Automatic Verification of Pointer Programs
using Monadic Second-Order Logic*

Jakob L. Jensen, Michael E. Jorgensen, Michael I. Schwartzbach
BRICS, University of Aarhus
{u820406 ,medgar,mis}@brics.dk

Nils Klarlund
AT&T Research

klarlund@research.att.com

Abstract

We present a technique for automatic verification of pointer pro-
grams based on a decision procedure for the monadic second-order logic
on finite strings.

We are concerned with a while-fragment of Pascal, which includes
recursively-defined pointer structures but excludes pointer arithmetic.

We define a logic of stores with interesting basic predicates such as
pointer equality, tests for mil pointers, and garbage cells, as well as
reachability along pointers.

We present a complete decision procedure for Hoare triples based
on this logic over loop-free code. Combined with explicit loop invari-
ants, the decision procedure allows us to answer surprisingly detailed
questions about small but non-trivial programs. If a program fails to
satisfy a certain property, them we can automatically supply an initial
store that provides a countererample.

Our technique has been fully and efficiently implemented for linear
linked lists, and extends in principle to tree structures. The resulting
system can be used to verify extensive properties of smaller pointer
programs and could be particularly useful in a teaching environment.

*detex paper.tex | wc | cut -d’ ’ -f2 = 4821

1 Introduction

Background

Programming with pointers is difficult and risky. This has motivated a huge
body of work concerned with analyzing pointer programs and verifying their
properties.

Traditional pointer analyses accept preexisting programs and provide ap-
proximate and conservative answers to a fixed collection of questions con-
cerning pointer aliases, nil dereferences, dangling references, and unclaimed
memory.

We present an approach based on a first-order store logic in which such
questions can be stated as simple formulas. But the store logic allows pointer
analysis to be taken to a higher symbolic level, where more general properties
expressed by assertions can be verified by a complete decision procedure. In
this way, our verifier works as an oracular, symbolic debugger for pointer
code.

Our approach is made practical through a strong connection to finite state
regularity:.

Contributions
In this paper we present the following results.

e A first-order logic of memory cells and their contents. The logic speci-
fies regular (finite-state) languages of stores, and we show that it sub-
sumes the scope of traditional pointer analyses.

e A complete decision procedure for Hoare triples using this logic over
loop-free code without arithmetic. For full programs our technique is
of course approximative, but we can in this manner clearly characterize
its power.

e An automatic technique for generating concrete counterexamples when-
ever a program fails to verify. These can be used to interactively explain
programming errors.

e A full implementation for a while-fragment of Pascal that considers
linear linked lists only. However, theoretical results guarantee that our
approach generalizes to tree structures.

e A collection of small but non-trivial programs for which we verify in-
teresting properties.

e A sketch of a method for developing pointer programs, where debugging
is replaced with attempts to verify strategically placed formulas.

A more abstract contribution is to identify and exploit an important niche
of finite state regularity in programming language semantics.

Related Work

Our work does not follow the established tradition of conventional heap-
based pointer analysis [7, 8, 15, 4, 5, 14, 13, 17, 2] which develops specialized
algorithms for answering specific questions about preexisting programs with-
out annotations. We are more general in providing a full, decidable logic in
which one may phrase a broad range of questions, and in providing concrete
counterexamples whenever a question is answered in the negative. Also, the
use of Hoare triples allows a modular analysis of programs. However, we are
less general in requiring programs to be explicitly annotated with formulas
and invariants; also, the present implementation handles only list structures.

Most similar in spirit is the ECS system [3], which also uses a restricted
specification logic, requires explicit annotation with formulas and invariants,
and generates counterexamples. A principal difference is in the questions
that can be phrased. We are concerned with non-arithmetic properties of
pointers in the heap, whereas the ESC logic includes array subscript errors
and deadlocks in concurrent programs. The two approaches are incomparable
in their ambitions. For loop-free code we provide a complete, model-theoretic
BDD-based decision procedure, whereas ESC relies on an incomplete theorem
prover.

The system LCLint [6] uses simple annotations and a fast, incomplete
decision procedure to detect certain dynamic memory errors in C programs.
In comparison, our technique is more detailed but restricted to a simpler
store model.

Our previous work on decidable graph transductions [11] describes the
theoretical foundations for our current approach and for several generaliza-
tions.

2 The Pascal Subset

We consider a subset of the Pascal language, which has been restricted for
reasons of both presentation and necessity. First, we have chosen Pascal
rather than e.g. C to reflect that we cannot handle pointer arithmetic. For
simplicity, we consider only a while-fragment; however, recursive proce-
dures are easily accommodated. Furthermore, our present implementation
only supports lists rather than trees; however, our theoretical foundations
extend cleanly to tree structures. Finally, our verification technique does not
consider integer arithmetic, and to make this approximation explicit, our
language includes only enumeration types as basic values.

Syntax

We allow exclusively declarations of enumeration types, record types with
variants, and types of pointers to records. All declared variables are required
to have pointer types. A pointer variable expression is defined as:

V =x variable
V~-.n pointer traversal

A pointer value expression is defined as:

P =V variable expression
nil the nil constant

A boolean expression is quite restricted since we do not allow arithmetic:

B :=P=P, pointer equality
P, <>P, pointer inequality
V~©.t=v variant test
B; and B, conjunction
B; or By disjunction
not B negation

The collection of statements is fairly complete:

S =V:=P assignment
begin S end block
Si; Sy sequence

if B then S conditional

if B then S; else So conditional
while B do S loop

new (V,v) allocation
dispose (V,v) deallocation

We do not consider input and output explicitly; rather, we assume that values
are communicated through the global variables.

An Example Program

An example of a program in our language is the following, which performs
an in-situ reversal of a linked list with colored elements.

program reverse;
type Color = (red,blue);
List = "Item;
Item = record
case tag: Color of
red,blue: (next: List)
end ;
var x,y,p: List;
begin
while x<>nil do
begin
p:=x".next;
x”.next:=y;
y:i=X;
X:=p
end
end.

Let us illustrate the scope of our ambitions on this small example. With
our system, we can automatically verify that the resulting structure is still a
linked list conforming to the type List. We can also verify that no pointer
errors have occurred, such as dangling references or unclaimed memory cells.
However, we cannot verify that the resulting list contains the same colors
in reversed order. Still, our partial verification will clearly serve as a finely
masked filter for many common programming errors.

3 Stores and Formulas

Stores

We are interested in stores consisting of cells and pointers:

Z

y_
X o

YYY

The white circles are record cells, which are labeled with record types and
variants. The black circles are garbage cells corresponding to deallocated
records. The ground symbol is a distinguished nz1l cell. A record cell may
have an outgoing pointer (several, if we consider trees). The named handles
on a store are either data variables (x,y, z) or pointer variables (p). It should
be clear that the state of a program in our Pascal subset can be modeled as
such a store, provided we classify the program variables as either data or
pointer variables.

We are particularly interested in well-formed stores, which satisfy the
following properties:

e the record cells and their pointers form disjoint lists;

each data variable points either to n41 or to the root of a unique list;

e a pointer variable may point to n4l or to any record cell;

garbage cells have no incoming pointers; and

the Pascal type system is respected.

Logic

We now define a logic of stores in which one may state interesting properties;
for example, well-formedness is a property that can be expressed as a formula.

The logic is a first-order formalism in which terms denote cells in the store.
A cell term is of the form:

C :=x data variable
P pointer variable
C .n pointer traversal
nil the nil cell
a, 3, ... cell term variables

A formula is built from basic predicates and the usual connectives:

® =C;=0C, cell equality
C; <R> Gy routing relation
o negation
b, & Oy conjunction
ex a: quantification over cells

A routing relation (introduced in [10]) is a binary relation on cells:

R ::=n traverse an n-pointer
(T:v)7? test for type and variant
nil? test for the nil cell
garb? test for a garbage cell
R: . Ry concatenation
R +R» union
Rx* Kleene star

The relation ¢<R>d holds if the regular language denoted by R contains a
sequence that leads from the cell ¢ to the cell d and in which all pointer
traversals are possible and all tests are successful as they are encountered.
The individual tests are decided as follows:

e the test (T:v)7 is true if the cell has record type T and variant v;
e the test nil? is true if the cell is the n<l cell; and
e the test garb? is true if the cell is a garbage cell.

Thus, in the following store containing a list with red and blue nodes:

N next @ next ‘@ next /ﬁ\ next

X > R :u \T/ :u :“l

P

the relation x<next.next.(List:blue)?>p is true, whereas the relation
p<next*>x is false. We allow the usual syntactic sugar, such as true, |,
=> <> and all. Furthermore, the unary relation <R>c abbreviates ¢ <R>c.
Some examples of general formulas on stores are:

e if p is not red, then it can be reached from x through a number of next
pointers: “<(List:red) ?>p => x<next*>p;

e no garbage cells have incoming next pointers:
all c,d: c<next>d => “<garb?>d; and

e no non-n4l cell has two distinct incoming next pointers:
all c,p,q: (c<>nil and p<next>c and g<next>c) => (p=q).

All of the above formulas are true for the example store. This first-order
logic may be extended to a monadic second-order logic which additionally
allows sets of cells; however, this extension is not needed for the current
presentation. Note that neither version of the logic permits us to mention
arithmetic properties, such as the lengths of lists.

4 Deciding Hoare Triples

Given a loop-free statement S and any two formulas ®; and ®,, we can
automatically decide validity of the Hoare triple: {®1} S {®2}. We define
validity as follows: if we start our computation in a well-formed store (with
sufficient available memory cells) that satisfies the precondition ®;, then
the execution of the statement S will always result in a well-formed store
that satisfies the postcondition ®5. The inclusion of the well-formedness
predicates is an essential technical requirement for our decision procedure.
A simple example of a valid triple is:

{ x<next*>p & p~.next=nil }

new(q,blue);
q~ .next:=nil;
p~ .next:=q

x<next*>q & g~ .next=nil & p<>
q q p<-q

This triple expresses that if p points to the last element of the list x in a
well-formed store, then the three lines of code result in a well-formed store,

where q points to the last element in x and where p is different from q. Our
logic defines the semantics of the formula p~.next=nil such that it holds
only if p~.next is well-defined and is equal to nil.

The key insight behind our decision procedure is to encode a store as a
string. Clearly, the effect of a loop-free program is then to transform one
string into another. The set of stores that satisfy a given formula ® in our
logic can be shown to always form a regular set of strings £(®). Furthermore,
formulas in the store logic can be shown to be closed under the weakest
precondition transformations induced by loop-free code.

Thus, our decision procedure applied to the triple {®1} S {®2} can be
roughly sketched as follows:

e compute the weakest precondition wp(S,Ps) describing those well-
formed stores that under the transformation induced by S will produce
well-formed stores that satisfy ®,;

e compute a predicate alloc(S) that describes the number of cells that S
may need to allocate; and

e decide if £L(®1) N L(alloc(S)) C L(wp(S, P2)).

There are of course subtle details to this approach that are not explained here;
however, the formal foundations for the general case of trees are presented
in [11].

Encoding Stores

To encode a single store as a string, we need a suitable alphabet. A single
alphabet symbol will consist of both a label and a bitmap. The label is either
nil, garb, lim, or a pair (T:v) where v is a variant of the record type T
in the current program. The bitmap indicates a position for each declared
data variable and pointer variable. The encoding of a store is now defined
as follows:

e the first position (and no other) is labeled nil;
e following the first position is a sequence of encodings of the lists;

e cach list is encoded (in the declared order) as a sequence of cells followed
by a lim symbol, where each cell is followed by its successor in the list;

e cach cell is labeled with its type and variant;

9

e following the encodings of lists are the garbage cells;
e cach variable occurs in exactly one bitmap;

e a data variable occurs in the bitmap of the root of its list, or in nil if
it is empty; and

e a pointer variable occurs in the bitmap of its destination.

For example, the store:

< . /R\ next

®

is encoded as the string of six symbols:
[nil,@] [(List:red),{x}] [(List:red),)] [(List:blue),{p}] [(List:red),)] [lim,0]

and the more complicated store:

zZ
y
X
b

next next
q

next

next _L,J_ next

A
is similarly encoded as the string of nine symbols:

[nil,{y}] [(List:red),{x,p}] [(List:red),{q}] [(List:red),0] [lim,}] [lim,0]
[(List:blue),{z}] [(List:blue),d] [lim,0)

10

Encoding Formulas

We claim without proof that the set of well-formed stores satisfying a given
formula corresponds to a regular language of string encodings. As an ex-
ample, consider the formula x<next*>p. It corresponds to the set of strings
accepted by the following deterministic, partial automaton:

[nil, {x,p}]

[lim, 0]
[(List:?),0]

™\ [nil,{p}] =/\ [(List;?),{x}:]?_’ % [lim, 0]
< /

J

(List:7), (xp}] [(List:7), {p}]

[miL0] =U [(List:7){x]]

[(List:7),0]

We have used the symbol [(List:?),...] to indicate that a transition is
possible for both colors. As indicated, even fairly simple formulas may yield
very complicated automata, since they make explicit all the special cases; for
example, the string:

il {x,p}] [lim, (]
corresponds to the case where x is an empty list, and the string:
nil, {p}] [(List:red) {x}] [lim,0]

to the case where x is a red singleton list and p points to the final nil cell.

Deciding Triples

We claim, again without proof, that the wp-transformer and the alloc-
predicate are computable. Let us illustrate with an example based on the
supposedly valid triple:

11

{ x<next*>p & p~.next=nil }

new(q,blue);
q~ .next:=nil;
p~ .next:=q

{ x<next*>q & q”.next=nil & p<>q }
The precondition formula describes the stores accepted by the automaton
Apfrei

[(List:?),0]

milg] /7 O\ [(List;?),{x;ﬂ}_’ ?[(List:?),{pﬂm lim,0] O

[garb,0]

[(List:?),{x,p}]

The alloc-predicate requires at least one available garbage cell and corre-

sponds to the automaton A ;..

[(List:7),7]

[nil, 7] (lim, 0] [garb,]
—Oemfema e s

N o/

The weakest precondition is calculated by the technique of transduction,
where the postcondition is syntactically transformed according to the effect
of the program statements. In this technique all basic relationships, such
as the successor relation between cells, are accounted for in a predicate af-
ter each program statement. The effect of a statement is to transform this
collection of predicates. The resulting collection is then used to rewrite the
postcondition (and the well-formedness formula), where each reference to a
basic relationship is replaced by the corresponding final transformed predi-
cate. For this particular example, a rather large formula results; but it will
be equivalent to:

x<next*>p & (ex g: <garb?>g) & p~.next=nil

which corresponds to the automaton Aqyp:

12

[(List:7),0]

_O[nil,@] =/\ [(List:?),{xﬁ; ?[(List:?),{pgm [lim, 0] =m[garb,@]= O
_/ _/

[garb,0]

[(List:?),{x,p}]

A simple computation will now confirm that Apre N A 77, € Awp (for this
trivial case they are in fact equal). It follows that the triple is indeed valid.

For general programs this task is quite intricate, since it is also necessary
to consider the effects of conditionals and possible type errors and run-time
errors. A full version of this paper will contain further details of the predicate

transformation.

5 Verifying Programs

Our decision procedure can clearly be used to answer all possible questions
about a loop-free program that can be phrased in our logic. This provides
a very general tool for analyzing such programs, since it is not limited to
answering single, fixed questions such as the absence of dangling references
or unclaimed memory cells. It demonstrates that such programs can be
completely understood as transformations on regular sets.

Using Invariants

Most interesting programs contain loops. For these we can verify the same
class of properties as for loop-free programs, provided we can phrase loop
invariants in our logic. Our decision procedure is then not entirely automatic,
nor is it complete since it is well-known that a true property of a loop cannot
necessarily be proven by an invariant. In practice, however, it is quite easy
to phrase useful invariants in our logic.

Let us recapitulate the required proof technique for loops. To verify the
triple {®,} while B do S {®,} we phrase a loop invariant I and prove
validity of the formula ®; = I, the triple {I & B} S {I}, and the formula
I & "B = ®,. The generation and verification of these three subgoals is
handled automatically by our decision procedure, when the invariant has
been given.

13

As a default, our system uses the basic well-formedness predicate for the
invariant. In many cases, this turns out to be sufficient.

Positive Examples

We now show a number of example programs that are successfully verified by
our decision procedure. They are ordinary Pascal programs, except that we
annotate them with occasional formulas and classify the declared variables
as data or pointer variables. In each case we verify that the resulting store is
well-formed. This guarantees that we encounter no run-time errors, and that
we leave no dangling references or unclaimed memory cells. In some cases,
we use the power of our logic to verify further properties. The first example
is the program that reverses a list.

program reverse;
type Color = (red,blue);
List = "Item;
Item = record
case tag: Color of
red,blue: (next: List)

end ;
{data}var x,y: List; {pointer}var p: List;
begin
{y=ni1}
while x<>nil do
begin
p:=x".next;
x”.next:=y;
yi=X;
X:=p
end
{x=nil}
end.

This program is particularly well-suited for our analysis, since we do not need
to specify an invariant beyond the implicit well-formedness formula. After
the loop, we are assured that x is empty and that y contains a list.

The next program performs a cyclic rotation of a list x where p points to
the last element. We omit the type declarations which are the same in all
our examples.

14

program rotate;
{data}var x: List; {pointer}war p: List;
begin
{x<next*>p & (x<>nil => p~.next=nil)}
1f x<>nil then
begin
p~ .next:=x;
X:=x".next;
p:=p” .next;
p~ .next:=nzl
end
{x<next*>p & (x<>nil => p~.next=nil)}
end.

Note how the precondition is used to specify the assumptions under which
the program works. The postcondition assures that this data type invariant
is preserved by the operation.

The following program inserts a red node into a possibly empty list x
(cyclically) after the position indicated by p, taking care of all the special
cases.

program insert;
{data}var x: List; {pointer}war p,q: List;
begin
{x<next*>p & (x=nil <=> p=nil)}
1f p<>nil then
begin
1f p~.next=nil then
begin
q:=x"next;
new (p,red) ;
x”.next:=p

end

else

begin
q:=p~ .next;
new (p~ .next,red);
p:=p” .next

end

else
q:=nil;

15

new (p,red) ;
X:=p
end ;
p~ .next:=q
end.

We now dually consider a program that deletes the node after p.

program delete;
{data}var x: List; {pointer}war p,q: List;
begin
{x<next*>p & (x=nil <=> p=nil)}
1f p<>nil then
begin
1f p~.next=nil then
begin
q:=x".next;
1f x".tag=red then
dispose (x,red)
else
dispose (x,blue) ;
X:=q
end
else
begin
q:=p” .next” .next;
1f x".tag=red then
dispose (x,red)

else
dispose (x,blue) ;
p~ .next:=q
end

end
{p<>nil => (ex q: <garb?>q & (all r: <garb?>r => r=q)) &

p=nil => “(ex q: <garb?>q)

}

end.

The postcondition verifies that if the list was not empty, then exactly one
record has been deallocated; if the list was empty, then no deallocation took

place.

16

We now turn our attention to a program that searches for the first occur-
rence of a blue node in a list.

program search;
{data}var x: List; {pointer}war p: List;
begin
p:=x;
while p<>nil and p~.tag<>blue do
{x<next*>p & (all q: (x<next*>q & gq<next*>p) => <(List:red)?>q)}
p:=p” .next
end
{x<next*>p & (p=nil | <(List:blue)?>p) &
(all q: (x<next*>q & g<next.next*>p) => <(List:red)?>q)

}

end.

To merely verify well-formedness, we do not have to specify an explicit in-
variant. However, by providing a rich invariant we can automatically verify
the behavior of this program which is expressed by the postcondition: to find
the first blue node if one exists. This illustrates that we can verify properties
well beyond standard pointer analyses.

The final program zips two lists into one, by performing a strict shuffle
of their elements and appending the tail of the longer list.

program zip;
{data}var x,y,z: List; {pointer}war p,t: List;

begin
1f x=nil then
begin
ti=x; x:=y; y:=t
end ;

z:=nil; pz:=nil;
while x<>ntl do

{(x=nil => y=nil) & z<next*>p & (z<>nil => p~.next=nil)}
begin

1f z=nil then

begin

Z:=X; P:=X;

end

else

begin

17

p~ .next:=x;
p:=p” .next
end ;
X:=x".next;
p~ .next:=nil;
1f y<>nil then
begin
ti=x; x:=y; y:=t
end
end
end.

For this example we need a seemingly involved invariant to establish well-
formedness. However, it merely states that x is only empty if y is empty, and
that p points to the last element of z.

Negative Examples

We next turn our attention to faulty programs that cannot be verified. Con-
sider first the reverse program in which we perform a likely mistake by
accidentally switching the second and third program line in the loop body.

program fumble;
{data}var x,y: List; {pointer}var p: List;
begin

{y=ni1}

while x<>nil do

begin

p:=x".next;

1=x; (¥ line 3 %)
“.next:=y; (x line 2 *)
*=p

HoH<

end
{x=nil}
end.

The program is clearly no longer correct, which our decision procedure detects
since it is not the case that £(®1)NL(alloc(S)) C L(wp(S, P2)). Significantly,
we may now obtain more information besides this bare fact, since the set
(L(P1) N L(alloc(S))) \ L(wp(S, P2)) is also a (non-empty) regular language

18

from which we can automatically extract a shortest string. For the fumble
program such a string is:

nil,{p}] [(List:red),d] [lim,}] [lim,0)

which corresponds to a particular store:

b
‘/L next
x —— (&)

y

YY

This initial store is a concrete counterexample on which the program will
expose its faulty behavior. We may simulate the program on this store, and
after the first iteration we see the error:

X R
‘ T next

We envision a tool in which a programming error will generate and play a
small cartoon of store modifications that explains the faulty behavior.

As another example, consider a program that swaps the first two elements
of a list.

program swap;
{data}var x: List; {pointer}war p: List;
begin
1f x<>nil then
begin
p:=x;
X:=x".next;
p~ .next:=x".next;
x”.next:=p
end
end.

19

The program is essentially correct, except that it fails by dereferencing a
nil-pointer in the special case of a list of length one. Correspondingly, our
decision procedure responds with the string:

nil,{p}| [(List:red),d] [lim,0)

which corresponds to a store containing a list of length one. To confirm the
hypothesis that this is the only fatal case, we may introduce the precondition
{x~.next<>nil} and then successfully verify the program.

6 Implementation

An implementation of our decision procedure needs to:

e compute and represent the regular set of stores that satisfy a given
formula;

e compute the predicate transformer wp and the predicate alloc; and
e decide properties of regular sets.

We have a unifying framework for expressing all these tasks.

Using Monadic Second-Order Logic

Our implementation is based on the monadic second-order logic on finite
strings (M2L), which is an inordinately succinct notation for specifying reg-
ular sets [16]. It uses formulas similar to but more general than those of our
store logic.

It turns out to be a straightforward task to inductively translate formulas
of our store logic into equivalent formulas of M2L. The regular set is then
represented by an M2L formula.

Also wp and alloc are elegantly captured through formulas in M2L, where
the effect of each program line is simulated with all the appropriate type and
run-time tests. The formulas look vaguely like the code for an interpreter.

Finally, all the required properties of regular sets correspond to simple
connectives in M2L; for example, set inclusion is implication of the repre-
senting formulas.

The net effect is to produce a (possibly huge) M2L formula whose validity
coincides with validity of the given triple.

20

Using Fido and Mona

The M2L approach is fruitful because of the Fido and Mona tools that im-
plement this logic for finite strings and trees [9, 12]. Mona is an engine that
reduces an M2L formula to an equivalent finite state automaton. Fido is a
high-level specification notation that generates primitive Mona formulas.

The implementation of Mona is feasible because of a special representa-
tion of automata, where transition functions are encoded as binary decision
diagrams [1] (BDDs). Corresponding to this representation, specialized algo-
rithms for the basic automata operations have been developed. As a result,
Mona may efficiently reduce automata with very large alphabets, such as
those we encounter in our application.

The implementation of our decision procedure is a pipeline: from the
annotated Pascal program we generate a Fido specification, which is trans-
lated into a voluminous Mona formula, which is then reduced to a finite state
automaton. A complete documentation of the example programs, including
the Fido and Mona formulas that are generated by the decision procedure,
is available at http://www.brics.dk/ “mis/pointers/.

Complexity

The theoretical worst-case complexity of our decision procedure is non-
elementary, i.e. not bounded by any finite stack of exponentials. This lower
bound is inherited from M2L. Fortunately, the worst-case scenario hinges on
the use of complex formulas, which are not likely to occur in practice. Us-
ing the current implementation of the Fido and Mona tools, we obtain the
following statistics for our example programs. The time is measured on a
SparcServer 1000; the size of the formula is that of the raw Mona input; and
for the largest automaton encountered during the Mona reduction we give
the number of states and the number of BDD-nodes in the representation of
its transition function.

21

Program Time ‘ Formula ‘ States ‘ BDD-nodes

reverse | 25 seconds 56K 74 297
insert | 54 seconds 91K 323 1,916
rotate | 36 seconds 65K 156 981
delete | 55 seconds 96K 131 623
search | 52 seconds 92K 167 1,072

zip 94 seconds 107K 876 5,611
fumble | 25 seconds 56K 56 215

swap 21 seconds 51K 35 156

These measurements are merely intended to give a rough idea of the com-
plexities of the verification problems. Note how seemingly innocuous pointer
manipulations are revealed to possess large state spaces when all possible
executions and special cases are considered.

7 Conclusions

We have demonstrated that small programs in our Pascal subset can be ver-
ified with great accuracy. Our decision procedure exploits a new approach
to pointer analysis by modeling stores as strings and reducing the problem
to validity of formulas in monadic second-order logic. Our use of a decid-
able specification logic for properties of stores with pointers may also be of
independent interest.

How may we use and extend this technique? We present the answers to
a number of pertinent questions.

Can we include trees? The well-formedness requirement insists on disjoint
lists. However, our decision procedure is based on encoding stores as finite
strings for which the monadic second-order logic is decidable. While we
cannot encode trees in this string logic, we can use the fact that also the
monadic second-order logic of trees is decidable and implemented by Fido
and Mona. While this extension is conceptually and computationally more
involved, all our theoretical results still hold [11].

Can we go beyond trees? Some extensions are possible, specifically graph
types [10] which include doubly-linked and cyclic structures. However, this
extension requires an invasive modification of the Pascal syntax. Also, there
are clear limitations; for example, on grid structures the store logic is no
longer decidable.

22

What about modularity? 1t is very easy to perform a modular analysis of
programs if the interface between two code fragments can be specified as an
intermediate formula. In this case, a triple breaks into two smaller triples.

What about real programs? We have restricted the allowed syntax in
several ways. However, the only non-trivial one is the exclusion of integers
and arithmetic. Our decision procedure will never be complete for arithmetic,
but a canonical approximative analysis may be performed by abstracting the
type of integers into a singleton enumeration type, or even into a finite range
with modulo arithmetic.

Where will this be used? 1t is unlikely that our technique will verify a
huge, preexisting program. However, when implementing an abstract data
type for a library, it should be possible to state the required invariants to
obtain an automatic verification of the operations. Also, our tool seems ideal
for a teaching environment, since it encourages formal reasoning and provides
counterexamples for faulty programs.

References

[1] Randal E. Bryant. Graph-based algorithms for Boolean function ma-
nipulation. IEEE Transactions on Computers, August 1986.

[2] Michael Burke, Paul Carini, Jong-Deok Choi, and Michael Hind. Flow-
insensitive interprocedural alias analysis in the presence of pointers. In
of the Tth International on Languages and Compilers for Parallel Com-
puting, number 892 in Lecture Notes in Computer Science, August 1994.

[3] David L. Detlefs. An overview of the extended static checking system.
In Proceedings of The First Workshop on Formal Methods in Software
Practice. ACM SIGSOFT, January 1996.

[4] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond
k-limiting. In of the ACM SIGPLAN ’9j on Programming Language
Design and Implementation, June 1994.

[5] Alain Deutsch. Semantic models and abstract interpretation tech-
niques for inductive data structures and pointers. In of the ACM SIG-
PLAN on Partial Evaluation and Semantics-Based Program Manipula-
tion (PEPM), June 1995.

23

(6]

[10]

[11]

[12]

[13]

[14]

[15]

David Evans, John Guttag, Jim Horning, and Yang Meng Tan. LCLint:
A tool for using specifications to check code. In Proceedings of Sym-
posium on the Foundations of Software Engineering. ACM SIGSOFT,
December 1994.

Rakesh Ghiya and Laurie J. Hendren. Is it a Tree, a DAG, or a Cyclic
Graph? A shape analysis for heap-directed pointers in C. In the 23rd
ACM SIGPLAN-SIGACT on Principles of Programming Languages,
January 1996.

Laurie J. Hendren and Alexandru Nicolau. Parallelizing programs with
recursive data structures. IEEETPDS, 1(1):35-47, January 1990.

Jesper Gulmann Henriksen, Michael Jgrgensen, Jakob Jensen, Nils Klar-
lund, Bob Paige, Theis Rauhe, and Anders Sandholm. Mona: Monadic
second-order logic in practice. In Proceedings TACAS’95, LNCS 1019,
May 1995.

Nils Klarlund and Michael I. Schwartzbach. Graph types. In the Twen-
tieth Annual ACM SIGPLAN-SIGACT on Principles of Programming
Languages, January 1993.

Nils Klarlund and Michael I. Schwartzbach. Graphs and decidable trans-
ductions based on edge constraints. In Proc. CAAP’ 94 (TAPSOFT),
1994.

Nils Klarlund and Michael I. Schwartzbach. Regularity = Logic + Re-
cursive Data Types. BRICS, University of Aarhus, October 1996.

William Landi and Barbara G. Ryder. A safe approximate algorithm
for interprocedural pointer aliasing. In of the ACM SIGPLAN 92 on
Programming Language Design and Implementation, June 1992.

John Plevyak, Andrew A. Chien, and Vijay Karamcheti. Analysis of
dynamic structures for efficient parallel execution. In of the 6th Inter-
national on Languages and Compilers for Parallel Computing, number
768 in Lecture Notes in Computer Science, August 1993.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-
analysis problems in languages with destructive updating. In the 25rd

24

ACM SIGPLAN-SIGACT on Principles of Programming Languages,
January 1996.

Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, pages 133—
191. MIT Press/Elsevier, 1990.

Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer
analysis for C programs. In of the ACM SIGPLAN ’95 on Programming
Language Design and Implementation, June 1995.

25

