
A Domain-Speci�c Language forRegular Sets of Strings and TreesNils Klarlund Michael I. SchwartzbachAT&T Labs{Research BRICS, University of Aarhusklarlund@research.att.com mis@brics.dkAbstractWe propose a new high-level programming notation,called FIDO, that we have designed to concisely ex-press regular sets of strings or trees. In particular,it can be viewed as a domain-speci�c language forthe expression of �nite-state automata on large al-phabets (of sometimes astronomical size).FIDO is based on a combination of mathematicallogic and programming language concepts. Thiscombination shares no similarities with usual logicprogramming languages. FIDO compiles into �nite-state string or tree automata, so there is no conceptof run-time. It has already been applied to a varietyof problems of considerable complexity and practicalinterest.In the present paper, we motivate the need for alanguage like FIDO, and discuss our design and itsimplementation.We show how recursive data types, uni�cation, im-plicit coercions, and subtyping can be merged witha variation of predicate logic, called the MonadicSecond-order Logic (M2L) on trees. FIDO is trans-lated �rst into pure M2L via suitable encodings, and�nally into �nite-state automata through the MONAtool.1 IntroductionFinite-state problems are everywhere, embedded inmany layers of software systems, but are often dif-�cult to extract and solve computationally. Thisbasic observation is the motivation for the work pre-sented in this paper.Recent research by us and our colleagues has ex-ploited the Monadic Second-Order Logic (M2L) on

�nite strings and trees to solve interesting and chal-lenging problems. In each case, the results are ob-tained by identifying an inherent regularity in theproblem domain, thus reducing the problem to ques-tions of regular string or tree languages. Successfulapplications today include veri�cation of concurrentsystems [9, 8], hardware veri�cation [2], software en-gineering [10], and pointer veri�cation [7]. Work inprogress involves a graphical user interface for reg-ular expressions extended with M2L and documentlogics for the WWW.The rôle of M2L in this approach is to provide an ex-traordinarily succinct notation for complicated reg-ular sets. Our applications have demonstrated thatthis notation in essence can be used to describeproperties, where �nite state automata, regular ex-pressions, and grammars would be tend to be cum-bersome, voluminous, or removed from the user'sintuition. This is hardly surprising, since M2L isa variation on predicate logic and thus natural touse. Also, it is known to be non-elementarily moresuccinct than the other notations mentioned above.Thus, some formulas in M2L describe regular setsfor which the size of a corresponding DFA comparedto the size of the formula is not bounded by any �-nite stack of exponentials.The ip side of this impressive succinctness is thatM2L correspondingly has a non-elementary lowerbound on its decision procedure. Surprisingly, theMONA implementation of M2L [5] can handle non-trivial formulas, some as large as 500,000 charac-ters. This is due in part to the application of BDDtechniques [4], specialized algorithms on �nite-stateautomata [3], and careful tuning of the implemen-tation [11]. Also, it turns out that the intermediateautomata generated, even those resulting from sub-set constructions, are usually not big compared tothe automata representing the properties reasonedabout.

The successful applications of M2L and MONA re-side in a common, productive niche: they requirethe speci�cation of regular sets that are too compli-cated to describe by other means, but not so com-plicated as to be infeasible for our tools.While the basic M2L formalism is simple and quiteintuitive, early experience quickly indicated thatthis formalism in practice su�ers from its primitivedomain of discourse: bit-labeled strings and trees.In fact, M2L speci�cations are uncomfortably sim-ilar to assembly code programs in their focus onexplicit manipulations of bit patterns. For M2L in-terpreted on trees, the situation is even worse, sincethe theory of two or more successors is far less fa-miliar and intuitive than the linear sublogic.Similarly to the early experiences with machine lan-guages, we found that M2L \programmers" spentmost of their time debugging cumbersome encod-ings.Our contributionsIn this paper, we propose a domain-speci�c pro-gramming formalism FIDO that combines mathe-matical logic and recursive data types in what webelieve are new ways.We suggest the following four kinds of values: �-nite domains, recursive data values (labeled by �-nite domains), positions in recursive data values,and subsets of such positions. We show that manycommon programming language concepts (like sub-typing, coercions, and uni�cation) make sense whenthe underlying semantics is based on assigning anautomaton (and not a store transformer) to expres-sions.This semantic property allows us to view the com-pilation process as calculations on values that aredeterministic, �nite-state automata, just as an ex-pression evaluator calculates on numbers to arriveat a result. That is, automata are the primitive ob-jects that are subjected to operations reecting thesemantics of the language.This view is quite di�erent from the method behindmost state-machine formalisms used in veri�cation(such as the Promela language [6]): a language re-sembling a general purpose language expresses a sin-gle �nite-state machine, whose state space and tran-sition system is constructed piecemeal from calcula-tions that explore the state space.

Our view, however, is similar to some uses of regu-lar expressions for text matching, except that mostimplemented algorithms avoid the construction ofdeterministic automata.FIDO is implemented and provides, along with sup-porting tools, an optimizing compiler into M2L for-mulas. It has been used for several real-life applica-tions and is also the source of the biggest formulasyet handled by MONA.In this article, we motivate and explain FIDO. Inparticular, we discuss the type system and compi-lation techniques. We also give several examples(some taken from articles already published, wherewe have used FIDO without explaining its originor design). Some technical considerations concern-ing the relationship between our data structures fortree automaton representation [3] and the compila-tion process will be explained elsewhere.2 M2L and MONABasic M2L has a very simple syntax and seman-tics. Formulas are interpreted on a binary tree (ora string) labeled with bit patterns determining thevalues of free variables. First-order terms (t) denotepositions in the tree and include �rst-order variables(p) and successors (t:0 and t:1). Second-order terms(T) denote sets of positions (i.e. monadic predi-cates) and include second-order variables (P), theempty set (;), unions (T1 [T2), and intersections(T1 \ T2). The basic predicates are set member-ship (t 2 T), equality (t1 = t2), ancestor relation(t1 < t2), and set inclusion T1 � T2). The logicpermits the usual connectives (^, _, :) and �rstand second-order quanti�ers (81, 91, 82, 92). Byconvention, a leaf is a position p for which p = p:0and p = p:1. The sublogic for strings uses only the0-successor.The MONA tool accepts such formulas in a suit-able ASCII syntax and produces a minimum DFAthat accepts all trees satisfying the given formula.Thus, satis�ability of a formula is equivalent to non-emptyness of the derived automaton, and validity isequivalent to totality. The values of free variablesin the formula are encoded in the alphabet of theautomaton. Thus, a formula with 32 free variablesyields an alphabet � of size 232. In the internal rep-resentation of these automata, the transition func-tion is shared, multi-terminal �-BDD. With theseBDD techniques, the MONA tool has processed for-

mulas with hundreds of thousands of characters ina few minutes.3 The MotivationA small example will motivate the need for a high-level notation. Assume that we wish to use MONAto prove the following (not too hard) theorem: forevery string in (a+b)�c, any a is eventually followedby c.To state this theorem in M2L, we must �rst choosean encoding of the labels a, b, and c. For this pur-pose we introduce two free second-order variablesX0 and X1. The labels can be encoded according tothe following (arbitrary) schema: a position p haslabel a if p =2 X0 ^ p =2 X1, that is, a corresponds tothe bit pattern 00. Similarly, we can assign to b thebit pattern 01 and to c the pattern 10. The property\a is eventually followed by c" becomes the formula: � 81 p : (p 62 X0 ^ p 62 X1))(91q : p < q ^ (q 2 X0 ^ q 62 X1))The regular expression (a+b)�c can in a similar waybe encoded as the formula:� � 81 p : (:(p 2 X0 ^ p 2 X1)) ^((p 2 X0 ^ p 62 X1), p = p:0)and the theorem above is then formally stated asthe implication �) . The MONA tool will readilyverify that this formula is an M2L tautology, thusproving our theorem.A reason for M2L speci�cations being much morevoluminous than promised should now be apparent:there is a signi�cant overhead in encodings. More-over, there are no automatic checks of the consistentuse of bit patterns.Support for such encodings is usually supplied bya type system. For M2L on strings, regular setsimmediately suggest themselves as notions of types.It is quite common for M2L formulas to be of theimplicational form �) , where � is a formularestricting the strings to a coarse regular set and provides the more intricate restrictions. Thus, ahigh-level version of the above formula could looklike:string x: (a+b)�c;8pos p:x.(p=a) 9pos q:x.(p<q^ q=c))

The keywords string and pos are intended to declarefree variables of these two kinds. This formula canbe read as: \for all positions p in the string x, if phas label a, then there exists a position q, also in x,such that p is before q and q has label c". The mainformula is almost the same as the MONA version,but the proper use of labels is now supported by thecompiler and can be veri�ed by a type checker.For M2L interpreted on trees, however, there is nointuitive analogue to regular expressions. But fromprogramming languages we know an intuitive andsuccessful formalism for specifying coarse regularsets of trees: recursive data types. Thus, we adopt awell-known and trusted programming concept intoour high-level notation. Using this idea, we mayprove our theorem as follows:type T = a,b(next: T) j c;string x: T;8pos p:x.(p=a) 9pos q:x.(p<q^ q=c))Arbitrary recursive data types may of course be ex-pressed directly as formulas, but the translation isvoluminous and best performed automatically. Thetranslation also solves the problem that the Monadecision procedure works on formulas whose domainof discourse is only binary trees, whereas values ofrecursive data types are trees with a varying numberof branches. (The solution is rather technical, sinceit involves bending the recursive data type value intothe shape of a binary branching tree.)Note that not all regular tree sets can be capturedby recursive data types. Consider binary trees, inwhich nodes are colored red, green, or blue. Thesubset of trees in which at most one node is coloredblue is not a recursive data type; however, it is easilycaptured by the following FIDO speci�cation:type RGB = red,green,blue(left, right: RGB) j leaf;tree x: RGB;8pos p,q: x.(p=blue^ q=blue) p=q)Certainly, more advanced and complicated notionsof data types could similarly be adopted [1]. How-ever, the FIDO philosophy is to rely heavily on stan-dard programming language concepts to describecomplex structures and operations. The ambition isthat these idioms should be merged seamlessly withlogical concepts that describe complex properties ofsuch structures.In general, we allow �nite domains (from which thename FIDO derives) to be the values of nodes. Fi-

nite domains are constructed conjunctively and dis-junctively from enumerated and scalar types. Thusthe alphabets of tree automata reading such recur-sive data types easily become very large.4 The DesignWhile this paper is not intended as a proper lan-guage report, we will explain the more interestingor unusual concepts that the FIDO notation pro-vides.Domains and Data TypesFinite domains are constructed from simple scalarlists, freely combined with a product operator (&)and a union operator (j). When the union of two�nite domains is formed, it is required that they aredisjoint. Thus, if we de�ne the domains:type Turn = [1..2];type PC = a,b,c,d;type State = PC & PC & Turn;then a value of the domain State may be writtenas State:[a,b,2]. From the more complicated de�ni-tions:type A = a1,a2;type B = b1,b2,b3;type C = A j B;type D = A & B & C;type E = C & D;we obtain values as: E:[a1,[a2,b3,[a2,b1]]]. In for-mulas, �nite domain values may be uni�ed using asyntax such as State:[pc?,a,r?], where ps and r areuni�cation variables.The recursive data types are quite ordinary, exceptthat the constructors are generalized from singlenames to �nite domains.The �nite domains could of course be encoded as(non-recursive) data types. We have chosen to havea separate concept for several reasons. First, thedistinction between trees and their labels seems in-tuitive for many applications. Second, we can allowmore operations on �nite domains that on trees; forexample, the introduction of uni�cation or concate-nation on trees would yield an undecidable formal-ism. Third, in the translation into automata, �nite

domains are encoded in BDDs whereas trees are en-coded in the state space; often, it is necessary forthe programmer to control this choice. An exampleis:type Comp = State(next: Comp) j done;which is a linear data type of sequences of statevalues terminated by a node labeled done. A non-linear example is:type Tree = red,black(val: Enum,left,right: Tree) jleaf;type Enum = [1..10];denoting some binary trees. The notation [1..10]abbreviates the corresponding 10 scalars.VariablesThere are four kinds of variables in FIDO. We intro-duce them by examples. A domain variable s thatranges over states may be declared asdom S: State;Tree variables (recursive data type variables) x andy may be declared as:tree x,y: Tree;Each variable de�nes its own space of positions.Thus, a position in x cannot be used to denote anode in y. To declare a position variable that maydenote positions in either x or y, we write:pos p: x, y;A value of this variable points to a node in either xor y, but in any case, the node pointed to is eitherred or black. Similarly, a set variable S containingpositions in the union of x's and y's position spacesmay be declared as:set S: x, y;Quanti�cationAll variables can be quanti�ed over. For example,the formula \there is a computation that contains a

loop" may involve quanti�cation over both strings(trees), �nite domains, and positions:9string x: Comp. 9dom s: State.9pos p,q: x.(p<q ^ p=s ^ q=s)TypesA type may have one of four di�erent kinds: pos,set, dom, and tree. The pos kind corresponds to�rst-order terms, i.e. positions in trees; the set kindsimilarly encompasses second-order terms; the domkind is new compared to M2L and describes valuesof �nite domains; �nally, the tree kind is a furtherextension that captures entire trees as values.Within each kind, a type is further re�ned by a setof tree names and a set of data type names. Forexample, the type (pos,fx,yg,fR,S,Tg) denotes po-sitions of nodes in either the tree x or y that areroots of subtrees of one of the data types R, S, orT. These re�ned types prove to be very convenientin restricting free variables in the model and in ex-pressing relativized quanti�cations. Furthermore,this type structure proves crucial for optimizationsin the implementation.The type rules impose restrictions on all operatorsin the language. Generally, the rules boil down totrivial statements about �nite sets. For example,if the terms si have types (set,Xi,Di), then s1 \ s2has type (set,X1 \ X2,D1 \ D2). Also, if the termp has type (pos,X,D), then the term p.n has type(pos,X,fT.n j T2 Dg), where T.n is the data typereached from T along an n-successor.Some formulas can be decided purely on the ba-sis of the type system. For example, if p has type(pos,Xp,Dp) and s has type (set,Xs,Ds), then theformula p 2 S is false if Xp \ Xs = ; or Dp \ Ds =;. Such static decisions are exploited by the FIDOcompiler.Notational ConveniencesA formal notation has a tendency to become a quag-mire of details. In the design of FIDO, we haveattacked this problem in three di�erent ways.First, it is often convenient implicitly to coerce val-ues between di�erent kinds. This we have expressedthrough a simple subtype structure. Two types(�1,X1,D1) and (�2,X2,D2) are related by the sub-

type order if X1 � X2, D1 � D2, and �1 is below �2in the following �nite order:
���@@@ tree setdompos possetrootread

The order relations have been decorated with coer-cions functions: posset computes the set of positionsin a tree, root �nds the root positions of a tree, andread computes the label of a position. This subtypestructure is exploited to automatically insert coer-cions. Note that our subtype structure clearly issemantically coherent, so that coercions are unique[12]. If we added the coercion: singleton: pos !set, then semantic coherence would fail.Second, we allow implicit casts between �nite do-mains. For example, in the de�nitions:type Fruit = apple,orange;type Root = carrot,potato;type Vegetable = Fruit j Root;we will allow values of the domains Fruit and Rootto be used directly as values of the domain Veg-etable, even though they strictly speaking should beexpressed as e.g. cast(Fruit:apple,Vegetable).Third, we allow sensible defaults whenever possible.Thus, if a name can unambiguously be determinedto have a speci�c meaning, then all formal quali�ersmay be dismissed. For example, if the name orangeis only used as a scalar in the domain Fruit, thenthe constant Fruit:orange may be written simply asorange.As a speci�c example of these techniques, considerthe previous theorem:type T = a,b(next: T) j c;tree x: T;8pos p:x.(p=a) 9pos q:x.(p<q^ q=c))We have already used a number of syntactic con-veniences here. From the above speci�cation, thecompiler inserts the necessary coercions to recon-struct the more explicit code:

type T = a,b(next: T) j c;tree x: T;8pos p:x,T.(read(p)=T:a)9pos q:x,T.(p<q^ read(q)=T:c))which is somewhat harder to read. In a real-life12-page formula, more than 400 such pedantic cor-rections are automatically performed.DecompilersAny compiler writer must also consider the needfor decompilers. In the case of FIDO and MONA,speci�cations are translated into a more primitivelogic. This is �ne, if we only want to decide valid-ity. However, MONA also has the ability to gen-erate counter-examples for invalid formulas. But aMONA counter-example will make little sense for aFIDO programmer, since it will have a completelydi�erent structure and be riddled with bit patterns.Consequently, the FIDO system provides a decom-piler that lifts such counter-examples into the high-level syntax.Another use of MONA, illustrated in the followingsection, is to generate speci�c automata. For thisapplication, FIDO provides a di�erent decompilerthat expresses an automaton as a particular kindof attribute grammar at the level of recursive datatypes.5 ExamplesWe now provide a few examples illustrating the ben-e�ts of the FIDO notation. We include applicationsthat aim to synthesize automata as well as some thataim to verify properties. For each case we present atoy example in some detail and sketch a large, pre-viously published application of a similar nature.SynthesisThe following example considers (a fragment of) theHTML syntax. Not all syntactically correct HTML-speci�cations should be allowed. For example, adocument should never contain an anchor withinanother anchor (to not confuse the reader). Sucha constraint could be incorporated into the context-free syntax, but it would essentially double the num-ber of non-terminals. However, we can easily cap-ture HTML parse trees as values of a recursive data

type. On these trees we can then express as a logicalformula the restriction that we wish to impose:type HTML = word janchor(u: URL, a: HTML) jbold(b: HTML) jitalic(i: HTML) jparagraph jrule jlist(l: LIST);type LIST = empty jentity(h: HTML, next: LIST);type URL = url;func Restrict(tree h: HTML): formula;8pos p: h,HTML.(p=anchor):(9pos q: h,HTML.(p<q^ q=anchor)))end;tree H: HTML;Restrict(H)Furthermore, we can introduce any number of suchrestrictions in a completely modular manner. Fromthis speci�cation, the FIDO system can produce anattribute grammar working on parse trees, whichcould then easily be incorporated into an HTMLdevelopment system. In this case, the attributegrammar has three attribute values, correspondingto zero, one, or too many nested anchors. Only treessynthesizing the values zero or one are accepted.The transitions, which are simply inherited fromthe tree automaton that MONA computes, are asfollows:HTML j word: [] 7! 0HTML j anchor: [0,0] 7! 1[0,1] 7! 2[0,2] 7! 2HTML j bold: [0] 7! 0[1] 7! 1[2] 7! 2HTML j italic: [0] 7! 0[1] 7! 1[2] 7! 2HTML j paragraph: [] 7! 0HTML j rule: [] 7! 0HTML j list: [0] 7! 0[1] 7! 1[2] 7! 2LIST j empty: [] 7! 0LIST j entity: [0,0] 7! 0[0,1] 7! 1[1,0] 7! 1

[1,1] 7! 1[0,2] 7! 2[2,0] 7! 2[1,2] 7! 2[2,1] 7! 2[2,2] 7! 2URL j url: [] 7! 0The transition HTML j anchor: [0,0] 7! 1 meansthat if the node is an anchor and each of its twosubtrees synthesizes the attribute value 0, then itshould synthesize the attribute value 1.These simple ideas have been exploited in a collab-oration with the Ericsson telecommunications com-pany to formalize the constraints of design architec-tures [10].Veri�cationTwo speci�cations, of say distributed systems, canbe compared by means of the implication or bi-implication connective. Consider a simple-mindedmutual exclusion protocol for two processes with ashared memory:Turn: Integer range 1..2 := 1;task body Proc1 isbeginloopa: Non_Critical_Section_1b: loop exit when Turn = 1; end loop;c: Critical_Section_1;d: Turn := 2end loop;end Proc1;task body Proc2 isbeginloopa: Non_critical_Section_2;b: loop exit when Turn = 2; end loop;c: Critical_Section_2;d: Turn := 1;end loopend Proc2The FIDO speci�cation models all valid interleavedcomputations and simply asks whether the safetyproperty holds:type Turn = [1..2];type PC = a,b,c,d;

type State = PC & PC & Turn;type Computation = State(next: Computation) j done;string �: Computation;func Trans(dom s,t: State): formula;let dom pc: PC; dom r: Turn.(trans(s,t)[a,pc?,r?] 7! [b,pc?,r?] j[b,pc?,1] 7! [c,pc?,1] j[b,pc?,2] 7! [b,pc?,2] j[c,pc?,r?] 7! [d,pc?,r?] j[d,pc?,r?] 7! [a,pc?,2] j[pc?,a,r?] 7! [pc?,b,r?] j[pc?,b,2] 7! [pc?,c,2] j[pc?,b,1] 7! [pc?,b,1] j[pc?,c,r?] 7! [pc?,d,r?] j[pc?,d,r?] 7! [pc?,a,1]end)end;func Valid(string x: Computation): formula;x=[a,a,1];8pos p: x.(if p.next6=done thenlet dom s,t: State.(p=s?; p.next=t?; Trans(s,t))end)end;func Mutex(string x: Computation): formula;8pos p: x.(p6=[c,c,?])end;Valid(�)) Mutex(�)The formula trans(s,t) . . . end denotes the binaryrelation on State domain values that hold for thepairs of values that can simultaneously match oneof the listed cases.The corresponding raw MONA formula looks like:((ex1 [UNI_alpha] p: (root (p,[p]) & (all1 [UNI_alpha] q: ((p <= q + 0) => (((q notin G0) & (q <= q.0 - 1)) | (((((((q in G0) & (q notin S0)) & (q notin S1)) & (q notin S2)) &(q notin S3)) & (q notin S4)) & (q = q.0))))))) => (((ex1[UNI_x] POS26: (root (POS26,[POS26]) & ((POS26 notin G0) &(((((POS26 notin S0) & (POS26 notin S1)) & (POS26 notin S2))& (POS26 notin S3)) & (POS 26 notin S4))))) & (all1 [UNI_x] POS_p: ((all1 [UNI_x] POS31: ((((POS_p in G 0) | (POS31!= POS_p.0)) & ((POS_p notin G0) | (POS31 != POS_p))) | (POS31 n otin G0))) => (ex1 [UNI_x] POS41: (((POS_p notin G0)& ((((POS_p notin G0) & (POS41 = POS_p.0)) | ((POS_p in G0)& (POS41 = POS_p))) & (POS41 notin G0))) & (ex0 s0_pc,s1_pc: (ex0 s0_r: ((((((((((((((((POS_p in S0) <=> s0_pc) & ((POS_p in S1) <=> s1_p c)) & (POS_p in S2)) & (POS_p in S3))& ((POS_p in S4) <=> s0_r)) & ((((((POS41 in S0) <=> s0_pc)& ((POS41 in S1) <=> s1_pc)) & (~(POS41 in S2))) & (~(POS41 in S3))) & (~(POS41 in S4)))) | (((((((POS_p in S0) <=>s0_pc) & ((POS_p in S1) <=> s1_pc)) & (~(POS_p in S2))) & (

POS_p in S3)) & ((POS_p in S4) <=> s0_r)) & ((((((POS41 inS0) <=> s0_pc) & ((POS41 in S1) <=> s1_pc)) & (POS41 in S2)) & (POS41 in S3)) & ((POS41 in S4) <=> s0_r)))) | (((((((POS_p in S0) <=> s0_pc) & ((POS_p in S1) <=> s1_pc)) & (POS_pin S2)) & (~(POS_p in S3))) & (~(POS_p in S4))) & ((((((POS41 in S0) <=> s0_pc) & (s1_t <=> s1_pc)) & (POS41 in S2)) & (~(POS41 in S3))) & (~(POS41 in S4))))) | (((((((POS_pin S0) <=> s0_pc) & (s1_s <=> s1_pc)) & (POS_p in S2)) & (~(POS_p in S3))) & (POS_p in S4)) & ((((((POS41 in S0) <=>s0_pc) & ((POS41 in S1) <=> s1_pc)) & (~(POS41 in S2))) & (POS41 in S3)) & (POS41 in S4)))) | (((((((POS_p in S0) <=>s0_pc) & ((POS_p in S1) <=> s1_pc)) & (~(POS_p in S2))) &(~(POS_p in S3))) & ((POS_p in S4) <=> s0_r)) & ((((((POS41in S0) <=> s0_pc) & (s1_t <=> s1_pc)) & (POS41 in S2)) &(~(POS41 in S3))) & ((POS41 in S4) <=> s0_r)))) | ((((((POS_p in S0) & (POS_p in S1)) & ((POS_p in S2) <=> s0_pc)) & ((POS_p in S3) <=> s1_pc)) & ((POS_p in S4) <=> s0_r)) & (((((~(POS41 in S0)) & (~s 1_t)) & ((POS41 in S2) <=> s0_pc))& ((POS41 in S3) <=> s1_pc)) & (POS41 in S4)))) | ((((((~(POS_p in S0)) & s1_s) & ((POS_p in S2) <=> s0_pc)) & ((POS_p in S3) <=> s1_pc)) & ((POS_p in S4) <=> s0_r)) & (((((POS41 in S0) & s 1_t) & ((POS41 in S2) <=> s0_pc)) & ((POS41 inS3) <=> s1_pc)) & ((POS41 in S4) <=> s0_r)))) | (((((s0_s& (~(POS_p in S1))) & ((POS_p in S2) <=> s0_pc)) & ((POS_pin S3) <=> s1_pc)) & (POS_p in S4)) & (((((POS41 in S0) &(~ (POS41 in S1))) & ((POS41 in S2) <=> s0_pc)) & ((POS41in S3) <=> s1_pc)) & (POS41 in S4)))) | ((((((POS_p in S0)& (~s1_s)) & ((POS_p in S2) <=> s0_pc)) & ((POS_p in S3)=> s1_pc)) & (~(POS_p in S4))) & (((((~(POS41 in S0)) & (POS41 in S1)) & ((POS41 in S2) <=> s0_pc)) & ((POS41 in S3)=> s1_pc)) & (~(POS41 in S4))))) | ((((((~(POS_p in S0)) &(~s1_s)) & ((POS_p in S2) <=> s0_pc)) & ((POS_p in S3) <=>s1_pc)) & ((POS_p in S4) <=> s0_r)) & (((((POS41 in S0) &(~(POS41 in S1))) & ((POS41 in S2) <=> s0_pc)) & ((POS41 inS3) <=> s1_pc)) & ((POS41 in S4) <=> s0_r)))))) => (all1 [UNI_x] POS_p: (((((POS_p in S0) | (POS_p notin S1)) | (POS_pin S2)) | (POS_p notin S3)) | (POS_p in G0))))))))))Since the simplistic mutual exclusion protocol isclearly correct, this formula is a tautology. How-ever, if we mistakenly tried to verify that Proc2could never enter the critical region:func Mutex(string x: Computation): formula;8pos p: x.(p6=[?,c,?])end;then FIDO would generate the counterexample:alpha = Computation:[a,a,1](Computation:[b,a,1](Computation:[b,b,1](Computation:[c,b,1](Computation:[d,b,1](Computation:[a,b,2](Computation:[a,c,2](Computation:done)))))));which exactly describes such a computation.For more realistic examples, internal events can beprojected away by means of the existential quanti-�er. In [8], a detailed account is given of an appli-cation of the FIDO language to a veri�cation prob-lem posed by Broy and Lamport in 1994. The dis-tributed systems are described in an interval logic,

which is easily de�ned in FIDO. The evolution of asystem over a �nite segment of time is modeled as arecursive, linear data type with a constructor thatde�ne the current event. Thus position variablesdenote time instants. The thousands of events pos-sible in the distributed systems that are comparedare described by the types:type Value = initVal,1;type Loc = l0,l1;type Ident = id0,id1;type ValTag = MemVals,error;type LocTag = MemLocs,error;type TVal = Value & ValTag;type TLoc = Loc & LocTag;type Flag = normal,exception;type RetFlag = BadArg,MemFailure;type RpcFlag = RPCFailure,BadCall j RetFlag;type Visible = observable,internal;type ProcVal = ReadProc,WriteProc;type ProcTag = procVal,error;type TProc = ProcVal & ProcTag;type NumArgs = n1,n2;type Args = TLoc & TVal;type Opn = rd,wrt;type Mem = Opn & Loc & Value & Flag & Ident;type Read = TLoc & Ident & Visible;type Write = TLoc & TVal & Ident & Visible;type Ret = TVal & Flag & RetFlag & Ident & Visible;type RmtCall = TProc & NumArgs & Args & Ident;type RpcRet = TVal & Flag & RpcFlag & Ident;type Event = Mem j Read j Write j Ret j RmtCall jRpcRet j Tau;type Comp = Event(next: Comp) j Empty;The property to be veri�ed requires 12 pages ofFIDO speci�cation which translates into an M2Lformula of size 500,000 characters.An entirely di�erent use of FIDO allows us to ver-ify many properties of PASCAL programs that usepointers [7]. By encoding a store as a string and us-ing FIDO formulas to describe the e�ects of programstatements, we can automatically verify some desir-able properties. An example is the following pro-gram, which performs an in-situ reversal of a linkedlist with colored elements:program reverse;type Color = (red,blue);List = ^Item;Item = recordcase tag: Color ofred,blue: (next: List)end;var x,y,p: List;

beginwhile x<>nil dobeginp:=x^.next;x^.next:=y;y:=x;x:=pendend.With our system, we can automatically verify thatthe resulting structure is still a linked list conform-ing to the type List. We can also verify that nopointer errors have occurred, such as dangling refer-ences or unclaimed memory cells. However, we can-not verify that the resulting list contains the samecolors in reversed order. Still, our partial veri�ca-tion will clearly serve as a �nely masked �lter formany common programming errors.The PASCAL tool adds another level of compila-tion, from (simple) PASCAL programs to FIDOspeci�cations to M2L formulas and �nally to �nite-state automata accepting encodings of the initialstores that are counterexamples. The above pro-gram translates into 10 pages of FIDO speci�cationwhich expands into a 60,000 character M2L formula.The resulting automaton is of course tiny since thereare no counterexamples, but the largest intermedi-ate result has 74 states and 297 BDD-nodes. A di-rect translation into MONA would essentially addall the complexities of the FIDO compiler to theimplementation of the PASCAL tool.6 The ImplementationWe have implemented parsing, symbol analysis, andtype checking in entirely standard ways. What isnon-standard is that every subterm is compiled intoa tree automaton through an intermediate represen-tation as an M2L formula. Thus resource allocationbecomes a question of managing bit pattern encod-ings of domain values, which are expressed in M2Lformulas. We have strived to achieve a parsimoniousstrategy, since every bit squandered may potentiallydouble the MONA execution time.As a concrete example, consider the type:type Tree = red,black(val: Enum,left,right: Tree) jleaf;type Enum = [1..10];

Its encoding in MONA requires seven bits in all.Two type bits T0 and T1 are used to distinguishbetween the types Tree and Enum and special nullnodes in a tree; a single group bit G0 is used to dis-tinguish between the red-black and the leaf variants;and four scalar bits S0, S1, S2, and S3 are used todistinguish between the values of each �nal domain,the largest of which is [0..10].As an example, the formula:macro TYPE_Tree(var1 p) =(p in T0) & (p notin T1);expresses that the type Tree is encoded by the bitpattern 10.The null nodes are required to encode an arbitraryfan-out in a binary tree. For example, the tree:������������������������
����� HHHHH��� @@@is represented as: �������������������������� ������������ �������
��� @@@@@@���������� HHH���where the null nodes have double lines.A well-formed value of the type Tree is describedby the MONA predicate TREE Tree. It imposesthe proper relationship between types and values ofnodes and their descendants. A technical problem

is that this predicate is most naturally describedthrough recursion which is not available in M2L.This is solved by phrasing the requirements througha universal quanti�cation that imposes su�cient, lo-cal well-formedness properties:macro TREE_Tree(var1 p) =TYPE_Tree(p) &(all1 q: (p<=q) =>(NULL(q) | WF_Tree(q) | WF_Enum(q)));The NULL and WF predicates describe the relation-ship between a single node and its immediate de-scendants:macro NULL(var1 p) =(p notin T0) & (p notin T1) &(p notin G0) &(p notin S0) & (p notin S1) &(p notin S2) & (p notin S3);macro TYPE_Enum(var1 p) =(p notin T0) & (p in T1);macro GROUP_Tree_red_black(var1 p0) =(p notin G0);macro GROUP_Tree_leaf(var1 p) =(p in G0);macro GROUP_Tree(var1 p) =GROUP_Tree_red_black(p) | GROUP_Tree_leaf(p);macro SCALAR_Enum(var1 p) =(p notin S3) |((p notin S2) & ((p notin S1) | (p notin S0)));macro SCALAR_Tree_red_black(var1 p) =true;macro SCALAR_Tree(var1 p) =SCALAR_Tree_red_black(p);macro SUCC_Enum(var1 p) =(p=p.0) & (p=p.1);macro SUCC_Tree_red_black(var1 p) =(p<p.0) & (p<p.1) & (p.1<p.11) & (p.11=p.111) &NULL(p.1) & NULL(p.11) &TYPE_Tree(p.0) & TYPE_Tree(p.10) &TYPE_Enum(p.110);macro SUCC_Tree_leaf(var1 p) =(p=p.0) & (p=p.1);macro WF_Enum(var1 p) =TYPE_Enum(p) & SCALAR_Enum(p) & SUCC_Enum(p);

macro WF_Tree(var1 p) =TYPE_Tree(p) &((GROUP_Tree_red_black(p) &SCALAR_Tree_red_black(p) &SUCC_Tree_red_black(p)) |(GROUP_Tree_leaf(p) &(p notin S0) & SUCC_Tree_leaf(p)));Formulas are encoded in a simple inductive man-ner. For illustration, consider the tiny formula p2s,where the arguments are general terms. The termp of kind pos generates a tuple < p; � > wherep is a �rst-order variable constrained by the for-mula �. Similarly, the term s of kind set generatesa tuple < s; >, where s is now a second-ordervariable. The term p2s then generates the formula9p : 9s : � ^ ^ p 2 s. Note how existential quan-ti�cation corresponds to discharging of registers. Itis a fairly straightforward task to provide similartemplates for all the FIDO constructs, thereby pro-viding a compositional semantics and a recipe for asystematic translation.As a concrete example, consider the formula:tree x: Tree;x.left.right.left=redwhich describes the regular set of trees in which aspeci�c node exists and is colored red. It is encodedas the following MONA formula:macro DOT_right(var1 p,var1 q) =(TYPE_Tree(p) &GROUP_Tree_red_black(p) & (q=p.0)) |(TYPE_Tree(p) &GROUP_Tree_leaf(p) & (q=p));macro DOT_left(var1 p,var1 q) =(TYPE_Tree(p) &GROUP_Tree_red_black(p) & (q=p.10)) |(TYPE_Tree(p) &GROUP_Tree_leaf(p) & (q=p));assume ex1 p: root(p) & TREE_Tree(p);ex0 t0_1,t1_1,g0_1,s0_1:ex0 t0_2,t1_2,g0_2,s0_2:

(ex1 POS6:(ex1 POS5:(ex1 POS4:(ex1 POS3:root(POS3) & DOT_left(POS3,POS4)) &DOT_right(POS4,POS5)) &DOT_left(POS5,POS6)) &(t1_1<=>(POS6 in T1)) &(t0_1<=>(POS6 in T0)) &(g0_1<=>(POS6 in G0)) &(s0_1<=>(POS6 in S0)) &(t0_2 & ~t1_2 & ~g0_2 & ~s0_2) &(g0_1 <=> g0_2) & (s0_1 <=> s0_2));The analogy to run-time is the computation byMONA of a �nite-state automaton from the gen-erated formula. This is always guaranteed to ter-minate, but may be prohibitively expensive. Thus,the FIDO compiler does extensive optimizations atmany levels, in most cases relying heavily on thetype structure. FIDO formulas are symbolically re-duced to detect simple tautologies and to eliminateunnecessary variables and quanti�ers. A carefulstrategy is employed to allocate short bit patternsfor �nite domains, which includes a global analysisof concrete uses.We have also discovered that the FIDO type struc-ture contains a wealth of information that is notcurrently being exploited by the MONA implemen-tation. An ongoing development e�ort will enrichthe notion of tree automata to accommodate posi-tional information that can be derived from FIDOspeci�cations. This may in some case yield an ex-ponential speed-up at the MONA level.7 FIDO as a DSLIn our opinion, FIDO is a compelling example of adomain-speci�c language. It is focused on a clearlyde�ned and narrow domain: formulas in monadicsecond-order logic or, equivalently, automata onlarge alphabets. It o�ers solutions to a classical soft-ware problem: drowning in a swamp of low-level en-codings. It advocates a simple design principle: goby analogy to standard programming language con-cepts. It uses a well-known and trusted technol-ogy: all the phases of a standard compiler, includ-ing optimizations at all levels. It provides unique

bene�ts that cannot be matched by a library in astandard programming language: notational con-veniences, type checking, and global optimizations.And during its development, we discovered new in-sights about the domain: new notions of tree au-tomata and algorithms.References[1] A. Ayari, D. Basin, and A. Podelski. Lisa:A speci�cation language based on WS2S. InProceedings of CSL'97. BRICS, 1997.[2] D. Basin and N. Klarlund. Hardware veri�-cation using monadic second-order logic. InComputer aided veri�cation : 7th InternationalConference, CAV '95, LNCS 939, 1995.[3] Morten Biehl, Nils Klarlund, and Theis Rauhe.Algorithms for guided tree automata. In Pro-ceedings of WIA'96. Springer Verlag, 1996.[4] Randal E. Bryant. Graph-based algorithms forBoolean function manipulation. IEEE Trans-actions on Computers, August 1986.[5] Jesper Gulmann Henriksen, Michael Jrgensen,Jakob Jensen, Nils Klarlund, Bob Paige, TheisRauhe, and Anders Sandholm. Mona: Monadicsecond-order logic in practice. In Proceedings ofTACAS'95, LNCS 1019, May 1995.[6] G.J. Holzmann. The model checker spin. IEEETrans. on Software Engineering, May 1997.Special issue on Formal Methods in SoftwarePractice.[7] J.L. Jensen, M.E. Jrgensen, N. Klarlund, andM.I. Schwartzbach. Automatic veri�cation ofpointer programs using monadic second-orderlogic. In Proceedings of PLDI'97, 1997.[8] N. Klarlund, M. Nielsen, and K. Sunesen. Acase study in automated veri�cation based ontrace abstractions. Technical Report RS-95-54,BRICS, Aarhus University, 1995.[9] N. Klarlund, M. Nielsen, and K. Sunesen. Au-tomated logical veri�cation based on trace ab-straction. In Proceedings of PODC'96, 1996.[10] Nils Klarlund, Jari Koistinen, and Michael I.Schwartzbach. Formal design constraints. InProceedings of OOPSLA'96, October 1996.

[11] Nils Klarlund and Theis Rauhe. BDD algo-rithms and cache misses. Technical Report RS-96-05, BRICS, 1996. Submitted.[12] J.C. Reynolds. Three approaches to type struc-ture. In Mathematical Foundations of SoftwareDevelopment, LNCS 185, 1985.

