
Mona & Fido: The Logic-AutomatonConnection in PracticeNils KlarlundAT&T Labs{ResearchFlorham Park, NJklarlund@research.att.comAbstract. We discuss in this paper how connections, discovered almostforty years ago, between logics and automata can be used in practice.For such logics expressing regular sets, we have developed tools thatallow e�cient symbolic reasoning not attainable by theorem proving orsymbolic model checking.We explain how the logic-automaton connection is already exploited ina limited way for the case of Quanti�ed Boolean Logic, where BinaryDecision Diagrams act as automata. Next, we indicate how BDD datastructures and algorithms can be extended to yield a practical decisionprocedure for a more general logic, namely WS1S, the Weak Second-order theory of One Successor. Finally, we mention applications of theautomaton-logic connection to software engineering and program veri�-cation.1 IntroductionIt was discovered almost forty years ago that automata make a handy mathemat-ical tool for the understanding of certain weak logics of arithmetic. Much later,automata have been used extensively for decision-theoretic problems in temporallogics. But in practice, the success of veri�cation methods, especially as seenin the area of hardware, relies on calculations that are based on BDDs (BinaryDecision Diagrams) [5], not general automata. For example, the model-theoreticapproaches allow a satis�ability relation for a transition system, represented bya BDD, and a temporal logic property to be calculated e�ciently [23]. In fact,BDDs allow sometimes spectacular compression of symbolic information andshortening of computational work. Therefore, this approach to model-checkingis sometimes called symbolic.BDDs are a special kind of deterministic automata that accept �nite sets.A BDD can be reduced to a canonical or minimum representation in lineartime. This property is crucial to symbolic reasoning, since even slight deviationsfrom minimum representations in a serious of computations lead to exponentialgrowth.Automata in general accept a much larger class of languages than BDDs,namely the regular sets. So, the succes of symbolic model-checking, now rou-tinely used in industry for hardware veri�cation, does not answer the question:

What can we do in a world where automata, notBDDs, are the principal means of representation?The aim of theMona project at BRICS, University of Aarhus, is to shed light onthis question by exploiting the original logic-automaton connection. The result-ing computational framework is not a competitor to usual techniques, however,but promises to o�er new and di�erent applications of the symbolic approach.In this paper, we give a tutorial introduction to the logic-automaton connec-tion and to its use in practice, as carried out in the Mona project.In Section 2, we �rst discuss BDDs and logic-automaton connection for Quan-ti�ed Boolean Logic. Next, we introduce a more general logic, WS1S, whichcorresponds to the class of regular languages|while subsuming a fragment ofarithmetic. We show how automata themselves can be represented using a kindof BDD. We also mention some related work, where similar automata were in-troduced.In Section 3, we outline how we have put together the Mona decision pro-cedure for BDD-represented automata. We also mention Fido, a high-levellanguage, which integrates many usual programming language concepts withWS1S.In Section 4, we explain applications of Mona to program veri�cation andsoftware engineering.2 The logic-automaton connectionThe logic-automaton connection can be easily explained, along with the no-tion of BDDs, if we look at Boolean Logic. Consider a Boolean function�(x1; x2; x3) � x1 _ (x2 , x3), where x1; x2; x3 are propositional variables. TheBDD representation of � is an acyclic, directed graph whose nodes are labeledwith variable names. The representation is contingent on a choice of variableordering. If we choose the ordering to be x1; x2; x3, then the BDD is the graphshown in Figure 1. This graph describes the function � according to the follow-ing recipe. To �nd the value of � for a given truth assignment, start in the root.For each internal node, shown as a circle and labeled with a variable x, go to thesuccessor node along the edge marked 0 or 1 according to the value of x as givenby the truth assignment. When a leaf, shown as a square, has been reached, itsvalue (0 or 1) is the value of the function.The BDD is a canonical structure that can be derived from a natural min-imum, deterministic automaton. This automaton is de�ned by its language,which|for the example �|we take to consist of all satisfying truth assignmentsregarded as strings of length 3, see Figure 2. Compared to the BDD, this graphcontains two extra nodes, shown in the shaded area and labeled x2 and x3. Thesenodes are essentially equivalent to the leaf below them in the sense that theydo not contribute any information as to the truth value of the function. Thecanonical BDD is de�ned from the canonical automaton by removing all suchnodes. More precisely, any node whose two successors are identical is removed,

x1x2x3 x30 10 11 100 0 1Figure 1. A simple BDDPath compressionx1x2x3 x300 11 00 1 100 1x2x30 11Figure 2. A simple automatonwhile all its incoming edges are directed to the common successor. The tech-nique is known as path compression. It can be shown that the resulting graphis independent of the order in which the nodes are removed. Thus, the BDD isitself canonical, and the operation can be summarized:BDD = canonical automaton +path compression

BDD propertiesSince BDDs are directed graphs, they can be stored e�ciently in a computer.Each internal node is hashed to a canonical address according to the name of itsvariable and the addresses of its two successors.It can be shown, see[5], that there are O(n �m) algorithms constructing theBDDs for Boolean operations like �^ or �_ , where �'s and 's BDDs havesize n and m, respectively. These algorithms are formulated as a simultaneousrecursive descent in the BDDs for � and that directly (without an additionalminimization phase) constructs the canonical BDD for the resulting Booleanfunction. Also, existential quanti�cation 9x : � can be carried out in time O(n),and negation :� can be done in O(1) time.Quanti�ed Boolean LogicThe algorithms above form an exponential time decision procedure for Quanti�edBoolean Logic. This application of the logic-automaton connection has alreadyfound widespread use in hardware veri�cation. Path compression turns out tobe essential to the success of BDDs, although the theoretical savings over thecanonical automaton representation can be shown to be only logarithmic [22].Weak Second-order Theory of One SuccessorThe logic-automaton connection can be generalized to automata that acceptgeneral, in�nite regular languages. The logics corresponding to regular languagesare much more expressive than QBL. They contain fragments of arithmetic andallow quanti�cation over �nite sets of numbers. There are a couple of ways offormulating such a logic. Here, we will look at a very natural formalism, whosenot-so-natural name is the Weak Second-order theory of 1 Successor, or WS1S.Its syntax consists of:{ First-order terms t:� the constant 0, variables p; and� successor terms t0 + 1, where t0 is a �rst-order term.{ Second-order terms T :� the constant ;, variables P ; and� set terms T 0 [T 0, T 0 \ T 00, T 0nT 00, where T 0 and T 00 are set terms.{ Formulas �:� term comparisons t = t0, t � t0, T = T 0, t 2 T ;� propositional combinations �0^�00, �0_�00, �0) �00, and �0 , �00, where�0 and �00 are formulas;� �rst-order quanti�cation 9p : �0, 8p : �0; and� second-order quanti�cation 9P : �0, 8P : �0.Note that there is no set-theoretic complement operation. The semantics is verysimple:{ First-order terms are interpreted as natural numbers, and{ second-order terms are interpreted as �nite sets of natural numbers.

Example: even numbers We can express that the second order-variable Pdenotes a �nite set of all even numbers less than some unbounded constant:P = ;_ (0 2 P ^ (9p0 2 P :8q 2 P : q � p0^8q � p0 : (q 2 P , q + 1 =2 P)))Example: representing arrays Using WS1S, we can represent data struc-tures that cannot be modeled in Boolean Logic. For example, let us consider avariable length array containing numbers in f0; : : : ; 3g. Since its length is un-bounded, such an array cannot be represented by any �nite set. But in WS1S,we can use two second-order variables Q1 and Q2 to encode values of the arrayand a �rst-order variable q to denote its length. For example, we could make aconvention that position p contains{ 0 i� p < q ^ (p =2 Q1 ^ p =2 Q2);{ � � �{ 3 i� p < q ^ (p 2 Q1 ^ p 2 Q2).In this way, an interpretation of the variables q, Q1, and Q2 denotes an array.For example, q = 5, Q1 = f1; 3g, Q2 = f2; 3g denotes the array h0; 1; 2; 3; 0i.Example: Presburger Arithmetic Since natural numbers can be viewed as�nite bit-strings, that is, as �nite sets, we can interpret �rst-order arithmeticwithout multiplication, but with addition, in WS1S. This theory is called Pres-burger Arithmetic.Interpretations viewed as �nite stringsThe logic-automaton connection follows rather naturally once we understandhow interpretations can be regarded as �nite strings. As an example, considerWS1S formula � � P = Q and an interpretation P = f1; 3g, Q = f2; 3g. Thisinterpretation could be represented as a string over the alphabet B2 :P 0 1 0 1 0 0Q 0 0 1 1 0 00 1 2 3 4 5If this string is called w, then we say that value of P is described along the �rsttrack of w and that Q is described along the second track. Note that w 6� �. And,note that many w0 denote same interpretation as w, since an arbitrary numberof the letter �00� may be appended to w without changing the interpretation thatit denotes.The above example does not explain how �rst-order variables are to be han-dled in the setting of strings. There is a straightforward solution: rewrite the

formula while treating �rst-order variables as second-order variables whose val-ues are restricted to be singletons.Now, a formula � naturally de�nes a language L(�) = fw j w � �g over thealphabet Bk , where k is the number of variables described (so k is at least thenumber of free variables in �). It is not hard to prove by induction that all L(�)are represented by DFAs (deterministic, �nite-state automata):{ Simple formulas like p = q + 1 can be mapped to small automata.{ Negation is handled by automaton complementation, since L(:�) = {L(�).{ Conjunction can be handled by an automaton product, since L(� ^) =L(�) \L().{ Existential quanti�cation is a little harder, but it turns out that L(9P : �) =Ei(L(�)=Li), where� the variable P is described along the ith track;� Ei(L) is the projection of L that removes the ith track from L, that is,Ei(L) = fw j 9w0 2 L : w is obtained from w0 by deleting the ith trackg;� L=L0 denotes the right-quotient of L by L0; and� Li = fu 2 Bk j jth track is all 0 for j 6= ig.Projection results in a non-deterministic automaton, which can be convertedback into a DFA by a subset construction. The DFA for the right-quotientis calculated by a backwards traversal from the �nal states.From these observations, it follows thatL(�) is regular, and an automaton A recognizingL(�) is computable from �.B�uchi (1960), Elgot (1961) [6, 8]Unfortunately, \computable" is bounded from below by an unbounded stackof exponentials. In fact, for any translation � �! A with L(�) = L(A), thefollowing holds:22���2c�n � c � n is a lower bound for A's state space,Meyer (1972) [24, 30]where n is the length of the formula and c is some constant.This bound is discouraging! But of course, it does not by itself preclude thatthe logic may be useful. Logics with worse complexity|such as Turing-completeformalisms|have been used as programming languages and in theorem proving.It is worrisome, however, that the alphabet size for automata that representformulas with k free variables necessarily is 2k. This exponential explosion canbe countered by thinking of automata as representing languages over B , whereletters in a string u over Bk are laid out consecutively to form a string over B

that is k times longer than the length of u. Such a view, however, does not giveus the advantages of path compression in BDDs.Let us consider using BDDs to represent automata. Automata are �niteobjects, and as such are encodable. For example, a single BDD could encodethe set f(r; a; s) j r a! sg;where r and s are states and a 2 Bk is a letter. Such a representation requiresus to choose an encoding of states. Indeed, this is the traditional approach insymbolic model checking, where a state space of size N is encoded with a numberM of Boolean variables logarithmic in N . Usually, each program variable isdirectly encoded using a small number of BDD variables. Since the transitionfrom one state to another usually modi�es only a few components of the statespace description, an interleaving of the BDD nodes describing the old and newstates often results in BDDs that are only linear or polynomial in size ofM [23].So, if the state space of automata in our decision procedure could be encodedsimilarly, a formula with k logical variables could be described by a single BDDwith 2 �M + k variables.Unfortunately, the representation just suggested is fundamentally unsuited,it seems, for carrying out essential operations on automata such as minimization.In fact, the representation itself is far from canonical, since there are no rulesprescribing the encoding of states. Moreover, it is di�cult to imagine how aminimization procedure could be formulated that would directly construct acanonical encoding of the minimum state space even if such an encoding wasdevised.In addition, it is also hard to imagine how a subset construction could bee�ciently formulated based on the single-BDD representation.Thus, the representation of a transition system by a single BDD is not suit-able for automaton-centered calculations. By a BDD-represented automaton,we must think of a data structure that e�ciently supports all the operationscharacteristic of automata.BDD-represented automataA rather simple generalization of BDDs results in a suitable representation: acanonical graph (up to naming of states and up to variable ordering) arises ifshared, multi-terminal BDDs are used. These BDDs have multiple leaves, onecorresponding to each state. Each state, in turn, is associated with such a BDD,and sharing means that isomorphic subtrees are identi�ed. For example, theproperty \there are more than one element in the intersection of X and Y ," or9p; q : p 6= q ^ p 2 X \ Y ^ q 2 X \ Ycan be represented by the automaton shown in Figure 3; here each state r, s, ort is described in an array with information about whether it is �nal and with apointer to a BDD node de�ning its transition function. This automaton acceptsthe regular language (� � �11�)� � �11� � (� � �11�)� � �11� ���, where � = B2 .

Final?BDD node no
s trX XY Y yesnor s tInitial

0 0 0 01 1 11Figure 3. BDD-represented automatonThis works for trees, tooWS1S can easily be generalized to express regular sets of labeled, �nite trees.The resulting logic, WS2S, Weak Second-order theory of 2 Successors, dealswith elements and �nite subsets of the in�nite, binary tree:(0+ 1)� = f�; 0; 1; 00;01;10;11;000; : : :gThe logic-automaton connection generalizes to WS2S [7, 31], where the appro-priate automaton concept is a deterministic, bottom-up tree automaton. Itstransition function determines for each pair (r; s) of states and each letter awhat the next state is. Tree automata are for that reason at least quadraticallymore di�cult to work with in practice than DFAs. We have formulated datastructures and algorithms for such automata in [3].But S2S seems intractable in practiceThe restriction to quanti�cation over just �nite subsets of the in�nite binarytree can be removed while keeping decidability of the formalism, which is thensimply named S2S. This is Rabin's result [28], which in essence boils downto a complicated question about the complementation of automata on in�nitetrees; see [32]. It seems unlikely that S2S can be dealt with in practice; norepresentation with canonicity properties is even known for S2S. For S1S, thesituation is slightly brighter thanks to the existence of syntactic congruences,such as the ones discussed in [1, 17, 26, 29, 34].

Monadic second-order logic (M2L) on �nite stringsThe regular sets can also be described by a logic for which there is a one-to-one relationship between strings over B and interpretations (not a many-to-onerelationship as with WS1S). Under this view, a string determines a number n,the length of the string, and the successor operation +1 is interpreted modulon. In addition, second-order variables are restricted to range only over subsetsof f0; : : : ; n� 1g. This logic can be called the Monadic Second-order Logic onFinite Strings or M2L(Str). (Apparently, it is not as strong as WS1S in thesense that there is no obvious way of encoding Presburger Arithmetic in it.)The earlier versions of our decision procedure were written for this logic.Related workFisher and Gupta [12] were apparently the �rst to use BDD-represented au-tomata as a mechanism for representing regular languages over large alphabets.Their automaton concept is slightly di�erent from ours since it was introduced asa representation for linear inductive functions, a notation for regular languages.In [11], their approach is generalized to tree languages and to problems beyondthe regular sets.Automata on large alphabets are also implicit in work on the relationshipbetween p-adic numbers and circuits [33].Work at the University of Kiel [27] led to an implementation of a decision pro-cedure for M2L on �nite trees, but it did not address the problem of large alpha-bets. Neither did the recent decision procedure implementations for WS1S [9]and WS2S [25]. Techniques similar to ours have been used in an M2L(Str)tool [15] and in an application to languages for describing parameterized sys-tems [16]. Also, the decision procedure for Presburger arithmetic reported in [4]is based on automata over large alphabets.3 Mona & Fido ToolsIn this section, we discuss the automata-based tools that are under developmentat the University of Aarhus. We have at several levels tried to optimize perfor-mance as much as possible, and as a result our Mona tool, which implementsdecision procedures for WS1S and WS2S, has become orders of magnitude fastersince we started [13].Data structures and algorithms in practiceUsually, BDDs are stored in a single global address space indexed by hash valuesas previously noted. However, it appears unlikely in the case of BDD-representedautomata that there would be much sharing of nodes across di�erent automata.This is because the state numbering is arbitrary, so isomorphic sub-automataare unlikely to be identi�ed by the hashing. Thus, we have chosen to use a

separate, contiguous address space for each automaton. Consequently, BDDnodes of an automaton can be garbage collected in constant time as soon asthe automaton is not needed any longer. Also, we have chosen to representBDDs nodes directly in the hash table, instead as separately allocated recordspointed to buy entries in the hash table. This scheme creates substantially fewerhardware cache misses than traditional implementations. As a result our BDDpackage runs approximately six times faster than a widely used package [20].Algorithms for DFAs A product algorithm is easy to describe and imple-ment. Also, an O(n2) minimization algorithm is easy to implement, althoughits quadratic running time becomes a problem with bigger automata, where weoften see that minimizationmay take ten times longer than the time to constructthe automaton. (An O(n � logn) algorithm exists [18], but has not been imple-mented.) The subset construction is considerably more di�cult to implemente�ciently. Curiously, it turns out that the subset construction is usually verywell-behaved in practice, often resulting in a subset automaton with fewer statesthan the original automaton. Some theoretical arguments why this is the casecan be found in [2].Algorithms for tree automata To address the inherent quadratic natureof the transition table representation of tree automata, we have developed adefault representation that sometimes can cut the representation from quadraticto linear. Also, we have devised a notion of partitioned tree automaton, whichin principle may yield exponential savings [3].Fido: a high-level version of M2LFrom a programmer's point of view, WS1S is a kind of assembly language aboutstrings of bits. Therefore, we have developed a a logical formalism, Fido [21],which combines WS1S and WS2S with programming language concepts suchas records, enumerated types, recursive data types, simple polymorphims, anduni�cation.A recursive data type is a convenient way to express a class of labeled trees.For example, binary trees, each of whose nodes is red or black and contains avalue in f1; : : : ; 10g, can be expressed as a type Tree:type Tree = red,black(val: Range,left,right: Tree) jleaf;type Range = [1..10];Two trees, x and y, of type Tree are declared astree x,y : Tree;Then a property such as \there are nodes with di�erent colors somewhere intrees x and y" can be expressed as a formula:

9 pos p, q: x, y.p 6= q ^ read(p) 6= read(q)Here, read is a function that designates the color of a node, and p, q: x, ydenotes that p and q range over positions in trees x and y.The Fido compiler translates Fido programs into the Mona syntax forWS1S or WS2S. The resulting formulas are often very big, sometimes on theorder of 105 characters. Therefore, we have implemented symbolic simpli�cationof WS1S formulas in the front-end of Mona. These reduction techniques yieldsubstantial simpli�cations of the code before it is handed to the back-end, whichexecutes the automata-theoretic calculations.In summary,Fido is a domain-speci�c language for the expression of regularsets of strings and trees. It is a programming lanuage based on logic, but not atraditional \logic programming" language, since in contrast to resolution-basedlanguages, Fido{ is a quanti�cational logic not restrained to Horn clauses;{ but it is not a Turing-complete language.4 ApplicationsWe mention here two applications, where other symbolic methods are unlikelyto be as e�cient as the use of automata-based reasoning.Decidable program logic for pointersIn our �rst application, taken from [14], we indicate how Fido can be used as anassertional formalism about pointers and linked lists in programming languages.To us, a typical store looks like:
x

y

z

p

List variables
Pointer variable Free nodes

Here, x,y, and z are list variables that denote linked lists, and p is a pointervariable, which points to some node in the store. There are also free nodesavailable. So, stores consist of a �xed number of linked lists, each of arbitrarysize; a �xed number of variables denoting nodes in the store; and a number offree nodes. The set of all such stores can be modeled by an in�nite collection of�nite sets. For example, we can in one Fido formula describe all possible stores,where x,y, and z are linked lists and where p points to a node in a list.Moreover, it can be shown that the precise semantics of basic blocks (loop-free code) can be encoded as predicate transformers on Fido formulas. (This ispossible only since we have restricted all values in records to be �nite domain.)Fido extended with regular expressions also serves as a means of formulatingprogram assertions. From putting these observations together, we may obtain adecidable fragment of Floyd-Hoare program logic.An example in PascalLet us declare a type Item of list elements that contains a tag �eld with valuered or blue:type Color = (red,blue);List = ^Item;Item = recordcase tag: Color ofred,blue: (next: List)end;We would like to verify that the program below calculates a well-formed listz. The program merges the lists x and y, but it is certainly far from evidentthat the pointer manipulations expressed really do result in a list!program zip;fdatagvar x,y,z: List; fpointergvar p,t: List;beginif x=nil thenbegint:=x; x:=y; y:=tend;z:=nil; p:=nil;while x<>nil dobeginif z=nil thenbeginz:=x; p:=x;endelsebegin

p^.next:=x;p:=p^.nextend;x:=x^.next;p^.next:=nil;if y<>nil thenbegint:=x; x:=y; y:=tendendend.To verify the program, we need to state a property about the loop. Let us usethe propertyInvariant: x is only empty if y is empty, and p points to the last elementof z.So, we annotate the while-loop with the the property transcribed into a logicalassertion:f (x=nil => y=nil)& z<next*>p & (z<>nil => p^.next=nil)gThe decision procedure veri�es that this assertion is preserved under one iter-ation of the loop. Had we made a mistake so that the assertion was not aninvariant, we would automatically have gotten a counter-example.Design constraints for corbaIn our second application, taken from [19], we propose to use Fido as a for-malism for restricting parse trees. Such restrictions are useful when it is knownthat source code must satisfy speci�c requirements imposed by the platform orsoftware environment. For example, a system architect may have formalized theconstraints of the corba interface [10]. One such constraint is that operationarguments of corba interfaces cannot denote object values; more precisely,If x is an operation argument node in the syntax tree of a corba objecttype, then the node y below denoting its type cannot represent an objecttype.Formally, such a statement could be written as:CONSTRAINT corba FORObjectTypeSpeci�cation IS8 x: Argument. root / x) 9 y: Type.x / y ^ : OT(y);END

Here, ObjectTypeSpeci�cation, Argument, and Type are production names of thesyntax, and OT(y) is a predicate that evaluates to true if y is a node that denotesan object type. The expression root denotes the node of type ObjectTypeSpeci-�cation to which the category applies, and x / y holds when node x is the parentof node y.The programmer can annotate object type speci�cations in the source codewith the corba constraint. In a conformance checking phase, tree automatacorresponding to the constraints are run on the syntax tree, and constraintsthat are not valid are
agged.The advantage of Fido, compared to other formalisms for specifying con-straints on trees, is that there is no requirement to precisely formulate how infor-mation
ows up and down the tree in terms of attributes or recursive procedures.Instead, positions can be referred to and compared as �rst-order variables.Getting MonaThe �rst o�cial version of Mona was released in the Fall of 1997. It can beobtained from http://www.brics.dk/�mona, where also additional referencesand papers are available.AcknowledgmentsThanks to the referees for many helpful comments.References1. A. Arnold. A syntactic congruence for rational !-languages. Theoretical ComputerScience, 39:333{335, 1985.2. D. Basin and N. Klarlund. Beyond the �nite in hardware veri�cation. Submittedfor publication. Extended version of: \Hardware veri�cation using monadic second-order logic," CAV '95, LNCS 939, 1996.3. M. Biehl, N. Klarlund, and T. Rauhe. Algorithms for guided tree automata. InFirst International Workshop on Implementing Automata, WIA '96, Lecture Notesin Computer Science, 1260. Springer Verlag, 1996.4. A. Boudet and H. Comon. Diophantine equations, presburger arithmetic and �niteautomata. In Trees and algebra in programming - CAAP, volume 1059 of LNCS,1995.5. R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-grams. ACM Computing surveys, 24(3):293{318, September 1992.6. J.R. B�uchi. Weak second-order arithmetic and �nite automata. Z. Math. LogikGrundl. Math., 6:66{92, 1960.7. J. Doner. Tree acceptors and some of their applications. J. Comput. System Sci.,4:406{451, 1970.8. C.C. Elgot. Decision problems of �nite automata design and related arithmetics.Trans. Amer. Math. Soc., 98:21{52, 1961.9. J. Glenn and W. Gasarch. Implementing WS1S via �nite automata. In AutomataImplementation, WIA '96, Proceedings, volume 1260 of LNCS, 1997.

10. Object Management Group. The Common Object Request Broker: architectureand speci�cation, 1995 July. revision 2.0.11. A. Gupta and A.L. Fisher. Parametric circuit representation using inductiveboolean functions. In Computer Aided Veri�cation, CAV '93, LNCS 697, pages15{28, 1993.12. A. Gupta and A.L. Fisher. Representation and symbolic manipulation of linearlyinductive boolean functions. In Proceedings of the IEEE International Conferenceon Computer-Aided Design, pages 192{199. IEEE Computer Society Press, 1993.13. J.G. Henriksen, J. Jensen, M. J�rgensen, N. Klarlund, B. Paige, T. Rauhe, andA. Sandholm. Mona: Monadic second-order logic in practice. In Tools and Algo-rithms for the Construction and Analysis of Systems, First International Work-shop, TACAS '95, LNCS 1019, 1996.14. J.L. Jensen, M.E. J�rgensen, N. Klarlund, and M.I. Schwartzbach. Automaticveri�cation of pointer programs using monadic second-order logic. In SIGPLAN'97 Conference on Programming LanguageDesign and Implementation,, pages 226{234. SIGPLAN, 1997.15. P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. Mosel: a
exible toolsetfor Monadic Second-order Logic. In Computer Aided Veri�cation, CAV '97, Pro-ceedings, LNCS 1217, 1997.16. Y. Kesten, O. Maler, M. Marcus, and E. Shahar A. Pnueli. Symbolic modelchecking with rich assertional languages. In O. Grumberg, editor, Computer AidedVeri�cation, CAV '97, volume 1254 of LNCS, 1997.17. N. Klarlund. A homomorphism concept for !-regularity. In Proc. of ComputerScience Logic, 1994. To appear.18. N. Klarlund. An n log n algorithm for online BDD re�nement. In O. Grumberg,editor, Computer Aided Veri�cation, CAV '97, volume 1254 of LNCS, 1997.19. N. Klarlund, J. Koistinen, and M. Schwartzbach. Formal design constraints. InProc. OOPSLA '96, 1996.20. N Klarlund and T. Rauhe. Bdd algorithms and cache misses. Technical report,BRICS Report Series RS-96-5, Department of Computer Science, University ofAarhus, 1996.21. N. Klarlund and M. Schwartzbach. A domain-speci�c language for regular setsof strings and trees. In Proc. Conference on Domain Speci�c Languages. Usenix,ACM SIGPLAN, 1997.22. H-T. Liaw and C-S. Lin. On the OBDD-representation of general Boolean func-tions. IEEE Trans. on Computers, C-41(6):661{664, 1992.23. Ken McMillan. Symbolic Model Checking. Kluwer, 1993.24. A.R. Meyer. Weak monadic second-order theory of successor is not elementaryrecursive. In R. Parikh, editor, Logic Colloquium, (Proc. Symposium on Logic,Boston, 1972), volume 453 of LNCS, pages 132{154, 1975.25. F. Morawietz and T. Cornell. On the recognizability of relations over a tree de�n-able in a monadic second order tree description language. Technical Report SFB340, Seminar f�ur Sprachwissenschaft Eberhard-Karls-Universit�at T�ubingen, 1997.26. L. Staiger O. Maler. On syntactic congruences for omega-languages. TheoreticalComputer Science, 183:93{112, 1997.27. A. Pottho�. Project to implement monadic-second order logic on �nite trees.Unpublished., 1994.28. M.O. Rabin. Decidability of second-order theories and automata on in�nite trees.American Mathematical Society, 141:1{35, 1969.29. B. Le Sac. Saturating right congruences. Informatique Th�eorique et Applications,24:545{560, 1990.

30. L. Stockmeyer. The complexity of decision problems in automata theory and logic.PhD thesis, Dept. of Electrical Eng., M.I.T., Cambridge, MA, 1974. Report TR-133.31. J.W. Thatcher and J.B. Wright. Generalized �nite automata with an applicationto a decision problem of second-order logic. Math. Systems Theory, 2:57{82, 1968.32. W. Thomas. Automata on in�nite objects. In J. van Leeuwen, editor, Handbookof Theoretical Computer Science, volume B, pages 133{191. MIT Press/Elsevier,1990.33. Jean E. Vuillemin. On circuits and numbers. IEEE Transactions on Computers,43(8):868{879, 1994.34. T. Wilke. An algebraic theory for regular languages of �nite and in�nite words.Int. J. of Algebra and Computation, 4:447{489, 1993.

