
This is page 1Printer: Opaque thisMona: Monadic Second-OrderLogic in PracticeJesper G. Henriksen�Jakob Jensen�Michael Jørgensen�Nils KlarlundyRobert PaigezTheis Rauhe�Anders Sandholm�ABSTRACT 1 The purpose of this article is to introduce Monadic Second-order Logic as a practical means of specifying regularity. The logic is ahighly succinct alternative to the use of regular expressions. We have built atool MONA, which acts as a decision procedure and as a translator to �nite-state automata. The tool is based on new algorithms for minimizing �nite-state automata that use binary decision diagrams (BDDs) to representtransition functions in compressed form. A byproduct of this work is analgorithm that matches the time but improves the space of Sieling andWegener's algorithm to reduce OBDDs in linear time.The potential applications are numerous. We discuss text processing, Boole-an circuits, and distributed systems. Our main example is an automaticproof of properties for the �Dining Philosophers with Encyclopedia� ex-ample by Kurshan and MacMillan. We establish these properties for theparameterized case without the use of induction.Our results show that, contrary to common beliefs, high computationalcomplexity may be a desired feature of a speci�cation formalism.�BRICS, Centre of the Danish National Research Foundation for Basic Research inComputer Science, Department of Computer Science, University of Aarhus.yThe corresponding author is Nils Klarlund, who is with BRICS, Department ofComputer Science, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C. E-mail:klarlund@daimi.aau.dk.zDepartment of Computer Science, CIMS, New York University, 251 Mercer St. NewYork, New York, USA; research partially supported by ONR grant N00014-93-1-0924,AFOSR grant AFOSR-91-0308, and NSF grant MIP-9300210.1This article is a heavily revised version of [JJK94].

2 Henriksen et al.1 IntroductionIn computer science, regularity amounts to the concept that a class ofstructures is recognized by a �nite-state device. Often phenomena are socomplicated that their regularity either� may be overlooked, as in the case of parameterized veri�cation of dis-tributed �nite-state systems with a regular communication topology;or� may not be exploited, as in the case when a search pattern in a texteditor is known to be regular, but in practice inexpressible as a regularexpression.In this paper we argue that the Monadic Second-Order Logic orM2L canhelp in practice to identify and to use regularity. In M2L, one can directlymention positions and subsets of positions in the string. This feature dis-tinguishes the logic from regular expressions or automata. Together withquanti�cation and Boolean connectives, an extraordinary succinct formal-ism arises.Although it has been known for thirty-�ve years that M2L de�nes regularlanguages (see [Tho90]), the translator from formulas to automata that wedescribe in this article appears to be one of the �rst implementations.The reason such projects have not been pursued may be the staggeringtheoretical lower-bound: any decision procedure is bound to sometimes re-quire as much time as a stack of exponentials that has height proportionalto the length of the formula.It is often believed that the lower the computational complexity of aformalism is, the more useful it may be in practice. We want to countersuch beliefs in this article � at least for logics on �nite strings.1.1 Why use logic?Some simple �nite-state languages easily described in English call for con-voluted regular expressions. For example, the language L2a2b of all stringsover � = fa; b; cg containing at least two occurrences of a and at least twooccurrences of b seems to require a voluminous expression, such as��a��a��b��b��[��a��b��a��b��[��a��b��b��a��[��b��b��a��a��[��b��a��b��a��[��b��a��a��b��:If we added \ to the operators for forming regular expressions, then the lan-guage L2a2b could be expressed more concisely as (��a��a��)\(��b��b��).

1. Mona: Monadic Second-Order Logic in Practice 3Even with this extended set of operators, it is often more convenient to ex-press regular languages in terms of positions and corresponding letters. Forexample, to express the set Laafterb of strings in which every b is followedby an a, we would like a formal language allowing us to write somethinglike �for every position p, if there is a b in p then for some positionq after p, there is an a in q.�The extended regular languages do not seem to allow an expression thatvery closely re�ects this description � although upon some re�ection asmall regular expression can be found. But in M2L we can express Laafterbby a formula 8p : 0b0(p)) 9q : p < q ^ 0a0(q)(Here the predicate 0b0(p) means �there is a b in position p�.) In general, webelieve that many errors can be avoided if logic is used when the descriptionin English does not lend itself to a direct translation into regular expressionsor automata.However, the logic can easily be combined with other methodsof specifying regularity since almost any such formalism can be translatedwith only a linear blow-up into M2L.Often regularity is identi�ed by means of projections. For example, ifLtrans is regular on a cross-product alphabet �� � (e.g. describing a pa-rameterized transition relation, see Section 5) and Lstart is a regular lan-guage on � describing a set of start strings, then the set of strings that canbe reached by a transition from a start string is �2(Ltrans \ ��11 (Lstart)),where �1 and �2 are the projections from (� � �)� to the �rst and sec-ond component. Such language-theoretic operations can be very elegantlyexpressed in M2L.1.2 Our resultsIn this article, we discuss applications of M2L to text processesing and thedescription of parameterized Boolean circuits. Our principal applicationis a new proof technique for establishing properties about parameterized,distributed �nite-state systems with regular communication topology. Weillustrate our method by showing safety and liveness properties for a non-trivial version of the Dining Philosophers' problem as proposed in [KM89]by Kurshan and MacMillan.We present MONA, which is our tool that translates formulas in M2Lto �nite-state machines. We show how BDDs can be used to overcomean otherwise inherent problem of exponential explosion. Our minimizationalgorithm works very fast in practice thanks to a simple generalization ofthe unary apply operation of BDDs.

4 Henriksen et al.1.3 Comparisons to other workParameterized circuits are described using BDDs in [GF93]. This methodrelies on formulating inductive steps as �nite-state devices and does notprovide a single speci�cation language. The work in [RS93] is closer inspirit to our method in that languages of �nite strings are used althoughnot as part of a logical framework. In [BSV93], another approach is givenbased on iterating abstractions. The parameterized Dining Philosopher'sproblem is solved in [KM89] by a �nite-state induction principle.A tool for M2L on �nite, binary trees has been developed at the Uni-versity of Kiel [Ste93]. Apparently, this tool has only been used for verysimple examples.In [CR94], a programming language for �nite domains based on a �xedpoint logic is described and used for veri�cation of non-parameterized �nitesystems.1.4 ContentsIn Section 2, we explain the syntax and semantics of M2L on strings. Werecall the correspondence to automata theory in Section 3. We give severalapplications of M2L and the tool in Section 4: text patterns, parameterizedcircuits, and equivalence testing. Our main example of parameterized veri�-cation is discussed in Section 5. We give an overview of our implementationin Section 6.2 The Monadic Second-order Logic on StringsLet � be an alphabet and let w be a string over �. The semantics of thelogic determines whether a closed M2L formula � holds on w. The languageL(�) denoted by � is the set of strings that make � hold. Assume now thatw has length n and consists of letters a0a1:::an�1. The positions in w arethen 0,...,n�1. We can now describe the three syntactic categories of M2Lon strings.A position term t is either� the constant 0 (which denotes the position 0);� the constant $ (which denotes the last position, i.e. n� 1);� a position variable p (which denotes a position i);� of the form t� i (which denotes the position j + i mod n, where j isthe interpretation of t); or� of the form t	 i (which denotes the position j � i mod n, where j isthe interpretation of t);

1. Mona: Monadic Second-Order Logic in Practice 5(Position terms are only interpreted for non-empty strings).A position set term T is either� the constant ; (which denotes the empty set);� the constant all (which denotes the set f0; :::; n� 1g);� a position set variable P (which denotes a subset of positions);� of the form T1 [T2, T1 \ T2, or {T1 (which are interpreted in thenatural way);� of the form T +i (which denotes the set of positions in T shifted rightby an amount of i); or� of the form T � i (which denotes the set of positions in T shifted leftby an amount of i);A formula � is either of the form� 0a0(t) (which holds if letter ai in w = a0a1 � � � is a, where i is theinterpretation of t);� t1 = t2, t1 < t2 or t1 � t2 (which are interpreted in the natural way);� T1 = T2, T1 � T2, or t2T (which are interpreted in the natural way);� :�1, �1 ^ �2, �1 _ �2, �1) �2, or �1 , �2 (where �1 and �2 areformulas, and which are interpreted in the natural way);� 9p : � (which is true, if there is a position i such that � holds wheni is substituted for p);� 8p : � (which is true, if for all positions i, � holds when i is substitutedfor p);� 9P : � (which is true, if there is a subset of positions I such that �holds when I is substituted for P); or� 8P : � (which is true, if for all subsets of positions I, � holds when Iis substituted for P);3 From M2L to AutomataIn this section, we recall the method for translating a formula in M2L to anequivalent �nite-state automaton (see [Tho90] for more details). Note thatany formula � can be interpreted, given a string w and a value assignmentI that �xes values of the free variables. If � then holds, we write w; I j= �:The key idea is that a value assignment and the string may be described

6 Henriksen et al.together as a word over an extended alphabet consisting of � and extrabinary tracks, one for each variable. By structural induction, we then de�nefor each formula an automaton that exactly recognizes the words in theextended alphabet corresponding to pairs consisting of a string and anassignment that satisfy the formula.ExampleAssume that the free variables are P = fP1; P2g and that � = fa; bg.Let us consider the string w = abaa and value assignmentI = [P1 7! f0; 2g; P2 7! ;]:The set I(P1) = f0; 2g can be represented by the bit pattern 1010, sincethe numbered sequence 1 0 1 00 1 2 3de�nes that 0 is in the set (the bit in position 0 is 1), 1 is not in the set(the bit in position 1 is 0), etc. Similarly, the bit pattern 0000 describesI(P2) = ;.If these patterns are laid down as extra �tracks� along w, we obtain anextended word �, which may be depicted as:a b a a1 0 1 00 0 0 0Technically, we de�ne � = �0 � � ��3 as the word (a; 1; 0)(b; 0; 0)(a;1;0)(a; 0; 0) over the alphabet � � B � B of extended letters, where B = f0; 1gis the set of truth values.This correspondence can be generalized to any w and any value assign-ment for a set of variables P (which can all be assumed to be second-order).By structural induction on formulas, we construct automata A�;P overalphabet ��Bk�where P = fP1; � � � ; Pkg is any set of variables containingthe free variables in ��satisfying the fundamental correspondence:w; I j= � i� (w; I)2L(A�;P)Thus A�;P accepts exactly the pairs (w; I) that make � true.ExampleLet � be the formula Pi = Pj + 1. Thus when � holds, Pi is representedby the same bit pattern as that of Pj but shifted right by one position.This can be expressed by the automaton A�;P :

1. Mona: Monadic Second-Order Logic in Practice 7
= 0 and = 0α i α j

= 1 and = 1α i α j

= 0 and = 1α i α j

= 1 and = 0α i α jIn this drawing, �i refers to the ith extra track. Thus, the automaton checksthat the ith track holds the same bit as the jth track the instant before.4 Applications4.1 Text patternsThe language L2a2b of strings containing at least two occurrences of a andtwo occurrences of b can be described in M2L by the formula(9p1; p2 : 0a0(p1) ^ 0a0(p2) ^ p1 6= p2) ^(9p1; p2 : 0b0(p1) ^ 0b0(p2) ^ p1 6= p2)Our translator yields the minimal automaton, which contains nine states,in a fraction of a second.The language Laafterb given by the formula8p : 0b0(p)) 9q : p < q ^ 0a0(q)is translated to the minimal automaton, which has two states, in .3 seconds.A far more complicated language to express is L<1apart consisting ofevery string over fa; bg such that for any pre�x the number of a's and b'sare at most one apart. When using regular expressions or M2L, one needs tostruggle a bit, but in M2L there is a strategy for describing the functioningof the �nite-state machine that comes to mind.We observe that a position p may be used to designate a pre�x; forexample, 0 denotes the pre�x consisting of the �rst letter and $ (the lastposition) denotes the whole input string. We may now recognize a stringin L<1apart by identifying three sets of positions: the set P0 correspondingto pre�xes with an equal number of a's and b's, the set P+1 correspondingto pre�xes where the number of a's is one greater than the number of b's,

8 Henriksen et al. �
�0 �1 �n�2 �n�1�2FIGURE 1. A parameterized circuit.and the set P�1 corresponding to pre�xes where the number of a's is oneless than the number of b's:9P0; P+1; P�1 :P0 [P+1 [P�1 = all^ 0 =2 P0^ 02P+1 , 0a0(0)^ 02P�1 , 0b0(0)^ 8p : (p > 0)p2P0 , (0a0(p) ^ p 	 12P�1)_ (0b0(p) ^ p	 12P+1)^ p2P+1 , 0a0(p) ^ p	 12P0^ p2P�1 , 0b0(p) ^ p	 12P0)The resulting four-state automaton is calculated in a fraction of a second.4.2 Parameterized circuitsAssume that we are given a drawing as in Figure 1 denoting a parameterizedBoolean function.How do we describe the language Lex � B� of input bit patterns thatmake the output true? From the drawing, no immediate description as aregular expression or �nite-state automaton is apparent. In M2L, however,it is easy to model the outputs of the n or-gates as a second-order variableQ, which allows the language to be described from a direct interpretationof the drawing. Note that the or-gate at position p > 0 is true if eitherthere is a 1 at p � 1 or p, or in other words: p 2 Q , 010(p 	 1) _ 010(p).Since the output is 1 if and only if all or-gates are 1, i.e. if Q = all, thelanguage Lex is given by the formula9Q : (8p : (p = 0) p 2 Q, 010(p)) ^(p > 0) (p 2 Q, 010(p	 1) _ 010(p))) ^Q = all)

1. Mona: Monadic Second-Order Logic in Practice 9The resulting automaton has three states and accepts the language (1 [10)�, which is the regular expression that one would obtain by reasoningabout the circuit. For more advanced applications to hardware veri�cation,see [BK95].4.3 Equivalence testingA closed formula � is a tautology if L(�) = L(��), i.e. if all strings over �satisfy �. The equivalence of formulas � and then amounts to whether�, is a tautology.Example. That a set P contains exactly the even positions in a non-emptyinput string may be expressed in M2L by the following two rather di�erentapproaches: either by the formula even1 (P) �02P ^ 8p : ((p2P ^ p < $) p� 1 =2 P)^ (p =2 P ^ p < $) p� 12P));or as a formula even2 (P) �P [(P + 1) = all ^ P \ (P + 1) = ; ^ P 6= ;To show the equivalence of the two formulas, we check the truth valueof the bi-implication: 8P : even1(P), even2(P)The translation of this formula does indeed produce an automaton accept-ing ��, and thus veri�es our claim.5 Dining Philosophers with EncyclopediaA distributed system is parameterized when the number n of processes isnot �xed a priori. For such systems the state space is unbounded, andthus traditional �nite-state veri�cation methods cannot be used. Instead,one often �xes n to be, say two or three. This yields a �nite state spaceamenable to state exploration methods. However, the validity of a propertyfor n = 2, 3 does not necessarily imply that the property holds for all n.A central problem in veri�cation is automatically to validate parame-terized systems. One way to attack the problem is to formulate inductionprinciples such that the base case and the inductive steps can be formu-lated as �nite-state problems. Kurshan and MacMillan [KM89] used sucha method to verify safety and liveness properties of a non-trivial version ofthe Dining Philosophers example.In this system, symmetry is broken by an encyclopedia that circulatesamong the philosophers. Thus each philosopher is in one of three states:

10 Henriksen et al.
Selection hungry read eat

State’

EAT

THINK READ EAT

State THINK READFIGURE 2. Dining Philosophers with EncyclopediaEAT, THINK, or READ. The global state can be described as a stringState of length n over the alphabet �State = fEAT;THINK;READg, seeFigure 2.The system makes a transition according to external events that consti-tute a selection . Each process is presented with an event in the alphabet�Selection = feat; think; read; hungryg. Thus the selection can be viewed asa string Selection over �Selection, see Figure 2. As shown, all processes makea synchronous transition to a new global State 0 on a selection according toa transition relation trans(State ; State0; Selection), which is shown in Fig-ure 32 together with an auxiliary predicateblocking(Selection) used in its de�nition. Thus the new state of each pro-cess is dependent on its old state and on the selection events presented toitself and its neighbors. The transition relation is so complicated that it ishard to grasp the functioning of the system.Fortunately, the parameterized transition relation can be translated intobasic M2L on strings. For example, we encode State using two second-ordervariables P and Q with the convention thatEATp(State) � p2P ^ p2QREADp(State) � p =2 P ^ p2QTHINKp(State) � p =2 P ^ p =2 QSimilarly, State 0 and Selection can also each be encoded using two second-order variables. Thus, the predicate trans(State ; State0; Selection) becomesa formula with six free second-order variables.For this distributed system there are two important properties to verify:� Safety Property : The encyclopedia is neither lost nor replicated. Thusthere is always exactly one process in state READ.� Liveness Property : If no process remains in state EAT forever, thenthe encyclopedia is passed around over and over.In [KM89] both properties are proved in terms of a complicated induc-tion hypothesis. This hypothesis is itself a distributed system, where each2We use '#' in the beginning of a line to indicate that this line is a comment.

1. Mona: Monadic Second-Order Logic in Practice 11process has four states. (The Liveness Property in [KM89] is technicallydi�erent since it is modeled in terms of selections.)Our strategy is fundamentally di�erent. We cannot directly verify live-ness properties. But we can easily verify properties about the transitionrelation in the parameterized case and without induction as follows.Let � be an M2L formula about the global state. For example, we mightconsider the property that if a philosopher eats, then his neighbors do not:�mutex(State) � 8p : EATp(State)) :EATp	1(State) ^ :EATp�1(State)A property given as a formula � can be veri�ed using the invarianceprinciple:8State ; State0; Selection :�(State) ^ trans(State; State 0; Selection)) �(State 0);which is also a formula in M2L. In this way, we have veri�ed for the param-eterized case that both �mutex and the Safety Property that exactly onephilosopher reads, i.e. 9!p : READp(State), are invariant. MONA veri�essuch a formula in approximately 3 seconds on a Sparc 20.Note that this method does not rely on a state space exploration (whichis impossible since the state space is unbounded). Instead, it is based on theInvariance Principle: to show that a property holds for all reachable states,it is su�cient to show that it holds for the initial state and is preservedunder any transition.5.1 Establishing the liveness propertyThe Liveness Property can be expressed in Temporal Logic as�(READp	1) �READp); (1.1)that is, it always holds that if philosopher p 	 1 reads, then eventuallyphilosopher p reads. We must prove this property under the assumptionthat no philosopher eats forever:�(EATp) �:EATp): (1.2)So assume that READp	1 holds. We must prove that �READp holds. Thereare two cases as follows.� Case EATp holds. By asssumption (1.2), there is an instant whenEATp ^ : EATp holds. Thus ifREADp	1 ^ EATp ^ : EATp)READp (1.3)is a valid property of the transition system, �EATp holds. In fact, weveri�ed using MONA that (1.3) indeed holds.

12 Henriksen et al.blocking(Selection) �eatp�1(Selection) _ hungryp	1(Selection)_ eatp	1(Selection)trans(State;State 0;Selection) �8p :#THINK ! THINK :(THINKp(State) ^ THINKp(State0))thinkp(Selection) ^ :(readp	1(Selection))_hungryp(Selection) ^ blocking(Selection))#̂THINK ! EAT :(THINKp(State) ^ EATp(State 0))hungryp(Selection) ^ :(blocking(Selection)))#̂THINK ! READ :(THINKp(State) ^ READp(State0))thinkp(Selection) ^ readp	1(Selection))#̂EAT ! THINK :(EATp(State) ^ THINKp(State 0))thinkp(Selection) ^ :(readp	1(Selection)))#̂EAT ! EAT :(EATp(State) ^ EATp(State0))eatp(Selection))#̂EAT ! READ :(EATp(State) ^ READp(State 0))thinkp(Selection) ^ readp	1(Selection))#̂READ! THINK :(READp(State) ^ READp(State 0))readp(Selection) ^ thinkp�1(Selection))#̂READ! EAT :(READp(State) ^ EATp(State 0))false)#̂READ! READ :(READp(State) ^ READp(State 0))readp(Selection) ^ :(thinkp�1(Selection)))FIGURE 3. The transition relation

1. Mona: Monadic Second-Order Logic in Practice 13� Case :EATp holds. If EATp becomes true, then use the previous case.Otherwise, :EATp continues to hold. Now, by the assumption (1.2)at some point :EATp�1 will hold. We then use the propertyREADp	1 ^ :EATp ^ :EATp�1)READp _ EATp; (1.4)which we have also veri�ed using MONA, to show that eventuallyREADp holds (or eventually EATp holds, which contradicts the as-sumption that :EATp continues to hold).6 Implementation.MONA is our implementation of the decision procedure, which translatesformulas of M2L to �nite-state automata as outlined in Section 3. Our toolis implemented in Standard ML of New Jersey. A previous version ofMONAwas written in C with explicit garbage collection and based on representingtransition functions in a conjunctive normal form. Our present tool runsup to 50 times faster due to improved algorithms.6.1 Representation of automataSince the size of the extended alphabet grows exponentially with the num-ber of variables, a straightforward implementation based on explicitly rep-resenting the alphabet would only work for very simple examples. Instead,we represent the transition relation using Binary Decision Diagrams (B-DDs) [Bry92, Bry86]. In this way, the alphabet is never explicitly represent-ed. For the external alphabet of ASCII-characters, we choose an encodingbased on seven extra tracks holding the binary representation. Thus, char-acter classes such as [a-zA-Z] become represented as very simple BDDs.A deterministic automatonA is represented as follows. The state space isQ = f0; 1; : : :; n� 1g, where n is size of the state space; Bk is the extendedalphabet; i0 2 Q is the initial state; � : Q � Bk ! Q is the transitionfunction; and F � Q is the set of accepting states. We use a bit vectorof size n to represent F and an array containing n pointers to roots ofmulti-terminal BDDs representing �. A leaf of a BDD holds the integerdesignating the next state. An internal node v is called a decision node andcontains an index denoted v:index, where 0 � v:index < k, and high andlow successors v:hi and v:lo. If b is a sequence of k bits, i.e. b 2 Bk , then�(q; b) is found by looking up the qth entry in the array and following thedecision nodes according to b until a leaf is reached (node v is followed byselecting the high successor if the v:indexth component of b is 1 and thelow successor if it is 0).For example, the following �nite automaton accepting all strings over B2with at least two occurrences of the letter �11�

14 Henriksen et al.
lo

hi

lo
hi

lo

hi

lo
hi

false false true

index=
0

index=

index= index=

0

1 1

val= val= val=
0 1 2

0 1 2

Transition function:

Initial state: 0
Accepting states:

FIGURE 4. BDD automaton representation
 0 1 2

00,01,10 00,01,10 00,01,10,11

11 11could be represented as in Figure 4.The use of BDDs makes the representation very succinct in comparisonto our earlier attempt to handle automata with large alphabets [JJK94]. Inmost cases, we avoid the exponential blow-up associated with an explicitrepresentation of the alphabet. We shall see that all operations on automataneeded can be performed by means of simple BDD operations.Another possibility would have been to use a two-dimensional array ofordinary BDDs. But that would complicate the operations on automata,because many more BDD operations would be needed.6.2 Rewriting formulasThe �rst step in the translation consists of rewriting formulas so as toeliminate nested terms. Then all terms are variables and all formulas areamong a small number of basic formulas.

1. Mona: Monadic Second-Order Logic in Practice 156.3 Translating formulasThe translation is inductive. All automata corresponding to basic formulashave a small number of states (less than �ve!).The composite formulas are translated by use of operations on automata.For :�, �1^�2 and 9P : �, which are the ones left after rewriting, we needthe operations of complement, product, projection, and determinization.ComplementComplementation is done by simply negating the bit vector representingthe set of �nal states.ProductThe product automaton A of two automata A1 and A2 is(Q1 � Q2; Bk ; (i1; i2); �; F1 � F2);where �((q1; q2); b) = (�1(q1; b); �2(q2; b)). We are careful, however, to con-sider only those states of A that are reachable from (i1; i2).When considering a new state (q1; q2), we need to construct the BDDrepresenting the corresponding part of the transition function �. We use thebinary apply operation on the BDDs corresponding to q1 and q2. For eachpair of states (q0; q00) encountered in a pair of leaves, we associate a uniqueinteger in the range f0; 1; : : :N � 1g, where N is the number of di�erentpairs considered so far. In this way, the new BDDs created conform withthe standard representation.Projection and determinizationProjection is the conversion of an automaton over Bk+1 to a nondeter-ministic automaton over Bk necessary for translating a formula of the form9P : �. On any letter b 2 Bk , there are two transitions possible in thenondeterministic automaton corresponding to whether the P -track is 0 or1. Therefore this automaton is not hard to construct using the projection(restriction) operation of BDDs.Determinization is done according to the subset construction. The use ofthe apply operation is similar to that of the product construction exceptthat leaves hold subsets of states.6.4 MinimizingMinimization seems essential in order to obtain an e�ective decision pro-cedure. For example, if a tautology occurs during calculations, then it is

16 Henriksen et al.obviously a good idea to represent it using a one-state automaton insteadof an automaton with e.g. 10,000 states.The di�culty in obtaining an e�cient minimization algorithm stems fromthe requirement to keep our shared BDDs in reduced form. Recall that areduced BDD has no duplicate terminals or nonterminals. Such a BDDis just a specialized form of directed acyclic graph that has been com-pressed by combining structurally isomorphic nodes (see Aho, Hopcroft,and Ullman [AHU74] or Section 3.4 of Cai and Paige [CP94]). In addition,a reduced BDD has no redundant tests [Bry92]. Such a BDD is obtained byrepeatedly pruning every internal vertex v that has both outedges leadingto the same vertex w, and redirecting all of v's incoming edges to w.Suppose that the shared BDD had all duplicate terminals and nonter-minals eliminated, but did not have any of its redundant tests eliminated.Then it would be easy to treat the deterministic �nite automaton com-bined with its BDD machinery as a single automaton whose states werethe union of the BDD nodes and the original automaton states, and whosealphabet were zero and one. If this derived automaton had n states, then itcould be minimized in O(n logn) steps using Hopcroft's algorithm [Hop71].Unfortunately, such an automaton would be too big.For our purposes, the space savings due to redundant test removal isof crucial importance. But the important `skip' states that arise from re-dundant test removal complicates minimization. Our algorithm combinestechniques based on [AHU74] with new methods adapted for use withthe shared BDD representation of the transition function. For a �niteautomaton with n states and a transition function represented by m B-DD nodes, the algorithm presented here achieves worst-case running timeO(max(n;m)n).TerminologyA partition P of a �nite set U is a set of disjoint nonempty subsets of Usuch that the union of these sets is all of U . The elements of P are calledits blocks. A re�nement Q of P is a partition of U such that any blockof Q is a subset of a block of P. If q 2 U , then [q]P denotes the blockof partition P containing the element q, and when no confusion arises, wedrop the subscript.Let A = (Q, Bk , i0, �, F) denote a deterministic �nite automaton, andlet P be a partition of Q, and Q a re�nement of P. A block B of Qrespects the partition P if for all q; q0 2 B and for all b 2 Bk , [�(q; b)]P =[�(q0; b)]P. Thus, � cannot distinguish between the elements in B relativeto the partition P. A partition Q respects P if every block of Q respectsP. A partition is stable if it respects itself. The coarsest, stable partitionQ respecting P is a unique partition such that any other stable partitionrespecting P is a re�nement of Q.

1. Mona: Monadic Second-Order Logic in Practice 17The re�nement algorithmThe minimal automaton A0 recognizing L(A) is isomorphic to the au-tomaton de�ned by the coarsest stable partition QA of Q respecting thepartition fF;Q n Fg. The states of A0 are QA, the transition function �0 isde�ned by �0([p]; b) = [�(p; b)], the initial state is [i0], and the set of �nalstates is F 0 = f[f]jf 2 Fg.Now we are ready to sketch our minimizing algorithm, which works bygradually re�ning a current partition.� First split Q into an initial partition Q = fF;Q n Fg. Note that QAis a re�nement of this partition.� Now let P be the current partition. We construct the new currentpartition Q so that it respects P while QA remains a re�nement ofQ.For each state q in Q consider the functions fq : Bk ! P de�ned byfq(b) = [�(q; b)]P for all q and b. Now let the equivalence relation �be de�ned as q � q0 , (fq = fq0 ^ [q]P = [q0]P). The new partitionQ then consists of the equivalence classes of �. By de�nition of thefq 's, Q respects P and is the coarsest such partition implying theinvariant.We repeat this process until P = Q.It can be shown that the �nal partition Q is obtained in at most niterations and equals QA. The preceding algorithm is an abstraction of theinitial naive algorithm presented in Section 4.13 of [AHU74].The di�cult step in the above algorithm is the splitting according tothe functions fq . However, we can here elegantly take advantage of theshared BDD representation. The idea is to construct a BDD representingthe functions fq for each state. We represent a partition of the states Q, byassociating with each state q 2 Q a block id identifying its block. The BDDfor fq is calculated by performing a unary apply on the collection of sharedBDDs, where the value calculated in a leaf is the block id. By a suitablegeneralization of the standard algorithm, it is possible to carry out thesecalculations while visiting each node at most once (assuming that hashingtakes constant time). Thus the split operation requires time O(max(n;m)).Since we use shared BDDs, we may use the results of the apply operationsdirectly as new block ids.

18 Henriksen et al.The splitting step without hashingAn alternative implementation of the splitting step is possible thatachieves the same worst case time bound O(max(n;m)) without hashing.It is instructive to �rst consider the case in which the shared BDDs are re-duced only by eliminating redundant nodes but not by eliminating redun-dant tests. In this case the BDDmay be regarded as an acyclic deterministicautomatonD whose states are the BDD nodes, and whose alphabet is zeroand one. Consider a partition P 0 of the BDD nodes de�ned by equivalenceclasses of the following relation. Two BDD leaves are equivalent i� theirnext states belong to the same block of partition P. All decision nodes ofthe BDD are equivalent. The coarsest stable partition Q0 that respects P 0for automaton D can be solved in O(m) worst case time by Revuz [Rev92]and Cai and Paige [CP94], Sec. 3.4. Finding the equivalence classes of s-tates in Q that point to BDD roots belonging to the same block of Q0 (i.e.,�nding the coarsest partition Q that respects P) solves the splitting stepin the original automaton in time O(n).In the case of fully reduced BDDs, the splitting step is somewhat harder,and a closer look at the BDD structure is needed. For each decision nodev, v:index represents a position in a string of length k such that v:index <(v:lo):index ^ v:index < (v:hi):index. For each BDD leaf v we have v:index= k, and let v:lo = v:hi be an automaton state belonging to Q. For eachBDD node v we de�ne function fv : Bk ! P much like the way functions fqwere de�ned earlier on automaton states. For each nonleaf v, fv is de�nedby the rule fv(b) = fv:lo(b) if bv:index = 0; fv(b) = fv:hi(b) if bv:index = 1.For each leaf v, fv is a constant function that maps every argument intoan element (i.e., a block) of partition P.If q 2 Q is an automaton state that points to a BDD root v, then, clearly,fq = fv. It is also not hard to see that for any two nonleaf BDD nodes vand v0, fv = fv0 i� either of the following two conditions hold:1. v:index = v0:index ^ fv:hi = fv0:hi ^ fv:lo = fv0:lo, or2. fv:hi = fv:lo = fv ^ v:hi = v0.This leads to the more concrete equivalence relation � on BDD nodesde�ned as v � v0 i� fv = fv0 i� either,1. v:index = v0:index = k ^ [v:lo]P = [v0:lo]P , or2. v:index = v0:index < k ^ v:hi � v0:hi ^ v:lo � v0:lo, or3. v:index < k ^ v:lo � v:hi � v0.Note that two BDD nodes of di�erent index can be equivalent only bycondition (3). Note also, that we can strengthen condition (2) with the

1. Mona: Monadic Second-Order Logic in Practice 19additional constraint v:hi 6� v:lo without modifying the equivalence rela-tion. These two observations allow us to construct the equivalence classesinductively using a bottom-up algorithm that processes all BDD nodes ofthe same index in descending order, proceeding from leaves to roots. Thesteps are sketched just below.1. In a linear time pass through all of the BDD nodes, place each nodein a bucket according to its index. An array of k + 1 buckets can beused for this purpose.2. Next, distribute the BDD leaves (contained in the bucket associatedwith index k) into blocks whose nodes all have lo successors thatbelong to the same block of P. This takes time proportional to thenumber of leaves.3. For j = k�1; :::; 0 examine each node v with v:index = j. Both nodesv:lo and v:hi have already been examined, and have been placed intoblocks. Hence, a streamlined form of multiset sequence discrimination[CP94] can be used to place v either in an old block (according tocondition (3)) or a new block (according to condition (2)) for nodeswhose children belong pair-wise to the same old block.The preceding algorithm computes the equivalence classes as the �nalset of blocks in O(m) time. As before, we can use these equivalence classesto �nd the coarsest partition Q that respects P, which solves the splittingstep in the original automaton, in time O(n). Thus, the total worst-casetime to solve the splitting step is O(max(n;m)) (without hashing).In an e�cient implementation of �nite-state automaton minimization,when the splitting algorithm above is is performed repeatedly, we onlyneed to perform the �rst step of that algorithm (i.e., sorting BDD nodesaccording to index) once. Thus, the full DFA minimization algorithm runsin worst case time O(max(n;m)n) without hashing.BDD reduction without hashingSieling and Wegener[SW93] were the �rst to compress an arbitrary BDDinto fully reduced form in linear time. Their result depended on a radixsort, which is closely related to the multiset discrimination technique thatwe use. However, their algorithm needs to maintain integer representationsof BDD nodes, and it utilizes two arrays of size m. We can show howour algorithm just described can be modi�ed to fully reduce an arbitraryBDD in worst case time linear in the number of BDD nodes (withouthashing), but with expected auxiliary space k times smaller than Sielingand Wegener's algorithm.Let Q0 be the partition of BDD nodes produced by the algorithm. Thestates of the reduced BDD are the blocks in Q0. For each block B 2 Q0,

20 Henriksen et al.B:index is the largest index of any BDD node contained in B. Let v0 beany node belonging to B of maximum index. If v0 is a BDD leaf, then B isa leaf in the reduced BDD (i.e., B:index = k), and B:lo = B:hi = v0:lo.Otherwise, B:lo = [v0:lo]Q0 and B:hi = [v0:hi]Q0 . The hi and lo successorblocks can be determined during the multiset sequence discrimination passwhen a new block is �rst created. The index of the �rst node placed in anewly created block is the index for that block.What distinguishes our algorithm from that of Sieling and Wegener isthat our buckets in steps (2) and (3) are associated with actual BDD nodes(inside the main BDD data structure). Their buckets are associated withcomponents of two auxiliary arrays of size m each. If we replaced eachequivalence class by a single witness (as they do) each iteration of step(3), then our auxiliary space would be bounded by the maximum numberof BDD nodes that have the same index. If BDD nodes were uniformlydistributed among indexes, then this number is m=k, which would give usa k-fold advantage in auxiliary space over their algorithm. We expect aminor constant factor advantage in time as well, because our BDD nodesare represented by their locations instead of by computed integer values,and because we avoid array access in favor of less expensive list and pointerprocessing.Work is in progress for exploring the �processing the smaller half� ideafound in e.g. [PT87]. We should mention, however, that the current imple-mentation of the minimization algorithm in practice seems to run fasterthan the procedures for constructing product and subset automata.6.5 MONA featuresMONA is enriched by facilities similar to those of programming languages.PredicatesThe user may declare predicates that can later be instantiated. For ex-ample, if the predicate P is declared by P (X;x) = (0 = x ^ x 2 X),then P can be instantiated as the formula P ({Y; p� 1) with the obviousmeaning.LibrariesMONA supports creation of user-de�ned libraries of predicates.Separate translationMONA automatically stores the automaton for a translated predicate. Ifthere are n free variables, then there may be up to n! di�erent automatacorresponding to di�erent orderings of variables in the BDD representation.

1. Mona: Monadic Second-Order Logic in Practice 216.6 To be doneIn the current implementation, variables are ordered in their BDDs accord-ing to the level of syntactic nesting in the formula; i.e. innermost variablesreceive the highest index. This strategy is obviously often far from optimaland we are working on implementing heuristics to improve variable order-ing. Another orthogonal optimization strategy is to reorder the productconstructions by heuristics. In both cases, however, it is not hard to seethat �nding optimal orderings is NP-complete.AcknowledgementsWe are thankful to Vladimiro Sassone for comments on an earlier version,and to Andreas Pottho� for his advice based on the M2L implementationat the University of Kiel.7 References[AHU74] A. Aho, J. Hopcroft, and J. Ullman. Design and Analysis ofComputer Algorithms. Addison-Wesley, 1974.[BK95] D. Basin and N. Klarlund. Hardware veri�cation using monadicsecond-order logic. Technical Report RS-96-7, BRICS, 1995. Toappear in CAV '95 Proceedings.[Bry86] R.E. Bryant. Graph-based algorithms for boolean function ma-nipulation. IEEE Transactions on Computers, C-35(8):677�691,Aug 1986.[Bry92] R. E. Bryant. Symbolic Boolean manipulation with orderedbinary-decision diagrams. ACM Computing surveys, 24(3):293�318, September 1992.[BSV93] F. Balarin and A.L. Sangiovanni-Vincentelli. An iterative ap-proach to language containment. In Computer Aided Veri�ca-tion, CAV '93, LNCS 697, pages 29�40, 1993.[CP94] J. Cai and R. Paige. Using multiset discrimination to solvelanguage processing problems without hashing. to appearTheoretical Computer Science, 1994. also, U. of Copen-hagen Tech. Report, DIKU-TR Num. D-209, 94/16, URLftp://ftp.diku.dk/diku/semantics/papers/D-209.ps.Z.[CR94] M-M Corsini and A. Rauzy. Symbolic model checking and con-straint logic programming: a cross-fertilisation. In 5th. Europ.Symp. on Programming, LNCS 788, pages 180�194, 1994.

22 Henriksen et al.[GF93] A. Gupta and A.L. Fisher. Parametric circuit representation us-ing inductive boolean functions. In Computer Aided Veri�cation,CAV '93, LNCS 697, pages 15�28, 1993.[Hop71] J. Hopcroft. An n logn algorithm for minimizing states in a �niteautomaton. In Z. Kohavi and Paz A., editors,Theory of machinesand computations, pages 189�196. Academic Press, 1971.[JJK94] J. Jensen, M. Jørgensen, and N. Klarlund. Monadic second-orderlogic for parameterized veri�cation. Technical report, BRICS Re-port Series RS-94-10, Department of Computer Science, Univer-sity of Aarhus, 1994.[KM89] B. Kurshan and K. McMillan. A structural induction theorem forprocesses. In Proc. Eigth Symp. Princ. of Distributed Computing,pages 239�247, 1989.[PT87] R. Paige and R. Tarjan. Three e�cient algorithms based onpartition re�nement. SIAM Journal of Computing, 16(6), 1987.[Rev92] D. Revuz. Minimisation of acyclic deterministic automata inlinear time. Theoretical Computer Science, 92(1):181�189, 1992.[RS93] J-K. Rho and F. Somenzi. Automatic generation of network in-variants for the veri�cation of iterative sequential systems. InComputer Aided Veri�cation, CAV '93, LNCS 697, pages 123�137, 1993.[Ste93] M. Steinmann. Übersetzung von logischen Ausdrücken in Bau-mautomaten: Entwicklung eines Verfahrens und seine Implemen-tierung. Unpublished, 1993.[SW93] D. Sieling and I. Wegener. Reduction of OBDDs in linear time.IPL, 48:139�144, 1993.[Tho90] W. Thomas. Automata on in�nite objects. In J. van Leeuwen,editor, Handbook of Theoretical Computer Science, volume B,pages 133�191. MIT Press/Elsevier, 1990.

