
A theory of restrictions for logics and automataNils KlarlundAT&T Labs{Research (klarlund@research.att.com)Abstract. BDDs and their algorithms implement a decision procedurefor Quanti�ed Propositional Logic. BDDs are a kind of acyclic automata.Unrestricted automata (recognizing unbounded strings of bit vectors) canbe used to decide more expressive monadic second-order logics. Primeexamples are WS1S, a number-theoretic logic, or a string-based notationsuch as those proposed in some introductory texts. It is not clear whichone is to be preferred. Also, the inclusion of �rst-order variables in eitherversion is problematic since their automata-theoretic semantics dependson restrictions.In this paper, we provide a mathematical framework to address theseproblems. We introduce three and six-valued characterizations of regularlanguages under restrictions. From properties of the resulting congru-ences, we are able to carry out detailed state space analyses that allowsus to solve the two problems in WS1S in a way that require no extranormalization calculations compared to a naive decision procedure forstring-oriented logic.We report brie
y on the practical experiments that support our results.We conclude that WS1S with �rst-order variables is the superior choiceamong monadic second-order logics.1 MotivationB�uchi[2] and Elgot[4], and independently Trakhtenbrot[13], argued almost fourtyyears ago that a logical notation, now called the Weak Second-order theory of1 Successor or WS1S, would be a more natural alternative to what alreadywas known as regular expressions. WS1S has an extremely simple syntax andsemantics: it is variation of predicate logic with �rst-order variables that denotenatural numbers and second-order variables that denote �nite sets of naturalnumbers; it has a single function symbol, which denotes the successor function,and has usual comparison operators such as �;=;2 and �. B�uchi, Elgot, andTrakhtenbrot showed that a decision procedure exists for this logic. The ideais to view interpretations as �nite strings over bit vectors and then to show byexplicit constructions of automata that the set of satisfying interpretations forany subformula is a regular language. A distinguishing feature of this number-theoretic approach is that the semantics refer to all the natural numbers or allof �nite subsets.In contrast, the logical semantics often suggested in explanations of the logic-automaton connection, such as in [11, 12], is tied to the �niteness of the stringsof a regular language. Here, the notation is interpreted over a string, which is

�xed for the purpose of the semantics. The string de�nes a set of positions from0 to the length of the string minus 1; then, �rst-order variables range over thisset, and second-order variables over its subsets. This string-theoretic approach isappealing for certain applications, for example in the description and veri�cationof parameterized hardware[1]. Among other names, these logics have been calledMSO(S)[12], SOM[+][11], and M2L(Str)[5, 7]. They vary slightly, but we willidentify them as M2L(Str) in this paper.There are at least three important reasons for preferring the number-theoreticapproach. (1) Its mathematical semantics is simpler. (2) WS1S appears to bethe stronger logic: it is easy to encode Presburger arithmetic in WS1S, butno similar encoding is known for the string-theoretic formulation. Presburgerarithmetic by itself is a promising veri�cation technique, see [3, 10]. (3) Thereare semantic problems in the string-theoretic formulation as pointed out in [7];for example, what does a �rst-order variable denote if the string is empty andthus de�ne no positions?Even so, it is not obvious that any string-theoretic problem solved by a deci-sion procedure for M2L(Str) can be e�ectively encoded in WS1S. More precisely,we desire an e�cient translation algorithm, which we de�ne to be one that inlinear time transforms any formula � in M2L(Str) to a formula in WS1S �0 suchthat �0 is decided in time linear in the time that � is decided. Let us call thequestion of �nding such an algorithm the translation problem. In practice, ofcourse, we want something stronger: the total running time of going aroundWS1S should be no longer than using the M2L(Str) decision procedure directly.Another problem with monadic second-order logics is that �rst-order vari-ables and terms are handled by formula rewritings transforming them into second-order variables subjected to logical restrictions. Consequently, automata corre-sponding to subformulas are not simply determined by the mathematical seman-tics, but also by details of the rewritings. Alternatively, extra automata productoperations can be used to normalize these intermediate automata with automatacorresponding to the restrictions. The �rst-order semantics problem is to �nda representation that is no bigger than a normalized representation, while notrequiring extra normalization steps.Contributions of this paperIn this paper, we propose solutions to the translation problem and the �rst-ordersemantics problem. Our solutions are based on a theory of restrictions that wedevelop as follows.We formulate a syntax for WS1S, where restrictions are made explicit, andwe provide initially three di�erent semantics: (1) the ad hoc semantics thatcorrespond to the usual treatment of �rst-order variables, (2) the conjunctivesemantics, where all the intermediate automata are conjoined with restrictions,and (3) the three-valued semantics. We explain why the ad hoc semantics mustbe rejected, and why the conjunctive semantics would slow down the decisionprocedure. We show that the three-valued semantics makes most normalizations

unnecessary. Also, we indicate how the three-valued semantics can be realizedusing an automata-theoretic approach adapted from the standard WS1S decisionprocedure.To study the question of automata sizes, we give a detailed congruence-theoretic analysis of a regular language under restrictions. We introduce a notionof a thin language, and we show that the restrictions occurring in the treatmentof �rst-order variables and in the translation problem are thin. We prove thatlanguages under thin restrictions make comparisons of the conjunctive seman-tics and the the three-valued semantics easy: the latter are the same as theformer except for some extra equivalence classes that we characterize. We showthat if the automata of restrictions are bounded, then the sizes of intermediateautomata occurring under the three-valued semantics are, to within a constantfactor, the same as the sizes of automata of the conjunctive semantics.We strengthen this result by exhibiting congruences based on a six-valuedsemantics that are no bigger (to an additive constant of 3) than those of theconjunctive semantics. Our main result is that the resulting decision procedure,while requiring only few normalizations, involve intermediate automata thatare up to exponentially smaller than the ones occurring under the conjunctivesemantics.Finally, we report on our integration of the theory presented here into thetool Mona[9], which implements a decision procedure for WS1S. We concludethat WS1S, and not a string-oriented logic, is the superior logical interface toautomata calculations.2 WS1S: review and issuesNutshell WS1S can be presented as follows. A formula � is composite and ofthe form ~�0, �0 & �00, or ex2 P i : �0, or atomic and of the form P i sub P j,P i <= P j, P i =P j \ P k, or P i =P j +1. Here, we have assumed that variablesare all second-order and named P i, where i � 1. Other comparison operators,second-order terms with set-theoretic operators, and Boolean connectives canbe introduced by trivial syntactic abbreviations, see [9, 12]. The treatment of�rst-order terms is discussed later.Semantics of WS1S Given a �xed main formula �0, which we sometimesregard as an abstract syntax tree (with its root facing up), we de�ne its semanticsinductively relative to a string w over the alphabet Bk , where B = f0; 1g andk is the number of variables in �0. We assume that �0 is closed and thateach variable is bound in at most one occurrence of an existential quanti�er.Generally, we assume that all formulas are subformulas of �0. We now regard astring w = a0 � � �a`�1, where ` = jwj is the length of w, to be of the form:P 1 0@a10� � �ak01A 0@a1̀�1� � �ak̀�11A� � � � � �P k

where we have indicated that if the string is viewed as a matrix, then rowi is called the P i-track. Each letter a is sometimes written in a transposednotation as (a1; : : : ; ak)t. The interpretation of P i de�ned by w is the �niteset fj j the jth bit in the P i-track is 1g. Note that su�xing w with any stringconsisting of letters of the form (0; : : : ; 0)t does not change the interpretation ofany variable. Therefore, we will say that w is minimum if it possesses no suchnon-empty su�x.The semantics of a formula � can now be de�ned inductively relative to aninterpretation w. We use the notation w � � (which is read: w satis�es �) if theinterpretation de�ned by w makes � true:w � ~�0 i� w 2 �0w � �0 & �00 i� w � �0 and w � �00w � ex2 P i : �0 i� 9 �nite M � N : w[P i 7!M] � �0w � P i sub P j i� w(P i) � w(P j)w � P i <= P j i� 8h 2 w(P i) : 9k 2 w(P j) : h � kw � P i = P j\P k i� w(P i) = w(P j)nw(P k)w � P i = P j +1 i� w(P i) = fj + 1 j j 2 w(P j)gwhere we use the notation w[P i 7!M] for the shortest string w0 that interpretsall variables P j, j 6= i, as w does, but interprets P i as M . Note that if we hereassume that w is minimum, then w is of the form ~w �w0, where all tracks, exceptthe P i-track, in w0 are all 0s and either ~w is empty or at least one non-P i trackin ~w is of the form B� �1. Then, w0 is of the form ~w �w00, where w00 is 0 everywhereexcept for the P i-track, which is of the form B� � 1 if non-empty.Note that the interpretation of �0 is independent of w, since it is a closedformula. Thus, �0 is either true or false, and we write either � �0 or 2 �0. Forany formula �, we associate the language L� = fw j w � �g.2.1 Automata-theoretic semanticsThe automata-theoretic semantics de�nes a decision procedure that associatesto each � the minimum automaton A� accepting the language L�. For atomicformula, a small automaton (with at most three states) can be directly con-structed. For a formula � of the form ~�0, the automaton A� is taken to be thecomplement of the automaton A�0 , which is calculated by induction. Note thatthis automata-theoretic semantics of negation is symmetric: the complementautomaton is gotten by just reversing �nal and non-�nal states. The case ofconjunction is handled by an automata-theoretic product construction, followedby a minimization construction. Finally, the case of quanti�cation is slightlymore complicated. Consider � = w � ex2 P i : �0. We calculate A� from A�0 bymeans of an intermediate, nondeterministic automaton A�00 that is gotten fromA�0 in two steps. First, any state for which a path exists to an accepting statealong a string of letters of the form (0; : : : ; 0; X; 0; : : : ; 0)t (where the X meansthat the value of the ith component is irrelevant) is made accepting. Second,for any transition of the form (s; a; s0) from state s to s0, we add the transi-tion (s; a; s00), where s00 is the state reached according to the unique transition

(s; a; s00) with a being the same letter as a except that the ith component isnegated. The automaton A� is then calculated by determinizing A�00 , followedby a minimization construction.2.2 Semantics of �rst-order variablesAdding �rst-order variables to WS1S can easily be done as follows: a �rst-ordervariable p is regarded as a second-order term P that is restricted to take onvalues that are singleton sets, where the sole element denotes the value of p,see [12, 11, 8]. The restriction can be imposed by conjoining a singleton predi-cate singleton(P) to the formula where P is quanti�ed. This ad hoc strategymeans that the semantics of a formula containing p is not robust: its meaningon interpretations w not ful�lling singleton(P) is not well-de�ned. Even if therestriction is imposed whenever p occurs in an atomic formula, the semantics isnot closed under complementation. For example, the formula � = p=0, wherep is �rst-order is handled as �0 = P=f0g, where P is second-order. But thecomplement of �0 is ~(P = f0g), something that is di�erent from the represen-tation of ~(p = 0), namely ~(P = f0g) & singleton(P). The solution is toconjoin the restriction to every subformula � in a procedure we call normaliza-tion. Then, we would have a simple explanation of the language L(�) that wecall the conjunctive semantics.The practical problem with the conjunctive semantics is that additional prod-uct and minimization calculations would be necessary: for each automaton Arepresenting a subformula � and each free variable P i, the automaton repre-senting the singleton property for P i must be conjoined to A. Such extra cal-culational work slow down the decision procedure, probably by a factor of atleast two. (Complementation, which is normally fast since it consists of
ippingacceptance statuses of states, now would involve a product and a minimizationoperation; and product operations would involve at least one additional productand minimization even if the restrictions are calculated separately.) So in prac-tice, the Mona implementation (prior to the one implemented with the results ofthis article) used the ad hoc strategy: the restriction for variable p is conjoinedonly to atomic formulas where p occur and to the formula in the existentialquanti�cation introducing p.Ad hoc emulation of string semantics in WS1S A simpli�ed syntax for the string-theoretic version of monadic second-order logic is the same as nutshell WS1Ssyntax. The satisfaction relation is denoted �string ; it is the same as for WS1Sexcept that quanti�cation is changed to:w �string ex2 P i : �0 i� 9M � f0; : : : ; jwj � 1g : w[P i 7!M] � �0where the notation w[P i 7! M] now has a di�erent meaning: it denotes thestring w altered so that the P i track describes M . Thus, the witness stringw[P i 7! M] for the existential quanti�cation has the same length as w. Theinterpretation of �0 on a string of w still does not depend on the individual

tracks of w, but it does depend on the length of w. Thus we write i �string �0 if�0 holds for a string w of length i. For example, a closed formula can be writtenthat under this semantics holds if and only if w is of even length.To emulate �string in �, we must restrict all second-order terms to sets ofnumbers less than or equal to the last position in the string. Thus, we introducea �rst-order variable $ that simulates the entity jwj � 1. A $-constraint for avariable expresses that the variable is a subset of f0; : : : ; $g. Then, we normalizeall formulas by conjoining $-constraints for all free variables. The result is aWS1S formula �0 with one free variable $ such that i �string � , w � �0, wherethe $-track of w interprets $ as i. For example, the formula ex1 p : ex1 q : p = qbecomes in WS1Sex2 P : ex2 Q :singleton(P) & singleton(Q) & singleton($)& P<=$ & Q<=$ & PsubQ & Q subPas expressed in nutshell syntax, whereas the M2L(Str) formulation isex2 P : ex2 Q :singleton(P) & singleton(Q)PsubQ & Q subPProposition 2.1. Under the translation outlined above, the minimized, canon-ical automata arising during the WS1S decision procedure are essentially thesame as the ones arising during the M2L(Str) procedure except for one or twoadditional states.Proof. The WS1S automaton can be gotten from the M2L(Str) automaton byconsidering the $-track as some P i track and by adding states saccept (an ac-cepting state) and sreject (a rejecting state). The transition relation of the newautomaton is the same as for the old one as long as the $-component is 0. Whenthe $-component is 1, corresponding to the end of the string under the M2L(Str)representation, a transition is made to saccept or sreject according to the acceptstatus of the state that would have been reached in the old automaton. Fromsaccept, a transition is made to sreject if the $-component is 1 or if any other com-ponent corresponding to a �rst-order variable is 1; otherwise, the transition ismade to saccept. The sreject state is connected to itself on all letters. The WS1Sautomaton so described may not be minimum, since the reject state may alreadyhave been present in the automaton. All other states of the old automaton arestill distinct when considered as part of the new automaton.Our practical experiments with running string-based examples translated intoWS1S were based on this ad hoc strategy. We discovered the following problem.Parity example Consider the formula ex1 p : (p inP 1 <=> � � �<=> p inPn) underthe string-theoretic semantics. The formula holds if and only if there is a position

contained in an even number of the sets P i. Translated into nutshell WS1S underthe ad hoc strategy, the formula becomes:ex2 P : (P inP 1 & singleton(P) & singleton($) & P 1<=$) <=>� � �<=>(P inPn & singleton(P) & singleton($) & Pn<=$): (1)Proposition 2.2. The parity formula (1) produces intermediate automata whosesize is doubly exponential in n. But if the restrictions are conjoined to all subfor-mula, not only the atomic ones, then all intermediate automata have less than6 states.We formalize the ad hoc semantics in the next section; but already here, it isclear that it is inadequate for restrictions.3 WS1S with restrictions and a three-valued semanticsTo give a precise understanding of restrictions, we introduce nutshell WS1S-R, avariation on WS1S where restrictions are made explicit. Existential quanti�ca-tion becomes ex2 P i where � : �0. Let �(P i) = � be the restriction of variableP i. Also, we assume that each P i is restricted, possibly to the formula P i=P i,i.e., true. The semantics we will propose for this syntax rely on an exact under-standing of the binding mechanisms in play. We say that in �(P i), variable P iis �-bound. Variable P i is existentially bound in both �(P i) and �0. A variableoccurrence P i is free in the conventional part of � if P i is free in � in the usualsense, where � is regarded as an independent formula, and the occurrence isnot within a restriction of an existential quanti�cation within �. The relevantvariables, RV(�), for formula � is the least set of variables P such that there isan occurrence of P that is not �-bound and that is free in the conventional partof � or free in the conventional part of �(P 0), where P 0 2 RV(�). We de�nethe induced restriction ��(�) to be the conjunction of the restrictions of relevantvariables, that is, VP i2RV(�).To carry out inductive arguments, we de�ne the partial ordering � amongsubformulas (regarded as nodes in the abstract syntax tree) as follows: � � �0if � is a subformula of �0 or if there is a formula = ex2 P i where �(P i) : �00such that � is a subformula of �(P i) and �0 is a subformula of �00. The partialordering � is well-founded (a post-order labeling of nodes with numbers 0; 1; : : :produces an ordering containing �). Note for each P 2 RV(�), �(P)� �. Thiswill ensure that the semantic de�nitions to follow make sense.The ad hoc semantics We state the ad hoc semantics using a meaning function[[�]]ah (anticipating multi-valued semantics):

[[~�0]]ahw = :[[�0]]ahw[[�0 & �00]]ahw = [[�0]]ahw ^ [[�00]]ahw[[ex2 P i where � : �0]]ahw = (1 if 9M : [[�0]]ahw[P i 7!M] = 1 and [[��(P i)]]ah = 10 if 8M : [[�0]]ahw[P i 7!M] = 0 or [[��(P i)]]ah = 0[[P i sub P j]]ahw = (1 if w � P i sub P j and [[��(P i sub P j)]]ahw = 10 if w 2 P i sub P j or [[��(P i sub P j)]]ahw = 0We have only shown the semantics of one kind of atomic formula; the others aretreated similarly. (The normalization of atomic formulas is optional.)The conjunction semantics This semantics is the same as the ad hoc seman-tics except that the restrictions are also applied to the case of & and ~.The three-valued semantics Let B? = B [f?g be the extended Boolean domain.We use ? to denote a \don't care" situation, one where not all the restrictionshold. Boolean operators ^3 and :3 are de�ned on this domain as for the usualcase with the added rule that if any argument is ?, then the result is ?.[[~�0]]3w = :3[[�0]]3w[[�0 & �00]]3w = [[�0]]3w ^3 [[�00]]3w[[ex2 P i where � : �0]]3w = 8><>:1 if 9M : [[�0]]3w[P i 7!M] = 10 if 8M : [[�0]]3w[P i 7!M] 6= 1 and 9M : [[�0]]3w[P i 7!M] = 0? if 8M : [[�0]]3w[P i 7!M] = ?[[P i sub P j]]3w = 8><>:1 if w � P i sub P j and [[��(P i sub P j)]]3w = 10 if w 2 P i sub P j and [[��(P i sub P j)]]3 = 1? if [[��(P i sub P j)]]3 6= 1Something seems to be missing in this semantics: the enforcement of a restric-tion of a variable in an existential quanti�cation. The proposition below showsthat the restriction bubbles up automatically if needed. The semantics worksonly if we require that every restriction is satis�able given that the restric-tions referred to by the restriction are already true. Formally, for subformula� = ex2 P i where � : �0 of �0, we require� (&P2RV(�0)nfP ig�(P)) => ex2 P i : � (2)The semantics is now justi�ed as:Proposition 3.1. Given the requirement (2), the following holds.(a) w 6� �(P i) for some P i in RV(�) , w 6� ��(�) , [[�]]3w = ?.(b) w � � & ��(�) , [[�]]3w = 1(c) w � ~� & ��(�) , [[�]]3w = 0

Automata-theoretic realization of the three-valued semantics The pro-cedure outlined in Section 2.1 can be modi�ed to re
ect the three-valued seman-tics. The case of existential quanti�cation requires a slightly more sophisticatedreclassi�cation of the acceptance statuses of states prior to the subset construc-tion. Let us call the resulting algorithm the three-valued decision procedure.4 Congruences for restricted languagesAll languages considered will be regular and over the alphabet � = Bk . For alanguageL, the canonical right-congruence �L is de�ned as u �L v i� 8w : u�w 2L , v � w 2 L, where u; v; w 2 ��. The set of congruence classes is denoted��=�L. This set can be regarded as the canonical, �nite-state automaton.Consider languages L, sometimes called the property, and R, assumed non-empty, called a restriction. Thus, L� and L��(�) constitute such a pair forany subformula � of �0. The conjunction representation is L0 = L \ R, andthe conjunction congruence is �L\R. The three-valued representation is nota language, but a function �3L;R(u), de�ned to be 1 if u 2 L \ R, 0 if u 2L \ R, and ? if u =2 R. The three-valued congruence �3L;R is then de�ned byu �3 v , for all w, �3L;R(u �w) = �3L;R(v �w).4.1 Relating the conjunction and three-valued semanticsA thin language R is a non-empty set of strings such that8u; v; w : u 6�R v) u �w =2 R _ v �w =2 R (3)In particular, the canonical automaton for R has exactly one accepting state.Proposition 4.1. 1. Rsingleton(i) = fu 2 Bk j track i contains exactly oneoccurrence of a 1g is thin.2. The languageR$-restrict(i) = fu 2 Bk jthe occurrences of 1 in track i are all in positionsno greater than that of the �rst occurrence of a 1in track $g \ Rsingleton($)is thin.3. If R and R0 are thin and R \R0 6= ;, then R \R0 is thin.4. Let R be thin, and let L be any language. If u �L\R v and u has an acceptingextension, then u �R v (and, consequently, u �3L;R v).5. If u and v both have no accepting extensions, then u �R v , u �3L;R v.6. Thus, if R is thin, then j��=�3L;R j � j��=�L\R j+ j��=�R j.From this proposition, it follows easily that all ��(�) are thin languages if vari-ables are subjected to �rst-order restrictions or $-restrictions (or both). Theproposition also tells us that ��=�3L;R is pieced together from ��=�L\R plus asubset of ��=�R.

Proposition 4.2. Assume that all restrictions are thin languages. If the au-tomata of restrictions are bounded in size, then the sizes of the intermediate, min-imized automata in the three-valued decision procedure are the same, to within anadditive constant, as the sizes of corresponding automata under the conjunctivesemantics.This result is the justi�cation for the practical use of the three-valued semanticssince usually the number of �rst-order variables in simultaneous use is quitesmall. (The size of the additive constant is exponential in the number of free�rst-order variables.) And as with the ad hoc semantics, normalizations are notrequired for most subformulas, and the automata are, apart from the ��=�Rparts, the same as those that occur when the automaton of every subformula isnormalized.4.2 The six-valued representationWe show next how to get rid of the boundedness assumption in Proposition 4.2.De�ne a string u to be interesting if it has (a) some extension v, called anaccepting extension, such that u � v in L \ R, and (b) some extension v, calleda rejecting extension, such that u � v in L \R. Also, a \don't care" extension isone that makes a string fall outside R. Note that all pre�xes of an interestingstring are also interesting. In other words, an uninteresting string cannot beextended so as to become interesting. The truth-value �(u) denotes whether astring is interesting. Let cut(u) be the shortest uninteresting pre�x of u if sucha pre�x exists; otherwise, when all pre�xes are interesting, cut(u) is de�ned tobe u. The membership status �(u) of uninteresting u is de�ned by�(u) = 8><>:1 if cut(u) has an accepting extension0 if cut(u)u has a rejecting extension? if all extensions of cut(u) are \don't care" (4)(These three cases are clearly mutually exclusive.) When u is interesting, �(u) isde�ned to be �3L;R(u). De�ne the sexpartite representation �6L;R to be (�(u); �(u)).The canonical six-valued congruence �6L;R is de�ned from the representation asbefore. Now, an equivalence class M is either interesting or non-interesting. Inthe latter case, there is a value E 2 B? such that for all u 2M , �(u) = E; more-over, for all v, u � v is also in M . Thus, the non-interesting equivalence classesare graph-theoretic sinks when �=�6L;R is regarded as a �nite-state automaton.There are between 0 and 3 such classes, depending on L and R.Let c be a natural number and let � : ��) B be a Boolean characterizationof all strings. We say that � quasi-re�nes � up to c under � when there arestrings u1; : : : ; uc such that8u; u0 : �(u) ^ u � u0) �(u0) ^ u � u0 and8u; u0 : :�(u) ^ u � u0) :�(u0) ^ 9i; j : u � ui ^ u0 � uj (5)

Thus, � respects � (that is, it can mapped through ��= �) and � is as leastas �ne as � on strings for which � holds; but, when � doesn't hold, strings aremapped to one of the c designated equivalence classes of �.Proposition 4.3. If R is thin, then �L\R quasi-re�nes �6L;R up to 3 under�(u) = \there is an accepting extension of u."Thus, the six-valued congruence squeezes the parts of ��=�3L;R that correspondsto ��=�R (as explained after Proposition 4.1) into at most three classes.4.3 Six-valued semantics for WS1S and sexpartite automataUnder the six-valued semantics, the automaton corresponding to � calculates�6L�;L��(�) by a six-way partition of the states. For non-interesting strings, itmay erroneously calculate a value in f0; 1g, where the three-valued semanticsspeci�es ?. Consequently, a product with the automaton for the restriction ofa variable must be carried out before the quali�er elimination in the WS1S-Rdecision procedure. However, it can be shown that no minimization is necessaryfollowing this step. Let us call the resulting algorithm the six-valued decisionprocedure. Thus, we may improve Proposition 4.2:Theorem 4.4. Assume that all restrictions are thin languages.1. The sizes of the intermediate, minimized automata occurring during the six-valued decision procedure are (to within an additive constant) less than thoseof the conjunctive semantics.2. The conjunctive automata may be exponentially bigger than the six-valuedautomata.3. The six-valued decision procedure require no normalization for products andcomplementations.5 In practiceWe showed experimental evidence in [6] that we had found WS1S to be as fast away to decide string-theoretic problems as M2L(Str) but only after sometimessolving by hand state explosion problems like the one discussed in Section 2.2.Since June 1998, the Mona tool has been based on the three-valued semanticsfor WS1S, and our state explosion problems stemming from running M2L(Str)formulas through WS1S have disappeared. Moreover, with a default restrictionmechanism that we have added to Mona, M2L(Str) formulas can be directlyembedded in WS1S. The running times under this semantics are in all non-contrived cases the same (to within 5% or so) as for the ad hoc semantics we usedbefore. (In practice, we used �rst-order restrictions that are not thin languages,but which enjoy similar properties.) We have not yet implemented the six-valuedsemantics, but there is no reason not to expect that it will run as fast, whilesometimes making intermediate automata smaller.Thus, we believe to have established WS1S as the superior choice for a prac-tical logical notation associated with automata.

Acknowledgements Anders M�ller implemented the ideas presented here and con-tributed many useful insights. Jacob Elgaard found exploding Mona code from whichthe parity example was derived. Ken McMillan kindly discussed restriction issues withme. And thanks to the referees for pointing out some errors in an earlier version.References1. David Basin and Nils Klarlund. Automata based symbolic reasoning in hardwareveri�cation. Formal Methods in System Design, pages 255{288, 1998. Extendedversion of \Hardware veri�cation using monadic second-order logic," Computeraided veri�cation : 7th International Conference, CAV '95, LNCS 939, 1995.2. J.R. B�uchi. Weak second-order arithmetic and �nite automata. Z. Math. LogikGrundl. Math., 6:66{92, 1960.3. Tev�k Bultan, Richard Gerber, and William Pugh. Symbolic model checking ofin�nite state systems using presburger arithmetic. In Proceedings of the 9th Inter-national Conference on Computer Aided Veri�cation (CAV '97), volume 1254 ofLNCS, pages 400{411. Springer, 1997.4. C.C. Elgot. Decision problems of �nite automata design and related arithmetics.Trans. Amer. Math. Soc., 98:21{52, 1961.5. J.G. Henriksen, J. Jensen, M. J�rgensen, N. Klarlund, B. Paige, T. Rauhe, andA. Sandholm. Mona: Monadic second-order logic in practice. In Tools and Algo-rithms for the Construction and Analysis of Systems, First International Work-shop, TACAS '95, LNCS 1019, 1996.6. Anders M�ller Jacob Elgaard, Nils Klarlund. Mona 1.x: new techniques for ws1sand ws2s. In Computer Aided Veri�cation, CAV '98, Proceedings, volume 1427 ofLNCS. Springer Verlag, 1998.7. P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. Mosel: a
exible toolsetfor Monadic Second-order Logic. In Computer Aided Veri�cation, CAV '97, Pro-ceedings, LNCS 1217, 1997.8. N. Klarlund. Mona & Fido: the logic-automaton connection in practice. In CSL'97 Proceedings. LNCS 1414, Springer-Verlag, 1998.9. Nils Klarlund and Anders M�ller. MONA Version 1.3 User Manual. BRICS, 1998.URL: http://www.brics.dk/mona.10. Thomas R. Shiple, James H. Kukula, and Rajeev K. Ranjan. A comparison ofPresburger engines for EFSM reachability. In Computer Aided Veri�cation, CAV'98, Proceedings, volume 1427 of LNCS. Springer Verlag, 1998.11. Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity.Birkh�auser, 1994.12. Wolfgang Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salo-maa, editors, Handbook of Formal Languages, chapter Languages, automata, andlogic. Springer Verlag, 1997.13. B.A. Trakhtenbrot. Finite automata and the logic of one-place predicates. Sib.Math. J, 3:103{131, 1962. In Russian. English translation: AMS Transl., 59 (1966),pp. 23-55.

