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Abstract

We propose a practical framework for integrating the
behavioral reasoning about distributed systems with
model-checking methods.

Our proof methods are based on trace abstractions,
which relate the behaviors of the program and the spe-
cification. We show that for finite-state systems such
symbolic abstractions can be specified conveniently in
a Monadic Second-Order Logic (M2L), which allows
the concise expression of many temporal properties.
Model-checking is then made possible by the reduc-
tion of non-determinism implied by the trace abstrac-
tion.

We outline how our method can be applied to a re-
cent verification problem by Broy and Lamport. In an
accompanying paper [11], we give a detailed account.
The resulting complex temporal logic formulas are as
long as 10-15 pages and are decided automatically
within minutes.
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1 Introduction

This paper is concerned with the specification and
verification of distributed systems. Often, the rela-
tionship between a program and a specification is ex-
pressed in terms of a state-based refinement mapping,
see [18] for a survey. Thus, when systems are specified
by behavioral or temporal constraints, it 1s necessary
first to find state-representations. In this process, im-
portant information may be lost or misconstrued.

In this paper, we exhibit a logic of traces (i.e.
finite computation sequences) that allows composi-
tional reasoning directly about behaviors. We for-
mulate frace abstractions and their proof rules as an
alternative to the use of refinement mappings for the
verification of distributed systems.

Our main goal is to show that our method is useful
in practice. Thus, use of our logic and proof rules
must be supported by a decision procedure that will
give answers to logical questions about the systems,
such as “Does trace abstraction R show that program
P implements specification S7”

To this end, we formulate a sound and complete
verification method based on trace abstractions. We
show that our method for finite-state systems can be
formulated in a very succinct formalism: the Monadic
Second-order Logic (M2L).

We address the important problem of relating a dis-
tributed program to a non-deterministic specification
that also is a distributed system. Non-determinism
arises when systems have alphabets that are par-
tioned into observable and internal actions. Abstract-



ing away internal actions generally introduces non-
determinism.

Our contribution is to show an alternative to usual
techniques, which tend to involve rather involved con-
cepts such as prophecy variables or mappings to sets
of sets of states. These can be replaced by behavioral
predicates that need only to partially link the program
and the specification. The remaining information is
then calculated automata-theoretically by means of
the subset construction.

We formulate a compositional rule to avoid the ex-
plicit construction of the global program space.

Using the Mona implementation of M2L, we have
verified a recent verification problem by Broy and
Lamport by transcribing several pages of informally
stated temporal properties. The formulas resulting
are decided in minutes despite their size (10° charac-
ters). We give here only an overview of our approach
to the Broy and Lamport problem. A detailed treate-
ment can be found in [11].

1.1 Relations to previous work

The systems we define are closely related to those de-
scribed by Hoare in [9], where an alphabet ¥ and a set
of traces over X is associated with every process. We
use a composition operator, similar to Hoare’s paral-
lel operator (|| [9]) forcing systems to synchronize on
events or actions shared by both alphabets.

State mappings—one of the most advocated meth-
ods for proving refinement, see e.g. [17, 15, 16, 10]
and for a survey [18]—were introduced as a way to
avoid behavioral reasoning, often regarded as being
too complex. The theory of state mappings is by now
well-understood, but not simple, with the complete-
ness results in [1, 12, 20]. In the finite state case,
an important difference between the state mapping
approach and ours is: in the traditional approaches,
the mapping is to be exactly specified state by state,
whereas in our approach the relation between behavi-
ors may be specified partially leaving the rest to our
verification tool.

In [2], Lamport and Abadi gave a proof rule for
proving correctness of implementation of compound
systems based on an assumption/guarantee method.
A closed compound system 1s split into a number of
open systems by factoring out dependencies as as-

sumptions. OQur rule is very different in that depend-
encies are reflected in a requirement about the rela-
tionship between trace abstractions for components.

The TLA formalism by Lamport [16] and the tem-
poral logic of Manna and Pnueli [10] offer unified
frameworks for specifying systems and state map-
pings, and for proving the correctness of implementa-
tion. Both logics are undecidable, but work has been
done on establishing mechanical support, see [6, 7].

Clarke, Browne, and Kurshan [4] have applied
model checking techniques to the language containe-
ment problem (L(M;) € L(Ms)), where M; and
My are w-automata. They reduce the containment
problem to a model-checking problem by forming a
product of the automata and checking whether the
product is a model for a certain CTL* formula.
The method is applicable to any common kind of w-
automata. Thus it deals with liveness properties un-
like our method, which only deals with logic over finite
prefixes. However, the method in [4] suffers from the
restriction that Ms be deterministic.

Kurshan, see [13], has devised an automata-
theoretic framework for modeling and verifying syn-
chronous transition systems. His use of homomorph-
1isms allow complex properties to be reduced to ones
that can be verified by means of model-checking.

Kurshan’s methods were extended in [14] to the
asynchronous input/output automata of [17]. There,
Kurshan et al. give an account of interleaving com-
position in terms of conventional, synchronous auto-
mata. Our treatment of concurrency is similar in its
use of stuttering for modeling asynchrony except that
we do not consider fairness (which is a property of
infinite sequences). A principal difference is that our
proposal is based on comparing sequences of events,
whereas the method of [14] is essentially state-based
or event-based.

Binary Decision Diagrams (BDDs) are usually used
in verification to compactify representations of state-
spaces, see e.g. [5]. The Mona implementation [8] of
a decision procedure for M2L uses BDDs to handle
large alphabets.

1.2 Overview

In Section 2, we discuss our formal framework, which
is based on an interleaving semantics of processes that



work in a global space of events. M2L is explained in
Section 3. We show in Section 4 that with some ad-
ditional concepts, it is possible to formulate the veri-
fication method of Section 2 in M2L. In Section 5, we
explain the role of trace abstractions in our solution
of the Broy and Lamport verification problem.

2 Traces and abstractions

We regard systems in a fairly standard way: they
are devices that produce sequences of events that
are either observable or internal. Systems exist in
a universe. They can be composed and compared.
Trace abstractions relate a program to a specifica-
tion. These abstractions form a sound and complete
verification method, and a simple decomposition rule

18 easy to formulate.

2.1 Systems and universes

A system A determines an alphabet ¥, of events,
which is partioned into observable events ¥.§% and
internal events 1. A behavior of A is a finite se-
quence over %4. The system A also determines a
prefix-closed language L4 of behaviors called traces
of A. We write A = (La,X9% X)), The projec-
tion m from a set X* to a set X" (X' C ) is the
unique string homomorphism from ¥* to ¥'* given
by m(a) = a, if ais in ¥/, and m(a) = € otherwise,
where € is the empty string. The observable behaviors
of a system A, Obs(A), are the projections on ©¢%
of the traces of A, that is Obs(A) = {7(«) | a € La},
where 7 is the projection from X% onto (£§%%)*.

A system A is thought of as existing in a universe
which contains the systems with which it 1s composed
and compared. The events possible in this universe
constitute a global alphabet I/, which contains X4
and all other alphabets of interest. Moreover, U is
assumed to contain the distinguished event 7, which
is not in the alphabet of any system. The set Nx(A)
of normalized traces over an alphabet ¥ D ¥4 is the
set h™1(L4), where h is the projection from ¥* onto
¥% . Normalization plays an essential role when com-
posing systems and when proving correctness of im-
plementation of systems with internal events.

2.2 Composition

We say that systems A and B are composable if they
do not disagree on the partition of events, that is, if
no internal event of A is an observable event of B
and vice versa, or symbolically, if Ej{(” N Egbs =0

and ¥ 0 29% = (. Given composable systems

A and B, we define their composition A || B =
ob T

(LAIIBaEAHSBa AT|L|tB)’ where

e the set of observable events is the union of the
sets of observable events of the components, that

: Obs _ vObs Obs
1S,EA”B_EA UXg%,

e the set of internal events 1s the union of the sets
of internal events of the components, that is,
EXWB = 21{{” U EJIBM, and

e the set of traces is the intersection of the sets of
normalized traces with respect to the alphabet
EAHBa le. LA||B = NEA“B (A) N NEA“B (B)

(Note that the restriction above for composability en-
sures that A || B has also disjoint observable and
internal events.)

A trace of A || B is the interleaving of a trace of
A with a trace of B in which common events are
synchronized. The projection of a trace of A || B
onto the alphabet of any of the components i1s a
trace of the component. Composition is commutative,
idempotent, and associative, and extends straightfor-
wardly to any number n of composable systems A;.

We write Ay || ... || An or just || A;.

Example 2.1 To make the concepts clearer, we show
how to present the well-known scheduler [19] of
Milner in terms of our systems. The distributed
scheduler is based on passing a token consecutively
between a number of computing agents. We consider
a three-agent version of the scheduler. The ith agent
S; performs observable events a; and b; to indicate
the begining and the end of computing, respectively,
and 1t synchronizes with its neighbor agents by inter-
acting on the internal events ¢; and ¢;o1, where 7 1s
0, 1, or 2, and & is subtraction modulo 3.



For a regular expression r, we denote by Epre(r)
the regular language obtained by taking the prefix-
closure of the language associated with r. Thus the
agents may be described by:

So = ([,Pre((ao(?o(boCQ + Czbo)) ), {ao, bo}, {Co, Cz}),

Sl = ([/Pre (Co(a161 (b160 + CObl;)*)’ {al, bl}, {Co, Cl}),

52 = ([/Pre (61(0262(17261 —|— Clbz )*), {Clz, bz}, {Cl, Cz})

The scheduler is defined in terms of the compound
system:

S = Sollsul S

where the set of observable events then consists of the
a;’s and b;’s.

2.3 Implementation

We say that systems A and B are comparable if they
have the same set of observable events X% that is,
$Obs = 3Qbs = 9% In the following, A and B de-
note comparable systems and 7 denotes the projection
from U* onto (X9%%)*.

Definition 2.1 A
Obs(A) C Obs(B).

implements B if and only if

Example 2.2 Another way of defining a scheduler is
to use a central agent C'. The ¢th agent still performs
observable events a; and b; but now synchronizes with
the agent C' by interacting on the internal event d;.
The agents are given by the systems

C
P

(LP7e((dododydydads)*), B, {do, dy, da}),
([’Pre((diaidibi)*)a {aia bl}a {dl})a 1=10,1,2

and the scheduler is defined by the compound system:

P Poll Pyl P[] C
where the observable events are the a;’s and b;’s and
internal events are the d;’s.

The systems S and P may be seen as existing in
the universe U = {a;, b;,¢;,d;, 7|7 =0,1,2} and are
clearly comparable. The reader may convince himself
that P implements S, but in general this not an easy
task.

2.4 Relational trace abstractions

A trace abstraction is a relation on traces preserving
observable behaviors.

Definition 2.2 A trace abstraction R from A to B
1s a relation on U™ x U* such that

1. If aR 3 then 7(o) = #(5)
2. Ny(A) Cdom R
3. rng R C Ny (B)

The first condition states that any pair of related
traces must agree on observable events. The second
and third condition require that any normalized trace
of A should be related to some normalized trace of B,
and only to normalized traces of B. The use of trace
abstractions forms a sound and complete method in
the sense that there exists a trace abstraction from A
to B if and only if A implements B.

Theorem 2.1 There exists a trace abstraction from
A to B if and only if A implements B.

We would like to prove that a compound system
[| A; implements another compound system || B; by
exhibiting trace abstractions R; from A; to B;. A
simple extra condition is neeeded for this to work:

Theorem 2.2 Let A; and B; be pairwise comparable
systems forming the compound systems ||A; and || B;.

If

(1)
(2)

R; 1s a trace abstraction from A; to B;

(; dom R; C dom (), R;

then
[|4; implements ||B;

Intuitively, the extra condition (2), which we call the
compatibility requirement, ensures that the choices
defined by the trace abstractions can be made to agree
on internal events.

Due to the possibility of non-trivial interference on
internal events among the component systems, the
first premise alone of the composition rule is not suf-
ficient to ensure the conclusion. Consider e.g. the
following systems

A = ({a}*a {a}a 0),
Ay = ({b}*a {b}a 0),

By = ({act*{e,a}, {a},{c})
By = ({bc}*{¢, b}, {b},{c})



Obs(A;) C Obs(B;), but Obs(A;y || A2) € Obs(By ||
Bs), since aa € Obs(A; || Az), but aa ¢ Obs(By ||
Bs).

The next example illustrates that even when signi-
ficant internal interaction exists among the compon-
ents, the decomposition theorem may be applied.

Example 2.3 Consider the schedulers from before.
For each : = 0,1,2, let x; be the string homomorph-
ism from U* to U* mapping every string « into a
string identical to a except that every occurrence of ¢;
18 erased and every even occurrence of d; is replaced
by ¢;. Formally, x;(¢) = ¢ and for o € U* and v € Y,

xi(a)e; ifu=d; and
the number of d;s in o 1s odd
xi(au) = xi(a) if u=c¢
Xi(a)u  otherwise

Let x = xo0 © x1 0 x2. It 1s not hard to check that
the relations R; = {(a, x(a)) | x(a) € Ny (S;)} are
trace abstractions from P; || C' to S;, respectively.
(Requirements 1. and 3. are satisfied by definition.
To see that 2. holds, we consider some o« € Ny (F; ||
() and argue that x(a) € Ny(S;).) Also, it is not
hard to see that (), dom R; C dom [, R;. (For
each « there is exactly one y(«).) Hence by Theorem
2.2, it follows that (Py || C) || (PL ]| C) || (P2 || C)

implements S and therefore that P implements S.
An almost trivial observation is:

Corollary 2.1 If additionally the components of the
specification are non-interfering on internal events,
that is, L4 N Eg;t = (@, for every i # j, then A;
implements B; implies ||A4; implements || B;.

3 Monadic second-order logic
on strings

The logical language we use is the monadic second-
order logic (M2L) on strings, where a closed formula
is interpreted relative to a natural number n (the
length). First-order variables p,q,... range over the
set {0,...,n — 1} (the set of positions), and second-
order variables P, @, ..., P1, Po,...range over subsets
of {0,...,n — 1}. Atomic formulas are of the form

p=¢q,p=q+1 p<qand ¢ € P. Formulas are
constructed in the standard way from atomic formu-
las by means of the Boolean connectives —, A, V, =
and <, and first and second-order quantifiers V
and 3. We adopt the standard notation of writing
é(P1y..., Ps,p1,...,p1) to denote an open formula ¢
whose free variables are among Py, ..., Py, p1,..., 00
Let 0 and $ be the M2L definable constants denoting
the positions 0 and n— 1, respectively. The expressive
power of M2L is illustrated by the formula

JPOEPA(Vpp<S=>(pePep+1¢gP))

which defines the set of even numbers. A second-
order variable P can be seen as denoting a string
of bits by...b,_1 such that b; = 1 if and only if
¢t € P. This leads to a natural way of associating
a language L(¢) over ¥ = IB™ of satisfying inter-
pretations to an open formula ¢(Py, ..., Py) having
only second-order variables occurring free (B denotes
the set {0,1}). As an example, consider the formula
¢ =Vpp € PL < p & Po. Then L(¢) is a language
over the alphabet ¥ = IB? where each (by,bs) € IB*
denotes the membership status of the current position
relative to P and P». For example, writing the tuples
as columns, we have

P,:11010 P,:11010
Py 00101 € L(¢) and Py 01000 ¢ L(¢)

Any language defined by a M2L formula is regular
and conversely any regular language can be defined
by a M2L formula. Given a formula ¢, a minimal
finite automaton accepting L(¢) can effectively be
constructed using the standard operations of comple-
mentation, product, subset construction, and projec-
tion. In particular, the existential quantifier becomes
associated with a subset construction—and a poten-
tial exponential blow-up in the number of states. The
construction of automata constitutes a decision pro-
cedure for M2L, since ¢ is a tautology if and only if
L(¢) is the set of all strings. In case ¢ is not a tau-
tology, a witness in terms of a minimal interpretation
falsifying ¢ can be derived from the minimum determ-
inistic automaton recognizing L(¢). We use the tool
Mona [8], which implements the decision procedure
and the counter-example facility.



4 The finite state case

We now restrict attention to systems with regular
trace languages. We show for a large class of finite-
state systems that trace abstractions definable by reg-
ular languages constitute a complete method for prov-
ing the implementation property.

Given strings @« = ap...a, € X} and § =
Bo...Bn € X5, we write a8 for the string
(ag, Bo) ... (an, fBn) € (21 X X2)*. Every language
Ly over a product alphabet ¥; x X5 has a canonical
embedding as a relation Ry C X7 x X5 on strings of
equal length given by o € Lz gaRLﬁ. Hence
in the following we shall use the two representations
interchangeably. Accordingly, we say that a trace ab-
straction is regular if it is the embedding of a regular
language over U x U.

Not all trace abstractions between finite-state sys-
tems are regular; since there may be an unbounded
number of internal events between pairs of corres-
ponding observable events. The next definition is
an essential step towards the identification of regu-
lar trace abstractions.

Definition 4.1 Given a subset ¥/ of X, we say that
strings «, 3 € X* are Y'—synchronized if they are of
equal length and if whenever the ith position in « con-
tains a letter in X’ then the 7th position in 2 contains
the same letter, and vice versa.

Definition 4.2 Let R be the language over U x U
given by o™ 3 € R if and only if

B € Ny(B) and «,f are B9 -synchronized

Since Ny (B) is a regular language (by assumption of
this Section), so is R. The next proposition gives a
sufficient condition for R and any regular subset of
R to be a trace abstraction. We return to the signi-
ficance of the last part when dealing with automated
proofs.

Proposition 4.1 If Ny (A) C dom R then R is a
regular trace abstraction from A to B. Moreover in
general, for any regular language C C (U x U)*, if
Ny (A) C dom R N C, then R NC is a regular trace
abstraction from A to B.

It is not hard to see that if R is a regular trace
abstraction, then it is the largest such relating %9%*-

synchronized traces. In this case, we denote R the
canonical trace abstraction.

Non-regularity of trace abstractions occurs if for
example there are arbitrarily many non-observable
events between any two observable events. However,
it may also happen that a behavior of the program
may have too few internal events between two ob-
servable events in the sense that any behavior of the
specification with the same observable behavior may
require more internal events. We next give a precise
definition of this phenomenon. Let 74 and wp be

the projections from X% and X%, respectively, onto
(EObs)*.

Definition 4.3 A trace o € L4 is internally finer
than a trace # € Lp if ma(a) = mp(3), and for all
6,6/ c EObs,u c (Eint)*’v c (EIBnt)*,Oll,Olz c EZ
and f1, B2 € L%, such that m4(aq) = 75(51)

a=ajeuc’as A = Peve B
v = [u| > [v]
a = ue'asy AN B =wve By

A system A is internally finer than a system B if for
any trace « of A such that m4(«) € Obs(B), there
exists a trace § of B such that « is internally finer

than 5.

Consider the scheduler example. System P is intern-
ally finer than S, whereas the converse is not true. We
restate the soundness and completeness result from
the general case for a constrained class of systems
and regular trace abstractions.

Theorem 4.1 Assume that A is internally finer than
B. There exists a canonical trace abstraction from A
to B if and only if A implements B.

The restriction on programs to be internally finer
than their specifications can be overcomed simply by
adding more internal behavior to the program. More
precisely, given systems A and B there always exists
a system A’ such that A and A’ have the same observ-
able behaviors, that is, Obs(A) = Obs(A’), and such
that A’ is internally finer than B. E.g. using S, =
(,Cpre((dododoCo(boCz+Czb0))*), {Clo, bo}, {Co, Ca, do})
instead of Sp and with similar changes using S}
and S} for S; and Ss, respectively, we have that
S = Sy || Sy |l Sh is internally finer than P and
that Obs(S) = Obs(S").



4.1 A uniform logical framework

In the finite setting, reasoning about systems can con-
veniently be expressed in M2L. Let 4 = IB™ be the
universe, where m is a natural number. Any behavior
a over U can be viewed as an interpretation of a se-
quence of second-order variables Uy, ..., US%. So be-
haviors over, say, 1024 different events may be coded
using just 10 variables.

We use for each event ¢ = (by,...,by) €U and «
the notation «(t) = o for the M2L predicate

(Nteum) n(N\tgus),

bi=1 b;=0
which states that the behavior denoted by « has a o
event in the position denoted by t. A system A =
(La, X290, EI{(”) is represented by a triple

(¢A, Obs’ 1147”)

of formulas defining the normalized traces of the sys-
tem, ¢ 4(c), the observable events, Q% (a,t), and the
internal events, ¢/**(,t). That is, Ny/(A) = L(¢a)
and ¢9%(a, )) and (/)I”t(oz,t) are predicates that are
true if and only if the position denoted by ¢ in the be-
havior denoted by « is an element of Egbs and 21{{”,
respectively. Given composable systems A and B,
composition is represented by

A||B:(¢A/\¢B, bsv¢Obs’¢1ntv¢1nt).

We have that L(qf)A/\¢>B) (qf)A)ﬂL(qf)B)INu(A ||
B) and that ¢ V ¢9% and ¢4t v ¢I* defines the

union of the observable and the internal events, re-

spectively. Let now behavior 3 be represented by

Uf, ..., UP . The property that behaviors a and 3 in

U* are 9% _synchronized is expressed by predicate
Qbs "5 (v, B) defined by

V(637 (o, 1) V 957 (1) = alt) = B(1).

The canonical trace abstraction R of Definition 4.2 is

defined by

[oR
LN

Rapl@.8) = ¢5(8) A 63%(a.B).

By Proposition 4.1 and Theorem 4.1, the implement-
ation property is implied by Ny (A) C dom R and
hence by the validity of

¢A(a) = Elﬁ : ﬁA,B(aaﬁ)a (3)

where 38 is defined as EIUf UL . Let Ri(a, B) = o

7@14“31(0[, B) A ¢i(e, B). The premises of the decom-
position rule in Theorem 2.2 are expressed by

/\(m () = 30:Ri(a,B))
/\3@.

To express the premise of Corollary 2.1 simply replace
equation (5) above by

A\t

12

(4)

(e, B) = HB:ARi(a,ﬁ). (5)

Int

= 05" (a.).

Also, properties like composability and comparability
can be expressed. The former by

vt ( 1{{”(
(65" (o

and the latter by

t) = 265" (o, 1)) A
1) = =03 (1))

Vi 69 (a,t) < 9% (a,t).

In general, M2L is a very flexible logical language
making it easy to write tense time and interval tem-
poral logic operators in a straightforward manner.
As examples, consider the past operator (/)?Zf”e(a)

defined by
th.a(tl) = = Ttg.tg < t1 A Oz(to) =0
and the interval operator ¢Z¢™we® (o ), 15)

dtt <t <ty A a(t) = 0.

4.2 Automated proofs

Formulas (3), (4), and (5) are potentially very diffi-
cult, since they involve quantification over behaviors,
that is, over m second-order variables. Each quanti-
fication can lead to an exponential blow-up. But if A
has much internal behavior, then it seems reasonable
to use a more clever trace abstraction guided by A’s
internal events. In fact, it must be suspected that
it is inappropriate that the definition of R does not
involve A at all.



The canonical trace abstraction can be constrained
by adding more precise information about the connec-
tion between the internal behavior of system A and
B. This may reduce the blow-up—or even avoid it
in the case a functional regular trace abstraction is
formulated.

We next turn to a substantial verification problem
to illustrate our technique.

5 A specification problem

In this section, we consider the problem proposed by
Broy and Lamport [3]. The first part of [3] calls for
a specification of a reactive system consisting of a
number of sequential processes issuing blocking read
and write calls to a memory server. The memory
server maintains its memory by performing special
atomic reads and writes whenever requested to do so
by read and write calls. Depending on the success
of atomic reads and writes, return events contain the
answers to read and write calls. The memory must be
able to handle several calls (from different processes)
concurrently.

The second part of [3] calls for an implementation
based on a remote procedure call (rpc) protocol. The
protocol involves a local and a remote party. Calls re-
ceived locally are forwarded to the remote site, where
they are executed. The resulting return events are
propagated back to the local site. Altogether, we deal
here with four levels of calls and returns.

The goal of [3] is now to verify that every observable
trace of the implementation (where atomic read and
writes and the remote events are abstracted away) is
an observable trace of the specification.

The full informal description [3] includes many
technical complications concerning the parameters
passed and different kinds of erroneous behaviors. A
detailed presentation of our solution can be found in
[11].

In performing the verifications, we have limited
ourselves to finite domains. We have chosen to have
two locations, two kinds of values, two kinds of flags,
and two process identities (in addition to the memory
process). The resulting program has approximately
a hundred thousand states and the specification ap-
proximately a thousand states. The systems allow

thousands of different events. The systems are mod-
elled as deterministic automata. The full specification
amounts to 10-15 pages of M2L formulas (written in
a macro language).

The aspect that we are interested in here is the use
of trace abstractions. Without going into any further
details, we assume that the M2L formulas ¢p, A ¢p,
and ¢s, A ¢g, define the implementation and the spe-
cification, respectively, of our solution (each conjunct
specifies the behavior of one process). The universe i
consists of 7 and a number of parameterized events:
rd, wrt, rtn, atmrd, atmwrt, rpeCall, rpcRtn denoting
reads, writes, returns, atomic reads, atomic writes,
rpc calls and rpc returns respectivly. For example,
rd : [7,0bs, 1] is a read event, where the first para-
meter 1s unspecified, the second is obs, which stands
for an observable event, and the last parameter 1 de-
notes the process id. A similar notation is used for
other events.

The Mona tool is currently not able to handle auto-
mata of the size corresponding to the distributed pro-
gram just discussed. Hence we prove the correctness
of the implementation by using our composition rule.
The obvious idea is to try whether

¢p (@) = ¢s,(a)

holds (for i = 1 or i = 2; the formulas are symmetric).
The Mona tool, however, quickly determines that this
formula 1s not valid. There is a counter-example of
length 12:

rd:[obs], rpcCall, rd, atmrd, rin, rpcRin,
rpeCall, rd, atmrd, rin, rpcRin, rin:{obs],

where we have left out most of the parameters. The
counter-example arises because the specification sys-
tem requires exactly one atomic read in every success-
ful read call, whereas the implementation is allowed
to retry on failure.
Fortunately, we can let Mona establish
qbpl(oz) = Hﬁ 'R,Z'(Oé,ﬁ), (6)
where ﬁi(a,ﬁ) o gﬁssl(a,ﬁ) A ¢s,(a, F) is the ca-
nonical trace abstraction. Thus, ¢p, implements ¢s,.
To avoid explicitly modeling the whole system at
the implementation level, we use the proof rule for



compound systems. The compatibility premise of

Theorem 2.2 becomes:

/\Hﬁi:ﬁi(a,ﬁi) = HﬁzAﬁi(a,ﬁ). (7)

However, the existential quantification on the right
hand side of the implication leads to a state explosion
that cannot be handled by the Mona tool.

Instead, we can exploit the information that the
counter-example provided to formulate a more pre-
cise trace abstraction. So we have defined predicates
that in more detail describe how internal events at
one level relate to internal events at the other level.
For example, we may add our intuition that between
any successful read and its corresponding return at
the implementation level only the last atomic read is
mapped to an atomic read on the specification level.
This formula, which we denote by ;, looks like:

th,tz. (tl <ty A
aty) =rd:[7,0bs,i] A
a(ts) = rin : [7,7, normal, obs, i A

Between
ragr,obs,i (@t t2) A

B 5:%;?701)5,2'](0[’151’152))

(Ftty <t<ts A
a(t) = B(t) = atmrd : [7,7,7,4 A

Between
“Patmrd(r7,2, (¥ L t2) A

- fti;tztﬁ;:e[g,?,?,i](ﬁatlat) A
B
_'qbati)t@?;:e[?,?,?,i](ﬁa t,t2)).

We define the new trace abstractions R; (e, 5) to be
equal to R; conjoined with the ¢; and two other sim-
ilar predicates (one stating that any event on the pro-
gram level—but an atomic read—is matched by the
same event on the specification level; the other stat-
ing that an atomic read event on the program level is
matched by either an atomic read event or a 7 event
on the specification level). With R;, the Mona tool
proves formulas (6) and (7) within minutes.

The compatibility property (7) is stated in a single
M2L formula of size 10° with approximately 32 visible
variables at the level of deepest nesting (correspond-
ing to an alphabet size of 23?). During its processing

automata with millions of BDD nodes are created.
The proof required user intervention in the form of
an explicit (but natural) ordering of BDD variables.
Also, we have supplied a little information about eval-
uation order in the form of parentheses.

6 Conclusion

We have offered a practical alternative to the use of
refinement mappings. We have indicated how the user
contribution of information about behavioral similar-
ities directly can be used to reduce the computational
work involved in guessing internal events when two
distributed systems are compared.

Our method is entirely formulated within M2L:
state machines, temporal properties, finite domains,
and verification rules all take on the syntax of the
Mona system.

Our experiments show that very complex temporal
logic formulas on finite segments of time can be de-
cided in practice—quite in contrast to the situation
for temporal logic on the natural numbers.
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