
BDD algorithms and cache missesDraftNils Klarlund�AT&T Bell LaboratoriesRoom 2C-410600 Mountain Ave.Murray Hill, NJ 07974 Theis RauheBRICSy, Dept. of Computer ScienceUniversity of AarhusNy Munkegade8000 Aarhus C, DenmarkAbstractWithin the last few years, CPU speed has greatly overtaken memoryspeed. For this reason, implementation of symbolic algorithms|with theirextensive use of pointers and hashing|must be reexamined.In this paper, we introduce the concept of cache miss complexity asan analytical tool for evaluating algorithms depending on pointer chasing.Such algorithms are typical of symbolic computation found in veri�cation.We show how this measure suggests new data structures and algorithmsfor multi-terminal BDDs.Our ideas have been implemented in a BDD package, which is used ina decision procedure for the Monadic Second-order Logic on strings.Experimental results show that on large examples involving e.g theveri�cation of concurrent programs, our implementation runs 4 to 5 timesfaster than a widely used BDD implementation.We believe that the method of cache miss complexity is of generalinterest to any implementor of symbolic algorithms.1 IntroductionOn a modern computer with a RISC architecture, the goal is to write programsthat allow one instruction to be executed per cycle. In fact, super-scalar CPUsallow even two or three instructions to be executed per cycle. With clock rates of50-300 MHz, such CPUs should be able to carry out the symbolic computationsat an astounding rate.When we look at the basic apply routines used to manipulate Binary DecisionDiagrams (BDDs), it appears that something on the order of a hundred machineinstructions are executed for each apply step, which is an instance or iteration�This work was mainly carried out while the author was with BRICS, Aarhus. E-mail:klarlund@research.att.comyBasic Research in Computer Science, Center of the Danish Research Foundation1

of the recursive procedure as de�ned in e.g. [3]. So we would expect a step totake a microsecond or so.Unfortunately, BDD decision procedures run much slower in practice. On aSparc 1000, we have measured each apply step to last up to 30 microsecondswith the widely used BDD package [7] written by David Long.The fundamental problem is that non-local access to memory is very slow:typically, 10 cycles if the data resides in the Level 2 (L2) cache and, for a multi-processor machine, 100 cycles for a L2 cache miss. If the data resides in theprimary cache, there is no penalty, but this cache is only 8kB-32kB. The L2cache is typically 256kB-1Mb.In this paper, we suggest data structures and algorithms that aim at opti-mizing the use of the L2 cache and minimizing pointer chasing. To do this, wesuggest a cache miss complexity concept to measure the running time of an al-gorithm. We analyze a traditional BDD implementation and calculate its cachemiss complexities.We suggest alternative implementations and calculate their cache miss com-plexity. According to this measure, the new algorithms are two to three timesfaster than the traditional implementations.Our main ideas are� For the unary apply routine, we use an extra �eld in a BDD node forintermediate results and thus avoid a hash table look-up.� For the binary apply routine, we have found a property about the struc-ture of the resulting BDD, which implies that hashing of BDD nodes isunnecessary for injective leaf functions.� We store BDD nodes directly in the hash table|a technique that greatlycomplicates certain operations, but cuts in half the time to access a node.Related workStudies of cache miss and CPU pipeline performance have been carried outfor C and Fortran programs in [4] and for ML programs in [5]. These studiesshow that pipeline utilization of only 25% to 35% are common, especially in thepointer-oriented code generated by an ML compiler. Such low performance ismainly due to data and instruction cache misses.The relationship between cache misses and BDD performance has not toour knowledge been studied before. But the related issue of designing fast BDDpackages for data sets that do not �t into RAM has been studied from a practicalpoint of view in [9, 8], where algorithms reducing page faults are described.Theoretical lower bounds and optimal algorithms are discussed in [1]. Thediscrepancy between accessing RAM and disk is much higher than the discrep-ancy between accessing cache (whether it be L1 or L2) and memory. Also, apage size is usually bigger than a cache line size. Thus di�erent considerationsguide the design of data structures and algorithms in the two situations.2

OverviewAll of our design decisions are on measuring the complexity of an algorithm byits expected number of cache misses. We discuss the cache miss complexity inSection 2 and estimate the cache miss complexity of the BDD implementationby David Long. In Section 3, we introduce new techniques to reduce the cachemiss complexity, and in Section 4, we report on our implementation. In Section5, we discuss our experimental results. In Section 6, we summarize our work.2 Cache-complexity measureIn the worst case scenario described in the introduction, a cache miss costs 100cycles. Even when it only costs 10 cycles, a cache miss is the limiting factor insymbolic computations, where the CPU essentially functions as a throughwayfor exchange of pointers and does not carry out much arithmetic. Thus wesuggest designing BDD algorithms solely based on reducing what can be calledpointer chasing, i.e. the use of an address that has likely not been used recently.Examples of pointer chasing are:� Looking up an entry in a hash table (which usually would not �t into theprimary cache).� Following a hash table entry that points to a dynamically created object.� Following a left or right successor of a BDD node.But pointer chasing is not:� Looking up a variable in the current activation record (since activationrecords are accessed according to a stack discipline).� Looking up or writing a record in an array as part of copying the wholearray. Here we assume that the sequential access of the copying algorithmloads enough records per cache line to allow us to disregard the time ittakes to load the line from memory.In practice, it is almost impossible to foresee what the distribution of memoryaccesses is with respect to hitting the di�erent levels of the memory architecture.Thus the cache miss complexity cannot be used to precisely calculate the runningtime.In addition, our neglecting the cost of sequential access is an approximationto reality that is reasonable with an amount of such code that is in little orconstant proportion to the amount of random access code.Also, even if it is evident that CPU speed is less important for performanceof pointer rich algorithms, certain operations such as hashing may play a roleas well.Thus our contention is only that the cache miss complexity can act as animportant guide to the construction of data structures and algorithms.3

Cache miss complexity of conventional implementationLet us consider BDDs of n variables. A truth assignment x maps each variableto a value in B = f0; 1g. For simplicity, we assume that a BDD f representsa function Bn ! N, which we also denote f . Here N is the set of naturalnumbers (but could be any �nite or countable set). The binary apply routineApply2 combines BDD f , BDD g, and a leaf function � : N �N ! N into anew BDD h such that h(x) = �(f(x); g(x)). We write h = Apply2(f; g; �).Traditional algorithmAn algorithmfor the apply routine is expressed in terms of a function Apply2 step(p; q; �), which takes as arguments a pointer p to a BDD node in f and a pointerq to a BDD node in g. The function returns a pointer r to a node representingthe product of the BDDs starting in p and q. Nodes are stored in a hashed tableT . The node (l; r; i) with index i, with left successor l, and with right successorr is stored according to a hash value calculated from (l; r; i).We assume that an explicit garbage collection scheme is employed: free nodesare linked together in a free list, and reference counts are used to keep track ofwhich nodes are referred to.A result table R is used to record the pairs (p; q) which have been mettogether with the result r of the call. Usually, this table is implemented as a hashtable, where the key is (p; q). Looking up this key results in one cache miss. Weassume that the key and the result is stored under the address calculated by thehash function (and we ignored the additional penalty of looking through over
owlists). If the pair is not in the table, the nodes p and q must be examined. Thiscosts two additional cache misses (again assuming that any node is contained ina cache line). The Apply2 step routine is then called recursively on left and rightsuccessors of p and q. Let the results of these calls be r0 and r00, respectively.The new node (r0; r00; i), where i is the minimum of the indices of p andq, is created dynamically and its address r becomes the contents of the �elddesignated by the hash value. These operations require two cache misses: onefor the look up and one for obtaining a node from the free list. (We here make thesimplifying assumption that a new node is created every time; in practice, thishappens not quite as frequent, but in any case, one cache miss is unavoidable.)At this point, the algorithmmust insert the result r in the result table. Thisrequires another cache miss, since many nodes may have been calculated sincethe initial invocation that the address of the key (p; q) is lost from the cache.In total, there are then six cache misses when a pair (p; q) is not found inthe result table. Our experience is that this situation occurs in two-thirds of thecalls of Apply2 step. Thus the expected number of cache misses is approximately4:3.Garbage collectionIn addition, we have to account for the work involved in removing nodes whenthey are no longer needed. We here make an assumption that nodes are created4

at the same pace that they are created. Then we conclude that the deletion ofa node requires at least one cache miss.DoublingWe must also account for the most complicated aspect of a BDD implementa-tion: the doubling of tables and consequent rehashing. In our proposed scheme,nodes themselves never need to be moved, but when the node hash table be-comes too big, then the table must be doubled. All nodes must be inserted inthe new table. This rehashing costs two cache misses per node: one for accessingthe node and one for the insertion of its address in the hash table.In the worst case, every node is on average rehashed once, and the averagecase is not much di�erent assuming that we start with a small table.In total, the cache miss complexity of this suggested implementation is 7:3per Apply2 step.For a similar implementation of Apply1, we calculate the cache miss com-plexity to 6:7.Proposition 1 For the conventional algorithms, the cache miss complexity ofApply1 is 6:7 per step and that of Apply2 is 7:3 per step.3 Improved BDD algorithmsWe propose in this section new algorithms that o�er cache miss complexitiesless than half the complexities of the conventional algorithms.First, we mention a couple of general techniques that should be employed.A well-recognized way of reducing cache miss complexity is to use a memorymanagement technique of collecting nodes with the same life-span in a contigu-ous block of memory, which can be released in a unit time operation. Thus forthe Apply2 routine, we seek to use a new memory block for the result of theapply operation, while the two memory blocks containing the argument BDDsare released in a constant time operation after the result has been calculated.Of course, it is often important to be able to write several BDDs to the sameblock so that comparing BDDs become a unit time operation. In fact, suchshared BDDs are essential to the use in the Mona decision procedure, where thelife-span of shared BDDs is naturally re
ected by the automata algorithms.Another key technique is to store BDD nodes directly in the hash table,which then is the same as the node table. Then we need only one pointer chaseinstead of two for a look up.Next, we introduce a couple of new techniques to further reduce the cachemiss complexity.3.1 Speeding up unary applyThe unary apply calculating h = Apply1(f; �), enjoys the fortunate propertythat a good estimate can be given on the size of the resulting BDD h, namely,5

the size of f . Thus, we need only to allocate memory for h once.The next observation is that the result table can be avoided if we keep anextra �eld in each node p, called mark that contains the result of the applyoperation on p, if already visited, and 0, otherwise. The node table can beinitialized without cache miss penalties (in practice we use the memzero functionof C, which is often implemented especially fast in hardware).Our experience with the unary apply is that on the average, as with thebinary apply, a result is not found in the result table every two out of threetimes.With this scheme, looking up in the result table and looking up the node isthe same thing and so the cache miss complexity becomes 1=3 �1+ 2=3 � (1+ 1),where the last 1 is the cache miss incurred when the result is stored in the nodeupon return from the recursive calls (we assume that the node has disappearedfrom the cache during these calls).Proposition 2 The cache miss complexity of the Apply1 routine above is 1:7per step instead of 6:7.3.2 Hashed binary applyOur general design decisions above almost speci�es the algorithm. When thenode table is full, we double it by application of the Apply2 operation. Inaddition, we must rehash the result cache, which can be shown to be doable withan extra cache miss per node. With these doublings, there is almost nothinggained. But if we can give a correct size estimate, not entailing doubling, thealgorithm becomes twice as fast:Proposition 3 The cache miss complexity of the Apply2 routine above is 5:7per step instead of 6:7. With a correct size estimate, the complexity becomesonly 3 per step.3.3 Sequential binary applyFor injective leaf functions, we can do better than 5:7 per step even when thesize of the resulting BDD is not known. We need the following terminology. Thehigh and low successors of a BDD node p are denoted p �0 and p �1, respectively.We assume that the n variables are number 0; : : : ; n� 1. The index, �(p), of anode is in f0; : : : ; n� 1g if it is a decision node and is n if it is a leaf. A truthassignment ~x assigns a truth value to each variable. If p is a decision node, thenp � ~x denotes the value of the leaf that is reached by following decision nodesfrom p according to ~x.Lemma 1 Assume that the leaf function � is injective. If, during the traditionalalgorithm, the pair (p; q) is explored in the apply step, but is not in the resulttable, then the node calculated is not already present in the node table.Proof Let r(p; q) denote the node calculated by the apply step on (p; q). TheLemma follows from: 6

Claim 1 For all explored (p; q) and (p0; q0) it holds that (p; q) 6= (p0; q0) impliesr(p; q) 6= r(p0; q0).Proof of claim Assume (p; q) 6= (p0; q0). Since the BDDs are canonical, there issome ~x such that (p � ~x; q � ~x) 6= (p0 � ~x; q0 � ~x). By injectivity of �, r(p; q) � ~x =�(p � ~x; q � ~x) 6= �(p0 � ~x; q0 � ~x) = r(p0; q0) � ~x. Thus r(p; q) 6= r(p0; q0). 2Lemma 1 implies that we do not need to hash into the node table. Thuswhen the pair (p; q) is not in the result table, we allocate sequentially a newnode r and its address is put into the result table before p and q are explored.In this way, one cache miss is incurred for the look-up in the result table, twomisses are incurred for examining p and q, and one miss is incurred when theresults of the recursive calls are stored in r. When the node table is full, wecopy it sequentially to a new table twice the size. The result table can berehashed sequentially if we use tables that have sizes 2m and if we use the mleast signi�cant bits of the hash function h(p; q). When we rehash into the newtable of size 2m+1, an entry at address i is entered at address i or i+ 2m in thenew table.Proposition 4 For injective leaf functions, the cache miss complexity of thesequential Apply2 routine is 3:3 per step.4 Our BDD implementationThe algorithms of the preceding Section have been implemented in C.Data representationOn the Sparc architecture, the cache line size is 32 bytes. Thus it seems impor-tant to squeeze a BDD node into 16 bytes. This is feasible if we represent BDDpointers as three byte unsigned integers (that are used as array indices) andif we use two byte unsigned integers to represent node indices. These 8 bytesare packed into a �eld lri consisting of two 32 bit integers. In this way, we canat most handle 224 (approximately 16 million) BDD nodes with up to 65,000variables. We have judged as insigni�cant the time it takes to pack and unpackthese components.We need two additional �elds: the mark �eld is used by the unary applyroutine to hold the result as described above and the next �eld, which is usedfor hashed insertion. The C declaration is:struct bdd_record_{unsigned lri[2];unsigned next;unsigned mark;};which de�nes a structure of 16 bytes. 7

For hashed insertion, we use the node table in a two-way associative manner:the hash function calculates an even index k for a node (l; h; i) and the node isfound either at k or at k + 1 or in the over
ow list denoted by the next �eld ofthe node at k. We make sure to align the nodes at k and at k + 1 so that they�t into the same cache line.The result table is organized in a similar manner.As hash function, we use multiplication by a prime number (which is onlyfour cycles on the Sparc architecture) followed by an \and" operation to capturethe appropriate number of least signi�cant bits as described in Section 3.3.BDD managersEach node table is managed through a BDD manager data structure. Themanager de�nes a list of roots so that shared BDDs can be built. No pointersare returned as a result of an apply operation, since such a pointer would bevalid only as long as the node table has not been doubled. Instead, the resultis added to the list of roots, and this list is updated whenever a doubling takesplace.The binary apply operation requires the following arguments:� a BDD manager bddm p and a node pointer p (to a node in the tablemanaged by bddm p);� a BDD manager bddm q and a node pointer q� a BDD manager bddm r, where the result of the apply operation is built;and� the leaf function.The hashed binary apply code is complicated, since activation records on thecall stack contain pointers that change during doubling and pointers in theresult table are also changed. (We use the result table of the unary applyoperation used to double as a translation table between old and new pointers;we have disregarded this work in our previous cache miss complexity analysis,since the call stack is usually small compared to be overall size of the BDDs.)The situation becomes even more complicated, when the bddm r manager is thesame as e.g. bddm p, that is, when the new nodes are added to the nodes of thetable of the p argument.5 Experimental resultsWe compared our BDD package to the MTBDD (multi-terminal BDD) routinesin the BDD package by David Long. The unary apply routine is used in theMona [6] decision procedure for Monadic Second-order Logic to minimize BDD-represented automata. The minimization routine calls unary apply repeatedlyover the same BDD with leaf functions that represent �ner and �ner partitions.8

There is almost no other heavy computational work. We used the Mona pro-gram, which is written in ML, to parse long formulas from which long sequencesof automata-theoretic operations are calculated. The minimization procedureis written in C and was interfaced with the old BDD package by Long and ournew package. The table below (left) shows the running times for two examplesthat required 1.12 and 8.33 million apply steps. (Example 1 is a veri�cationof timing properties of a
ip
op [2]. Example 2 is a formula that arose duringthe veri�cation of a distributed system.) We originally used the Sparc 1000multiprocessor, but repeated the tests on a uniprocessor Sparc 4.1The Sparc 1000 features slow RAM access and slow CPUs (our version hasfour of them), but one megabyte L2 cache per processor. The Sparc 4 featuresRAM access that is several times faster and a processor that runs approximatelytwice as fast, but it has no L2 cache.The table to the right shows the relative performance gain obtained by ourpackage. Apply1 (sec./step)Example 1 Example 2Ours Long Ours LongSparc 1000 3.5 14.7 2.8 16.7Sparc 4 3.5 10.6 2.6 11.2 Apply1 (relative)Ex. 1 Ex. 2Sparc 1000 4.0 5.9Sparc 4 3.1 4.3The time per step for the Example 1 is signi�cantly higher than for Example2. The reason is that three quarters of the 2146 BDD tables created have lessthan 32 nodes. (The largest table contains on the order of 216 nodes.) We havemeasured that the amount of time involved in creating the tables and BDDmanagers constitute 40% of the time. If this time is discounted, the time perstep is about 25% less than for Example 2. We believe that the situation inExample 1 is atypical of most BDD usage.In contrast, approximately half the apply steps in Example 2 occur when thenumber of nodes in the tables is between 213 and 218. On the uniprocessor Sparc4, we have measured the average apply step in BDDs with more than a 105 nodesto take only 2:1�s whereas the corresponding number for the multiprocessorSparc 1000|with its much slower RAM|increases to 3:5�s.To test our sequential apply routine, we used the automaton product routinethat relies on repeated calls of the binary apply with an injective leaf function(namely, the pairing function). The number of apply steps in the examples are.125 and .956 million, respectively. The results were1All reported times are the minimum recorded in several trials on a machine with littleload. The times for the Sparc 1000 varied with the load, even if there seemingly are no otheractive users. For this machine, the usual running times are 30% or so slower. For the Longpackage, we were able to obtain slightly better times (5%) by adjusting the internally de�nedcache load factor. The times reported may not precisely cover the time per operation sincegarbage collection of nodes produced under one operation can �nd place during another. Forboth packages, signi�cant time was spent in a subset construction that involves both unaryand binary apply operations. The gain for this operation is in between that of the unary andbinary apply. 9

Apply2 (seconds)Example 1 Example 2Ours Long Ours LongSparc 1000 9.6 25.6 6.2 33.2Sparc 4 9.6 20.0 5.2 21.1 Apply2 (relative)Ex. 1 Ex. 2Sparc 1000 2.7 5.3Sparc 4 2.1 4.0For comparison of hardware performance, we give running times for ourpackage on a Pentium PC (133MHz with 64 megabytes RAM) running Linux.Apply1 (sec./step)Ex. 1 Ex. 2Pentium 133 1.8 1.4 Apply2 (sec./step)Ex. 1 Ex. 2Pentium 133 4.6 3.5Hashed binary applyWe measured performance for the hashed binary apply under four sets of cir-cumstances.First, we tried running the binary apply with a unit size initial node andresult table, which necessitate the maximal amount of doubling. We also ran thebinary apply with a good estimate of the resulting table size (4� the maximalsize of the two operands), which implied that less than a quarter of all nodesbecame involved in doubling.Second, we ran the apply for two di�erent strategies of dealing with theresult table during doubling: either to erase the whole table, thus forgettingabout previous results, or to rehash the table.We present the running times for Example 2 on the Sparc 4. (On the multi-processor Sparc 1000, we encountered extremely
uctuating running times evenon an otherwise unloaded machine.)Apply2 (sec./step)Res. erase Res. doubleSize est. 1 13.5 14.4Size est. 4� 6.9 7.4As can be seen, the hashed apply routine is almost as fast as the sequentialapply when the size of the resulting BDD area can be predicted in most cases.We also note that it seems to be a waste of time to rehash the result table.Real time versus cache miss complexityEven though we have proposed the cache miss complexity measure only as aguide to implementation, we give below the number of micro seconds per applystep divided by the cache miss complexity for our principal algorithms�s=c.m.c.Apply 1 1.5Sequential Apply 2 1.6Hashed Apply 2 (w/o size estimate) 2.0Hashed Apply 2 (with size estimate) 2.510

Thus the highest fraction is 66% greater than the lowest fraction. Under idealcircumstances, we would expect the fraction to be constant, but we have alreadyexplained why this is unlikely to be the case.We should compare these times to the actual memory access time. On theSparc 1000, we have measured a load from a random address to take almost 2�s,whereas such an access take only approximately :5�s on the Sparc 4. Unfortu-nately, we have not been able to obtained statistics on the cache miss ratios,which require specialized hardware.We note that the Long BDD package is much slower than the cache missanalysis of the traditional algorithms showed above. A reason is that there aremore pointer indirection in this package than assumed in our analysis. Also,the Long package implements dynamic variable reordering, which introducespointer chasing in critical sections of the code even if reordering is not used.Memory consumptionWe have not performed detailed measurements on the amount of memory thatour implementation demands, but information from the \top" Unix programreveals that the memory used by our program is approximately the same as thatused by the implementation by David Long. Although our node representationdemands fewer bytes, we pay a penalty by storing nodes in an array, which isoften only half full.6 ConclusionWe have presented new implementation techniques for Binary Decision Dia-grams with multiple leaves. Our guide has been our cache miss complexityconcept. Although the complex memory architecture of modern computers can-not be precisely summarized in such a simple concept, we have neverthelessobtained substantial improvements in the running times of basic BDD routines.We have shown that our BDD performance on two very di�erent architec-tures, the Sparc 4 and the Sparc 1000, is 4, respectively 5 times faster than withthe Long BDD package. We have also argued that on uniprocessor machinesthe performance gain is even bigger for BDDs that have thousands of nodes ormore since our results are skewed by the presence in our benchmarks of manyvery small BDDs for which initialization is expensive.With our algorithms and the right choice of computer|a home PC|we haveachieved a 10-fold speed-up over the Long BDD package run on a multiprocessorcomputer. In fact, we are getting close to our goal of running an apply stepin one microsecond: on the Pentium, the unary apply takes 1.3 �s, the binarysequential apply 3.5�s, and the binary hashed apply (with good size estimates)4.3 �s (all measured for Example 2).We believe that our results can also be used to signi�cantly improve theperformance of programs that rely on binary-valued BDDs. In fact, our unaryapply can be used in the projection routine and our hashed binary apply routine11

can be used for the usual Boolean connectives. It remains to be seen to whichextent the addition of dynamic variable ordering a�ects the gains reported here.When used with the Mona decision procedure, memory management usingour blocks of BDDs is simpler than with the reference count technique of theLong package. We do not know whether this will hold for other BDD uses.AcknowledgmentsRowan Davis dual skills in ML and C made it possible to hook up BDD routinesin C to the Mona program. He also expertly rewrote most of the automataroutines of the ML program.Discussions with Lars Arge, Christian Fecht, Lal George, and David Longhelped us gain valuable insight into the complexities of memory bound perfor-mance.References[1] L. Arge. The i/o-complexity of ordered binary-decision diagram manipula-tion. In Proc. of 6th Annual International Symposium on Algorithms andComputation (ISAAC'95), LNCS 1004, pages 82{91, 1995.[2] D. Basin and N. Klarlund. Hardware veri�cation using monadic second-order logic. Technical Report RS-96-7, BRICS, 1995. To appear in CAV '95Proceedings.[3] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decisiondiagrams. ACM Computing surveys, 24(3):293{318, September 1992.[4] Z. Cvetanoic and D. Bhandarkar. Characterization of alpha axp performanceusing TP and SPEC. In Proc. of the 21st annual Int. Symp. on ComputerArchitecture, pages 60{70. ACM, 1994. Also, Computer Arch. News, Vol 22,No. 2, April 1994.[5] Lal George and George Necula. Accounting for the performance of StandardML on the DEC Alpha. Technical report, AT&T Bell Labs., Sept. 1994.[6] J.G. Henriksen, J. Jensen, M. J�rgensen, N. Klarlund, B. Paige, T. Rauhe,and A. Sandholm. Mona: Monadic second-order logic in practice. TechnicalReport RS-95-21, BRICS, Department of Computer Science, University ofAarhus, 1995. Accepted for the TACAS Workshop, 1995; available throughhttp://www.brics.aau.dk/~klarlund.[7] D. Long. Bdd library. Available by FTP from emc.cs.cmu.edu.[8] H. Ohci, N. Ishiura, and S. Yajima. Breadth-�rst manipulation of sbdd ofboolean functions for vector processing. In Proc. 28th ACM/IEEE DesignAutomation Conference, pages 413{416. IEEE, 1991.12

[9] Ashar P. and Cheong M. E�cient breadth-�rst manipulation of BinaryDecision Diagrams. In Proc. International Conference on CAD, pages 622{627. IEEE, 1994.

13

