
Distributed Safety Controllers for Web ServicesAnders Sandholm and Michael I. SchwartzbachBRICS?, Department of Computer ScienceUniversity of Aarhus, Ny MunkegadeDK-8000 Aarhus C, Denmarkfsandholm,misg@brics.dkAbstract. We show how to use high-level synchronization constraints,written in a version of monadic second-order logic on �nite strings, tosynthesize safety controllers for interactive web services. We improve onthe naïve runtime model to avoid state-space explosions and to increasethe �ow capacities of services.1 IntroductionAn Interactive Web Service consists of a global state (typically a database) anda number of distinct sessions that each contain some local state and a sequential,imperative action. A web client may invoke an individual thread of one of thegiven session kinds. The execution of this thread may interact with the clientand inspect or modify the global state.To alleviate laborious low-level encodings of such services, the Mawl lan-guage [6, 2] has been suggested as a high-level notation that is compiled intolow-level CGI-scripts. It directly provides programming constructs correspond-ing to global state, dynamic document, sessions, local state, imperative actions,and client interactions. This system shows great promise to facilitate the e�cientproduction of reliable web services.While Mawl thus o�ers automatic synthesis of many advanced concepts, itstill relies on standard low-level semaphore programming for concurrency control.We have designed a variation of Mawl, calledWig, on which we are currently per-forming a number of experiments. One of these is to synthesize the concurrencycontrol from a high-level notation that is designed to be simple and intuitive.Our notation is based on second-order monadic logic on �nite strings, M2L-Str.As an example of aWig service, consider the example in Fig. 1, which providesa counter for a page. The intended behavior should be clear. By default Wigprovides exclusive write-access to components of the global state, but this isclearly not enough even for this simple example, where the updates of the countervariable must be atomic, which requires some sort of critical region.Larger web services often require quite complicated concurrency control,which is hard to implement and maintain (and not the kind of issue on whichmost web programmers want to spend their time).? Basic Research in Computer Science,Centre of the Danish National Research Foundation.

service {global counter: int = 0;document ThePage { You are visitor number <var name="num">. };session ReadMe {counter:=counter+1;show ThePage[num counter]}} Fig. 1. A simple Wig service.The web programming environment, with rapidly changing code, fast ma-chines, and slow networks seems an ideal niche for a radical approach of syn-thesizing �nite-state controllers from high-level speci�cations without su�eringan unacceptable performance loss compared to hand-written code. This paperprovides the foundations for these ideas.2 Labeled ServicesBefore presenting the actual high-level notation for concurrency control we needto make one important extension to the basic language for writing service code.The high-level notation for concurrency control needs a way of referring to pointsin the service code. For this purpose we add the possibility of having labels inthe code. As an example it might very well later turn out to be advantageous tobe able to refer to, say, the beginning and the end of a critical region.With labels in the service code, a run of a service gives rise to the sequenceof labels that are passed in turn during the run. We have the basic assumptionthat no two labels are passed at exactly the same time. In the absence of thisassumption, we should replace the word sequence by pomset, partially orderedmulti-set. Later, though, we do consider independence models in order to avoidthe state explosion problem and to increase parallelism.In addition to the labels added by the programmer, the following labels aregenerated automatically because standard safety requirements almost alwaysinvolve these labels.� For each global variable X we generate the labels take-X and give-X. Theselabels are put in just before and just after each assignment to the globalvariable X . They will make us able to ensure that global variables can onlybe updated by one session thread at a time.� For each session de�nition A we generate labels start-A and end-A. They areput at the beginning and at the end of session A, respectively.2

The kind of sequences that a run of a service S gives rise to will thus be stringsover the alphabet �S given by�S = labels(S) [f take-X j X 2 globals(S) g [f give-X j X 2 globals(S) g[f start-A j A 2 sessions(S) g [f end-A j A 2 sessions(S) g;where labels; globals, and sessions are the functions that given a service S evalu-ates to the names of the labels, global variables, and sessions of S, respectively.Where obvious from the context we will drop the subscript S.An automaton is a structure A = (Q; q̂; �;!; F), where Q is a set of stateswith initial state q̂ 2 Q, � is a set of labels, !� Q � � � Q is the transitionrelation, and F � Q the set of acceptance states. We shall use q1 �! q2 asnotation for (q1; �; q2) 2!.A string w = �0�1 : : : �n�1 2 �� is said to be accepted by the automaton Aif there exists a run of A that reads the string w and ends up in an acceptingstate q, i.e., if there exist q1; : : : ; qn�1 2 Q and q 2 F , such thatq̂ �0! q1 �1! : : : �n�2! qn�1 �n�1! q:We shall denote by L(A) the language recognized by an automaton, i.e.,L(A) = fw 2 �� j A accepts w g:One can observe that a service S induces�in a natural way�an in�nite stateautomaton with alphabet �S , transitions corresponding to passing a label duringexecution, and F = Q, where the language accepted by the induced automatonwill then be the set of (�nite pre�xes of) possible runs of that service. We shalldenote by AS = (QS ; q̂S ; �S;!S ; FS) the automaton induced by S. Again wemay omit the subscript S.3 Safety RequirementsWhile programming a service, one often needs to make sure certain propertieshold. We o�er a way of synthesizing runtime controllers from static safety re-quirements. These requirements�written in a dialect of M2L-Str�can togetherwith the service code be compiled into executable code containing a runtime sys-tem that automatically ensures that the safety requirements are met, namely bycompiling the safety requirements into a runtime safety controller. For a diagramof the overall compilation process see Fig. 2.M2L-Str is a very expressive logic in which several other logics can be encoded,e.g., interval logic and all sorts of linear time temporal logics. For an introductionto and a discussion of M2L-Str see [4]. The speci�c high-level notation built ontop of M2L-Str for writingWig safety requirements is called the Wig service logic(WSL). The speci�cs of WSL are dealt with later in this paper. One might arguein favor of other speci�cation formalisms, e.g., Colored Petri Nets or MessageSequence Chart Diagrams. One of the reasons why we have chosen M2L-Str is3

safetyrequirements !! service code}}compilervv ((safetycontroller qq run-time system -- compiledservice codeFig. 2. Overview of the setup.that we have a very well functioning tool available for doing computations in thislogic [4]. Also, since we do not aim for traditional model checking, but rather forsynthesizing controllers to be run on fast machines in slow networks, we are inthe fortunate position to choose whatever logic provides the most succinct andintuitive syntax. All in all, M2L-Str is very powerful and yet just simple enoughto actually allow calculations.A formula � in M2L-Str over the alphabet � will�when interpreted over a�nite string w�either evaluate to true or to false and we shall write w j= � orw 6j= �, respectively. The language associated with � isL(�) = fw 2 �� j w j= � g:We shall denote by pre(�) the pre�x closure of L(�).We will useM2L-Str formulae as safety requirements as follows. Given a safetyrequirement � we want to restrict the execution of the service S to allow onlyruns � = �0�1�2 � � � 2 �! for whichf�0 : : : �n�1 2 �� j n � 0 g � pre(�):That is, we only allow a run � if all its �nite pre�xes, �; �0; �0�1; �0�1�2; : : : , arein the pre�x closure of the language associated with �.Example 1. A safety requirement formula might look as follows.8time t,t�: (t<t� ^ start-A(t) ^ start-A(t�))=) 9time t': t<t'<t� ^ end-A(t').The formula will ensure that at most one session A thread will be allowed toexecute at a time.The above formula will occur automatically once per global variable X withstart-A and end-A replaced by take-X and give-X respectively. This will ensurethat only one session thread can update a given global variable at a time. Onemight argue that this could be implemented by simply using a semaphore for4

each global variable. True, but what we are dealing with here is just one speci�csafety requirement. Our technique can uniformly handle all safety requirementsexpressible in M2L-Str, i.e., errors are less likely to occur. Furthermore we willargue later that the technique handles speci�c requirements like critical regionsas e�ciently as if implemented directly, e.g., by means of a semaphore.It has been known since the late sixties that M2L-Str characterizes regular-ity [8]. The Mona system provides an algorithm for translatingM2L-Str formulaeinto minimal deterministic �nite state automata (mdfa). Furthermore, regularityis preserved under pre�x closure. Thus we have a method for producing fromthe safety requirements an mdfa that will function as our safety controller.Example 2. The minimal safety controller corresponding to the requirement ofExample 1 will thus be //?>=<89:;76540123q̂ start-A**�� ?>=<89:;76540123q1end-Aii �� start-A// ?>=<89:;q2��with the convention that non-labeled transitions are implicitly labeled by �minus the labels that occur on other outgoing transitions from that state.As can be seen, it is not possible to start a new session A thread if an Athread is already running.4 Labeled Services with Safety RequirementsGiven a service S with induced automaton AS and a safety controller Ac we canquite precisely de�ne the restricted behavior that we expect from the compositesystem. First a de�nition.We de�ne the product automaton A1 � A2 of two automata A1 and A2,Ai = (Qi; q̂i; �;!i; Fi) to beA1 �A2 = (Q1 �Q2; (q̂1; q̂2);!; F1 � F2);where (q1; q2) �! (q01; q02) i� qi �!i q0i for i = 1; 2:Thus the restricted behavior that we want our composite system to have isthat of AS � Ac. For a product A1 � A2 of two systems A1 and A2 we haveL(A) = L(A1) \ L(A2). Thus the product of the service and the controller willallow�among the possible runs of the service�exactly those that also meet thesafety requirements. 5

4.1 Implementing the Naïve Runtime SystemThe service does not constitute a �nite state automaton. Therefore we cannotproduce the full runtime system (the combined system consisting of both theservice AS and the controller Ac) by simply computing the product automatonat compile time. What we will do instead is to implement the implicit synchro-nization of the product automaton directly as part of the runtime system. Theruntime system will then consist of three parts:� a safety controller Ac,� for each label � 2 � a run-time queue rtq(�), and� the current session threads of the service.All session threads and the controller run in parallel having the queues as sharedresources.� The code for the sessions will then be compiled such that each time a sessionthread wants to pass a label � it pushes its session thread id onto rtq(�) andthen waits for permission to continue. When permission later is granted bythe controller it will pass the label � and continue its execution.� The safety controller will be looping while doing the following. Check if anyof the queues corresponding to the enabled transitions are non-empty. Incase it �nds a non-empty queue, say rtq(�), it1. removes a session thread id from rtq(�),2. changes its state corresponding to making the enabled �-transition, and3. wakes up the session thread corresponding to the removed id .This way the runtime system will behave as the product of the service and thecontroller. A diagram of a simple runtime system can be found in Fig. 3.5 Improvements on the Runtime SystemIn the following section we will present two major improvements on the runtimesystem. Since the service part of the runtime system is very hard to reasonabout at compile time, our improvements will concentrate on the safety controller(which is just a �nite automaton) and the shared queues. Both improvementsare achieved by using the notion of distributed automata.� The �rst improvement concerns the avoidance of the state explosion problem.� The second improvement increases parallelism of the system by inferringindependence information.First let us de�ne the notion of distributed automata. A distributed alphabet ~� =(�1; : : : ; �K) with K � 1 is a �nite collection of �nite, non-empty alphabets. Wewill denote by Loc the set {1, : : : , K} and by � the union of the not necessarilydisjoint alphabets �i. By loc(�) we will denote the set of locations where �occurs, i.e., loc(�) = f i 2 Loc j � 2 �i g.6

Safety Controller Queues Session Threads/.-,()*+EE rtq(�1)... Session Athread id : 47oo}}///.-,()*+�������� ++�� /.-,()*+��������kk cc
{{ rtq(�i)... Session Athread id : 69ff oo/.-,()*+����������UU rtq(�n) Session Bthread id : 117ff mm ...

vvnnee
Fig. 3. Sketch of the runtime system.A distributed automaton over ~� is a structure A = (A1; : : : ; AK) consistingof �nite state automata A1; : : : ; AK , with Ai = (Qi; q̂i; �i;!i; Fi). The derivedbehavior of A will be as the behavior of the �nite state automatonA = (Q1 � � � � �QK ; (q̂1; : : : ; q̂K); �;!; F1 � � � � � FK);where (q1; : : : ; qK) �! (q01; : : : ; q0K) if and only if� when i 2 loc(�) then qi �!i q0i and� if i 62 loc(�) then qi = q0i.We will denote by L(A) the language recognized by the distributed automatonA which is just the language recognized by A, i.e., L(A) = L(A).Note that given a distributed automaton A = (A1; : : : ; AK) over ~� we alsohave L(A) = fw 2 �� j 8i 2 Loc : (wj�i) 2 L(Ai) g;where wj�i denotes the projection of the string w onto the ith alphabet �i.Note that for K = 1 the notion of a distributed automaton coincides withthe simple notion of a �nite state automaton. The kind of distributed automatathat we will be using in this �rst part to reduce the state space will be automataover distributed alphabets where �1 = � � � = �K , i.e., the derived behaviorof the distributed automaton will simply be as the behavior of the productA1�� � ��AK . Later on�when we want to increase parallelism�we will considergeneral distributed alphabets where the sub-alphabets are not necessarily equalto each other. 7

5.1 The State Explosion ProblemIn model checking, the state explosion problem occurs very often and there havebeen many attempts to avoid it, e.g., by means of a symbolic representationusing BDDs [7, 1]. As a colloquial remark one might mention that we actuallyalready do use BDDs because of the way the Mona system represents its data.Here we attack the state explosion problem by using distributed automata.The crucial observation that makes it possible to easily use distributed automatain this context is that safety requirements have the form of a big conjunction, i.e.,it is a collection of requirements that all have to be satis�ed. Also, we can buildand use the symbolic representation of the products (the distributed automaton)all the way through when generating controllers. In model checking, though, oneneeds at some point to actually compute the product.Let C be a set of safety constraints, i.e., a set of conjuncts. Then, given somepartition of C into C1; : : : ; CK , we can compile each of the smaller conjunctionsC1; : : : ; CK separately into automata A1; : : : ; AK . The corresponding distributedautomaton A = (A1; : : : ; AK) will then behave exactly as the automaton corre-sponding to the full set C of conjuncts becauseL(C) = L(C1 ^ � � � ^ CK)= L(C1) \ � � � \ L(CK)= L(A1) \ � � � \ L(AK)= L(A1 � � � � �AK)= L(A):We can thus use A as our safety controller instead. If the partition is chosenappropriately this will lead to a considerable reduction of the state space.Example 3. Consider the example of having n global variables X1; : : : ; Xn. Inorder to obey the requirement of mutual exclusion on assignment to globals thiswill automatically generate the following list of safety constraints.8time t,t�: (t<t� ^ take-X1(t) ^ take-X1(t�))=) 9time t': t<t'<t� ^ give-X1(t');...8time t,t�: (t<t� ^ take-Xn(t) ^ take-Xn(t�))=) 9time t': t<t'<t� ^ give-Xn(t');The corresponding safety controller will have 2n +1 states�it will look like thenth dimensional cube plus the �error state�. If we use the distributed automatonapproach and partition the safety requirements according to the semicolons thenthe controller will have only a linear (3n) number of states. We will have n copiesof the following three state automaton.//?>=<89:;76540123q̂ take-Xi**�� ?>=<89:;76540123q1give-Xiii �� take-Xi// ?>=<89:;q2��8

5.2 Inference of Independence InformationIt was shown in the previous section that using distributed automata reducesthe state space in frequently occurring cases. In this section we will improveon the fact that we have a central component�the safety controller�whichcan potentially slow down the performance of the service, e.g., if many sessionthreads are asking for permission to continue at the same time. This can�inmany cases�be avoided by exploiting independence in the safety requirements.We shall call a transition q �! q0 state preserving if q = q0. A label � is saidto be dead if all �-transitions are state preserving, i.e., if! \ (Q� f�g �Q) � f q �! q j q 2 Q g:A �-transition is dead if � is dead.In a distributed automaton A = (A1; : : : ; AK) a label or transition is saidto be locally dead in Ai if it is dead in Ai. One can now make the followingobservation.Proposition 1. Given a distributed automaton A = (A1; : : : ; AK). Let A0 bethe distributed automaton A where locally dead labels and transitions have beenremoved. If �0 = � then L(A0) = L(A).That is, if we do not remove the last occurrence of a label in A then removinglocally dead labels and transitions is a language preserving operation.The above proposition easily extends to a simple algorithm where we iteratethrough the automata A1; : : : ; AK and for each i 2 Loc remove all locally deadlabels and transitions. Running this algorithm on a distributed automaton Awill result in a new distributed automaton A0 with exactly the same overallbehavior, but with minimized requirements regarding synchronization betweenthe di�erent components.Now�to improve performance even further�consider the undirected graphG = (V;E) with nodes V = fA1; : : : ; AKg and edges E = f (Ai; Aj) j �i \�j 6=; g. The connected components C1; : : : ; Cn of G can�since they are collectionsof �nite automata�be considered as distributed automata.The crucial observation is that�since they have completely disjoint alphabets�these distributed automata C1; : : : ; Cn can be run completely in parallel whilestill guaranteeing all safety requirements to be met. Furthermore, inside each ofthe distributed automata Ci we still have �nite state automata that are looselycoupled and thus need very little internal synchronization as well.A diagram of the runtime system with n global variables, X1; : : : ; Xn, wherewe have both reduced the state space and exploited independence informationcan be found in Fig. 4.As can be seen, we handle the case of critical regions just as e�ciently as if wehad implemented it using a semaphore, both with respect to space requirementsand with respect to the degree of parallelism. Thus we do not lose anything byformulating simple safety requirements in this way. What we gain, however, is auniform framework in which we can formulate all safety requirements.9

Safety Controller Queues Session Threadsrtq(take-X1) Session Athread id : 47oo{{///.-,()*+��������take-X1((�� /.-,()*+��������give-X1hh �� take-X1///.-,()*+�� rtq(give-X1) Session Athread id : 69gg oortq(take-Xn) Session Bthread id : 117vv qq///.-,()*+��������take-Xn((�� /.-,()*+��������give-Xnhh �� take-Xn///.-,()*+�� rtq(give-Xn) ...
wwoooooooo
vvooFig. 4. Runtime system with independent distributed automata.Inference of independence information via search for locally dead labels andtransitions will thus in general lead to a substantial increase of parallelism in thecontroller. This increase of parallelism will improve on the overall performanceof the runtime system, i.e., on the �ow capacities of the provided service.6 Beyond RegularityIn general one can have any number of session A threads. This can of coursebe constrained to any �xed maximal number by use of safety requirements, e.g.,the controller //?>=<89:;76540123q̂ start-A**�� ?>=<89:;76540123q1end-Aii �� start-A** ?>=<89:;76540123q2end-Ajj �� start-A// ?>=<89:;q3��will guarantee that at any time there will be at most two session A threads.But very often one has requirements like: I only want to enter this part of thecode, e.g., pass label foo, if there are no session C threads�without putting abound on the maximal number of session C threads. This cannot be expressed inM2L-Str. The positions at which there are no session C threads are those wherethe number of start-C and end-C labels occurring before that position are thesame but the standard example of a non-regular language is f anbn j n � 0 gthus the property is not regular and therefore cannot be expressed in M2L-Str.In order to accommodate the need for these kind of requirements we willintroduce the notion of a counter. We could declare the counter last-A as follows.10

counter last-A : #start-A � #end-A;This would have the e�ect that an extra label, last-A, would be added to thealphabet. The extra label would be passed implicitly every time the right-handside of the counter declaration reaches zero, i.e., in this case every time thelast session A thread has passed its end-A label. Thus, we produce a controllerthat only allows runs that both pass the safety requirements and furthermorehave the property that last-A occurs exactly at positions following occurrencesof end-A that results in a pre�x that has the same number of start-A and end-Aoccurrences.So in principle we want to make an intersection of a regular and a context freelanguage which in general of course is non-regular. We still want to implementthe controller as a �nite state (distributed) automaton but this is no longerpossible. However, if we equip the automaton with integer variables�one for eachcounter�then we will have enough machinery to recognize the intersection of thetwo languages. More speci�cally, consider the three step loop in the descriptionof the controller in the naïve runtime system:The safety controller will be looping while doing the following. Check ifany of the queues corresponding to the enabled transitions are non-empty. Incase it �nds a non-empty queue, say rtq(�), it1. removes a session thread id from rtq(�),2. changes its state corresponding to making the enabled �-transition, and3. wakes up the session thread corresponding to the removed id .Apart from the fact that there are now several of these controllers each havinga subset of labels to take care of, we must add the following conditional as afourth step.If � occurs on the right-hand side of a counter declaration, cnti, then incrementor decrement the variable associated with that counter. If it reaches zero thenchange the state corresponding to taking the cnti-transition.By using the counter last-A we thus� add the label last-A and� in the controller we intersect with the language where last-A occurs after thetermination of the last session A thread.Therefore, one can now write a safety requirement ensuring that there are noactive A sessions. E.g., the predicatezero-A(t�) � 9time t: t�t� ^ (t=0 _ last-A(t)) ^8time t': t�t'�t� =) :start-A(t')will only evaluate to true at positions where there are no active A sessions.Example 4. We can now formulate the (non-regular) requirement from the be-ginning of this section, �I only want to pass label foo if there are no active Csessions�, as a safety requirement:8time t: foo(t) =) zero-C(t).11

7 WSLThe Wig service logic (WSL) is a high-level notation built on top of M2L-Strsuitable for writing safety requirements for Wig service code implementing aninteractive web service. It inherits from M2L-Str the usual universal and exis-tential quanti�cations over both �rst order variables (ranging over instances ofdiscrete time) and monadic second order variables (ranging over sets of instancesof time). Also, it has standard boolean connectives like negation, conjunction,disjunction, implication, etc., as well as operations on �rst order terms, e.g.,given an instance of time t one can point out its successor (t+1), operations onsecond order terms, e.g., taking the union of two sets, plus of course the basicformula that tests membership of a position in a position set. Furthermore WSLprovides basic formulae to test whether a label LL is passed at time t: LL(t).Example 5. Consider some Wig code with a critical region that needs exclusiveaccess to, say, a global resource. The way one makes the region critical is by �rstadding labels around it.: : : code : : :label begin-crt-region;: : : critical region : : :label end-crt-region;: : : more code : : :Then, in order to make the code between these labels act as a critical region thefollowing safety constraint is added to the set of requirements.8time beg1, beg2:((beg1<beg2) ^ begin-crt-region(beg1) ^ begin-crt-region(beg2))=) 9time end1: (beg1<end1<beg2) ^ end-crt-region(end1).Example 6. Another thing that WSL is suitable for is formulating requirementsregarding priority. We are given some service S with sessions Reading andWriting(See Fig. 5). Reading threads read data from a Database, display the data in aproper way, read some more data, display it, and so forth. Writing threads canonly be started by the service administrator. Furthermore, at most one Writingsession thread is allowed at a time. This last condition can easily be satis�ed,e.g., by the constraint8time t: start-Writing(t) =) (t=0 _ zero-Writing(t-1)),where zero-Writing and later zero-Reading are de�ned as the zero-A predicatefrom the previous section.Of course Writing must not be started unless there are no active Readingthreads and vice versa. This can also be formulated in a straightforward wayusing, e.g., the constraint8time t: zero-Writing(t) _ zero-Reading(t).12

Writing Reading Reading
Reading ReadingDatabase

Fig. 5. A Writing thread and several Reading threads accessing a Database.But what if it is of great importance that the administrator gets access to thedatabase as soon as possible? E.g., if the database contains prices of productsthat a company sells and corrections have to be made to these prices. Thus, wewant to give Writing priority over Reading. This can be managed in the followingway (excluding the lastWSL-formula above). We assume that the critical regionsof Writing, i.e., those that access the database, are surrounded by labels start-Crtand end-Crt.� Then, in order to make sure that as soon as the Writing thread has started,no more Reading threads will start, we add the constraint8time t: start-Reading(t) =) zero-Writing(t).� Of course, we should still make sure that we have mutual exclusion. This isdone by adding the constraint8time t: start-Crt(t) =) zero-Reading(t).Thus, we make sure that we do not enter any critical region in Writing unlessthe last Reading thread has ended its execution.Using the above approach we satisfy the crucial property of mutual exclusion.Furthermore, we impose restrictions that will make sure the administrator getspriority over ordinary users. The corresponding automaton, however, is rathercomplex, see Fig. 6. Thus, producing it by hand is cumbersome and error prone.Furthermore, our approach is modular in the sense that requirements can beadded and deleted at will without changing the existing requirements. In theautomata world small changes can result in extensive changes of the automa-ton. Solutions using semaphores lack in a similar fashion the property of beingmodular. 13

/.-,()*+����������lWyy sR;sW��// /.-,()*+���������� sW 99sCrt //sR ��/.-,()*+

 /.-,()*+�������� xxlR``@@@@@@@@@@@@@@@@@sCrt;sR;sWoo lWyy/.-,()*+��������lRZZ sCrtOO sW 99
EEFig. 6. Automaton corresponding to the Writing/Reading setup.8 Related WorkMawl has already been mentioned as an example of a domain-speci�c languagefor describing sequential transaction-oriented Web applications. The techniquesavailable for doing synchronization when dealing with concurrency in Mawl islimited to working with critical regions, though. Our work on service logic ex-tends this to working with arbitrary safety constraints.In general, there are increasingly many systems for doing web-programming,e.g., [6, 5, 3], but so far none of seem of them seem to support proper handlingof safety requirements.The area of control theory is of course huge. We are only dealing with controlof discrete systems, though. Ramadge and Wonham give in [9] a good survey on�The Control of Discrete Event Systems�. Many of the notions presented hereare similar to those of [9].Distributed automata are simply a special case of the product automataof [10]. They again are a special case of the non-cellular asynchronous automataof [11].9 Future WorkWriting Wig services results in generation of highly concurrent code which needslots of synchronization. The implementation of the ideas presented here is inpreparation and once we can do experiments writing and using safety constraints,evaluation of the usefulness of our technique can be taken further. The importantquestion is of course: how much do these ideas improve on the quality of theservices? 14

When dealing with inference of independence information, the importantpart is that of choosing the right partition of the safety requirement. We planto do static analyses on the safety requirements and combine the achieved infor-mation with appropriate heuristics to obtain hopefully good results. Intuitively,the formulae of the safety requirements implicitly say something about whichrequirements are closely related and which are not.The idea of having a central controller is proving useful for other aspectsof web services. We plan to include support for various kinds of event handlingand database locking. Also, the controller may drive an automatically generatedservice monitor, allow maintenance and performance statistics.10 AcknowledgmentsThe authors thank Claus Rasmussen Brabrand and the anonymous referees foruseful comments.References1. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEETransactions on Computers, C-35(8):677�691, August 1986.2. K. Cox, T. Ball, and J. C. Ramming. Lunchbot: A tale of two ways to programweb services. Available fromhttp://www.cs.utexas.edu/users/cpg/mawl/doc/lunchbot.ps.gz, April 1996.3. Brian J. Fox. Meta-html: A dynamic programming language for www applications.http://www.metahtml.com/documentation/manifesto.html.4. J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, andA. Sandholm. Mona: Monadic second-order logic in practice. In Tools and Algo-rithms for the Construction and Analysis of Systems, First International Work-shop, TACAS '95, LNCS 1019, 1996.5. The document is the application. Web Site. http://www.htmlscript.com/.6. D. A. Ladd and J. C. Ramming. Programming the web: An application-orientedlanguage for hypermedia services. In 4th Intl. World Wide Web Conference, 1995.7. K. L. McMillan. Symbolic Model Checking. Kluver Academic Publishers, 1993.8. M. O. Rabin. Decidability of second-order theories and automata on in�nite trees.Trans. Amer. Math. Soc., 141:1�35, 1969.9. Peter J. G. Ramadge and W. Murray Wonham. The control of discrete eventsystems. Proceedings of the IEEE, 77(1):81�98, January 1989.10. P. S. Thiagarajan. PTL over product state spaces. Technical Report TCS-95-4,School of Mathematics, SPIC Science Foundation, 1995.11. W. Zielonka. The Book of Traces, chapter Asynchronous Automata, pages 205�248.World Scienti�c Publishing, 1995.
15

