
Graph Types�Nils Klarlundy & Michael I. Schwartzbachzfklarlund,misg@daimi.aau.dkAarhus University, Department of Computer Science,Ny Munkegade, DK-8000 �Arhus, DenmarkAbstractRecursive data structures are abstractions of simple records andpointers. They impose a shape invariant, which is veri�ed at compile-time and exploited to automatically generate code for building, copy-ing, comparing, and traversing values without loss of e�ciency. How-ever, such values are always tree shaped, which is a major obstacle topractical use.We propose a notion of graph types , which allow common shapes,such as doubly-linked lists or threaded trees, to be expressed conciselyand e�ciently. We de�ne regular languages of routing expressions tospecify relative addresses of extra pointers in a canonical spanningtree. An e�cient algorithm for computing such addresses is developed.We employ a second-order monadic logic to decide well-formedness ofgraph type speci�cations. This logic can also be used for automatedreasoning about pointer structures.�This paper will also be presented at POPL'93; references should cite the proceedings.yThe author is supported by a fellowship from the Danish Research Counsil.zThe author is partially supported by the Danish Research Council, DART Project(5.21.08.03). 1

1 IntroductionRecursive data types are abstractions of structures built from simple recordsand pointers. The values of a recursive data type form a set of pointerstructures that all obey a common shape invariant. The advantage of thisapproach is twofold:� validity of the invariant can be statically veri�ed at compile-time, whichcontributes to the correctness of programs; and� the invariant can be exploited to automatically generate code for suchtasks as copying, comparing, and traversing values.Recursive data types originate from the seventies [7] and have become ubiq-uitous in modern typed functional languages such as ML [8] and Miranda[10], but they may also be employed in Pascal-like imperative languages.Their bene�ts are substantial, but they also impose limitations; in particular,the values of recursive data types will always be tree shaped. In this paperwe present a natural generalization, graph types, which allows a large varietyof graph shaped values, including (doubly-chained) cyclic lists, leaf-to-root-linked trees, leaf-linked trees, and threaded trees.The key idea is to allow only graphs with a backbone, which is a canonicalspanning tree. All extra edges must depend functionally on this backbone.The extra edges are speci�ed by a language of regular routing expressions,which give relative addresses within the backbone. We show that construc-tion of such graph values|along with all relevant manipulations|can hap-pen e�ciently in linear time. We introduce a decidablemonadic logic of graphtypes, which allows automatic derivation of some constant time operations|such as concatenation of doubly-linked lists. There have been other attemptsto describe graph-shaped values. Our proposal, however, allows exact de-scriptions of a more general class of types, and it does so using an intuitivenotation that is very close to existing concepts in programming languages.This summary is kept in an informal, explanatory style. Formal de�ni-tions and algorithms are included in the appendix.2

2 Data TypesFor this presentation, a (recursive) data type D is a special kind of treegrammar. The non-terminals are called types. There is a distinguished maintype, which in examples is always the one mentioned �rst; the others aremerely auxiliary. A productionT ! v(a1 : T1; : : : ; an : Tn)of D, where T and the Ti's are types, declares a variant v of type T containingdata �elds named a1; : : : ; an; we say that the production declares a type-variant (T :v). For each type, the possible variants must be mutually distinct;thus (T : v) uniquely determines the production. Moreover, for each type-variant, the data �elds must be mutually distinct.The values of a data type are essentially the derivation trees of the un-derlying context-free grammar, starting with the main type. They are imple-mented as pointer trees, but the programmer will never directly manipulatethese pointers. Each node of such a pointer tree is an instance of a variantof a type. A formal de�nition of the values of a data type is given in sectionA1 of the appendix. As a simple example, consider the following data type,which speci�es a type of simple integer listsL ! nonempty(head: Int, tail: L)! empty()We can think of the type Int as being a data type speci�ed asInt ! 0() j 1() j 2() j : : :We allow implicit variants as a form of syntactic sugar. If the sets of data�elds are distinct for all variants, then the explicit variants are not needed;we may think of the variant names as being a concatenation of the �eldnames. Thus, we may instead writeL ! (head: Int, tail: L)! () 3

Programming with Data TypesWhen a data type has been speci�ed, it gives rise to a number of operationsin the programming language. First of all, there is a language for denotingconstant values. For the above lists, one may write downL(head: 11, tail: (head: 12, tail: (head: 13, tail: ())))for the list of type L with elements 11, 12, and 13. If x is a variable containinga value of type L, then x.tail.tail.head speci�es the address of a subtree, inthis case of type Int. In a functional language this would always denote thecorresponding value; in an imperative language there is the usual distinctionbetween l- and r-values. The comparison x = y is always de�ned for twovalues of type L. If x is a value of type L, then the boolean expression is(x,v)yields true exactly when x is of variant v. In an imperative language, thevalue assignment x := y is present, possibly accompanied by the swap x :=:y which exchanges two subtrees without copying. Values of data types aretraversed by recursive functions or procedures. Thus, explicit pointers arenever used.There is no intrinsic loss of e�ciency in this approach. Constants can bebuilt, copied, compared, and traversed in optimal linear time, and addressesare accessed in constant time. Thus, if one really wants tree-shaped values,then only advantages are to be seen.Shortcomings of Data TypesThe main draw-back of data types is the limited shapes of values that theyallow. For the above simple lists, values always look as follows (an emptyrecord is pictured as a \ground" symbol) --- 131211However, it is a common optimization to want an extra pointer to gain con-stant time access to the last element of the list. Thus, the values shouldinstead have the following shape 4

6- --- 131211These are not trees and, hence, cannot be speci�ed by data types. Until now,there has been no solution to this problem. The only possibility has been torevert to the often perilous use of explicit pointers.3 Graph TypesWe introduce the notion of graph types, which form a conceptually simpleextension of data types. They allow graph shaped values while retaining thee�ciency and ease of use. There are two key insights to our solution:� while being graphs, the values all have a backbone, which is a canonicalspanning tree; and� the remaining edges are all functionally determined by this backbone.Many, but not all, sets of graphs �t this mold; we give examples of bothkinds.A graph type extends a data type by having routing �elds as well as data�elds. Productions now look likeT ! v(: : : ai : Ti : : : aj : Tj[R] : : :)Here ai is a normal data �eld but aj is a routing �eld. It is distinguished byhaving an associated routing expression R. A graph type has an underlyingdata type, which is obtained by removing the routing �elds. The backbonesof the graph type values are simply the values of this data type. Routingexpressions describe relative addresses within the backbone. The completegraph type value is obtained by using the routing expressions to evaluate thedestinations of the routing �elds.Routing expressions are regular expressions over a language of directives,which describe navigation within a backbone. Directives include \move up tothe parent (from a speci�c child)" (" or " a) , \move down to a speci�c child"(# a), and \verify a property of the current node", where properties include5

\this is the root" (^), \this is a leaf" ($), and \this is (a speci�c variant of)a speci�c type" (T or (T : v)). A routing expression de�nes the destinationindicated by the corresponding routing �eld if its regular language containsprecisely one sequence of successful directives leading to a node in the tree. Agraph type is well-formed if every routing expression always de�nes a uniquedestination. Section A2 of the appendix gives formal de�nitions of theseconcepts.To make a convincing case for this new mechanism, we need to demon-strate the following facts:� many useful families of structures can be easily speci�ed;� values can be manipulated at run-time similarly to values of data types,and without loss of e�ciency; and� well-formedness of graph type speci�cations can be decided at compile-time.4 ExamplesWe now show that many common pointer structures have simple speci�ca-tions as graph types. The examples are all well-formed, which can be easilyseen in each case. In pictures of values, we use the convention that pointersfrom data �elds are solid, whereas those from routing �elds are dashed. Theroot of the underlying spanning tree, or backbone, is indicated by a solidpointer with no origin. The list with a pointer to the last element looks likeH ! (�rst: L, last: L[#�rst #tail� $ "])L ! (head: Int, tail: L)! ()A typical value is -6-- -- tailtailtaillast�rst 131211 6

The routing expression #�rst #tail� $ " for the \last" �eld contains the follow-ing directives: move down along the \�rst" pointer (#�rst); follow the \tail"pointers until a leaf is reached (#tail� $); then back up once ("). This is thedestination of the \last" pointer. A cyclic list looks likeC ! (next: C)! (next: C["� ^])A typical value is 6 � ?--next nextnextnext
The routing expressions contain the following simple directives: move up tothe root. A doubly-linked cyclic list looks likeD ! (next: D, prev: D[" + ^ #next�$])! (next: D["� ^], prev: D[" + ^])A typical value is ?-- - 6�� ?-prev prev prevprevnext nextnextnext7

Directives are more complicated here; they use the nondeterministic unionoperator on regular expressions (+) to express context-dependent choices.For example, consider the \prev" �eld of the �rst variant. According to therouting expression " + ^ #next�$ of this �eld, we must either move up, or, ifwe are at the root, follow \next" pointers to the leaf.A binary tree in which all leaves are linked to the root looks likeR !(left, right: R)!(root: R["� ^])A typical value is ?- 6�

� JJJJĴ JJJJĴ

� rootroot rootrightleft left right
A binary tree in which all the leaves are joined in a cyclic list looks likeJ !(left, right: J)!(next: J[step$])where step abbreviates "right�("left#right+ ^) #left�. A typical value is8

?
6 6-JJJJĴ

� JJJJĴ

� next nextnext rightleft rightleft

A binary tree with red or black leaves, in which those of the same color arejoined in a cyclic list, looks likeK !(left, right: K)!red(next: K[black� red])!black(next: K[red� black])where red abbreviates step (K:red) and black abbreviates step (K:black).We shall abstain from showing a typical value of this type. Finally, a binarytree in which all nodes are threaded cyclically in post-order looks likeT !(left, right: T, post: T[post])!(post: T[post])where post abbreviates "right+"left#right#left�$+ ^ #left�$. A typical valueis 9

?
-

�-� -@@@@R����	 @@@@R����	 postpost postpostpost right rightleft left
At a �rst glance such speci�cations may seem daunting, but at least tothe authors they quickly became familiar. The use of abbreviations, such asstep and post above, may improve legibility and promote reuse of routingexpressions. Complicated pointer structures may give rise to complicatedgraph type speci�cations. However, it is fair to say that the complexity ofthe graph type speci�cation correlates well with this inherent complexity, inthe same way that a verbal or pictorial description would.Not all families of graph shaped values can by speci�ed by graph types.First of all, they must be deterministic, in the sense that all edges must befunctions of some underlying spanning tree. This precludes such things as apointer from the root to some node in the tree. But even all deterministicsituations cannot be speci�ed. Consider a generalized tableau structure ona grid, in which there must be an edge from a point to the one immediatelybelow, if they are both present.

10

--???? -----????
-

A graph type cannot represent such graphs, since the variant at a givennode is dependent on whether there is a downward pointing edge. Thus thevariant is dependent on the rest of the graph|something we cannot specifyin a context-free grammar.5 ProgrammingSo far, we have seen that many families of pointer structures can be capturedas the values of graph types. We must also demonstrate that they can beused for programming in a manner similar to that for data types.An obvious problem with having graph shaped values is that the recursivetraversal may be problematic; how can we avoid cycles? However, for graphtypes we have the canonical spanning tree of the underlying data value. Thus,many of the simple techniques can be inherited in a straightforward manner.For example, the algorithm for comparing two graph values is exactly thesame as for the underlying two data values; the routing �elds are just ignored.The syntax for constants are also the same as for the underlying datatype. The values of the routing �elds are then computed automatically. Theexample values of the previous section are speci�ed as constants as follows:H(�rst: (head: 11, tail: (head: 12, tail: (head: 13, tail: ()))))C(next: (next: (next: ())))D(next: (next: (next: ())))R(left: (left: (), right: ()), right: ())11

J(left: (left: (), right: ()), right: ())T(left: (left: (), right: ()), right: ())Note that the expressions for the C- and D-values are identical, as are thosefor the R-, J-, and T-values.Copying (sub)values happens in two steps. First, the underlying spanningtree is copied; second, the values of the routing �elds must be reevaluated.Consider for example the leaf-to-root-linked tree. If a subtree is copied, thenthe leaves must now point to the new root of that tree.If a data �eld in a graph value is assigned, then several routing �elds in theboth the surrounding spanning tree and the new graft may have to change.Consider for example the red-black leaf-linked trees. If a leaf is changed fromred to black, then it must be removed from one cyclic list and inserted inanother. A simple way of handling this is to reevaluate all routing �elds,but that is undesirable since the surrounding tree may be large and the graftmay be small. A similar problem exists for the swapping of subtrees. Wemust develop an algorithm for detecting the routing �elds that are requiredto be updated.Routing �elds can be read just like data �elds; they also point to subtreesof the canonical spanning tree. It is, of course, not possible to assign directlyto a routing �eld.In summary, many of the required algorithms are inherited from the un-derlying data structure. However, we must be able to evaluate all routing�elds in only combined linear time, and for assignment we need to detectthose routing �elds that must be updated.Evaluating Routing FieldsBackbones can clearly be constructed in linear time. Given a backbone, it ispossible to evaluate all routing �elds in combined linear time.First, each routing expression in the graph type is translated into anequivalent nondeterministic automaton. This translation is linear.Next, a table is constructed that for each node � and for each automatonstate q of each automaton A contains a pointer. Intuitively, if this pointer isnot nil, it indicates a node � reachable by a sequence w of directives from �such that upon reading w, automaton A may end up in a �nal state at node12

�. This table is calculated in linear time by an algorithm described in theappendix.When the table has been constructed, the destination of a routing �eldat � is given as the pointer found in an entry (�; q0) of the table, where q0is an initial state of the automaton representing the routing expression.Detecting Required UpdatesSometimes when a change occurs, it is su�cient to update routing �elds foronly a small part of the value. For example, this happens when swappingsubtrees of values of type J , the type of leaf-linked binary trees. Consider thesituation after the subtrees rooted at addresses � and � have been swapped:
uu uuu u uu u uuu u uu- ----

HHHHHHHHHHHHHHHH��������������������� BBBBB BBBBB����� ����� BBBBB BBBBB����� ����� BBBBBnext nextnextnextnext � 00�0�00�0 ��
Here only the \next" pointers at �0, �00, � 0, and � 00 need to be updated. If weassume that J is made doubly-linked|by adding a �eld \prev: J[" + ^]"|it would often be less costly to locate the four nodes f�0; �00; � 0; � 00g afterthe change and reevaluate their \next" �elds than evaluating all routingexpressions in the backbone from scratch. In fact, with this approach we canguarantee that the time to locate �elds in need of updating is proportionalto the total length of the paths that lead to these �elds, in this case of thepaths from � to �0, from � to �00, from � to � 0, and from � to � 00.To generate these paths, we consider each node incident on a backboneedge that changes (above, it would be �, �, and their parents). Each au-13

tomaton state at such a node can be followed backwards|towards possibleorigins, routing �elds whose routes go through the node|and forwards|towards a possible destination. Above, this involves �nding four destinationsand four origins. For example, when considering �, we obtain two origins,the \next" �elds of �0 and �00, and their corresponding destinations.We shall shortly see how further optimizations are possible. Note, how-ever, that for some graph types the number of paths to follow may be pro-portional to n. This happens for example for the root linked trees of type Rdescribed earlier when a new root is added to an existing tree. In this casethere is no gain in using the techniques described in this section comparedto the algorithm for updating all routing �elds.Monadic Logic and Well-FormednessThe monadic second-order logic on graph types is a logical formalism thatallows several important properties about graph types to be expressed. Insection A4 of the appendix, we de�ne the logic formally and show that itis decidable. Our logic permits quanti�cation over values of graph types,addresses, and sets of addresses. In this logic we can formulate questionssuch as \What is the type-variant of a node � in a value x?" or \Is there awalk in a value x from node � to node � according to a routing expressionR?"The question of whether a graph type is well-formed can also be expressedin the logic as it is shown in section A4 of the appendix. Thus this questionis decidable. Similarly, questions about comparing values, such as ValG1 �ValG2, where G1 and G2 are graph types, are decidable.Although much can be expressed in the monadic second-order logic ongraph types, there are simple operations that cannot. For example, one can-not represent the result of replacing a subtree with another subtree (althoughcertain properties of the result may be expressible).Access OptimizationsIn the example of updating routing �elds in leaf-linked trees, we saw that onlyfour �elds needed to be updated. It is not hard to see that calculating thedestination of each such routing �eld is not necessary. For example, the newvalue of the \next" �eld at �0 is the old value of the \next" �eld at � 0. Thus,when the four routing �elds have been located, the updates can take place in14

constant time by properly permuting the values of known \next" pointers.Such use of the values of routing �elds is called access optimization.The formal reasoning behind access optimization can be formulated inmonadic logic. For example the question \Is the value of the \next" �eld at�0 in the new graph the same as the value of the \next" �eld at � 0 in the oldgraph?" can be expressed, and the answer \yes" can be computed.In general, a strategy for access optimization is to compare values con-tained in nodes already located to the destination of paths that arise in thedetection of required updates. This involves trying out di�erent combina-tions of paths that are followed explicitly and testing whether other neededdestinations or origins can be found in constant time. Thus one can formu-late a minimization problem for �nding the least number of paths that needto be followed in order to carry out an update, and this problem is decidable.For doubly-linked lists of type D, such reasoning allows the automaticgeneration of optimal, constant-time code for concatenating lists|withoutthe programmer having to specify any pointer operations.6 Related WorkDecidability of logics of graphs have been studied extensively; see [4] for ref-erences to the classical results that the monadic second order logic on �nitetrees is decidable and for extensions to more general graphs. The hyperedge-replacement grammars of [4] and similar context-free graph rewriting for-malisms describe much larger classes of graphs than our graph types. An im-portant result of [4] is that any property expressed in second-order monadiclogic on graphs is decidable on hyperedge-replacement grammars. We couldhave used this result to derive our decidability result; but the translation intocontext-free graph grammars appears to be more complex than our approach.Although mathematically interesting, context-free graph grammars tend tobe hard to understand; this is likely the reason why, to our knowledge, theyhave not been used for describing types in programming languages.Closer in spirit to our approach are the feature grammars and algebras;see [5] for references. These formalisms are built on the view that features(corresponding to our record �elds) are partial functions that identify at-tributes. Not being based on tree structures, features allow the descriptionof self-referential data structures. As opposed to our approach, the values15

designated are not guided by any expressions.The programming languages in [1, 2] and [3] use similar ideas and permitscircular data structures. A restriction of this work is that such circularreferences may only point to nodes labeled syntactically with a marker. Sincethe number of markers is �nite, this language precludes the modeling of e.g.doubly-linked lists or leaf-linked trees, but allows root-linked trees.The ADDS notation in [6] allows the description of abstract propertiesof pointer structures through the concepts of dimensions and directions.The main motivation is to make static analysis more feasible through (non-invasive) program annotations. With the ADDS notation one cannot specifythe exact shape of values, and manipulations still rely on explicit pointeroperations.The techniques for evaluating routing �elds are similar to algorithms forreevaluating attributed grammars [9], but to our knowledge the algorithmsfor updating a tree of a grammar whose attributes are nodes in the tree hasnot been described before.AcknowledgmentsThanks to the anonymous referees for their helpful comments.References[1] H. A��t-Kaci and R. Nasr. Logic and inheritance. In Proc. 13th ACMSymp. on Princ. of Programming Languages, pages 219{228, 1986.[2] H. A��t-Kaci and R. Nasr. Login: A logic programming language withbuilt-in inheritance. Journal of Logic Programming, 3:185{215, 1986.Journal version of [1].[3] H. A��t-Kaci and A. Podelski. Towards a meaning of life. In JanMaluszy�nski and Martin Wirsing, editors, Proceedings of the 3rdInternational Symposium on Programming Language Implementationand Logic Programming (Passau, Germany), pages 255{274. Springer-Verlag, LNCS 528, August 1991.16

[4] B. Courcelle. The monadic second-order logic of graphs I. Recognizablesets of �nite graphs. Information and computation, 85:12{75, 1990.[5] J. D�orre and W.C Rounds. On subsumption and semiuni�cation infeature algebras. In Proc. IEEE Symp. on Logics in Computer Science,pages 300{310, 1990.[6] L. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursivepointer data structures: Improving the analysis and transformation ofimperative programs. In Proc. SIGPLAN'92 Conference on Program-ming Language Design and Implementation, pages 249{260. ACM, 1992.[7] C.A.R. Hoare. Recursive data structures. International Journal of Com-puter and Information Sciences, 4:2:105{132, 1975.[8] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Stan-dard ML. MIT Press, 1990.[9] T. Reps. Incremental evaluation for attribute grammars with unre-stricted movement between tree modi�cations. Acta Informatica, 25,1986.[10] D.A. Turner. Miranda: A non-strict functional language with polymor-phic types. In Proc. Conference on Functional Programming Languagesand Computer Architecture, pages 1{16. Springer-Verlag (LNCS 201),1985.Appendix: Formal De�nitionsThis appendix contains the formal de�nitions of the concepts introduced.They may be used to elucidate and substantiate the contents of the precedingsummary.A1: Data TypesAssociated with a data type D we have some notation. The main type isdenoted MainD. By TD we denote the set of types. By TD(T : v)a we17

denote the type of the data �eld a in variant v of type T , i.e., for the type-variant above, TD(T :v)ai = Ti. By VD we denote the set of all variants inD; by VDT we denote the set of variants of type T . By FD we denote theset of all data �elds in D; by FD(T : v) we denote the set of data �elds oftype T and variant v, i.e., for the type-variant declaration above, FD(T :v) =fa1; : : : ; ang. An address � is an element of F�D.The values of D is the set ValD of functions x : F�D ! TD �VD suchthat� domx is �nite and pre�x closed;� x(�) = (MainD :v), for some v; and� for all � 2 domx, if x(�) = (T :v) then{ v 2 VDT and{ �a 2 domx , a 2 FD(T :v) ^ TD(T :v) a = T 0where x(�a) = (T 0 :v0) for some v0.Intuitively, the addresses in domx serve as pointer values.A2: Graph Types and Routing ExpressionsWhile FG still denotes all �elds, we use FdG to denote the data �elds, and FrGto denote the routing �elds. We use the notation RG(T : v) a to denote therouting expression associated with the routing �eld a in variant v of type T .The graph type has an underlying data typeDataG which is obtained byremoving all the routing �elds. The routing expressions must all be de�nedon DataG, as described below.Given a data type D, de�ne the alphabet � that consists of directives(letters) ^; $; "; "a and #a, where a2FD; T and (T :v), where T 2TD andv 2VDT .Given x2ValD we de�ne the step relation ;x on domx��� domxby the following transitions: 18

� ;̂x �� $;x � if � is a leaf in x��a ";x ���a "a;x �� #a;x ��a� T;x � if x(�) = (T : v) for some v� (T:v); x � if x(�) = (T : v)When � d;x �, we say that � is reached from � by directive d. Note that �such that � d;x � is uniquely de�ned, if it exists, by the values of � and d.A route � = d1 � � � dn is a word over �. A walk in x from �2domx to� 2domx along � is the unique sequence, if it exists, �0; � � ��n = �, suchthat �i�1 di;x �i for all i, 1 � i � n. The walk is denoted � �;x �.A routing expression R on D is a regular expression over �. We con-struct regular expressions using operators + (union), � (concatenation), and� (iteration). The regular language de�ned by R is denoted L(R). Given x,R and an origin �2domx, a destination is a � 2domx such that � �;x �for some route �2L(R). The set of all destinations is denoted Dest x(R;�).If this set is a singleton we say that R at � in x has the unique destinationproperty.Intuitively, the routing expressions specify where the pointers in he rout-ing �elds should lead to. A graph type is only well-formed when all suchexpressions always have the unique destination property and always lead tosubtrees of the speci�ed types.The values of a well-formed graph type G form the set ValG of �nitegraphs. There is a graph for every value in the underlying data type. Givenx 2 ValDataG we construct a graph whose nodes are domx, the set ofaddresses in x. The edges, which are labeled by �eld names, come in two
avors: data edges and routing edges. The data edges provide the canonicalspanning tree|the backbone|and are de�ned asf� a�! �a j �a 2 domxg:The routing edges are de�ned asf� a�! � ja 2 FrGx(�); RGx(�)a = R;Dest x(R;�) = f�g g19

In this graph, addresses in F�G (both data and routing �elds) are de�ned.A3: Evaluating Routing FieldsHere we give the details of the algorithm mentioned in Section 5. We aregiven a backbone x and a collection of nondeterministic �nite-state automatarepresenting all routing expressions in the graph grammar. For an automatonA with transition relation!A and a word w = d0 � � � dn 2��, we write q w!Aq0 to denote that there exists q0; : : : ; qn+1 such that q0 = q, qn+1 = q0, andq0 d0! q1 � � � dn! qn+1.Our goal is to build a table Tbl such that for each node � in x and foreach automaton A and each state q of A, the value of Tbl (�; q) is a node �,if it exists, such that for some w 2��, � w;x � and q w!A qF , where qF is a�nal state of A; if no such node exists then Tbl (�; q) = nil.The algorithm below employs a queue Q to calculate Tbl :1. Tbl (�; q) := nil, for all nodes � in x and all automata states q2. make Q empty3. for all (�; q), where q is a �nal state:(a) Tbl (�; q) := �(b) insert (�; q) in Q4. while Q is non-empty:(a) delete an element (�; q) from Q(b) for all (�; q0) such that Tbl (�; q0) = nil and for some d, q0 d!A qand � d;x �:i. Tbl (�; q0) := Tbl (�; q)ii. insert (�; q0) in QNote that each entry (�; q) is considered at most once and that Step 4.(b)involves only the node � and its immediate neighbors|thus a number ofnodes that depends on the grammar only. We conclude that the algorithmruns in linear time as a function of the size of x.20

With the well-formedness criterion it is not hard to see that the destina-tion of a routing �eld at � is the node � if and only if there exists an initialstate q of the corresponding automaton such that Tbl (�; q) = �.A4: Monadic LogicThe monadic second-order logic of graph types, denotedM2LGT, is used toexpress certain properties of graph types. We �rst introduce a simpler logic,monadic second-order logic of data types, denotedM2LDT. Fix a data typeD. We de�ne the M2LDT on D as follows. There are two kinds of second-order variables, value variables and address set variables. A value variable xdenotes a value of D. An address set variable M denotes a set of addressesof D. Such variables can be combined with [, \ and ; to form address setexpressions. The set of addresses of x is denoted domx, which is also a setexpression.A �rst-order variable �, also called an address variable, denotes an ad-dress of D. That � is an address in M is expressed as the formula �2M . Avalue variable x of type D is introduced by an existential quanti�cation 9Dxor a universal quanti�cation 8Dx. Variables that denote addresses or sets ofaddresses are introduced by usual existential (9) or universal (8) quanti�ca-tion. The formulas of the logic are obtained by combining quanti�cation, ^(and), _ (or), : (negation) with the following basic formulas:is ^(�) � = �isx$(�) x(�) is a leaf variantisx(T :v)(�) x(�) = (T : v)isxT (�) x(�) = (T : v) for some visxwalk(�; �;R) 9�2L(R) : � �;x �� = �E1 = E2E1 � E2�2 E� = � �a� = � �x a a2FDx(�) and � = � �awhere E and the Ei's are address set expressions. The formulas have theobvious meanings, e.g. isx(T : v)(�) is true i� the type-variant at address �21

in x is (T :v). The formula � = � �x a is true if � = ��a and a is a �eld of thetype variant at � in x.Expressing well-formednessThe following formula in M2LDT expresses that a graph type G is well-formed:8Dx : ANDT 2TD; v 2VDT ANDa2FR(T :v)8�2domx : 9 !� : isx(T :v)(�))isxwalk(�; �;RDx(�)a);where D = DataG is the underlying data type; 9 ! is an abbreviation for\there exists a unique"; and AND is an abbreviation expressing the conjunc-tion obtained by expanding over the corresponding indices.Decidability of M2LDTTheorem 1 M2LDT is decidable.Proof M2LDT is decidable by an easy reduction toM2LkSFT, the monadicsecond-order logic of k successors on �nite trees. The latter logic has set vari-ables, such as X, denoting subsets of f1; � � � ; kg� and �rst-order variables,such as �, denoting elements of f1; � � � ; kg�. In addition there is a successorfunction �k for each j 2f1; : : : ; kg and connectives and quanti�ers as above.We will indicate how formulas of M2LDT involving a data type D can betranslated intoM2LkSFT. We let k be jFDj, the number of di�erent �elds inD, and we rename �eld names as 1; : : : ; k. An x in D introduced by a quan-ti�ed formula 9Dx : f is translated into 9Xd;X1T ; : : : ;XnTT , 9X1V ; : : : ;XnvV :g ^ f̂ , where Xd expresses domx; X1T ; : : :XnTT expresses the type at position� by the bit pattern h�2X1T ; : : : ; �2XnTT i (here nT = log jTDj); X1v ; : : :Xnvvexpresses the variant at position � by the bit pattern h�2X1T ; : : : ; �2XnvT i(here nv = log jVDj); f̂ is the translation of f ; and g is a formula expressingthat x is a value of D according to the conditions on derivation trees given inSection 1. Address set variables are just translated into set variables and ad-dress variables into �rst-order variables. Most of the basic formulas are noweasy to express. For example, � = � �x a is translated into � = � �a ^ �2 x;this formula is equivalent � = ��a ^ a2FDx(�) since x2ValD. The basic22

formula isxwalk(�; �;R) is more di�cult. Here we encode the working ofAR, the automaton equivalent to R, on x by a formula that guesses the sub-sets of states at each � that are accessible from a partial run (which is likea run except that the last state need not be �nal) starting at �. This collec-tion of subsets can be coded using jARj set variables. We must then write aM2LkSFT formula expressing that all states in a subset have a predecessorfor some directive under the transition relation (unless the state is initial andin the subset at �). This alone is not su�cient. We must also write down acondition that ensures that the collection of subsets is minimal with respectto the previous condition; technically, we are calculating a least �xed-pointin order to ensure that all states are reachable from initial states at �. Thedetails of this translation are omitted. 2Logic of graph typesThe monadic second-order logic of graph types,M2LGT, has the same syn-tax as M2LDT.Theorem 2 M2LGT is decidable.Proof The translation intoM2LkSFT only di�ers for the formula � = � �x a.If a2FRGx(�), then the translation must expresses that isxwalk(�; �;R),where R = RGx(�)a. We omit the details. 2
23

