
International Journal of Foundations of Computer Science

c© World Scientific Publishing Company

MONA Implementation Secrets

Nils Klarlund

AT&T Labs Research
180 Park Ave.

Florham Park, NJ 07932, USA
klarlund@research.att.com

Anders Møller & Michael I. Schwartzbach

BRICS
Department of Computer Science

University of Aarhus
Ny Munkegade, Bldg. 540

DK-8000 Aarhus C, Denmark
{amoeller,mis}@brics.dk

Received
Revised

Communicated by

ABSTRACT

The Mona tool provides an implementation of automaton-based decision procedures
for the logics WS1S and WS2S. It has been used for numerous applications, and it
is remarkably efficient in practice, even though it faces a theoretically non-elementary
worst-case complexity. The implementation has matured over a period of six years.
Compared to the first naive version, the present tool is faster by several orders of magni-
tude. This speedup is obtained from many different contributions working on all levels
of the compilation and execution of formulas. We present an overview of Mona and
a selection of implementation “secrets” that have been discovered and tested over the
years, including formula reductions, DAGification, guided tree automata, three-valued
logic, eager minimization, BDD-based automata representations, and cache-conscious
data structures. We describe these techniques and quantify their respective effects by
experimenting with separate versions of the Mona tool that in turn omit each of them.

Keywords: monadic second-order logic, finite-state automata, the MONA tool

1. Introduction

Mona [20, 29, 37, 25] is an implementation of decision procedures for the logics
WS1S and WS2S (Weak monadic Second-order theory of 1 or 2 Successors) [48].
They have long been known to be decidable [11, 17], but with a non-elementary
lower bound [36]. For many years it was assumed that this discouraging complexity
precluded any useful implementations.

Mona has been developed at BRICS since 1994, when our initial attempt at
automatic pointer analysis through automata calculations took four hours to com-
plete. Today Mona has matured into an efficient and popular tool on which the
same analysis is performed in a couple of seconds. Through those years, many
different approaches have been tried out, and a good number of implementation
“secrets” have been discovered. This paper describes the most important tricks we

1

have learned, and it tries to quantify their relative merits on a number of benchmark
formulas.

Of course, the resulting tool still has a non-elementary worst-case complexity.
Perhaps surprisingly, this complexity also contributes to successful applications,
since it is provably linked to the succinctness of the logics. If we want to describe a
particular regular set, then a WS1S formula may be non-elementarily more succinct
that a regular expression or a transition table.

The niche for Mona applications contains those structures that are too large
and complicated to describe by other means, yet not so large as to require infeasi-
ble computations. Happily, many interesting projects fit into this niche, including
hardware verification [4, 1], pointer analysis [22, 16, 38], controller synthesis [44, 21],
natural languages [39], parsing tools [13], software design descriptions [28], Pres-
burger arithmetic [45], and verification of concurrent systems [31, 30, 23, 42, 46].

There are a number of tools resembling Mona. Independent of the Mona

project, the first implementation of automata represented with BDDs was that of
Gupta and Fischer from 1993 [19]. However, they used “linear inductive functions”
instead of the automaton–logic connection. MoSeL (see http://sunshine.cs.uni-

dortmund.de/projects/mosel/) implements the automaton based decision procedure
for M2L-Str using BDDs like Mona. In [24], MoSeL is described and com-
pared with Mona 0.2, which provided inspiration for the MoSeL project. Ap-
parently, there have been only few applications of MoSeL. AMoRE [34] (see
http://www.informatik.uni-kiel.de/inf/Thomas/amore.html) is a library of automata
theoretic algorithms, resembling those used in Mona. AMoRE also provides func-
tionality for regular expressions and monoids, but is not tied to the automaton–
logic connection. Glenn and Gasarch [18] have in 1997—apparently independently
of Mona and MoSeL—implemented a decision procedure for WS1S, basically as
the one in Mona, but without using BDDs or other sophisticated techniques. The
Shasta tool from 1998 is based upon the same ideas as Mona. It is used as an
engine for Presburger Arithmetic [45].

Furthermore, Mona has provided the foundation of or been integrated into
a range of other tools: FIDO [33], LISA [2], DCVALID [42], FMONA [8], ST-
TOOLS [43], PEN [40], PAX [5], PVS [41], and ISABELLE [3].

2. The Automaton–Logic Connection

Being a variation of first-order logic, WS1S is a formalism with quantifiers and
boolean connectives. First-order terms denote natural numbers, which can be com-
pared and subjected to addition with constants. Also, WS1S allows second-order
terms, which are interpreted as finite sets of numbers. The actual Mona syntax
is a rich notation with constructs such as set constants, predicates and macros,
modulo operations, and let-bindings. If all such syntactic sugar is peeled off, the
formulas are “flattened” (so that there are no nested terms), and first-order terms
are encoded as second-order terms, the logic reduces to a simple “core” language:

φ ::= ~φ′ | φ′ & φ′′ | ex2 Xi : φ′

| Xi sub Xj | Xi =Xj \ Xk | Xi =Xj +1

2

where X ranges over a set of second-order variables.
Given a fixed main formula φ0, we define its semantics inductively relative to a

string w over the alphabet B
k, where B = {0, 1} and k is the number of variables in

φ0. We assume every variable of φ0 is assigned a unique index in the range 1, 2, .., k,
and that Xi denotes the variable with index i. The projection of a string w onto the
i’th component is called the Xi-track of w. A string w determines an interpretation
w(Xi) of Xi defined as the finite set {j | the jth bit in the Xi-track is 1}.

The semantics of a formula φ in the core language can now be defined inductively
relative to an interpretation w. We use the notation w � φ (which is read: w satisfies
φ) if the interpretation defined by w makes φ true:

w � ~φ′ iff w 2 φ′

w � φ′ & φ′′ iff w � φ′ and w � φ′′

w � ex2 Xi : φ′ iff ∃ finite M ⊆ N : w[Xi 7→ M] � φ′

w � Xi sub Xj iff w(Xi) ⊆ w(Xj)
w � Xi = Xj\Xk iff w(Xi) = w(Xj)\w(Xk)
w � Xi = Xj +1 iff w(Xi) = {j + 1 | j ∈ w(Xj)}

The notation w[Xi 7→ M] is used for the shortest string that interprets all variables
Xj where j 6= i as w does, but interprets Xi as M .

The language L(φ) of a formula φ can be defined as the set of satisfying strings:
L(φ) = {w | w � φ}. By induction in the formula, we can now construct a minimal
deterministic finite-state automaton (DFA) A such that L(A) = L(φ), where L(A)
is the language recognized by A.

For the atomic formulas, we show just one example: the automaton for the
formula φ = Xi sub Xj in the case where i = 1 and j = 2. The automaton must
recognize the language

L(X1 sub X2) = {w ∈ (Bk)∗ | for all letters in w: if the first compo-
nent is 1, then so is the second }

Such an automaton is:
X

1
0

X
1
X 0

0,

The other atomic formulas are treated similarly. The composite formulas are trans-
lated as follows:

φ = ~φ′ Negation of a formula corresponds to automaton complementation. In
Mona, this is implemented trivially by flipping accepting and rejecting states.

φ = φ′ & φ′′ Conjunction corresponds to language intersection. In Mona, this
is implemented with a standard automaton product construction generating
only the reachable product states. The resulting automaton is minimized.

φ = ex2 Xi : φ′ Existential quantification corresponds to a simple quotient op-
eration followed by a projection operation. The quotient operation takes care

3

of the problem that the only strings satisfying φ′ may be longer than those
satisfying ex2 Xi : φ′. The projection operation removes the “track” belong-
ing to Xi, resulting in a nondeterministic automaton, which is subsequently
determinized using the subset construction operation, and finally minimized.

This presentation is a simplified version of the procedure actually used in Mona.
For more detail, see the MONA User Manual [29].

When the minimal automaton A0 corresponding to φ0 has been constructed,
validity of φ0 can be checked simply by observing whether A0 is the one-state
automaton accepting everything. If φ0 is not valid, a (minimal) counter-example
can be constructed by finding a (minimal) path in A0 from the initial state to a
non-accepting state.

WS2S is the generalization of WS1S from linear- to binary-tree-shaped struc-
tures [47, 14, 48]. Seen at the “core language” level, WS2S is obtained from WS1S
by replacing the single successor predicate by two successor predicates, for left and
right successor respectively. This logic is also decidable by the automaton–logic
connection, but using tree automata instead of string automata. The Mona tool
also implements this decision procedure.

There is a subtle difference between WS1S, the logic now used in Mona, and
M2L-Str, the logic used in early experimental versions [48, 6, 15]. (The difference
between WS2S and M2L-Tree is similar.) In WS1S, formulas are interpreted over
infinite string models (but quantification is restricted to finite sets only). In M2L-
Str, formulas are instead interpreted over finite string models. That is, the universe
is not the whole set of naturals N, but a bounded subset {0, . . . , n− 1}, where n is
defined by the length of the string. The decision procedure for M2L-Str is almost the
same as for WS1S, only slightly simpler: the quotient operation (before projection)
is just omitted. From the language point of view, M2L-Str corresponds exactly to
the regular languages (all formulas correspond to automata and vice versa), and
WS1S corresponds to those regular languages that are closed under concatenation
by 0’s. These properties make M2L-Str preferable for some applications [4, 44].
However, the fact that not all positions have a successor often makes M2L-Str
rather unnatural to use. Being more closely tied to arithmetic, the WS1S semantics
is easier to understand. Also, for instance Presburger Arithmetic can easily be
encoded in WS1S whereas there is no obvious encoding in M2L-Str.

Notice that the most significant source of complexity in this decision procedure is
the quantifiers, or more precisely, the automaton determinization. Each quantifier
can cause an exponential blow-up in the number of automaton states, so in the
worst case, this decision procedure has a non-elementary complexity. Furthermore,
we cannot hope for a fundamentally better decision procedure since this is also the
lower bound for the WS1S decision problem [36]. However, as we will show, even
constant factors of improvement can make significant differences in practice.

To make matters even worse (and the challenge the more interesting), the im-
plementation also has to deal with automata with huge alphabets. As mentioned,
if φ0 has k free variables, the alphabet is B

k. Standard automaton packages cannot
handle alphabets of that size, for typical values of k.

4

3. Benchmark Formulas

The experiments presented in the following section are based on twelve bench-
mark formulas, here shown with their sizes, the logics they are using, and their time
and space consumptions when processed by Mona 1.4 (on a 296MHz UltraSPARC
with 1GB RAM):

Benchmark Name Size Logic Time Space

A dflipflop.mona 2 KB WS1S (M2L-Str) 0.4 sec 3 MB
B euclid.mona 6 KB WS1S (Presburger) 33.1 sec 217 MB
C fischer mutex.mona 43 KB WS1S 15.1 sec 13 MB
D html3 grammar.mona 39 KB WS2S (WSRT) 137.1 sec 208 MB
E lift controller.mona 36 KB WS1S 8.0 sec 15 MB
F mcnc91 bbsse.mona 9 KB WS1S 13.2 sec 17 MB
G reverse linear.mona 11 KB WS1S (M2L-Str) 3.2 sec 4 MB
H search tree.mona 19 KB WS2S (WSRT) 30.4 sec 5 MB
I sliding window.mona 64 KB WS1S 40.3 sec 59 MB
J szymanski acc.mona 144 KB WS1S 20.6 sec 9 MB
K von neumann adder.mona 5 KB WS1S 139.9 sec 116 MB
L xbar theory.mona 14 KB WS2S 136.4 sec 518 MB

The benchmarks have been picked from a large variety of Mona applications rang-
ing from hardware verification to encoding of natural languages.

dflipflop.mona – a verification of a D-type flip-flop circuit [4]. Provided by Abdel
Ayari.

euclid.mona – an encoding in Presburger arithmetic of six steps of reachability on
a machine that implements Euclid’s GCD algorithm [45]. Provided by Tom
Shiple.

fischer mutex.mona and lift controller.mona – duration calculus encodings of Fis-
cher’s mutual exclusion algorithm and a mine pump controller, translated to
Mona code [42]. Provided by Paritosh Pandya.

html3 grammar.mona – a tree-logic encoding of the HTML 3.0 grammar annotated
with 10 parse-tree formulas [13]. Provided by Niels Damgaard.

reverse linear.mona – verifies correctness of a C program reversing a pointer-linked
list [22].

search tree.mona – verifies correctness of a C program deleting a node from a search
tree [16].

sliding window.mona – verifies correctness of a sliding window network protocol [46].
Provided by Mark Smith.

szymanski acc.mona – validation of the parameterized Szymanski problem using an
accelerated iterative analysis [8]. Provided by Mamoun Filali-Amine.

von neumann adder.mona and mcnc91 bbsse.mona – verification of sequential hardware
circuits; the first verifies that an 8-bit von Neumann adder is equivalent to a
standard carry-chain adder, the second is a benchmark from MCNC91 [49].
Provided by Sebastian Mödersheim.

xbar theory.mona – encodes a part of a theory of natural languages in the Chomsky
tradition. It was used to verify the theory and led to the discovery of mistakes
in the original formalization [39]. Provided by Frank Morawietz.

5

We will use these benchmarks to illustrate the effects of the various implementation
“secrets” by comparing the efficiency of Mona shown in the table above with that
obtained by handicapping the Mona implementation by not using the techniques.

4. Implementation Secrets

The Mona implementation has been developed and tuned over a period of six
years. Many large and small ideas have contributed to a combined speedup of
several orders of magnitude. Improvements have taken place at all levels, which we
illustrate with the following seven examples from different phases of the compilation
and execution of formulas.

To enable comparisons, we summarize the effect of each implementation “secret”
by a single dimensionless number for each benchmark formula. Usually, this is
simply the speedup factor, but in some cases where the numerator is not available,
we argue for a more synthetic measure. If a benchmark cannot run on our machine
with 1GB of memory, it is assigned time ∞.

4.1. BDD-based automata representation

The very first attempt to implement the decision procedure used a representa-
tion based on conjunctive normal forms—however this quickly showed to be very
inefficient. The first actually useful version of the Mona tool was the 1995 experi-
mental ML-version [20]. The reason for the success was the novel representation of
automata based on (reduced and ordered) BDDs (Binary Decision Diagrams) [9, 10]
for addressing the problem of large alphabets. In addition, the representation allows
some specialized algorithms to be applied [32, 26].

A BDD is a graph representing a boolean function. The BDD representation
has some extremely convenient properties, such as compactness and canonicity,
and it allows efficient manipulation. BDDs have successfully been used in a long
range of verification techniques (a popular one is [35]). In Mona, a special form of
BDDs, called shared multi-terminal BDDs, or SMBDDs are used. As an example,
the transition function of the tiny automaton shown in Section 2 is represented in
Mona as the following SMBDD:

2

1

0 1

0 1

The roots and the leaves represent the states. Each root has an edge to the node
representing its alphabet part of the transition function. For the other edges, dashed
represents 0 and solid represents 1. As an example, from state 0, the transition
labeled

(
1
0

)
leads to state 1. In this way, states are still represented explicitly, but

the transitions are represented symbolically, in a compact way.
It’s reasonable to ask: “What would happen if we had simply represented the

transition tables in a standard fashion, that is, a row for each state and a column

6

for each letter?”. Under this point of view, it makes sense to define a letter for
each bit-pattern assignment to the free variables of a subformula (as opposed to
the larger set of all variables bound by an outer quantifier). We have instrumented
Mona to measure the sum of the number of entries of all such automata transition
tables constructed during a run of a version of Mona without BDDs:

Misses Table entries Effect

A 397,472 237,006 0.6
B 48,347,395 2,973,118 0.1
C 46,080,139 1,376,499,745,600 29,871.9
E 19,208,299 290,999,305,488 15,149.7
F 39,942,638 2,844,513,432,416,357,974,016 71,214,961,626,128.9
G 561,202 912,194 1.6
I 95,730,831 116,387,431,997,281,136 1,215,777,934.7
J 24,619,563 15,424,761,908 626.5
K 250,971,828 2,544,758,557,238,438 10,139,618.4

In Section 4.2, we describe the importance of cache awareness, which motivates the
number of cache misses as a reasonable efficiency measure. “Misses” is the number
of cache misses in our BDD-based implementation, and “Table entries” is the total
number of table entries in the naive implementation. To roughly estimate the effect
of the BDD-representation, we conservatively assume that each table entry results
in just a single cache miss; thus, “Effect” compares “Table entries” to “Misses”.
The few instances where the effect is less than one correctly identify benchmark
formulas where the BDDs are less necessary, but are also artifacts of our conservative
assumption. Conversely, the extremely high effects are associated with formulas
that could not possibly be decided without BDDs. Of course, the use of BDD-
structures completely dominates all other optimizations, since no implementation
could realistically be based on the naive table representation.

The BDD-representation was the first breakthrough of the Mona implementa-
tion, and the other “secrets” should really be viewed with this as baseline.

4.2. Cache-conscious data structures

The data structure used to represent the BDDs for transition functions has been
carefully tuned to minimize the number of cache misses that occur. This effort is
motivated in earlier work [32], where it is determined that the number of cache
misses during unary and binary BDD apply steps totally dominates the running
time.

In fact, we argued that if A1 is the number of unary apply steps and A2 is
the number of binary apply steps, then there exist constant m, c1, and c2 such
that the total running time is approximately m(c1 · A1 + c2 · A2). Here, m is the
machine dependent delay incurred by an L2 cache miss, and c1 and c2 are the
average number of cache misses for unary and binary apply steps. This estimate is
based the assumption that time incurred for manipulating auxiliary data structures,
such as those used for describing subsets in the determinization construction, is
insignificant. For the machine we have used for experiments, it is by a small C
utility determined that m = 0.43µs. In our BDD implementation, explained in [32],
we have estimated from algorithmic considerations that c1 = 1.7 and c2 = 3 (the
binary apply may entail the use of unary apply steps for doubling tables that were

7

too small—these steps are not counted towards the time for binary apply steps,
and that is why we can use the figure c2 = 3); we also estimated that for an
earlier conventional implementation, the numbers were c1 = 6.7 and c2 = 7.3. The
main reason for this difference is that our specialized package stores nodes directly
under their hash address to minimize cache misses; traditional BDD packages store
BDD nodes individually with the hash table containing pointers to them—roughly
doubling the time it takes to process a node. We no longer support the conventional
BDD implementation, so to measure the effect of cache-consciousness, we must use
the above formula to estimate the running times that would have been obtained
today.

In the following experiment, we have instrumented Mona to obtain the exact
numbers of apply steps:

Apply1 Apply2 Misses Auto Predicted Conventional Effect

A 183,949 28,253 397,472 0.2 sec 0.2 sec 0.6 sec 3.0
B 21,908,722 3,700,856 48,347,395 32.8 sec 20.8 sec 74.7 sec 3.6
C 24,585,292 1,428,381 46,080,139 14.2 sec 19.8 sec 75.2 sec 3.8
E 9,847007 822,796 19,208,299 7.7 sec 8.2 sec 30.9 sec 3.8
F 13,406,047 5,717,453 39,942,638 12.8 sec 17.2 sec 56.6 sec 3.3
G 233,566 54,814 561,504 0.5 sec 0.3 sec 0.8 sec 2.7
I 36,629,195 11,153,733 95,730,831 37.0 sec 41.2 sec 140.5 sec 3.4
J 10,497,759 2,257,791 24,619,563 11.6 sec 10.6 sec 37.3 sec 3.5
K 129,126,447 10,485,623 250,971,828 137.4 sec 107.9 sec 404.7 sec 3.8

“Apply1” is the number of unary apply steps; “Apply2” is the number of binary
apply steps; “Misses” is the number of cache misses predicted by the formula above;
“Auto” is the part of the actual running time involved in automata constructions;
“Predicted” is the running time predicted from the cache misses alone; “Conven-
tional” is the predicted running time for a conventional BDD implementation that
was not cache-conscious; and “Effect” is “Conventional” compared to “Predicted”.
In most cases, the actual running time is close to the predicted one (within 25%).
Note that there are instances where the actual time is about 50% larger than the
estimated time: benchmark B involves a lengthy subset construction on an au-
tomaton with small BDDs—thus it violates the assumption that the time handling
accessory data structures is insignificant; similarly, benchmark G also consists of
many automata with few BDD nodes prone to violating the assumption.

In an independent comparison [45] it was noted that Mona was consistently
twice as fast as a specially designed automaton package based on a BDD package
considered efficient. In [32], the comparison to a traditional BDD package yielded
a factor 5 speedup.

4.3. Eager minimization

When Mona inductively translates formulas to automata, a Myhill-Nerode min-
imization is performed after every product and projection operation. Naturally, it
is preferable to operate with as small automata as possible, but our strategy may
seem excessive since minimization often exceeds 50% of the total running time. This
suspicion is strengthened by the fact that Mona automata by construction contain
only reachable states; thus, minimization only collapses redundant states.

Three alternative strategies to the eager one currently used by Mona would be

8

to perform only the very final minimization, only the ones occurring after projec-
tion operations, or only the ones occurring after product operations. Many other
heuristics could of course also be considered. The following table results from such
an investigation:

Time
EffectOnly final After project After product Always

A ∞ ∞ 0.6 sec 0.4 sec 1.5
B ∞ ∞ ∞ 33.1 sec ∞
C ∞ ∞ 32.3 sec 15.1 sec 2.1
D ∞ ∞ 290.6 sec 137.1 sec 2.1
E ∞ ∞ 19.4 sec 8.0 sec 2.4
F ∞ ∞ 36.7 sec 13.2 sec 2.8
G ∞ ∞ 5.8 sec 3.2 sec 1.8
H ∞ ∞ 59.6 sec 30.4 sec 2.0
I ∞ ∞ 74.4 sec 40.3 sec 1.8
J ∞ ∞ 36.3 sec 20.6 sec 1.8
K ∞ ∞ 142.3 sec 139.9 sec 1.0
L ∞ ∞ ∞ 136.4 sec ∞

“Only final” is the running time when minimization is only performed as the final
step of the translation; “After project” is the running time when minimization is
also performed after every projection operation; “After product” is the running time
when minimization is instead performed after every product operation; “Always”
is the time when minimization is performed eagerly; and “Effect” is the “After
product” time compared to the “Always” time (since the other two strategies are
clearly hopeless). Eager minimization is seen to be always beneficial and in some
cases essential for the benchmark formulas.

4.4. Guided tree automata

Tree automata are inherently more computationally expensive because of their
three-dimensional transition tables. We have used a technique of factorization of
state spaces to split big tree automata into smaller ones. The basic idea, which
may result in exponential savings, is explained in [7, 29]. To exploit this feature,
the Mona programmer must manually specify a guide, which is a top-down tree
automaton that assigns state spaces to the nodes of a tree. However, when using
the WSRT logic, a canonical guide is automatically generated. For our two WSRT
benchmarks, we measure the effect of this canonical guide:

Without guide With guide Effect

D 584.0 sec 137.1 sec 4.3
H ∞ 30.4 sec ∞

“Without guide” shows the running time without any guide, while “With guide”
shows the running time with the canonical WSRT guide; “Effect” shows the “With-
out guide” time compared to the “With guide” time. We have only a small sample
space here, but clearly guides are very useful. This is hardly surprising, since they
may yield an asymptotic improvement in running time.

4.5. DAGification

Internally, Mona is divided into a front-end and a back-end. The front-end
parses the input and builds a data structure representing the automata-theoretic

9

operations that will calculate the resulting automaton. The back-end then induc-
tively carries out these operations.

The generated data structure is often seen to contain many common subformu-
las. This is particularly true when they are compared relative to signature equiva-
lence, which holds for two formulas φ and φ′ if there is an order-preserving renaming
of the variables in φ (increasing with respect to the indices of the variables) such
that the representations of φ and φ′ become identical.

A property of the BDD representation is that the automata corresponding to
signature-equivalent trees are isomorphic in the sense that only the node indices
differ. This means that intermediate results can be reused by simple exchanges of
node indices. For this reason, Mona represents the formulas in a DAG (Directed
Acyclic Graph), not a tree. The DAG is conceptually constructed from the tree
using a bottom-up collapsing process, based on the signature equivalence relation
as described in [15].

Clearly, constructing the DAG instead of the tree incurs some overhead, but the
following experiments show that the benefits are significantly larger:

Nodes Time
EffectTree DAG Tree DAG

A 2,532 296 1.7 sec 0.4 sec 4.3
B 873 259 79.2 sec 33.1 sec 2.4
C 5,432 461 40.1 sec 15.1 sec 2.7
D 3,038 270 ∞ 137.1 sec ∞
E 4,560 505 20.5 sec 8.0 sec 2.6
F 1,997 505 49.1 sec 13.2 sec 3.7
G 56,932 1,199 ∞ 3.2 sec ∞
H 8,180 743 ∞ 30.4 sec ∞
I 14,058 1,396 107.1 sec 40.3 sec 2.7
J 278,116 6,314 ∞ 20.6 sec ∞
K 777 273 284.0 sec 139.9 sec 2.0
L 1,504 388 ∞ 136.4 sec ∞

“Nodes” shows the number of nodes in the representation of the formula. “Tree”
is the number of nodes using an explicit tree representation, while “DAG” is the
number of nodes after DAGification. “Time” shows the running times for the same
two cases. “Effect” shows the “Tree” running time compared to the “DAG” running
time. From the differences in the number of nodes, one might expect the total effect
to be larger, however DAGification is mainly effective on small formulas where the
corresponding automata typically are also smaller. Nevertheless, the DAGification
process is seen to provide a substantial and often essential gain in efficiency.

The effects reported sometimes benefit from the fact that the restriction tech-
nique presented in the following subsection knowingly generates redundant formulas.
This explains some of the failures observed.

4.6. Three-valued logic and automata

The standard technique for dealing with first-order variables in monadic second-
order logics is to encode them as second-order variables, typically as singletons.
However, that raises the issue of restrictions : the common phenomenon that a
formula φ makes sense, relative to some exterior conditions, only when an associated
restriction holds. The restriction is also a formula, and the main issue is that

10

φ is now essentially undefined outside the restriction. In the case of first-order
variables encoded as second-order variables, the restriction is that these variables
are singletons. We experienced the same situation trying to emulate M2L-Str in
WS1S, causing state-space explosions.

The nature of these problems is technical, but fortunately they can be solved
through a theory of restriction couched in a three-valued logic [27]. Under this
view, a restricted subformula φ is associated with a restriction φR. If, for some
valuation, φR does not hold, then formulas containing φ are assigned a new third
truth value “don’t-care”. This three-valued logic carries over to the Mona notion
of automata—in addition to accept and reject states, they also have “don’t-care”
states. A special restrict(φR) operation is used for converting reject states to
“don’t-care” states for the restriction formulas, and the other automaton operations
are modified to ensure that non-acceptance of restrictions is propagated properly.

This gives a cleaner semantics to the restriction phenomenon, and furthermore
avoids the state-space explosions mentioned above. According to [27], we can guar-
antee that the WS1S framework handles all formulas written in M2L-Str, even with
intermediate automata that are no bigger than when using the traditional M2L-Str
decision procedure. Mona uses the same technique for the tree logics, WS2S and
M2L-Tree.

We refer to [27] for the full theory of three-valued logic and automata. Unfortu-
nately, there is no way of disabling this feature to provide a quantitative comparison.

4.7. Formula reductions

Formula reduction is a means of “optimizing” the formulas in the DAG before
translating them into automata. The reductions are based on a syntactic analysis
that attempts to identify valid subformulas and equivalences among subformulas.

There are some non-obvious choices here. How should computation resources be
apportioned to the reduction phase and to the automata calculation phase? Must
reductions guarantee that automata calculations become faster? Should the two
phases interact? Our answers are based on some trial and error along with some
provisions to cope with subtle interactions with other of our optimization secrets.

Mona 1.4 performs three kinds of formula reductions: 1) simple equality and
boolean reductions, 2) special quantifier reductions, and 3) special conjunction re-
ductions. The first kind can be described by simple rewrite rules (only some typical
ones are shown):

Xi = Xi true

true & φ φ

false & φ false

φ & φ φ

~~φ φ

~false true

These rewrite steps are guaranteed to reduce complexity, but will not cause signif-
icant improvements in running time, since they all either deal with constant size
automata or rarely apply in realistic situations. Nevertheless, they are extremely
cheap, and they may yield small improvements, in particular on machine generated
Mona code.

11

The second kind of reduction can potentially cause tremendous improvements.
As mentioned, the non-elementary complexity of the decision procedure is caused by
the automaton projection operations, which stem from quantifiers. The accompany-
ing determinization construction may cause an exponential blow-up in automaton
size. Our basic idea is to apply a rewrite step resembling let -reduction, which
removes quantifiers:

ex2 Xi : φ φ[T/Xi] provided that φ => Xi = T is valid, and T
is some term satisfying FV (T) ⊆ FV (φ)

where FV (·) denotes the set of free variables. For several reasons, this is not the
way to proceed in practice. First of all, finding terms T satisfying the side condition
can be an expensive task, in worst case non-elementary. Secondly, the translation
into automata requires the formulas to be “flattened” by introduction of quantifiers
such that there are no nested terms. So, if the substitution φ[T/X] generates nested
terms, then the removed quantifier is recreated by the translation. Thirdly, when
the rewrite rule applies in practice, φ usually has a particular structure as reflected
in the following more restrictive rewrite rule chosen in Mona:

ex2 Xi : φ φ[Xj/Xi] provided that φ ≡ · · · & Xi = Xj & · · ·
and Xj is some variable other than Xi

In contrast to equality and boolean reductions, this rule is not guaranteed to improve
performance, since substitutions may cause the DAG reuse degree to decrease.

The third kind of reduction applies to conjunctions, of which there are two
special sources. One is the formula flattening just mentioned; the other is the
formula restriction technique mentioned in Section 4.6. Both typically introduce
many new conjunctions. Studies of a graphical representation of the formula DAGs
(Mona can create such graphs automatically) led us to believe that many of these
new conjunctions are redundant. A typical rewrite rule addressing such redundant
conjunctions is the following:

φ1 & φ2 φ1 provided that nonrestr(φ2) ⊆ nonrestr(φ1)∪ restr(φ1)
and restr(φ2) ⊆ restr(φ1)

Here, restr(φ) is the set of restrict(·) conjuncts in φ, and nonrestr(φ) is the set
of non-restrict(·) conjuncts in φ. This reduction states that it is sufficient to
assert φ1 when φ1& φ2 was originally asserted in situations where the non-restricted
conjuncts of φ2 are already conjuncts of φ1—whether restricted or not—and the
restricted conjuncts of φ2 are also restricted conjuncts of φ1.

All rewrite rules mentioned here have the property that they cannot “do any
harm”, that is, have a negative impact on the automaton sizes. (They can however
damage the reuse factor obtained by the DAGification, but this is rarely a problem
in practice.) A different kind of rewrite rules could be obtained using heuristics—
this will be investigated in the future.

With the DAG representation of formulas, the reductions just described can
be implemented relatively easily in Mona. The table below shows the effects of
performing the reductions on the benchmark formulas:

12

Hits Time
EffectSimple Quant. Conj. None Simple Quant. Conj. All

A 12 8 22 0.8 sec 0.7 sec 0.7 sec 0.7 sec 0.4 sec 2.0
B 10 45 0 58.2 sec 58.8 sec 56.2 sec 56.8 sec 33.1 sec 1.8
C 9 13 8 43.7 sec 41.9 sec 37.1 sec 42.9 sec 15.1 sec 2.9
D 4 28 27 542.7 sec 536.1 sec 296.0 sec 404.7 sec 137.1 sec 4.0
E 5 6 19 22.6 sec 23.4 sec 16.6 sec 22.7 sec 8.0 sec 2.8
F 3 1 1 28.3 sec 29.9 sec 27.0 sec 27.2 sec 13.2 sec 2.1
G 65 318 191 6.1 sec 5.9 sec 6.1 sec 5.9 sec 3.2 sec 1.9
H 35 32 81 104.1 sec 102.6 sec 71.0 sec 98.5 sec 30.4 sec 3.4
I 102 218 7 76.2 sec 76.5 sec 75.0 sec 76.0 sec 40.3 sec 1.9
J 91 0 1 37.3 sec 37.9 sec 37.6 sec 37.0 sec 20.6 sec 1.9
K 9 4 1 313.7 sec 267.9 sec 240.3 sec 302.6 sec 139.9 sec 2.3
L 4 4 18 ∞ ∞ ∞ ∞ 136.4 sec ∞

“Hits” shows the number of times each of the three kinds of reduction is performed;
“Time” shows the total running time in the cases where no reductions are performed,
only the first kind of reductions are performed, only the second, only the third, and
all of them together. “Effect” shows the “None” times compared to the “All” times.
All benchmarks gain from formula reductions, and in a single example this technique
is even necessary. Note that most often all three kinds of reductions must act in
unison to obtain significant effects.

A general benefit from formula reductions is that tools generating Mona formu-
las from other formalisms may generate naive and voluminous output while leaving
optimizations to Mona. In particular, tools may use existential quantifiers to bind
terms to fresh variables, knowing that Mona will take care of the required opti-
mization.

5. Future Developments

Several of the techniques described in the previous section can be further refined
of course. The most promising ideas seem however to concentrate on the BDD
representation. In the following, we describe three such ideas.

It is a well-known fact [9] that the ordering of variables in the BDD automata
representation has a strong influence on the number of BDD nodes required. The
impact of choosing a good ordering can be an exponential improvement in running
times. Finding the optimal ordering is an NP-complete problem, but we plan to
experiment with the heuristics that have been suggested [12].

We have sometimes been asked: “Why don’t you encode the states of the au-
tomata in BDDs, since that is a central technique in model checking?”. The reason
is that there is no obvious structure to the state space in most cases that would
lend itself towards an efficient BDD representation. For example, consider the con-
sequences of a subset construction or a minimization construction, where similar
states are collapsed; in either case, it is not obvious how to represent the new state.
However, the ideas are worth investigating.

For our tree automata, we have experimentally observed that the use of guides
produce a large number of component automata many of which are almost iden-
tical. We will study how to compress this representation using a BDD-like global
structure.

13

6. Conclusion

The presented techniques reflect a lengthy Darwinian development process of
the Mona tool in which only robust and useful ideas have survived. We have not
mentioned here the many ideas that failed or were surpassed by other techniques.
Our experiences confirm the maxim that optimizations must be carried out at all
levels and that no single silver bullet is sufficient. We are confident that further
improvements are still possible and that other interesting applications will be made.

Acknowledgments

Many people have contributed to the development of Mona, in particular we
are grateful to David Basin, Morten Biehl, Jacob Elgaard, Jesper Gulmann, Jacob
Jensen, Michael Jørgensen, Bob Paige, Theis Rauhe, and Anders Sandholm. We
also thank the Mona users who kindly provided the benchmark formulas.

References

1. Abdelwaheb Ayari, David Basin, and Stefan Friedrich. Structural and behavioral
modeling with monadic logics. In The Twenty-Ninth IEEE International Symposium
on Multiple-Valued Logic. IEEE Computer Society, 1999.

2. Abdelwaheb Ayari, David Basin, and Andreas Podelski. LISA: A specification
language based on WS2S. In CSL ’97, LNCS, 1998.

3. David Basin and Stefan Friedrich. Combining WS1S and HOL. In Frontiers of
Combining Systems 2, volume 7 of Studies in Logic and Computation. Research
Studies Press/Wiley, 2000.

4. David Basin and Nils Klarlund. Automata based symbolic reasoning in hardware
verification. Formal Methods In System Design, 13:255–288, 1998. Extended version
of: “Hardware verification using monadic second-order logic,” CAV ’95, LNCS 939.

5. Kai Baukus, Karsten Stahl, Saddek Bensalem, and Yassine Lakhnech. Abstracting
WS1S systems to verify parameterized networks. In Tools and Algorithms for the
Construction and Analysis of Systems, TACAS ’00, volume 1785 of LNCS, 2000.

6. Morten Biehl, Nils Klarlund, and Theis Rauhe. Mona: decidable arithmetic in
practice (demo). In Formal Techniques in Real-Time and Fault-Tolerant Systems,
4th International Symposium, volume 1135 of LNCS, 1996.

7. Morten Biehl, Nils Klarlund, and Theis Rauhe. Algorithms for guided tree au-
tomata. In First International Workshop on Implementing Automata, WIA ’96,
volume 1260 of LNCS, 1997.

8. Jean-Paul Bodeveix and Mamoun Filali. FMona: a tool for expressing validation
techniques over infinite state systems. In Tools and Algorithms for the Construction
and Analysis of Systems, TACAS ’00, volume 1785 of LNCS, 2000.

9. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, Aug 1986.

10. R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing surveys, 24(3):293–318, September 1992.

11. J.R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundl. Math., 6:66–92, 1960.

12. K.M. Butler, D.E. Ross, R. Kapur, and M.R. Mercer. Heuristics to compute variable

14

orderings for efficient manipulation of ordered binary decision diagrams. In Proc.
ACM/IEEE Design Automation Conference (DAC), 1991.

13. Niels Damgaard, Nils Klarlund, and Michael I. Schwartzbach. YakYak: Parsing
with logical side constraints. In Proceedings of DLT’99, 1999.

14. J. Doner. Tree acceptors and some of their applications. J. Comput. System Sci.,
4:406–451, 1970.

15. Jacob Elgaard, Nils Klarlund, and Anders Møller. Mona 1.x: new techniques for
WS1S and WS2S. In Computer Aided Verification, CAV ’98, volume 1427 of LNCS,
1998.

16. Jacob Elgaard, Anders Møller, and Michael I. Schwartzbach. Compile-time debug-
ging of C programs working on trees. In Proceedings of European Symposium on
Programming Languages and Systems, ESOP ’00, volume 1782 of LNCS, 2000.

17. C.C. Elgot. Decision problems of finite automata design and related arithmetics.
Transactions of the American Mathematical Society, 98:21–52, 1961.

18. J. Glenn and W. Gasarch. Implementing WS1S via finite automata. In Automata
Implementation, WIA ’96, volume 1260 of LNCS, 1997.

19. Aarti Gupta and Allan L. Fisher. Representation and symbolic manipulation of
linearly inductive boolean functions. In Proceedings of the IEEE International
Conference on Computer-Aided Design. IEEE Computer Society Press, 1993.

20. J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. In TACAS ’95,
volume 1019 of LNCS, 1996.

21. Thomas Hune and Anders Sandholm. A case study on using automata in control
synthesis. In Fundamental Approaches to Software Engineering, FASE’00, volume
1783 of LNCS, 2000.

22. Jacob L. Jensen, Michael E. Jørgensen, Nils Klarlund, and Michael I. Schwartzbach.
Automatic verification of pointer programs using monadic second-order logic. In
PLDI ’97, 1997.

23. Bengt Jonsson and Marcus Nilsson. Transitive closures of regular relations for
verifying infinite-state systems. In Tools and Algorithms for the Construction and
Analysis of Systems, TACAS ’00, volume 1785 of LNCS, 2000.

24. P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. MOSEL: a flexible toolset
for Monadic Second-order Logic. In Tools and Algorithms for Construction and
Analysis of Systems, TACAS ’97, volume 1217 of LNCS, 1997.

25. Nils Klarlund. Mona & Fido: The logic-automaton connection in practice. In
Computer Science Logic, CSL ’97, volume 1414 of LNCS, 1998.

26. Nils Klarlund. An n log n algorithm for online BDD refinement. Journal of Algo-
rithms, 32:133–154, 1999. Abbreviated version in CAV ’97, LNCS 1254.

27. Nils Klarlund. A theory of restrictions for logics and automata. In Computer Aided
Verification, CAV ’99, volume 1633 of LNCS, 1999.

28. Nils Klarlund, Jari Koistinen, and Michael I. Schwartzbach. Formal design con-
straints. In Proceedings of OOPSLA ’96, 1996.

29. Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICS Notes
Series NS-01-1, Department of Computer Science, University of Aarhus, January
2001.

30. Nils Klarlund, Mogens Nielsen, and Kim Sunesen. Automated logical verification
based on trace abstraction. In Proceedings of PODC ’96, 1996.

15

31. Nils Klarlund, Mogens Nielsen, and Kim Sunesen. A case study in automated
verification based on trace abstractions. In M. Broy, S. Merz, and K. Spies, editors,
Formal System Specification, The RPC-Memory Specification Case Study, volume
1169 of LNCS, pages 341–374. Springer Verlag, 1996.

32. Nils Klarlund and Theis Rauhe. BDD algorithms and cache misses. Technical
report, BRICS Report Series RS-96-5, Department of Computer Science, University
of Aarhus, 1996.

33. Nils Klarlund and Michael I. Schwartzbach. A domain-specific language for regular
sets of strings and trees. IEEE Transactions On Software Engineering, 25(3):378–
386, 1999.

34. O. Matz, A. Miller, A. Potthoff, W. Thomas, and E. Valkema. Report on the
program AMoRE. Technical report, Report 9507, Inst. für Informatik u. Prakt.
Mathematik, CAU Kiel, 1995.

35. Ken McMillan. Symbolic Model Checking. Kluwer, 1993.

36. A.R. Meyer. Weak monadic second-order theory of successor is not elementary
recursive. In R. Parikh, editor, Logic Colloquium, (Proc. Symposium on Logic,
Boston, 1972), volume 453 of Lecture Notes in Mathematics, pages 132–154, 1975.

37. Anders Møller. MONA project home page. http://www.brics.dk/mona/.

38. Anders Møller and Michael I. Schwartzbach. The pointer assertion logic engine. In
Proceedings of Conference on Programming Language Design and Implementation,
PLDI ’01. ACM, 2001.

39. Frank Morawietz and Tom Cornell. The logic-automaton connection in linguistics.
In Proceedings of LACL ’97, number 1582 in LNAI, 1997.

40. Marcus Nilsson. Analyzing parameterized distributed algorithms. Master’s thesis,
Department of Computer Systems at Uppsala University, Sweden, 1999.

41. Sam Owre and Harald Ruess. Integrating WS1S with PVS. In Conference on
Computer-Aided Verification, CAV ’00, LNCS, 2000.

42. Paritosh K. Pandya. DCVALID 1.3: The user manual. Technical report, Tata
Institute of Fundamental Research, STCS-99/1, 1999.

43. Anders Steen Rasmussen. Symbolic model checking using monadic second order
logic as requirement language. Master’s thesis, Technical University of Denmark
(DTU), 1999. IT-E 821.

44. Anders Sandholm and Michael I. Schwartzbach. Distributed safety controllers for
Web services. In Fundamental Approaches to Software Engineering, FASE’98, vol-
ume 1382 of LNCS, 1998.

45. Thomas R. Shiple, James H. Kukula, and Rajeev K. Ranjan. A comparison of
Presburger engines for EFSM reachability. In Computer Aided Verification, CAV
’98, volume 1427 of LNCS, 1998.

46. Mark A. Smith and Nils Klarlund. Verification of a sliding window protocol using
IOA and Mona, 1999.

47. J.W. Thatcher and J.B. Wright. Generalized finite automata with an application
to a decision problem of second-order logic. Math. Systems Theory, 2:57–82, 1968.

48. Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B, pages 133–191. MIT
Press/Elsevier, 1990.

49. S. Yang. Logic synthesis and optimization benchmarks user guide version 3.0. In
Tech. Rep. MCNC, 1991.

16

