Graph Types®

Nils Klarlund! & Michael I. Schwartzbach?
{klarlund,mis}@daimi.aau.dk

Aarhus University, Department of Computer Science,

Ny Munkegade, DK-8000 Arhus, Denmark

Abstract

Recursive data structures are abstractions of simple records and
pointers. They impose a shape invariant, which is verified at compile-
time and exploited to automatically generate code for building, copy-
ing, comparing, and traversing values without loss of efficiency. How-
ever, such values are always tree shaped, which is a major obstacle to
practical use.

We propose a notion of graph types, which allow common shapes,
such as doubly-linked lists or threaded trees, to be expressed concisely
and efficiently. We define regular languages of routing expressions to
specify relative addresses of extra pointers in a canonical spanning
tree. An efficient algorithm for computing such addresses is developed.
We employ a second-order monadic logic to decide well-formedness of
graph type specifications. This logic can also be used for automated
reasoning about pointer structures.

*This paper will also be presented at POPL’93; references should cite the proceedings.

TThe author is supported by a fellowship from the Danish Research Counsil.

!The author is partially supported by the Danish Research Council, DART Project
(5.21.08.03).

1 Introduction

Recursive data types are abstractions of structures built from simple records
and pointers. The values of a recursive data type form a set of pointer
structures that all obey a common shape invariant. The advantage of this
approach is twofold:

e validity of the invariant can be statically verified at compile-time, which
contributes to the correctness of programs; and

o the invariant can be exploited to automatically generate code for such
tasks as copying, comparing, and traversing values.

Recursive data types originate from the seventies [7] and have become ubig-
uitous in modern typed functional languages such as ML [8] and MIRANDA
[10], but they may also be employed in PASCAL-like imperative languages.
Their benefits are substantial, but they also impose limitations; in particular,
the values of recursive data types will always be tree shaped. In this paper
we present a natural generalization, graph types, which allows a large variety
of graph shaped values, including (doubly-chained) cyclic lists, leaf-to-root-
linked trees, leaf-linked trees, and threaded trees.

The key idea is to allow only graphs with a backbone, which is a canonical
spanning tree. All extra edges must depend functionally on this backbone.
The extra edges are specified by a language of regular routing expressions,
which give relative addresses within the backbone. We show that construc-
tion of such graph values—along with all relevant manipulations—can hap-
pen efficiently in linear time. We introduce a decidable monadic logic of graph
types, which allows automatic derivation of some constant time operations—
such as concatenation of doubly-linked lists. There have been other attempts
to describe graph-shaped values. Our proposal, however, allows exact de-
scriptions of a more general class of types, and it does so using an intuitive
notation that is very close to existing concepts in programming languages.

This summary is kept in an informal, explanatory style. Formal defini-
tions and algorithms are included in the appendix.

2 Data Types

For this presentation, a (recursive) data type D is a special kind of tree
grammar. The non-terminals are called types. There is a distinguished main
type, which in examples is always the one mentioned first; the others are
merely auxiliary. A production

T —vlay: Ty, ... a,:T),)

of D, where T and the T}’s are types, declares a variant v of type T' containing
data fields named aq,...,a,; we say that the production declares a type-
variant (T:v). For each type, the possible variants must be mutually distinct;
thus (7' : v) uniquely determines the production. Moreover, for each type-
variant, the data fields must be mutually distinct.

The values of a data type are essentially the derivation trees of the un-
derlying context-free grammar, starting with the main type. They are imple-
mented as pointer trees, but the programmer will never directly manipulate
these pointers. Each node of such a pointer tree is an instance of a variant
of a type. A formal definition of the values of a data type is given in section
Al of the appendix. As a simple example, consider the following data type,
which specifies a type of simple integer lists

L — nonempty(head: Int, tail: L)
— empty()

We can think of the type Int as being a data type specified as
Int — 00) | 1) | 2() | ...

We allow implicit variants as a form of syntactic sugar. If the sets of data
fields are distinct for all variants, then the explicit variants are not needed;
we may think of the variant names as being a concatenation of the field
names. Thus, we may instead write

L — (head: Int, tail: L)
— ()

Programming with Data Types

When a data type has been specified, it gives rise to a number of operations
in the programming language. First of all, there is a language for denoting
constant values. For the above lists, one may write down

L(head: 11, tail: (head: 12, tail: (head: 13, tail: ())))

for the list of type L with elements 11, 12, and 13. If x is a variable containing
a value of type L, then x.tail.tail.head specifies the address of a subtree, in
this case of type Int. In a functional language this would always denote the
corresponding value; in an imperative language there is the usual distinction
between [- and r-values. The comparison x = y is always defined for two
values of type L. If « is a value of type L, then the boolean expression is(x,v)
yields true exactly when x is of variant v. In an imperative language, the
value assignment x := y is present, possibly accompanied by the swap x :=:
y which exchanges two subtrees without copying. Values of data types are
traversed by recursive functions or procedures. Thus, explicit pointers are
never used.

There is no intrinsic loss of efficiency in this approach. Constants can be
built, copied, compared, and traversed in optimal linear time, and addresses
are accessed in constant time. Thus, if one really wants tree-shaped values,
then only advantages are to be seen.

Shortcomings of Data Types

The main draw-back of data types is the limited shapes of values that they
allow. For the above simple lists, values always look as follows (an empty
record is pictured as a “ground” symbol)

11 12 13

However, it is a common optimization to want an extra pointer to gain con-
stant time access to the last element of the list. Thus, the values should
instead have the following shape

11 12 13

Y

Y
A
y

These are not trees and, hence, cannot be specified by data types. Until now,
there has been no solution to this problem. The only possibility has been to
revert to the often perilous use of explicit pointers.

3 Graph Types

We introduce the notion of graph types, which form a conceptually simple
extension of data types. They allow graph shaped values while retaining the
efficiency and ease of use. There are two key insights to our solution:

e while being graphs, the values all have a backbone, which is a canonical
spanning tree; and

o the remaining edges are all functionally determined by this backbone.

Many, but not all, sets of graphs fit this mold; we give examples of both
kinds.

A graph type extends a data type by having routing fields as well as data
fields. Productions now look like

THU(GZTZGJT][R])

Here ¢; is a normal data field but «; is a routing field. It is distinguished by
having an associated routing expression K. A graph type has an underlying
data type, which is obtained by removing the routing fields. The backbones
of the graph type values are simply the values of this data type. Routing
expressions describe relative addresses within the backbone. The complete
graph type value is obtained by using the routing expressions to evaluate the
destinations of the routing fields.

Routing expressions are regular expressions over a language of directives,
which describe navigation within a backbone. Directives include “move up to
the parent (from a specific child)” (T or T @) , “move down to a specific child”
(1 a), and “verify a property of the current node”, where properties include

“this is the root” (A), “this is a leaf” ($), and “this is (a specific variant of)
a specific type” (T or (T:v)). A routing expression defines the destination
indicated by the corresponding routing field if its regular language contains
precisely one sequence of successful directives leading to a node in the tree. A
graph type is well-formed if every routing expression always defines a unique
destination. Section A2 of the appendix gives formal definitions of these
concepts.

To make a convincing case for this new mechanism, we need to demon-
strate the following facts:

e many useful families of structures can be easily specified;

e values can be manipulated at run-time similarly to values of data types,
and without loss of efficiency; and

o well-formedness of graph type specifications can be decided at compile-
time.

4 Examples

We now show that many common pointer structures have simple specifica-
tions as graph types. The examples are all well-formed, which can be easily
seen in each case. In pictures of values, we use the convention that pointers
from data fields are solid, whereas those from routing fields are dashed. The
root of the underlying spanning tree, or backbone, is indicated by a solid
pointer with no origin. The list with a pointer to the last element looks like

H — (first: L, last: L{|first [tail*$ T])
L — (head: Int, tail: L)
— ()

A typical value is

first

Y
Y

11 tail 12 tail 13 tail |||

The routing expression [first [tail*$ T for the “last” field contains the follow-
ing directives: move down along the “first” pointer ([first); follow the “tail”
pointers until a leaf is reached ([tail*$); then back up once (7). This is the
destination of the “last” pointer. A cyclic list looks like

C — (next: C)
— (next: C[T* A])

A typical value is

next

Y
Y

next next

next

e e

A

The routing expressions contain the following simple directives: move up to
the root. A doubly-linked cyclic list looks like

D — (next: D, prev: D[T 4+ 2 [next*$])
— (next: D[T* 2], prev: D[] +4])

A typical value is

prev
r-—-|-- M- =---1 --
|
1 — ™ -
o next T
| | 1
1 1 1
prev 1 next next | prev
| 1 |
I prev. Y |
L —i1—» --F-=-=-- g 1
|
L |- — <
next

Directives are more complicated here; they use the nondeterministic union
operator on regular expressions (+) to express context-dependent choices.
For example, consider the “prev” field of the first variant. According to the
routing expression T + A |next*$ of this field, we must either move up, or, if
we are at the root, follow “next” pointers to the leaf.

A binary tree in which all leaves are linked to the root looks like

R —(left, right: R)
—(root: R[T* A])

A typical value is

F-——=—------- > - - - -

| |

! lef;/ 2 right : .

| | | TOO

| 0.
root , | -4

| |

| |

L eft right!

; 1 root

L - J

A binary tree in which all the leaves are joined in a cyclic list looks like

J —(left, right: J)
—(next: J[STEPS$])

where STEP abbreviates Tright*(Tleft [right+) [left*. A typical value is

1ey right

left right

A binary tree with red or black leaves, in which those of the same color are
joined in a cyclic list, looks like

K —(left, right: K)
—red(next: K[BLACK™ RED])
—black(next: K[RED* BLACK])

where RED abbreviates STEP (K:red) and BLACK abbreviates STEP (K:black).
We shall abstain from showing a typical value of this type. Finally, a binary
tree in which all nodes are threaded cyclically in post-order looks like

T —(left, right: T, post: T[POST))
—(post: T[POST])

where POST abbreviates Tright+Tleft [right [left*$+ A |left*$. A typical value
is

I
I
: leftv ight :post
1 |
1 — Y
post ! __|__post __ 3
: N
I
, .
| leftv right :post
I

At a first glance such specifications may seem daunting, but at least to
the authors they quickly became familiar. The use of abbreviations, such as
STEP and POST above, may improve legibility and promote reuse of routing
expressions. Complicated pointer structures may give rise to complicated
graph type specifications. However, it is fair to say that the complexity of
the graph type specification correlates well with this inherent complexity, in
the same way that a verbal or pictorial description would.

Not all families of graph shaped values can by specified by graph types.
First of all, they must be deterministic, in the sense that all edges must be
functions of some underlying spanning tree. This precludes such things as a
pointer from the root to some node in the tree. But even all deterministic
situations cannot be specified. Consider a generalized tableau structure on
a grid, in which there must be an edge from a point to the one immediately
below, if they are both present.

10

A

A graph type cannot represent such graphs, since the variant at a given
node is dependent on whether there is a downward pointing edge. Thus the
variant is dependent on the rest of the graph—something we cannot specity
in a context-free grammar.

5 Programming

So far, we have seen that many families of pointer structures can be captured
as the values of graph types. We must also demonstrate that they can be
used for programming in a manner similar to that for data types.

An obvious problem with having graph shaped values is that the recursive
traversal may be problematic; how can we avoid cycles? However, for graph
types we have the canonical spanning tree of the underlying data value. Thus,
many of the simple techniques can be inherited in a straightforward manner.
For example, the algorithm for comparing two graph values is exactly the
same as for the underlying two data values; the routing fields are just ignored.

The syntax for constants are also the same as for the underlying data
type. The values of the routing fields are then computed automatically. The
example values of the previous section are specified as constants as follows:

H(first: (head: 11, tail: (head: 12, tail: (head: 13, tail: ()))))
(next: (next: (next: ();;;

next: (next: (next: ()

(
R(left: (left: (), right: ()), right: ())

11

J(left: (left: (), right: ()), right: ())
T(left: (left: (), right: ()), right: ())

Note that the expressions for the C- and D-values are identical, as are those
for the R-, J-, and T-values.

Copying (sub)values happens in two steps. First, the underlying spanning
tree is copied; second, the values of the routing fields must be reevaluated.
Consider for example the leaf-to-root-linked tree. If a subtree is copied, then
the leaves must now point to the new root of that tree.

If a data field in a graph value is assigned, then several routing fields in the
both the surrounding spanning tree and the new graft may have to change.
Consider for example the red-black leaf-linked trees. If a leaf is changed from
red to black, then it must be removed from one cyclic list and inserted in
another. A simple way of handling this is to reevaluate all routing fields,
but that is undesirable since the surrounding tree may be large and the graft
may be small. A similar problem exists for the swapping of subtrees. We
must develop an algorithm for detecting the routing fields that are required
to be updated.

Routing fields can be read just like data fields; they also point to subtrees
of the canonical spanning tree. It is, of course, not possible to assign directly
to a routing field.

In summary, many of the required algorithms are inherited from the un-
derlying data structure. However, we must be able to evaluate all routing
fields in only combined linear time, and for assignment we need to detect
those routing fields that must be updated.

Evaluating Routing Fields

Backbones can clearly be constructed in linear time. Given a backbone, it is
possible to evaluate all routing fields in combined linear time.

First, each routing expression in the graph type is translated into an
equivalent nondeterministic automaton. This translation is linear.

Next, a table is constructed that for each node a and for each automaton
state ¢ of each automaton A contains a pointer. Intuitively, if this pointer is
not nil, it indicates a node (3 reachable by a sequence w of directives from «
such that upon reading w, automaton A may end up in a final state at node

12

B. This table is calculated in linear time by an algorithm described in the
appendix.

When the table has been constructed, the destination of a routing field
at « is given as the pointer found in an entry («, ¢") of the table, where ¢°
is an initial state of the automaton representing the routing expression.

Detecting Required Updates

Sometimes when a change occurs, it is sufficient to update routing fields for
only a small part of the value. For example, this happens when swapping
subtrees of values of type J, the type of leaf-linked binary trees. Consider the
situation after the subtrees rooted at addresses o and 3 have been swapped:

Here only the “next” pointers at o, o/, #’, and 3" need to be updated. If we
assume that J is made doubly-linked—by adding a field “prev: J[T +A]"—
it would often be less costly to locate the four nodes {a/,a”, 3, 3"} after
the change and reevaluate their “next” fields than evaluating all routing
expressions in the backbone from scratch. In fact, with this approach we can
guarantee that the time to locate fields in need of updating is proportional
to the total length of the paths that lead to these fields, in this case of the
paths from a to o, from a to ", from 3 to §', and from 3 to 5”.

To generate these paths, we consider each node incident on a backbone
edge that changes (above, it would be «, 3, and their parents). Each au-

13

tomaton state at such a node can be followed backwards—towards possible
origins, routing fields whose routes go through the node—and forwards—
towards a possible destination. Above, this involves finding four destinations
and four origins. For example, when considering «, we obtain two origins,
the “next” fields of o’ and ", and their corresponding destinations.

We shall shortly see how further optimizations are possible. Note, how-
ever, that for some graph types the number of paths to follow may be pro-
portional to n. This happens for example for the root linked trees of type R
described earlier when a new root is added to an existing tree. In this case
there is no gain in using the techniques described in this section compared
to the algorithm for updating all routing fields.

Monadic Logic and Well-Formedness

The monadic second-order logic on graph types is a logical formalism that
allows several important properties about graph types to be expressed. In
section A4 of the appendix, we define the logic formally and show that it
is decidable. Our logic permits quantification over values of graph types,
addresses, and sets of addresses. In this logic we can formulate questions
such as “What is the type-variant of a node « in a value 7”7 or “Is there a
walk in a value x from node a to node 3 according to a routing expression R?”
The question of whether a graph type is well-formed can also be expressed
in the logic as it is shown in section A4 of the appendix. Thus this question
is decidable. Similarly, questions about comparing values, such as Val G; C
Val G,, where Gy and G, are graph types, are decidable.

Although much can be expressed in the monadic second-order logic on
graph types, there are simple operations that cannot. For example, one can-
not represent the result of replacing a subtree with another subtree (although
certain properties of the result may be expressible).

Access Optimizations

In the example of updating routing fields in leaf-linked trees, we saw that only
four fields needed to be updated. It is not hard to see that calculating the
destination of each such routing field is not necessary. For example, the new
value of the “next” field at o' is the old value of the “next” field at 3. Thus,
when the four routing fields have been located, the updates can take place in

14

constant time by properly permuting the values of known “next” pointers.
Such use of the values of routing fields is called access optimization.

The formal reasoning behind access optimization can be formulated in
monadic logic. For example the question “Is the value of the “next” field at
o' in the new graph the same as the value of the “next” field at " in the old
graph?” can be expressed, and the answer “yes” can be computed.

In general, a strategy for access optimization is to compare values con-
tained in nodes already located to the destination of paths that arise in the
detection of required updates. This involves trying out different combina-
tions of paths that are followed explicitly and testing whether other needed
destinations or origins can be found in constant time. Thus one can formu-
late a minimization problem for finding the least number of paths that need
to be followed in order to carry out an update, and this problem is decidable.

For doubly-linked lists of type D, such reasoning allows the automatic
generation of optimal, constant-time code for concatenating lists—without
the programmer having to specify any pointer operations.

6 Related Work

Decidability of logics of graphs have been studied extensively; see [4] for ref-
erences to the classical results that the monadic second order logic on finite
trees is decidable and for extensions to more general graphs. The hyperedge-
replacement grammars of [4] and similar context-free graph rewriting for-
malisms describe much larger classes of graphs than our graph types. An im-
portant result of [4] is that any property expressed in second-order monadic
logic on graphs is decidable on hyperedge-replacement grammars. We could
have used this result to derive our decidability result; but the translation into
context-free graph grammars appears to be more complex than our approach.
Although mathematically interesting, context-free graph grammars tend to
be hard to understand; this is likely the reason why, to our knowledge, they
have not been used for describing types in programming languages.

Closer in spirit to our approach are the feature grammars and algebras;
see [5] for references. These formalisms are built on the view that features
(corresponding to our record fields) are partial functions that identify at-
tributes. Not being based on tree structures, features allow the description
of self-referential data structures. As opposed to our approach, the values

15

designated are not guided by any expressions.

The programming languages in [1, 2] and [3] use similar ideas and permits
circular data structures. A restriction of this work is that such circular
references may only point to nodes labeled syntactically with a marker. Since
the number of markers is finite, this language precludes the modeling of e.g.
doubly-linked lists or leaf-linked trees, but allows root-linked trees.

The ADDS notation in [6] allows the description of abstract properties
of pointer structures through the concepts of dimensions and directions.
The main motivation is to make static analysis more feasible through (non-
invasive) program annotations. With the ADDS notation one cannot specify
the exact shape of values, and manipulations still rely on explicit pointer
operations.

The techniques for evaluating routing fields are similar to algorithms for
reevaluating attributed grammars [9], but to our knowledge the algorithms
for updating a tree of a grammar whose attributes are nodes in the tree has
not been described before.

Acknowledgments

Thanks to the anonymous referees for their helpful comments.

References

[1] H. Ait-Kaci and R. Nasr. Logic and inheritance. In Proc. 15th ACM
Symp. on Princ. of Programming Languages, pages 219-228, 1986.

[2] H. Ait-Kaci and R. Nasr. Login: A logic programming language with
built-in inheritance. Journal of Logic Programming, 3:185-215, 1986.
Journal version of [1].

[3] H. Ait-Kaci and A. Podelski. Towards a meaning of life. In Jan
Maluszynski and Martin Wirsing, editors, Proceedings of the 3rd
International Symposium on Programming Language Implementation

and Logic Programming (Passau, Germany), pages 255-274. Springer-
Verlag, LNCS 528, August 1991.

16

[4]

[5]

[10]

B. Courcelle. The monadic second-order logic of graphs I. Recognizable
sets of finite graphs. Information and computation, 85:12-75, 1990.

J. Dorre and W.C Rounds. On subsumption and semiunification in
feature algebras. In Proc. IEEE Symp. on Logics in Computer Science,
pages 300-310, 1990.

L. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursive
pointer data structures: Improving the analysis and transformation of
imperative programs. In Proc. SIGPLAN’92 Conference on Program-
ming Language Design and Implementation, pages 249-260. ACM, 1992.

C.A.R. Hoare. Recursive data structures. International Journal of Com-
puter and Information Sciences, 4:2:105-132, 1975.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. MIT Press, 1990.

T. Reps. Incremental evaluation for attribute grammars with unre-
stricted movement between tree modifications. Acta Informatica, 25,

1986.

D.A. Turner. Miranda: A non-strict functional language with polymor-
phic types. In Proc. Conference on Functional Programming Languages
and Computer Architecture, pages 1-16. Springer-Verlag (LNCS 201),
1985.

Appendix: Formal Definitions

This appendix contains the formal definitions of the concepts introduced.
They may be used to elucidate and substantiate the contents of the preceding

suminary.

A1l: Data Types

Associated with a data type D we have some notation. The main type is
denoted MainD. By Tp we denote the set of types. By Tp(T :v)a we

17

denote the type of the data field ¢ in variant v of type T', i.e., for the type-
variant above, Tp(T :v)a; = T;. By Vp we denote the set of all variants in
D; by VpT' we denote the set of variants of type 1. By Fp we denote the
set of all data fields in D; by Fp(T :v) we denote the set of data fields of
type T' and variant v, i.e., for the type-variant declaration above, Fp (T :v) =
{a1,...,a,}. An address « is an element of F7,.

The values of D is the set Val D of functions x : F;, — Tp x Vp such
that

e dom z is finite and prefix closed;
e u(¢c) = (MainD:v), for some v; and
e for all @ € dom, if x(a) = (T":v) then

— v € VpT1 and

—aa €domae & a € Fp(T:v) AN Tp(T:v)a=T'
where x(aa) = (T":0") for some v’

Intuitively, the addresses in dom x serve as pointer values.

A2: Graph Types and Routing Expressions

While Fg still denotes all fields, we use Fé to denote the data fields, and Fj
to denote the routing fields. We use the notation Rg(7:v)a to denote the
routing expression associated with the routing field a in variant v of type T

The graph type has an underlying data type Data G which is obtained by
removing all the routing fields. The routing expressions must all be defined
on Data(, as described below.

Given a data type D, define the alphabet A that consists of directives
(letters) A; $; T; Ta and |a, where a € Fp; T and (T':v), where T'€ Tp and
veVpT.

Given x € Val D we define the step relation ~, on domz x A x dom x
by the following transitions:

18

A
€~y €

S

oS, o if ais aleaf in z
a-a «T»l, Qo
Ta
-~y o
la

a5, ana

o «T»x o if x(a) = (T : v) for some v
o (gj)x a ifx(a)=(T:v)

When a %, 3, we say that 3 is reached from « by directive d. Note that 3

such that a %, £ is uniquely defined, if it exists, by the values of « and d.

A route p = dy---d, is a word over A. A walk in x from a€domz to
pedomax along p is the unique sequence, if it exists, ag, - a, = 3, such
that a;_ «di>l, a; for all 2, 1 <7 < n. The walk is denoted « L g.

A routing expression R on D is a regular expression over A. We con-
struct regular expressions using operators + (union), - (concatenation), and
* (iteration). The regular language defined by R is denoted L(R). Given z,
R and an origin o € dom, a destination is a € dom x such that o &, 3
for some route p € L(R). The set of all destinations is denoted Dest (R, «).
If this set is a singleton we say that R at « in = has the unique destination
property.

Intuitively, the routing expressions specify where the pointers in he rout-
ing fields should lead to. A graph type is only well-formed when all such
expressions always have the unique destination property and always lead to
subtrees of the specified types.

The values of a well-formed graph type G form the set ValG of finite
graphs. There is a graph for every value in the underlying data type. Given
x € ValDataG we construct a graph whose nodes are dom x, the set of
addresses in x. The edges, which are labeled by field names, come in two
flavors: data edges and routing edges. The data edges provide the canonical
spanning tree—the backbone—and are defined as

{a - aa | aa € dom z}.

The routing edges are defined as

a € Fir(a), Rgz(a)a = R,Dest (R, o) = {f} }

19

In this graph, addresses in Fj; (both data and routing fields) are defined.

A3: Evaluating Routing Fields

Here we give the details of the algorithm mentioned in Section 5. We are
given a backbone x and a collection of nondeterministic finite-state automata
representing all routing expressions in the graph grammar. For an automaton
A with transition relation — 4 and a word w = dy - - - d,, € A*, we write ¢ —4

¢’ to denote that there exists qo, ..., .11 such that ¢o = ¢, ¢.01 = ¢, and
d dn
QO—O>91"' — qnt1-

Our goal is to build a table Tbl such that for each node « in x and for
each automaton A and each state ¢ of A, the value of Tbl(«,¢q) is a node 3,
if it exists, such that for some w € A*, a %, B and ¢ =4 ¢", where ¢* is a
final state of A; if no such node exists then Tbl(«, ¢) = nil.

The algorithm below employs a queue () to calculate Tbl:

L. Tbl(a,q) := nil, for all nodes « in = and all automata states ¢
2. make) empty
3. for all (v, q), where ¢ is a final state:
() Thl(aq) = a
(b) insert (a,q) in Q
4. while () is non-empty:
(a) delete an element (a, ¢) from @

(b) for all (/,¢) such that Tbl(3,q¢') = nil and for some d, ¢ L) q
and L a
i. Tol(3,q") := Thl(a, q)
ii. insert (,¢') in @
Note that each entry («,¢) is considered at most once and that Step 4.(b)
involves only the node a and its immediate neighbors—thus a number of

nodes that depends on the grammar only. We conclude that the algorithm
runs in linear time as a function of the size of z.

20

With the well-formedness criterion it is not hard to see that the destina-
tion of a routing field at « is the node 3 if and only if there exists an initial
state ¢ of the corresponding automaton such that Tbl(«, q) = j.

A4: Monadic Logic

The monadic second-order logic of graph types, denoted M2LGT, is used to
express certain properties of graph types. We first introduce a simpler logic,
monadic second-order logic of data types, denoted M2LDT. Fix a data type
D. We define the M2LDT on D as follows. There are two kinds of second-
order variables, value variables and address set variables. A value variable x
denotes a value of D. An address set variable M denotes a set of addresses
of D. Such variables can be combined with U, N and @ to form address set
expressions. The set of addresses of & is denoted dom =, which is also a set
expression.

A first-order variable «, also called an address variable, denotes an ad-
dress of D. That « is an address in M is expressed as the formula o € M. A
value variable x of type D is introduced by an existential quantification dpx
or a universal quantification Vpz. Variables that denote addresses or sets of
addresses are introduced by usual existential (3) or universal (V) quantifica-
tion. The formulas of the logic are obtained by combining quantification, A
(and), V (or), = (negation) with the following basic formulas:

isA(a) a =

is,5(«) :zj(oz) s a leal variant
is.(T:0)(a) (a) = (T :v)

is, T'(«) z(a) = (T : v) for some v

is,walk(o, 3, R) Jp€ L(R) : a«»wﬂ
a=p

& =&

& C &

ael

a=f-a

a=fza a€Fpx(p) and a = f-a

where & and the &;’s are address set expressions. The formulas have the
obvious meanings, e.g. is, (7 :v)(«) is true iff the type-variant at address «

21

in xis (T:v). The formula o = 3 & a is true if @ = $-a and «a is a field of the
type variant at « in z.

Expressing well-formedness

The following formula in M2L DT expresses that a graph type G is well-
formed:

Vpr : ANDp o Tp,v € VpT ANDa c FR(T:v)
Vacedomua : 313 :is,(T:v)(a) =
is,walk(a, 3, Rpaz(a)a),

where D = Datag@ is the underlying data type; 3! is an abbreviation for
“there exists a unique”; and AND is an abbreviation expressing the conjunc-
tion obtained by expanding over the corresponding indices.

Decidability of M2LDT
Theorem 1 M2LDT is decidable.

Proof M2LDT is decidable by an easy reduction to M2LASFT, the monadic
second-order logic of k successors on finite trees. The latter logic has set vari-
ables, such as X, denoting subsets of {1,---,k}* and first-order variables,
such as a, denoting elements of {1,---,k}*. In addition there is a successor
function -k for each j € {1,... &k} and connectives and quantifiers as above.
We will indicate how formulas of M2LDT involving a data type D can be
translated into M2LASFT. We let k be |Fp|, the number of different fields in
D, and we rename field names as 1,..., k. An x in D introduced by a quan-
tified formula Ipx : f is translated into IXy, X}, ..., X737, IXL, ..., X{7 ¢
g A f, where X, expresses dom z; X1, ... X7 expresses the type at position
a by the bit pattern (a € X7, ...,a € X77) (here ny = log |[Tp|); X},... X
expresses the variant at position a by the bit pattern (e € X7,...,a € X77)
(here n, =log |Vpl); f is the translation of f; and ¢ is a formula expressing
that x is a value of D according to the conditions on derivation trees given in
Section 1. Address set variables are just translated into set variables and ad-
dress variables into first-order variables. Most of the basic formulas are now
easy to express. For example, a = 3 ¢ a is translated into o = f-a A «a € x;
this formula is equivalent « = -a A a € Fpa(f) since @ € Val D. The basic

22

formula is,walk(c«, 3, R) is more difficult. Here we encode the working of
Ap, the automaton equivalent to R, on x by a formula that guesses the sub-
sets of states at each « that are accessible from a partial run (which is like
a run except that the last state need not be final) starting at . This collec-
tion of subsets can be coded using |Ag| set variables. We must then write a
M2LESFT formula expressing that all states in a subset have a predecessor
for some directive under the transition relation (unless the state is initial and
in the subset at «). This alone is not sufficient. We must also write down a
condition that ensures that the collection of subsets is minimal with respect
to the previous condition; technically, we are calculating a least fixed-point
in order to ensure that all states are reachable from initial states at . The
details of this translation are omitted. O

Logic of graph types

The monadic second-order logic of graph types, M2LGT, has the same syn-
tax as M2LDT.

Theorem 2 M2LGT is decidable.

Proof The translation into M2LASFT only differs for the formula a = 5 z a.
If aEng(ﬂ), then the translation must expresses that is,walk(s, a, R),
where R = RGx(f)a. We omit the details. O

23

