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1 IntroductionThis paper is concerned with the speci�cation andveri�cation of distributed systems. Often, the rela-tionship between a program and a speci�cation is ex-pressed in terms of a state-based re�nement mapping,see [18] for a survey. Thus, when systems are speci�edby behavioral or temporal constraints, it is necessary�rst to �nd state-representations. In this process, im-portant information may be lost or misconstrued.In this paper, we exhibit a logic of traces (i.e.�nite computation sequences) that allows composi-tional reasoning directly about behaviors. We for-mulate trace abstractions and their proof rules as analternative to the use of re�nement mappings for theveri�cation of distributed systems.Our main goal is to show that our method is usefulin practice. Thus, use of our logic and proof rulesmust be supported by a decision procedure that willgive answers to logical questions about the systems,such as \Does trace abstraction R show that programP implements speci�cation S?"To this end, we formulate a sound and completeveri�cation method based on trace abstractions. Weshow that our method for �nite-state systems can beformulated in a very succinct formalism: theMonadicSecond-order Logic (M2L).We address the important problem of relating a dis-tributed program to a non-deterministic speci�cationthat also is a distributed system. Non-determinismarises when systems have alphabets that are par-tioned into observable and internal actions. Abstract-1



ing away internal actions generally introduces non-determinism.Our contribution is to show an alternative to usualtechniques, which tend to involve rather involved con-cepts such as prophecy variables or mappings to setsof sets of states. These can be replaced by behavioralpredicates that need only to partially link the programand the speci�cation. The remaining information isthen calculated automata-theoretically by means ofthe subset construction.We formulate a compositional rule to avoid the ex-plicit construction of the global program space.Using the Mona implementation of M2L, we haveveri�ed a recent veri�cation problem by Broy andLamport by transcribing several pages of informallystated temporal properties. The formulas resultingare decided in minutes despite their size (105 charac-ters). We give here only an overview of our approachto the Broy and Lamport problem. A detailed treate-ment can be found in [11].1.1 Relations to previous workThe systems we de�ne are closely related to those de-scribed by Hoare in [9], where an alphabet � and a setof traces over � is associated with every process. Weuse a composition operator, similar to Hoare's paral-lel operator (k [9]) forcing systems to synchronize onevents or actions shared by both alphabets.State mappings|one of the most advocated meth-ods for proving re�nement, see e.g. [17, 15, 16, 10]and for a survey [18]|were introduced as a way toavoid behavioral reasoning, often regarded as beingtoo complex. The theory of state mappings is by nowwell-understood, but not simple, with the complete-ness results in [1, 12, 20]. In the �nite state case,an important di�erence between the state mappingapproach and ours is: in the traditional approaches,the mapping is to be exactly speci�ed state by state,whereas in our approach the relation between behavi-ors may be speci�ed partially leaving the rest to ourveri�cation tool.In [2], Lamport and Abadi gave a proof rule forproving correctness of implementation of compoundsystems based on an assumption=guarantee method.A closed compound system is split into a number ofopen systems by factoring out dependencies as as-

sumptions. Our rule is very di�erent in that depend-encies are reected in a requirement about the rela-tionship between trace abstractions for components.The TLA formalism by Lamport [16] and the tem-poral logic of Manna and Pnueli [10] o�er uni�edframeworks for specifying systems and state map-pings, and for proving the correctness of implementa-tion. Both logics are undecidable, but work has beendone on establishing mechanical support, see [6, 7].Clarke, Browne, and Kurshan [4] have appliedmodel checking techniques to the language containe-ment problem (L(M1) � L(M2)), where M1 andM2 are !-automata. They reduce the containmentproblem to a model-checking problem by forming aproduct of the automata and checking whether theproduct is a model for a certain CTL� formula.The method is applicable to any common kind of !-automata. Thus it deals with liveness properties un-like our method, which only deals with logic over �nitepre�xes. However, the method in [4] su�ers from therestriction that M2 be deterministic.Kurshan, see [13], has devised an automata-theoretic framework for modeling and verifying syn-chronous transition systems. His use of homomorph-isms allow complex properties to be reduced to onesthat can be veri�ed by means of model-checking.Kurshan's methods were extended in [14] to theasynchronous input/output automata of [17]. There,Kurshan et al. give an account of interleaving com-position in terms of conventional, synchronous auto-mata. Our treatment of concurrency is similar in itsuse of stuttering for modeling asynchrony except thatwe do not consider fairness (which is a property ofin�nite sequences). A principal di�erence is that ourproposal is based on comparing sequences of events,whereas the method of [14] is essentially state-basedor event-based.Binary Decision Diagrams (BDDs) are usually usedin veri�cation to compactify representations of state-spaces, see e.g. [5]. The Mona implementation [8] ofa decision procedure for M2L uses BDDs to handlelarge alphabets.1.2 OverviewIn Section 2, we discuss our formal framework, whichis based on an interleaving semantics of processes that2



work in a global space of events. M2L is explained inSection 3. We show in Section 4 that with some ad-ditional concepts, it is possible to formulate the veri-�cation method of Section 2 in M2L. In Section 5, weexplain the role of trace abstractions in our solutionof the Broy and Lamport veri�cation problem.2 Traces and abstractionsWe regard systems in a fairly standard way: theyare devices that produce sequences of events thatare either observable or internal. Systems exist ina universe. They can be composed and compared.Trace abstractions relate a program to a speci�ca-tion. These abstractions form a sound and completeveri�cation method, and a simple decomposition ruleis easy to formulate.2.1 Systems and universesA system A determines an alphabet �A of events,which is partioned into observable events �ObsA andinternal events �IntA . A behavior of A is a �nite se-quence over �A. The system A also determines apre�x-closed language LA of behaviors called tracesof A. We write A = (LA;�ObsA ;�IntA ). The projec-tion � from a set �� to a set �0� (�0 � �) is theunique string homomorphism from �� to �0� givenby �(a) = a, if a is in �0, and �(a) = � otherwise,where � is the empty string. The observable behaviorsof a system A, Obs(A), are the projections on �ObsAof the traces of A, that is Obs(A) = f�(�) j � 2 LAg,where � is the projection from ��A onto (�ObsA )�.A system A is thought of as existing in a universewhich contains the systems with which it is composedand compared. The events possible in this universeconstitute a global alphabet U , which contains �Aand all other alphabets of interest. Moreover, U isassumed to contain the distinguished event � , whichis not in the alphabet of any system. The set N�(A)of normalized traces over an alphabet � � �A is theset h�1(LA), where h is the projection from �� onto��A. Normalization plays an essential rôle when com-posing systems and when proving correctness of im-plementation of systems with internal events.

2.2 CompositionWe say that systems A and B are composable if theydo not disagree on the partition of events, that is, ifno internal event of A is an observable event of Band vice versa, or symbolically, if �IntA \ �ObsB = ;and �IntB \ �ObsA = ;. Given composable systemsA and B, we de�ne their composition A k B =(LAkB ;�ObsAkB ;�IntAkB), where� the set of observable events is the union of thesets of observable events of the components, thatis, �ObsAkB = �ObsA [�ObsB ,� the set of internal events is the union of the setsof internal events of the components, that is,�IntAkB = �IntA [�IntB , and� the set of traces is the intersection of the sets ofnormalized traces with respect to the alphabet�AkB , i.e. LAkB = N�AkB (A) \N�AkB (B).(Note that the restriction above for composability en-sures that A k B has also disjoint observable andinternal events.)A trace of A k B is the interleaving of a trace ofA with a trace of B in which common events aresynchronized. The projection of a trace of A k Bonto the alphabet of any of the components is atrace of the component. Composition is commutative,idempotent, and associative, and extends straightfor-wardly to any number n of composable systems Ai.We write A1 k : : : k An or just kAi.Example 2.1 Tomake the concepts clearer, we showhow to present the well-known scheduler [19] ofMilner in terms of our systems. The distributedscheduler is based on passing a token consecutivelybetween a number of computing agents. We considera three-agent version of the scheduler. The ith agentSi performs observable events ai and bi to indicatethe begining and the end of computing, respectively,and it synchronizes with its neighbor agents by inter-acting on the internal events ci and ci	1, where i is0, 1, or 2, and 	 is subtraction modulo 3.3



For a regular expression r, we denote by LPre(r)the regular language obtained by taking the pre�x-closure of the language associated with r. Thus theagents may be described by:S0 = (LPre((a0c0(b0c2 + c2b0))�); fa0; b0g; fc0; c2g);S1 = (LPre(c0(a1c1(b1c0 + c0b1))�); fa1; b1g; fc0; c1g);S2 = (LPre(c1(a2c2(b2c1 + c1b2))�); fa2; b2g; fc1; c2g)The scheduler is de�ned in terms of the compoundsystem: S = S0 k S1 k S2where the set of observable events then consists of theai's and bi's.2.3 ImplementationWe say that systems A and B are comparable if theyhave the same set of observable events �Obs, that is,�Obs = �ObsA = �ObsB . In the following, A and B de-note comparable systems and � denotes the projectionfrom U� onto (�Obs)�.De�nition 2.1 A implements B if and only ifObs(A) � Obs(B).Example 2.2 Another way of de�ning a scheduler isto use a central agent C. The ith agent still performsobservable events ai and bi but now synchronizes withthe agent C by interacting on the internal event di.The agents are given by the systemsC = (LPre((d0d0d1d1d2d2)�); ;; fd0; d1; d2g);Pi = (LPre((diaidibi)�); fai; big; fdig); i = 0; 1; 2and the scheduler is de�ned by the compound system:P = P0 k P1 k P2 k Cwhere the observable events are the ai's and bi's andinternal events are the di's.The systems S and P may be seen as existing inthe universe U = fai; bi; ci; di; � j i = 0; 1; 2g and areclearly comparable. The reader may convince himselfthat P implements S, but in general this not an easytask.

2.4 Relational trace abstractionsA trace abstraction is a relation on traces preservingobservable behaviors.De�nition 2.2 A trace abstraction R from A to Bis a relation on U� � U� such that1. If �R� then �(�) = �(�)2. NU (A) � dom R3. rng R � NU (B)The �rst condition states that any pair of relatedtraces must agree on observable events. The secondand third condition require that any normalized traceof A should be related to some normalized trace of B,and only to normalized traces of B. The use of traceabstractions forms a sound and complete method inthe sense that there exists a trace abstraction from Ato B if and only if A implements B.Theorem 2.1 There exists a trace abstraction fromA to B if and only if A implements B.We would like to prove that a compound systemkAi implements another compound system kBi byexhibiting trace abstractions Ri from Ai to Bi. Asimple extra condition is neeeded for this to work:Theorem 2.2 Let Ai andBi be pairwise comparablesystems forming the compound systems kAi and kBi.If Ri is a trace abstraction from Ai to Bi (1)Ti dom Ri � dom TiRi (2)then kAi implements kBiIntuitively, the extra condition (2), which we call thecompatibility requirement , ensures that the choicesde�ned by the trace abstractions can be made to agreeon internal events.Due to the possibility of non-trivial interference oninternal events among the component systems, the�rst premise alone of the composition rule is not suf-�cient to ensure the conclusion. Consider e.g. thefollowing systemsA1 = (fag�; fag; ;); B1 = (facg�f�; ag; fag; fcg)A2 = (fbg�; fbg; ;); B2 = (fbcg�f�; bg; fbg;fcg)4



Obs(Ai) � Obs(Bi), but Obs(A1 k A2) 6� Obs(B1 kB2), since aa 2 Obs(A1 k A2), but aa 62 Obs(B1 kB2).The next example illustrates that even when signi-�cant internal interaction exists among the compon-ents, the decomposition theorem may be applied.Example 2.3 Consider the schedulers from before.For each i = 0; 1; 2, let �i be the string homomorph-ism from U� to U� mapping every string � into astring identical to � except that every occurrence of ciis erased and every even occurrence of di is replacedby ci. Formally, �i(�) = � and for � 2 U� and u 2 U ,�i(�u) = 8>><>>: �i(�)ci if u = di andthe number of dis in � is odd�i(�) if u = ci�i(�)u otherwiseLet � = �0 � �1 � �2. It is not hard to check thatthe relations Ri = f(�; �(�)) j �(�) 2 NU (Si)g aretrace abstractions from Pi k C to Si, respectively.(Requirements 1. and 3. are satis�ed by de�nition.To see that 2. holds, we consider some � 2 NU (Pi kC) and argue that �(�) 2 NU (Si).) Also, it is nothard to see that Ti dom Ri � dom TiRi. (Foreach � there is exactly one �(�).) Hence by Theorem2.2, it follows that (P0 k C) k (P1 k C) k (P2 k C)implements S and therefore that P implements S.An almost trivial observation is:Corollary 2.1 If additionally the components of thespeci�cation are non-interfering on internal events,that is, �IntBi \ �IntBj = ;, for every i 6= j, then Aiimplements Bi implies kAi implements kBi.3 Monadic second-order logicon stringsThe logical language we use is the monadic second-order logic (M2L) on strings, where a closed formulais interpreted relative to a natural number n (thelength). First-order variables p; q; : : : range over theset f0; : : : ; n � 1g (the set of positions), and second-order variables P;Q; : : : ; P1; P2; : : : range over subsetsof f0; : : : ; n � 1g. Atomic formulas are of the form

p = q, p = q + 1, p < q and q 2 P . Formulas areconstructed in the standard way from atomic formu-las by means of the Boolean connectives :;^;_;)and ,, and �rst and second-order quanti�ers 8and 9. We adopt the standard notation of writing�(P1; : : : ; Pk; p1; : : : ; pl) to denote an open formula �whose free variables are among P1; : : : ; Pk; p1; : : : ; pl.Let 0 and $ be the M2L de�nable constants denotingthe positions 0 and n�1, respectively. The expressivepower of M2L is illustrated by the formula9P:0 2 P ^ (8p:p < $) (p 2 P , p+ 1 62 P ))which de�nes the set of even numbers. A second-order variable P can be seen as denoting a stringof bits b0 : : : bn�1 such that bi = 1 if and only ifi 2 P . This leads to a natural way of associatinga language L(�) over � = IBm of satisfying inter-pretations to an open formula �(P1; : : : ; Pm) havingonly second-order variables occurring free (IB denotesthe set f0; 1g). As an example, consider the formula� � 8p:p 2 P1 , p 62 P2. Then L(�) is a languageover the alphabet � = IB2, where each (b1; b2) 2 IB2denotes the membership status of the current positionrelative to P1 and P2. For example, writing the tuplesas columns, we haveP1: 11010P2: 00101 2 L(�) and P1 : 11010P2 : 01000 62 L(�)Any language de�ned by a M2L formula is regularand conversely any regular language can be de�nedby a M2L formula. Given a formula �, a minimal�nite automaton accepting L(�) can e�ectively beconstructed using the standard operations of comple-mentation, product, subset construction, and projec-tion. In particular, the existential quanti�er becomesassociated with a subset construction|and a poten-tial exponential blow-up in the number of states. Theconstruction of automata constitutes a decision pro-cedure for M2L, since � is a tautology if and only ifL(�) is the set of all strings. In case � is not a tau-tology, a witness in terms of a minimal interpretationfalsifying� can be derived from the minimumdeterm-inistic automaton recognizing L(�). We use the toolMona [8], which implements the decision procedureand the counter-example facility.5



4 The �nite state caseWe now restrict attention to systems with regulartrace languages. We show for a large class of �nite-state systems that trace abstractions de�nable by reg-ular languages constitute a complete method for prov-ing the implementation property.Given strings � = �0 : : : �n 2 ��1 and � =�0 : : :�n 2 ��2, we write �^� for the string(�0; �0) : : : (�n; �n) 2 (�1 � �2)�. Every languageLR over a product alphabet �1 ��2 has a canonicalembedding as a relation RL � ��1 � ��2 on strings ofequal length given by �^� 2 LR def,�RL�. Hencein the following we shall use the two representationsinterchangeably. Accordingly, we say that a trace ab-straction is regular if it is the embedding of a regularlanguage over U � U .Not all trace abstractions between �nite-state sys-tems are regular, since there may be an unboundednumber of internal events between pairs of corres-ponding observable events. The next de�nition isan essential step towards the identi�cation of regu-lar trace abstractions.De�nition 4.1 Given a subset �0 of �, we say thatstrings �; � 2 �� are �0{synchronized if they are ofequal length and if whenever the ith position in � con-tains a letter in �0 then the ith position in � containsthe same letter, and vice versa.De�nition 4.2 Let R̂ be the language over U � Ugiven by �^� 2 R̂ if and only if� 2 NU (B) and �; � are �Obs-synchronizedSince NU (B) is a regular language (by assumption ofthis Section), so is R̂. The next proposition gives asu�cient condition for R̂ and any regular subset ofR̂ to be a trace abstraction. We return to the signi-�cance of the last part when dealing with automatedproofs.Proposition 4.1 If NU (A) � dom R̂ then R̂ is aregular trace abstraction from A to B. Moreover ingeneral, for any regular language C � (U � U)�, ifNU (A) � dom R̂ \ C, then R̂ \ C is a regular traceabstraction from A to B.It is not hard to see that if R̂ is a regular traceabstraction, then it is the largest such relating �Obs-

synchronized traces. In this case, we denote R̂ thecanonical trace abstraction.Non-regularity of trace abstractions occurs if forexample there are arbitrarily many non-observableevents between any two observable events. However,it may also happen that a behavior of the programmay have too few internal events between two ob-servable events in the sense that any behavior of thespeci�cation with the same observable behavior mayrequire more internal events. We next give a precisede�nition of this phenomenon. Let �A and �B bethe projections from ��A and ��B, respectively, onto(�Obs)�.De�nition 4.3 A trace � 2 LA is internally �nerthan a trace � 2 LB if �A(�) = �B(�), and for alle; e0 2 �Obs; u 2 (�IntA )�; v 2 (�IntB )�; �1; �2 2 ��Aand �1; �2 2 ��B , such that �A(�1) = �B(�1)� = �1eue0�2 ^ � = �1eve0�2_ � = ue0�2 ^ � = ve0�2 9=;) juj � jvjA system A is internally �ner than a system B if forany trace � of A such that �A(�) 2 Obs(B), thereexists a trace � of B such that � is internally �nerthan �.Consider the scheduler example. System P is intern-ally �ner than S, whereas the converse is not true. Werestate the soundness and completeness result fromthe general case for a constrained class of systemsand regular trace abstractions.Theorem 4.1 Assume that A is internally �ner thanB. There exists a canonical trace abstraction from Ato B if and only if A implements B.The restriction on programs to be internally �nerthan their speci�cations can be overcomed simply byadding more internal behavior to the program. Moreprecisely, given systems A and B there always existsa system A0 such that A and A0 have the same observ-able behaviors, that is, Obs(A) = Obs(A0), and suchthat A0 is internally �ner than B. E.g. using S00 =(LPre((d0a0d0c0(b0c2+c2b0))�); fa0; b0g; fc0; c2; d0g)instead of S0 and with similar changes using S01and S02 for S1 and S2, respectively, we have thatS0 = S00 k S01 k S02 is internally �ner than P andthat Obs(S) = Obs(S0).6



4.1 A uniform logical frameworkIn the �nite setting, reasoning about systems can con-veniently be expressed in M2L. Let U = IBm be theuniverse, where m is a natural number. Any behavior� over U can be viewed as an interpretation of a se-quence of second-order variables U�1 ; : : : ; U�m. So be-haviors over, say, 1024 di�erent events may be codedusing just 10 variables.We use for each event � = (b1; : : : ; bm) 2 U and �the notation �(t) = � for the M2L predicate(b̂i=1 t 2 U�i ) ^ (b̂i=0 t 62 U�i );which states that the behavior denoted by � has a �event in the position denoted by t. A system A =(LA;�ObsA ;�IntA ) is represented by a tripleA = (�A; �ObsA ; �IntA )of formulas de�ning the normalized traces of the sys-tem, �A(�), the observable events, �ObsA (�; t), and theinternal events, �IntA (�; t). That is, NU (A) = L(�A)and �ObsA (�; t)) and �IntA (�; t) are predicates that aretrue if and only if the position denoted by t in the be-havior denoted by � is an element of �ObsA and �IntA ,respectively. Given composable systems A and B,composition is represented byA k B = (�A ^ �B ; �ObsA _ �ObsB ; �IntA _ �IntB ):We have that L(�A^�B) = L(�A)\L(�B) = NU (A kB) and that �ObsA _ �ObsB and �IntA _ �IntB de�nes theunion of the observable and the internal events, re-spectively. Let now behavior � be represented byU�1 ; : : : ; U�m. The property that behaviors � and � inU� are �Obs-synchronized is expressed by predicate�ObsA;B(�; �) de�ned by8t : (�ObsA (�; t) _ �ObsB (�; t))) �(t) = �(t):The canonical trace abstraction R̂ of De�nition 4.2 isde�ned byR̂A;B(�; �) def� �B(�) ^ �ObsA;B(�; �):By Proposition 4.1 and Theorem 4.1, the implement-ation property is implied by NU (A) � dom R̂ andhence by the validity of�A(�) ) 9� : R̂A;B(�; �); (3)

where 9� is de�ned as 9U�1 : � � �9U�m. Let Ri(�; �) def�R̂Ai;Bi (�; �) ^  i(�; �). The premises of the decom-position rule in Theorem 2.2 are expressed byî (�Ai(�) ) 9� : Ri(�; �)) (4)î 9�i : Ri(�; �i) ) 9� : î Ri(�; �): (5)To express the premise of Corollary 2.1 simply replaceequation (5) above byî6=j 8t : �IntBi (�; t)) :�ObsBj (�; t):Also, properties like composability and comparabilitycan be expressed. The former by8t : (�IntA (�; t)) :�ObsB (�; t)) ^(�IntB (�; t)) :�ObsA (�; t))and the latter by8t : �ObsA (�; t), �ObsB (�; t):In general, M2L is a very exible logical languagemaking it easy to write tense time and interval tem-poral logic operators in a straightforward manner.As examples, consider the past operator �Before�;� (�)de�ned by8t1: �(t1) = �) 9t0: t0 < t1 ^ �(t0) = �;and the interval operator �Between� (�; t1; t2)9t: t1 < t < t2 ^ �(t) = �:4.2 Automated proofsFormulas (3), (4), and (5) are potentially very di�-cult, since they involve quanti�cation over behaviors,that is, over m second-order variables. Each quanti-�cation can lead to an exponential blow-up. But if Ahas much internal behavior, then it seems reasonableto use a more clever trace abstraction guided by A'sinternal events. In fact, it must be suspected thatit is inappropriate that the de�nition of R̂ does notinvolve A at all.7



The canonical trace abstraction can be constrainedby adding more precise information about the connec-tion between the internal behavior of system A andB. This may reduce the blow-up|or even avoid itin the case a functional regular trace abstraction isformulated.We next turn to a substantial veri�cation problemto illustrate our technique.5 A speci�cation problemIn this section, we consider the problem proposed byBroy and Lamport [3]. The �rst part of [3] calls fora speci�cation of a reactive system consisting of anumber of sequential processes issuing blocking readand write calls to a memory server. The memoryserver maintains its memory by performing specialatomic reads and writes whenever requested to do soby read and write calls. Depending on the successof atomic reads and writes, return events contain theanswers to read and write calls. The memorymust beable to handle several calls (from di�erent processes)concurrently.The second part of [3] calls for an implementationbased on a remote procedure call (rpc) protocol. Theprotocol involves a local and a remote party. Calls re-ceived locally are forwarded to the remote site, wherethey are executed. The resulting return events arepropagated back to the local site. Altogether, we dealhere with four levels of calls and returns.The goal of [3] is now to verify that every observabletrace of the implementation (where atomic read andwrites and the remote events are abstracted away) isan observable trace of the speci�cation.The full informal description [3] includes manytechnical complications concerning the parameterspassed and di�erent kinds of erroneous behaviors. Adetailed presentation of our solution can be found in[11].In performing the veri�cations, we have limitedourselves to �nite domains. We have chosen to havetwo locations, two kinds of values, two kinds of ags,and two process identities (in addition to the memoryprocess). The resulting program has approximatelya hundred thousand states and the speci�cation ap-proximately a thousand states. The systems allow

thousands of di�erent events. The systems are mod-elled as deterministic automata. The full speci�cationamounts to 10-15 pages of M2L formulas (written ina macro language).The aspect that we are interested in here is the useof trace abstractions. Without going into any furtherdetails, we assume that the M2L formulas �P1 ^ �P2and �S1 ^�S2 de�ne the implementation and the spe-ci�cation, respectively, of our solution (each conjunctspeci�es the behavior of one process). The universe Uconsists of � and a number of parameterized events:rd, wrt, rtn, atmrd, atmwrt, rpcCall, rpcRtn denotingreads, writes, returns, atomic reads, atomic writes,rpc calls and rpc returns respectivly. For example,rd : [?; obs; 1] is a read event, where the �rst para-meter is unspeci�ed, the second is obs, which standsfor an observable event, and the last parameter 1 de-notes the process id. A similar notation is used forother events.The Mona tool is currently not able to handle auto-mata of the size corresponding to the distributed pro-gram just discussed. Hence we prove the correctnessof the implementation by using our composition rule.The obvious idea is to try whether�Pi(�)) �Si(�)holds (for i = 1 or i = 2; the formulas are symmetric).The Mona tool, however, quickly determines that thisformula is not valid. There is a counter-example oflength 12:rd:[obs], rpcCall, rd, atmrd, rtn, rpcRtn,rpcCall, rd, atmrd, rtn, rpcRtn, rtn:[obs];where we have left out most of the parameters. Thecounter-example arises because the speci�cation sys-tem requires exactly one atomic read in every success-ful read call, whereas the implementation is allowedto retry on failure.Fortunately, we can let Mona establish�Pi(�) ) 9�: R̂i(�; �); (6)where R̂i(�; �) def� �ObsPi;Si(�; �) ^ �Si(�; �) is the ca-nonical trace abstraction. Thus, �Pi implements �Si .To avoid explicitly modeling the whole system atthe implementation level, we use the proof rule for8



compound systems. The compatibility premise ofTheorem 2.2 becomes:î 9�i : R̂i(�; �i) ) 9� : î R̂i(�; �): (7)However, the existential quanti�cation on the righthand side of the implication leads to a state explosionthat cannot be handled by the Mona tool.Instead, we can exploit the information that thecounter-example provided to formulate a more pre-cise trace abstraction. So we have de�ned predicatesthat in more detail describe how internal events atone level relate to internal events at the other level.For example, we may add our intuition that betweenany successful read and its corresponding return atthe implementation level only the last atomic read ismapped to an atomic read on the speci�cation level.This formula, which we denote by  i, looks like:8t1; t2: (t1 < t2 ^�(t1) = rd : [?; obs; i] ^�(t2) = rtn : [?; ?; normal; obs; i] ^:�Betweenrd:[?;obs;i](�; t1; t2) ^:�Betweenwrt:[?;?;obs;i](�; t1; t2))) (9t: t1 < t < t2 ^�(t) = �(t) = atmrd : [?; ?; ?; i] ^:�Betweenatmrd:[?;?;?;i](�; t; t2) ^:�Betweenatmrd:[?;?;?;i](�; t1; t) ^:�Betweenatmrd:[?;?;?;i](�; t; t2)):We de�ne the new trace abstractions Ri(�; �) to beequal to R̂i conjoined with the  i and two other sim-ilar predicates (one stating that any event on the pro-gram level|but an atomic read|is matched by thesame event on the speci�cation level; the other stat-ing that an atomic read event on the program level ismatched by either an atomic read event or a � eventon the speci�cation level). With Ri, the Mona toolproves formulas (6) and (7) within minutes.The compatibility property (7) is stated in a singleM2L formula of size 105 with approximately 32 visiblevariables at the level of deepest nesting (correspond-ing to an alphabet size of 232). During its processing

automata with millions of BDD nodes are created.The proof required user intervention in the form ofan explicit (but natural) ordering of BDD variables.Also, we have supplied a little information about eval-uation order in the form of parentheses.6 ConclusionWe have o�ered a practical alternative to the use ofre�nement mappings. We have indicated how the usercontribution of information about behavioral similar-ities directly can be used to reduce the computationalwork involved in guessing internal events when twodistributed systems are compared.Our method is entirely formulated within M2L:state machines, temporal properties, �nite domains,and veri�cation rules all take on the syntax of theMona system.Our experiments show that very complex temporallogic formulas on �nite segments of time can be de-cided in practice|quite in contrast to the situationfor temporal logic on the natural numbers.References[1] M. Abadi and L. Lamport. The existence of re-�nement mappings. Theoretical Computer Sci-ence, 82(2):253{284, 1991.[2] M. Abadi and L. Lamport. Conjoining speci�c-ations. Technical Report Report 118, DigitalEquipment Corporation, Systems Research Cen-ter, 1993.[3] M. Broy and L. Lamport. Speci�cation problem,1994. A case study for the Dagstuhl Seminar9439.[4] E. M. Clark, I.A. Browne, and R.P Kurshan. Auni�ed approach for showing language contain-ment and equivalence between various types of!-automata. In A. Arnold, editor, CAAP, LNCS431, pages 103{116, 1990.[5] E. M. Clarke, O. Grumberg, and D. E. Long.Veri�cation tools for �nite-state concurrent sys-tems. In A Decade of Concurrency, pages 124{175. Springer-Verlag, 1993. Lecture Notes in9
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