect tests performed in Java compilers and suggestions in
HTML style guides.
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