
Mona 1.x: New Techniques for WS1S and WS2SJacob Elgaard1, Nils Klarlund2, and Anders M�ller31 BRICS, University of Aarhus (elgaard@brics.dk)2 AT&T Labs{Research (klarlund@research.att.com)3 BRICS, University of Aarhus (amoeller@brics.dk)Abstract. In this note, we present the �rst version of the Mona toolto be released in its entirety. The tool now o�ers decision proceduresfor both WS1S and WS2S and a completely rewritten front-end. Here,we present some of our techniques, which make calculations couchedin WS1S run up to �ve times faster than with our pre-release toolbased on M2L(Str). This suggests that WS1S|with its better semanticproperties|is preferable to M2L(Str).1 IntroductionIt has been known for a couple of years that Monadic Second-order Logic inter-preted relative to �nite strings (M2L(Str)) is an attractive formal and practicalvehicle for a variety of veri�cation problems. The formalism is generally easyto use, since it provides Boolean connectives, �rst and second-order quanti�ersand no syntactic restrictions, say, to clausal forms. However, the semantics ofthe formalism is the source of de�nitional and practical problems. For example,the concept of a �rst-order term doesn't even make sense for the empty stringsince such terms denote positions.So, it is natural to investigate whether the related logic WS1S (Weak Second-order theory of 1 Succesor) can be used instead. This logic is stronger in that itcaptures a fragment of arithmetic, and its decision procedure is very similar tothat of M2L(Str). Similarly, we would like to explore the practical feasibility ofWS2S (Weak Second-order theory of 2 Successors).In this note, we present some new techniques that we have incorporated intothe �rst full release of the Mona tool. The Mona tool consists of a front-endand two back-ends, one for WS1S and one for WS2S. The front-end parses theMona program, which consists of predicates (subroutines that are compiled sep-arately), macros, and a main formula. Each back-end implements the automata-theoretic operations that are carried out to decide the formula corresponding tothe program.Since our earlier presentation of the Mona tool [1], we have completelyrewritten the front-end, this time in C++ (the earlier version was written inML). In the old version, the front-end produces a code tree, whose internalnodes each describe an automata-theoretic operation|such as a product orsubset construction|and whose leaves describe automata corresponding to ba-sic formulas. We implemented optimization techniques (unpublished) based on



rewriting of formulas according to logical laws. In this note, we report on analternative optimization technique, based on building a code DAG instead ofa code tree. (A DAG is a directed, acyclic graph.) Experiments show thatthis technique together with a more e�cient handling of predicates yields up to�ve-fold improvements in compilation time over the old tool.We also briey discuss how a M2L(Str) formula can be translated into anessentially equivalent WS1S formula, and we discuss important problems to beaddressed.2 M2L(Str) and WS1SM2L(Str) A formula of the logic M2L(Str) is interpreted relative to a numbern � 0, which is best thought of as de�ning the set of positions f0; : : : ; n � 1gin a string of length n. The core logic consists of �rst-order terms, second-orderterms, and formulas. A �rst-order term t is a variable p, a constant 0 (denotingthe position 0, which is the �rst position in w) or $ (denoting n�1, which is thelast position in the string), or of the form t0�1 (denoting i+1 mod n when t0 is a�rst-order term denoting i). A second-order term is either a variable P or of theform T 0[T 00. A formula � is either a basic formula of the form t 2 T or T � T 0,or of the form  ^ �, : , 9p :  (�rst-order quanti�cation), or 9P :  (second-order quanti�cation). In addition, we allow formulas involving = (between �rst-order or second-order terms); <;�; >;� (between �rst-order terms); Booleanconnectives );, and _; set operations \, n, and {; 8 quanti�ers; etc.The automaton-logic connection (see [5]) allows us to associate a regularlanguage over Bk , for some k � 0, to each formula � as follows. We assume thatthere are k variables that are ordered and that include the free variables in �.Now, a string w of length n over the alphabet Bk can be viewed as consistingof k tracks (or rows), each of length n. The kth track is a bit-pattern thatde�nes the interpretation of the kth variable, assumed to be second-order, asthe set of positions i for which the ith bit is 1. Note that a �rst-order variablecan be regarded as a second-order variable restricted to singleton values, so theassumption just made that variables are second-order is not a serious one. Thelanguage associated with formula � is now the set of all strings that correspondto a satisfying interpretation of the formula. As an example, the formula P � Qis associated with the regular language(�00� + �01�+ �11�)�where the upper track of a string denotes the value of P and the lower trackdenotes the value of Q. Any language corresponding to a formula is regular,since the languages corresponding to basic formula can be represented by au-tomata, and ^, :, and 9 correspond to the automata-theoretic operations ofproduct, complementation, and projection. In the case of a closed formula withno free variables, the regular language degenerates to a set of strings over a unitalphabet. Thus a closed formula essentially denotes a set of numbers.



The proof of regularity just hinted at forms the basis for the decision pro-cedure: each subformula is compiled into a minimum deterministic automaton,see [5]. An automaton representation based on BDDs is at the core of theMona implementation as discussed in [5]. For each state p in the state space S,a multi-terminal BDD whose leaves are states represents the transition functiona 7! �(p; a) : Bk ! S out of p. Each BDD variable corresponds to a �rst orsecond-order WS1S variable, and the BBDs are shared among the states. Thusthe resulting data structure is a DAG with multiple sources.The automaton-logic connection (see [5]) allows us to associate a regularlanguage over Bk to each formula � that has k variables.WS1S WS1S has the same syntax as M2L(Str) except that there is no { operatorand �1 is replaced with +1. This logic is interpreted in a simpler manner: �rst-order terms denote natural numbers, and second-order terms denote �nite setsof numbers. The automata-theoretic calculations are similar to that of M2L(Str)except for the existential quanti�er (see [5]).From M2L(Str) to WS1S In principle, it is easy to translate a quanti�er freeM2L(Str) formula � to a formula �0 in WS1S with essentially the same meaning:�0 is gotten from � by the following steps.{ A conjunct p � $, where $ now is a variable, must be added to any subfor-mula of � containing a �rst-order variable p.{ Each second-order variable P is left untouched, so that the translated for-mula will not depend on whether P has any elements greater than $. How-ever, occurrences of ; must be taken into account; for example, the formulaP = 0 is translated into 8p � $ : :(p 2 P ) so that the translated for-mula does not depend on the membership status of numbers in P that aregreater than $. Any use of set complement operator { must also be carefullyreplaced.{ Any occurrence of a subformula involving � such as p = q � 1 must bereplaced by something that captures the modulo semantics (here: q < $ )p = q + 1 ^ p = $) p = 0).With such a scheme it can be shown that I for length n > 0 satis�es � if andonly if I, augmented by interpreting $ as n � 1, satis�es �0. Unfortunately, inorder to preserve this property for all subformulas, we need to conjoin extraneousconditions onto every original subformula. A simpler solution is to conjoin themonly for certain strategic places, such as for all basic formulas and all formulasthat are directly under a quanti�er. We have implemented such heuristics in atool, s2n, that automatically translates M2L(Str) formulas to WS1S formulas.3 DAGs for compilationCode trees can be of the form (among others) mk-basic-less(i,j), mk-product(C,C 0,op), or mk-project(i,C), where i and j are BDD variable indices,



op is a Boolean function of two variables, and C and C 0 are code trees. Forexample, consider the formula 9q : p < q ^ q < r. If variable p has index1, i.e., if it is the 1st variable in the variable ordering, variable q has index2, and variable r has index 3, then this formula is parsed into a code treemk-project(2,mk-product(mk-less(1,2), mk-less(2,3), ^)). This tree con-tains a situation that we would like to avoid: essentially isomorphic subtrees arecalculated more than once. In fact, the automaton A for mk-less(1,2) is iden-tical to the automaton A0 for mk-less(2,3)modulo a renaming of variables. Ingeneral, we would like to rename the indices in A whenever we need A0, sincethis is a linear operation (whereas building A or A0 from the code tree is oftennot a linear operation).So, we say that a code tree C is equivalent to C 0 if there is an order-preserving(i.e., increasing), renaming of variables in C 0 such that C 0 becomes C. Our goalis produce the DAG that arises naturally from the code tree by collapsing equiv-alent subtrees. Unfortunately, it takes linear time to calculate the equivalenceclass of any subtree, and so the total running time becomes quadratic. There-fore, the collapsing process is limited to subtrees for which the number of variableoccurrences is less than a user de�nable parameter `.Mona o�ers both pre-compiled subroutines, called predicates, and typedmacros. A use name(X) of a predicate, where X is a sequence of actual pa-rameters, is translated to a special node of the form mk-call(name, X). Thepredicate is then compiled separately given the signature of the call node. Theactual parameters are bound to the resulting automaton using a standard bind-ing mechanism: introduction of temporary variables and projection. Additionalcall nodes with the same signature can then reuse the separately compiled au-tomaton. Call nodes act as leaves with respect to DAGi�cation.4 Experimental resultsWe have run a Mona formula, reverse, of size 50KB (an automatically gener-ated formula from [3]) through our oldMona (using optimizations) and our newWS1S version with and without DAGi�cation (` = 200). We also did the exper-iment on reverse2, a version of the formula where all de�ned predicates werereplaced by macros. And, we have run a comparison on a formula representinga parameterized hardware veri�cation problem. The results are (in seconds):Program Old Mona Mona 1.1 w. DAGs DAG Hits DAG Missesreverse 17 8.5 3.0 20513 2725reverse2 51 90 45 327328 14320hardware 6.6 5.4 4.7 3284 633In some cases (like in reverse2), the old Mona tool is faster than the new onerun without DAGi�cation, since the �gures reported for the old apply to theversion that carries out formula simpli�cation. The experiments support ourclaim that WS1S can be as an e�cient formalism as M2L(Str). (The underlyingBDD-package in the two tools is the same.) Moreover, our DAGs and predicate



uses o�er substantial bene�ts, up to a factor �ve. The hardware example runsonly slightly faster, and the improvement is due to the new front-end beingquicker.5 Related and Future WorkThere are at least three similar tools reported in the literature: [2] reports onan implementation of WS1S that is not based on BDDs and that therefore islikely not to be as e�cient as our tool. The tool in [4] implements M2L(Str)using a di�erent BDD representation, and the tool in [6] implements a decisionprocedure for WS2S (in Prolog and without BDDs).There are still several problems and challenges not addressed in the currentMona tool: 1) the semantics of formulas with �rst-order terms is not appealing,for example, the Mona formula x1 < x2^ : : :^xn�1 < xn is translated in lineartime whereas its negation, x1 � x2_ : : :_xn�1 � xn, is translated in exponentialtime; 2) there is no reuse of intermediate results from one automaton operationto the next (a general solution to this problem seems to require identi�cationof isomorphic subgraphs, a problem that appears computationally expensive);3) the automatic translation from M2L(Str) to WS1S by s2n sometimes makesformulas unrunnable for reasons similar to 1), namely that the restrictions aformula is translated under are wrapped into subformulas in unfortunate waysunless the restrictions are reapplied for each intermediate result; 4) the use offormula rewriting (as we did in the earlier Mona version) should be combinedwith our DAG techniques.The Mona tool, currently in version 1.2, can be retrieved from http://www.brics.dk/~mona, along with further information.References1. M. Biehl, N. Klarlund, and T. Rauhe. Mona: decidable arithmetic in practice (shortcontribution). In Formal Techniques in Real-Time and Fault-Tolerant Systems, 4thInternational Symposium, LNCS 1135. Springer Verlag, 1996.2. J. Glenn and W. Gasarch. Implementing WS1S via �nite automata. In AutomataImplementation, WIA '96, Proceedings, volume 1260 of LNCS, 1997.3. J.L. Jensen, M.E. J�rgensen, N. Klarlund, and M.I. Schwartzbach. Automatic ver-i�cation of pointer programs using monadic second-order logic. In SIGPLAN '97Conference on Programming Language Design and Implementation,, pages 226{234.SIGPLAN, 1997.4. P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. Mosel: a exible toolset forMonadic Second-order Logic. In Computer Aided Veri�cation, CAV '97, Proceed-ings, LNCS 1217, 1997.5. N. Klarlund. Mona & Fido: the logic-automaton connection in practice. In CSL'97 Proceedings, 1998. To appear in LNCS.6. F. Morawietz and T. Cornell. On the recognizability of relations over a tree de�nablein a monadic second order tree description language. Technical Report SFB 340,Seminar f�ur Sprachwissenschaft Eberhard-Karls-Universit�at T�ubingen, 1997.


