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Abstract

We present a new framework for verifying partial specifica-
tions of programs in order to catch type and memory errors
and check data structure invariants. Our technique can ver-
ify a large class of data structures, namely all those that can
be expressed as graph types. Earlier versions were restricted
to simple special cases such as lists or trees. Even so, our
current implementation is as fast as the previous specialized
tools.

Programs are annotated with partial specifications ex-
pressed in Pointer Assertion Logic, a new notation for ex-
pressing properties of the program store. We work in the
logical tradition by encoding the programs and partial speci-
fications as formulas in monadic second-order logic. Validity
of these formulas is checked by the MONA tool, which also
can provide explicit counterexamples to invalid formulas.

To make verification decidable, the technique requires ex-
plicit loop and function call invariants. In return, the tech-
nique is highly modular: every statement of a given program
is analyzed only once.

The main target applications are safety-critical data-type
algorithms, where the cost of annotating a program with in-
variants is justified by the value of being able to automati-
cally verify complex properties of the program.

1 Introduction

We present a new contribution to the area of pointer verifica-
tion, which is concerned with verifying partial specifications
of programs that make explicit use of pointers. In practice,
there is an emphasis on catching type and memory errors
and checking data structure invariants.

For data-type implementations, standard type-checking
systems, as in C or Java, are not sufficiently expressive. For
example, the type of binary trees is identical to the one
for doubly-linked lists. Both are just records with pairs of
pointers, which makes the type checker fail to catch many
common bugs. In contrast, pointer verification can vali-
date the underlying data structure invariants, for instance,
to guarantee that doubly-linked lists maintain their shapes
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after pointer manipulations. Memory errors, such as deref-
erence of null pointers or dangling references, and creation
of memory leaks are also beyond the scope of standard type
checking.

There have been several different approaches to pointer
verification, but not many that are as expressive as the one
we propose in this paper. Clearly there is a trade-off between
expressiveness and complexity, since less detailed analyses
will be able to handle larger programs. Our approach is
designed to verify a single abstract data type at a time.
Since such implementations often contain intricate pointer
manipulations and are trusted implicitly by programmers,
they are a fair target for detailed scrutiny.

We work in the logical tradition by encoding pro-
grams and partial specifications as formulas in monadic
second-order logic. Formulas are processed by the MONA
tool [26, 34] which reduces them to equivalent tree automata
from which it is simple to conclude validity or to extract
concrete counterexamples. Translated back into the under-
lying programming language, a counterexample is an initial
store that causes the given program to fail. Program anno-
tations, in the form of assertions and invariants, are allowed
and may prove necessary to obtain the desired degree of
precision. This approach can be viewed both as lightweight
program verification, since the full behavior of the program
is not considered, and as heavyweight type checking, since
properties well beyond the expressiveness of standard type
systems can be checked.

We have reported on our approach in two earlier works.
In the first we introduce the basic technique applied to lin-
ear lists [24]. In the second we provide a generalization to
tree-shaped data structures and introduce a new encoding
to make the analysis feasible [14]. The current paper takes a
leap forward in generalizing the class of data structures that
can be considered, without sacrificing precision or efficiency.
Our new framework can handle all data structures that can
be described as graph types [28]. These include data struc-
tures that are well-known from folklore or literature, such
as doubly-linked lists, trees with parent pointers, threaded
trees, two-dimensional range trees, and endless customized
versions such as trees in which all leaves are linked in a
cyclic list. Our framework is also designed to handle the
common situation where a data structure invariant must be
temporarily violated at some program points.

Our contributions are:

• An extension of the results in [24, 14] to the whole class
of graph types;
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• a language for expressing data structures and opera-
tions along with correctness specifications;

• a full implementation exploiting intricate parts of the
MONA tool to obtain an efficient decision procedure,
together with a range of non-trivial examples.

To verify a data type implementation, the desired data
structure is specified in an abstract notation, and the pro-
gram is annotated with assumptions and assertions. It is
not necessary to customize or optimize the implementation,
and no proof obligations are left to be dealt with manually.

We rely on a new formal notation, Pointer Assertion
Logic (PAL) to specify the structural invariants of graph
types, to state pre- and post-conditions for procedures, and
to formulate invariants and assertions that are given as hints
to the system. The PAL notation is essentially a monadic
second-order logic in which the universe of discourse con-
tains records, pointers, and booleans. Programs with PAL
annotations are verified with the tool PALE, the Pointer
Assertion Logic Engine. The “secret” behind the PALE im-
plementation is using the MONA tool to decide validity of
Hoare triples based on PAL over loop-free code. Code with
loops or recursion is handled by splitting it into loop-free
fragments using invariants, as in classical Hoare logic. While
the MONA logic has an inherent non-elementary complex-
ity [33], we demonstrate that it can efficiently handle many
real programs. Furthermore, the ability to insert assertions
to break larger triples into smaller ones suggests that the
overall approach is modular and thus can scale reasonably.

A framework for pointer verification, such as ours, should
be evaluated on four different criteria. First, how precise
is the analysis? Second, it is fast and scalable? Third,
does it allow or require programs to be annotated? Fourth,
which data structures can be considered and how are they
described? In the following sections, we will describe a pro-
gramming language that uses Pointer Assertion Logic for ex-
pression of store properties, describe the decision procedure
based on Hoare logic and MONA, and through a number
of experiments argue that the Pointer Assertion Logic ap-
proach provides a productive compromise between express-
ibility and efficiency.

A Tiny Example

Consider the type of linked lists with tail pointers, which as
a graph type is expressed as:

type Head = {
data first: Node;
pointer last:

Node[this.first<next*.[pos.next=null]>last];
}
type Node = {
data next: Node;

}

The notation is explained in the following section, but in-
tuitively the last pointer is annotated with a formula that
constrains its destination to be the last Node in the list. A
candidate for verification is the following procedure which
concatenates two such structures:

proc concat(data l1,l2: Head): Head
{
if (l1.last!=null) { l1.last.next = l2.first; }
else { l1.first = l2.first; }

if (l2.first!=null) { l1.last = l2.last; }
l2.first = null;
l2.last = null;
return l1;

}

These are tedious pointer manipulations that are easy to
get wrong. However, if we annotate the procedure with the
pre-condition that l1 and l2 are not null and run PALE, it
will in half a second report that no memory errors occur and,
importantly, that the data structure invariant is maintained.

Related Work

General theorem provers, such as HOL [5], may consider
the full behavior of programs but are often slow and not
fully automated. Tools such as ESC [12] and LCLint [15]
consider memory errors among other undesirable behaviors
but usually ignore data structure invariants or only support
a few predefined properties. Also, they trade soundness or
completeness for efficiency and hence may flag false errors
or miss actual errors.

Model checkers such as Bebop [2] and Bandera [9] ab-
stract away the heap and only verify properties of control
flow. The JPF [20] model checker verifies simple assertions
for a subset of Java, but does not consider structural invari-
ants.

The constraint solver Alloy has been used to verify prop-
erties about bounded initial segments of computation se-
quences [23]. While this is not a complete decision proce-
dure even for straight-line code, it finds many errors and
can produce counterexamples. With this technique, data
structure invariants can be expressed in first-order logic with
transitive closure. However, since it assumes computation
bounds, absence of error reports does not imply a guarantee
of correctness, and the technique does not appear to scale.

The symbolic executor PREfix [7] simulates unannotated
code through possible executions paths and detects a large
class of errors. Again, this is not a complete or sound deci-
sion procedure, and data structure invariants are not consid-
ered. However, PREfix gives useful results on huge source
programs.

Verification based on static analysis has culminated
with shape analysis. The goals of the shape analyzer
TVLA [32, 38, 31] are closest to ours but its approach is
radically different. Rather than encoding programs in logic,
TVLA performs fixpoint iterations on abstract descriptions
of the store. Regarding precision and speed, PALE and
TVLA seem to be at the same level. TVLA can han-
dle some data abstractions and hence reason about sort-
ing algorithms; we show in Section 6 that we can do the
same. TVLA analyzes programs with only pre- and post-
conditions, where PALE often uses loop invariants and asser-
tions. This seems like an undisputed advantage for TVLA;
however, not having invariants can cause a loss in precision
making TVLA falsely reject a program. Regarding the spec-
ification of new data structures we claim an advantage. Once
a graph type has been abstractly described with PAL, the
PALE tool is ready to analyze programs. In TVLA it is nec-
essary to specify in three-valued logic an operational seman-
tics for a collection of primitive actions specific to the data
structure in question. Furthermore, to guarantee soundness
of the analysis, this semantics should be proven correct by
hand. TVLA is applicable also to data structures that are
not graph types, but so far all their examples have been in
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that class. Unlike PALE, TVLA cannot produce explicit
counterexamples when programs fail to verify.

There exists a variety of assertion languages designed to
express properties of data structures, such as ADDS [21],
Lr [3], and Shape Types [18]. We rely on PAL since it
provides a high degree of expressiveness while still having a
decision procedure that works in practice.

A drawback of our approach is that detailed, explicitly
stated loop invariants often are required. The overhead
of adding such annotations can be significant, so the ap-
proach is not applicable for verifying large programs. How-
ever, the most complex pointer operations often occur in
data-type implementations, which usually have a manage-
able size and appear in central libraries. Thus, we primarily
aim for the niche of safety-critical data-type implementa-
tions. For such programs, it is well known that the effort
of constructing loop invariants is comparable to the effort
of designing the data-type [19]. Once the program anno-
tations have been added, the PALE tool can automatically
decide validity. PALE works by splitting the program into
disjoint fragments that are verified separately by analyzing
every statement exactly once. That is, verification depends
only on locally specified properties and there is no fixpoint
iteration involved. In this sense, the approach is highly scal-
able. On the other hand, the approach relies on a decision
procedure with a non-elementary complexity, so there are
programs that cannot be verified in practice. The experi-
ments described in Section 7 indicate that the annotation
overhead is manageable, that the theoretical complexity is
not necessarily a problem in practice, and that quite intri-
cate properties can be expressed and verified.

2 Pointer Assertion Logic

In this section, we informally present the components of our
framework. First, we describe the underlying store model.
Second, we use the notion of graph types to describe data
structures. Third, we employ a simple programming lan-
guage to express data structure operations. And, finally,
we use program annotations in the form of Pointer Asser-
tion Logic formulas, for expressing properties of the program
store.

The programming language and the annotations have
been designed to be simple but at the same time as expres-
sive as the verification technique allows. In the following,
we present the framework informally and refer the reader to
[35] for formal definitions. To make the expressive power of
the framework lucid, we show the complete syntax instead
of only describing the main ideas.

Store Model

In our model, the store consists of a heap and some program
variables. The heap contains records whose fields are either
pointers or boolean values. A pointer either has the value
null or points to a record. Program variables are either data
variables or pointer variables. A data variable is the root of
a data structure, whereas a pointer variable may point to
any record in the heap.

This is a very concrete representation. We only abstract
away arithmetic values and the actual addresses of records.
Memory management is not automatically represented, but
as in [24, 14], allocation and deallocation primitives could
easily be added along with automatic checks for memory
leaks and dangling references.

Graph Types

Collections of records and pointers can form any number
of interesting data structures, which are generally expressed
through an invariant on the allowed shapes. We wish to
explicitly declare such data structures so that their invari-
ants can be verified by our system. For this purpose, we use
graph types [28] which is an intuitive notation that makes it
feasible to describe complex structures. Invariants of graph
type structures can be expressed in monadic second-order
logic on finite trees, which allows us to use the MONA tool
to verify correctness.

A graph type is a tree-shaped data structure with ex-
tra pointers. The underlying tree is called the backbone.
The constituent records have two kinds of fields: data fields
which define the backbone, and pointer fields which may
point anywhere in the backbone. To describe a structural
invariant, a pointer field is annotated with a routing expres-
sion which restricts its destination. In the current work, we
have generalized the annotations to be arbitrary formulas
that may contain routing expressions as basic predicates.
Another difference to [28] is that instead of building types
from unions and records, we only use records and nullable
pointers. Clearly, the two variations can encode each other;
we choose the more primitive version, since it turns out to
lead to a more efficient decision procedure. Our syntax and
semantics of graph type declarations is described in the next
section.

Surprisingly many data structures can be described as
graph types. As a simple example, consider the type of
binary trees where all nodes contain pointers to the root. In
our notation, it looks like:

type Tree = {
data left,right:Tree;
pointer root:Tree[root<(left+right)*>this &

empty(root^Tree.left union
root^Tree.right)];

}

The syntax for formulas is presented below, but the re-
striction on the source, this, and destination, root, of the
pointer is read as follows: this must be reachable from root
by following a sequence of left or right pointers, and the
set of Tree records having left or right pointers to the root
must be empty. Another example is doubly-linked lists with
boolean values:

type Node = {
bool value;
data next:Node;
pointer prev:Node[this^Node.next={prev}];

}

Here, the set of of nodes that can reach the this node
through a next pointer must only contain the prev node.
The convention that {null} is interpreted as the empty set
handles the first node in the list.

Our benchmark programs cover a variety of data struc-
tures expressed as graph types, including singly-linked lists,
doubly-linked lists with tail pointers, red-black search trees,
and post-order threaded trees with parent pointers. Addi-
tional examples are presented in [28].

The Programming Language

A program consists of a set of declarations of types, vari-
ables, and procedures, specified by the following grammar:
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typedecl → type T = { ( field ; )∗ }

field → data p⊕ : T
| pointer p⊕ : T [ form ]
| bool b⊕

progvar → data p⊕ : T
| pointer p⊕ : T
| bool b⊕

procedure → proc n ( progvar~ ) : ( T | void )
( logicvar ; )∗
property
( { ( progvar ; )∗ stm } )?

property

We use the notation ⊕ and ~ for comma-separated lists
with one-or-more elements and zero-or-more elements, re-
spectively. T, p, b, and n range over names of types, pointer
variables or fields, boolean variables or fields, and proce-
dures, respectively. Ignore for now all occurrences of logicvar
and property; they are introduced later. A type consists of
a number of fields of kind data, pointer, or bool. The data
fields span the tree value and the pointer fields define extra
pointers whose destinations are constrained by a formula.
The bool fields are used to model finite values. A procedure
has a name, formal parameters, a return type, and a body
consisting of local variable declarations and statements. If
the body is omitted, the declaration is considered a proto-
type.

A statement is one of the following constructs; the
assert and split statements are described later:

stm → stm stm
| asn⊕ ;
| proccall ;
| if ( condexp ) { stm } ( else { stm } )?

| while property ( condexp ) { stm }
| return progexp ;
| assert property ;
| split property property ;

asn → lbexp = ( condexp | proccall )
| lptrexp = ( ptrexp | proccall )

The language permits multiple-assignment statements
where all right-hand sides are evaluated before assigning—
these are useful for certain program transformations.
Expressions have the following form:

condexp → bexp | ? | [ form ]

bexp → ( bexp ) | ! bexp
| bexp & bexp | bexp | bexp
| bexp => bexp | bexp <=> bexp
| bexp = bexp | ptrexp = ptrexp
| bexp != bexp | ptrexp != ptrexp
| true | false | lbexp

lbexp → b | ptrexp . b

ptrexp → null | lptrexp

lptrexp → p | ptrexp . p

proccall → n ( ( condexp | ptrexp )~ ) [ formula ]

The “?” operator stands for nondeterministic boolean
choice, which is used to model arithmetic conditions that
we cannot capture precisely. The operator “.” dereferences
a pointer, and the other constructs have the expected mean-
ings.

The language does not contain arithmetic, since our ap-
proach focuses on the structural aspects of data types. How-

ever, as described in a later section, the technique does per-
mit abstractions of arithmetic properties, for instance for
specifying certain ordered data structures.

Program Annotations

Pointer Assertion Logic is a monadic second-order logic
on graph types. It allows quantification over heap records,
both of individual elements and of sets of elements, and
uses generalized routing expressions [28] for convenient
navigation in the heap. Formulas are used in pointer
fields to constrain their destinations, in while loops and
procedure calls as invariants, in procedure declarations
as pre- and post-conditions, and in assert and split
statements. The syntax of formulas is as follows:

form → ( existpos | allpos ) p⊕ of T : form
| ( existset | allset ) s⊕ of T : form
| ( existptr | allptr ) p⊕ of T : form
| ( existbool | allbool ) s⊕ : form
| ( form ) | ! form
| form & form | form | form
| form => form | form <=> form
| ptrexp in setexp | setexp sub setexp
| setexp = setexp | setexp != setexp
| empty ( setexp ) | bexp
| return | n . b
| m ( ( form | ptrexp | setexp )~ )
| ptrexp < routingexp > ptrexp

predicate → pred m ( logicvar~ ) = form

The identifiers m and s denote predicates and set variables,
respectively. The pos and ptr quantifiers differ in that the
former range over heap records while the latter also includes
the null value. A routing expression formula p1<r>p2 is sat-
isfied by a given model if there is a path from p1 to p2 satis-
fying r, as defined below. For reuse of formulas, predicates
can be defined as top-level declarations.

Logical variables can be associated to procedures
to allow the pre- and post-conditions to be related, as
commonly seen in the literature [19, 11]. A logical variable
is a universally quantified variable that may occur in the
pre- and post-conditions of a procedure but not in the
procedure body:

logicvar → pointer p⊕ : T
| bool b⊕
| set s⊕ : T

In formulas, ptrexp has two additional forms allowing
access in procedure post-condition to the returned value
and in procedure call formulas to the logical variables of
the called procedure:

ptrexp → . . . | return | n . p

Set expressions can contain the usual set operators, along
with the up operation x^T.p which denotes the set of
records of type T having a p successor to x:

setexp → s
| ptrexp ^ T . p
| { ptrexp⊕ }
| setexp union setexp
| setexp inter setexp
| setexp minus setexp
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The syntax of routing expressions is a slightly generalized
version of that in [28]. A routing expression is a regular
expression over routing directives, each being a step down
or up a pointer or data field, or a formula with the extra
free variable pos filtering away those records that cause the
formula to evaluate to false when pos denotes one of them:

routingexp → p | ^ T . p | [ form ]
| routingexp . routingexp
| routingexp + routingexp
| ( routingexp ) | routingexp *

By default, a pointer field must satisfy the formula given in
its type declaration. This can be overridden with pointer
directives of the form:

ptrdirs → { ( T . p [ form ] )~ }

They allows pointer fields to be constrained differently at
different program points. This is important because tem-
porary but intentional invalidation of data structure invari-
ants often occurs in imperative programs, as noted for in-
stance in [21]. Pointer directives, both default and overrid-
ing, are required to be well-formed. This means that in any
store and for any record, the directives associated to the
pointer fields must denote exactly one record. Fortunately,
as proved in [28] this is decidable.

A pair consisting of a formula and a set of pointer
directives:

property → [ form ptrdirs ]

is called a property and denotes the set of stores where

• the formula form is satisfied;

• the data variables denote disjoint acyclic backbones
spanning the heap; and

• each pointer field satisfies its pointer directive (which
is either the default from the type declaration or the
overriding from the ptrdirs).

Properties occur as procedure pre- and post-conditions, as
while loop invariants, as split assertions and assumptions
(split contains two properties), and as assert assertions.

Semantics of Annotations

The program annotations are invariants of the program that
must be interpreted as follows:

• The pre-condition of a procedure may be assumed to
hold when evaluating the procedure body;

• the post-condition must hold upon termination of the
procedure body;

• every while loop invariant must hold upon entry and
after each iteration, and may be assumed to hold when
the loop terminates;

• assertions specified with assert must hold at those pro-
gram points;

• for split statements, the assertion properties must
hold, and the assumption properties may be assumed
to hold (the reason for introducing these statements is
explained in Section 4); and

• at every procedure call, the invariant conjoined with
the pre-condition of the called procedure must hold for
some valuation of its logical variables, and the invari-
ant conjoined with the post-condition may be assumed
upon return, also for some valuation of the logical vari-
ables.

In later sections, we show that the requirements imposed by
the annotations can be verified automatically, provided that
valid and sufficiently detailed invariants are given.

3 Example: Threaded Trees

Before describing our decision procedure, we show a larger
example of using PAL. A threaded tree is a binary tree in
which all nodes contain a pointer to its cyclic successor in
a post-order traversal. As a further complication, we equip
all nodes with a parent pointer as well. This corresponds to
the following graph type:

type Node = {
data left,right:Node;
pointer post:Node[POST(this,post)];
pointer parent:Node[PARENT(this,parent)];

}

where POST and PARENT are predicates that spell out these
relationships. For example, PARENT(a,b) abbreviates the
formula:

a^Node.left union a^Node.right={b}

The POST predicate is more involved and makes use of aux-
iliary predicates LEAF, ROOT, and LESSEQ.

We consider a procedure fix(x) that assigns the correct
value to x.post assuming that this field initially contains
the value null and that x is non-null. This is a non-trivial
operation that looks like:

proc fix(pointer x: Node): void
{
if (x.left=null & x.right=null) {

if (x.parent=null) { x.post = x; }
else {
if (x.parent.right=null | x.parent.right=x) {

x.post = x.parent;
}
else {

x.post = findsmallest(x.parent.right);
}

}
}
else { x.post = findsmallest(x); }

}

where the auxiliary procedure findsmallest is:

proc findsmallest(pointer t: Node): Node
pointer T: Node;

{
while (t.left!=null | t.right!=null) {

if (t.left!=null) { t = t.left; }
else { t = t.right; }

}
return t;

}
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The question is: Does this code verify? Does the resulting
tree always satisfy the data structure invariant? Can type or
memory errors ever occur? PALE can provide the answers
with some help from us. First, since the argument to fix
is not a proper threaded tree, we must state a suitable pre-
condition as the property:

[x!=null {Node.post[ALMOSTPOST(this,post,x)]}]

Here we require that the argument is not null and that the
data structure invariant can be temporarily violated. The
ALMOSTPOST predicate is:

(this!=x => POST(this,post)) & (this=x => post=null)

which simply states the exception that we allow. Second,
the while loop in findsmallest needs an invariant, which
is the property:

[INV {Node.post[ALMOSTPOST(this,post,x)]}]

where the pointer directive states that the threaded tree is
still messed up, and the proper invariant INV equals:

T<(left+right)*>t &
allpos c of Node: LESSEQ(c,t,T) => t<(left+right)*>c

which states that t is a descendant of T and all its post-
order successors are further descendants. See [35] for the
full code with all post-conditions. In total, six annotations
are required. In less that 4 seconds PALE verifies that the
code contains no errors.

4 Hoare Logic Revisited

Given an annotated program, we wish to decide whether
the program is correct with respect to the annotations.
The first step in our decision procedure is to split the given
program into Hoare triples [22, 1, 11]. The idea of modeling
transformations of the heap with Hoare logic has been
studied before [37, 17]. The main novelty of our approach
is the choice of PAL as assertion language. Our Hoare
“triples” have a nonstandard form:

triple → property stm

The statement stm is not allowed to contain while loops,
split statements, or procedure calls. A triple is valid if

• executing stm in a store where property is satisfied
cannot violate any assertions specified by assert state-
ments occurring in stm; and

• the execution always terminates in a store consisting of
disjoint, acyclic backbones spanning the heap in which
all pointer directives hold.

As opposed to normal Hoare triples, these have no explicit
post-condition, but the stm part may contain assert sub-
statements. This simple generalization allows many asser-
tions to be made without always breaking triples into smaller
parts, as was often the case in [24] and [14]. For instance, an
if statement where both branches end in assert statements
does not necessarily need to be broken into two parts. Also,
using this form of Hoare triples simplifies the encoding in
monadic second-order logic described in Section 5.

We define the cut-points of a program (according to [16])
as the following set of program points: the beginning and
end of procedure bodies and while bodies, the split state-
ments (these do not affect the computation and are con-
sidered single program points), and before each procedure
call.

For each cut-point in the given program, we generate a
Hoare triple from the property associated with that point
and the code that follows until reaching other cut-points.
Extra assert statements are automatically inserted for
these other cut-points, reflecting the assertions they define.
In case of split statements, we here use the assertion prop-
erty. For procedure calls, we use the pre-condition property
of the called procedure conjoined with the call invariant for-
mula. Recall that we do allow if statements in the Hoare
triples. However, if one branch contains a cut-point, we
require syntactically that the other branch also contains a
cut-point or that the if statement is immediately followed
by one. Typically, split statements are used to fulfill this
requirement. As a result, the statement part of a Hoare
triple in general has a tree shape with one cut-point in the
root and one in each leaf. See [35] for more details.

We claim without proof that this reduction is semanti-
cally sound, with two exceptions:

• For split statements, the assertion property may not
be implied by the assumption property, thereby causing
a “gap” between the Hoare triples. This is intentional,
because it allows to recover from situations where the
required properties are beyond what is expressible in
Pointer Assertion Logic, such as arithmetical proper-
ties. Using split statements at a few selected places,
one can then still verify properties of the remaining
parts of the code. However, none of the examples
shown in Section 7 require this feature.

• Procedure calls are known to cause complications for
Hoare logic [11]. In our case, there is in general no
guarantee that the call invariant is actually a valid in-
variant. However, in most situations, simple syntactic
requirements suffice, since recursive calls in data type
operations typically follow the recursive structure of the
graph type backbones. A sufficient condition is that the
call invariant only accesses variables and record fields
that are not assigned to in the procedure. Such require-
ments ensure that the invariant and the procedure’s
pre- and post-conditions express properties of disjoint
parts of the store, reminiscent of the “independent con-
junctions” in [37]. All the examples shown in Section 7
can be handled by simple rules, which we plan to build
into PALE.

In PALE, this phase is implemented as a desugaring process
reducing all procedures, while loops, split statements, and
procedure calls to transduction declarations having the form
“transduce triple”. In the following section we describe
how validity of these simpler transduce constructs can be
decided.

In contrast to techniques based on generating the weak-
est preconditions for all procedures, each program or pro-
cedure is not turned into one single verification condition;
instead we use the annotations to split the program into
Hoare triples that are verified independently. Also, as op-
posed to [17], we will not rely on fixpoint iterations. This
means that detailed invariants may be required; however, it
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has the advantage that the technique becomes highly mod-
ular and hence scalable.

5 Deciding Hoare Triples in MONA

We need to decide validity of a Hoare triple of the form

property stm

where the statement stm is without loops and procedure
calls. The question is whether every execution of stm start-
ing from a store satisfying property is guaranteed to satisfy
the assertions given by assert statements and to result in
stores with disjoint, acyclic backbones spanning the heap in
which all relevant pointer directives hold. A result in [29]
shows in a very general setting that this is a decidable ques-
tion. In essence, we encode each Hoare triple in the logic
weak monadic second-order theory of 2 successors, which is
decidable using the MONA tool [26, 25, 34].

Similarly to the previous implementations [24, 14] we
use a particular transduction technique. This idea allows us
to avoid an explicit construction of weakest pre-conditions
working backwards through the statement sequence. In-
stead, we directly simulate (transduce) the statements and
mirror their effect by updating a fixed collection of store
predicates which abstractly describes a set of stores. It is
shown in [29] that any question about the resulting set of
stores can be answered by phrasing it in terms of the trans-
duced store predicates and checking for validity of the re-
sulting formula.

The store predicates describe a set of stores in MONA
logic. They can be thought of as an interface for asking
questions about a store. There are 11 kinds of predicates:

• bool T b(v) gives the value of the bool field b in a
record v of type T;

• succ T d(v,w) holds if the record w is reachable from
the record v of type T along a data field named d;

• null T d(v) holds if the data field d in the record v of
type T is null;

• succ T p(v,w) holds if the record w is reachable from
the record v of type T along a pointer field named p;

• null T p(v) holds if the pointer field p in the record
v of type T is null;

• ptr d(v) holds if the record v is the value of the data
variable d;

• null d() holds if the data variable d is null;

• ptr p(v) holds if the record v is the destination of the
pointer variable p;

• null p() holds if the pointer variable p is null;

• bool b() gives the value of the boolean variable b;

• memfailed() holds if a null-pointer dereference has oc-
cured.

All properties of a store can be expressed using these pred-
icates in MONA logic. The transduction process generates
a collection of such store predicates for each program point.
For convenience, we describe this by indexing the predi-
cates with program points; for example, for each program

point i there is a version of the bool T b(v) predicate called
bool T b i(v).

An initial collection of store predicates is defined to re-
flect the formula and pointer directives that constitute the
pre-condition of the Hoare triple. In the encoding into
MONA code, the program variables are modeled as free vari-
ables, which are universally quantified in the final validity
formula that is given to MONA. For example, a bool vari-
able is modeled as a boolean variable bool b in MONA and
the corresponding initial store predicate is:

bool b 0() = bool b

Similarly, a pointer variable p is modeled as a first-order
MONA variable ptr p and the corresponding initial store
predicate is:

ptr p 0(v) = v = ptr p

A bool field b in a record of type T is modeled as a second-
order variable bool T b containing the set of records in
which b is true. Consequently, the corresponding initial
store predicate is:

bool T b 0(v) = v in bool T b

As a final example, we consider pointer fields whose initial
store predicate is:

succ T p 0(this,p) = f

where f is the encoding of the formula associated with the
p field of T. If the pre-condition of the Hoare triple contains
the pointer directive T.p[form], then that formula is form,
otherwise the default formula from the type definition is
used.

Across a simple statement, two collections of store pred-
icates are related in a manner that reflects the semantics of
that statement. Consider for example a type of linked lists:

type Node = { data next: Node; }

and a simple statement involving two pointer variables of
type Node:

p = q.next;

If this statement is enclosed by program points i and j, then
the store predicates are updated as follows in MONA code:

memfailed j() = memfailed i() | null q i()
ptr p j(v) = ex2 ptr q i(w) & w: succ Node next i(w,v)
null p j() = ex2 w: ptr q i(w) & null Node next(w)

while the other store predicates remain unchanged. The
PALE tool generates such store predicate updates for all
Hoare triples and subsequently generates formulas to check
the required properties. Between conditionals, routing ex-
pressions, and various primitive statements this is a com-
plex translation reminiscent of generating machine code in
a compiler. The details can be studied in [35]. The way as-
signments are handled without losing aliasing information,
as in the example above, is essentially the same as in [36].

Checking that an assertion property at a given program
point cannot be violated can be expressed by encoding the
property using the store predicates associated with the pro-
gram point together with the pre-condition property en-
coded with the initial store predicates. There is a strong con-
nection between this transduction technique and the more
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traditional weakest-precondition technique: if the predicate
invocations in the MONA formulas are “unfolded”, one es-
sentially gets the weakest pre-condition. The main advan-
tage of using the “forward” transduction technique instead
of a “backward” weakest-precondition technique is an im-
plicit reuse of intermediate results.

Checking that the resulting backbones are disjoint,
acyclic, and span the heap is based on formulas for express-
ing transitive closure. Checking that a pointer directive
holds is in [28] shown to be decidable in monadic second-
order logic. This result generalizes easily to our extension
of graph types, where arbitrary formulas rather than only
routing expressions can be used as pointer directives.

The MONA tool transforms the resulting formulas,
which can be quite large, into equivalent minimal Guided
Tree Automata [4] represented as BDD structures [6], and
from that either deduces validity or generates counterex-
ample models. In the latter case, the PALE tool decompiles
that model into a program store which causes the program to
fail. The use of Guided Tree Automata rather than ordinary
tree automata yields an exponential saving by factorizing the
state space according to the recursive structure of the graph
type backbones. Compared to the WSRT technique used
in [14], our choice of describing the backbones as records
with pointers rather than as recursive types allow a simpler
and more efficient automaton guide to be constructed. Also
for efficiency reasons, we compile directly into MONA logic
rather than use a more high-level logic, such as FIDO [30].

Note that a collection of store predicates is vaguely sim-
ilar to the abstract store descriptions employed by TVLA.
Consequently, it might seem that we could follow their ap-
proach and use a fixpoint process to transduce a while loop.
However, this is in general not possible, since such fixpoints
may require transfinite induction. Hence, we resort to using
invariants to break up loops.

This transduction approach introduces no imprecision; it
is both sound and complete for individual Hoare triples.

6 Data Abstractions

In [38, 31], abstractions of the data contained in the heap
records can be tracked by specifying suitable instrumenta-
tion predicates. As an example, a predicate dle(x, y) is used
to represent “the data in x is less than or equal to the data
in y”. To illustrate the power of PAL, we show that a similar
approach works for our technique.

As an example, we instrument the ubiquitous linked-list
reverse example to verify that reversal of a list ordered in
increasing order results in a list ordered in decreasing order:

• We associate two boolean fields, next dle and
next dge, to the next field in the linked-list type, with
the intended meaning: next dle is true in a given
record if the data in the record denoted by the next
pointer is certain to be less than or equal to the data
in the given record – and likewise for next dge with
greater than or equal.

• Similarly, for each pair of program pointer variables,
two boolean variables are added to keep track of the
relative order of the records being pointed to. With
a subsequent dead-code elimination, a total of three
boolean variables suffice.

• For each pointer assignment, the new boolean fields and
variables are updated accordingly. For instance,

list.next = res;

is replaced by the multiple-assignment statement:

list.next = res, list.next_dle = res_dle_list;

reflecting the change of the next field.

If arbitrary PAL formulas are allowed as right-hand sides of
the new assignments, even complex reachability properties
can be captured. For this example, simple assignments suf-
fice, though. As in [31], this is also sufficient to verify for
instance that bubblesort actually sorts the elements.

The intellectual effort needed to update the data abstrac-
tion bits seems to be the same as to define the required oper-
ational semantics in TVLA. As hinted in the example, some
degree of automation is possible for our technique; however,
we leave that for future work.

Note that many data structures, in particular variations
of search trees, can be abstractly described by associating to
every node a few of bits of information summarizing prop-
erties of the tree. Those data structures can also be verified
using techniques like these.

7 Implementation and Evaluation

Our verification technique is implemented in a tool called
PALE, the Pointer Assertion Logic Engine. Given an anno-
tated program, PALE checks that:

• the pointer directives are well-formed;

• null pointer dereferences cannot occur;

• at each cut-point that the data variables contain dis-
joint, acyclic backbones spanning the heap and that
the assertions and pointer directives are satisfied;

• all assert assertions are valid; and

• all cut-point properties are satisfiable.

There is not necessarily an error in the program if a cut-
point property is unsatisfiable, but it usually indicates an
error in the specification. As previously mentioned, memory
allocation can easily be expressed such that the tool would
also check for memory leaks and dangling references.

Using PALE, we have evaluated the technique on a num-
ber of examples dealing with a variety of data structures. In
all cases, we check for memory errors and possible violations
of the data structure invariants:

• Singly-linked lists with the operations reverse, search,
zip, delete, insert, and rotate. These examples
have been scrutinized before [8, 24, 32]. We also in-
clude the concat operation on lists with tail pointers
from Section 1. We have tried bubblesort as in [31]
but with various degrees of abstraction of the data: In
bubblesort simple, the record values are abstracted
away so only null pointer dereferences are checked for;
in bubblesort boolean, the values are abstracted to
booleans which in the post-condition are checked to be
properly sorted; and in bubblesort full, the data ab-
straction technique from Section 6 is used as in [31]
to conclude that the resulting lists are sorted. We
also use data abstractions in orderedreverse to show
that reverse switches the order of a sorted list. Fi-
nally, we try recreverse, which is a recursive version
of reverse.
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Example Lines of Invariants GTA Largest GTA Time Memory
name code (formulas) operations States BDD nodes (seconds) (MB)

reverse 16 1 1,109 35 142 0.52 2
search 12 1 853 27 85 0.25 2
zip 33 1 1,753 174 730 4.58 11
delete 22 0 973 73 349 1.36 5
insert 33 0 1,005 103 443 2.66 7
rotate 11 0 590 44 213 0.22 1
concat 24 0 1,056 48 177 0.47 3
bubblesort simple 43 1 1,477 373 3,289 2.86 18
bubblesort boolean 43 2 1,737 357 3,922 3.37 12
bubblesort full 43 2 2,069 373 3,291 4.13 19
orderedreverse 24 1 1,091 29 100 0.46 3
recreverse 15 2 1,019 42 176 0.34 2
doublylinked 72 1 4,163 230 796 9.43 13
leftrotate 30 0 1,489 165 1,550 4.62 7
rightrotate 30 0 1,489 165 1,550 4.68 7
treeinsert 36 1 1,989 137 844 8.27 31
redblackinsert 57 7 4,279 297 2,419 35.04 44
threaded 54 4 3,505 50 248 3.38 7

Figure 1: Statistics from PALE experiments.

• Doubly-linked lists with tail pointers [28] with the op-
erations delete, search, insert, and concat.

• Red-black search trees [10] with the standard oper-
ations leftrotate, rightrotate, treeinsert, and
redblackinsert. We include the non-arithmetic part
of the red-black search tree invariant, that is, that the
root is black and red nodes have black children:

BLACK(root) &
allpos q of Node: ROOT<(left+right)*>q =>
(RED(q) => BLACK(q.left) & BLACK(q.right));

• Threaded trees [28], as shown in Section 3, where every
node has a pointer to its post-order cyclic successor
and a pointer to its parent, with a fix operation for
reestablishing the correct post pointer for a given node.

The resources for translation into MONA code and for the
automaton analysis are negligible. Figure 1 shows the time
and space consumptions of the MONA automaton opera-
tions (on a 466MHz Celeron PC) for the examples, along
with the number of GTA operations (here we count only the
essential operations: minimization, projection, and prod-
uct), the size of the largest intermediate minimized automa-
ton (in number of states and in number of BDD nodes).
Note that some examples implement individual operations
while others implement whole data types. The lines of code
measure the underlying program only, thus disregarding the
PAL annotations. “Invariants” is the total number of split
statements, while statements, and procedure calls that re-
quire explicitly stated invariants. This number is an indica-
tion of the effort required by the programmer to make PALE
work, in addition to writing the program and its specifica-
tion. The invariants for redblackinsert were admittedly
hard to get right. However, the programs that require the
most complicated invariants are also those that have the
most complicated pointer operations and hence are the ones
in most need of verification. The table shows that the ex-
amples typically run in seconds despite requiring a quite

large number of automaton operations. Since the complex-
ity is non-elementary in the size of the program, intractable
examples do exist but they do not seem to occur often in
practice. The verification time seems insignificant compared
to the time required to design a given data type and specify
the invariants, however, it is useful in the design cycle that
verification is efficient.

The code for the bubblesort examples (excluding anno-
tations) is taken from [31]. Interestingly, PALE discovered a
minor bug (a null-pointer dereference) even though the code
had allegedly been verified by TVLA, which spent 245 sec-
onds compared to 4 seconds for PALE. This huge speedup
shows an instance where using invariants is much faster than
performing a fixpoint iteration. This suggests that PALE
may be quite scalable. Another noteworthy point discov-
ered by PALE is that in [10], the authors forget to require
the root to be initially black in redblackinsert. (More
precisely, they mention the requirement in the proof of cor-
rectness, but not in the specification.)

Versions with plausible bugs planted typically take
roughly the same time to process as the correct programs.
For such buggy versions, counterexamples are generated,
which is crucial for determining whether the error is in the
program, the assumptions, or the assertions. As an exam-
ple, if a conditional in redblackinsert erroneously tests for
a specific node to be black rather than red, PALE produces
the following counterexample store for the Hoare triple con-
taining the conditional:

root

x

Here, the root node is black and the others are red, and we
omit field names and all pointer fields. Such a counterexam-
ple is clearly useful for locating the bug. Notice that for this
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bug, the approach in [23] would not find the bug for heap
bounds of less than four records.

The experiments show that our approach does work in
practice for non-trivial data structures, and with time and
space requirements which are as good as or better than those
for the previous more specialized versions [24, 14] and re-
lated approaches with similar goals [31, 23, 13, 17].

8 Conclusion

It is well known that developing formal program specifica-
tions is expensive, but for some safety critical applications
a guarantee of partial correctness of data type implementa-
tions can be worth the effort. A tool such as PALE can be
used to verify specifications expressible in Pointer Assertion
Logic, and also to guide the programmer by the generation
of counterexamples. With verification techniques based on
undecidable logics, either the programmer may have to guide
a theorem prover to the proofs, not even being certain that
they exist, or accept that the reply may be “don’t-know”.
With less expressive techniques, important aspects of the
data types may not be expressible and hence not verifiable.
In contrast to traditional program analyses, our technique
is highly modular: each statement in the given program is
analyzed only once. To verify complex properties, the tech-
nique often requires detailed invariants to be provided. How-
ever, since we primarily aim for data-type implementations,
we believe that this annotation overhead is reasonable com-
pared to the effort of creating the program. In conclusion,
Pointer Assertion Logic may provide a fruitful compromise
between expressibility and usability.

Although facing a non-elementary theoretical complex-
ity, the examples we provide show that logic and automaton
based program verification is feasible. Furthermore, we be-
lieve that the efficiency of the implementation can be im-
proved by at least an order of magnitude by tuning the
MONA tool using heuristics as proposed in [27]. As also
suggested in [23, 20] we may benefit from an initial sim-
plification phase that performs program slicing or partial
evaluation of the source programs.

Future work will also examine the possibility of incor-
porating simple arithmetic into the language. The MONA
tool can also be used as an efficient decision procedure for
Presburger arithmetic [39, 26], which is sufficient for many
properties. In [21], abstract data structure descriptions are
used to improve program analyses in optimizing compilers.
Pointer aliasing, for instance, can be expressed in PAL, so
the detailed knowledge of the heap structure provided by
PALE might also be useful for optimization. Another idea
is to build a translator from C, C++, or Java to PALE
to make the tool more practically useful. Finally, it might
be interesting to integrate the “independent conjunctions”
from [37] into PAL to support local reasoning and make the
tool easier to use.

The full source code for the PALE tool, the examples,
and a detailed description of the desugaring and code gen-
eration to MONA are available from the PALE site at
http://www.brics.dk/PALE/.
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