Mona & Fido: The Logic-Automaton
Connection in Practice

Nils Klarlund

AT&T Labs—Research
Florham Park, NJ

klarlund@research.att.com

Abstract. We discuss in this paper how connections, discovered almost
forty years ago, between logics and automata can be used in practice.
For such logics expressing regular sets, we have developed tools that
allow efficient symbolic reasoning not attainable by theorem proving or
symbolic model checking.

We explain how the logic-automaton connection is already exploited in
a limited way for the case of Quantified Boolean lLogic, where Binary
Decision Diagrams act as automata. Next, we indicate how BDD data
structures and algorithms can be extended to yield a practical decision
procedure for a more general logic, namely WS1S, the Weak Second-
order theory of One Successor. Finally, we mention applications of the
automaton-logic connection to software engineering and program verifi-
cation.

1 Introduction

It was discovered almost forty years ago that automata make a handy mathemat-
ical tool for the understanding of certain weak logics of arithmetic. Much later,
automata have been used extensively for decision-theoretic problems in temporal
logics. But in practice, the success of verification methods, especially as seen
in the area of hardware, relies on calculations that are based on BDDs (Binary
Decision Diagrams) [5], not general automata. For example, the model-theoretic
approaches allow a satisfiability relation for a transition system, represented by
a BDD, and a temporal logic property to be calculated efficiently [23]. In fact,
BDDs allow sometimes spectacular compression of symbolic information and
shortening of computational work. Therefore, this approach to model-checking
1s sometimes called symbolic.

BDDs are a special kind of deterministic automata that accept finite sets.
A BDD can be reduced to a canonical or minimum representation in linear
time. This property is crucial to symbolic reasoning, since even slight deviations
from minimum representations in a serious of computations lead to exponential
growth.

Automata in general accept a much larger class of languages than BDDs,
namely the regular sets. So, the succes of symbolic model-checking, now rou-
tinely used in industry for hardware verification, does not answer the question:



What can we do in a world where automata, not
BDDs, are the principal means of representation?

The aim of the MoNA project at BRICS, University of Aarhus, is to shed light on
this question by exploiting the original logic-automaton connection. The result-
ing computational framework is not a competitor to usual techniques, however,
but promises to offer new and different applications of the symbolic approach.

In this paper, we give a tutorial introduction to the logic-automaton connec-
tion and to 1ts use in practice, as carried out in the MONA project.

In Section 2, we first discuss BDDs and logic-automaton connection for Quan-
tified Boolean Logic. Next, we introduce a more general logic, WS1S, which
corresponds to the class of regular languages—while subsuming a fragment of
arithmetic. We show how automata themselves can be represented using a kind
of BDD. We also mention some related work, where similar automata were in-
troduced.

In Section 3, we outline how we have put together the MoONA decision pro-
cedure for BDD-represented automata. We also mention Fipo, a high-level
language, which integrates many usual programming language concepts with
WSI1S.

In Section 4, we explain applications of MONA to program verification and
software engineering.

2 The logic-automaton connection

The logic-automaton connection can be easily explained, along with the no-
tion of BDDs, if we look at Boolean Logic. Consider a Boolean function
$(x1, 20, 23) = 1 V (x2 & x3), where 1, x9, £3 are propositional variables. The
BDD representation of ¢ is an acyclic, directed graph whose nodes are labeled
with variable names. The representation is contingent on a choice of variable
ordering. If we choose the ordering to be 1, xs, x3, then the BDD is the graph
shown in Figure 1. This graph describes the function ¢ according to the follow-
ing recipe. To find the value of ¢ for a given truth assignment, start in the root.
For each internal node, shown as a circle and labeled with a variable z, go to the
successor node along the edge marked 0 or 1 according to the value of z as given
by the truth assignment. When a leaf, shown as a square, has been reached, its
value (0 or 1) is the value of the function.

The BDD is a canonical structure that can be derived from a natural min-
imum, deterministic automaton. This automaton is defined by its language,
which—for the example ¢—we take to consist of all satisfying truth assignments
regarded as strings of length 3, see Figure 2. Compared to the BDD, this graph
contains two extra nodes, shown in the shaded area and labeled #4 and x3. These
nodes are essentially equivalent to the leaf below them in the sense that they
do not contribute any information as to the truth value of the function. The
canonical BDD is defined from the canonical automaton by removing all such
nodes. More precisely, any node whose two successors are identical is removed,



Figure 2. A simple automaton

while all its incoming edges are directed to the common successor. The tech-
nique is known as path compression. It can be shown that the resulting graph
is independent of the order in which the nodes are removed. Thus, the BDD is
itself canonical, and the operation can be summarized:

BDD = canonical automaton +
path compression




BDD properties

Since BDDs are directed graphs, they can be stored efficiently in a computer.
Each internal node 1s hashed to a canonical address according to the name of its
variable and the addresses of its two successors.

It can be shown, see[5], that there are O(n - m) algorithms constructing the
BDDs for Boolean operations like ¢ A or ¢ Vi, where ¢’s and ¥’s BDDs have
size n and m, respectively. These algorithms are formulated as a simultaneous
recursive descent in the BDDs for ¢ and ¢ that directly (without an additional
minimization phase) constructs the canonical BDD for the resulting Boolean
function. Also, existential quantification 3z : ¢ can be carried out in time O(n),
and negation —¢ can be done in O(1) time.

Quantified Boolean Logic

The algorithms above form an exponential time decision procedure for Quantified
Boolean Logic. This application of the logic-automaton connection has already
found widespread use in hardware verification. Path compression turns out to
be essential to the success of BDDs, although the theoretical savings over the
canonical automaton representation can be shown to be only logarithmic [22].

Weak Second-order Theory of One Successor

The logic-automaton connection can be generalized to automata that accept
general, infinite regular languages. The logics corresponding to regular languages
are much more expressive than QBL. They contain fragments of arithmetic and
allow quantification over finite sets of numbers. There are a couple of ways of
formulating such a logic. Here, we will look at a very natural formalism, whose
not-so-natural name is the Weak Second-order theory of 1 Successor, or WS1S.
Its syntax consists of:
— First-order terms ¢:
e the constant 0, variables p; and
e successor terms ¢’ + 1, where ' is a first-order term.
— Second-order terms 7"
o the constant (), variables P; and
o set terms T UT', T'NT", T'\T", where T" and T" are set terms.
— Formulas ¢:
e term comparisonst =t/ t <t/ T =1" t € T}
e propositional combinations ¢’ A¢”, ¢’V ¢" ¢’ = ¢”, and ¢’ < ¢, where
¢" and ¢” are formulas;
e first-order quantification dp : ¢', Vp : ¢’; and
e second-order quantification AP : ¢/, VP : ¢'.
Note that there is no set-theoretic complement operation. The semantics is very
simple:
— First-order terms are interpreted as natural numbers, and
— second-order terms are interpreted as finite sets of natural numbers.



Example: even numbers We can express that the second order-variable P
denotes a finite set of all even numbers less than some unbounded constant:

P=9
v 0eP A3 eP:
Yge Pig<y
AYg<p :(¢ePeq+1¢P)))

Example: representing arrays Using WS1S, we can represent data struc-
tures that cannot be modeled in Boolean Logic. For example, let us consider a
variable length array containing numbers in {0,...,3}. Since its length is un-
bounded, such an array cannot be represented by any finite set. But in WS1S,
we can use two second-order variables ()1 and ()5 to encode values of the array
and a first-order variable ¢ to denote its length. For example, we could make a
convention that position p contains

~0iffp<qg A (péQiAp¢Qa);

- 3iff p<g A (pEQLApEQR:).

In this way, an interpretation of the variables ¢, ()1, and )2 denotes an array.

For example, ¢ =5, Q1 = {1,3}, @2 = {2,3} denotes the array (0, 1,2,3,0).

Example: Presburger Arithmetic Since natural numbers can be viewed as
finite bit-strings, that is, as finite sets, we can interpret first-order arithmetic
without multiplication, but with addition, in WS1S. This theory is called Pres-
burger Arithmetic.

Interpretations viewed as finite strings

The logic-automaton connection follows rather naturally once we understand
how interpretations can be regarded as finite strings. As an example, consider
WSIS formula ¢ = P = @ and an interpretation P = {1,3}, @ = {2,3}. This

interpretation could be represented as a string over the alphabet B?:

P[o[T[o[T[0[0
Qlolo[1]1[ofo
0(1(2]1314|5

If this string is called w, then we say that value of P is described along the first
track of w and that @) is described along the second track. Note that w ¢. And,
note that many w’ denote same interpretation as w, since an arbitrary number
of the letter (8) may be appended to w without changing the interpretation that
it denotes.

The above example does not explain how first-order variables are to be han-
dled in the setting of strings. There i1s a straightforward solution: rewrite the



formula while treating first-order variables as second-order variables whose val-
ues are restricted to be singletons.

Now, a formula ¢ naturally defines a language L(¢) = {w | wF ¢} over the
alphabet B* | where k is the number of variables described (so k is at least the
number of free variables in ¢). Tt is not hard to prove by induction that all L(¢)
are represented by DFAs (deterministic, finite-state automata):

— Simple formulas like p = ¢ + 1 can be mapped to small automata.

— Negation is handled by automaton complementation, since L(=¢) = CL(#).

— Conjunction can be handled by an automaton product, since L(¢ A ¢) =
L(8) N L().

— Existential quantification is a little harder, but it turns out that L(IP : ¢) =
E(L(¢)/ L"), where

e the variable P is described along the ith track;

e E'(L) is the projection of L that removes the ith track from L, that is,
EY(L) = {w | Jw’ € L : w is obtained from w’ by deleting the ith track};

e L/L' denotes the right-quotient of L by L’; and

o L' = {ucB|jth track is all 0 for j # i}.

Projection results in a non-deterministic automaton, which can be converted
back into a DFA by a subset construction. The DFA for the right-quotient
is calculated by a backwards traversal from the final states.

From these observations, it follows that

L(¢) is regular, and an automaton A recognizing
L(¢) is computable from ¢.

Biichi (1960), Elgot (1961) [6, 8]

Unfortunately, “computable” is bounded from below by an unbounded stack
of exponentials. In fact, for any translation ¢ — A with L(¢) = L(A), the
following holds:

e
92" } e¢-n 1s a lower bound for A’s state space,

Meyer (1972) [24, 30]

where n is the length of the formula and ¢ is some constant.

This bound is discouraging! But of course, it does not by itself preclude that
the logic may be useful. Logics with worse complexity—such as Turing-complete
formalisms—have been used as programming languages and in theorem proving.
It is worrisome, however, that the alphabet size for automata that represent
formulas with k free variables necessarily is 2¥. This exponential explosion can
be countered by thinking of automata as representing languages over I8, where
letters in a string u over B are laid out consecutively to form a string over I



that is & times longer than the length of u. Such a view, however, does not give
us the advantages of path compression in BDDs.

Let us consider using BDDs to represent automata. Automata are finite
objects, and as such are encodable. For example, a single BDD could encode
the set

{(r,a,s) | r 4 st

where r and s are states and @ € B* is a letter. Such a representation requires
us to choose an encoding of states. Indeed, this is the traditional approach in
symbolic model checking, where a state space of size N is encoded with a number
M of Boolean variables logarithmic in N. Usually, each program variable is
directly encoded using a small number of BDD variables. Since the transition
from one state to another usually modifies only a few components of the state
space description, an interleaving of the BDD nodes describing the old and new
states often results in BDDs that are only linear or polynomial in size of M [23].
So, if the state space of automata in our decision procedure could be encoded
similarly, a formula with % logical variables could be described by a single BDD
with 2 - M + k variables.

Unfortunately, the representation just suggested is fundamentally unsuited,
it seems, for carrying out essential operations on automata such as minimization.
In fact, the representation itself is far from canonical, since there are no rules
prescribing the encoding of states. Moreover, it is difficult to imagine how a
minimization procedure could be formulated that would directly construct a
canonical encoding of the minimum state space even if such an encoding was
devised.

In addition, it is also hard to imagine how a subset construction could be
efficiently formulated based on the single-BDD representation.

Thus, the representation of a transition system by a single BDD is not suit-
able for automaton-centered calculations. By a BDD-represented automaton,
we must think of a data structure that efficiently supports all the operations
characteristic of automata.

BDD-represented automata

A rather simple generalization of BDDs results in a suitable representation: a
canonical graph (up to naming of states and up to variable ordering) arises if
shared, multi-terminal BDDs are used. These BDDs have multiple leaves, one
corresponding to each state. Each state, in turn, 1s associated with such a BDD,
and sharing means that isomorphic subtrees are identified. For example, the
property “there are more than one element in the intersection of X and Y,” or

Ip,q:pFqgApEXNY AgeEXNY

can be represented by the automaton shown in Figure 3; here each state r, s, or
t is described in an array with information about whether it is final and with a
pointer to a BDD node defining its transition function. This automaton accepts

the regular language (X' — G))* . G) (X = G))* . G) - X% where ¥ =57,



Initial

Final? no no yes

BDD node |

SRS
%o\@
VAN PZENN

r s 1

Figure 3. BDD-represented automaton

This works for trees, too

WSI1S can easily be generalized to express regular sets of labeled, finite trees.
The resulting logic, WS2S, Weak Second-order theory of 2 Successors, deals
with elements and finite subsets of the infinite, binary tree:

(041)* = {c,0,1,00,01,10,11,000, ...}

The logic-automaton connection generalizes to WS2S [7, 31], where the appro-
priate automaton concept is a deterministic, bottom-up tree automaton. Its
transition function determines for each pair (r,s) of states and each letter a
what the next state is. Tree automata are for that reason at least quadratically
more difficult to work with in practice than DFAs. We have formulated data
structures and algorithms for such automata in [3].

But S2S seems intractable in practice

The restriction to quantification over just finite subsets of the infinite binary
tree can be removed while keeping decidability of the formalism, which is then
simply named S2S. This is Rabin’s result [28], which in essence boils down
to a complicated question about the complementation of automata on infinite
trees; see [32]. It seems unlikely that S2S can be dealt with in practice; no
representation with canonicity properties is even known for S2S. For S1S,; the
situation is slightly brighter thanks to the existence of syntactic congruences,
such as the ones discussed in [1, 17, 26, 29, 34].



Monadic second-order logic (M2L) on finite strings

The regular sets can also be described by a logic for which there is a one-to-
one relationship between strings over B and interpretations (not a many-to-one
relationship as with WS1S). Under this view, a string determines a number n,
the length of the string, and the successor operation +1 is interpreted modulo
n. In addition, second-order variables are restricted to range only over subsets
of {0,...,n — 1}. This logic can be called the Monadic Second-order Logic on
Finite Strings or M2L(Str). (Apparently, it is not as strong as WSIS in the
sense that there is no obvious way of encoding Presburger Arithmetic in it.)
The earlier versions of our decision procedure were written for this logic.

Related work

Fisher and Gupta [12] were apparently the first to use BDD-represented au-
tomata as a mechanism for representing regular languages over large alphabets.
Their automaton concept is slightly different from ours since it was introduced as
a representation for linear inductive functions, a notation for regular languages.
In [11], their approach is generalized to tree languages and to problems beyond
the regular sets.

Automata on large alphabets are also implicit in work on the relationship
between p-adic numbers and circuits [33].

Work at the University of Kiel [27] led to an implementation of a decision pro-
cedure for M2L on finite trees, but it did not address the problem of large alpha-
bets. Neither did the recent decision procedure implementations for WSI1S [9]
and WS2S [25]. Techniques similar to ours have been used in an M2L(Str)
tool [15] and in an application to languages for describing parameterized sys-
tems [16]. Also, the decision procedure for Presburger arithmetic reported in [4]
is based on automata over large alphabets.

3 Mona & Fipo Tools

In this section, we discuss the automata-based tools that are under development
at the University of Aarhus. We have at several levels tried to optimize perfor-
mance as much as possible, and as a result our MoNa tool, which implements
decision procedures for WS1S and WS2S, has become orders of magnitude faster
since we started [13].

Data structures and algorithms in practice

Usually, BDDs are stored in a single global address space indexed by hash values
as previously noted. However, it appears unlikely in the case of BDD-represented
automata that there would be much sharing of nodes across different automata.
This 1s because the state numbering is arbitrary, so isomorphic sub-automata
are unlikely to be identified by the hashing. Thus, we have chosen to use a



separate, contiguous address space for each automaton. Consequently, BDD
nodes of an automaton can be garbage collected in constant time as soon as
the automaton is not needed any longer. Also, we have chosen to represent
BDDs nodes directly in the hash table, instead as separately allocated records
pointed to buy entries in the hash table. This scheme creates substantially fewer
hardware cache misses than traditional implementations. As a result our BDD
package runs approximately six times faster than a widely used package [20].

Algorithms for DFAs A product algorithm is easy to describe and imple-
ment. Also, an O(n?) minimization algorithm is easy to implement, although
its quadratic running time becomes a problem with bigger automata, where we
often see that minimization may take ten times longer than the time to construct
the automaton. (An O(n -logn) algorithm exists [18], but has not been imple-
mented.) The subset construction is considerably more difficult to implement
efficiently. Curiously, it turns out that the subset construction is usually very
well-behaved in practice, often resulting in a subset automaton with fewer states
than the original automaton. Some theoretical arguments why this is the case
can be found in [2].

Algorithms for tree automata To address the inherent quadratic nature
of the transition table representation of tree automata, we have developed a
default representation that sometimes can cut the representation from quadratic
to linear. Also, we have devised a notion of partitioned tree automaton, which
in principle may yield exponential savings [3].

Fmpo: a high-level version of M2L

From a programmer’s point of view, WSI1S is a kind of assembly language about
strings of bits. Therefore, we have developed a a logical formalism, Fipo [21],
which combines WS1S and WS2S with programming language concepts such
as records, enumerated types, recursive data types, simple polymorphims, and
unification.

A recursive data type is a convenient way to express a class of labeled trees.
For example, binary trees, each of whose nodes is red or black and contains a
value in {1,...,10}, can be expressed as a type Tree:

type Tree = red,black(val: Range,
left,right: Tree)
leaf;
type Range = [1..10];

Two trees, x and y, of type Tree are declared as
tree x,y : Tree;

Then a property such as “there are nodes with different colors somewhere in
trees x and y” can be expressed as a formula:



d pos p, q: x, ¥y.
P #Z q A read(p) # read(q)

Here, read is a function that designates the color of a node, and p, q: x, y
denotes that p and q range over positions in trees x and y.

The FIDO compiler translates FIDO programs into the MoONA syntax for
WSI1S or WS2S. The resulting formulas are often very big, sometimes on the
order of 10° characters. Therefore, we have implemented symbolic simplification
of WSI1S formulas in the front-end of MoNA. These reduction techniques yield
substantial simplifications of the code before it is handed to the back-end, which
executes the automata-theoretic calculations.

In summary, FIDO is a domain-specific language for the expression of regular
sets of strings and trees. It is a programming lanuage based on logic, but not a
traditional “logic programming” language, since in contrast to resolution-based
languages, FiDo

— 1s a quantificational logic not restrained to Horn clauses;
— but it is not a Turing-complete language.

4 Applications

We mention here two applications, where other symbolic methods are unlikely
to be as efficient as the use of automata-based reasoning.

Decidable program logic for pointers

In our first application, taken from [14], we indicate how FIDO can be used as an
assertional formalism about pointers and linked lists in programming languages.
To us, a typical store looks like:

List variables

Pointer variable Free nodes



Here, x,y, and z are list variables that denote linked lists, and p is a pownter
variable, which points to some node in the store. There are also free nodes
available. So, stores consist of a fixed number of linked lists, each of arbitrary
size; a fixed number of variables denoting nodes in the store; and a number of
free nodes. The set of all such stores can be modeled by an infinite collection of
finite sets. For example, we can in one FiDo formula describe all possible stores,
where x,y, and z are linked lists and where p points to a node in a list.

Moreover, it can be shown that the precise semantics of basic blocks (loop-
free code) can be encoded as predicate transformers on Fipo formulas. (This is
possible only since we have restricted all values in records to be finite domain.)

FiDo extended with regular expressions also serves as a means of formulating
program assertions. From putting these observations together, we may obtain a
decidable fragment of Floyd-Hoare program logic.

An example in Pascal

Let us declare a type Item of list elements that contains a tag field with value
red or blue:

type Color = (red,blue);
List = "“Item;

Item = record

case tag: Color of
red,blue: (next: List)

end;

We would like to verify that the program below calculates a well-formed list
z. The program merges the lists x and y, but it is certainly far from evident
that the pointer manipulations expressed really do result in a list!

program zip;
{data}var x,y,z: List; {pointer}var p,t: List;

begwn
vf x=nil then
begwn
ti=x; x:=y; y:=t
end;

z:=nil; p:=nal;
while x<>nil do

begwn
vf z=nil then
begwn
Zi=X; pi=X;
end
else

begwn



p~ .next:=x;
p:=p~ .next
end;
X:=Xx".next;
p~ .next:=nzl;
vf y<>nal then
begwn
ti=x; x:=y; y:=t
end
end
end.

To verify the program, we need to state a property about the loop. Let us use
the property

Invariant: x is only empty if y is empty, and p points to the last element
of z.

So, we annotate the while-loop with the the property transcribed into a logical
assertion:

{ (x=nil => y=nil)
& z<next*>p & (z<>nil => p~.next=nil)}

The decision procedure verifies that this assertion is preserved under one iter-
ation of the loop. Had we made a mistake so that the assertion was not an
invariant, we would automatically have gotten a counter-example.

Design constraints for CORBA

In our second application, taken from [19], we propose to use FIDO as a for-
malism for restricting parse trees. Such restrictions are useful when it is known
that source code must satisfy specific requirements imposed by the platform or
software environment. For example, a system architect may have formalized the
constraints of the CORBA interface [10]. One such constraint is that operation
arguments of CORBA interfaces cannot denote object values; more precisely,

If x 1s an operation argument node in the syntar tree of a CORBA object
type, then the node y below denoting its type cannot represent an object

type.

Formally, such a statement could be written as:

CONSTRAINT corba FOR
Object TypeSpecification IS
Y x: Argument. root < x = Jy: Type.
xay A= OT(y);
END



Here, ObjectTypeSpecification, Argument, and Type are production names of the
syntax, and OT(y) is a predicate that evaluates to true if y is a node that denotes
an object type. The expression root denotes the node of type Object TypeSpeci-
fication to which the category applies, and x <y holds when node x is the parent
of node y.

The programmer can annotate object type specifications in the source code
with the corba constraint. In a conformance checking phase, tree automata
corresponding to the constraints are run on the syntax tree, and constraints
that are not valid are flagged.

The advantage of FIDO, compared to other formalisms for specifying con-
straints on trees, is that there is no requirement to precisely formulate how infor-
mation flows up and down the tree in terms of attributes or recursive procedures.
Instead, positions can be referred to and compared as first-order variables.

Getting MoNa

The first official version of MONA was released in the Fall of 1997. It can be
obtained from http://www.brics.dk/~mona, where also additional references
and papers are available.

Acknowledgments

Thanks to the referees for many helpful comments.

References

1. A. Arnold. A syntactic congruence for rational w-languages. Theoretical Computer
Science, 39:333-335, 1985.

2. D. Basin and N. Klarlund. Beyond the finite in hardware verification. Submitted
for publication. Extended version of: “Hardware verification using monadic second-
order logic,” CAV 95 LNCS 939, 1996.

3. M. Biehl, N. Klarlund, and T. Rauhe. Algorithms for guided tree automata. In
First International Workshop on Implementing Automata, WIA 96, Lecture Notes
in Computer Science, 1260. Springer Verlag, 1996.

4. A. Boudet and H. Comon. Diophantine equations, presburger arithmetic and finite
automata. In Trees and algebra in programming - CAAP, volume 1059 of LNCS,
1995.

5. R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing surveys, 24(3):293-318, September 1992.

6. J.R. Buchi. Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundl. Math., 6:66-92, 1960.

7. J. Doner. Tree acceptors and some of their applications. J. Comput. System Sci.,
4:406-451, 1970.

8. C.C. Elgot. Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc., 98:21-52, 1961.

9. J. Glenn and W. Gasarch. Implementing WS1S via finite automata. In Automata
Implementation, WIA °96, Proceedings, volume 1260 of LNCS, 1997.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Object Management Group. The Common Object Request Broker: architecture
and specification, 1995 July. revision 2.0.

A. Gupta and A.L. Fisher. Parametric circuit representation using inductive
boolean functions. In Computer Aided Verification, CAV 93, LNCS 697, pages
15-28, 1993.

A. Gupta and A.L. Fisher. Representation and symbolic manipulation of linearly
inductive boolean functions. In Proceedings of the IFEE International Conference
on Computer-Aided Design, pages 192-199. [EEE Computer Society Press, 1993.

J.G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, B. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. In Tools and Algo-
rithms for the Construction and Analysis of Systems, First International Work-
shop, TACAS ’95, LNCS 1019, 1996.

J.L. Jensen, M.E. Jgrgensen, N. Klarlund, and M.I. Schwartzbach. Automatic
verification of pointer programs using monadic second-order logic. In SIGPLAN
97 Conference on Programming Language Design and Implementation,, pages 226—
234. SIGPLAN, 1997.

P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. Mosel: a flexible toolset
for Monadic Second-order Logic. In Computer Aided Verification, CAV "97, Pro-
ceedings, LNCS 1217, 1997.

Y. Kesten, O. Maler, M. Marcus, and E. Shahar A. Pnueli. Symbolic model
checking with rich assertional languages. In O. Grumberg, editor, Computer Aided
Verification, CAV 97, volume 1254 of LNCS, 1997.

N. Klarlund. A homomorphism concept for w-regularity. In Proc. of Computer
Science Logic, 1994. To appear.

N. Klarlund. An nlogn algorithm for online BDD refinement. In O. Grumberg,
editor, Computer Aided Verification, CAV ’97, volume 1254 of LNCS, 1997.

N. Klarlund, J. Koistinen, and M. Schwartzbach. Formal design constraints. In
Proc. OOPSLA ’96, 1996.

N Klarlund and T. Rauhe. Bdd algorithms and cache misses. Technical report,
BRICS Report Series RS-96-5, Department of Computer Science, University of
Aarhus, 1996.

N. Klarlund and M. Schwartzbach. A domain-specific language for regular sets
of strings and trees. In Proc. Conference on Domain Specific Languages. Usenix,
ACM SIGPLAN, 1997.

H-T. Liaw and C-S. Lin. On the OBDD-representation of general Boolean func-
tions. IEEE Trans. on Computers, C-41(6):661-664, 1992.

Ken McMillan. Symbolic Model Checking. Kluwer, 1993.

A.R. Meyer. Weak monadic second-order theory of successor is not elementary
recursive. In R. Parikh, editor, Logic Colloquium, (Proc. Symposium on Logic,
Boston, 1972), volume 453 of LNCS, pages 132-154, 1975.

F. Morawietz and T. Cornell. On the recognizability of relations over a tree defin-
able in a monadic second order tree description language. Technical Report SFB
340, Seminar fur Sprachwissenschaft Eberhard-Karls-Universitat Tiibingen, 1997.

L. Staiger O. Maler. On syntactic congruences for omega-languages. Theoretical
Computer Science, 183:93-112, 1997.

A. Potthoff. Project to implement monadic-second order logic on finite trees.
Unpublished., 1994.

M.O. Rabin. Decidability of second-order theories and automata on infinite trees.
American Mathematical Society, 141:1-35, 1969.

B. Le Sac. Saturating right congruences. Informatique Théorique et Applications,
24:545-560, 1990.



30

31.

32.

33.

34.

L. Stockmeyer. The complexity of decision problems in automata theory and logic.
PhD thesis, Dept. of Electrical Eng., M.I.T., Cambridge, MA, 1974. Report TR-
133.

J.W. Thatcher and J.B. Wright. Generalized finite automata with an application
to a decision problem of second-order logic. Math. Systems Theory, 2:57-82, 1968.
W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 133-191. MIT Press/Elsevier,
1990.

Jean E. Vuillemin. On circuits and numbers. TEFE Transactions on Computers,
43(8):868-879, 1994.

T. Wilke. An algebraic theory for regular languages of finite and infinite words.
Int. J. of Algebra and Computation, 4:447-489, 1993.



