
YakYak: Parsing with Logical Side Constraints

Niels Damgaard �

damgaard@brics.dk

Nils Klarlundy

klarlund@research.att.com

Michael I. Schwartzbach�

mis@brics.dk

Abstract

Programming language syntax is often described by means of a context-free gram-

mar, which is restricted by constraints programmed into the action code associated

with productions. Without such code, the grammar would explode in size if it were

to describe the same language.

We present the tool YakYak, which extends Yacc with �rst-order logic for specifying

constraints that are regular tree languages. Concise formulas about the parse tree

replace explicit programming, and they are turned into canonical attribute grammars

through tree automata calculations. YakYak is implemented as a preprocessor for Yacc,

in which the transitions of the calculated tree automata are merged into the action

code. We provide both practical experience and theoretical evidence that the YakYak

approach results in fast and concisely speci�ed parsers.

1 Introduction

We introduce a declarative notation, a �rst-order logic on trees, to specify eÆcient parsers

that require fewer attributes and less explicit programming than conventional parser gen-

erators. Our idea is to add concise speci�cations of regular tree language constraints

to the popular parser generator Yacc. Such generators are usually supplied with a rela-

tively simple context-free grammar that must be augmented with explicitly programmed

attribute calculations in action code. These calculations often do nothing but calculate

regular constraints.

In this paper, we show in theory and in practice how tree automata calculations make it

possible to use a declarative �rst-order language to specify such constraints, in a complete

analogy with how usual regular expressions are used to express �nite-state automata on

strings. Thus, the declarative component of Yacc, namely the context-free grammar, can

be augmented with regular tree language constraints with little run time penalty.

Grammars and Side Constraints

Consider the following example grammar, which generates a tiny subset of the HTML
notation that we shall call HTML0:

H : H E

j E

;

E : H

j H

�BRICS, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark.
yAT&T Labs{Research, Shannon Labs, 180 Park Ave., Florham Park, NJ 07932.

j <i> H </i>

j L

j word

;

L : /* empty */

j L H

;

Here, the set of tokens is f<, >, a, href, =, url, /, b, i, ul, word, lig. There are many

reasonable constraints on HTML0 syntax not captured by this grammar. For example,

we should disallow nested anchor elements (an element is a named parenthetic structure

delimited by a begin tag < � � � > and an end tag < n � � � > (sometimes the end tag is

omitted)). The resulting context-free language can now be described only by a grammar

that doubles in size, since we have to introduce nonterminals H', E', and L' that cannot
generate anchor elements:

H : H E H': H' E'

j E j E'

; ;

E : H' E': H'

j H j <i> H' </i>

j <i> H </i> j L'

j L j word

j word ;

;

L : /* empty */ L' : /* empty */

j L H j L' H'

; ;

As another example, the simple constraint \lists may be nested only to a depth of three"

would require 12 nonterminals.

An even more interesting constraint is the stylistic requirement that if any part of

some anchor text is in boldface then all anchor texts must be boldface in their entirety. A

grammar capturing this language is quite complex, clearly something that is impractical

to spell out. If we furthermore impose all three constraints simultaneously, then their

respective nonterminals interfere and we are landed with a unwieldy grammar (with more

than 100 nonterminals) that is almost impossible to maintain.

In such a situation, most language implementors would prefer to construct a parser for

the simple base grammar and then to program the constraints by hand. But this approach

is not declarative and concise; the code could not easily be part of the formal speci�cation

of the language; the code could be wrong; and it would have to be carefully rewritten if

the representation of the parse trees changes.

Parse Tree Logic

We propose an alternative approach where the underlying grammar is de�ned in the

usual way, but the constraints are speci�ed in a concise, formal logic on parse trees.

In [7], we presented such a logic, called CDL, and demonstrated that it could be useful

for capturing design constraints for object-oriented programs. We developed a prototype

implementation that could transform constraints into simple attribute grammars that were

intended to be included into syntax-directed editors.

In the present work, we extend Yacc with constraints written in a similar logic. A

traditional parser is then automatically generated, where the grammar part is translated

as usual into an LR-parser, while each constraint is translated into a deterministic, bottom-

up tree automaton. Our use of a formal logic with unrestricted quanti�cation is much more

succinct than the direct use of attribute grammars. In particular, the speci�cation of a

constraint does not involve a laborious encoding of the ow of attribute values up and

down the tree. Rather, the formulas are translated into tree automata by the Mona tool

according to a decision procedure recently implemented [8]. The tree automata represent

low-level attribute grammars, which detail the minimum information ow implicit in the

formulas across the set of nonterminals.

The use of automata is essential to good runtime performance. Once the automata

have been calculated (a process that in our framework may take several minutes), the

resulting parser calculates in (almost) linear time the behavior of the automata on the

input of a tree. If there are n constraints, then the resulting parser makes moves in n

automata, each of which can be calculated in a few microseconds.

Related Work

To our knowledge, the idea of using a �rst-order like parse tree logic to generate attribute

grammars has been presented earlier only in our previous paper[7], which suggested how

such a logic can be used to enforce design constraints or software architectures. There, we

used an encoding of grammars that results in an inherent quadratic blowup, see Section 4.

Similar ideas of using parse tree logic have been pursued in formal linguistics, see [11, 14]

and in computer science logic [1], but no practical applications have been demonstrated.

Earlier work on the practical use of attribute grammars, like [13], tends to focus on

minimizing calculations under more general circumstances. In contrast, our work deals

with the generation of minimum grammars for the restricted class of synthesized attributes

over �nite domains.

Recently, work within the W3C promotes the use of simple side constraints on parse

trees. For example, XML[3] o�ers a simple notation, based on regular expressions, for

restrictions on the occurrence of subelements within an element. Our notation is strictly

more expressive.

Extensions of Yacc-like parser generators are too numerous to mention|a quick search

on the web found 69 di�erent implementations. They focus on supporting di�erent tar-

get languages, handling EBNF notation, coping with larger classes of grammars, adding

attribute evaluations, or automatically building syntax trees. The ideas in YakYak could

be incorporated into all such proposals. Note that the approach is not restricted to LALR
parser generators even though our actual implementation is based on Bison.

Several other logic notations have been proposed for parsing. De�nite Clause Gram-

mars [12] elegantly express both synthesized and inherited attributes. The backtracking

nature of the semantics may result in poor runtime performance, including lack of termi-

nation. ASTLOG[4] is another Prolog inspired programming notation, where for eÆciency

reasons the parse tree is handled as a separate semantic object. Despite its declarative

look, this language is also Turing-complete, even if it in many cases result in reasonably

eÆcient parsers. The GENOA system[5] provides a scripting language dedicated to the

description of parse trees. A fragment of the notation expresses precisely PTIME parse

tree analysis programs. The reference [5] also discusses many other similar systems.

It appears that all such systems are less declarative than ours in the sense that they

explicitly model the information ow up and down the tree. Neither do they guarantee

linear run time performance of the generated parser. On the other hand, they are far more

expressive than our constraint formalism, which covers only the regular tree languages.

Plan

In Section 2, we discuss grammars and the parse tree logic; we formulate a simple type

system for formulas; and we discuss the strength of our notation. Next, we show in Sec-

tion 3 the concrete syntactic extensions that YakYak adds to Yacc. In Section 4, we provide
an explanation of the WS2S logic that is at the heart of the parse tree formulation and

our implementation; also, we formulate our main technical result that there is automaton

representation of well-formed parse trees that is linear in the size of the grammar. In

Section 5, we show how techniques are put together so that an ordinary Yacc speci�cation
can be generated from a YakYak speci�cation. Finally in Section 6, we discuss several

practical experiments, including compile time and run time statistics.

2 Grammars and Constraints

In the following, we need to talk about the various components of a Yacc-like grammar:

the root nonterminal is denoted root, the number of productions of the nonterminal N

is denoted jN j, and the i'th symbol in the right-hand side of the j'th production of the

nonterminal N is denoted N(j; i). For the base HTML0 grammar above, we have that

root=H, jEj=5, and L(2,5)=H.

Parse Tree Logic

The parse tree logic is a �rst-order logic that is interpreted over parse trees: �rst-order

terms denote nodes in trees and a formula is either true or false for a given tree. The

syntax involves terms, term types, and formulas. Terms denote nodes in a parse tree:

t : $$ the root

j t.i the i'th child node of t

j � a �rst-order variable

A term type describes a set of nodes in a tree:

� : N any production of nonterminal N

j N [j] the j'th production of nonterminal N

A formula assigns a truth-value to a given tree:

� : t1 < t2 ancestor relation

j t1 = t2 equality

j :� negation

j �1) �2 implication

j �1 ^ �2 conjunction

j �1 _ �2 disjunction

j 9� :� .� existential quanti�cation

j 8� :� .� universal quanti�cation

The constraint that a parse tree in the HTML0 grammar does not have nested anchors is

expressed as:

8a :E[1]::9b :E[1]:a < b

� ` $$: root : : : ; � :�; : : : ` � :�

� ` t : N [j]

� ` t:i : M
if N(j; i) =M

� ` t1 : �1 � ` t2 : �2

� ` t1 < t2

� ` t1 : �1 � ` t2 : �2

� ` t1 = t2

� ` t : N

� ` t:i : M
if 8j 2 1::jN j : N(j; i) =M

� ` �

� ` :�

� ` �1 � ` �2

� ` �1) �2

� ` �1 � ` �2

� ` �1 ^ �2

� ` �1 � ` �2

� ` �1 _ �2

�; � : � ` �

� ` 9� : �:�

�; � : � ` �

� ` 8� : �:�

Figure 1: Type Inference Rules

Nodes of type E[1] are anchors, and the formula simply states that no such node can

appear below another of the same kind.

The constraint that lists are nested to at most depth three is expressed as:

:9 a; b; c; d :E[4]:a<b ^ b<c ^ c<d

Here, nodes of type E[4] are lists, and we forbid chains of length four.

Finally, the more intricate constraint that \if any part of an anchor text is in boldface

then all anchor texts must be entirely in boldface;" is expressed as:

9a :E[1]:9b :E[2]:9w :E[5]:a<w ^ b<w
+

8w :E[5]:(9a :E[1]:a<w)) (9b :E[2]:b<w)

The antecedent of the implication states that there is some anchor node a and a word w
contained in a, and there is a boldface element b containing w. Notice that it may be

either the case that the boldface element encloses the anchor element or the case that the

anchor element encloses the boldface element. The consequent of the implication is that

any word that is enclosed in an anchor element is also enclosed in a boldface element.

Type System

A formula is required to be well-typed, which is determined by the inference rules in

Figure 1. The notation � ` � means that � is well-typed in the environment � which

assigns types to free variables. The notation � ` t : � means that t is well-typed in � and

has type � . A well-typed formula has the property that all term expressions perform only

sensible navigations in trees.

An example of an ill-typed term over the basic HTML0 grammar that is caught by the

type checker is $$.1, since the two H-productions have di�erent �rst symbols.

Expressive Power and External Predicates

For reason of simplicity, we omitted monadic second-order variables from the logic pre-

sented above, even though they are more general than �rst-order variables, as discussed in

Section 4. With these variables, it can be shown that the parse tree logic exactly captures

the class of all regular tree languages. This class is usually de�ned as the set of languages

that are accepted by a �nite-state tree automaton. It follows that a grammar restricted

by parse tree formulas still expresses a context-free language, albeit a language that may

require an explosive amount of nonterminals if expressed alone by a context-free grammar.

So although parse tree constraints extend the class of languages that may be conve-

niently expressed in a declarative manner, it is often desirable to impose constraints that

go beyond context-freeness. A telling, if contrived, example is to require that all integers

appearing in boldface must be prime numbers. For that purpose, we could introduce two

external predicates Num and Prime that decide if a word is a numeral and if a numeral is

a prime number. The required formula is then:

8b :E[2]:8w :E[5]:(b<w ^Num(w.1))) Prime(w.1)

The semantics of external predicates must be implemented in conventional C-code.

3 The YakYak Language

YakYak is an extension of Yacc. An example is:

%left '+' '-'

%left '*' '/'

%constraint all p,q:exp[1].p==q

exp : exp '+' exp

j exp '-' exp

j exp '*' exp

j exp '/' exp

j identi�er

j intconst

;

The %constraint is a global requirement. If it is violated, then yyerror() is invoked with

a suitable error message. The above constraint forbids the occurrence of more than one

plus operator. For some applications, we may want to act on the truth-value of a formula

rather than to generate a parsing error. For this use, one can write:

exp : exp '+' exp

j exp '-' exp [ex p:exp[6].Prime(p.1)]

j exp '*' exp

j exp '/' exp

j identi�er

j intconst

;

The formula is written in square brackets and is placed immediately before the action code.

The requirement is imposed only for the subtrees rooted by that particular production.

The truth-value (0 or 1) of the formula for the current subtree is available inside the

action code as the value of the variable $4|corresponding to the index of the formula in

the right-hand side of the rule.

The above formula decides if a prime number constant appears anywhere inside the

arguments of the minus operator. The predicate Prime is external, and to make it known

to YakYak we must declare:

%predicate Prime(int i);

since the %type of intconst is declared to be int. The implementation of the Prime predicate
must be available at link time.

term : "$$" formula : term relop term logop : && j || j => j <=>

j term "." number j id "(" term ")" ;

j id j "!" formula relop : < j == j != j > j <= j >=

; j formula logop formula ;

type : id j "all" id ":" type "." formula

j id "[" number "]" j "ex" id ":" type "." formula

; j "(" formula ")"

;

Figure 2: YakYak Syntax for Parse Tree Logic

To stay in the spirit of Yacc, we have adopted a suitably C-like syntax of formulas

shown in Figure 2. In this syntax, the tiny HTML0 example looks like:

%constraint all a:elm[1].!ex b:elm[1].a<b

%constraint !ex a,b,c,d:elm[4].a<b && b<c && c<d

%constraint (ex a:elm[1].ex b:elm[2].ex w:elm[5].a<w && b<w)

=> (all w:elm[5].(ex a:elm[1].a<w) => (ex b:elm[2].b<w))

%%

html : html elm

j elm

;

elm : '<' 'a' HREF '=' url '>' html '<' '/' 'a' '>'

j '<' 'b' '>' html '<' '/' 'b' '>'

j '<' 'i' '>' html '<' '/' 'i' '>'

j '<' UL '>' list '<' '/' UL '>'

j WORD

;

list : /* empty */

j list '<' LI '>' html

;

4 Logic and Tree Automata

Formulas over parse trees can be reduced to tree automata if we encode parse trees as

simpler, labeled binary trees. First, we explain the connection between a simple logic,

WS2S, on binary trees and tree automata. Next, we discuss how this connection can be

extended in various ways to accommodate parse tree logic. To explain our encoding in

more detail, we then formalize the notion of automata and their languages, and we present

the conventional encoding and our new shape encoding. Finally, we show how the shape

encoding is eÆciently supported by a special kind of tree automaton.

WS2S and Tree Automata

WS2S (Weak Second-order theory of 2 Successors) is a logic that in its most simple

form consists of formulas containing quanti�ers, various set comparisons (�, =, . . .) and

monadic second-order variables that range over �nite subsets of the in�nite, binary tree.

First-order variables, like the ones in parse tree logic, are treated as singleton second-order

variables, since singletoness can easily be encoded. The validity status of any WS2S for-

mula can in principle be checked by an automata-theoretic decision procedure, see [6, 15].

The decision procedure works by inductively calculating a tree automaton for each subfor-

mula. The language accepted by the automaton is exactly the interpretations that make

the formula hold. (Recall that an interpretation is an assignment of values to the free

variables.) In this manner, each logical connective corresponds to an automata-theoretic

operation; for example, existential quali�cation corresponds to the subset construction

for tree automata. The Mona tool provides an eÆcient implementation in the sense that

automata with thousands of states can be handled (although this is not always enough);

also, Mona uses binary decision diagrams to cope with large alphabets.

The decidability ofWS2S rests on the simple observation that any subset of the in�nite,

binary tree is expressible as a Boolean labeling, where each node is agged according to

whether it is in the subset. A number ` of subsets can be expressed by a single labeling

with Boolean vectors in B`: a node v is in the i'th subset if and only if the i'th component

of the label of v is 1. We regard B` as the alphabet of a tree automaton that arises with

any formula as follows. Take the WS2S formula X � Y as an example; it expresses that

the set of positionsX is contained in the set of positions Y , and a particular interpretation

of free variables X and Y can be coded as a labeling of the in�nite tree with labels in B2.

In WS2S, X and Y are required to denote �nite subsets only. A tree automaton can easily

be exhibited that will read, in a deterministic and bottom-up manner, a �nite labeled tree

T such that the state reached at the root is a �nal state if and only if X � Y holds, where

X and Y are interpreted by the labeling of T . This automaton has only two states: the

accepting state, which the automaton stays in as long as it has not seen a letter (0; 1)

in some node v (such a letter means that v 2 Y but v =2 X, when we assume that the

�rst component encodes X and the second Y), and a reject state. The decision procedure

details how this example can be extended to the construction of an automaton for each

formula.

A Simple Case of Parse Tree Logic

If our parse trees are just binary trees generated by a single, recursive production, we

could express the tree itself in WS2S by a free second-order variable T . A formula WF
can be written that asserts that T is indeed a subset of nodes that constitute a parse tree.

WF must ensure that any node in T either is a leaf (i.e. no child is in T) or corresponds to

a recursive production (i.e. both children are in T). Also, a predicate that distinguishes

between internal nodes and leaves can easily be de�ned. Any parse tree formula for this

grammar can then be expressed as a WS2S formula with T as the only free variable. The

corresponding automaton calculated according to the decision procedure then constitutes

an attribute grammar with one synthesized attribute that ranges over automata states.

Molding Grammars into Binary Trees

To decide the parse tree logic, we could construct a tree automaton concept that directly

reects the heterogeneous nature of grammars. Such automata would read parse trees,

labeled with Boolean vectors representing free variables, in a bottom-up manner like the

binary tree automata just discussed. However, their implementation would be very compli-

cated and su�er from table size explosion. First, there would be many kinds of transition

functions, one for each nonterminal. Second, each transition function word would involve

multi-dimensional arrays with a number of entries exponential in the maximum number

of nonterminals in a right hand side of a production.

Instead, we consider here morphing the variably-branching grammar into an eÆcient

binary tree framework so that we can use the Mona tool to carry out the tree automata

calculations. Thus, we want to encode a grammar G over some coding alphabet � such

that any parse tree is uniquely represented as a �nite, �-labeled, binary tree. Also, we

want each node in the parse tree to correspond to a node in the binary tree. However, it

will not be possible to maintain an inverse correspondence, since some nodes in the binary

tree act as intermediate nodes. Thus, any property of a parse tree, can be represented as a

subset of the nodes in the encoded binary tree. In this way, a tree automaton calculating

the truth-status of a formula will read a ��B`-labeled tree.

Note that the encoding of the grammar determines a set WF(G) of well-formed �-

labeled, binary trees, namely those that correspond to actual parse trees. The WF-
automaton is the canonical automaton that recognizes this set. The WF-automaton is

essential to the WS2S translation of formulas, since any parse tree formula over �-labeled

trees should be dependent only on the values of well-formed �-labeled, binary trees. For

example, if a programmer has speci�ed a constraint in the parse tree logic that is translated

into a formula � on binary trees, and if �) :WF holds (presumably unbeknownst to the

programmer), then the canonical automaton should not be that of � for that automaton

could be arbitrarily big. Instead, we want a canonical automaton that expresses the prop-

erty \false" under the assumption WF. In fact, we choose to normalize all automata, also

the intermediate ones corresponding to subformulas , so that each automaton represents

the formula WF ^ .

Trees and Automata

At this point, we need to make our notions more precise. A binary tree T is a pre�x-closed

subset of B�. A node v 2 T is a sequence of successors: 0 is called the left successor and 1

the right. The empty string � is called the root. T is a �-labeled tree if it is equipped with

a mapping � : T ! �. A tree automaton A = (�; S; s0; F; Æ) consists of an alphabet �, a

�nite state space S, an initial state s0 2 S, a set of �nal states F � S, and a transition

function Æ : (S �S)! �! S. A run over a labeled tree (T; �) is an assignment of states

to the nodes in T and to extra start nodes of the form v � b, where v 2 T , b 2 B, and

v � b =2 T , such that (1) any start node is assigned s0, and (2) for any node v 2 T , v is

assigned to state Æ(s0; s00)(�(v)), where s0 and s00 are the states assigned to the left and

right successor of v. The run so de�ned is unique for any labeled tree. The tree is accepted

if and only if the state assigned to the root is in F . The language L(A) accepted by A is

the set of all trees (T; �) accepted. The class of regular tree languages (over binary trees)

is the class of all L(A). The size of a tree automaton is jSj2. This de�nition is reasonable

since the alphabet-part of the transition relation can often be compressed asymptotically

by the BDD representation, see [6].

For example, if � = fa; bg, then a two-node �-labeled tree could look like:

Æ(s0; s0)(a)
s0

start nodes

a

s0

Æ(s0; Æ(s0; s0)(a))(b)

s0

b

It contains ordinary two nodes: �, labeled b, and 1 labeled a. The �gure also shows how

the states of a run over the tree are calculated; note that the auxiliary start nodes (0, 10,

and 11) are shown in black.

A Conventional Encoding

We now outline a traditional encoding of parse trees over a binary tree, and we argue that

the asymptotic complexity is quadratic in the size of the grammar. For each nonterminal

N and each production j of N , let jN [j]j be the number of terminals and nonterminals in

the right hand side (r.h.s.) of the jth production. We let the coding alphabet � consist of

all terminal symbols; in addition, for each production N [j], we need a symbol (N; j; i) for

each position in the right hand side (except the last). A node v, in the binary tree, that

corresponds to a nonterminal N is labeled with (N; j; 1), where j is the number of the

production used to rewrite N . Its left child, v � 0 is labeled according to the �rst symbol

of the right hand side of the production. If jN [j]j = 2, then the right child is labeled

according to the second one; otherwise, disregarding the case of jN [j]j = 1, we make the

right child v �1 an intermediate node labeled (N; j; 2). The left child v �10 of v �1 is labeled

according to the second nonterminal, and the right child v � 11 is labeled according to the

third nonterminal if jN [j]j = 3; otherwise, the right child is labeled with (N; j; 3), and so

forth.

As an example, consider the expression grammar from Section 3. The string 2+3*4

would yield a parse tree whose binary representation is:

exp; 1; 1

exp; 1; 2

intconst + exp; 3; 1

exp; 3; 2

intconst �

intconst

exp; 6; 1

exp; 6; 1

exp; 6; 1

It is natural to de�ne the size of a grammar G as the total number of occurrences

of terminal and nonterminal symbols in its productions. Thus, the size of the encoding

alphabet � is approximately equal to that of the grammar.

It can now be shown that a tree automaton A with j�j+ 2 states can be constructed

such that a labeled, binary tree satis�es WF if and only if it is accepted by A. In fact,

the labeling of the intermediate nodes can be shown to prevent exponential explosions in

the state space: we may choose the state space to be simply the alphabet � itself plus a

couple of auxiliary states whereas without such labeling, the automaton would possibly

have to process many possible right hand sides at the same time until the nonterminal was

reached. (These arguments are standard in automata theory and can be shown through

Myhill-Nerode congruence arguments; see [9]). The automaton that we have described is

minimum. Thus, we have the following result:

Proposition 1 Under the conventional encoding, the size of a tree automaton recognizing

the well-formedness predicate is quadratic in the size of the grammar.

This is the encoding we used in the CDL design constraint tool[7], and which sometimes

prevented it from scaling to interesting grammars.

A Shape Encoding

We introduce here a representation that is by shape only. Thus, given a grammar G, we

de�ne a subset WF of the �nite, binary trees such that there is a bijective correspondence

between parse trees of G and WF. The idea is simple: instead of denoting the choice of

a production by a label, we denote it by a sequence of successors, that is, a path. For

example, consider the nonterminal exp. We observe that there are six production; let us

call them (exp; 1),. . . , (exp; 6). The six choices can be encoded as the sets of full paths

(those from the root to the leaves) of a tree:

exp;5exp;3exp;2 exp;6exp;4

exp

exp�00 exp�01

exp�1exp�0

exp;1

We call this the OR-tree for exp. With this OR-tree, the production for * corresponds to to
the path 010, which is shown in bold above. To explain the shape encoding, we still need

labels. Above, the root receives the name of the nonterminal, namely exp; the intermediate

nodes receive a name of the form (exp � �), where � is a sequence of successors; and the

leaves receive the names of the productions as just de�ned. In the shape representation,

the right-hand side of each production will similarly be molded into a binary AND-tree as

for the conventional encoding.

A parse tree is now converted into a binary tree as follows. Label the root of the

singleton, binary tree with the start symbol. Select one full path in the OR-tree for the

start symbol and add that path to the root. Then, the leaf of the path is labeled with

a production name. Expand the right-hand side of that production into an AND-tree,
the leaves of which denote terminals or nonterminals. For each nonterminal leaf, proceed

inductively as if it were a start symbol.

For example, the parse tree for 2+3*4 is unraveled into the binary tree fragment:

exp; 6

intconst

exp

exp; 6

exp

intconst

exp; 3

exp; 6

intconst

exp

exp

exp; 1

exp

Here, we have for the sake of clarity omitted the labels of intermediate nodes.

The set of well-formed trees has been designed to enjoy the property: any node v 2 B�

always has the same label whenever it occurs in a shape representation of a parse tree.

This property is easily proved by induction. Thus, we can a priori label the complete,

in�nite, binary tree; descendants of nodes labeled with terminals do not receive a label.

And, any well-formed tree is then completely speci�ed as a subset of the in�nite, binary

tree. Moreover, we note that a deterministic, top-down automaton can calculate the

labeling of the tree: its state space is the set of labels, the initial state is the start symbol,

and the transitions are de�ned according to the local OR- and AND-trees. We call it

the labeling automaton D. It consists of state space D, which is identical to the set of

labels, root label d0, and a set of transitions of the form d! (d0; d00), one for each d 2 D.

For example, the labeling automaton for the expression grammar contains a transition

exp! (exp � 0; exp � 1). Each such transition will be called a transition type to distinguish

it from usual automata transitions.

Guided Tree Automata

The well-formedness property of the shape encoding can de�ned in WS2S, since both the

behavior of the labeling automaton as well as the various requirements on paths can be

expressed. But the size of the WF-automaton is potentially exponential in the size of the

grammar. The reason is that the automaton may have to maintain several assumptions

about what is the meaning of the subtree it has read, since it has been deprived of the

explicit labels used in the traditional encoding.

However, the labeling permits a factorization of the state spaces of any automaton

recognizing a regular tree language L over alphabet � if we let each label d correspond to

a separate tree automaton state space Sd. The state space Sd is used only in the positions

labeled with d. In particular, if T(�) is the set of �-labeled �nite trees and the congruence

�d
D
on T(�) is de�ned as

T �
d
L;D T 0 if and only if for all C; C[T] 2 L, C[T 0] 2 L;

where C is a context, de�ned as a �-labeled tree with a designated leaf and C[T] is the tree

C with the designated leaf replaced by T , then the canonical state space for d is the set

T(�)=�d
D
of equivalence classes of �d

D
. For each of the jDj transition types d! (d0; d00),

a transition function of type (T(�)= �d0

D
� T(�)= �d00

D
) ! T(�)= �d

D
is naturally

de�ned, just as in the case of the Myhill-Nerode regular theorem for string languages.

Generalizations of the usual tree automata algorithms, such as the subset construction

and minimization, are described in [2], where these partitioned automata are called guided

tree automata. (They generalize the tree-shaped binary decision diagrams of [10], which

assign di�erent state spaces to a �xed, �nite tree.) The size of a guided tree automaton is

the sum of the table sizes, that is, �d!(d0;d00)jSd0 j � jSd00 j. It can now be shown that:

Proposition 2 Under the shape encoding, the size of a guided tree automaton recognizing

the well-formedness predicate is linear in the size of the grammar.

In fact, each state space has at most four states if the three-valued automata of Mona are
used.

exp : exp '+' exp [ex p:exp[5].$$.3<=p]

f if ($4) printf("identi�er in second argument"); g

exp : exp '+' exp

f$$ = make exp wrapper();

x1 = $1->state; x2 = $3->state;

q1 = trans(auto exp 1,x1,x2);

q2 = trans(auto exp or 00,q1,auto exp 2 initial);

q3 = trans(auto exp or 0,q2,auto exp or 01 initial);

q4 = trans(auto exp,q3,auto exp or 1);

$$->state = q4;

if (accept exp($$->state)) printf("identi�er in second argument");

g

Figure 3: Original and Instrumented Action Code

5 From YakYak to Yacc

A YakYak speci�cation is transformed into a Yacc speci�cation as follows. The encoding,

determining AND and OR trees for productions, is calculated from the context-free gram-

mar, and the labeling automaton is described in a Mona declaration. The WF-automaton

is described as a Mona formula, and parse tree formulas are also translated into Mona
formulas. This translation is easy, since for any label d Mona o�ers a built-in predicate

that tests whether a �rst-order variable denotes a node labeled d. Then Mona is run on

each parse tree constraint, and the resulting automata are written as C data structures,

which become part of the produced Yacc parser. The Yacc productions are augmented

with action code that executes transitions of the tree automaton. Usually, several transi-

tions are necessary since the automaton must traverse both an AND-tree and an OR-tree.
A sketch of the code before and after instrumentation is shown in Figure 3.

Note that since each node in the parse tree is represented by several nodes in the binary

tree representation, there is potentially an induced logarithmic overhead. In practice,

however, the branching of the context free grammar is quite limited, so it is reasonable to

assume that each parse tree node is treated in constant time.

6 YakYak in Practice

We must investigate three aspects. How expensive is it to transform YakYak speci�cations
into equivalent Yacc speci�cations? How eÆcient are the instrumented parsers? And, can

we express interesting constraints? To answer these questions, we consider several example

grammars:

� EXP: the expression language (2 nonterminals, 8 productions, 2 tokens, size 18).

� HTML0: the HTML example (3 nonterminals, 10 productions, 12 tokens, size 19).

� YAKYAK: the YakYak language itself (24 nonterminals, 79 productions, 52 tokens,

size 185).

� JAVA: a large Java subset (66 nonterminals, 144 productions, 65 tokens, size 310).

� HTML3: all of HTML3.0 (147 nonterminals, 368 productions, 204 tokens, size 698).

grammar size WF formula 1 formula 2 formulas 3 formulas 10 formulas

EXP 18

1 sec

2MB

68 states

2 sec

3MB

100 states

3 sec

4MB

200 states

4 sec

4MB

296 states

5 sec

6MB

837 states

HTML0 19

1 sec

3MB

77 states

3 sec

7MB

142 states

4 sec

7MB

348 states

5 sec

7MB

468 states

10 sec

9MB

1,061 states

YAKYAK 185

4 sec

12MB

603 states

11 sec

27MB

626 states

21 sec

34MB

1,269 states

27 sec

34MB

1,903 states

54 sec

55MB

6,245 states

JAVA 310

7 sec

18MB

988 states

39 sec

48MB

1,086 states

49 sec

53MB

2,116 states

57 sec

54MB

3,140 states

160 sec

58MB

10,757 states

HTML3 698

16 sec

39MB

2,159 states

19 sec

61MB

2,531 states

134 sec

117MB

5,375 states

285 sec

151MB

9,204 states

584 sec

171MB

26,974 states

Figure 4: Generating Automata with Mona
seconds

1 2 3 4 5 6 7 8 9 10,000 lines

1

2

3

� � � � � � �Bison
� � � � � � �YakYak (0 formulas)
� �

�
�

�
�

�YakYak (1 formula)

� �
�

�

�

�
�YakYak (2 formulas)

� �

�

�

�

�

�YakYak (3 formulas)

Figure 5: Running Times for Di�erent JAVA Parsers

We have run YakYak on these grammars enriched with a varying number of formulas.

The results are summarized in Figure 4, where we for each entry give the running time in

seconds (on a 266 MHz Pentium II PC with 128MB RAM), the memory usage, and the

total number of states in the resulting automaton. The WF-column shows the computa-

tion of the well-formedness automaton, which must be done once for each grammar. It is

seen that the size as well as the time and space consumption of this automaton is linear

in the size of the grammar. The number of states shown is the total over all state spaces;

for example, WF for HTML3 has 2,159 states spread over 560 spaces (for an average of 3.9

states per space, cf. Proposition 2). The other columns total the additional computation

for an increasing number of formulas, each of which is similar in spirit to the ones shown

previously, involving at most a handful of quanti�ers. These experiments clearly demon-

strate that our concept is feasible: for the largest grammar, the automata for 10 formulas

are computed in less than 10 minutes.

The eÆciency of the generated parsers is described in Figure 5, which shows the running

times of YakYak parsers for the JAVA grammar with between 0 and 3 formulas. Each parser

is given a number of input programs ranging between 100 and 10,000 lines of code. As

a baseline, we show the running times for a parser generated by the Bison version of

Yacc. The YakYak parsing times all appear linear in the size of the input programs, but

they are somewhat slower than for the Bison version. We are working on optimizing the

instrumented action code further. The extra space usage at runtime is not signi�cant.

As we would expect, the complexity of a constraint inuences the time needed to

compute the corresponding automaton. However, the running time of an automaton is

virtually independent of its size, so complicated formulas are checked as quickly as simple

ones during parsing. For the present implementation of YakYak, the overhead works out

to 74 microseconds/formula/line of code (under the assumption we made at the end of

Section 5).

The expressiveness of our parse tree logic is best illustrated by an explanation of some

of the formulas in Figure 4. From the JAVA grammar, we mention: \Are the classes of

all abstract methods themselves declared to be abstract?" , \Do static methods refer to

this or super?", \Does an expression have possible side-e�ects?", and \Does a void method

contain a return with an expression?". Examples from the HTML3 grammar are: \ Are

there nested anchors?", \Is an anchor text only the word 'here'?", \Are there empty table

cells?", \ Are there headers inside lists?", and \ Does a boldface style extend beyond a

paragraph?". These formulas reect tests performed in Java compilers and suggestions in

HTML style guides.

References

[1] Abdelwaheb Ayari, David Basin, and Andreas Podelski. LISA: A speci�cation language based on

WS2S. In CSL '97 Proceedings, LNCS 1414, 1998.

[2] M. Biehl, N. Klarlund, and T. Rauhe. Algorithms for guided tree automata. In First International

Workshop on Implementing Automata, WIA '96, Lecture Notes in Computer Science, 1260. Springer

Verlag, 1996.

[3] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language (XML), 1997.

URL: http://www.w3.org/TR/PR-xml-971208.

[4] Roger F. Crew. ASTLOG: a language for examining abstract trees. In Proceedings of the Conference

on Domain-Speci�c Languages, pages 229{242. USENIX, 1997.

[5] P Devanbu. GENOA: A language and front-end independent source code analyzer. ACM Transactions

in Software Engineering, 1999. (to appear).

[6] N. Klarlund. Mona & Fido: the logic-automaton connection in practice. In CSL '97 Proceedings.

LNCS 1414, Springer-Verlag, 1998.

[7] N. Klarlund, J. Koistinen, and M. Schwartzbach. Formal design constraints. In Proc. OOPSLA '96,

1996.

[8] Nils Klarlund and Anders M�ller. MONA Version 1.2 User Manual. BRICS, ns-98-3 edition, 1998.

ISSN 0909-3206.

[9] D. Kozen. On the Myhill-Nerode theorem for trees. EATCS Bulletin, 47, 1992.

[10] K. McMillan. Hierarchical representations of discrete functions, with applications to model checking.

In Proc. Computer Aided Veri�cation, LNCS 818. Springer-Verlag, 1994.

[11] Frank Morawietz and Tom Cornell. The logic-automaton connection in linguistics. In Proceedings of

LACL 1997, LNAI. Springer, To appear.

[12] F. Pereira and D. Warren. De�nite Clause Grammars for language analysis|a survey of the formalism

and a comparison with augmented transition networks. Journal of Arti�cial Intelligence, 13:231{278,

1980.

[13] T. Reps. Generating Language-Based Environments. The M.I.T. Press, 1984.

[14] James Rogers. Studies in the logic of trees with applications to grammar formalisms. PhD thesis,

University of Delaware, 1994.

[15] W. Thomas. Automata on in�nite objects. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, volume B, pages 133{191. MIT Press/Elsevier, 1990.

