
A Case Study in Veri�cation Based onTrace AbstractionsNils Klarlund? Mogens Nielsen Kim SunesenBRICS??Department of Computer ScienceUniversity of AarhusNy MunkegadeDK-8000 Aarhus C.fklarlund,mnielsen,ksuneseng@daimi.aau.dkAbstract. In [14], we proposed a framework for the automatic veri�ca-tion of reactive systems. Our main tool is a decision procedure, Mona,for Monadic Second-order Logic (M2L) on �nite strings. Mona trans-lates a formula in M2L into a �nite-state automaton. We show in [14]how traces, i.e. �nite executions, and their abstractions can be describedbehaviorally. These state-less descriptions can be formulated in terms ofcustomized temporal logic operators or idioms.In the present paper, we give a self-contained, introductory account ofour method applied to the RPC-memory speci�cation problem of the 1994Dagstuhl Seminar on Speci�cation and Re�nement of Reactive Systems.The purely behavioral descriptions that we formulate from the informalspeci�cations are formulas that may span 10 pages or more.Such descriptions are a couple of magnitudes larger than usual temporallogic formulas found in the literature on veri�cation. To securely writethese formulas, we use Fido [16] as a reactive system description lan-guage. Fido is designed as a high-level symbolic language for expressingregular properties about recursive data structures.All of our descriptions have been veri�ed automatically by Mona fromM2L formulas generated by Fido.Our work shows that complex behaviors of reactive systems can be for-mulated and reasoned about without explicit state-based programming.With Fido, we can state temporal properties succinctly while enjoyingautomated analysis and veri�cation.1 IntroductionIn reactive systems, computations are regarded as sequences of events or states.Thus programming and speci�cation of such systems focus on capturing the se-quences that are allowed to occur. There are essentially two di�erent ways ofde�ning such sets of sequences.1em? Author's current address: AT&T Research, Room 2C-410, 600 Mountain Ave., Mur-ray Hill, NJ 07974; E-mail: klarlund@research.att.com1em?? Basic Research in Computer Science,Centre of the Danish National Research Foundation.

In the state approach, the state space is de�ned by declarations of programvariables, and the state changes are de�ned by the program code.In the behavioral approach, the allowed sequences are those that satisfy a setof temporal constraints. Each constraint imposes restrictions on the order or onthe values of events.The state approach is used almost exclusively in practice. State based de-scriptions can be e�ectively compiled into machine code. The state concept isintuitive, and it is the universally accepted programming paradigm in industry.The behavioral approach o�ers formal means of expressing temporal or beha-vioral patterns that are part of our understanding of a reactive system. As such,descriptions in this approach are orthogonal to the state approach|although thetwo essentially can express the same class of phenomena.In this paper, we pursue the purely behavioral approach to solve the RPC-memory speci�cation problem [4] posed by Manfred Broy and Leslie Lamportin connection with the Dagstuhl Seminar on Speci�cation and Re�nement ofReactive Systems. The main part of the problem is to verify that a distributedsystem P implements a distributed system S, that is, that every behavior of P isa behavior of S. Both systems comprise a number of processes whose behaviorsare described by numerous informally stated temporal requirements like \Eachsuccessful Read(l) operation performs a single atomic read to location l at sometime between the call and return."The behavioral approach that we follow is the one we formulated in [14]. Thisapproach is based on expressing behaviors and their abstractions in a decidablelogic. In the present paper, we give an introductory and self-contained accountof the method as applied to the Dagstuhl problem.We hope to achieve two goals with this paper:{ to show that the behavioral approach can be used for verifying complicatedsystems|whose descriptions span many pages of dense, but readable, logic|using decision procedures that require little human intervention; and{ to show that the Fido language is an attractive means of expressing �nite-state behavior of reactive systems. (Fido is a programming language de-signed to express regular properties about recursive data structures [16].)An overview of our approachOur approach is based on the framework for automatic veri�cation of distrib-uted systems that we described in [14]. There, we show how traces, ie. �nitecomputations, can be characterized behaviorally. We use Monadic Second-orderLogic (M2L) on �nite strings as the formal means of expressing constraints. Thisdecidable logic expresses regular sets of �nite strings, that is, sets accepted by�nite-state machines. Thus, when the number of processes and other parametersof the veri�cation problem is �xed, the set LP , of traces of P can be expressed by�nite-state machines synthesized fromM2L descriptions of temporal constraints.Similarly, a description of the set LS of traces of the speci�cation can be syn-thesized.

The veri�er, who is trying to establish that P implements S, cannot justdirectly compare LP and LS . In fact, these sets are usually incomparable, sincethey involve events of di�erent systems. As is the custom, we call the events ofinterest the observable events. These events are common to both systems. Theobservable behaviors Obs(LP) of LP are the traces of LP with all non-observableevents projected away. That P implements S means that Obs(LP) � Obs(LS).One goal of the automata-theoretic approach to veri�cation is to establishObs(LP) � Obs(LS) by computing the product of the automata describing Obs(LP)and Obs(LS). Speci�cally, we let AP be an automaton accepting Obs(LP) andwe let AS be a automaton representing the complement of Obs(LS). ThenObs(LP) � Obs(LS) holds if and only if the product of AP and AS is empty. Un-fortunately, the projection of traces may entail a signi�cant blow-up in the size ofAS as a function of the size of the automaton representing LS . The reason is thatthe automaton AS usually can be calculated only through a subset construction.The use of state abstraction mappings or homomorphisms may reduce suchstate space blow-ups. But the disadvantage to state mappings is that they tendto be speci�ed at a very detailed level: each global state of P is mapped to aglobal state of S.In [14], we formulate well-known veri�cation concepts, like abstractions anddecomposition principles for processes in the M2L framework. The resulting tracebased approach o�ers some advantages to conventional state based methods.For example, we show how trace abstractions, which relate a trace of P to acorresponding trace of S, can be formulated loosely in a way that re
ects only theintuition that the veri�er has about the relation between P and S|and that doesnot require a detailed, technical understanding of how every state of P relates toa state of S. A main point of [14] is that even such loose trace abstractions may(in theory at least) reduce the non-determinism arising in the calculation of AS .The framework of [14] is tied closely to M2L: traces, trace abstractions, theproperty of implementation, and decomposition principles for processes are allexpressible in this logic|and thus all amenable, in theory at least, to automaticanalysis, since M2L is decidable.In the present paper, we have chosen the Fido language both to expressour concrete model of the Dagstuhl problem and to formulate our expositionof the framework of [14]. Fido is a notational extension of M2L that incorpor-ates traditional concepts from programming languages, like recursive data types,functions, and strongly typed expressions. Fido is compiled into M2L.An overview of the Dagstuhl problemThe Speci�cation Problem of the Dagstuhl Seminar on Speci�cation and Re-�nement of Reactive Systems is a four page document describing interactingcomponents in distributed memory systems. Communication between compon-ents takes place by means of procedures, which are modeled by call and returnevents. At the highest level, the speci�cation describes a system consisting of amemory component that provides read and write services to a number of pro-cesses. These services are implemented by the memory component in terms of

basic i/o procedures. The relationships among service events, basic events, andfailures are described in behavioral terms.Problem 1 in the Dagstuhl document calls for the comparison of this memorysystem with a version in which a certain type of memory failure cannot occur.Problem 2 calls for a formal speci�cation of another layer added to thememory system in form of an RPC (Remote Procedure Call) component thatservices read and write requests.Problem 3 asks for a formal speci�cation of the system as implemented usingthe RPC layer and a proof that it implements the memory system of Problem 1.In addressing the problems, we deal with safety properties of �nite systems.Problems 4 and 5 address certain kinds of failures that are described in areal-time framework. Our model is discrete, and we have not attempted to solvethis part.Previous workThe TLA formalismby Lamport [19] and the temporal logic of Manna and Pnueli[23, 13] provide uniform frameworks for specifying systems and state mappings.Both logics subsume predicate logic and hence defy automatic veri�cation ingeneral. However, work has been done on providing mechanical support in termsof proof checkers and theorem provers, see [8, 9, 22].The use of state mappings have been widely advocated, see e.g. [20, 18, 19,13]. The theory of state mappings tend to be rather involved, see [2, 15, 21, 25].The Concurrency Workbench [6] o�ers automatic veri�cation of the existenceof certain kinds of state-mappings between �nite-state systems.Decomposition is a key aspect of any veri�cation methodology. In particular,almost all the solutions of the RPC-memory speci�cation problem [4] in [1] usesome sort of decomposition. In [3], Lamport and Abadi gave a proof rule forcompositional reasoning in an assumption=guarantee framework. A non-trivialdecomposition of a closed system is achieved by splitting it into a number ofopen systems with assumptions re
ecting their dependencies. In our rule, de-pendencies are re
ected in the choice of trace abstractions between componentsand a requirement on the relationship between the trace abstractions.For �nite-state systems, the COSPAN tool [10], based on the automata-theoretic framework of Kurshan [17], implements a procedure for deciding lan-guage containment for !-automata.In [5], Clarke, Browne, and Kurshan show how to reduce the language con-tainment problem for !-automata to a model checking problem in the restrictedcase where the speci�cation is deterministic. The SMV tool [24] implements amodel checker for the temporal logic CTL [7]. In COSPAN and SMV, systemsare speci�ed using typed C-like programming languages.In the rest of the paperIn Section 2, we �rst explain M2L and then introduce the Fido notation byan example. Section 3 and 4 discuss our veri�cation framework and show how

all concepts can be expressed in Fido. We present our solutions to the RPC-memory speci�cation problem [4] in the remaining sections. In Section 5, wedescribe the distributed system that constitutes the speci�cation. In Section 6,we describe the implementation, which is an elaboration on the speci�cation. InSection 7, we prove that the implementation satis�es the speci�cation.AcknowledgmentsWe would like to thank the referees for their comments and remarks.2 Monadic second-order logic on stringsThe logical notations we use are based on the monadic second-order logic onstrings (M2L). A closed M2L formula is interpreted relative to a natural numbern (the length). Let [n] denote the set f0; : : : ; n� 1g. First-order variables rangeover the set [n] (the set of positions), and second-order variables range oversubsets of [n]. We �x countably in�nite sets of �rst and second-order variablesVar1 = fp; q; p1; p2; : : :g and Var2 = fP; P1; P2; : : :g, respectively. The syntax ofM2L formulas is de�ned by the abstract syntax:t ::= p < q j p 2 P� ::= t j :� j � _ � j 9p:� j 9P:�where p,q and P range over Var1 and Var2, respectively.The standard semantics is de�ned as follows. An M2L formula � with freevariables is interpreted relative to a natural number n and an interpretation(partial function) I mapping �rst and second-order variables into elements andsubsets of [n], respectively, such that I is de�ned on the free variables of �. Asusual, I[a b] denotes the partial function that on c yields b if a = c, andotherwise I(c). We de�ne inductively the satisfaction relation j=I as follows.n j=I p < q def() I(p) < I(q)n j=I p 2 P def() I(p) 2 I(P)n j=I :� def() n 6j=I �n j=I � _ def() n j=I � _ n j=I n j=I 9p:� def() 9k 2 [n]:n j=I[p k] �n j=I 9P:� def() 9K � [n]:n j=I[P K] �As de�ned above M2L is rich enough to express the familiar atomic formulassuch as successor p = q + 1 (albeit only for numbers less than n), as well asformulas constructed using the Boolean connectives such as ^;) and ,, andthe universal �rst and second-order quanti�er 8, following standard logical inter-pretations. Throughout this paper we freely use such M2L derived operators.

There is a standard way of associating a language over a �nite alphabet withan M2L formula. Let � = �0 : : : �n�1 be a string over the alphabet f0; 1gl. Thenthe length j�j of � is n and (�j)i denotes the ith component of the l-tuple denotedby �j. An M2L formula � with free variables among the second-order variablesP1; : : : ; Pl de�nes the language:L(�) = f� 2 (f0; 1gl)� j j�j j=I� �gof strings over the alphabet f0; 1gl, where I� maps Pi to the set fj 2 [n] j (�j)i =1g. Any language de�ned in this way by an M2L formula is regular; conversely,any regular language over f0; 1gl can be de�ned by an M2L formula. Moreover,given an M2L formula � a minimal�nite automaton accepting L(�) can e�ectivelybe constructed using the standard operations of product, subset construction,projection, and minimization. This leads to a decision procedure for M2L, since� is a tautology if and only if L(�) is the set of all strings over f0; 1gl. Theapproach extends to any �nite alphabet. For example, letters of the alphabet� = fa; b; c; dg are encoded by letters of the alphabet f0; 1g2 by enumeration:a; b; c and d are encoded by (0; 0), (1; 0), (0; 1) and (1; 1), respectively. Thus,any language over � can be represented as a language over f0; 1g2 and henceany regular language over � is the language de�ned by some M2L formula withtwo free second-order variables P1 and P2. For example, the formula �:8p:p 62 P1 ^ p 62 P2de�nes the language fag�, that is, L(�) = f(0; 0)g�. In particular, since L(�) isnot the set of all strings over f0; 1g2, � is not valid, and any string not in L(�)corresponds to a length n and an interpretation relative to n that falsi�es �.2.1 FidoAs suggested above, any regular language over any �nite alphabet can be de�nedas the language of an open M2L formula by a proper encoding of letters asbit patterns, that is, by enumerating the alphabet. In our initial solution tothe Dagstuhl problem, we did the encoding \by hand"using only the Unix m4macro processor to translate our speci�cations into M2L. This is an approach wecannot recommend, since even minor syntactic errors are di�cult to �nd. TheFido notation helps us overcome these problems. Below, we explain the Fidonotation by examples introducing all needed concepts one by one.Consider traces, i.e. �nite strings, over an alphabet Event consisting of eventsRead and Return with parameters that take on values in �nite domains and theevent � . A Read may carry one parameter over the domain fl0; l1; l2g, and aReturn may carry two parameters, one from the domain fv0; v1g, and one fromthe domain fnormal; exceptiong. In Fido, the code:type Loc = l0,l1,l2;type Value = v0,v1;type Flag = normal,exception;

declares the enumeration types Value, Flag, and Loc. They de�ne the domainsof constants fl0; l1; l2g, fv0; v1g, and fnormal; exceptiong, respectively. The typede�nitions:type Read = Loc;type Return = Value & Flag;declare a new name Read for the type Loc and the record type Return, whichde�nes the domain of tuples f[v; f] j v 2 Value ^ f 2 Flagg. The alphabet Eventis the union of Read, Return and f�g:type Event = Read j Return j � ;The union is a disjoint union by default, since the Fido type system requiresthe arguments to de�ne disjoint domains. The types presented so far all de�ne�nite domains. Fido also allows the de�nition of recursive data types. For ourpurposes, recursively de�ned types are of the form:type Trace = Event(next: Trace) j empty;Thus, Trace declares the in�nite set of values fe1e2 : : :enempty j ei 2 Eventg.In other words, the type Trace is the set of all �nite strings of parameterizedevents in Event with an empty value added to the end. The details of coding thealphabet of events in second-order M2L variables are left to the Fido compiler.Fido provides (among others) four kinds of variables ranging over strings,positions, subsets of positions and �nite domains, respectively. The Fido code:string
: Trace;declares a free variable
 holding an element (a string) of Trace. We often referto
 just as a string.A �rst-order variable p may be declared to range over all positions in thestring
 by the Fido declaration:pos p:
;Similarly, a second-order variableP ranging over subsets of positions of the stringcan be declared as:set P:
;A variable event holding an element of the �nite domain Event is declared by:dom event: Event;The Fido notation includes, besides M2L syntax for formulas, existential anduniversal quanti�cation over all the kinds of variables. For example, we canspecify as a formula that the event Read:[l0] from the domain Event occurs in
:9pos p :
.(
(p) = Read:[l0])which is true if and only if there exists a position p in
 such that the pth elementin
 is the event Read:[l0].If we want to refer to a Read event without regard to the value of its parameter,then we write:

9pos p :
; dom l: Loc.(
(p) = Read:[l?])which is true if and only if there exists a position p in
 and an element l inLoc such that the pth element in
 is the event Read:[l] (the question mark inl? is just a synthetic Fido convention necessary for variables used in patternmatching expressions). To make the above formula more succinct, we can usethe pattern matching syntax of Fido, where a \dont't care" value is speci�ed bya question mark:9pos p :
.(
(p) = Read:[?])The Fido compiler translates such question marks into explicit existential quan-ti�cations over the proper �nite domain.A Fidomacro is a named formula with type-annotated free variables. Below,we formulate some useful temporal concepts in Fido that formalize high-levelproperties of intervals. In the rest of the paper, we use strings to describe be-haviors over time. Therefore, we refer to positions in strings as time instants intraces.In order to say that a particular event event of type Event occurred before agiven time instant t in trace � of type Trace, we write:func Before(string �: Trace; pos t: �; dom event: Event): formula;9pos time: �.(time<t^�(time)=event)end;To express that event occur sometime in the interval from t1 to t2 (both excluded),we write:func Between(string �: Trace; pos t1,t2: �; dom event: Event): formula;9pos time: �.(t1 <time^ time<t2^�(time)=event)end;The property that in a trace
 a Return is always preceded by a Read is expressedas:8pos t:
.(
(t)=Return:[?,?])Before(
,t,Read:[?]));We can also express that a Return event occurs exactly once in an interval:func ExactlyOneReturnBetween(string �: Trace; pos t1,t2: �): formula;9pos time: �.(t1<time^ time<t2^�(time)=Return:[?,?]^:Between(�,t1,time,Return:[?,?])^:Between(�,time,t2,Return:[?,?])end;That a Read event occurred at both end points of the interval, but not in theinterval, is expressed as:func ConseqReads(string �: Trace; pos t1,t2: �): formula;t1<t2 ^�(t1) =Read:[?]^�(t2)=Read:[?]^:Between(�,t1,t2,Read:[?])end;

Using the macros above it is easy to specify more complicated properties. Forexample, to specify that a Read event is blocking, in the sense that any Returnis issued in response to a unique Read event and no two Read events occursconsecutively without a return in between, we write:func ReadProcs(string �: Trace): formula;8pos t1: �.�(t1)=Return:[?,?])9pos t0: �.(t0 <t1 ^ �(t0)=Read:[?] ^:Between(�,t0,t1, Return:[?,?]))^8pos time1,time2: �.ConseqReads(�,time1,time2))ExactlyOneReturnBetween(�,time1,time2)end;Finally in this Fido overview, we mention that strings may be quanti�ed overas well. For example, the formula:9string �:
; pos t:
. (
(t)=�(t));expresses that there is a string � of the same type and length as
 and sometime instant t in
 (and therefore also in �) such that the tth element of
 and�, respectively, are the same.2.2 Automated translation and validity checkingAny well-typedFido formula is translated by the Fido compiler [16] into an M2Lformula. Hence, the Fido compiler together with the Mona tool [11] providesa decision procedure for Fido. For any formula in Fido, the procedure eithergives the answer \yes" (when the formula is valid) or a counter-example, whichspeci�es a set of values of all free variables for which the formula does not hold:-- -6 MONA YESFIDO M2L-formula Counter-exampleVariable orderingsFIDO-formulaIn the negative case, the counter-example is translated back to the Fido levelfrom a Mona counter-example calculated on the basis of a path of minimallength to a non-accepting state in the canonical automaton recognizing L(�).We will not describe the e�cient translation of the high-level syntax of Fidointo M2L formulas here. Instead, we emphasize that the translation is in prin-ciple straightforward: a string over a �nite domain D is encoded using as many

second-order variables (bits) as necessary to enumerate D; quanti�cation overstrings amounts to quanti�cation over the second-order variables encoding thealphabet; and existential (universal) quanti�cation over �nite domains amountsto quanti�cation over propositional variables (which are easily encoded in M2L).The Mona tool provides an e�cient implementation of the underlying M2Ldecision procedure [11].3 SystemsWe reason about computing systems through speci�cations of their behaviors inFido, i.e. viewed as traces over parameterized events speci�ed in terms of Fidoformulas.A system A determines an alphabet �A of events, which is partitioned intoobservable events �ObsA and internal events �IntA . It is the observable events thatmatters when systems are compared. A behavior of A is a �nite sequence over�A. The system A also determines a pre�x{closed language LA of behaviorscalled traces of A. We write A = (LA; �ObsA ; �IntA). The projection � from a set�� to a set �0� (�0 � �) is the unique string homomorphism from �� to �0�given by �(a) = a; if a is in �0 and �(a) = �, otherwise, where � is the emptystring. The observable behaviors of a system A, Obs(A), are the projections onto�ObsA of the traces of A, that is Obs(A) = f�(�) j � 2 LAg, where � is theprojection from ��A onto (�ObsA)�.A system A is thought of as existing in a universe of the systems with which itmay be composed and compared. Formally, the universe is a global alphabet U ,which contains �A and all other alphabets of interest. Moreover, U is assumed tocontain the distinguished event � which is not in the alphabet of any system. Theset N�(A) of normalized traces over an alphabet � � �A is the set h�1(LA) =f� j h(�) 2 LAg, where h is the projection from �� onto ��A. Normalizationplays an essential rôle when composing systems and when proving correctness ofimplementation of systems with internal events.A system can conveniently be expressed in Fido. Following the discussionin Section 2 a �nite domain U representing the universal alphabet U , and adata type, TraceU, representing the traces over U are de�ned. A system A =(LA; �ObsA ; �IntA) is then represented by a triple:A = (NormA,ObsA,IntA)of macros de�ning the normalized traces, NormA, of A over U, the observableevents, ObsA, and the internal events, IntA. That is, let
 be a string over TraceUthen NormA(
) is true if and only if
 denotes a trace of NU (A) and let u bean element of U then ObsA(u) and IntA(u) are true if and only if u denotes anelement of �ObsA and �IntA , respectively. When writing speci�cations in Fido,we often confuse the name of a system with the name of the macro de�ning itsset of normalized traces.Our �rst example of a system in Fido is the system ReadProcs, which residesin the universe given by Event from Section 2. The normalized traces of Read-

Procs are de�ned by the macro ReadProcs, the alphabet of observable eventsby:func ObsReadProcs(dom v: Event; dom id: Ident): formula;v=Read:[?] _ v=Return:[?,?]end;and the alphabet of internal events by:func IntReadProcs(dom v: Event; dom id: Ident): formula;falseend;That is, ReadProcs has observable events Read:[?] and Return:[?,?], and no in-ternal events: ReadProcs = (ReadProcs,ObsReadProcs,IntReadProcs)3.1 CompositionOur notion of composition of systems is essentially that of CSP [12], adjustedto cope with observable and internal events. We say that systems A and B arecomposable if they agree on the partition of events, that is, if no internal event ofA is an observable event of B and vice versa, or symbolically, if �IntA \�ObsB = ;and �IntB \ �ObsA = ;. Given composable systems A and B, we de�ne theircomposition A k B = (LAkB ; �ObsAkB ; �IntAkB), where{ the set of observable events is the union of the sets of observable events ofthe components, that is, �ObsAkB = �ObsA [�ObsB ,{ the set of internal events is the union of the sets of internal events of thecomponents, that is, �IntAkB = �IntA [�IntB , and{ the set of traces is the intersection of the sets of normalized traces withrespect to the alphabet �AkB , that is, LAkB = N�AkB (A) \N�AkB (B).As in CSP, a trace of A k B is the interleaving of a trace of A with a traceof B in which common events are synchronized. Composition is commutative,idempotent and associative, and we adopt the standard notation, A1 k : : : k Anor just kAi, for the composition of n composable systems Ai.In Fido, composability of A and B is expressed by:8pos t:
. (IntA(
(t))) : ObsB(
(t))) ^ (IntB(
(t))) : ObsA(
(t)))and given composable systems A and B, composition is de�ned by:A k B = (NormAkB, ObsAkB, IntAkB)where the set of normalized traces are de�ned by conjunction:func NormAkB(string �: TraceU): formula;NormA(�) ^ NormB(�)end;

and the alphabets by disjunction:func ObsAkB(dom v: U): formula;ObsA(v) _ ObsB(v)end;func IntAkB(dom v: U): formula;IntA(v) _ IntB(v)end;To exemplify composition, we extend the universe Event with atomic memoryevents:type Mem = Loc & Value & Flag;A Mem event Mem:[l,v,f] denotes an atomic read operation from location l withreturn value v and status f, which may be normal or exceptional. The type Eventis now:type Event = Mem j Read j Return j � ;The macro:func MemBetween(string �: Trace): formula;8 dom l: Loc; dom v: Value;pos t1,t2: �.t1<t2 ^�(t1)=Read:[l?]^�(t2)=Return:[v?,?])9pos t0: �. t1<t0 ^ t0<t2 ^�(t0)=Mem:[l?,v?,?]end;is true on a trace if and only if there exists an atomic read event Mem:[l,v,?]between any read event Read:[l] to location l and return event Return:[v,?] withvalue v. We de�ne the system MemBetween with observable events Read:[?] andReturn:[?,?], and internal events Mem:[?,?,?]:MemBetween = (MemBetween,ObsMemBetween,IntMemBetween)wherefunc ObsMemBetween(dom v: Event; dom id: Ident): formula;v=Read:[?] _ v=Return:[?,?]end;andfunc IntMemBetween(dom v: Event; dom id: Ident): formula;Mem:[?,?,?]end;The systems ReadProcs and MemBetween are composable, since they do notdisagree on the partition of their alphabets. We de�ne their composition:MReadProcs = ReadProcs k MemBetweenHence, MReadProcs has observable events Read:[?] and Return:[?,?], and internalevents Mem:[?,?,?], and the normalized traces of MReadProcs specify the beha-viors of read procedure calls with atomic reads.

3.2 ImplementationWe formalize the notion of implementation in terms of language inclusion, againadjusted to cope with observable and internal events. We say that systems Aand B are comparable if they have the same set of observable events �Obs, thatis, �Obs = �ObsA = �ObsB . In the following A and B denote comparable systemswith �ObsA = �ObsB = �Obs.De�nition 3.1. Let A and B denote comparable systems. A implements B ifand only if Obs(A) � Obs(B)In Fido, comparability between systems is easily expressible:8pos t:
.ObsA(
(t)),ObsB(
(t)) (1)Implementation is less obvious. One sound approach is to attempt a proof ofNU (A) � NU (B), which is expressible in Fido as the formula NormA(
))NormB(
). However, when the systems A and B have di�erent internal behaviorsthe approach does not work in general.We may specify a variation RMReadProcs of our system above that containsno exceptional atomic reads:RMReadProcs = (RMReadProcs,ObsRMReadProcs,IntRMReadProcs)where ObsRMReadProcs and IntRMReadProcs are de�ned to be the same asObsMReadProcs and IntMReadProcs, respectively, and where RMReadProcsfunc RMReadProcs(string �: Trace): formula;MReadProcs(�)^:9pos t: �.�(t)=Mem:[?,?,exception]end;The systems RMReadProcs and ReadProcs are comparable since they have thesame set of observable events. The former system implements the latter since theimplication: RMReadProcs(
)) ReadProcs(
)holds for all traces
 over Trace. The opposite implication does not hold; a simplecounterexample is the traceRead:[l0] Mem:[l0,v0,exception] Return:[v0,normal] empty.However, the observable behaviors of the systems RMReadProcs and ReadProcsare clearly identical. In the next section, we show how to prove the implementa-tion property using Fido.4 Relational trace abstractionsA trace abstraction is a relation on traces preserving observable behaviors. Inthe following A and B denote comparable systems with �ObsA = �ObsB = �Obsand � denotes the projection of U� onto (�Obs)�.

De�nition 4.1. [14] A trace abstraction R fromA to B is a relation on U��U�such that:1. If �R� then �(�) = �(�)2. NU (A) � dom R3. rng R � NU (B)The �rst condition states that any pair of related traces must agree on observableevents. The second and third condition require that any normalized trace of Ashould be related to some normalized trace of B, and only to normalized tracesof B.Theorem 4.2. [14] There exists a trace abstraction from A to B if and only ifA implements B.Hence, looking for a trace abstraction is a sound and complete technique forestablishing the implementation property. In the following, we incorporate themethod in the Fido framework, where the main technical obstacle is that tracerelations in general cannot be represented.Given strings � = �0 : : : �n 2 ��1 and � = �0 : : : �n 2 ��2 , we write �^� forthe string (�0; �0) : : : (�n; �n) 2 (�1 ��2)�. Every language LR over a productalphabet �1 � �2 has a canonical embedding as a relation RL � ��1 � ��2on strings of equal length given by �^� 2 LR def,�RL�. We say that a traceabstraction is regular if it is the embedding of a regular language over U � U .Not all trace abstractions between �nite-state systems are regular. However,to use Fido we have to restrict ourselves to regular abstractions.De�nition 4.3. Given a subset �0 of �, we say that strings �; � 2 �� are�0{synchronized if they are of equal length and if whenever the ith position in� contains a letter in �0 then the ith position in � contains the same letter, andvice versa.The property of being �Obs-synchronized is Fido expressible:func Observe(string �: TraceU; string �: �): formula;8pos t: �.(ObsA(�(t))_ObsB(�(t))) �(t)= �(t))end;De�nition 4.4. Let R̂ be the language over U � U given by �^� 2 R̂ if andonly if � 2 NU (B) and �; � are �Obs-synchronizedSince NU (B) is a regular language, so is R̂, and furthermore it may be expressedin Fido by:func R(string �: TraceU; string �: �): formula;Observe(�; �) ^ NormB(�)end;

The next proposition gives a su�cient condition for R̂ and any regular subset ofR̂ to be a trace abstraction. We return to the signi�cance of the last part whendealing with automated proofs.Proposition 4.5. [14] (a) If NU (A) � dom R̂, then R̂ is a regular trace abstrac-tion fromA to B. (b) Moreover in general, for any regular language C � (U�U)�,if NU (A) � dom R̂ \ C, then R̂ \ C is a regular trace abstraction from A to B.Importantly, the condition in (a) can in fact be expressed in Fido:NormA(�)) 9string �: �.R(�,�)Thus, letting Fido decide this formula is in principle a sound and complete andfully automated veri�cation method.To prove that the system MReadProcs implements ReadProcs, we instantiatemacro Observe and R properly and then we check thatMReadProcs(�)) 9string �:�.R(�,�)holds.4.1 DecompositionTrace abstractions allow compositional reasoning [14], which enables us to drastic-ally reduce the state spaces arising from our speci�cations.Theorem 4.6. [14] Let Ai and Bi be pairwise comparable systems forming thecompound systems kAi and kBi. IfRi is a trace abstraction from Ai to Bi. (2)Ti dom Ri � dom TiRi (3)then kAi implements kBiWe call the extra condition (3) the compatibility requirement. By allowing com-ponents of a compound systems to also interact on internal events, we allowsystems to be non-trivially decomposed. This is why the compatibility require-ment (3) is needed; intuitively, it ensures that the choices de�ned by the traceabstractions can be made to agree on shared internal events. Formally, the intu-ition is expressed by the corollary:Corollary 4.7. [14] If additionally the components of the speci�cation are non-interfering on internal events, that is, �IntBi \�IntBj = ;, for every i 6= j, then Aiimplements Bi implies kAi implements kBi.Again, the compatibility requirement is expressible in Fido:Vi=1;:::;n (9string �i:
.(Ri(
,�i)))) 9string �:
.(Vi=1;:::;n Ri(
,�)) (4)where Ri is a Fido macro taking as parameters two strings of type Trace and nis some �xed natural number.The use of Theorem 4.6 for compositional reasoning about non-trivial decom-positions of systems is illustrated in Section 7.

5 The RPC-memory speci�cation problemWe can now describe our solution to the RPC-memory speci�cation problemproposed by Broy and Lamport [4]. We consider only the safety properties ofthe untimed part. We intersperse the original informal description (in italic) withour exposition.5.1 The procedure interfaceThe problem [4] calls for the speci�cation and veri�cation of a series of com-ponents interacting with each other using a procedure-calling interface. In ourspeci�cation, components are systems de�ned by Fido formulas. Systems inter-act by synchronizing on common events, internal as well as observable. Thereis no notion of sender and receiver on this level. A procedure call consists of acall and the corresponding return. Both are indivisible (atomic) events. Thereare two kinds of returns, normal and exceptional. A component may containa number of concurrent processes each carrying a unique identity. Any call orreturn triggered by a process communicates its identity. This leads us to declarethe parameter domains:type Flag = normal,exception;type Ident = id0,: : :,idk;of return
ags and process identities for some �xed k, respectively.5.2 A memory componentThe �rst part of the problem [4] calls for a speci�cation of a memory component.The component should specify a memory that maintains the contents of a setMemLocs of locations such that the contents of a location is an element of a setMemVals. We therefore introduce the domains:type MemLocs = l0,: : : ,ln;type MemVals = initVal,v1,: : : ,vm;of locations and of values for some �xed n and m, respectively. The reason forde�ning the distinguished value initVal follows from: The memory behaves as ifit maintains an array of atomically read and written locations that initially allcontain the value InitVal. Furthermore, we de�ne the atomic memory events,Mem, as carrying �ve parameters:type Mem = Operation & MemLocs & MemVals& Flag & Ident;The �rst parameter de�ned by the domaintype Operation = rd,wrt;indicates whether the event denotes an atomic read or write operation. Thesecond and third carry the location and the value read or written, respectively.The fourth indicates whether the operation succeeded. Finally, the �fth parameter

carries a process identity (meant to indicate the identity of the process engagedin in the event).The component has two procedure calls: reads and writes. The informal de-scription [4] notes that being an element of MemLocs or MemVals is a \semantic"restriction, and cannot be imposed solely by syntactic restrictions on the typesof arguments.Procedure calls and returns have arguments of type Loc and Value, which areboth associated with a Tag:type Tag = ok,error;type Loc = MemLocs & Tag;type Value = MemVals & Tag;The location or value is semantically correct if and only if the value of the cor-responding Tag component is ok.In the informal description [4], a read procedure is described as:Name ReadArguments loc : an element of MemLocsReturn Value an element of MemValsException BadArg : argument loc is not an element of MemLocs.MemFailure: the memory cannot be read.Description Returns the value stored in address loc.In our speci�cation, a read procedure is called when a Read event of typetype Read = Loc & Ident & Visible;happens. A Read event takes as �rst parameter an element of Loc that mightnot be a \semantically" correct element of MemLocs and as second parameter aprocess identity. The last parameter is an element of the domain:type Visible = internal, observable;When verifying the implementation, we need the parameter Visible to be able toregard reads, writes and returns as both observable and internal events.The return of a read procedure call is modelled as a Return event:type Return = Value & Flag & RetErr & Ident & Visible;The �rst parameter is the value returned. The second indicates whether thereturn is normal or exceptional. If it is exceptional, then the third parameter isan element of the domain:type RetErr = BadArg,MemFailure;of possible errors returned by an exceptional return as described above.Again, the fourth and �fth parameter are elements of the domains Ident andVisiblewith the intended meaning as for Read events. Similarly, a write procedureis speci�ed in terms of Write events de�ned by:type Write = Loc & Value & Ident & Visible;

and Return events. Hence, the universe for our systems is given by:type Event = Mem j Read j Write j Return j � ;and traces (strings) over the universe by:type Trace = Event(next: Trace) j empty;We specify the memory component Spec by the compound system:Spec = MemSpec(id0) k : : : k MemSpec(idk) k InnerMemconstructed from systems MemSpec(id) that specify read and write proceduresfor �xed process identities id and a system InnerMem that speci�es the arraymaintained by the memory component. Each of the systems MemSpec(id) isitself a compound system:MemSpec(id) = ReadSpec(id) k WriteSpec(id)de�ned by composing the systems ReadSpec(id) and WriteSpec(id) specifying re-spectively read and write procedures for �xed process identities id.For a �xed process identity id in Ident, the system ReadSpec(id) with ob-servable events Read:[?,id,observable] and Return:[?,?,?,id,observable] and internalevents Mem:[rd,?,?,?,id] speci�es the allowed behaviors of read procedure callsinvolving the process with identity id. In Fido notation, a logical and (^) can al-ternatively be written as a semicolon (;). The normalized traces of ReadSpec(id)are de�ned by the macro:func ReadSpec(string �: Trace; dom id: Ident; dom vis: Visible): formula;BlockingCalls(�,id,vis);CheckSuccessfulRead(�,id,vis);WellTypedRead(�,id,vis);ReadBadArg(�,id,vis);OnlyAtomReadsInReadCalls(�,id,vis)end;That is,
 is a normalized trace of ReadSpec(id) if and only if ReadSpec(
,id,observable) is true.Before we explain ReadSpec, let us make a couple of conventions. We oftenimplicitly specialize macros, e.g. we write ReadSpec(id,observable) for the macroobtained from ReadSpec by instantiating the parameters id and vis. The systemReadSpec(id) is then given by the triple:(ReadSpec(id,observable),ObsReadSpec(id,observable),IntReadSpec(id))wherefunc ObsReadSpec(dom v: Event; dom id: Ident; dom vis: Visible): formula;v=Read:[?,id?,vis?]_ v=Return:[?,?,?,id?,vis?]end;and

func IntReadSpec(dom v: Event; dom id: Ident): formula;v=Mem:[rd,?,?,?,id?]end;The macro ReadSpec is the conjunction of �ve clauses. The �rst clause Block-ingCalls speci�es as required in [4] that procedure calls are blocking in the sensethat a process stops after issuing a call in order to wait for the corresponding re-turn to occur. The last clause OnlyAtomReadsInReadCalls speci�es that an atomicread event occurs only during the handling of read calls. This requirement is notdescribed in [4]. Reading in between the lines however, it seems clear that thespeci�er did not mean for atomic reads to happen without being part of someread procedure call. Both clauses are straightforwardly de�ned in Fido usinginterval temporal idioms similar to those explained in Section 2.1.In order to explain the other clauses, we follow [4] and de�ned an operation toconsist of a procedure call and the corresponding return: We de�ne the macro:func Opr(string �: Trace; pos t1,t2: �;dom call,return: Event; dom id: Ident; dom vis: Visible): formula;t1<t2 ^ �(t1)=call^ �(t2)=return;:Between(�,t1,t2,Read:[?,id?,vis?]);:Between(�,t1,t2,Write:[?,?,id?,vis?]);:Between(�,t1,t2,Return:[?,?,?,id?,vis?])end;This macro holds for a trace
, time instants t1 and t2 in
 and events call andreturn if and only if the events call and return occurred at t1 and t2, respectively,and none of the events Read, Write and Return occurred between t1 and t2 (bothexcluded). An operation is successful if and only if its return is normal (non-exceptional).The informal description from [4] quoted above (excluding the last line thatdescribes the return value) then essentially states:func WellTypedRead(string �: Trace; dom id: Ident; dom vis: Visible): formula;8dom vt,lt: Tag; dom retErr: RetErr; dom
g: Flag; pos t1,t2: �.Opr(�,t1,t2, Read:[[?,lt?],id?,vis?],Return:[[?,vt?],
g?,retErr?,id?,vis?],id,vis))(
g=normal;lt=MemLocs;vt=MemVals)_(
g=exception;retErr=MemFailure)_(
g=exception;:lt=MemLocs;retErr=BadArg)end;This macro encodes that whenever a read call and the corresponding return haveoccurred, either the return is normal and the value as well as the location passedare of the right types (respectively MemVals and MemLocs), or the return isexceptional and the error returned is MemFailure or the return is exceptional andthe location passed is not of the right type (MemLocs) and the returned error isBadArg.Furthermore, it is stated in [4] that:An operation that raises a BadArg exception has no e�ect on the memory.

We transcribe this into the macro:func ReadBadArg(string �: Trace; dom id: Ident; dom vis: Visible): formula;8 pos t1,t2: �.Opr(�,t1,t2,Read:[?,id?,vis?],Return:[?,exception,BadArg,id?,vis?],id,vis)):Between(�,t1,t2,Mem:[?,?,?,?,id?])end;It says that between the call and the return of a read operation resulting in anexceptional return with return error BadArg no atomic read or write is performed.Note that we interpret no e�ect on the memory as the absence of atomic readsand writes.Finally, a read procedure must satisfy that:Each successful Read(l) operation performs a single atomic read to location lat some time between the call and return.Thus the value returned should be the value read in the atomic read. Thisrelation between a successful read and the corresponding return is captured bythe macro:func CheckSuccessfulRead(string �: Trace; dom id: Ident; dom vis: Visible): formula;8 dom v: MemVals; dom l: MemLocs; dom
g: RetErr; pos t1: �; pos t2: �.(Opr(�,t1,t2, Read:[[l?,?],id?,vis?],Return:[[v?,ok],normal,?,id?,vis?],id,vis))9 pos time: �.(t1 <time^ time<t2 ^ �(time)=Mem:[rd,l?,v?,normal,id?];:Between(�,t1,time,Mem:[rd,?,?,?,id?]);:Between(�,time,t2,Mem:[rd,?,?,?,id?])))end;requiring that if the return is normal (and thus the read successful) then exactlyone atomic read is performed between the call and the return on the requestedlocation. Furthermore, the value returned is the value read.The systems WriteSpec(id) are de�ned similarly to the systems ReadSpec(id)though slightly more complicated, since write calls carry more parameters. Theobservable events of WriteSpec(id) are Write:[?,id,observable] andReturn:[?,?,?,id,observable], and the internal events are Mem:[wrt,?,?,?,id].The system InnerMem de�nes the behaviors allowed by the array maintainedby the memory component. The informal description [4] refers to de�ne an arraywithout de�ning it. We apply the informal description: whenever a successfulatomic read to a location occurs the value thus returned is the value last writtenby a successful atomic write on the location or if no such atomic write has oc-curred its the initial value initVal. The normalized traces of InnerMem are de�nedby the macro:func InnerMem(string �: Trace): formula;8 dom v: MemVals; dom l: MemLocs; pos t: �.�(t)=Mem:[rd,l?,v?,normal,?]

)9 pos t0: �.(t0 <t^ �(t0)=Mem:[wrt,l?,v?,normal,?]^:Between(�,t0,t,Mem:[wrt,l?,?,normal,?]))_v=initVal^:Before(�,t,Mem:[wrt,l?,?,normal,?])end;The system InnerMem has internal events Mem:[?,?,?,?,?] and no observableevents and is hence given by the triple:InnerMem = (InnerMem,ObsInnerMem,IntInnerMem)where ObsInnerMem is a macro yielding false on every v of Event andfunc IntInnerMem(dom v: Event): formula;v=Mem:[?,?,?,?,?]end;The informaldescription [4] also calls for the speci�cation of a reliable memorycomponent which is a variant of the memory component in which no MemFailureexceptions can be raised. We specify the reliable memory component by thecompound system:RSpec = RMemSpec(id0) k : : : k RMemSpec(idk) k InnerMemwhere RMemSpec(id) = MemSpec(id) k Reliable(id)and Reliable(id) is the system with the same alphabets as MemSpec(id) and withnormalized traces given by the following macro specifying that no exceptionalreturn with process identity id raising MemFailure occurs.func Reliable(string �: Trace; dom id: Ident; dom vis: Visible): formula;: 9pos t: �.(�(t)=Return:[?,exception,MemFailure,id?,vis?])end;That is,
 is a normalized trace of Reliable(id) if and only if Reliable(
,id,observable)is true.Below, when we say that have proven a formula F(
) by means of our tool,we mean that the tool has processed with answer \yes" a �le consisting of allappropriate type declarations for �xed k;m, and n, together with the macrode�nitions given above and the codestring
: Trace;F(
)In what follows, we �x k = m = n = 1, that is, we have two process identities,two locations and two values.

Problem 1 (a) Write a formal speci�cation of the Memory component and of theReliable Memory component.These are de�ned by Spec and RSpec, respectively.(b) Either prove that a Reliable Memory component is a correct implementationof a Memory component, or explain why it should not be.We prove that: RSpec(
)) Spec(
) (5)is a tautology by feeding the formula to our tool.(c) If your speci�cation of the Memory component allows an implementation thatdoes nothing but raise MemFailure exceptions, explain why this is reasonable.We �rst de�ne the following macro stating that any return occurring is ex-ceptional and raises a MemFailure exception.func NothingButMemFailure(string �: Trace): formula;8 dom retErr: RetErr; dom
g: Flag; pos t: �.(�(t)=Return:[?,
g?,retErr?,id?,vis?])
g=exception^ retErr=MemFailure)end;Then we prove that:Spec(
) ^ NothingButMemFailure(
)) Spec(
) (6)is a tautology by running our tool. This seems reasonable for two reasons. First,there is nothing in the informal description specifying otherwise. Second, froma practical point of view disallowing such an implementation would mean dis-allowing an implementation involving an inner memory that could be physicallydestroyed or removed.6 Implementing the memoryWe now turn to the implementation of the memory component using an RPCcomponent.6.1 The RPC componentThe problem [4] calls for a speci�cation of an RPC component that interfaceswith two components, a sender at a local site and a receiver at a remote site. Itspurpose is to forward procedure calls from the local to the remote site, and toforward the returns in the other direction.Parameters of the component are a set Procs of procedure names and a mappingArgNum, where ArgNum(p) is the number of arguments of each procedure p.We thus declare the domains:type Procs = ReadProc,WriteProc;type NumArgs = n1,n2;

of procedure names Procs and of possible numbers of arguments NumArgs. Asfor elements of MemLocs and MemVals, we adopt the convention that being anelement of Proc is a \semantic" restriction, and cannot be imposed solely bysyntactic restrictions on the types of arguments. Therefore we declare:type TProc = Procs & Tag;The idea is that a remote procedure call passes arguments of type TProc whose�rst component denotes a semantically correct element of Procs if and only ifthe value of the Tag component is ok. The mapping ArgNum is speci�ed by themacro:func ArgNum(dom n: NumArgs; dom proc: TProc): formula;proc#Procs=ReadProc) n=n1;proc#Procs=WriteProc) n=n2end;where we use the Fido notation # to access a �eld in a record. That is, proc#Procsdenotes the Procs �eld in the record denoted by proc.In the informal description [4], a remote call procedure is described as:Name RemoteCallArguments proc : name of a procedureargs : list of argumentsReturn Value any value that can be returned by a call to procException RPCFailure : the call failedBadCall: proc is not a valid name or args is not asyntactically correct list of arguments for proc.Raises any exception raised by a call to proc.Description Calls procedure proc with arguments args.We declare the domains:type Args = Loc & Value;type RpcErr = RPCFailure,BadCall j RetErr;of argument lists and of possible exceptions raised by exceptional return errors,respectively. (Note that we restrict ourselves to lists of length at most two.) Inour speci�cation, a remote procedure is called by issuing a RemoteCall event ofthe type:type RemoteCall = TProc & NumArgs & Args & Ident;A RemoteCall event takes as �rst parameter an element of TProc that mightnot be a \semantically" correct element of Procs and as second parameter anelement of NumArgs denoting the length of the list from Args carried by the thirdparameter. The last parameter is a process identity from Ident. The return of aremote procedure is an RpcReturn event given by the declaration:type RpcReturn = Value & Flag & RpcErr & Ident;The �rst parameter is the value returned. The second indicates whether thereturn is normal or exceptional. In case, it is exceptional the third parameter isan element of the domain RetErr. The last parameter carries a process identityfrom Ident. Hence, the universe for our systems is given by:

type Event = Mem j Read j Write j Return j RemoteCall j RpcReturn j � ;and traces (strings) over the universe by:type Trace = Event(next: Trace) j empty;We specify the RPC component RPC by the compound system:RPC = RPC(id0) k : : : k RPC(idk)de�ned by composing the systems RPC(id).For a �xed process identity id in Ident, the system RPC(id) with no observableevents and internal events Mem:[?,?,?,?,id],Read:[?,id,internal],Write:[?,id,internal],Return:[?,?,?,id,internal],RemoteCall:[?,?,?,id] and RpcReturn:[?,?,?,id] speci�es theallowed behaviors of RPC procedure calls involving the process with identity id.The normalized traces of RPC(id) are de�ned by the macro:func RPC(string �: Trace; dom id: Ident): formula;RemoteCallAndReturnAlternates(�,id);RPCBehavior(�,id);WellTypedRemoteCall(�,id);OnlyInternsInRemoteCalls(�,id)end;That is,
 is a normalized trace of RPC(id) if and only if RPC(
,id) is true. Thesystem RPC(id) is then given by the triple:RPC(id) = (RPC(id),ObsRPC(id),IntRPC(id))where ObsRPC(id) is a macro that yields false on every v of Event andfunc IntRPC(dom v: Event; dom id: Ident): formula;v=Mem:[rd,?,?,?,id?]_v=Read:[?,id,internal]_ v=Write:[?,id,internal]_ v=Return:[?,?,?,id,internal]_v=RemoteCall:[?,?,?,id]_ v=RpcReturn:[?,?,?,id]_end;The macro RPC is de�ned as the conjunction of four clauses each of which ex-cept for the last one describes properties explicitly speci�ed in [4]. The last clauseOnlyInternsInRemoteCalls speci�es that any of the events Read:[?,id,internal],Write:[?,id,internal] and Return:[?,?,?,id,internal] only occurs during the handlingof RPC calls. It seems clear that it was not the intention of [4] to allow readand write procedure calls on the remote site to happen without being triggeredby some remote procedure call. The �rst clause, RemoteCallAndReturnAlternatesspeci�es as required in [4] that remote procedure calls are blocking in the sensethat a process stops after issuing a call while waiting for the corresponding re-turn to occur. Hence, there may be multiple outstanding remote calls but notmore than one triggered by the same process. Both clauses are straightforwardlyde�ned in Fido.For convenience, we de�ne the following macro specifying an RPC operationby associating a RemoteCall with the corresponding RpcReturn.

func RpcOpr(string �: Trace; pos t1,t2: �;dom call,return: Event; dom id: Ident): formula;t1<t2 ^ �(t1)=call^ �(t2)=return;:Between(�,t1,t2,RemoteCall:[?,?,?,id?]);:Between(�,t1,t2,RpcReturn:[?,?,?,id?])end;The second clause is a fairly direct transcription of the quoted lines above (ex-cluding the last line):func WellTypedRemoteCall(string �: Trace; dom id: Ident): formula;8 dom proc: TProc; dom num: NumArgs;dom
g: Flag; dom rpcErr: RpcErr; pos t1,t2: �.RpcOpr(�,t1,t2,RemoteCall:[proc?,num?,?,id?],RpcReturn:[?,
g?,rpcErr?,id?],id))
g=normal) proc#Tag=ok;ArgNum(num,proc);
g=exception;rpcErr=BadCall, :(proc#Tag=ok;ArgNum(num,proc))end;stating the relationship between the parameters of a remote call and the corres-ponding return. The third clause speci�es the properties described by:A call of RemoteCall(proc,args) causes the RPC component to do one of thefollowing:{ Raise a BadCall exception if args is not a list of ArgNum(proc) arguments.{ Issue one call to procedure proc with arguments args, wait for the corres-ponding return (which the RPC component assumes will occur) and either(a) return the value (normal or exceptional) returned by that call, or (b) raisethe RPCFailure exception.{ Issue no procedure call, and raise the RPCFailure exception.This description is translated into the macro:func RPCBehavior(string �: Trace; dom id: Ident): formula;8 dom proc: TProc; dom num: NumArgs; dom lst: Args; dom val: Value;dom
g: Flag; dom rpcErr: RpcErr; pos t1,t2: �.RpcOpr(�,t1,t2,RemoteCall:[proc?,num?,lst?,id?],RpcReturn:[val?,
g?,rpcErr?,id?],id))ABadCall(�,t1,t2proc,num,
g,rpcErr)_OneSuccessfulRpcCall(�,t1,t2,proc,lst,val,
g,rpcErr,id)_OneUnSuccessfulRpcCall(�,t1,t2,proc,lst,val,
g,rpcErr,id)_NoCallOfAnyProcedure(�,t1,t2,
g,rpcErr,id)end;wherefunc ABadCall(string �: Trace; pos t1,t2: �;dom proc: TProc;dom num: NumArgs; dom
g: Flag; dom rpcErr: RpcErr): formula;(:proc#ProcTag=Procs _:ArgNum(num,proc))^rpcErr=BadCall^
g=exception^

:Between(�,t1,t2,Read:[?,id?,internal]) ^:Between(�,t1,t2,Write:[?,?,id?,internal])^:Between(�,t1,t2,Return:[?,?,?,id?,internal])end;func OneSuccessfulRpcCall(string �: Trace; pos t1: �; pos t2: �;dom proc: TProc; dom lst: Args; dom val: Value;dom
g: Flag; dom rpcErr: RpcErr; dom id: Ident): formula;9 dom retErr: RetErr.ExactlyOneProcCallBetween(�,t1,t2,proc,lst#Loc,lst#Value,val,
g,retErr,id);
g=exception) (retErr=BadArg , rpcErr=BadArg;retErr=MemFailure, rpcErr=MemFailure)end;func OneUnSuccessfulRpcCall(string �: Trace; pos t1: �; pos t2: �;dom proc: TProc; dom lst: Args; dom val: Value;dom
g: Flag; dom rpcErr: RpcErr; dom id: Ident): formula;
g=exception;rpcErr=RPCFailure;9 dom val1: Value; dom
g1: Flag; dom err: RetErr.ExactlyOneProcCallBetween(�,t1,t2,proc,lst#Loc,lst#Value,val1,
g1,err,id);end;func NoCallOfAnyProcedure(string �: Trace; pos t1: �; pos t2: �;dom
g: Flag; dom rpcErr: RpcErr; dom id: Ident): formula;
g=exception^ rpcErr=RPCFailure ^:Between(�,t1,t2,Read:[?,id?,internal]) ^:Between(�,t1,t2,Write:[?,?,id?,internal])^:Between(�,t1,t2,Return:[?,?,?,id?,internal])end;The macro ExactlyOneProcCallBetween speci�es that exactly one call of procedureproc with parameters l,v,
g and retErr occurred between t1 and t2, and no otherinternal procedure call occurred. Note that macro ABadCall additionally to thedescription speci�es that no internal procedure call occurs.Problem 2 Write a formal speci�cation of the RPC component.The RPC component is speci�ed by the system RPC.6.2 The implementationA Memory component is implemented by combining an RPC component witha reliable memory component. A read or write call is forwarded to the reliablememory by an appropriate call to the RPC component, and the return eventfrom the RPC component is transmitted back to the caller.We specify the implementation of the memory component Impl by the com-pound system:Impl = MemImpl(id0) k : : : k MemImpl(idk) k InnerMem

de�ned by composing the systems MemImpl(id) specifying the allowed read andwrite procedures for �xed process identities id. Each of the systems MemImpl(id)are themselves compound systems:MemImpl(id) = Clerk(id) k RPC(id) k IRMemSpec(id)For a �xed process identity id in Ident, the system Clerk(id) with observable eventsRead:[?,id,observable], Write:[?,id,observable] and Return:[?,?,?,id,observable], andinternal events Mem:[?,?,?,?,id], Read:[?,id,internal], Write:[?,id,internal],Return:[?,?,?,id,internal],RemoteCall:[?,?,?,id] and RpcReturn:[?,?,?,id] speci�es theallowed behaviors of read and write procedure calls involving the process withidentity id. That is, it speci�es how a local procedure call is forwarded to a re-mote procedure call and how the return of a remote procedure call is forwardedback as the return of the procedure call. The normalized traces of Clerk(id) arede�ned by the macro:func Clerk(string �: Trace; dom id: Ident): formula;BlockingCalls(�,id,observable);RPCReadStub(�,id);RPCWriteStub(�,id);RPCReturnStub(�,id);RetryOnlyOnRPCFailure(�,id);RpcOnlyInObsCall(�,id)end;That is,
 is a normalized trace of Clerk(id) if and only if Clerk(
,id) is true. Thesystem Clerk(id) is then given by the triple:Clerk(id) = (Clerk(id),ObsClerk(id),IntClerk(id))where ObsClerk(id) and IntClerk(id) are the obvious macros.The second, third, fourth and �fth clauses of Clerk(id) are fairly direct trans-lations of the informal description [4].A Read or Write call is forwarded to the Reliable Memory by issuingthe appropriate call to the RPC component.func RPCReadStub(string �: Trace; dom id: Ident): formula;8 dom l: Loc; pos t1,t2: �.(Opr(�,t1,t2, Read:[l?,id?,observable],Return:[?,?,?,id?,observable],id,observable))9 pos tc,tr: �.(t1<tc; tr<t2;RpcOpr(�,tc,tr,RemoteCall:[[ReadProc,ok],n1,[l?,?],id?],RpcReturn:[?,?,?,id?],id)))end;The macro RPCWriteStub is similar.If this call returns without raising an RPCFailure exception, the value returned isreturned to the caller. (An exceptional return causes an exception to be raised.)

func RPCReturnStub(string �: Trace; dom id: Ident): formula;8 dom val1: Value; dom
g: Flag; dom retErr: RetErr; pos t1: �.�(t1)=Return:[val1?,
g?,retErr?,id?,observable])9 dom val2: Value; dom rpcErr: RpcErr; pos t0: �.t0<t1; �(t0)=RpcReturn:[val2?,
g?,rpcErr?,id?];:Between(�,t0,t1,RpcReturn:[?,?,?,id?]);
g=normal) val1=val2;(
g=exception;rpcErr=RPCFailure)) (retErr=MemFailure;(
g=exception;:rpcErr=RPCFailure)) (retErr=BadArg , rpcErr=BadArg;retErr=MemFailure, rpcErr=MemFailure)end;If the call raises an RPCFailure exception, then the implementation may eitherreissue the call to the RPC component or raise a MemFailure exception.func RetryOnlyOnRPCFailure(string �: Trace; dom id: Ident): formula;8 pos t1,t2: �.t1<t2;�(t1)=RemoteCall:[?,?,?,id?];�(t2)=RemoteCall:[?,?,?,id?];:Between(�,t1,t2,Read:[?,id?,observable]) ^:Between(�,t1,t2,Write:[?,?,id?,observable])^:Between(�,t1,t2,Return:[?,?,?,id?,observable]))9 pos t: �. t1<t;t<t2; �(t)=RpcReturn:[?,exception,RPCFailure,id?]end;The last clause, RpcOnlyInObsCall(�,id) speci�es that a remote procedure callonly occurs as the forwarding of an observable procedure call.The systems IRMemSpec(id) specify a reliable memory with no observableevents and internal events Mem:[?,?,?,?,id],Read:[?,id,internal],Write:[?,id,internal]and Return:[?,?,?,id,internal]:IRMemSpec(id) = IMemSpec(id) k IReliable(id)where IReliable(id) are the systems with the same alphabets as IMemSpec(id) andwith normalized traces given by Reliable(id,internal), and where IMemSpec(id) arede�ned by composition:IMemSpec(id) = IReadSpec(id) k IWriteSpec(id)of the systems:IReadSpec(id) = (ReadSpec(id,internal),ObsReadSpec(id,internal),IntReadSpec(id))and the similarly de�ned systems IWriteSpec(id).Problem 3 Write a formal speci�cation of the implementation, and prove thatit correctly implements the speci�cation of the Memory component of Problem 1.The implementation is speci�ed by the system Impl. We devote the nextsection to proving the correctness of the implementation.

7 Verifying the implementationWe want to verify that the system Impl is an implementation of the system Spec.The trivial part is to check that the systems are comparable by instantiation offormula (1).Now the obvious way to attempt verifying that the implementation is correctis to check if the formula:MemImpl(
,id0)) MemSpec(
,id0) (7)holds. This is however not the case. Feeding it to the Mona tool results in thefollowing counterexample of length 13:Read:[[l1,ok],id0,observable]RemoteCall:[[ReadProc,ok],n1,[[l1,ok],?],id0]Read:[[l1,ok],id0,internal]Mem:[rd,l1,v1,normal,id0]Return:[[v1,ok],normal,?,id0,internal]RpcReturn:[[initVal,?],exception,RPCFailure,id0]RemoteCall:[[ReadProc,ok],n1,[[l1,ok],?],id0]Read:[[l1,ok],id0,internal]Mem:[rd,l1,v1,normal,id0]Return:[[v1,ok],normal,?,id0,internal]RpcReturn:[[v1,ok],normal,?,id0]Return:[[v1,ok],normal,?,id0,observable]emptywhere we have left out most of the typing information. The counterexample tellsus that a successful read operation of the implementation may contain two RPCprocedure calls each triggering an atomic read whereas such a read operation isnot allowed by the speci�cation. Hence, the counterexample re
ects that whereasthe speci�cation requires a successful read to contain exactly one atomic read theimplementation of the memory allows more than one.An atomic read is however an internal event and fortunately, we can followour method explained in Section 4.To avoid explicitly building the compound system Impl(
) of the implement-ation, we apply the proof rule of Theorem 4.6.First, we check and see that the systems MemImpl(
,id) k InnerMem(
) andMemSpec(
,id) k InnerMem(
) for id = id0,id1 are comparable by running theproper instantiations of formula (1). Let Obs denote a macro de�ning theircommon alphabet of observable events and note that the internal events arede�ned by IntMemImpl(id) and IntMemSpec(id), respectively. Letfunc Observe(string �: Trace; string �: �; dom id: Ident): formula;8pos t: �.(Obs(�(t),id)_Obs(�(t),id))) �(t)= �(t)end;and let

func R(string �: Trace; string �: �; dom id: Ident): formula;Observe(�,�,id); MemSpec(�,id);InnerMem(�)end;We then prove that:(MemImpl(
,id);InnerMem(
))) 9string �:
.R(
,�,id) (8)is a tautology (for id = id0,id1; the formulas are symmetric) using our tool. Thusby Proposition 4.5 and Theorem 4.2, the system MemImpl(
,id) k InnerMem(
)implements MemSpec(
,id) k InnerMem(
) for id = id0,id1.As discussed in Section 4, the compatibility requirement of Theorem 4.6amounts to checking the formula (4). However, the Mona tool can not handlethe state explosion caused by the existential quanti�cation on the right hand sideof the implication. Intuitively, the existential quanti�cation guesses the internalbehavior of the trace � needed to match the observable behavior of the trace
.We can however help guessing by constraining further for each trace
 of theimplementation the possible choices of matching traces � of the speci�cation. Todo this we formulate more precise (smaller) trace abstractions based on addinginformation of the relation between the internal behavior on the implementationand speci�cation level.In particular, we formalize the intuition we gained from the counterexampleabove that between a successful read call and the corresponding return on theimplementation level exactly the last atomic read should be matched by an atomicread on the speci�cation level. This is formalized by the macro:func Map1(string �: Trace; string �: �; dom id: Ident): formula;8pos t1,t2: �.Opr(�,t1,t2,Read:[?,id?,observable],Return:[?,normal,?,id?,observable],id,observable))9pos t: �.t1<t;t<t2;�(t)=Mem:[rd,?,?,?,id?];�(t)=�(t);:Between(�,t1,t,Mem:[rd,?,?,?,id?]);:Between(�,t,t2,Mem:[rd,?,?,?,id?]);:Between(�,t,t2,Mem:[rd,?,?,?,id?])end;Also, we de�ne the macro Map2 specifying that an atomic read on the imple-mentation level is matched either by the same atomic read or by a � on thespeci�cation level:func Map2(string �: Trace; string �: �; dom id: Ident): formula;8pos t: �.�(t)=Mem:[rd,?,?,?,id?]) (�(t)=�(t)_ �(t)=�)end;and the macro Map3 specifying that any internal event but an atomic read onthe implementation level is matched by the same atomic read on the speci�cationlevel and conversely, that any internal event on the speci�cation level is matchedby the same event on the implementation level:

func Map3(string �: Trace; string �: �; dom id: Ident): formula;8pos t: �.(IntMemImpl(�(t),id)^:�(t)=Mem:[rd,?,?,?,id?])_ IntMemSpec(�(t),id))�(t)=�(t)endWe sum up the requirements in the macro:func C(string �: Trace; string �: �): formula;Map1(�,�,id0); Map2(�,�,id0); Map3(�,�,id0);Map1(�,�,id1); Map2(�,�,id1); Map3(�,�,id1)end;We prove using our tool that:MemImpl(
,id0);InnerMem(
)) 9string �:
.(C(
,�))^R(
,�,id0)) (9)is a tautology (for id = id0,id1; the formulas are symmetric) and conclude by Pro-position 4.5 that C \ R(id) is a trace abstraction from the systemMemImpl(
,id) kInnerMem(
) to the systemMemSpec(
,id) k InnerMem(
) for id = id0,id1. Finally,by running our tool we prove that the formula:9string �0:
.(C(
,�0)^R(
,�0,id0))^ 9string �1:
.(C(
,�1)^R(
,�1,id1))) 9string �:
. (C(
,�)^R(
,�,id0)^R(
,�,id1)) (10)is a tautology and hence verify the compatibility requirement of Theorem 4.6 andconclude that Impl(
) implements Spec(
).An alternative reaction to the failure of proving (7) is to claim to have foundan error in the informal description and change the description such that it allowsthe behavior described by the counterexample. In our formal speci�cation, thiswould amount to simply changing the macro CheckSuccessfulRead to require thatat least one atomic read occurs instead of exactly one. Hence modi�ed, weprove using our tool that the formula (7) is a tautology. Likewise, we prove thesymmetric formula with id0 replaced for id1 and conclude by propositional logicthat: MemImpl(
,id0);MemImpl(
,id1);InnerMem(
)) MemSpec(
,id0);MemSpec(
,id1);InnerMem(
) (11)and therefore by de�nition that:Impl(
)) Spec(
)Note that when dealing with automatic veri�cation, the di�erence between thetwo solutions may be signi�cant since the �rst, in contrast to the second, involvesthe projecting out of internal behavior and hence a potential exponential blow-upin the size of the underlying automata.The full solution is written in 11 pages of Fido code. All the formulas (5),(6), (7), (8), (9) and (10) are decided within minutes. The largest Fido formulasspecify M2L formulas of size half a million characters. During processing theMona tool handles formulas with more than 32 free variables corresponding todeterministic automata with alphabets of size 232. The proofs of (8), (9) and (10)required user intervention in terms of explicit orderings of the BDD variables

References1. This volume.2. M. Abadi and L. Lamport. The existence of re�nement mappings. TheoreticalComputer Science, 82(2):253{284, 1991.3. M. Abadi and L. Lamport. Conjoining speci�cations. Technical Report Report118, Digital Equipment Corporation, Systems Research Center, 1993.4. M. Broy and L. Lamport. Speci�cation problem, 1994. A case study for theDagstuhl Seminar 9439.5. E.M. Clark, I.A. Browne, and R.P. Kurshan. A uni�ed approach for showinglanguage containment and equivalence between various types of !-automata. InA. Arnold, editor, CAAP, LNCS 431, pages 103{116, 1990.6. R. Cleaveland, J. Parrow, and B. Ste�en. The Concurrency Workbench: Asemantics-based tool for the veri�cation of concurrent systems. ACM Transac-tions on Programming Languages and Systems, 15(1):36{72, jan 1993.7. E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbookof Theoretical Computer Science, volume B, chapter 16, pages 995{1072. MITPress/Elsevier, 1990.8. U. Engberg, P. Gr�nning, and L. Lamport. Mechanical veri�cation of concurrentsystems with tla. In Computer Aided Veri�cation, CAV '92. Springer-Verlag, 1993.Lecture Notes in Computer Science, Vol. 663.9. U. Engberg. Reasoning in temporal logic of actions. Ph.D. Thesis, 1996.10. Z. Har'El and R.P. Kurshan. Software for analytical development of communica-tions protocols. Technical report, AT&T Technical Journal, 1990.11. J.G. Henriksen, O.J.L. Jensen, M.E. J�rgensen, N. Klarlund, R. Paige, T. Rauhe,and A.B. Sandholm. Mona: Monadic second-order logic in practice. In U.H.Engberg, K.G. Larsen, and A. Skou, editors, Procedings of the Workshop on Toolsand Algorithms for the Construction and Analysis of Systems, pages 58{73, 1995.BRICS Notes Series NS-95-2.12. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.13. Y. Kesten, Z. Manna, and A. Pnueli. Temporal veri�cation and simulation and re-�nement. In A Decade of Concurrency, pages 273{346. ACM, Springer-Verlag,1993. Lecture Notes in Computer Science, Vol. 803, Proceedings of the REXSchool/Symposium, Noordwijkerhout, The Netherlands, June 1993.14. N. Klarlund, M. Nielsen, and K. Sunesen. Automated logical veri�cation basedon trace abstractions. In Proc. Fifteenth ACM Symp. on Princ. of DistributedComputing (PODC). ACM, 1996.15. N. Klarlund and F.B. Schneider. Proving nondeterministically speci�ed safety prop-erties using progress measures. Information and Computation, 107(1):151{170,1993.16. N. Klarlund and M.I. Schwartzbach. Logical programming for regular trees. Inpreparation, 1996.17. R. Kurshan. Computer-Aided Veri�cation of Coordinating Processes. PrincetonUniv. Press, 1994.18. L. Lamport. Specifying concurrent program modules. ACM Transactions on Pro-gramming Languages and Systems, 5(2):190{222, 1983.19. L. Lamport. The temporal logic of actions. ACM Transactions on ProgrammingLanguages and Systems, 16(3):872{923, 1994.20. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms.In Proc. Sixth Symp. on the Principles of Distributed Computing, pages 137{151.ACM, 1987.

21. N. Lynch and F. W. Vaandrager. Forward and backward simulations { part i:untimed systems. Technical Report CS-R9313, Centrum voor Wiskunde en In-formatica, CWI, Computer Science/Department of Software Technology, 1993.22. Z. Manna and et al. STeP: The stanford temporal prover. In Theory and Practiceof Software Development (TAPSOFT). Springer-Verlag, 1995. Lecture Notes inComputer Science, Vol. 915.23. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.Springer-Verlag, 1991.24. K. L. McMillan. Symbolic Model Checking. PhD thesis, Carnegie Mellon University,1993.25. A.P. Sistla. On verifying that a concurrent program satis�es a nondeterministicspeci�cation. Information Processing Letters, 32(1):17{24, July 1989.

