
, , 1?? ()c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.Automata Based Symbolic Reasoning inHardware Veri�cation *DAVID BASIN basin@informatik.uni-freiburg.deInstitut f�ur Informatik, Albert-Ludwigs-Universit�at Freiburg, Am Flughafen 17, D-79110 Freiburgi. Br., GermanyNILS KLARLUND klarlund@research.att.comAT&T Labs - Research, 180 Park Avenue, Florham Park, NJ 07932Editor:Keywords: veri�cation, automaton,BDD, parameterizedhardware,WS1S, S1S, Monadic Second-order logicAbstract. We present a new approach to hardware veri�cation based on describing circuits inMonadic Second-order Logic (M2L). We show how to use this logic to represent generic designslike n-bit adders, which are parameterized in space, and sequential circuits, where time is anunbounded parameter. M2L admits a decision procedure, implemented in the Mona tool [17],which reduces formulas to canonical automata.The decision problem for M2L is non-elementary decidable and thus unlikely to be usable inpractice. However, we have used Mona to automatically verify, or �nd errors in, a numberof circuits studied in the literature. Previously published machine proofs of the same circuitsare based on deduction and may involve substantial interaction with the user. Moreover, ourapproach is orders of magnitude faster for the examples considered. We show why the underlyingcomputations are feasible and how our use of Mona generalizes standard BDD-based hardwarereasoning.1. IntroductionCorrectness of hardware systems can be established by enumeration when the possi-ble behaviors are �nite, or formal theorem proving, when the possible behaviors arein�nite. The �nite case arises when reasoning, for example, about combinationalcircuits: these can be represented as functions in Boolean logic and correctnesscan be established by enumeration of possible inputs and outputs. Although anyhardware system is of �nite size, the in�nite case may arise in several ways. Onemay be interested in demonstrating the correctness of an in�nite family of relatedsystems, for example, families of arithmetical circuits like n-bit adders or n-bitcounters, whose description depends uniformly on the parameter n. Alternatively,the behavior of a single circuit may depend not only on current inputs, but onprevious values as well. For example, the behavior of a sequential circuit is a func-tion of time, and one may want to establish that the circuit behaves correctly overarbitrarily long time intervals.* This article is a revised and extended version of [1].



2When behaviors are �nite, arguments based on enumeration are popular due tothe optimizations often possible using a symbolic representation like Binary De-cision Diagrams (BDDs). A BDD is an automaton-like representation of a �niterelation or function. In the BDD method, a symbolic representation of the �nitefunction calculated by a combinational circuit is obtained through operations re-ecting the Boolean semantics of the gates. The BDD calculations are often muchfaster than other mechanized means of reasoning and demand little user interven-tion.We present here a generalized method that can automatically establish propertiesof many in�nite relations and functions. Our method is based on a decidable logic,the Monadic Second-order Logic on Strings, abbreviated M2L. In M2L, proposi-tional variables of Boolean logic are generalized to variables that denote stringsof bits. Every M2L formula � de�nes a language over an alphabet Bk, consistingof a cross-product of Booleans: one Boolean for each of the k free variables in �.Strings over this alphabet describe the values of all free variables. The languagede�ned by � then is the possibly in�nite set of strings de�ning values that make theformula true. This correspondence generalizes the way a BDD de�nes a set of sat-isfying truth assignments. Moreover, any such language corresponds to a languagerecognized by a �nite-state machine; hence M2L formulas characterize regularity.We show how to exploit this logical characterization of regularity to reason aboutparameterized classes of circuit designs and their behavior. The language that aformula de�nes can represent words of unbounded size (the behaviors of membersof a parameterized family of circuits) or how the state of a circuit evolves over time.An example of a parameterized family of circuits is an n-bit adder. In M2L,we can write a formula � (cf. x4) that precisely describes how 1-bit adders arecomposed in a ripple-carry fashion to form n-bit adders. Under the semantics ofM2L, � de�nes an input-output relation on two inputs A and B of size n, and anoutput C of size n. This relation can be represented by a language over an alphabetthat has three Boolean components so that a string of length n encodes the valuesof A, B, and C. For example, 0 1 2 3A 1 1 0 0B 1 0 0 0C 0 0 1 0de�nes three rows or tracks of bits. The length n of the string is 4. The positionsof the string (and of the tracks) are numbered from 0 to n � 1. If we assume thatthe least signi�cant bit comes �rst, then the �rst track de�nes A = 3 = 1100.Similarly, we read o� B = 1 = 1000, and C = 4 = 0010. Thus, this string de�nesan interpretation such that the sum of the binary numbers A and B is C. Notethat variable A can also be thought of as denoting a subset, namely the set f0; 1g ofpositions where the A-track contains a 1 (similarly, B denotes the subset f0g, andC denotes f2g). Alternatively, we may view the set denoted by A as a predicateA(p) that holds on position p if and only if there is a 1 in the pth position of the



3A-track. The predicate A(p) is monadic (i.e., of one argument). Thus, when Aoccurs in a formal logic as a variable, it is monadic second-order.This approach to parameterized veri�cation applies to any scenario that can bemodeled as a regular set over alphabets of the form Bk. Not all parameterizedcircuits can be so described (e.g., multipliers and grid-shaped circuits with multipleindependent parameters). However, our examples indicate that, when applicable,both circuits and their properties can be simply expressed in M2L.An example of temporal parameterization is the modeling of an RS ip-op,where a string of length n with three components models the behavior of the circuitthrough n time instants, each described by a letter de�ning the values of the inputsR and S and the output Q. These examples are very easy to formulate in M2L;with a little syntactic sugar, the M2L speci�cations resemble those used in standardhardware description languages.Since any M2L formula � can be reduced to an automaton that accepts thesatisfying interpretations of �, validity is decidable. A formula � is valid (i.e.always true) if the corresponding automaton accepts all strings. Validity testingcan be used to show that the logic of a circuit is consistent with a speci�cation of itsbehavior. For example, if the formula �behavior describes the behavior of an n-bitadder and the formula �circuit describes a proposed realization as a parameterizedcircuit, then the property that the circuit behaves as an adder can be checkedby verifying that the automaton corresponding to �circuit ) �behavior accepts allstrings. If there is some string that is not accepted by the automaton, then thisstring encodes a counter-model, which can be used to debug the proposed design.Remarkably, the decision problem for M2L is non-elementary decidable: a formulaof size n may require time and space bounded below by an iterated stack of expo-nentials whose height is proportional to n. In contrast, Quanti�ed Boolean Logic(QBL), which can formalize combinational logic (and be decided using traditionalBDD operations), is only PSPACE-complete.The Mona tool, described in [17], implements a decision procedure for formulasin M2L on strings (and trees, which we do not consider here). Mona supportspredicate de�nitions, libraries, display of automata, and counter-model generation.Its implementation is based on a generalization of BDDs for the representation ofautomata on large alphabets.Our contributionsWe describe the theory and practice of how M2L, as embodied in Mona, can beused to automatically verify parameterized circuit designs despite the staggeringtheoretical complexity bound. Our results demonstrate how the Mona automatonmodel e�ciently generalizes BDDs to reasoning about in�nite domains that corre-spond to regular languages. The examples we present here o�er various techniquesfor dealing with the in�nite in automatic hardware veri�cation.� Our arithmetic logic unit (ALU) example shows how an in�nite family of com-binational circuits can be concisely described in M2L.



4� Our D-type ip-op example illustrates how M2L can be used as a succincttemporal logic for analysis of di�cult sequential circuits. This example alsodemonstrates howMona serves not only as a veri�cation tool but also providesa means to explore and understand circuit behavior.� Our signal processor example shows how parameterized sequential circuits canbe veri�ed.For the circuits studied both in this paper and in the literature, our approach isorders of magnitudes faster than other theorem-proving approaches. For hardwareproblems expressible in QBL, Mona is as e�cient as the direct use of BDD-basedprocedures, since Mona generalizes standard BDD-based hardware reasoning.We provide some theoretical explanations why M2L is usable in practice despitethe worst-case bounds. In particular, we identify situations where the automata-theoretic subset construction behaves linearly despite its exponential worst-casebound.OrganizationWe proceed as follows. In x2, we introduce M2L. In x3, we present the essentialsof the Mona tool and relate it to BDD-based hardware procedures. In x4, weconsider speci�cation and veri�cation of parameterized combinational hardware. Inx5, we consider timed hardware and we use Mona to analyze temporal propertiesof a D-type ip-op. In x6, we present a signal-processing circuit as an example offormalizing and reasoning about parameterized, sequential hardware. In x7, we givesome theoretical justi�cations for why our approach works in practice. Finally inx8, we compare M2L and our use of Mona to other deduction based and automatatheoretic approaches.2. The Second-Order Monadic Logic on StringsThe Monadic Second-order Logic on strings that we use is closely related to S1S, thesecond-order monadic theory of one successor, and S2S, the second-order monadictheory of two successors, which are among the most expressive decidable logicsknown (cf. [29]). In these logics, �rst-order terms are interpreted over positions inan in�nite string (S1S) or tree (S2S), and second-order variables are interpreted bysubsets of positions. In M2L, �rst-order terms are interpreted over �nite strings.1S1S and S2S are more expressive than M2L, but have not been shown to be feasiblein practice.The correspondence between automata and regular languages is well-known. Thedecidability of the above mentioned logics is based on the well understood (butless widely known) fact that regular languages may be characterized by logics,see [20, 29]. Consider, for example, the automaton
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0 1,which accepts the regular language f1; 10; 101;1010; 10101; : : :g. Now assume thatX is a variable over binary strings. We say that X(p) holds, where p � 0, if thepth position in X is 1. Now, the regular language above can be described in M2Las X(0) ^ 8p : p < $! (X(p) $ :X(p� 1)) ; (1)where $ denotes the last position in the string and � is addition modulo the lengthof the string; thus, the formula states that the �rst (i.e., 0th) letter in the stringX is 1 and that for subsequent positions p, up to the penultimate position, the pthcharacter of X is 1 precisely when the following letter is not.We describe M2L below. It turns out that the logic precisely characterizes regu-larity: every M2L formula describes a regular set and, conversely, every regular setis described by an M2L formula.2.1. SyntaxM2L consists of three kinds of entities: �rst-order terms, second-order terms, andformulas. First-order terms are formed from �rst-order variables p; q; : : : , the con-stants 0 (the �rst position), $ (the last position), and the expressions t � m (themth position to the right from t), where t is a �rst-order term and m is a naturalnumber. Second-order terms are built from second-order variables X;Y; : : : , theconstants empty (the empty set) and all (the set of all positions), and they maybe combined using \ and [. Formulas arise as follows: if t1 and t2 are �rst-orderterms and S1 and S2 are second-order terms, then t1 2 S1, t1 = t2, t1 < t2, andS1 = S2 are formulas. Formulas may be combined by the standard connectives: and ^. Quanti�ers also build formulas: if p and X are �rst and second-ordervariables respectively, and f is a formula, then 91p : f and 92X : f are formulas.The syntax we have given is not minimal, see [29]. For example, �rst-ordervariables can be eliminated by replacing each �rst-order variable with a second-order variable that is constrained to be a singleton set. (This is also the way thatMona handles �rst-order variables.) Also, we will make frequent use of standardde�nitions and syntactic sugar in the remainder of the paper.First, the complete set of propositional connectives, inequality, universal quanti�-cation and the like are all de�nable as is standard in a classical logic. For examplef1 _ f2 is de�ned as :(:f1 ^ :f2) and 82X : f is de�ned as :(92X : :f).



6 Second, since we can view a second-order variable X as a bit vector, we againwrite X(p) for p 2 X.Third, Boolean variables, connectives and quanti�cation over Booleans values arenot part of M2L, but are easily encoded. In particular, each Boolean variable b isencoded by a second-order variable B, and occurrences of b in formulas are encodedas B(�1), where �1 is an extra position, just to the left of the position 0. Theposition�1 is used solely for the simulationof Boolean variables. (We do not use theposition 0 for technical reasons, since experiments have shown that mixing Booleanswith the status of other variables in position 0 lead to unnecessary state explosionsin the automata representations.) In this way, quanti�cation over Booleans (80 and90) is encoded using second-order quanti�cation. For example, the Boolean formula80x; y : :(x^:y) is encoded as the M2L sentence 82X;Y : :(X(�1) ^:(Y (�1))).Finally, when the order of a variable can be determined from context, we mayomit superscripts on quanti�ers. For example, in the expression X(p) ^ b, it mustbe the case that X, p, and b are second-order, �rst-order, and Boolean, respectively.To help disambiguation, we use capital letters for second-order variables and lower-case letters like i, j, p, and q for �rst-order position variables. Remaining lower-casestrings like x, y, cin and cout represent Booleans. With these abbreviations andconventions, (1) is a formula of M2L.2.2. SemanticsA formula is interpreted relative to a natural number n � 0, called the length,which de�nes positions f0; : : : ; n�1g. A �rst-order term denotes a position. Thus,a �rst-order variable ranges over the set f0; : : : ; n � 1g. The constant 0 denotesthe position 0, and $ denotes n� 1.2 The expressions t�m and t	m denote thepositions j +m mod n and j �m mod n, where j is the interpretation of t.A second-order variable P denotes a subset of f0; : : : ; n � 1g. Alternatively, asecond-order variable can be viewed as designating a bit pattern b0 : : : bn�1 of lengthn, where bi is 1 if and only if i belongs to the interpretation of P . The constantsempty and all denote the sets ; and f0; : : : ; n� 1g, and the operators \ and [ arethe usual set theoretic operations.A 0th-order (Boolean) variable is simulated by a special second-order variable,which may contain the non-standard position �1 (and this means \true").The meaning of formulas is straightforward. For example, the formula t 2 Sis true when the position denoted by t is in the set denoted by S. Propositionalconnectives have their standard meaning. 91p : f is true when there is a position iin f0; : : : ; n� 1g such that the denotation of f is true with i replacing p. Truth of92X : f is de�ned similarly, with X replaced by a subset of f0; : : : ; n� 1g.A formula � de�nes a regular language denoting the interpretations that makefree variables in � true. In the formula (1), we have one free variable, X, and theinterpretations that make � true are exactly the strings in the regular languagef1; 10; 101; 1010;10101; : : :g. More generally, if a formula has k free second-ordervariables (and as noted above, all other variables are encoded using second-ordervariables), then the language denoted is over the alphabet Bk consisting of k-tuples



7of Booleans. As a simple example, the formula � given by 8p : P (p) $ :Q(p)de�nes a language L(�) over B2 as follows. We make the convention that if theletter ab 2 B2 occurs in position i, then i is in P i� a is 1 and i is in Q i� b is1. In this way, a string over B2 determines an interpretation of P and Q. Thelanguage denoted is the set of strings describing interpretations that make � true.For example, 0 1 1 01 0 0 1 2 L(�) and 0 1 10 0 0 =2 L(�) :3. The Mona ToolThe Mona tool implements a decision procedure for M2L. Details can be foundin [17, 20]; here, we summarize the main algorithms and data structures.Input to Mona is a script consisting of a sequence of de�nitions followed by aformula to be proved. For each formula � in the script, Mona constructs a de-terministic automaton recognizing L(�). Construction of automata proceeds usingstandard operations (see [29]) by recursion on the structure of �.For example, if � is the formula �1 ^ �2, then Mona �rst calculates the au-tomata Ai recognizing the language corresponding to �i. Second, Mona calculatesthe automaton corresponding to � by forming the product automata of the Aiand minimizing the result. In a similar way, negation corresponds to the automata-theoretic operation of swapping �nal and non-�nal states. Existential quanti�cationcorresponds to a projection, followed by a subset construction, and minimization.More precisely, if the formula � corresponds to an automaton A that reads stringsover the alphabet Bk, then the automaton for the formula 92X:� is built by pro-jection from A by changing it so that it guesses the track corresponding to X. Theresulting automaton is non-deterministic and must be determinized in order to beminimized.Since Mona always stores automata in a minimized form, valid formulas are par-ticularly simple to recognize: they correspond essentially to the trivial automatonwhose single state is both the initial and �nal state with a self-loop as transitionon every input. For any formula � that is not valid,Mona extracts from its corre-sponding automaton a minimal length string de�ning an interpretation making �invalid. We use this procedure to generate counter-examples to proposed theorems.3.1. BDD RepresentationAlthough the automata constructions are in principle standard, we note that theexponential size of the alphabet Bk calls for special consideration|otherwise therepresentation of the transition function for an automaton corresponding to a for-mula with k variables would always necessitate space proportional to 2k. Thus theimplementation in [17] uses multi-valued BDDs to compress the representation ofthe transition function. The exponential blow-up is then often avoided.
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0Figure 1. A BDD-represented automaton.To see how this is possible, consider the formula � � x ^ y _ A = B, where xand y are Boolean variables and A and B are second-order variables. An interpre-tation of this formula is de�ned by a string over B4 whose positions are numbered�1; 0; : : : ; n � 1 and where we assume that the tracks are in the order x; y; A;B.For example, the string �1 0 1 2x 1 X X Xy 0 X X XA X 1 0 1B X 0 1 0de�nes x = 1, y = 0, n = 3, A = f0; 2g, and B = f1g (X means \don't care"). Theautomaton that accepts all strings de�ning satisfying interpretations (i.e., interpre-tations that make � true) is depicted in Figure 1. The automaton has four statesfa; b; c; dg shown in the rectangular box. In practice, the states are just entries inan array. Each state contains a pointer to a BDD node. For example, the initialstate a points to a decision node for x. Thus if the letter in position �1 has a 1 inthe x-component (in the �rst track), then the pointer labeled 1 is followed, and adecision is then made on the y-component. Consequently, if both the x-componentand the y-component have a 1 in the �1st letter, then a leaf marked b is reachedupon reading this letter. This leaf signi�es that the state entered next is b, whichis an accepting state (denoted by an inner square).



9From state b, there is a pointer directly to a leaf. We say that the state islooping|this means that the letter read is irrelevant. Thus the automaton acceptsall strings that de�ne both x and y to be true. If one is false, then the automatonremains in the accepting c state as long as the membership status of the currentposition is the same for A and B.Note that by using the position �1 for the Boolean variables, we have avoided theproblem that an encoding based on position 0 would lead to an ill-de�ned semanticsfor Boolean variables in the case of the empty string (where position 0 does notexist).3.2. Canonicity of BDD RepresentationThe automaton shown above is minimal or canonical in two ways: (1) the BDD rep-resentation of the transition function is reduced (canonical) and (2) the transitionfunction represented and state space are those of the canonical automaton. Therequirement (1) is maintained automatically by the use of BDD algorithms thatreduce the representation as the BDD is calculated. Requirement (2) is enforcedby minimizing each new automaton calculated. The current Mona minimizationalgorithm [17] is quadratic in the size (the number of nodes and states) of the rep-resentation, although in practice minimization is often only about twice as costlyas the product and projection routines.3.3. Relationship to Usual BDDsIf a formula � contains only Boolean variables, then the BDD represented automa-ton has only three states: the initial state and two looping states, one acceptingand one non-accepting. If the pointers of the looping states are deleted, then theresulting graph is identical to the standard BDD representation of � for the giventrack assignment (ordering of variables). Moreover, for propositional logic, and itsextension to Quanti�ed Boolean Logic, the calculations carried out by Mona areessentially identical to those performed by a standard BDD based procedure. Inparticular, the automaton product algorithm described in [17] essentially degener-ates to a BDD binary apply routine. Similarly, the automaton projection essentiallydegenerates to a BDD projection routine. From this it follows thatProposition 1 For any variable ordering chosen for a formula of QBL, Monaessentially performs the same calculations as a standard BDD based algorithm.4. Parameterized Combinational HardwareIn this section, we show how to specify and verify circuit designs parameterizedin their word length. Such parametric designs represent families of circuits. Forexample, an n-bit adder represents a family of adders, one for each n. UsingM2L, we can specify such a family and prove its correctness with respect to aparameterized behavioral speci�cation.
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cinFigure 2. Full 1-bit adder4.1. Preliminaries: Combinational CircuitsWe can de�ne in M2L predicates at a level that formalizes appropriate buildingblocks of circuits. We can represent the behavior of such blocks as functions frominputs to outputs or as relations between external circuit ports. The functionalapproach is used for example in theorem provers based on equational and otherquanti�er free logics (e.g., the prover of Boyer and Moore, NQTHM [18]), whereprimitive components are functions. For example, and is a function from two inputsto an output. Larger circuits are built by function composition.The relational approach is typically used with �rst-order or higher-order logic.Basic components are relations that de�ne constraints between port-values. Theserelations are joined together using conjunction (which combines constraints), andinternal wires are represented by shared variables that are existentially quanti�ed.In [5, 12], these two kinds of representation are discussed in detail. Both optionsare available in our work, and it makes little di�erence which one we choose.We follow the relational approach in specifying circuits. We begin by de�ningbasic gates as relations over Boolean variables. For example:not(a; o) � o$ :aand (a; b; o) � o$ (a ^ b)or (a; b; o) � o$ (a _ b)xor (a; b; o) � o$ ((:a ^ b) _ (a ^ :b))and3 (a; b; c; o) � o$ (a ^ b ^ c)or3 (a; b; c; o) � o$ (a _ b _ c)The left-hand side of each de�nition names a predicate whose meaning is givenby the right-hand side. The actual input to Mona is identical except that ASCIIsyntax, additional key words, and type declarations are required.Let us now build a full 1-bit adder from these gates. One such design is givenin Figure 2. The top half of the circuit consists of two xor gates, connected by aninternal wire w1, that compute the sum bit out. The bottom half uses the valueof internal wire w1 as well as the two inputs a and b to compute the carry-out bitcout. Our de�nition in M2L conjoins the gate descriptions and projects away the
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full adder full adder full adderFigure 3. n-bit adder for n = 3internal wires:full adder (a; b; out; cin; cout) �90w1; w2; w3 : xor (a; b; w1) ^ xor (w1; cin; out)^ and (a; b; w2) ^and (cin; w1; w3) ^ or(w3; w2; cout)Now let us consider our �rst example of a theorem proved byMona. Although theadder is speci�ed as a relation, for each set of inputs, it computes unique outputs.That is, out and cout are functionally determined by a, b, and cin.80a; b; cin : 90out; cout : full adder (a; b; out; cin; cout)^ 80o; co : (full adder (a; b; o; cin; co)! ((o$ out) ^ (co$ cout)))Mona proves this theorem in 0.25 seconds.3 This includes parsing all de�nitions,converting them to automata, and afterwards translating the conjecture into anautomaton. In this case, all calculations are equivalent to standard BDD operations,since we are essentially using just Quanti�ed Boolean Logic.4.2. Correctness of an n-bit AdderThe circuit We turn now to parameterized hardware and consider an n-bit adder.Figure 3 gives an example of this for n = 3. In the general case, an n-bit adder isconstructed by (1) wiring together n 1-bit adders where (2) the carry-out of the ithadder becomes the carry-in of the i+1st. The �rst and last carry are special cases;(3) the �rst carry has the value of the carry-in and (4) the last has the value of thecarry-out.It is easy to formalize this kind of ripple-carry connectivity. Let us use C and Dto represent the carry-ins and carry-outs, respectively. Then we can formalize thegeneral case as the following predicate, which relates three second-order variables(the two input strings A and B and the output string Out) and two Booleans (thecarry-in cin and carry-out cout).n add (A;B;Out; cin; cout) �92C;D : (81p : full adder (A(p); B(p); Out(p); C(p); D(p)))^ (81p : (p < $)! (D(p) $ C(p� 1)))^ (C(0)$ cin)^ (D($)$ cout)



12The four lines of the de�nition body formalize the four requirements listed above.The way we formalize ripple-carry connectivity is independent of the particularcomponent (here a full-adder) that we are iterating. We later use an identicalformalization for specifying an n-bit ALU constructed from 1-bit ALUs.The speci�cation To verify our circuit, we specify how n-bit binary words areadded. Since M2L is a logic about strings and string positions, any arithmeticmust be encoded within this limited language. In particular, we encode addition asan algorithm over strings representing bit-patterns, i.e., binary addition. A simpleway to do this is to mimic how addition is computed with pencil and paper. Theith output bit is set if the sum of the ith inputs and carry-in is 1 mod 2, and theith carry bit is set if at least two of the previous inputs and carry-in are set. The0th carry and the �nal values must be computed as special cases.at least two(a; b; c) � (a ^ b) _ (a ^ c) _ (b ^ c)mod two(a; b; c; d) � a$ b$ c$ dadd(A;B;Out; cin; cout) �92C :( 81p : mod two(A(p); B(p); C(p); Out(p))^ ((p < $)! (C(p� 1)$ at least two(A(p); B(p); C(p))))^ (cout$ at least two(A($); B($); C($)))^ C(0)$ cin)To give the reader a feel for the complexity involved in translating such speci�ca-tions to automata, we mention some statistics for this example. There are, overall,109 product and projection operations performed, and the average number of statesis 5 and BDD nodes is 12. The largest intermediate automaton has 21 states and71 BDD nodes. We will return to this example in x7 and analyze more carefullywhy the state-space does not explode during translation.Veri�cation We now have a speci�cation of the implementation of a family ofadders built from gates and a speci�cation in terms of its behavior over binarystrings. To verify their equivalence, we give Mona the formula82A;B;Out : 80cin; cout :add (A;B;Out; cin; cout)$ n add (A;B;Out; cin; cout) :This formula is veri�ed in 0.4 seconds.Often we are interested in more than one property of a circuit or its speci�cation.For example, the n-bit adder computes a unique function from its inputs to itsoutputs.82A; B : 80cin : 92Out : 90cout : n add(A;B;Out; cin; cout)^ 82O : 80co : (n add (A;B;O; cin; co)! (Out = O ^ (cout$ co)))



13Table 1. Function Table for ALUSelections2 s1 s0 cin Output Function0 0 0 0 F = A Transfer A0 0 0 1 F = A+ 1 Increment A0 0 1 0 F = A +B Addition0 0 1 1 F = A+ B + 1 Addition with carry0 1 0 0 F = A� B � 1 Subtract with borrow0 1 0 1 F = A �B Subtract0 1 1 0 F = A� 1 Decrement A0 1 1 1 F = A Transfer A1 0 0 X F = A _B OR1 0 1 X F = A �B XOR1 1 0 X F = A ^B AND1 1 1 X F = A Complement AWe may also check that the addition function de�ned is commutative.82A;B;Out : 80cin; cout : add (A;B;Out; cin; cout)$ add (B;A;Out; cin; cout)Both of these are veri�ed in under a second.4.3. Correctness of an n-bit ALUWe now apply our approach to a more complex circuit|a parameterized n-bitALU. The circuit we analyze is presented in [23]. It is also an interesting theoremfor comparison (given in x8), since it has been veri�ed in several theorem provingsystems based on induction.ALU speci�cation The ALU is designed to perform 8 arithmetic and 4 logicaloperations. The 12 functions are selected through 3 \selection" lines s0, s1, s2 andthe carry-in cin as described in Table 1. For example, if the si are 0 and cin is 1,then the ALU increments the n-bit input A and places the result in F , producinga carry-out when every bit in F is set.Let us begin by specifying this behavior: we formalize each functional sub-unit(addition, subtraction, etc.) and specify the function table by case analysis onthe values of si. The logical sub-units are speci�ed straightforwardly using thepreviously de�ned gates.transfer(To;From) � To = Fromcompl (A;F ) � 81x : not(A(x); F (x))OR(A;B; F ) � 81x : or(A(x); B(x); F (x))XOR(A;B; F ) � 81x : xor(A(x); B(x); F (x))AND(A;B; F ) � 81x : and (A(x); B(x); F (x))



14For the remainder of the speci�cation, we must develop more arithmetic. Wede�ne an auxiliary predicate one, which is true when a second-order variable rep-resents the number one, i.e., when only the �rst bit is set.one(B) � B(0) ^ 81p : (p > 0! :B(p))We can now de�ne the remaining arithmetic functions using the previously de�nedrelation add.increment(A;F; cout) �90cin : 92N : one(N ) ^ :cin ^ add (A;N; F; cin; cout)add no carry(A;B; F; cout) �90cin : :cin ^ add (A;B; F; cin; cout)add with carry(A;B; F; cout) �90cin : cin ^ add (A;B; F; cin; cout)one compl add(A;B; F; cout) �90cin : 92Comp : :cin ^ compl(B;Comp) ^ add (A;Comp; F; cin; cout)two compl add (A;B; F; cout) �90cin : 92Comp : cin ^ compl(B;Comp) ^ add (A;Comp; F; cin; cout)decrement(A;F; cout) �92V : one(V ) ^ two compl add (A; V; F; cout)Now, using the following auxiliary de�nitionsif 3(a; b; c; d) � (a ^ b ^ c)! dif 4(a; b; c; d; e) � (a ^ b ^ c ^ d)! ewe encode alu spec(s0; s1; s2; A;B; F; cin; cout) by specifying the function table as:if 4(:s2;:s1;:s0;:cin; transfer(A;F )) ^if 4(:s2;:s1;:s0; cin; increment(A;F; cout)) ^if 4(:s2;:s1; s0;:cin; add no carry(A;B; F; cout)) ^if 4(:s2;:s1; s0; cin; add with carry(A;B; F; cout)) ^if 4(:s2; s1;:s0;:cin; one compl add (A;B; F; cout)) ^if 4(:s2; s1;:s0; cin; two compl add (A;B; F; cout)) ^if 4(:s2; s1; s0;:cin; decrement(A;F; cout)) ^if 4(:s2; s1; s0; cin; transfer(A;F )) ^if 3(s2;:s1;:s0;OR(A;B; F )) ^ if 3(s2;:s1; s0;XOR(A;B; F )) ^if 3(s2; s1;:s0;AND(A;B; F ))^ if 3(s2; s1; s0; compl(A;F ))ALU implementation The ALU implementation, as speci�ed in [23], is given inFigure 4. The corresponding M2L formula is encoded analogously to the parame-terized adder. The only additional complication is that the description consists oftwo parts: an initialization block and a repeating ALU block. The �rst part, which
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Figure 4. n-bit ALU (n = 2)we call init computes negations of the selection wires and conjunctions of them andtheir negations.init(s0; s1; s2; v0; v1; n) �90n0; n1 : not(s0; n0) ^ not (s1; n1) ^ not (s2; n) ^and3 (n0; s1; s2; v0) ^ and3 (n0; n1; s2; v1)The remainder of the ALU consists of the regular repetition of 1-bit ALU sections.These sections also require the switching wires si and the results of the init sectioncomputed on the wires v0, v1, and n.one alu(a; b; f; cin; cout; s0; s1; v1; v2; n) �90w1; w2; w3; w4; w5; w6; w7; w8 : and (n; cin; w1) ^ and (v1; b; w2)^ and (v0; w8; w3) ^ or3 (w2; w3; a; w4) ^ and (b; s0; w5)^ and (w8; s1; w6) ^ or(w5; w6; w7) ^ not(b; w8)^ full adder (w4; w7; f; w1; cout)



16To specify the parameterized ALU, we combine the init block with ripple-carried1-bit ALU units. The ALU sections are hooked together as were the adder sectionsin the parameterized adder example.n alu(s0; s1; s2; A;B; F; cin; cout)�92C; D : 90v0; v1; n : init(s0; s1; s2; v0; v1; n) ^(81p : one alu(A(p); B(p); F (p); C(p); D(p)); s0; s1; v0; v1; n) ^(81p : (p < $)! (D(p)$ C(p� 1))) ^ (C(0)$ cin) ^ (D($)$ cout)Veri�cation We may now verify that the ALU implementation satis�es its speci�-cation. Namely, when the switches and ports of the ALU take on values consistentwith the implementation, the speci�cation is satis�ed.82A;B; F : 80s0; s1; s2; cin; cout :n alu(s0; s1; s2; A;B; F; cin; cout)! alu spec(s0; s1; s2; A;B; F; cin; cout)It takes Mona 2 seconds to verify this. Other properties, such as the functionalrelation between the inputs and outputs, are also easily checked in about the sameamount of time.Note that we proved only that the implementation satis�es (implies) the speci-�cation. We did not prove an equivalence, as we did with the n-bit adder. Thereason is that the speci�cation is more abstract than the implementation: it leavescertain port value combinations unspeci�ed. Suppose we did not know this, orperhaps did, but we wanted to determine when the converse fails. If we ask Monato prove the converse it responds that the formula is not a tautology. If we removethe initial quanti�ers, i.e.,alu spec(s0; s1; s2; A;B; F; cin; cout)! n alu(s0; s1; s2; A;B; F; cin; cout) ;then the port values are free variables and Mona produces a counter-example andresponds:A counter-example of least length (1) is:Booleans:cout 1s2 1s1 1s0 1Second-order:A 0B XF 1The output tells us that there is a counter-example of length n = 1, i.e., consistingof a single 1-bit ALU slice. This counter-example is sensible. The speci�cation onlystates that when the si are all 1, F is the complement of A. So the speci�cationholds for any value of B and any value of cout, in particular cout = 1. However,these values are not consistent with the implementation.
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DFigure 5. D-type Flip-op5. Sequential CircuitsIn the last section, a string represented a sequence of bits, i.e., a word of parameter-ized length. In this section, a string represents the behavior of a sequential circuit(of �xed bit-width) as it evolves over time. Circuit descriptions are similar to thosewe have previously seen except that gates are now parameterized by time.Our example is a standard implementation of a D-type ip-op, built from 6 nandgates, as shown in Figure 5. Although this circuit looks simple, understanding anddemonstrating its correctness is di�cult. Hanna and Daeche give a thorough andwell-written analysis of this ip-op in [16].4 They used Veritas, a theorem proverbased on a higher-order logic, to give a comprehensive analysis using a partialdescription of waveforms over the rational numbers. Their analysis is complex, andit took an experienced user a week to construct the proof.Our starting point is a discrete model of this circuit proposed by Gordon in [12].He assumed that each gate has a delay of one time unit. Gordon described the be-havior of the circuit using formulas in higher-order logic, where �rst-order variablesdenote time instants. The proof that the circuit meets its speci�cation, which henotes \is fairly complicated", was done only with pencil and paper. The ip-opand Gordon's speci�cation are easily encoded in Mona. To our surprise, Monacalculated a counter-example. We later discovered that Wilk and Pnueli had al-ready reported on the failure of Gordon's speci�cation in [31]. They formulatedGordon's informal requirements in a temporal logic with \quantized" tense opera-tors like 3n�, which holds at the present moment if � holds at least once withinthe next n time units.Temporal logic, in the sense of tense logic, is based on operators that denotemodalities like \it will be the case" and \until". Linear tense logic is PSPACE-complete, and it has been explored intensively [11]. But temporal logic can as wellbe viewed as simply a �rst-order logic of natural numbers (if we are content with thenatural numbers as a model of time)|whichwas essentially also Gordon's approach.To our knowledge, this point of view has not been pursued from a practical point of



18view in veri�cation, maybe because this formulation is non-elementary (as is M2L).We believe that the �rst-order formulation is more attractive, since many temporalidioms (including the usual tense operators) can easily be expressed as predicates.To translate the other way, from the �rst-order formulation to the tense formu-lation, is much more di�cult and potentially involves a non-elementary blow-up;this is why Wilk and Pnueli could not directly use Gordon's HOL speci�cation, buthad to transcribe the informal requirements.We present next our analysis, which is based on experiments with Mona.5.1. Temporal ConceptsThe temporal concepts needed to reason about the ip-op are straightforward toexpress in Mona:� the value of F is stable in [t1; t2]:stable(t1; t2;F ) � 81t : t1 � t � t2 ! (F (t)$ F (t1))� t2 is the �rst instant after t1 when F becomes high:next(t1; t2;F ) � t1 < t2 ^ F (t2) ^ (81t : t1 < t < t2 ! :F (t))� F rises at t:rise(t;F ) � t > 0 ^ (:F (t	 1) ^ F (t))� F falls at t:fall(t;F ) � t > 0 ^ (F (t	 1) ^ :F (t))� F rises at Rise:times rise(F ;Rise) � 81t : Rise(t)$ rise(t;F )� F falls at Fall :times fall(F ;Fall) � 81t : Fall(t)$ fall(t;F )5.2. The CircuitThe temporal behavior of a unit-delay nand-gate with inputs I1 and I2 and outputO is described bynand (I1; I2; O) � 81t : t < $! O(t� 1)$ :(I1(t) ^ I2(t)) :If we call the corresponding predicate for three inputs nand3(I1; I2; I3; O), then theip-op in Figure 5 is described bydtype imp � nand (P2; D; P1) ^ nand3(P3; CK;P1; P2) ^ nand (P4; CK;P3) ^nand (P1; P3; P4) ^ nand (P3; P5; Q) ^ nand (Q;P2; P5) :



195.3. Stability AnalysisIn our model, even a simple ip-op may begin to oscillate due to a single negativespike: 11101111 : : :11111111 : : : 00001010101 : : :11111010101 : : :We address this phenomenon (which was not discussed in [12, 31]) to demonstratehow an understanding of the circuit can be achieved by experiments in Mona.Informally, we would like to argue that if the input signals are kept stable forsome time and if the circuit is already stable, then eventually the other signals ofthe circuit become stable as well. We de�neinput stable(t) � t + in stable time � 1 � $^ stable(t; t � in stable time � 1; D) ^ stable(t; t� in stable time � 1;CK )to denote that inputs are stable for a period of length in stable time.5We regard the circuit as stable if all outputs of gates are stable for an interval ofcirc stable time instants, i.e., ifcircuit stable(t) � t� circ stable time � 1 � $ ^stable(t; t� circ stable time � 1; P1) ^ stable(t; t � circ stable time � 1; P2) ^stable(t; t� circ stable time � 1; P3) ^ stable(t; t � circ stable time � 1; P4) ^stable(t; t� circ stable time � 1; P5) ^ stable(t; t � circ stable time � 1; Q) :Stability preservation of the circuit can be expressed informally as: if the circuitis stable at some ts and if the inputs are held stable at ti � ts, then there is t0s � tisuch that the circuit is stable at t0s. Thus, we de�nestability preserved �81ts : circuit stable(ts)!81ti : (ti > ts ^ input stable(ti)! 9t0s : t0s � ti ^ circuit stable(t0s)) :Let us try to verify stability preservation as embodied by the formuladtype imp ) stability preserved :Mona calculates a counter-example in about 5 seconds (where we have madein stable time equal 6):



20 D = 0111111CK = 0111111Q = 1111010P1 = 1101010P2 = 1101010P3 = 1111010P4 = 0001010P5 = 0001010ts = 1000000ti = 0100000Here we have made ts and ti free variables so that Mona can generate a counter-example that identi�es the exact spot of trouble.6 We see that the simultaneousrise of both the D and CK signals seems to tickle the circuit so that it beginsto oscillate despite being stable initially. (Incidentally, this was the problem thatGordon had failed to address in his speci�cation.) Note that the quanti�cation 91t0smust succeed before \time runs out," i.e., before the �nite segment of time that thelogic is interpreted over ends. In other words, we have made the assumption thatthe stabilization of the circuit takes place while the inputs are kept stable.5.4. Input RequirementsBy experiments that constrain the inputs in di�erent ways, we have arrived atthe following requirements on the input signals: the clock signal must not form anegative spike of duration less than min clock low or a positive spike of durationless than min clock high. The D signal must be stable for at least setup units beforeCK rises. We de�ne these conditions asinput requirements �81t : (fall(t;CK )! stable(t; t�min clock low � 1;CK )) ^(rise(t;CK )! stable(t; t�min clock � 1;CK )) ^(rise(t;CK )! stable(t	 (setup� 1); t;D)) :(The actual Mona code also contains the test for end of time, which we have omittedhere for sake of brevity.) Now, with the choicesmin clock low 2min clock high 3setup 3circ stable time 2in stable time 6Mona proves the implicationdtype imp ^ input requirements ! stability preservedin about 2 seconds.



215.5. D-type Flip-op BehaviorThe essential D-type ip-op behavior is as depicted below: if the clock rises attr, then falls at tf , and then rises again at t0r, then the value of D at tr appearsat Q at time tr � stabilization � 1 and remains there until time t0r � mem � 1.When we add the input requirements already stated to this set of circumstances, acomplicated set of timing relationships is enforced:
memstabilizationsetup time for Q to stabilizemin clock lowQ is constant and same as D at tr

tr tf t0rtime D must be constantmin clock highFormally, we express the essential ip-op behavior asdtype � 8 tr ; tf ; t0r :rise(tr;CK )^ (92P : times rise(CK ; P ) ^ next(tr; t0r; P ))^ (92P : times fall(CK ; P )^ next(tr ; tf ; P ))) !(stable(tr � stabilization � 1; t0r �mem � 1; Q)^ Q(tr � stabilization � 1)$ D(tr)) :This is essentially the same behavior speci�ed by Gordon in [12]. Now, with theadditional choices stabilization 4mem 2the implication dtype imp ^ input requirements ! dtypeis veri�ed in about 2 seconds. Experiments show that these values cannot belowered.



226. A Parameterized Benchmark: the \Min-Max" CircuitWe have used parameterization to represent both families of combinational circuitsand sequential designs. Here we consider the two aspects together: sequentialcircuits with parametric data-paths. The interesting problem now is that there aretwo independent parameters: time and word (data-path) length. Both parameterscannot be simultaneously formalized since our second-order variables represent onlymonadic predicates (which take a single argument).7 Instead we use here the well-known idea of reasoning about a sequential circuit in terms of its transition function,which here has only a single parameter. Our solution is an application of theapproach used to solve the dining philosophers problem in [17].The Min-Max signal processor unit was formulated as a benchmark problem forthe 1989 IFIP International Workshop on Applied Formal Methods for CorrectVLSI Design [8]. Here we study a parameterized version suggested in [26]. Thisversion was speci�ed in the CASCADEHardware Description Language and veri�edby means of a theorem prover. We argue that such descriptions can be straight-forwardly translated into Mona provided that the arithmetic used is essentiallyregular.The unit is controlled by three Boolean signals; in addition, it has a parameterizedinteger input and output. In its normal mode of operation, the output value is themean value of the lowest and highest values encountered in the input since thecircuit was reset last.As an example of the transcription into Mona, we reproduce here a submoduleof the high-level speci�cation:description LAST (INT N) (in CLOCK H; in BTM0 E, IN_L[0:N-1];out BREG0 OUT_L[0:N-1])bodyexternal MUX_N;declare BTM0 E_N[0:N-1], OUT_M[0:N-1];use MUX_N MUX(E_N, IN_L, OUT_L, OUT_M);relationE_N = fan N | E,!H! OUT_L <= OUT_M;enddescriptionThis submodule is parameterized by N and declares a clock H, a Boolean inputsignal E, a parameterized input IN L, and a parameterized register OUT L. Thesubmodule declares parameterized data-paths named E N and OUT M, and it instan-tiates a multiplexer MUX N, whose output is wired to OUT M and whose inputs areE N (which is speci�ed as the signal E duplicated N times), the parameterized inputIN L, and the current value of the parameterized OUT L register. The submodulealso declares that when the clock H rises, the value OUT M is latched into the registerOUT L.



23The corresponding Mona declaration islast(h; e; In L;Out L;Out L ) �92E N;Out M : mux n(E N; In L;Out L;Out M )^ fan(E N; e) ^ if (h;Out L ;Out M;Out L ;Out L);where the parameterized register variable OUT L is modeled by two second-ordervariables Out L and Out L corresponding to the value before and after a clocktick. Here mux n , fan , and if are Mona predicates de�ned elsewhere.We translate both the circuit description min max low and the high-level descrip-tion min max high in a similar fashion (which can be automated). The one ex-ception is that in the high-level description, the mean value is described in termsof usual addition and division on values of the parameterized data-path viewed asintegers. As with the ALU, we have to specify these operations bit-wise. Both de-scriptions concern four Boolean signals (h, clear, reset, and enable), the param-eterized input (In M) and output values (Out M), and three parameterized registers(Pastmax, Pastmin, Last).The equivalence of the two descriptions is established if the Mona formulamin max low(h; clear ; reset; enable; In M ;Out M ;Pastmax ;Pastmax ;Pastmin;Pastmin ;Last;Last ), min max high(h; clear; reset; enable; In M ;Out M ;Pastmax ;Pastmax ;Pastmin;Pastmin ;Last;Last )is valid. Mona veri�es that this is the case in 10 seconds. The description of thecircuit and its speci�cation takes �ve pages of M2L code.7. Why does it work?The complexity of deciding the validity of M2L formulas is determined by thecomplexity of carrying out the operations that translate formulas to automata. Ex-ponential factors arise in two ways. First, as discussed in x3, the transition functionof an automaton is exponential in the number of free variables. This is typically nota problem in practice since BDDs often lead to exponential compression wherebythe transition function can be represented in polynomial space. The second sourceof trouble is that each quanti�er requires a projection operation followed by anapplication of the subset construction to determinize the result. The subset con-struction can lead to exponentially many more states in an automaton. Formulaswith alternating quanti�ers require iterating this operation (once for each quanti�eralternation) and this is responsible for the non-elementary lower-bound associatedwith M2L and related logics. In what follows, we look more carefully at these op-erations and argue why a state explosion rarely happens in practice. Indeed, weshow that there are particular syntactic and semantic classes of formulas (see alsox8) where we can guarantee that a blow-up will not occur.



24To illuminate why our approach works in practice, we focus on the add predicatede�ned in Section 4.2:at least two(a; b; c) � (a ^ b) _ (a ^ c) _ (b ^ c)mod two(a; b; c; d) � a$ b$ c$ dadd (A;B;Out; cin; cout) �92C : $ � 0 )( 81p : mod two(A(p); B(p); C(p); Out(p))^ ((p < $)! (C(p� 1)$ at least two(A(p); B(p); C(p))))^ (cout$ at least two(A($); B($); C($)))^ C(0)$ cin)Note that we have here added the precondition $ � 0 so as to �x the meaning of theformula (to true) for the empty string interpretation; this makes the correspondingautomaton easier to understand.A use of second-order quanti�cation The formula de�ned by add above has theform 92C : �. We focus on the computation related to the quanti�er 92C, which\guesses" the intermediate carry bits. In theory, the projection and subsequent de-terminization required to eliminate this quanti�er can cause an exponential blow-upin the state space. Here is what happens in practice. The automaton correspondingto the formula � inside the quanti�er has 8 states (we have not indicated the 32BDD nodes of this automaton for the sake of clarity):
The automaton reads a string that de�nes the interpretations of variables A, B,Out, cin, cout and C. Its shape can be explained as follows. The formula �expresses that each component of the result is the sum of the A and B componentand the carry C. Thus the automaton counts modulo 2. But it must also remember



25the value of the carry out cout , which can be checked only after the last positionhas been read. Thus, the automaton has two modulo-2 counters, each having oneaccepting and one non-accepting state. Since the empty string is always accepted(due to the $ � 0 clause), the four di�erent states reached from the initial stateupon reading the letter de�ning the values of the Boolean variables are all accepting.The rightmost state is the one reached in case the carry C or the output Out iswrong at any point. There is no recovery from such an error so this state acts as asink.The automaton for 92C : � is obtained by a projection and subset constructionthat works as follows. Recall that this new automaton reads strings that de�neA;B;Out; cin, and cout, but not C. It must accept if and only if there is someassignment to C that makes the old automaton accept. The �rst subset constructedis that containing only the initial state. On any transition out of the initial state,another singleton state is reached since the �rst transition only involves the valuesof Boolean variables. For any of these four states and any input letter, there areexactly two transitions possible: one to the state that would be reached if the correctvalue of the carry C was part of the input letter and the sink state corresponding tothe situation when C was wrong. Thus, all subsets reached from this point on haveexactly two elements: a counting state and the sink state (there is one exception:the singleton state consisting of the sink state alone is also reachable, for example,if a letter de�nes the wrong value of Out). As a result, two of the four singletonstates reached on the �rst transition also become two-element states. Thus thereare exactly 10 reachable states in the subset automaton.The arguments above are easily generalized as follows.Proposition 2 Let � be a formula of the form 92P :  (P ), where P is functionallydetermined, that is, for any interpretation of the remaining free variables in  , thereis exactly one interpretation of P making  true. Then, the calculation of the subsetautomaton for � is linear in the size of the automaton for  .A use of �rst-order quanti�cation Recall that each �rst-order variable is treatedas a second-order variable that ranges over a singleton (one element) set. Thus theautomaton for �(p1; : : : ; pn), where p1; : : : ; pn are all the free �rst-order variablesin �, recognizes all strings that have exactly one occurrence of a 1 in each pi-trackand that make � true with pi interpreted by the position of the 1 in the pi-track.Returning to the example, we calculate the automaton for � � 81p :  , where � mod two(A(p); B(p); C(p); Out(p))^((p < $)! (C(p� 1)$ at least two(A(p); B(p); C(p))))from the automaton for  , which looks like:



26 :p :p:p ^ C pp ^mod two ^ at least twop ^:mod two :p ^ :Cp ^mod two ^:at least two p _ Cp _:C
We have here omitted the initial transition corresponding to the Boolean variablesin  , since there are none. Intuitively, this automaton waits until it sees the positionp; then it either goes to a terminal non-accepting state (if the mod two predicatedoes not hold at position p), or it branches (if the mod two predicate holds) toa new state that remembers the value of the at least two predicate at position p.In the latter case, the automaton checks on the next transition, corresponding toposition p+ 1, that C has the correct value.In this example, the subset automaton constructed by projecting out p is alsosmall. (This automaton is constructed from an automaton corresponding to thenegation of  according to the identity 81p :  � :91p : : . The automaton for: is the same as the one above, except that accepting and non-accepting statesare interchanged and that a few transitions are slightly di�erent.) However, insteadof studying the subset construction in detail for the automaton above, we tackle amore general situation. Consider a formula  that is (or is equivalent to) a Booleancombination of formulas of the formp 2 Xi or p < $) p� 1 2 Xi: (2)Then  corresponds to an automaton A that looks like:



27:p p ^ : : : :pp _ � � �:p ^ � � �p states
This shape is easy to explain: before p occurs,  says nothing about any othervariable; when p occurs, a new state (inside the dotted box named \p states") isreached according to the values of the Xis at p (some of these states may be �nal,since p might be the last position); and if p is not the last position the truth of  is determined by reading the Xis at position p+ 1.The reachable states of A in the subset construction are those of the formfs j for some �, s is the state reached when some p-track is added to �g;where � determines an interpretation of the Xi. It can be seen that any suchset contains at most one state from the box in the �gure above, namely the statereached by adding a p-track of the form 0�1, i.e., a track where the single occurrenceof 1 is in the last position. Therefore, we again only have a linear expansion.Proposition 3 For a formula � � 91p :  (p; fXig), where  is a Boolean combi-nation of subformulas of the form (2), the calculation of the subset automaton for� is linear in the size of the automaton for  .This proposition does not directly explain the complexity of the subset construc-tion when there are more than one free �rst-order variable in the formula. Often,however, the variable that is projected away is tightly constrained by other vari-ables. For example, if we project away the variable z in a formula that contains theclause x � z � y, then the subset construction essentially only explores the situa-tion when x � z � y holds. Thus, if z is otherwise only used as in the propositionabove, we would be able to again establish a linear upper bound.8. Comparison and ConclusionsOur results constitute a study of automatic veri�cation based on regular classes ofcircuits. For example, a family of n-bit adders is regular in an informal structural



28sense (n adders are chained together ripple-carry style), as well as in a formallanguage theoretic sense. Viewing the input/output relation of an n-bit adder asa set of words of length n, we �nd that the union of the words for n = 1; 2; : : : isrecognizable by a �nite-state automaton. The logic of M2L allows us to expressregularity in the informal structural sense in a declarative way by stating howan n-bit adder is iteratively built. The decision procedure implemented by Monareduces analysis of the resulting description of an in�nite state space to the analysisof a regular one.Below we compare our approach with others reported on in the literature.8.1. Inductive Theorem ProvingMost approaches to reasoning about parameterized systems involve explicit theo-rem proving: the system is formalized as a recursive (or inductive) de�nition withina logic like �rst-order or higher-order logic and explicitly reasoned about by math-ematical induction, cf. [2, 4, 9, 12, 16, 18, 19, 22, 25]. For example, to show thata family of circuits C, parameterized by n, with port values given by the vectorsX1; : : :Xn satis�es a parameterized behavioral speci�cation S, one proves8n; X1; : : : ; Xn : C(n;X1; : : : ; Xn)! S(n;X1; : : : ; Xn)by induction over the parameter n.The parameterized adder and ALU have been used as test-cases by others ininductive theorem proving, in particular by Cantu et al. using the EdinburghCLAM System [6] and by Cyrluk et al. using PVS [7]. CLAM is a system thatgenerates proofs by induction for a higher-order logic. The development in CLAMof the ALU took over a week and the proof is constructed automatically in 4 minutesand 40 seconds by CLAM, as opposed to 2 seconds by Mona. Their speci�cationshares some similarities to ours, but di�ers in several important respects. First, theyare not limited to speci�cations expressible within a decidable logic. As a result,they were able to apply their approach to verify circuits such as parameterizedmultipliers, which cannot be formalized in M2L. Second, they speci�ed the ALUas a recursive function while we speci�ed it as a non-recursive relation. Both arevalid representation techniques, but note that we cannot write explicit recursivefunctions in M2L. On the other hand, if Cantu et al. had formalized the ALU as arecursively de�ned relation, CLAM would have been unable to construct a proof.8The ALU theorem was also veri�ed using PVS. PVS is a semi-interactive theoremprover that features built-in simpli�ers and decision procedures; for example BDDsare used for propositional reasoning. Users can control proof construction by writingproof strategies (similar to tactics in the LCF sense). In [7] the adder and the ALUare veri�ed using the induction, normalization, and BDD features of PVS. Theformalization of these circuits is similar to that of Cantu et al. Veri�cation byinduction of the parameterized adder is stated to last approximately 2 minutes (asopposed to our time of one second) and their proof of the ALU required 90 seconds,as opposed to 2 seconds in our case.



29The signal-processor circuit was veri�ed in NQTHM (the Boyer-Moore theoremprover) and reported on in [26]. The proof required the user to formulate variouslemmas. Even with the lemmas, veri�cation required several minutes of CPU time,as opposed to 10 seconds in our case.These examples suggest that when a parameterized system is formalizable in M2L,then there can be real advantages with our approach. Not only are our veri�cationtimes typically one to two orders of magnitude faster, but there is no need for search,heuristics, or user interaction. In practice, no theorem proving system (other thanthose implementingdecision procedures) is fully automatic. Although some systemsuse powerful heuristics for automating induction (e.g., CLAM, NQTHM, and PVS)or complete proof procedures for semi-decidable logics (e.g., resolution theoremprovers like OTTER are typically refutation complete for �rst-order theories) allsuch systems require, in practice, user guidance such as suggestion of rewrite rules,lemmas, parameter settings, and the like. This is quite di�erent from our approachwhere the only possible parameter the user can inuence is the variable orderingused in building BDDs. In all our examples, this ordering was picked automaticallyby Mona.8.2. Deduction without InductionAn alternative approach to parameterized veri�cation is to �x the parameter toa particular value n. A �nite circuit arises that can be analyzed using BDDs.As shown in [24], the circuits that allow BDD representations whose size is linearin n are those with a bounded amount of information owing through any crosssection. Similarly, it is not hard to see that the corresponding parameterized circuitis representable in M2L. The point at which the instantiated description becomeslarger than the parameterized description will depend on variable orderings and thechosen representation of automata.Although replacing a parameter with a constant may be satisfactory for reason-ing about circuits whose size is parameterized, it can lead to incorrect results whenreasoning about circuits whose behavior should hold over all instants of time. Theproblem is that one cannot easily bound how many time instances must be reasonedabout to establish correctness; the counter-examples produced in our ip-op ex-ample provide some evidence of the di�culty of this problem. One alternative,discussed above, is to retreat to an undecidable formalism and use induction toexplicitly reason about the parameter. Another alternative is to use a decidabletemporal logic.As indicated in x5, both of the above approaches have been pursued in veri�ca-tion of ip-ops. Flip-ops have been laboriously veri�ed interactively in theoremprovers based on higher-order logic. In contrast, our fully-automated veri�cationtook 2 seconds. A competitive approach is model checking using decidable temporallogics. A temporal logic solution for the ip-op we analyzed was presented in [31].Veri�cation took 20 seconds. We have translated the speci�cation given in [31]directly intoMona; our veri�cation time is around 2 seconds|a �gure comparable



30to those of the original solution, since computers are now much faster than in 1989,when [31] was published.8.3. Combined Induction/DeductionIt is possible to combine induction with non-inductive methods such as decisionprocedures like Mona or model checkers. In our work, we combined induction anddeduction when reasoning about parameterized sequential circuits: an inductivestep was performed (which was not formalized in a formal metalogic) to eliminatea parameter (in our case, time) and thereby reduce the problem to one which canbe solved by Mona. Such a reduction can be formalized in an interactive theoremproving environment. For example, Kurshan and Lamport combined COSPAN (amodel checking system) with TLP (a theorem prover based on Lamport's TemporalLogic of Actions) and used induction to decompose the veri�cation of a parametricmultiplier to the veri�cation of 8-bit multipliers, which is then veri�ed automatically[21].Other researchers have investigated explicit induction principles for reasoningabout networks of processes where the base case and the inductive steps are reducedto decidable problems. Such approaches test su�cient conditions for the correctnessof the overall system. Kurshan and MacMillan have incorporated reasoning byinduction into the COSPAN system [22], which is used to check !-regular propertiesof processes; this allowed them to verify safety and liveness properties of a non-trivial version of the Dining Philosophers problem that was parameterized by thenumber of processes. These ideas have been further extended [27] and similar ideashave been developed in other settings, cf. [32].8.4. Linearly Inductive FunctionsThe work closest to ours is that of Gupta and Fisher [13, 14] who, from a ratherdi�erent starting point, have also developed a BDD-based formalism closely con-nected to regular languages. They de�ne two classes of inductively de�ned Booleanfunctions: Linearly Inductive Functions (LIFs) and Exponentially Inductive Func-tions (EIFs). Both classes consist of Boolean formulas de�ned by restricted formsof recursion. For example, the following equations de�ne a family of n-bit addersas two LIFs, one for sum and one for carry.for i = 1 sum1 = a1 � b1 � cincarry1 = (a1 ^ b1) _ ((a1 _ b1) ^ cin)for i > 1 sumi = ai � bi � carryi�1carryi = (ai ^ bi) _ ((ai _ bi) ^ carryi�1)



31These equations can be expressed in M2L as follows.add(A;B; Sum;Carry; cin) �81i :i = 0!Sum(0) $ xor(A(0); xor(B(0); cin) ^Carry(0)$ (A(0) ^B(0)) _ ((A(0) _B(0)) ^ cin))0 < i!Sum(i) $ xor(A(i); xor(B(i); Carry(i 	 1))) ^Carry(i)$ (A(i) ^B(i)) _ ((A(i) _B(i)) ^Carry(i 	 1))Gupta and Fischer provide algorithms for converting function de�nitions of thisparticular form into a Function Descriptor (FD) representation. A function de-scriptor is essentially a state of a BDD-represented automaton (cf. x3.1), but it isassociated with two BDDs: a basis BDD, which is Boolean-valued BDD followedwhen the last letter in the string is read, and a linear inductive BDD, which is amulti-valued BDD whose value is either a state or a Boolean. A Boolean leaf, whichsigni�es reject or accept, is encountered when the following letters have no signi�-cance as to whether the string is accepted|in the usual automaton, this situationcorresponds to a looping state.As shown in [13], the FD representation is in essence an automaton. A preciserelation with our framework can be established as follows:Proposition 41. For any regular language L � Bk, the FD representation is isomorphic, moduloa couple of nodes, to the BDD-represented automaton A0 for the language L0consisting of all � 2 Bk+1 such that � projected on the �rst k tracks is in L andthe k+1-track is of the form 0�1. Moreover, the FD representation is linear inthe size of an automaton A recognizing L.2. Vice versa, an FD representation can be converted to a BDD-represented au-tomaton with at most a quadratic increase in size.Proof: 1) The states in A0 have two kinds of transitions: those corresponding toletters with a 1 in the k + 1-track and those with a 0. All states corresponding toa situation where the 1 in the k+ 1-track has not yet occurred can then be viewedas FDs according to the two kinds of transition, which correspond to the inductivecase and the base case, respectively. In addition, to get a proper FD representation,the looping non-accepting state in A0 is replaced by a leaf labeled 0. The loopingaccepting state contains a transition to the looping non-accepting state on a 1 inthe k + 1-track (since no more 0s are expected in this track). This piece of thetransition graph is replaced by the leaf with value 1.To see that the FD description is linear in the original BDD-represented automa-ton A recognizing L, we note that every state of this automaton can be converted toa (non-reduced) FD descriptor by letting the inductive part be the original transi-tion function and by letting the base part be the BDD that represents the transition



32function from the state with every leaf replaced by 0 or 1 according to whether theleaf is labeled with an accepting or non-accepting state.2) The other direction is proven in a similar manner. To go from an FD descriptorto a state with an associated transition BDD, we must make a BDD product of thebase case and inductive case BDD of the FD descriptor. The details are omitted.The algorithm for translating linearly inductive functions to FD descriptions asdescribed by Fischer and Gupta is based on representing the reverse language. Thatis, the base case is represented as the last letter in the string. For certain circuits,like shifters, this representation is sometimes exponentially more succinct. Notethat the Mona description above can easily be dualized to achieve a representationof the reverse language: simply exchange 0 with $, � with 	, etc. The resultingMona automaton is then in a relationship with the FD description as explained inthe above proposition.If the FD description is desired as the direct output of the Mona translation, asimple formula for the k + 1-track in the Proposition above could be easily addedso that the automaton A0 is calculated. This trick is an instance of padding regularlanguages to the languages described so that state spaces decrease in size for thepadded representations.The above demonstrates that Mona generalizes the LIF framework as a succinctrepresentation formalism for regular languages. It is also the case that one doesnot pay a price, from a computational theory point of view, for using Mona tocompute automata for LIFs. In particular, any LIF is translated to a formula witha single �rst-order quanti�er (for the parameter i), whose quanti�er-free matrix isa Boolean formula built using very limited arithmetic (subtraction by 1, and testagainst zero). An automaton for the matrix can be computed in exponential time inthe worst case using arguments as in x7. This bound is similar to that of Gupta andFisher, where the worst-case complexity of their algorithms is doubly-exponentialin the number of LIF variables (as in our case); [15] does not contain an explicitdiscussion of the size of the FDs in terms of the input size, but it is not hard tosee that this explosion is only exponential. Note that it is an open question as towhich approach o�ers better performance in practice, since the algorithms used tobuild BDD-represented automata in the two approaches are di�erent.In the LIF framework multiple automata can be speci�ed at the same time andtheir representation can be shared; this idea can lead to compact representationsthat are currently not supported by Mona.We believe that the Mona approach to specifying hardware is often more naturalthan the LIF approach since the latter|judging from examples in [13]|sometimesrequires substantial amount of reasoning at the meta-level to even see that a circuitcan be brought into the form of a LIF. On the other hand, the LIF approachgeneralizes the Mona approach in that it o�ers some interesting ways of attackingthe problem of simultaneous induction in more than one parameter|somethingthat goes beyond regularity [13, 15].



338.5. Other Approaches to RegularityIndependently of [15], Vuillemin studied relationships between 2-adic integers andsequential circuits in [30]. A 2-adic integer is essentially an in�nite string of bits thatis regarded as a rational number (only certain rational numbers can be representedin this way). In this somewhat abstract setting, Vuillemin showed that synchronouscircuits can be synthesized from descriptions in a language named 2Z. The circuitsare represented by Synchronous Decision Diagrams or SDDS, which are essentiallyequivalent to the function descriptor representation of Gupta and Fisher. Vuillemindid not study algorithmic issues such as minimization of SDDS. In [3], the problemof solving equations involving 2-adic integers was studied, and it was noted thatSDDS provide another representation of regular languages.A di�erent approach to automatic veri�cation based on regularity has been stud-ied by Rho and Somenzi in [28]. They investigate automatic veri�cation of whatwe called parameterized sequential circuits: networks built by iterating cells, whereeach cell is a �nite state transition system. Such systems have multiple parametersand their properties are in general undecidable. Rho and Somenzi show that forcertain classes of parameterized systems there are algorithms which can sometimescompute an automaton model of these systems: they infer the automaton modelfrom observations of the systems behavior for n = 1; 2 : : : until some technicalconditions indicate a �xed point. The existence of such a model (boundedness intheir terminology) is undecidable and their algorithm, when it terminates, providessu�cient conditions for determining simple properties of networks, such as theirequivalence.AcknowledgementsThe authors thank Harald Ganzinger and Natarajan Shankar for their feedbackon previous drafts of this paper and Aarti Gupta for helpful discussions about herwork. Tiziana Margaria suggested [26] as a parameterized, sequential veri�cationexample.Notes1. Recently, theMona tool has been changed to accommodate also the weak versions, WS1S andWS2S, of the successor theories. These logics interpret second-order variables as �nite sets.The M2L formulation is subsumed by the weak successor formulation as explained in [10].2. When the length n is 0, there are no positions de�ned. Therefore, 0 and n � 1 do not makesense. We will not be bothered by this anomaly, since the case n = 0 is irrelevant to the kindsof examples presented in this paper.3. All times reported in this paper are measured in CPU seconds on a Sun Ultra-Sparc workstation.



344. Hanna and Daeche write about the complexity of the circuit (page 193):\It turns out, on analysis, that the modus operandi of this circuit is far from simple: infact, it is unusually complex, and (so the authors found) di�cult to understand intuitively.If, like most people, you �nd this remark di�cult to accept at face value, read the restof this account, then set it aside, and attempt, within (say) one working day, to comeup with a carefully justi�ed account of `how' the proposed implementation is intended tofunction..."5. We here use + instead of � in the formula t+ in stable time� 1 � $ , which holds if + and �are interpreted in the usual arithmetic sense without \wrap-around". We need the conjunct\t+ in stable time � 1 � $" to prevent t from lying too close to the end (in which case therewould not be enough remaining time instants to model that the signals are stable for therequired amount of time). The semantics of the + operation cannot be explained in terms ofM2L. In the recent WS1S formulation of Mona[10], this problem has disappeared.6. Note that ts and ti are �rst-order position variables. These are actually encoded in Mona assecond-order variables ranging over singleton sets. Here ts and ti point to positions 0 and 1respectively.7. Logics involving binary-predicates, such as logics on grids, are generally undecidable, sinceTuring Machine computations can be encoded on the grid.8. To the best of our knowledge, all systems automating proof by mathematical induction reasonabout recursively speci�ed functions, but not recursively speci�ed relations. Indeed, someprovers used for hardware veri�cation, such as NQTHM, are so biased towards functions thatthey cannot represent hardware speci�ed relationally (e.g., they lack existential quanti�cation).References1. D. Basin and N. Klarlund. Hardware veri�cation using monadic second-order logic. InComputer aided veri�cation: 7th International Conference, CAV '95, LNCS 939, 1995.2. David Basin and Peter DelVecchio. Veri�cation of combinational logic in Nuprl. In HardwareSpeci�cation, Veri�cation and Synthesis: Mathematical Aspects, Ithaca, New York, 1989.Springer-Verlag.3. Wolfram B�uttner and Klaus Winkelmann. Equation solving over 2-adic integers and appli-cations to the speci�cation, veri�cation and synthesis of �nite state machines. Unpublished,1995.4. Albert Camilleri, Mike Gordon, and Tom Melham. Hardware veri�cation using higher-orderlogic. In D. Borrione, editor, From HDL Descriptions to Guaranteed Correct Circuit Designs,pages 43{67. Elsevier Science Publishers B. V. (North-Holland), 1987.5. Albert John Camilleri. Executing Behavioural De�nitions in Higher Order Logic. PhD thesis,University of Cambridge, 1988.6. Francisco Cantu, Alan Bundy, Alan Smaill, and David Basin. Experiments in automatinghardware veri�cation using inductive proof planning. In M. Srivas and A. Camilleri, editors,Proceedings of the Formal Methods for Computer-Aided Design Conference, number 1166 inLecture Notes in Computer Science, pages 94{108. Springer-Verlag, 1996.7. D. Cyrluk, S. Rajan, N. Shankar, and M.K. Srivas. E�ective theorem proving for hardwareveri�cation. In Second International Conference On Theorem Proving In Circuit Deisgn:Theory, Practice and Experience, Bad Herrenalb, Germany, September 1994.8. H. De Man D. Verkest, L. Claesen. Special benchmark session on formal system design.In Proceedings of the IMEC-IFIP Workshop on Applied Formal Methods for Correct VLSIDesign, Leuven, pages 75{76, Nov. 1989.9. L. Claesen D. Verkest, P. Johannes and H. De Man. Correctness proofs of parameterizedhardware modules in the Cathedral-II synthesis environment. In Proceedings of the EuropeanDesign Automation Conference. IEEE Computer Society Press, 1990.10. Jacob Elgaard, Nils Klarlund, and Anders M�ller. Mona 1.x: New techniques for WS1S andWS2S. In Computer Aided Veri�cation, CAV '98, Proceedings, 1998. to appear.
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