
Fakultät für Elektrotechnik, Informatik und Mathematik

Bachelor’s Thesis

Ambiguity Detection for Context-Free
Grammars in Eli

Michael Kruse
Student Id: 6284674

E-Mail: meinert@uni-paderborn.de

Paderborn, 7th May, 2008

presented to
Dr. Peter Pfahler

Dr. Matthias Fischer

Statement on Plagiarism and Academic
Integrity

I declare that all material in this is my own work except where there is clear
acknowledgement or reference to the work of others. All material taken from other
sources have been declared as such. This thesis as it is or in similar form has not
been presented to any examination authority yet.

Paderborn, 7th May, 2008

Michael Kruse

iii

iv

Acknowledgement

I especially whish to thank the following people for their support during the writing
of this thesis:

• Peter Pfahler for his work as advisor

• Sylvain Schmitz for finding some major errors

• Anders Møller for some interesting conversations

• Ulf Schwekendiek for his help to understand Eli

• Peter Kling and Tobias Müller for proofreading

v

vi

Contents

1. Introduction 1

2. Parsing Techniques 5
2.1. Context-Free Grammars . 5
2.2. LR(k)-Parsing . 7
2.3. Generalised LR-Parsing . 11

3. Ambiguity Detection 15
3.1. Ambiguous Context-Free Grammars 15

3.1.1. Ambiguity Approximation . 16
3.2. Ambiguity Checking with Language Approximations 16

3.2.1. Horizontal and Vertical Ambiguity 17
3.2.2. Approximation of Horizontal and Vertical Ambiguity 22
3.2.3. Approximation Using Regular Grammars 24
3.2.4. Regular Supersets . 26

3.3. Detection Schemes Based on Position Automata 26
3.3.1. Regular Unambiguity . 31
3.3.2. LR-Regular Unambiguity . 34
3.3.3. Noncanonical Unambiguity 38

4. Design, Implementation & Integration 41
4.1. Design . 41

4.1.1. The Algorithms . 43
4.2. Implementation . 50
4.3. Integration . 52

4.3.1. Installation of Eli . 52
4.3.2. Introduction to Odin/Eli Packages 54
4.3.3. Grammar Files . 54
4.3.4. The grambiguity Package . 54
4.3.5. The bisonamb Package . 56

5. Evaluation 59
5.1. Asymptotic Worst-Case Runtime . 59

5.1.1. Ambiguity Checking with Language Approximation 59
5.1.2. Regular/LR-Regular/Noncanonical Unambiguity 61

vii

Contents

5.2. Results . 61
5.2.1. Unambiguous Grammars . 63
5.2.2. Ambiguous Grammars . 70

6. Summary 73
6.1. Future Work . 74

A. Appendix 77

Bibliography 81

viii

1. Introduction

This thesis is about ambiguities in context-free grammars and how potentially am-
biguous grammars can be found. This knowledge is used to write a program that
identifies unambiguous grammars programmatically.
A context-free grammar (CFG) is a recursive definition of a (usually non-natural)

language. One application is the definition of the syntax of a programming lan-
guage like Pascal or C++. A context-free grammar can generate a string (a word,
sentence, text file or sequence of tokens) by applying productions one after the
other. To analyze such a sequence it is necessary to rediscover the productions and
structure that have been used to generate it. This is called parsing, its input is a
sequence of terminals and its result is a parse tree. See Definition 2.1 for a formal
definition of a context-free grammar.
Algorithms exist which parse any sequence of length n for any definition a CFG in

O(n3) asymptotic time. The Cocke-Younger-Kasami Algorithm (CYK-Algorithm)
is such an algorithm. However, subsets of context-free grammars exist that are
parsable in quadratic or linear time (Figure 1.1).

all context-free grammars

O(n3)

O(n2)

O(n)

LR(k)

Figure 1.1.: The parsing complexity subsets of context-free grammars

1

1. Introduction

LR(k) is such a subset, which is parsable in linear time. This class of context-
free grammars is even defined as the set of grammars that can be parsed using
an LR(k)-parser which is an algorithm that needs only one pass over the input
sequence. k is the amount of lookahead symbols. The more lookahead symbols are
used, the more grammars can be parsed, but the bigger the parsing table becomes.
The parsing table determines the working of an LR(k) parser. k = 1 is the most
often used number of lookahead symbols, because its parsing table normally does
not become too big. An LALR(k)-parser reduces the size of the parsing table even
further. Grammars which are accepted by this parser are called LALR(k), which
form a subset of the class of LR(k) grammars.
All LR(k) and LALR(k) grammars are unambiguous grammars. An unambiguous

grammar is a grammar for which only a single parse tree for every input sequence
exits. Hence ambiguous grammars have multiple parse trees. See Figure 1.2 for a
hierarchy of all grammars mentioned here.

all context-free grammars

unambiguous

LR(k)

LR(2)

LR(1)

LR(0)
LALR(1)
LALR(2)

LALR(k)

Figure 1.2.: The hierarchy of context-free grammars

The construction of a LR(k) or LALR(k) parser is rather complicated but can
be automated by a parser generator. yacc [7], Bison [5] and Cola for Eli [13] are
generators for LR(1) and/or LALR(1) grammars.
The Eli system is a toolset, which assists with every step of building a compiler.

Generating a parser is one of these steps. Eli also includes tools to create scanners,
abstract syntax trees, etc.
If a parser generator tries to generate a parser for a grammar which does not

belong to the class of supported grammars, it will stop because of a conflict. A
conflict means that there is more than one operation the generated parser should

2

execute while processing the next terminal of the input sequence. However, an
LR(k)-parser allows only one operation at a time and as a consequence, a parser
for such a grammar cannot be generated.
An approach to handle conflicts is called Tomita- or Generalised LR (GLR) Pars-

ing. What the parser does is to follow all possibilities that might arise from the
conflicts. The parser’s internal state is copied and continued separately for every
possibility. The derived paths may lead to dead ends or even to another conflict,
which will cause another split. However, as long as at least one path continues until
the last terminal has been read, the input is parsed successfully.
Bison [5] can also generate GLR parsers and a recent work by Ulf Schweken-

diek [19] integrated the Bison GLR parser generator into the Eli system.
If a grammar is ambiguous, a GLR parser may return multiple parse trees. Fur-

thermore, there may be exponentially many parse trees dependent on the input
length. Usually, this is unwanted for technical languages and when a grammar is
designed, one usually tries to keep it unambiguous.
A practical problem is, that it is undecidable whether a context-free grammar is

ambiguous or not: There is no algorithm that is able to decide whether an input
exists such that a GLR parser returns more than one syntax tree. This does not
mean that no approximations exist. For instance, if an LR(k) parser generator can
create a parser, the source grammar is guaranteed to be unambiguous. If this is
known the GLR parser will never return more than one parse tree for any input
string.
There are two recent articles on other ambiguity detection approximations. The

first work by Claus Brabrand, Robert Giegerich and Anders Møller [3] divides the
ambiguity problem into horizontal and vertical ambiguity, both are undecidable
as well. They can be approximated by using a regular superset of the original
grammar. The authors call this technique Ambiguity Checking with Language Ap-
proximations (ACLA).
The other approximation has been named Regular/Noncanonical Unambiguity

by Sylvain Schmitz [17]. This approach specialises an LR(k) parsing algorithm to
find potential ambiguities. Both approaches can recognise unambiguous grammars
which the other cannot and therefore can be used in combination.
In this thesis these ambiguity approximations will be explained closer and added

to the Eli system. In more details, the objectives for this thesis are

• to describe the ambiguity problem for context-free grammars

• to present both ambiguity detection approximations

• to implement the ACLA technique

• to integrate both techniques into the Eli system

• to compare and evaluate the results of the two techniques

3

1. Introduction

4

2. Parsing Techniques

Parsing is the retrieval of the tree structure of a one-dimensional sequence of sym-
bols. The tree structure is described by a context-free grammar. The recovered
structure is called a parse tree.
In this chapter context-free grammars are formally defined. Then, we show how

an input sequence is parsed. The parsing techniques covered here are LR-parsing
and generalized LR-parsing.

2.1. Context-Free Grammars
Definition 2.1 (Context-free grammar (CFG))
A Context-Free Grammar is a 4-tuple G = (N,Σ, P, S) where

N is a finite set of nonterminals.

Σ is a finite set of terminals.

P is a relation APα where A ∈ N and α ∈ (N ∪ Σ)∗. An element APα ∈ P
is called a production.

S ∈ N is the start nonterminal.

The more common notation for APα is A→ α. A is the left-hand-side and α the
right-hand-side of this production. α is allowed to be empty. This is indicated by
the ε symbol and such a production is called an ε-production. The relation P is a
set: no combination of left-hand-side nonterminals and right-hand-side sequences
appears twice.
Additionally we define V := N ∪ Σ and call an element of V a symbol (thus a

symbol can be a terminal or a nonterminal).
As a convention the characters a, b, c · · · ∈ Σ are terminals, A,B,C · · · ∈ N are

nonterminals and X,Y, Z ∈ V are terminals or nonterminals. In the same manner
u, v, w, x, y, z ∈ Σ∗ are sequences of terminals and α, β, γ ∈ V ∗ are sequences of
symbols. Additionally, S is always the start nonterminal.

Definition 2.2 (The derivation relation ⇒)
Let G = (N,Σ, P, S) be a context-free grammar and A → γ a production of G.
Then αAβ ⇒ αγβ is called a derivation if G. We say that the production A → γ
is applied on αAβ.

5

2. Parsing Techniques

Definition 2.3 (The left-/rightmost derivation relations ⇒LM and ⇒RM)
A derivation αAβ ⇒ αγβ is a leftmost derivation αAβ ⇒LM αγβ iff α ∈ Σ∗. In
the same way, it is a rightmost derivation αAβ ⇒RM αγβ iff β ∈ Σ∗

⇒∗ is the transitive closure of ⇒. If α⇒∗ β holds, we say that α can be derived
to β. The sequence α ⇒ · · · ⇒ γ ⇒ · · · ⇒ β is called the derivation of α to β. In
the same sense ⇒∗LM is the transitive closure of ⇒LM . The leftmost derivation is
used to avoid that there are multiple derivations only because the right nonterminal
can be applied before the left one. Alternatively, the rightmost derivation can be
used.
This transitive closure can also be expressed as tree. Whenever a production is

applied on a nonterminal, we expand its node in the tree. Every symbol on the
right-hand-side of the production becomes a child of this node. The advantage is
that the order in which productions are applied does not matter and always result
in the same tree. Such a tree is called a derivation tree.

Example 2.4 (Derivation and derivation tree)
Consider the Grammar 2.1. Equation 2.2 shows a (leftmost) derivation where three
productions are applied. Figure 2.1 shows the same derivation as a tree.

S → a b A
A→ S c A
A→ ε

(2.1)

S ⇒ abA⇒ abScA⇒ ababAcA (2.2)

S

a b A

S

a b A

c A

Figure 2.1.: Derivation 2.2 as a derivation tree

Definition 2.5 (The language of a context-free grammar)
The language L(G) accepted by a context-free grammar G = (N,Σ, P, S) is

L(G) := {w ∈ Σ∗ | S ⇒∗ w}

6

2.2. LR(k)-Parsing

We say that w ∈ L(G) is recognised by the grammar G. w is called a word of the
grammar G/the language L(G).
The symbol L can also be used to describe the language of a sequence of terminals

and nonterminals α ∈ V ∗

LG(α) := {w ∈ Σ∗ | α⇒∗ w}

Hence a word is a sequence of terminals which can be derived from S. We call a
derivation tree from the start symbol S to a sequence without any nonterminals a
parse tree.
To simplify some proofs later, we define that for every nonterminal and produc-

tion, there is at least one parse tree in which it occurs. Otherwise it can be removed
from the grammar without altering its language.
When considering the plain word w, the information which productions were

applied is lost. A parser takes a sequence of terminals and returns a parse tree. If
it fails to return a parse tree it means that there is no parse tree and thus the input
is not a recognised by the grammar.

2.2. LR(k)-Parsing
This section describes the LR(k) parsing technique which was introduced by Donald
E. Knuth [8]. An LR parser obtains the structure of any input of its grammar in
linear time. The drawback is that it is not possible to create such a parser for every
grammar.
LR(k) stands for processing the input sequence from left to right while producing

a rightmost derivation in reverse. k is the number of used lookahead symbols and
is usually one.
An LR(k) parser consists of an ACTION and a GOTO table. The ACTION

table defines actions to execute depending on the next k terminals (the lookahead
terminals) in the input sequence. The GOTO table defines the next state when
a nonterminal has been recognised. These terminals and nonterminals define the
columns of the tables. The rows of the table determine a state of a finite state
machine. The transitions of this finite state machine are defined implicitly by
the ACTION and GOTO table. Both tables together are called the parsing table,
which is the static part of the parser and does not change during the parser’s
execution. This table is specific to a context-free grammar G = (N,Σ, P, S) and
usually precomputed by a parser generator.
At runtime some more data structures are needed which we summarise as the

parser’s current configuration.

• A pointer to the next terminal in the input sequence (current position)

• The current state of a finite state machine

• A stack which stores tuples (X, q) of symbols (X ∈ V) and states (q)

7

2. Parsing Techniques

The parser is initialised with a pointer to the first input terminal. The initial
state is zero and the stack contains a sentinel element (X, 0), where X can be any
value because it is never used.
During the execution the parser reads the k terminals beginning at the current

position. Then it reads the ACTION table at the column for this sequence of
terminals at the current state and executes it. This is done until the input is
accepted or an error occurs, which means that the input sequence is not a word of
the grammar.
The actions in the ACTION table are chosen from the following list.

• Shift q

1. Push (q, a) to the stack. a is the terminal at the current position.

2. Set the current state of the finite state machine to q.

3. Move the input pointer to the next terminal.

A parser uses this action as long as more input symbols are needed to complete
a nonterminal.

• Reduce (A→ α) ∈ P

1. Pop |α| tuples off the stack where |α| is the number of items on the
right-hand-side of the production.

2. Get the tuple (p,X) which now on the top of the stack.

3. Lookup the state q at row p and column A of the GOTO table.

4. Push the tuple (q, A) to the stack.

5. Set the current state of the FSM to q.

6. The input pointer remains unchanged.

GOTO q

Using this action means that all right-hand-side symbols of a production are
on the stack. α is replaced by the nonterminal A. The nonterminal acts as a
placeholder for α. When a parse tree is built, A becomes the root node for
all elements of α.

• Accept

1. Return. The input has been parsed successfully.

The parser chooses this when the start symbol S is the only symbol on the
stack and there are no more remaining input terminals. If a parse tree was
built, then node of S can be returned as the parse tree.

• Error

1. Abort. The input is not a word of the grammar.

8

2.2. LR(k)-Parsing

This means that the parser detected that the input is not a word of the
grammar’s language.

Example 2.6
Consider Grammar 2.3 and a word w =“c a a c b b”. We will see how an LR(1)
parser processes this word.

(1) S → A S
(2) S → A
(3) A→ a A b
(4) A→ c

(2.3)

The LR(1) parsing table for this grammar is shown in Table 2.2. Grammar 2.3
has 3 terminals and 2 nonterminals. An additional terminal EOF (End Of File)
is introduced which marks the ending of the input sequence. Thus the word to
parse is w =“c a a c b b EOF”. The ACTION table has 4 and the GOTO table 2
columns. 8 rows correspond to 8 states of the finite state machine for this parsing
table.
The actions are abbreviated as follows.

• “Shift q” becomes “sq”.

• “Reduce (A→ α ∈ P)” becomes “ri”, where i is the number of the production.

• “Accept” becomes “acc”.

• “Error” becomes an empty cell.

ACTION GOTO
State a b c EOF S A
0 s1 s2 7 5
1 s1 s2 3
2 r4 r4 r4
3 s4
4 r3 r3 r3
5 s1 s2 r2 6 5
6 r1 r1 r1
7 acc

Table 2.2.: Parsing table for Grammar 2.3

Now we can run the parser on the input sequence “c a a c b b EOF”. The parser
configuration before every action is shown in Table 2.3. The terminals from the
current position up to the end of the input sequence is shown in the column “Re-
maining Input”. The lookahead terminal is highlighted in red. Terminals before
the current position are not needed anymore and thus are not displayed.

9

2. Parsing Techniques

Step Stack State Remaining Input Action
1 0 0 c a a c b b EOF Shift 2
2 0 c2 2 a a c b b EOF Reduce (4)

0 0 a a c b b EOF GOTO 5
3 0 A5 5 a a c b b EOF Shift 1
4 0 A5 a1 1 a c b b EOF Shift 1
5 0 A5 a1 a1 1 c b b EOF Shift 2
6 0 A5 a1 a1 c2 2 b b EOF Reduce (4)

0 A5 a1 a1 1 b b EOF GOTO 3
7 0 A5 a1 a1 A3 3 b b EOF Shift 4
8 0 A5 a1 a1 A3 b4 4 b EOF Reduce (3)

0 A5 a1 1 b EOF GOTO 3
9 0 A5 a1 A3 3 b EOF Shift 4
10 0 A5 a1 A3 b4 4 EOF Reduce (4)

0 A5 5 EOF GOTO 5
11 0 A5 A5 5 EOF Reduce (2)

0 A5 5 EOF GOTO 6
12 0 A5 S6 6 EOF Reduce (1)

0 0 EOF GOTO 7
13 0 S7 7 EOF Accept

Table 2.3.: Parsing the sequence “c a a c b b EOF” using the parsing table 2.2

The GOTO action is mentioned explicitly although it is part of the reduce action.
The stack before the GOTO action is the stack where the tuples for the reduced
production have been removed from the stack. The tuple with the nonterminal of
that production is pushed right after.
Step 1 shows the initial configuration. The stack only contains the sentinel state

to avoid access to an empty stack. This way the topmost item of the stack always
matches the current position. The algorithm ends successfully in step 13. The only
symbol left on the stack is the start symbol. The EOF symbol is never pushed on
the stack.
A parser does not necessarily create a parse tree. Instead it can execute semantic

actions whenever a production is reduced. A parser generator can merge user-
defined semantic actions into the generated parser.
How such a parsing table is computed is not a subject here. Prevalent books like

Compilers - Principles, Techniques, & Tools [1] (also known as the Dragon Book)
cover this topic extensively.
As mentioned earlier it is possible that there is no LR(k) parsing table for a

specific grammar. The greater k the more grammars can be processed (and the
bigger the parsing table becomes), but there is no k which allows to process all
grammars. Hence, the LR parsing method is limited to a subset of all context-free
grammars. A context-free grammar, for which an LR(k) parsing table exists, is

10

2.3. Generalised LR-Parsing

called an LR(k)-grammar.
If a parsing table cannot be generated, then because of a conflict: more than one

action is possible in a cell of the ACTION table. This means that, given only the
k lookahead terminals, it is not possible to decide which action is correct.
There are two classes of conflicts. A shift/reduce conflict means that the next

symbol could be either shifted to the stack or cause a reduce action. A reduce/re-
duce conflict is a clash between two different productions which could be reduced.
Both types of conflicts can occur in the same cell of the ACTION table.
Neither an accept nor an error action can be involved in an conflict. The accept

action is dominant over all other actions. An error action is just a lack of other
possibilities.

2.3. Generalised LR-Parsing
The existence of a conflict prohibits that an LR parser continues because this tech-
nique allows only one action per step. Having more than one possible choice is a
kind of indeterminism. At the point of the conflict it is unknown which possibility
is a path to a successful parse. Multiple paths must be followed in order to find out
which one leads to a valid parse tree. One can think of two ways to do this.
If Backtracking is used, only one of those paths is followed. If it does not lead

to a valid parse tree, the algorithm goes back to a configuration before the conflict
and tries a different path. This repeats until a valid parse is found or all paths have
been processed. In the latter case there is no parse tree.
Alternatively, all paths can be processed in parallel using multiple parser con-

figurations. When a conflict is encountered the configuration splits into a new
configuration for every possible action. Actions are executed on all configurations
independently. An error action causes that no more actions are executed on the
affected configuration. The input word is accepted when at least one configuration
reaches an accept action.
This idea has been described by Bernhard Lang [9] and elaborated by Masaru

Tomita [21]. It is known as Tomita- or generalised LR-parsing (GLR) by today.

Example 2.7
Consider grammar 2.4. This grammar has just three valid words: “c c c a”, “c c
c b” and “c c c”.

(1) S → A c a
(2) S → B c b
(3) S → C c c
(4) A→ c c
(5) B → c c
(6) C → c

(2.4)

The LR(1) parsing table (Table 2.4) for this grammar shows two conflicts. There

11

2. Parsing Techniques

is a shift/reduce-conflict in state 1 and a reduce/reduce-conflict in state 2. A
standard LR(1) parser generator would fail, but when used in a GLR parser, the
cells contain sets of actions instead of single actions. Here, an empty cell means an
empty set of actions.

ACTION GOTO
State a b c EOF S A B C
0 {s1} 11 3 6 9
1 {s2,r6}
2 {r4,r5}
3 {s4}
4 {s5}
5 {r1}
6 {s7}
7 {s8}
8 {r2}
9 {s10}
10 {r3}
11 {acc}

Table 2.4.: LR parsing table for grammar 2.4

Figure 2.5 illustrates how a GLR parser processes the input word “c c c a”.
The different parallel configurations are shown in their own boxes. The current
state is not shown explicitly because it always corresponds to the topmost item on
the stack. Whenever the position pointer moves to the next terminal, a box on the
right shows the remaining input and the lookahead terminal highlighted in red.
Both conflicts are encountered during this parse, so there are two splits of con-

figurations. Anyhow, in the further progress two of the three paths stop at dead
ends. Just one finishes and accepts the word as part of the grammar’s language.
A good implementation of the GLR parser scheme has a worst-case runtime of

O(n3) – the same as a CYK parser. However, if the context-free grammar is LR(k),
then a GLR parser has a runtime of O(n) like an LR(k) parser. Hence it combines
the advantages of LR(k) and CYK parsing techniques, being able to parse any
grammar and to do it in linear time if the grammar permits it.
An open question is what happens if there are multiple paths that accept an

input word. Depending on the implementation of the GLR parser, it either returns
just the first parse tree it finds or all that exist. In the first case the parser chooses
an arbitrary interpretation of the input string without knowing whether this is one
meant by the author. In the latter case it may return up to exponentially many
parse trees, but the “correct” one is still unknown.
Both approaches are unsatisfying. Therefore, it is normally the best to use gram-

mars which do not have multiple parse trees for any word. This is the topic of the
next chapter.

12

2.3. Generalised LR-Parsing

c c c a EOF
c c a EOF

c a EOF

a EOF

EOF

Stack Action
0 Shift c1

0 c1 Split

Stack Action
0 c1 Reduce (6)

0 GOTO 9
0 C9 Shift c10

0 C9 c10 Reduce (3)
0 GOTO 11

0 S11 Error

Stack Action
0 c1 Shift c2

0 c1 c2 Split

Stack Action
0 c1 c2 Reduce (4)

0 GOTO 3
0 A3 Shift c4

0 A3 c4 Shift a5
0 A4 c4 a5 Reduce (1)

0 GOTO 11
0 S11 Accept

Stack Action
0 c1 c2 Reduce (5)

0 GOTO 6
0 B6 Shift c7

0 B6 c7 Error

Remaining Input

Figure 2.5.: A GLR parser processing the word “c c c a” using the parsing table 2.4

13

2. Parsing Techniques

14

3. Ambiguity Detection

For some grammars, there is no bijective relation between input words and parse
tree. While every parse tree corresponds to a single word, the reverse does not hold
necessarily. A context-free grammar where a word with more than one parse tree
exists is called ambiguous.
In this chapter, we will formally define ambiguity of a context-free grammar.

Because there is no algorithm that decides whether a grammar is ambiguous, we
will present two different techniques to approximate this problem: Ambiguity Check-
ing with Language Approximations (ACLA) and Regular/LR-Regular/Noncanonical
Unambiguity.

3.1. Ambiguous Context-Free Grammars
An example of a grammar with multiple parse trees is Grammar 3.1. It recognises
the word “ab”, which has two different right-/leftmost derivations (Equations 3.2)
and parse trees (Figure 3.1).

S → a b
S → A b
A→ a

(3.1)

S ⇒LM a b

S ⇒LM A b⇒ a b
(3.2)

S

a b

S

A

a

b

Figure 3.1.: Two parse trees of the word “ab” using Grammar 3.1

Definition 3.1 (Ambiguous context-free grammar)
A context-free grammar G = (V,Σ, P, S) is ambiguous, iff a word w ∈ Σ∗ exists,
which has multiple leftmost derivations S ⇒∗LM w in G.

15

3. Ambiguity Detection

In this definition, the leftmost derivation operation is used. Using rightmost
derivation or parse trees instead results in equivalent definitions. A grammar is
called unambiguous if it is not ambiguous.
The ambiguity problem for context-free grammars is the question, whether a given

context-free grammar is ambiguous. This problem is undecidable (Theorem 3.2):
there is no algorithm that solves this problem for every grammar. It is proven in
section A in the appendix.

Theorem 3.2 (Undecidability of the ambiguity problem for context-free gram-
mars)
There is no algorithm that decides whether a given context-free grammar is ambigu-
ous or unambiguous.

This result implies practical problems. A technical language should be unambigu-
ous to avoid misinterpretations. If a grammar is unambiguous, there is only one
unique interpretation for every word and thus problems with misinterpretation do
not occur. But as Theorem 3.2 shows, there are grammars that are unambiguous,
but it is not possible to be sure about that.

3.1.1. Ambiguity Approximation

Although no algorithm exists which solves the ambiguity problem for every context-
free grammar, algorithms exists which solve the problem for some grammars. We
call such algorithms approximations. An approximation algorithm can return up
to three values for the ambiguity problem: unambiguous, ambiguous and n/a, if it
cannot make a decision.
Here, we only consider algorithms that finish in finite time and never return a

wrong result (i.e. it does never return “ambiguous” when the grammar is unambigu-
ous nor “unambiguous” for an ambiguous grammar). Such an algorithm is called a
safe approximation.
Typically, it is interesting to know whether a grammar is unambiguous so it is

safe to use it for a technical language. Thus, we do not distinguish between the
results amb. and n/a. Both mean that ambiguities cannot be ruled out and a GLR
could return more than one parse tree. This is a conservative assumption.

3.2. Ambiguity Checking with Language Approximations

The ambiguity detection algorithm “Ambiguity Checking with Language Approx-
imations” (or ACLA, for short) has been proposed by Claus Brabrand, Robert
Giegerich and Anders Møller [3]. Instead of dealing with the ambiguity problem as
a whole, it is separated into two similar problems, namely vertical and horizontal
ambiguity. Both problems are undecidable again.
At first, we define horizontal and vertical ambiguity. Then, we show that a

superset of the original grammar allows an approximation of the ambiguity problem,

16

3.2. Ambiguity Checking with Language Approximations

if the intersection and the overlap operators can be computed on the superset.
Finally, we show how regular grammars can be used as such supersets.

3.2.1. Horizontal and Vertical Ambiguity
Definition 3.3 (Horizontal ambiguity)
A grammarG = (N,Σ, P, S) is horizontally ambiguous iff it has a production A→ γ
with a partition γ = αβ, such that the languages L(α) and L(β) overlap, i.e. there
is a sequence of terminals that could be the ending of L(α) or the beginning of
L(β). As a formula:

∃A ∈ N, (A→ αβ) ∈ P : LG(α)∩∨LG(β) 6= ∅

The overlap ∩∨ of two languages X and Y is defined by

X ∩∨Y =
{
xvy | x, y ∈ Σ∗ ∧ v ∈ Σ+ ∧ x, xv ∈ X ∧ vy, y ∈ Y

}
Definition 3.4 (Vertical ambiguity)
A grammar G = (N,Σ, P, S) is vertically ambiguous iff it has two different produc-
tions A→ α and A→ β, which can be derived to the same word. As a formula:

∃A ∈ N, (A→ α), (A→ β) ∈ P, α 6= β : LG(α) ∩ LG(β) 6= ∅

Theorem 3.5 (Equivalence of both ambiguity definitions)
The following statements are equivalent:

1. Grammar G is unambiguous as in Definition 3.1

2. Grammar G is vertically and horizontally unambiguous

The proof of this theorem is separated into three lemmas. The final proof is at
the end of this section.

Lemma 3.6 (Horizontal ambiguity ⇒ ambiguity)
If grammar G is horizontally ambiguous then it is also ambiguous as by Defini-
tion 3.1.

Proof. Assume that G has a horizontal ambiguity in production A → αβ so
L(α)∩∨L(β) 6= ∅. Let w be an element of L(α)∩∨L(β). By definition of the overlap
operator w = xvy with |v| > 0, x, xv ∈ L(α) and y, vy ∈ L(β) holds. Since A exists
in at least one parse tree two different leftmost derivations can be built as shown
here:

S ⇒∗ γAδ ⇒∗ z1Aδ ⇒ z1αβδ ⇒∗ z1xvβδ ⇒∗ z1xvyδ ⇒∗ z1xvyz2 = z1wz2

S ⇒∗ γAδ ⇒∗ z1Aδ ⇒ z1αβδ ⇒∗ z1xβδ ⇒∗ z1xvyδ ⇒∗ z1xvyz2 = z1wz2
(3.3)

The LM subscripts were omitted here to avoid clutter.

17

3. Ambiguity Detection

The derivations 3.3 are shown as parse trees in Figure 3.2. Again, two different
trees end up with the same word z1xvyz2.

S

γ

z1

A

α

x v

β

y

δ

z2

S

γ

z1

A

α

x

β

v y

δ

z2

Figure 3.2.: Two parse trees for horizontal ambiguity

Lemma 3.7 (Vertical ambiguity ⇒ ambiguity)
If grammar G is vertically ambiguous then it is also ambiguous as by definition 3.1.

Proof. Assume that G has a vertical ambiguity in nonterminal A. Hence, there are
two different productions A → α and A → α′ with M := L(α) ∩ L(α′) 6= ∅. Let
w ∈ M be an element of this intersection. The word w can be used to build two
different leftmost derivations because by definition of a context-free grammar, A
exists in at least one derivation.

S ⇒∗ βAγ ⇒∗ xAγ ⇒ xαγ ⇒∗ xwγ ⇒∗ xwy
S ⇒∗ βAγ ⇒∗ xAγ ⇒ xα′γ ⇒∗ xwγ ⇒∗ xwy

(3.4)

Again, the LM subscripts were omitted.

The derivations 3.4 are visualised in the parse trees of Figure 3.3. They are equal
except for the symbol α (α′ respectively) and their subtrees, but still derive to the
same word xwy. Hence, the grammar is ambiguous.

S

β

x

A

α

w

γ

y

S

β

x

A

α′

w

γ

y

Figure 3.3.: Two parse tress for vertical ambiguity

18

3.2. Ambiguity Checking with Language Approximations

Lemma 3.8 (Ambiguity ⇒ horizontal ambiguity or vertical ambiguity)
If grammar G is ambiguous as by definition 3.1 then it is either horizontally or
vertically ambiguous (or both).

Proof. Assume that G = (N,Σ, P, S) is ambiguous. We show by mathematical
induction over the height of the derivation tree that G must be vertically or hor-
izontally ambiguous. The start symbol is always a nonterminal so the height of a
parse tree is at least 1.

• Induction Basis: Tree height = 1
Only one production S → w1 . . . wn = w has been applied. There can be
only one such production, therefore this tree is unambiguous. This does not
violate the implication in the induction hypothesis because its antecedent is
false (ex falso sequitur quodlibet).

S

w1 w2 wn−1 wn= w

Figure 3.4.: Induction Basis (h = 1)

• Induction Hypothesis:
Any parse tree with height h−1 or less, which is ambiguous, is either vertically
or horizontally ambiguous.

• Inductive step:
Without loss of generality, we assume that all productions have n symbols on
the right hand side with n being the largest number of symbols in all produc-
tions. Productions having less symbols can be filled up using ε-symbols.

S

X1

w1

X2

w2

Xn−1

wn−1

Xn

wn

T1 T2 Tn−1 Tn

T

S

X ′1

w′1

X ′2

w′2

X ′n−1

w′n−1

X ′n

w′n

T ′1 T ′2 T ′n−1 T ′n

T ′

Figure 3.5.: Inductive step of Lemma 3.8

We assumed that grammar G is ambiguous and therefore a word w exists,

19

3. Ambiguity Detection

which has two different parse trees.

T = (S ⇒ X1 . . . Xn ⇒∗ w1 . . . wn = w)
T ′ =

(
S ⇒ X ′1 . . . X

′
n ⇒∗ w′1 . . . w′n = w

)
with Xi ⇒∗ wi and Xi ⇒∗ w′i for all i ∈ {1, . . . , n}. The subtrees Xi ⇒∗ wi
and X ′i ⇒∗ w′i are named Ti and T ′i respectively.

Furthermore, let h be the height of the higher tree of T and T ′. Now there
are three different cases we have to handle.

– Case ∃i = {1, . . . , n} : Xi 6= X ′i
(there is a difference in the topmost derivation)

Two different productions S → X1 . . . Xn and S → X ′1 . . . X
′
n

have been applied. Hence the definition for vertical ambiguity
L(X1 . . . Xn)

⋂
L(X ′1 . . . X ′n) ⊇ {w} 6= ∅ shows that the grammar is

vertically ambiguous.

S

X1

w1

Xi

wi

Xn

wn

S

X1

w1

X ′i

wi

Xn

wn

T1 Ti Tn T1 T ′i Tn
=

6=

Figure 3.6.: Case 1

– Case ∀i = {1, . . . , n} : Xi = X ′i and ∀i = {1, . . . , n} : wi = w′i
(the topmost derivation is equal and its subtrees derive the same terminal
sequences)

All the subtrees Ti and T ′i start with the same symbolXi = X ′i. However,
since we assumed that T 6= T ′ there is at least one i such that Ti 6=
T ′i . The height of both trees is less than h and therefore the induction
hypothesis can be applied to all of them. When applying the hypothesis
to wi, which has two different parse trees Ti and T ′i with starting symbol
Xi = X ′i, we get that it is vertically or horizontally ambiguous and hence
the grammar, which contains these subtrees, too.

– Case ∀i = {1, . . . , n} : Xi = X ′i and ∃i = {1, . . . , n} : wi 6= w′i
(the topmost derivation is equal, but its subtrees derive different se-
quences of terminals)

Let i be the lowest index such that wi 6= w′i. We know that
w1 . . . wiwi+1 . . . wn = w = w′1 . . . w

′
iw
′
i+1 . . . w

′
n, but w1 . . . wi 6= w′1 . . . w

′
i

and wi+1 . . . wn 6= w′i+1 . . . w
′
n.

20

3.2. Ambiguity Checking with Language Approximations

S

X1

w1

Xi

wi

Xn

wn

S

X1

w1

Xi

wi

Xn

wn

T1 Ti Tn T1 T ′i Tn
=

=

Figure 3.7.: Case 2

Without loss of generality we can assume that |wi+1 . . . wn| < |w′1 . . . w′i|
(otherwise we switch the roles of T and T ′). Then we also know that
|wi+1 . . . wn| > |w′i+1 . . . w

′
n| holds. The lengths cannot be equal, because

wi would not be different from w′i, even if wi or w′i was ε.

We define wL := wi+1 . . . wn and wR := w′i+1 . . . w
′
n as the smaller of

both parts. wL matches the first terminals of w whereas wR matches the
last terminals of w. However, because |w1 . . . wi|+ |w′i+1 . . . w

′
n| < |w|, a

“gap” remains between wL and wR. We fill this gap with a sequence of
terminals v ∈ Σ+ such that wLvwR = w.

When comparing to the overlap operator definition, we see that it
matches L(X1 . . . Xi)∩∨L(Xi+1 . . . Xn), because

X1 . . . Xi ⇒∗ w1 . . . wi = wL ∈ L(X1 . . . Xi)
X1 . . . Xi = X ′1 . . . X

′
i ⇒∗ w′1 . . . w′i = wLv ∈ L(X1 . . . Xi)

Xi+1 . . . Xn = X ′i+1 . . . X
′
n ⇒∗ w′i+1 . . . w

′ = wR ∈ L(Xi+1 . . . Xn)
Xi+1 . . . Xn ⇒∗ wi+1 . . . w = vwR ∈ L(Xi+1 . . . Xn)

Hence L(X1 . . . Xi)∩∨L(Xi+1 . . . Xn) ⊇ {wLvwR} 6= ∅, which fulfils the
definition of horizontal ambiguity.

The existence of two different parse trees of height ≤ h implies that the
grammar is vertically or horizontally ambiguous.

The theorem follows by applying mathematical induction.

Proof of Theorem 3.5.

(1) ⇒ (2)
Lemma 3.6 shows that G is ambiguous if G is horizontally ambiguous. Simi-
larly, Lemma 3.7 states that G is ambiguous if G is vertically ambiguous. It
follows that G is horizontally or vertically ambiguous, then G is ambiguous.
The contraposition is: G is unambiguous ⇒ G is vertically and horizontally
unambiguous.

21

3. Ambiguity Detection

w1 wi wi+1 wn

a1 aj aj+1 ak ak+1 am

wL v wR

w′1 w′i w′i+1 w′n

S

X1 Xi Xi+1 Xn

T1 Ti Ti+1 Tn

T

S

X1 Xi Xi+1 Xn

T ′1 T ′i T ′i+1 T ′n

T ′

Figure 3.8.: Case 3

(2) ⇒ (1)
This is the contraposition of Lemma 3.8.

3.2.2. Approximation of Horizontal and Vertical Ambiguity

Dividing the ambiguity problem into two other problems does not bypass its un-
decidability. However, it allows to examine parts of a grammar independently.
Horizontal ambiguity requires the overlap operator ∩∨ and vertical ambiguity the
intersection operator ∩. These operators are not closed over the context-free lan-
guages.
If we use a superset of the original context-free language over which both opera-

tors are closed, the ambiguities remain. The next theorems show the property that
causes this behaviour.

Theorem 3.9 (Superset inequations)
Let X and Y be sets of terminal sequences and X ′ ⊇ X and Y ′ ⊇ Y supersets.

22

3.2. Ambiguity Checking with Language Approximations

Then

X ′ ∩ Y ′ ⊇ X ∩ Y (3.5)
X ′ ∩∨Y ′ ⊇ X ∩∨Y (3.6)

Proof. Equation 3.5 is basic set theory. X ∩∨Y is by definition equivalent to:{
xvy | x, y ∈ Σ∗ ∧ v ∈ Σ+ ∧ x, xv ∈ X ∧ y, vy ∈ Y

}
Let xvy be an element of X ∩∨Y . Then x, xv ∈ X and y, vy ∈ Y . X ′ and Y ′ are
supersets of X and Y , so x, xv ∈ X ′ and y, vy ∈ Y ′, which makes the condition
xvy | x, y ∈ Σ∗ ∧ v ∈ Σ+ ∧ x, xv ∈ X ′ ∧ y, vy ∈ Y ′ true. Hence xvy is an element of
X ′ ∩∨Y ′.

We now define the language approximation AG(α) ⊇ LG(α) of a grammar G and
a symbol sequence α. By using Theorem 3.9 we can show that all horizontal and
vertical ambiguities persist when using AG(α) instead of LG(α).

Definition 3.10 (Approximated horizontal ambiguity)
Let G = (N,Σ, P, S) be a context-free grammar and LG(α) ⊆ AG(α) for every
α ∈ V ∗. G has a potential horizontal ambiguity if

∃P ∈ N, (P → αβ) ∈ P : A(α)∩∨A(β) 6= ∅

Definition 3.11 (Approximated vertical ambiguity)
Let G = (N,Σ, P, S) be a context-free grammar and LG(α) ⊆ AG(α) for every
α ∈ V ∗. G has a potential vertical ambiguity iff

∃A ∈ N, (A→ α), (A→ β) ∈ P, α 6= β : L(α) ∩ L(β) 6= ∅

Theorem 3.12 (Horizontal ambiguity ⇒ approximated horizontal ambiguity)
Let G = (N,Σ, P, S) be horizontally ambiguous. Then G has a potential horizontal
ambiguity for any approximation AG.

Proof. Let (A→ αβ) ∈ P be the production that causes a horizontal ambiguity in
G, i.e. LG(α)∩∨LG(β) 6= ∅. This implicates AG(α)∩∨AG(β) 6= ∅ (Theorem 3.9)
and therefore (A→ αβ) matches the definition of a potential horizontal ambiguity
(Definition 3.10).

Theorem 3.13 (Vertical ambiguity ⇒ approximated vertical ambiguity)
Let G = (N,Σ, P, S) be vertically ambiguous. Then G has a potential vertical
ambiguity for any approximation AG.

Proof. Let A ∈ N be the nonterminal that causes a vertical ambiguity in G,
i.e. there are two productions (A → α), (A → β) ∈ P such that there is a
w ∈ LG(α)∩LG(β). Then, by Theorem 3.9, w is also an element of AG(α)∩AG(β)

23

3. Ambiguity Detection

and therefore this intersection is not empty. By Definition 3.11, G has a potential
vertical ambiguity.

By using contradiction these theorems show that if a grammar has no potential
ambiguity, then it is unambiguous. If it is decidable whether A(α) ∩ A(β) and
A(α)∩∨A(β) are empty or not, then we have a conservative approximation for the
ambiguity problem.

3.2.3. Approximation Using Regular Grammars

Regular grammars allow the computation of the intersection and the overlap and
can be used for the superset approximation. Here we show that it is possible to
get a regular superset of a context-free grammar and how both operators can be
implemented.
Regular grammars are usually represented by finite state machines (FSM). A

finite state machine is a directed graph. Its nodes and edges are called states and
transitions. A transition can consume a symbol from the input string when it is
traversed. There is one start state where every traversal through the graph starts
and a set of accepting states where it can end.
The intersection of two regular languages can be computed in quadratic runtime

depending on the number of states when both regular languages are represented
as finite state machines. This is done by simulating the execution of both state
machines simultaneously. This standard procedure in the field of automata theory
is explained in [6], for instance.
The overlap operation is more complicated. The next theorem gives a hint how

to implement it.

Theorem 3.14 (The overlap operator for regular languages)
Let FSM1 and FSM2 be two state machines that recognise a regular language and
let Σ be the set of symbols used in FSM1 or FSM2. We introduce two new terminals
<XV> and <VY> which do not occur in Σ. Then L(FSM1)∩∨L(FSM2) equals to
the intersection of the three sets

{x1<VY>y1 | x1 ∈ L(FSM1 extended by <XV>), y1 ∈ L(FSM2)} (3.7)
{x2<XV>y2 | x2 ∈ L(FSM1), y2 ∈ L(FSM2 extended by <VY>)} (3.8){

x3<XV>v3<VY>y3 | x3, y3 ∈ Σ∗, v3 ∈ Σ+
}

(3.9)

when the terminals <XV> and <VY> have been removed from the intersection.

The notation “L(FSM extended by a)” means a modified version of the language
recognised by FSM. It includes all strings where an arbitrary number of a-terminals
have been inserted at any position into a word w ∈ L(FSM).

Proof. This theorem is proven by showing both subset relations.

24

3.2. Ambiguity Checking with Language Approximations

⊆ Let xvy be an element of L(FSM1)∩∨L(FSM2). We insert the addi-
tional terminals such that we get x<XV>v<VY>y. We now show that
x<XV>v<VY>y is an element of all three sets. We define

x1 := x<XV>v
x2 := x

x3 := x

y1 := y

y2 := c<VY>y
y3 := y

v3 := v

and get

xv ∈ L(FSM1) ⇒ x<XV>v = x1 ∈ L(FSM1 extended by <XV>)
y ∈ L(FSM2) ⇒ y = y1 ∈ L(FSM2)
x ∈ L(FSM1) ⇒ x = x2 ∈ L(FSM1)
vy ∈ L(FSM2) ⇒ c<VY>y = y2 ∈ L(FSM2 extended by <VY>)

x ∈ Σ∗ ⇒ x = x3 ∈ Σ∗

v ∈ Σ+ ⇒ v = v3 ∈ Σ+

y ∈ Σ∗ ⇒ y = y3 ∈ Σ∗

Hence, the conditions of all three sets are fulfilled.

⊇ Let w := x1<VY>y1 = x2<XV>y2 = x3<XV>v3<VY>y3 be an element of
all three sets.

<XV> and <VY> do not occur in y1 ∈ L(FSM2), x2 ∈ L(FSM1), x3, y3 ∈
Σ∗ and v3 ∈ Σ+. And because of equation 3.9, they occur exactly once in w.
<XV> and <VY> also occur in equations 3.7 and 3.8. They separate the
variables the following way:

x3 <XV> v3 <VY> y3

x1 y1

x2 y2

25

3. Ambiguity Detection

Hence

x := x3 = x1 ∈ L(FSM1) ⊆ Σ∗

v := v3 ∈ Σ+

y := y3 = y3 ∈ L(FSM3) ⊆ Σ∗

x<XV>v = x3<XV>v3 = x1 ∈ L(FSM1 extended by <XV>)
v<VY>y = v3<VY>y3 = y2 ∈ L(FSM2 extended by <VY>)

When the terminals <XV> and <VY> are removed from of x1 and y2 (they
do not occur in x, v and y) we get

xv = x3v3 ∈ L(FSM1)
vy = v3y3 ∈ L(FSM2)

As a result, w = xvy is an element of L(FSM1)∩∨L(FSM2)

A finite state machine can be extended by adding a transition from every state
to itself that consumes the terminal by which the state machine is extended.
The three sets are concatenations of finite state automata, Σ∗, Σ+ and the ter-

minals <XV> and <VY>. They all can be expressed as finite state machines.
Finite state machines are appended after each other by adding transitions from the
accepting states of the first to the start state of the second state machine. The
intersection between them can be computed as mentioned before.

3.2.4. Regular Supersets
Finally, the regular superset of a context-free grammar itself has to be computed.
Clearly it exists, because Σ∗ is regular and a superset of every language. The
authors of [3] use the Mohri-Nederhof-Transformation [10] to get a superset of a
context-free grammar.
Another approach based on the Regular Unambiguity technique in the next sec-

tion has been implemented for this thesis. It has a closer approximation of the
context-free grammar, but its runtime behaviour is worse. A comparison can be
found at section 4.1.1.

3.3. Detection Schemes Based on Position Automata
An often used method to determine whether a grammar is unambiguous is to gen-
erate an LR(k) parser. If there are no conflicts, then the grammar is unambiguous.
This does not necessarily mean that if conflicts were found that the grammar is
ambiguous, thus this is a conservative approximation.
An extension has been presented by Sylvain Schmitz in [17]. It has some simi-

larities to the GLR extension for LR parsers: The processing is not aborted when

26

3.3. Detection Schemes Based on Position Automata

a conflict is encountered, but continued on best effort basis. Within a GLR parser,
this means to run multiple parser instances in parallel. For an ambiguity detector
it means to find out whether it is possible for more than one instance to reach an
accept action.
The approach is not specific to LR(k) parsers. Instead, it works on grammar

positions. A grammar position is the abstraction of the configuration of a parser
and denotes its current position within a parse tree.

Definition 3.15 (Grammar item)
Let G = (N,Σ, P, S) be a grammar and A→ γ one if its productions. A→ α�β is
an item for every partition γ = αβ. It identifies a position on the right-hand-side
of a production.

Definition 3.16 (Grammar position)
Let G = (N,Σ, P, S) be a grammar. A grammar position in G is a stack of items
of the form

S →α1�A1β1

A1 →α2�A2β2
...

An−1 →αn−1�Anβn−1

An →αn�βn

The number of items n is the level of the position. We call An → αn�βn the topmost
item, and all other items ancestors.

For a better overview we introduce a “level 0” which contains �S and S�. These
mean “before the parse begins” and “after the parse has finished successfully”,
respectively.
Grammar positions can also be interpreted as states of an automaton (a position

automaton). Then, “�S” is the starting state and “S�” the accepting state.
The following list describes the creation of outgoing transitions from a source

state, depending on the position it represents (the “current” position). It starts at
the state representing “�S” and finishes at “S�”.

• Case 1: The symbol after the dot in the topmost item is a nonterminal A.
For every production of the from A→ α create a new state by pushing A→ �α
on the stack of the current position. Add ε-transitions from the source state
to all these newly created states.

• Case 2: The symbol following the dot is a terminal a.
Create a new position by changing the topmost item of the current position
from α�aβ to αa�β. Connect it by a transition that consumes a.

27

3. Ambiguity Detection

• Case 3: There is no symbol behind the dot and there is at least one ancestor.
Create a new position by removing the topmost item from the stack of the
current position. Change the item, which is now the topmost item, from α�Bβ
to αB�β. Connect it with an ε-transition.

• Case 4: There is no ancestor and the topmost item is “S�”.
There is no successor state, because the end of the grammar has been reached.
This position is the accepting state.

Note that every position in an position automaton is unique. If a position is
created that already exists, both positions and states are merged.
When compared to an LR parser, case 2 conforms to a shift, case 3 is a reduce

action and case 4 is equivalent to an accept action. Case 1 does not exist in an LR
parser but is known as closure in LR parser generators.

Example 3.17
Consider Grammar 3.10, which accepts only one word (“a b c”). Figure 3.9 shows
the position automaton for this grammar. Greyed items do not belong to the au-
tomaton but have been added for information purposes. The transitions with non-
terminals show transitions that could exist, if nonterminals could be found directly
in the input sequence. They will be used later in this section.

(1) S → A B
(2) A→ a
(3) B → b c

(3.10)

�S S�

S → �AB S → A�B S → AB�

A→ �a A→ a� B → �bc B → b�c B → bc�

closure

closure
a

reduce (3) closure
b c

reduce (2)

reduce (1)

S

A B

Figure 3.9.: Position automaton for grammar 3.10. The states are labeled using the top-
most grammar item only.

Not every automaton built this way is a finite state machine because most
context-free grammars allow an infinite recursion level and thus infinite number
of states in its position automaton. Additionally, it not deterministic in general
because case 1 (closure) allows ε-transitions to multiple productions. The other
cases do not cause indeterminisms, as they do not allow any choices.

28

3.3. Detection Schemes Based on Position Automata

Every distinct path from the start state to the accepting state corresponds to a
different parse tree. This is because at every closure there is a choice which produc-
tion to choose for a nonterminal. The same choice is taken in a parse tree when a
node is expanded by a number of child nodes of a chosen production (Figure 3.10).
Hence, there is a one-to-one relationship between paths in a position automaton
and the parse trees.

α�Aβ

A→ �γ
A→ �δ

?
α A

γ

β α A

δ

β

?

Figure 3.10.: Choices in an position automation and a parse tree.

A finite state machine can be made deterministic by using the powerset construc-
tion method ([20] explains this algorithm). However, this does not work with an
infinite number of states. A solution is to define an equivalence relation ≡ to map
all states to a finite number of equivalence classes.

Example 3.18
Consider Grammar 3.11. Figure 3.11 shows the position automation of this gram-
mar. The grey states adumbrate the infinite number of levels. Instead of repeating
the same production at every level, the levels 2 and upwards are declared to be
equivalent to the corresponding states at level 1. Note that the transitions to and
from the merged states still exist, but have been redirected to the equivalent states.

(1) S→ a S b
(2) S→ c (3.11)

The original grammar accepts the language {ancbn | n ≥ 0}, which is a non-
regular language. The new automaton is a finite state machine which accepts
the language {ancbm | n,m ≥ 0}, a superset of the original language. The level of
recursion has been “forgotten”. The new language will be a regular superset for any
grammar if the equivalence relation creates a finite number of equivalence classes.
The finite state machine is called the approximation automaton of the context-free
grammar. It can be used as the regular superset needed in section 3.2.3.
For later definitions of ambiguity approximations we need the following transfor-

mation on position automata:

1. Use an equivalence relation where all grammar positions with the same top-
most item (i.e. same production and same placement of the dot) have their
distinct equivalence classes.

29

3. Ambiguity Detection

�S S�

S → �c S → c�

S → �aSb S → a�Sb S → aS�b S → aSb�

S → �c S → c�

S → �aSb S → a�Sb S → aS�b S → aSb�

closure

closure

a b

c

S

re
du

ce
(1
)red

uce
(2)

closure closure
reduce (1)

reduce (2)
clo
su
re

closure reduce (1)

reduce (2)

a b

c

S

Level 0

Level 1

Level 2

Figure 3.11.: Position automaton with equivalence classes for Grammar 3.11

2. Remove all reduce-transitions, but include all transitions that consume non-
terminals, as adumbrated in the figures.

3. Determinize the automaton using the powerset construction method [20].

This automaton is known as the LR(0) automaton, which is used to compute
the parsing table as in section 2.2. The reduce-transitions can be added again,
such that this automaton recognises the same language as before the removal of
the reduce-transitions. We call this finite state machine the LR(0) approximation
automaton. It can be indeterministic again.

Example 3.19
Figure 3.12 shows the LR(0) automaton of Grammar 3.11.

The same construction is possible with LR(k) for any k. The set of possible
lookahead terminals can be extracted from the ancestor items. In the grammar
position automaton, the lookahead terminals can be computed by following all
paths starting at the reduction state. Every path must be followed until k terminals
have been consumed on the path. These are the lookahead terminals.

30

3.3. Detection Schemes Based on Position Automata

�S
S → �aSb
S → �c

S → c� S�

S → a�Sb
S → �aSb
S → �c

S → aS�b S → aSb�

1
2

3
4 5

6

a

c

c

a

reduce (2)

reduce (2)

b

reduce (1)

reduce (1)

S

S

Figure 3.12.: The LR(0) approximation automaton of grammar 3.11. The states are la-
beled with the set of topmost grammar items which were joined during the
automaton determinization.

3.3.1. Regular Unambiguity

The original question was whether a grammar is unambiguous. A conflict in a
parsing table does not necessarily mean, that the grammar is ambiguous. Still, an
ambiguous word with more than one parse tree is required. Because of this, we
have to find such a word.
We also know that there is a one-to-one correspondence between parse trees and

paths through the positions automaton (without equivalence classes). Hence, we
have to find two different paths through the position automaton for the same word.
Paths in the position automaton for the same input can only split up at closure-

transitions. Moreover, after the split-up, the paths must still reach an accepting
state in order to map a complete parse tree. Hence, we can characterise ambiguous
context-free grammars as in Corollary 3.20.

Corollary 3.20 (Ambiguities in position automata)
Let G be a grammar with an position automaton. G is ambiguous if and only if
there are two different paths from the start state to an accepting state in this position
automaton.

A problem is, that there can be infinite many positions in a position automaton.
Therefore we apply an equivalence relation to the position automaton an get the
definition of Regular Unambiguity.
There is a problem that not all equivalence relations are useful for a conservative

ambiguity detection. For instance, assume we have a relation with only one equiv-

31

3. Ambiguity Detection

alence class. It is necessarily the start and the accepting state and there are no two
different paths. Thus, every grammar would be detected as “unambiguous”.
Therefore, we introduce bracketed grammars. The wanted property of a brack-

eted grammar is that different productions are kept distinct after applying any
equivalence relation.

Definition 3.21 (Bracketed grammar)
A bracketed grammar is a modification of a context-free grammar, where every
production begins with di and ends with ri. i is a unique number of that production.

A di terminal makes closures in the position automaton explicit in the recognised
language: Every closure transition is followed by a transition that consumes di. In
the same way, ri indicates a reduce: Every reduce-transition is preceded by a unique
ri-transition. A position automaton of any grammar can be modified to recognise
the corresponding bracketed grammar by making the ε-transitions for closures and
reductions consuming the corresponding di and ri terminals.
A bracketed grammar is always unambiguous. This is because the di terminals

uniquely define the production a nonterminals is expanded to. There is no more
choice which production to take. In this sense, the ri terminals are redundant since
they contain the same information. Additionally, because every production has a
constant length, the position of the ri terminals in the recognises language can be
derived from the di terminals. Therefore, the ri terminals can be omitted without
losing any information.
The same argument applies to the di terminals since a context-free grammar can

also be analysed from right-to-left. Therefore, either the di or the ri terminals can
be omitted.
An ambiguity in a grammar can be observed in its bracketed grammar: There

are two words in the bracketed grammar, which differ in the ri terminals only. The
different ri terminals indicate different paths through the position automaton. We
use this observation to define the term of Regular Unambiguity.

Definition 3.22 (Regular Unambiguity)
Let ≡ be an equivalence relation on grammar position with a finite number of equiv-
alence classes. Additionally, let G be a context-free grammar and G′ its bracketed
modification. We generate a finite state machine using the equivalence classes of ≡
by applying it on the position automaton G′. G is regular unambiguous in respect
of ≡ (RU(≡) for short), iff the recognised language of the finite state machine does
not contain any two words that differ in the di and ri symbols only.

We now have to prove that this results in a conservative ambiguity detection.

Theorem 3.23 (Regular Unambiguity ⇒ unambiguity)
Every grammar, which is regularly unambiguous in respect of an arbitrary equiva-
lence relation, is unambiguous as by Definition 3.1.

Proof. We show the contraposition “ambiguity ⇒ regular ambiguity”. That is, if

32

3.3. Detection Schemes Based on Position Automata

there are multiple paths for the same word, then the bracketed grammar recognises
two words which differ in the ri terminals only.
LetG be an ambiguous grammar with an ambiguous word w that has two different

paths in G’s position automaton. The start state of both paths are the same, so
they split up somewhere on the path. The only transitions where this is possible are
the closure-transitions. Following two different closure-transitions means to select
two different productions.
Let G′ be the bracketed grammar based on G. In the position automaton of

G′, the closure-transitions are explicit: they consume a di terminal and therefore
part of the input sequence. The same applies for the ri terminals at the end of
the production. The two paths in the position automaton of G have correspond-
ing paths in the position automaton of G′. We call the sequences of consumed
terminals on these paths w′1 and w′2. There first split of the paths are necessarily
closure-transitions, which consume two different di-terminals. Hence, w′1 and w′2
are unequal at that position. All non-di and ri terminals remain equal, so w′1 and
w′2 differ in di and ri terminals only.
After applying an equivalence relation ≡ on the position automaton of G′, the

finite state machine recognises a superset of the original language of G′. In par-
ticular, this superset also contains w′1 and w′2 and therefore fulfils the definition of
Regular Unambiguity in respect of ≡.

Without the equivalence relation, Regular Unambiguity would match the general
ambiguity definition, but it would be uncomputable. An equivalence relation with
a finite number of equivalence classes makes it computable, but may also show up
more ambiguities than in the original position automaton. Hence, we call these
potential ambiguities.
The computation can also operate on the original grammar without explicit

brackets. However, the equivalence relation must keep different productions in
different paths. In a bracketed grammar, this happens automatically, because the
different di and ri transitions cannot be joined to a single transition. The LR(k)
approximation automaton does this by keeping the reduce-transitions distinct.

Example 3.24
Again consider the unambiguous Grammar 3.11 and its LR(0) approximation au-
tomaton in Figure 3.12. When interpreted as a bracketed grammar (with the
reduce-transitions consuming ri terminals), the automaton recognises the language
{ancr2(br1)m | n ≥ 0,m ≥ 0} (the di transitions were omitted here). The position
and number of the ri terminals cannot be modified without also changing other
terminals. Because of this, no two different words exist, which only differ in the ri
terminals.
When ambiguity is interpreted as different paths through the position automaton,

one can see that there are no two different paths in the automaton in Figure 3.12
which consume the same sequence of terminals.

33

3. Ambiguity Detection

3.3.2. LR-Regular Unambiguity

We known that only shift/reduce conflicts and reduce/reduce conflicts between
different productions can cause ambiguities. Hence, we can ignore other indeter-
minisms in the position automaton. This guarantees that any LR(k) grammar is
found unambiguous when using the LR(k) item set (using the same or a greater k).
The definition of Regular Unambiguity does not consider this, so we come up with
a new definition of ambiguity approximation, LR-Regular Unambiguity.
In the LR(k) approximation automaton two grammar positions are equivalent if

their topmost item (including the lookahead) is equal. The items have the format
(A → α�β,w). w is the lookahead, a sequence of k terminals. We define Q as
the set of items specific to a grammar. This set does not need to be determinised,
because the mutually accessibility scheme operates on single items. Q also includes
the items (�S,EOF) and (S�, EOF), where EOF is a placeholder that marks the
end of the input sequence. They identify the position before and after the start
nonterminal.
Then we apply the mutual accessibility scheme on the problem. That is, we

search for pairs of items that consume the same sequence of terminals. A conflict
occurs when one of the items in the tuple executes a different action than the other
(shifts or different reduce actions).
To make mutual accessibility work, we define five relations on tuple of items (Q2).

q ∈ Q can be a any item.

mas : ((A→ α�aβ,w), (B → γ�aδ, v)) mas ((A→ αa�β,w), (B → γa�δ, v))

mad : ((A→ α�Cβ,w), q) mad ((C → �γ,w′), q)
– or –
(q, (A→ α�Cβ,w)) mad (q, (C → �γ,w′))
In both cases, w′ must be a valid beginning of β (the lookahead condition).

mar : ((C → α�, w′), q) mar ((A→ βC�γ,w), q)
– or –
(q, (C → α�, w′)) mar (q, (A→ βC�γ,w))
Again, w′ must be a valid beginning of γ (the lookahead condition).

maa : ((S�, EOF), (S�, EOF)) maa ((S�, EOF), (S�, EOF))

mac : ((C → α�, w′), (D → β�, w′)) mac ((A→ γC�δ, w), (B → γ′D�δ′, w))
C 6= D ∨ α 6= β and w′ must be a valid beginning of δ and δ′.
– or –
((A→ α�w1β, v), (C → γ�, w′)) mac ((A→ α�w1β, v), (B → δC�δ′, w))
w′ must be a valid beginning of w1β and δ′, where w1 is the first symbol of
w (or any symbol, if the number of lookahead tokens is k = 0).
– or –
((C → α�, w′), (B → β�w1γ, v)) mac ((A→ δC�δ′, w), (B → β�w1γ, v))
The same conditions as above apply.

34

3.3. Detection Schemes Based on Position Automata

The purpose of these relations can be described as follows.

mas (mutually accessible by shift)
Both items shift the same terminal.

mad (mutually accessible by closure)
This relation allows to enter a production of the next nonterminal. Since
no symbols are consumed, this can happen on both elements of the tuple
independently without altering the accessibility on the same input string

mar (mutually accessible by reduce)
Maps a reduction of one production. Again, no symbols are consumed so
items can be reduced independently.

maa (mutually accepting)
This is a filter which ensures that the final tuple accepts the input.

mac (mutually accessible by conflict)
A relation, which identifies conflicts. The first condition maps a reduce/re-
duce conflict. The second identifies shift/reduce conflicts. For the sake of
symmetry, the third identifies reduce/shift conflicts. Note that mac is a
subset of mar ∗ because one (shift/reduce) or two (reduce/reduce) applica-
tions of mar have the same effect.

Definition 3.25 (LR-Regular Unambiguity)
A grammar G is LR-regular unambiguous with k lookahead terminals iff

((mas∪mae∪mar)∗ ◦ mac ◦ (mas∪mae∪mar)∗ ◦maa)(�S,EOF ; �S,EOF) 6= ∅

The above equation is either empty or contains (S�, EOF ;S�, EOF) as the only
element because of the maa filter. However, the information, which relations where
needed from (�S,EOF ; �S,EOF) to (S�, EOF ;S�, EOF), can help the author of the
grammar to eliminate the problem.
The definition of LR-Regular Unambiguity exactly matches the grammar class

LR(Π) [22] where Π is a set of regular languages. In LR(Π)-parsers, these language
are used as lookaheads instead of fixed-length sequences. LR-Regular Unambiguity
just tests whether the languages of all actions, which can possibly execute at the
same time have, disjoint lookaheads. In our definition of LR-Regular Unambiguity
Π is the set of languages of the finite state machines that start after every reduce-
transition of the LR(k) approximation automaton.

Example 3.26
Consider the ambiguous Grammar 3.12 and its LR(0) approximation automaton in
Figure 3.13. There is one conflict in state 3 and the path

(1, 1) mas (3, 3) mac (2, 4) mar (5, 4) mar (5, 5) maa (5, 5)

35

3. Ambiguity Detection

�S
S → �A
S → �B

S → A� A→ a�

B → a�
S → B�

S�

1

2 3 4

5

a
A B

reduce (3) reduce (4)

reduce (1) redu
ce (

2)

Figure 3.13.: LR(0) approximation automaton of Grammar 3.12

fulfils the definition of a potential ambiguity in the sense of Definition 3.25. Hence,
this grammar is not LR-regular unambiguous when using the LR(0) equivalence
classes.

(1) S → A
(2) S → B
(3) A→ a
(4) B → a

(3.12)

Example 3.27
An example of an grammar, which is LR-regular unambiguous with k = 0, but not
regular unambiguous over LR(0), is Grammar 3.13 (taken from [17]).

(1) S → a A a
(2) S → b A a
(3) A→ c

(3.13)

It is LR-Regular Unambiguous because these is neither a shift/reduce-conflict
nor a reduce/reduce-conflict in its LR(0) approximation automaton (Figure 3.14).
However, the two paths

1, 2, 6, 3, 4, 9
1, 2, 6, 7, 8, 9

both consume the sequence “a c a”. In bracketed notation (again without the di
terminals) these paths correspond to the sequences “a c r3 a r1” and “a c r3 a
r2”, which differ only in the last terminals r1 and r2. Hence, this grammar is not

36

3.3. Detection Schemes Based on Position Automata

�S
S → �aAa
S → �bAa

S → a�Aa
A→ �c

S → aA�a S → aAa�

S → b�Aa
A→ �c

A→ c�

S → bA�a S�

S → bAa�

1 2 3 4

5 6

7

8

9

a

b c

c

a

a

A

A

red
uce

(3)

red
uce

(3)

red
uc
e (
1)

reduce
(2)

Figure 3.14.: LR(0) approximation automaton of grammar 3.13

regular unambiguous.

Example 3.28
Grammar 3.14 is not LR(k) for any k, but unambiguous and can be identified
correctly by regular and LR-Regular Unambiguity. It is not LR(k) because the
only difference between production (1) and (2) is the last terminal, but there can
be any number of c’s between the reduction of nonterminal A or B and the last
token. An unbounded lookahead is necessary.
The LR(0) approximation automaton can be seen in Figure 3.15. One can see

easily that there are no two different paths to state 11 because the two existing
“lanes” on the top and on the right require either a or b to be the last terminal.
Once they passed state 6, there is no more interaction between those lanes. There
is no single input sequence which follows both lanes. Therefore this grammar is
regular unambiguous, which also implies LR-Regular Unambiguity.

(1) S → A C a
(2) S → B D b
(3) A→ c
(4) B → c
(5) C → C c
(6) C → ε
(7) D→ D c
(8) D→ ε

(3.14)

37

3. Ambiguity Detection

�S
S → �ACa
S → �BDb
A→ �c
B → �c

S → A�Ca
C → �Cc
C → �

S → AC�a
C → C�c

S → ACa�

S → B�Db
D → �Dc
D → �

A→ c�

B → c�
C → Cc�

S → BD�b
D → D�c

D → Dc�

S → BDb� S�

1

2 3 4

5 6 7

8 9

10 11

A

B

C

D

a

b

c reduce (3)

reduce (4)

c

c

reduce (5)

reduce (7)

reduce (6)

reduce (8)

reduce (1)

reduce (2)

Figure 3.15.: LR(0) approximation automaton of grammar 3.14

3.3.3. Noncanonical Unambiguity

Another extension has been presented by Sylvain Schmitz in the same article [17].
It avoids to follow closure-transitions whenever possible and shifts the expected
nonterminal instead. The nonterminal is a placeholder for the language it represents
and therefore closer than any approximation can be.
The only reason why to take a detour starting at the closure-transition and

ending at the reduce-transition of a production instead the more direct path over
the nonterminal is because the path may contain a conflict. If the shortcut over
the nonterminal is taken then the conflict is not detected. Giving priority to the
nonterminals avoids additional paths that only exist because the finite state machine
is a superset of the original language. The technique has been named Noncanonical
Unambiguity (or NU(≡) for short).
A similar mutual accessibility scheme like the one presented for LR-Regular Un-

ambiguity can be developed for Noncanonical Unambiguity. In order fo find con-
flicts, the closure-transitions have to be followed, but the corresponding reduce-
transition is only valid if a conflict has been found in this or any subordinate pro-

38

3.3. Detection Schemes Based on Position Automata

A→ α�Bβ A→ αB�β

B → �γ B → γ�

B → �δ B → δ�

B

closure (1)closure (2)

red
uce

(1)

red
uc
e (
2)

conflict

Figure 3.16.: Schema for Noncanonical Unambiguity. The yellow path is the shortcut over
the nonterminal. The green path is a dead end because it does not contain
any conflict. The blue path encounters a conflict and therefore can continue.

duction. If there is no conflict, then the path leads into a dead end is not considered
any further. In contrast, transitions that shift nonterminals are always valid, but
the conflict is still considered by the path that follows the closure. Figure 3.16
illustrates the principle.
Noncanonical Unambiguity is a conservative ambiguity detection scheme and

detects more unambiguous grammars than regular and LR-Regular Unambiguity
do. This is shown in [16].

Example 3.29
Grammar 3.15 illustrates the advantage of Noncanonical Unambiguity over LR-
Regular Unambiguity. Its position automaton is shown in Figure 3.17. There is a
pair of paths that fulfil the conditions of a potential LR-Regular ambiguity:

1, 5, 6, 7, 8, 9, 3, 4, 11
1, 5, 6, 7, 8, 9, 8, 9, 10, 11

For Noncanonical Unambiguity it is necessary that the sub-paths for the nonter-
minal C must traverse a conflict. C is not directly involved in any conflict so any
path has to go over the C-transitions (6, 10) or (2, 3). There are no two different
paths that consume the same word under this condition.

Note that Grammar 3.15 is a simplification of the grammar file s5.con mentioned
in the evaluation chapter. In the simplified grammar there are two additional
shift/reduce-conflicts in state 2 and 6 when using the LR(0) item set. The LR(1)
item set is necessary to make it detected as Noncanonically Unambiguous by our
implementation in the next chapter.

39

3. Ambiguity Detection

(1) S → A C b
(2) S → B C
(3) A→ a
(4) B → a
(5) C → c C b
(6) C → ε

(3.15)

�S
S → �ACb
S → �BC
A→ �a
B → �a

S → A�Cb
C → �cCb
C → �

S → AC�b S → ACb�

S → B�C
C → �cCb
C → �

S → BC� S�

S → a�

C → c�Cb
C → �cCb
C → �

C → cC�b

C → cCb�

1

2
3 4

5

6 7

8

9

10 11

A C

reduce (6)

b

reduce
(1)

reduce (3) c

reduce
(5)

B

C

re
du

ce
(6
)

reduce (2)

reduce (4)

c

reduce (5)

a

c

C

reduce (6)

b

reduce (5)

Figure 3.17.: The LR(0) approximation automaton of Grammar 3.15.

40

4. Design, Implementation & Integration

The theory of ambiguity detection has been explained in the previous chapters. We
can now apply this knowledge practically in an implementation for the Eli system.
We will call the implementation of the ACLA technique “grambiguity” and the
Noncanonical Unambiguity package “bisonamb”.
We will start by thinking about a design for the grambiguity application followed

by a discussion of its implementation. Instead of also implementing the LR-regular
and Noncanonical Unambiguity technique, we will use the implementation by Syl-
vain Schmitz [15]. Then we integrate both into the Eli system.

4.1. Design

A reference implementation by Anders Møller for the ACLA method exists [11],
but it is written Java. The Eli system does not support Java so we need to write a
new implementation to integrate it into the Eli system.
A software design is needed for the implementation. It must embrace a framework

for finite state machines, context-free grammars and several algorithms.
Terms like “state”, “nonterminal”, “terminal”, etc. lend themselves to be mod-

elled in an object-oriented way. They can be separated into those related to au-
tomata (like states) and related to grammars (like nonterminals).

DeterminizerMinimizer

Intersection

Overlap

RegularizerMohri-Nederhof-Transformation

Sample String Generator

Ambiguity Analyzer

Regularizer2

Finite State MachinesContext-Free Grammars

Cocke-Younger-Kasami

Figure 4.1.: Algorithms and their dependencies in grambiguity

41

4. Design, Implementation & Integration

The algorithms and their relationship to each other are shown in Figure 4.1.
Algorithms that operate on context-free grammars are shown on the left, whereas
algorithms on automata are on the right. Algorithms that work with both are in
the middle of both boxes.
The class structure of the most important classes can be seen in Figure 4.2.

Associations (except derivations) from or to the Automata or Grammar domain
are not shown in the figure because of their numerousness.

Grammar

-startNonteminal : Nonterminal

Automaton

-startState : State

Terminal Nonterminal

-desc : string

StateTransition

«interface»

Trigger

Token

-desc : string

-token : string

Production
«interface»

GrammarSymbol

GrammarItem

-position : int

GrammarPosition

1

*

1*

-Trigger*

0..1

-Dest

* 1

1 *

1

*

* *

*

1

1 *

Finite State Machines Context-Free Grammars

HorzVertAmbiguity

Regularizer Regularizer2

AutomatonOverlap TwoAutomata

AutomatonSampleString

MohriNederhofTransformation

1

*

AutomatonDeterminizer AutomatonRegularizer

«interface»

RegularizerAlgorithm

GrammarComponent

-rightLinear : bool

-leftLinear : bool

1

*

1*

CockeYoungerKasami

Figure 4.2.: UML class diagram for grambiguity

A Trigger is the condition that makes a transition traversable. In this context
the conditions are the input symbol consumed when traversing the condition. The
symbol is often called a Token. Token classes are global instances, which are instan-
tiated only once per symbol. A different instance means a different Token, although
their description may be equal.
To simplify the interaction with automata and grammars, Terminal is derived

42

4.1. Design

from Token. This allows using Terminal classes as triggers in automata. The
drawback is that this makes the domain of context-free grammar dependent on the
domain of automata although these are independent concepts.
RegularizerAlgorithm is the abstract base class for both grammar approximation

algorithms. “Regularizer” uses grammar positions and equivalence classes while
“Regularizer2” processes the output of the Mohri-Nederhof Transformation. Which
one is used is determined by assigning an instance of one of both to the Grammar
class.
The algorithms AutomatonMinimizer and AutomatonDeterminizer are not used

directly, but indirectly over the grammar class. Whenever a grammar is approxi-
mated by an automaton, it gets optimised by both algorithms.

4.1.1. The Algorithms

Here the algorithms used for the Ambiguity Checking by Language Approximation
technique are described briefly. We start at the algorithms on automata, continue
with the regular approximation algorithms and finish with the main ambiguity
analyzer.

Automaton Determinizer

The determinizer converts a nondeterministic finite automaton to a deterministic
finite automaton. It uses the powerset construction algorithm. The book [20]
contains a description of the powerset construction.

Automaton Minimizer

This algorithm, also known as table-filling algorithm, identifies equivalent states
of an automaton and merges them. If the automaton is deterministic, the output
automaton has a minimal number of states. It also works on nondeterministic au-
tomata, but the result is not guaranteed to be minimal. A more detailed description
can be found in [6].

Intersection Operator

The intersection of the language of two automata is computed similarly to the
mutual accessibility scheme. The main difference is, that the tuples contain state
from two different automata. Again, tuples are discovered, which are reachable
by the same input string. A state becomes an accepting state, iff both states are
accepting states. The output of this algorithm is the whole automaton of tuples as
states and possible transitions between them.

43

4. Design, Implementation & Integration

Overlap Operator

This computes the set of overlapping words (X ∩∨Y) as in Definition 3.3. This set is
a regular language; consequently it returns a finite state machine. The computation
of this algorithm has been described in section 3.2.3.
First, it builds the automaton of equitations 3.7, 3.8 and 3.9. Their intersection

is computed by executing the previous algorithm two times.

Sample String Generator

The sample string generator finds the shortest word which is recognised by an
automaton, if any.
This is a breath-first search through the automaton: New states are explored

beginning at the start state until an accepting state is found. Besides, the sequence
of consumed terminals is stored and returned.

Regularizer

The basics of this algorithm have already been described in section 3.3. We can
think of a context-free grammar with infinite recursion as an automaton with an
infinite number of states. What has to be found is an equivalence relation that
maps states which are “too deep” in recursion to states of a lower level.
In addition to the grammar items in productions, we also add items before (�A)

and behind (A�) a nonterminal. We refer to such items as nonterminal items (All
others are production items). This simplifies equivalence rule number 2 (described
later in this section).
The rules of section 3.3 are modified for this change. The first grammar position

is an item �S without ancestors. Note that B → �A is a position within a production
of B whereas �A is the position before a nonterminal. These are different grammar
positions. The same applies for B → A� and A�.

1. Case 1a (Enter): On a topmost item B → α�Aβ
Push �A to the grammar position stack. Add an ε-transition to this state.

2. Case 1b (Closure): On a topmost item �A
Push an item A → �α, where A → �α is a production of A on the grammar
position stack. Do this for every production with A on the left-hand-side.
Connect all by ε-transitions to these states.

3. Case 2 (Shift): On a topmost item B → α�aβ
Replace the topmost item by B → αa�β. Add a transition consuming a to
this new position.

4. Case 3a (Finish): On a topmost item A→ α�

Remove this topmost item from the grammar position. Add an ε-transition
to the new state.

44

4.1. Design

5. Case 3b (Reduce): On a topmost item A�, which is not the only item in the
grammar position
Pop this item off the stack. Now the new topmost item has the format
B → α�Aβ. Replace it by B → αA�β.

6. Case 4 (Accept): On item S�, which is the only item in the grammar position
Set this state as the accepting state of the automaton.

These changes do not alter the language which is recognised by the automaton
since it only adds states with ε-transitions. It adds more structure to the automa-
ton and makes it easier to apply an equivalence relation. We consider positions
equivalent if they are nested “too deep”.
The recursion can be considered as too deep if an item appears multiple times in

the ancestor list. Whenever a new grammar position is created, it is compared to
all grammar positions created before. If one is found to be equivalent, the former
is reused instead.
There are several choices for equivalence relations. Here is a selection of possi-

bilities:

1. Both grammar positions are normalised by removing topmost items until
every production item appears only once. The positions are equivalent, iff
the normalised positions are equal.

2. Both grammar positions are normalised by removing topmost items until
every nonterminal item appears only once. The positions are equivalent, iff
the normalised positions are equal.

3. Two grammar positions are equivalent, if their topmost items are equal.

There is only a finite number of items so it will always result in a finite state
automaton. Choice 2 is more inaccurate than choice 1 but will result in less states.
The same applies when comparing choice 2 and 3. Choice 3 results in the LR(0)
approximation automaton. For this implementation we choose possibility 2 as a
trade-off between number of states and accuracy.
Transitions, which start or end at a grammar positions that do not appear as

states in the finite state machine, must be redirected to the equivalent state.
The grammar positions are stored in a dictionary that maps to the automaton

states they correspond to and in a list of positions that have not been processed yet.
When a new grammar position is referenced by a transition, its state is created and
the position is added to the work-list. The algorithm continues until the work-list
is empty.

Example 4.1
The automaton in Figure 4.3 is the direct output of the implementation of this
algorithm when using Grammar 4.1 as input. The output uses a different convention
than the other finite state machine in this thesis. The start state is displayed as a

45

4. Design, Implementation & Integration

′a′ ′c′ ′e′

′d′ ′b′

.S

.S

S → .′a′S′b′

.S

S → .′c′S′d′

.S

S → .′e′

S.

.S

S →′ c′.S′d′

S.

.S

S →′ a′.S′b′

S.

.S

S →′ a′.S′b′
.S

S →′ c′.S′d′
.S

S →′ e′.

.S

S →′ c′.S′d′

.S

.S

S →′ c′S.′d′

.S

S →′ c′S′d′.

.S

S →′ a′.S′b′

.S

.S

S →′ a′S.′b′

.S

S →′ a′S′b′.

Figure 4.3.: Approximation automation of Grammar 4.1

hexagon and the states are labelled using the complete grammar position, not only
its topmost item.

S→ a S b
S→ c S d
S→ e

(4.1)

After determinizing and minimizing the automaton 4.3, the automaton looks like
in figure 4.4.

Mohri-Nederhof Transformation

This is the algorithm as described in [10]. It converts any context-free grammar
into a strongly regular context-free grammar, i.e. a regular grammar described
using nonterminals and productions as in Definition 2.1. It can be converted to
an equivalent finite state machine without changing the recognised language. The

46

4.1. Design

′a′

′c′

′e′

′b′

′d′

Figure 4.4.: Equivalent minimal automaton of the automata in Figure 4.3 and 4.5

converted grammar is a superset of the original grammar.
Let G = (N,Σ, P, S) be the grammar to transform. The transformation starts

by identifying the grammar’s components. This is done by first determining which
nonterminal can be the child of another nonterminal. The grammar’s components
are the strongly connected nonterminals of this relation. They are also called mu-
tually recursive nonterminals.
If all nonterminals of such a component have left-linear productions, then these

do not need to be processed any further, because this part of the grammar is already
strongly regular. The same applies if all productions are right-linear.
For all other components the productions must be replaced. Let M ⊆ N be

a set of mutually recursive nonterminals. For all nonterminals A ∈ M we add
a new nonterminals A′ to the grammar and remove all productions of the form
A → α0B1α1 . . . Bnαn, where n ≥ 0, A,B1, . . . , Bn ∈ M , α0, . . . , αn ∈ (V \M)∗.
As a replacement, the productions

A′ → ε

A→ α0B1

B′1 → α1B2

...

B′n−1 → αn−1Bn

B′n → αnA
′

are added to the grammar.
After this transformation all productions belonging to this component are right-

linear. This property guarantees that the grammar is strongly-regular. Note that
we allow nonterminals ∈ (V \N) to occur in α1, . . . , αn. These do not compromise
the property of being strongly-regular because these themselves are placeholders for
regular grammars (as long as their components are themselves strongly-regular).

Example 4.2
Grammar 4.2 is the transformed version of Grammar 4.1.

47

4. Design, Implementation & Integration

S’→ ε
S → a S
S’→ b S’
S → c S
S’→ d S’
S → e S’

(4.2)

Regularizer2

The second algorithm for approximating context-free grammars only works with
grammars with only left- or right linear components. Hence, an algorithm like
the Mohri-Nederhof Transformation must transform it into such a grammar if it
contains other non-linear components.
The automaton is created without the information which nonterminal is the start

nonterminal. When the creation has been finished, a start and an accepting state is
chosen, depending on which nonterminal is the start nonterminal of the grammar.
First, a start state (“Start A” for a nonterminal named A), a “component” state

(“A”) and an finish state (“Finish A”) is created for every nonterminal. Then, every
component is processed independently.
For every right-linear component, create a common finish state forM (“Exit M”)

and apply the following rules.

• For every production A→ α, α ∈ (V \M)∗
Add a path from “A” to “Exit M” that consumes α.

• For every production A→ αB, α ∈ (V \M)∗, B ∈M
Add a path that consumes α from “A” to “B”.

• For every nonterminal A ∈M
Add an ε-transition from “Start A” to “A” and another ε-transition from
“Exit M” to “Finish A”

Similar, for every left-linear component, create a common start state forM (“Be-
gin M”) and apply these rules.

• For every production A→ α, α ∈ (V \M)∗
Add a path that consumes α from “Begin M” to “A”.

• For every production A→ Bα, α ∈ (V \M)∗, B ∈M
Add a path from “B” to “A” that consumes α.

• For every nonterminal A ∈M
Add an ε-transition from “Start A” to “Begin M” and another ε-transition
from “A” to “Finish A”

48

4.1. Design

If the path that consumes an α ∈ (V \M)∗ contains a nonterminal C ∈ N \M , the
path is redirected to C’s start state (“Start C”) and continued from C’s finish state
(“Finish C”) by appropriate ε-transitions. This way this nonterminal is included
into the path by using the existing definition that already exists in this automaton.
The disadvantage of this method is that the automaton recognises a superset of

the language recognised by the strongly linear grammar. When every component
is put into a graph and a directed transition is added from a component to every
component it references, then we get a directed acyclic graph. But to create an
automaton, which exactly matches the strongly regular grammar, the reference
graph must be a tree. One can copy components, which are referenced multiple
times, until the graph is a tree. This was avoided because it can result in an
exponential number of states.
When the actual start nonterminal is known, it can be extracted from this au-

tomaton. The start state is set “Start S” and “Finish S” becomes the only accepting
state. All states that belong to an unreachable component should be removed from
the automaton. This avoids paths through productions that shouldn’t be accessible.

Example 4.3
Grammar 4.1, which was introduced and discussed for the other grammar ap-
proximation algorithm in Example 4.1, can also be approximated by applying a
Mohri-Nederhof-Transformation and Regularizer2. The transformed Grammar 4.2
is converted to the finite state machine in Figure 4.5.

′a′

′c′

′e′
′b′

′d′

Start S S

Finish S

Start S′ S′

Finish S′ Exit MExit M ′

Figure 4.5.: Approximation automaton of Grammar 4.1 by Regularizer2

Cocker-Younger-Kasami

In the context of the ambiguity analyzer, this algorithm is not used to find a parse
tree of a sequence, but how many parse trees a sequence has.
As the traditional Cocker-Younger-Kasami algorithm it uses dynamic program-

ming. The difference is that it stores the amount of possible parse trees of subse-
quences for every nonterminal. These values are used to compute the number of
possibilities for longer substrings. The algorithm finishes if the number of possibil-
ities of the start nonterminal for the whole input string has been computed.

49

4. Design, Implementation & Integration

Ambiguity Analyzer

The main ambiguity detection works in a brute-force manner: Check every position
within every production for horizontal ambiguity and check every combination of
two productions of the same nonterminal for vertical ambiguity.
Horizontal ambiguity is checked by generating finite state automata for both sides

of the production. If the overlap operator returns an automaton which recognises a
non-empty language, then the sample string generator will find a sequence. In this
case a potential horizontal ambiguity has been found.
Vertical ambiguity is checked similarly. Finite state machines are generated for

both productions. If the sample string generator finds a sequence in their intersec-
tion, a potential vertical ambiguity has been found.
Both, vertical and horizontal ambiguities, compute sample sequences that are

not necessarily words of the grammar because the check operates on a language
superset. The modified Cocker-Younger-Kasami algorithm tries to find how many
derivations these sample strings really have. If it has at least two, then the potential
ambiguity becomes a confirmed ambiguity.

4.2. Implementation
The implementation is written in C++ and can be compiled using the GNU C++
Compiler or Microsoft Visual Studio 2008. Table 4.6 contains an overview on all
files of this implementation.

File Purpose
Automaton.h, Automaton.cxx Automaton data structures
Grammar.h, Grammar.cxx Grammar data structures
AbstractGrammarSyntaxTree.h,
AbstractGrammarSyntaxTree.c

Building an abstract syntax tree of a
grammar file

Ambiguity.h, Ambiguity.cxx Invocation and display of results
AutomatonDeteminizer.h,
AutomatonDeterminizer.cxx

Determinization of nondeterministic au-
tomata using the powerset construction
method

AutomatonMinimizer.h,
AutomatonMinimizer.cxx

Minimizes the number of states of an au-
tomaton

AutomatonOverlap.h,
AutomatonOverlap.cxx

Implementation of the overlap operator

AutomatonSampleString.h,
AutomatonSampleString.cxx

Finding the shortest accepted sequence of
an automaton

CockeYoungerKasami.h,
CockeYoungerKasami.cxx

Implementation of the variant of the
Cocker-Younger-Kasami algorithm

BasicCollections.h,
BasicVector.h, BasicSet.h,
BasicDictionary.h

Supporting data structures

50

4.2. Implementation

File Purpose
HorzVertAmbiguity.h,
HorzVertAmbiguity.cxx

Implementation of the ACLA algorithm

Regularizer.h, Regularizer.cxx Approximation of context-free grammars
with position automata

GrammarUnfolding.h,
GrammarUnfolding.cxx

Creates clones of grammar structures

MohriNederhofTransformation.h,
MohriNederhofTransformation.cxx

The algorithm for the Mohri-Nederhof-
Transformation

Regularizer2.h,
Regularizer2.cxx

Approximation of left- and right-linear
context-free grammars

SmartPtr.h Additional smart pointers
Tests.h, Tests.cxx Unit tests
TwoAutomata.h, TwoAutomata.cxx Computation of the intersection and union

of two regular grammars

Table 4.6.: Source files for grambiguity

The files Automaton.h and Automaton.cxx contain the implementation of the
automaton-related classes. Similarly Grammar.h and Grammar.cxx implement the
domain of context-free grammars. Most algorithms are encapsulated into separate
files. This was done because these mostly declare object fields that should not ap-
pear in algorithm-independent data structures like “Automaton” and “Grammar”.
The files BasicCollections.h, BasicVector.h, BasicSet.h,

BasicDictionary.h and SmartPtr.h are general helpers. For instance,
BasicCollections.h (and its included files) include wrappers for STL tem-
plate classes. Although the STL is itself a high level library, its usage requires
much boiler plate code (code for standard situations that cannot be avoided).
This implementation makes heavy use of a foreach macro and thus makes it
unnecessary to handle with STL iterators directly. The macro is similar to the
BOOST_FOREACH macro found in the BOOST C++ library. However, use of a
heavyweight library like BOOST was discouraged.
The standard template library (STL) only offers binary tree-based sets and dic-

tionaries. Hash based version only exist as proprietary extensions like in Microsoft
Visual Studio. Therefore only the tree based versions can be used by the collections
wrappers. An alternative is the IdObjDictionary class. It uses numeric identifiers
to find a unique location in an array. For instance this is possible foe State object,
whose identifier is assigned and managed by its parent automaton.

SmartPtr.h implements a smart pointer with intrusive reference counting (ref-
count_ptr). It is faster than non-intrusive reference counting smart pointers, but
the objects need to be prepared for this. This can be done by deriving from “ref-
count_obj”.
Additional helper classes are a smart pointer for fixed-size arrays (array_ptr)

and a fixed-size two dimensional array called Matrix.

51

4. Design, Implementation & Integration

4.3. Integration

Eli is built on top of Odin. Odin describes itself as a replacement for Make [12].
Make reads its configuration from a file named Makefile whereas Odin uses an
Odinfile. A Makefile describes the sequence of shell commands which create a
file. In contrast, an Odinfile describes the source files and the destination format.
The steps needed (preprocessor, compiler, linker, ...) are determined automatically.
Make cannot do this by itself but additional tools like autotools help to generate
Makefiles which describe the toolchain.
The core of Eli is an own collection of components (called packages) for the Odin

system. Therefore Eli uses the same commands, syntax and help system as Odin
does. The Odin system is described in [4]. See Figure 4.7 for the components Eli
consists of.

bison

pgs

Eli Module Library

cppcc cxx

liga ...

grambiguity

...cc

Odin Module Library

Eli

Odin

bisonamb

Figure 4.7.: Eli’s architecture

We will extend the system by adding two packages “bisonamb” and “grambigu-
ity”. The “bisonamb” additionally requires the “bison” package.

4.3.1. Installation of Eli

The Eli system can be downloaded at http://sourceforge.net/projects/
eli-project or checked out from the CVS repository at eli-project.cvs.
sourceforge.net:/cvsroot/eli-project. Its file system looks like below. Only
the most important files and directories are shown.

52

http://sourceforge.net/projects/eli-project
http://sourceforge.net/projects/eli-project
eli-project.cvs.sourceforge.net:/cvsroot/eli-project
eli-project.cvs.sourceforge.net:/cvsroot/eli-project

4.3. Integration

/ (Eli root directory)
configure.in, configure, Makefile.in
Odin/

pkg/
cc/
cxx/
...

Eli/
configure.in, configure, Makefile.in
pkg/

Makefile.in, PKGLST
cc/
cxx/
pgs/
bison/
bisonamb/

Makefile.in, bisonamb.dg, version, bisonAmbiguity.sh
schmitz/

...
grambiguity/

Makefile.in, grambiguity.dg, version, grambiguity.sh,
Odinfile, grambiguity.specs, grambiguity.clp,
pgram.gla, pgram.con, pgram.lido,
...

Odin is included in the Odin/ directory and uses itself as build system. Eli is
included in the Eli/ directory and uses GNUMake as build system. Some parts also
require Odin. The standard GNUMake process consists of 3 phases. Before starting
this, autoconf should be executed if configure.in has been changed to generate
the configure-scripts. The command ./symlinks does this for all directories where
it is necessary.
At first, the user executes ./configure in the root directory. This generates

Makefile from Makefile.in in all necessary subdirectories. Additionally. it will
call ./configure for included third-party components.
Second, the user calls make (equivalent to make all) in the root directory. Be-

cause Eli needs Odin to execute, it will install Odin first. Then it compiles the
source files by executing the Makefiles. Each package is built one after each other
and may use the functionality of the packages built before them. The order is
determined by Eli/pkg/Makefile.in.
Third, make install copies the executables into the bin/ directory of the system

and the packages of Odin and Eli into the system’s lib/ directory.

53

4. Design, Implementation & Integration

Then eli -R needs to be executed to register all installed packages into a cache in
∼.ODIN/. This is done automatically if the cache does not exist yet. The packages
to be loaded are stored in PKGLST. This is not a part of the Make build process,
but is the preparation of the start of Eli.

eli -R also opens a command prompt where the full functionality can be used,
for example the “:ambiguity” and “:grambiguity” derivations.
The build process has been tested on Ubuntu Linux 7.10 with automake 1.10.1,

autoconf 2.61, GNU Make 3.81 and gcc 4.1. Additionally, it works using Windows
XP with Cygwin 1.5.25-11, automake 1.10.1-1, autoconf 2.61, make 3.81, gcc 3.4.4,
GNU Awk 3.1.6, file 4.21 and GNU diffutils 2.8.7.

4.3.2. Introduction to Odin/Eli Packages

Odin is organised in packages. There are packages that call the preprocessor (pack-
age cpp), compiler and the linker for C and C++ files (packages cc and cxx).
Basically the Eli system is a new set of packages.
Every package has its own directory in the Eli/pkg/ folder. Each contains at

least three files:

• version with a single text line which describes the version of the package.

• A derivation graph with extension .dg. This file defines the extensions this
package adds to the system. The syntax is described in [4]. Multiple .dg-files
are possible.

• A Makefile.in which builds the package in the second phase. It also defines
which files have to be copied to the lib directory in the third phase.

4.3.3. Grammar Files

Eli’s description format for concrete grammars is .con. Its syntax is described in
the Eli manual [14]. Another format is pgram, which contains complete grammar
descriptions as used by parser generators. This is the format we are interested in.
Pgram grammars usually do not exist as files but as internal derivations which

are converted from con files and other sources by the package maptool. .con files
support EBNF syntax whereas pgram is plain BNF. The conversion is also done by
the maptool package.
Unfortunately, the pgram syntax is undocumented, but Ulf Schwekendiek [19]

created a pgram scanner and parser by reverse engineering for his bison package.
We will reuse his “grammar-grammar” pgram.con for our implementation.

4.3.4. The grambiguity Package

This package adds support for the ACLA ambiguity detection scheme. It consists
of the files shown in Table 4.8.

54

4.3. Integration

File Functionality
code.HEAD.phi Import of declarations needed in pgram.lido
grambiguity.clp Command line arguments parser
grambiguity.dg Derivation graph of the grambiguity package
grambiguity.sh Invocation shell script
grambiguity.specs Executable specifications
Makefile.in Build script
mkCustomStr1.c Postprocessor for semantic action tokens (copied from bi-

son package)
mkCustomStr.c Postprocessor for literal tokens (copied from bison pack-

age)
Odinfile Instructions for Odin how to build the executable
pgram.con Grammar-grammar syntax (copied from bison package)
pgram.gla Grammar-grammar token definitions (copied from bison

package)
pgram.lido Builds an abstract syntax tree of a grammar
SpecSemantic.c Token recognition of semantic actions in C syntax (copied

from bison package)
version Package version (1.0.0)
Other .h and .cxx
files

Source code (described in table 4.6)

Table 4.8.: Files of the grambiguity package

The package adds a new derivation to the Eli system. It takes a grammar as
input, invokes the executable and redirects its analysis to the output. See Table 4.9
and 4.10 for the additions to the Eli system.

Derivation Meaning
:grambiguity Computes the ACLA of a grammar given by a .con or .specs

file

Table 4.9.: Derivations defined in grambiguity.dg

The package is built together with the Eli system. When “./configure” is called
in the root directory, it also processes this package to generate a Makefile from
Makefile.in.
A definition of how to build the executable grambiguity.exe is found during the

“make” phase. It is built by calling Eli to process the Odinfile. This is possible be-
cause Eli and all necessary packages have been built before the grambiguity package.
The Odinfile defines grambiguity.exe as a derivation of grambiguity.specs us-
ing “g++” as the compiler for C. Specifying the compiler is necessary because it needs
to compile and link C++ and C sources. The C sources also compile with a C++
compiler. Eli will generate the application skeleton and pgram parser, include the

55

4. Design, Implementation & Integration

Option Meaning
+positionautomaton Use the position automaton regularizer (default).
+mohrinederhof Use Mohri-Nederhof Transformation and Regular-

izer2.

Table 4.10.: Options defined in grambiguity.dg

other source files and compile it.
During “make install” the files version, grambiguity.exe, grambiguity.dg

and grambiguity.sh are copied to their intended location in the file system.
When the :grambiguity derivation is used, the Eli system will pass a pgram gram-

mar to grambiguity.sh. This script will call the executable grambiguity.exe. Its
output is the result of the :grambiguity derivation.

4.3.5. The bisonamb Package

This package adds support for the LR-regular and noncanonical ambiguity detection
scheme to the Eli system.
Both algorithms are not implemented in this package. Instead, it uses the im-

plementation by Schmidt, which is integrated into a modified version of bison. It is
available at [15] and [18] provides a description. The bison package by Ulf Schwe-
kendiek [19] needs to be installed in order to run this package. This package can
convert pgram grammars to the grammar format used by GNU bison.
The package’s files are described in Table 4.11.

File or directory Purpose
schmitz/ This directory contains the bison source including the

ambiguity extension by Sylvain Schmitz [15]
bisonamb.dg Derivation graph of the bisonamb package
bisonAmbiguity.sh Invokes bison with the ambiguity detection option
Makefile.in Build script
version Package version (1.0.0)

Table 4.11.: Files of the bisonamb package

As the grambiguity package, this package has been integrated into the Eli build
system. In the first phase, ./configure will also call configure in the schmitz
directory, so bison prepares itself for the second phase.
In the same manner the second phase will call “make” in the schmitz directory

as instructed in Makefile.in. Then, it copies the executable bison into the root
directory of the package.
In the “make install” phase the files version, bison, bisonAmbiguity.sh and

bisonamb.dg are copied to the install directory.

56

4.3. Integration

When “eli -R” is called the next time, the package is loaded into the cache and
bisonamb.dg is integrated into the system. See Table 4.12 for the extension that
the bisonamb package adds to the system. The options in Table 4.13 are the same
as supported by the bison executable. A more detailed description of their meaning
can be found in its documentation.

Derivation Meaning
:ambiguity Invokes bison to analyse the ambiguity of a grammar given by

a .con or .specs file

Table 4.12.: Derivations defined in “bisonamb.dg”

Option possible val-
ues

Meaning

+test “clr”, “lrr”,
“ambig”
(default)

Type of test. “clr” tests whether the grammar is
of the type specified by +precision, “lrr” tests LR-
Regular Unambiguity and “ambig” tests for Non-
canonical Unambiguity.

+precision “lr0”, “slr”,
“lalr1”, “lr1”
(default)

Language class to use for the ambiguity detection.
“lalr1” is only supported by “+test=clr”.

+trace “ma”,
“metrics”

Verbosity of the output. “ma” shows the conflict-
ing mutual accessible states and “metrics” displays
some general information about the grammar.

+conflicts no value Do not display potential ambiguities and LRR-
intersections, but the LR(0)-conflicts that caused
them.

Table 4.13.: Options defined in “bisonamb.dg”. The effects are explained in [18].

When the :ambiguity derivation is used, Eli will first try to convert the source file
to a bison grammar. When the bison package was installed, Eli will first derive a
pgram grammar and then convert it to a bison grammar by using the bison package.
Without the bison package, Eli is unable to do this conversion.
Then, Eli executes bisonAmbiguity.sh on the bison grammar. This shell script

will invoke the GNU Bison executable from the schmitz directory. Its output is
also the result of the :ambiguity derivation.

57

4. Design, Implementation & Integration

58

5. Evaluation

In the previous chapters two main ambiguity detection schemes have been described,
but their usefulness has not been discussed yet. This is the subject of this chapter.
The first section will show the worst-case runtime of O(n5) for the ACLA method

and O(n2) for the Regular Unambiguity method. Then, the results of both imple-
mentations on a collection of test grammars are presented.

5.1. Asymptotic Worst-Case Runtime
We define the size of a grammar by a 3-tuple (u, v, h), where u is the number of
nonterminals, v the maximum number of productions a nonterminals has and h is
the maximum number of right-hand-side symbols of a production. Alternatively, a
single value n := u · v · h is used.

5.1.1. Ambiguity Checking with Language Approximation

An important factor of the asymptotic runtime is the size of the approximation au-
tomaton. The position automaton method used in the implementation can return
an exponentially growing number of states. An example showing this is Gram-
mar 5.1, which is of size (m,m, 2) or 2m2. Its language consists of only one word
with 2m a’s. Hence, a finite state machine that accepts this grammar has at least
2m transitions and 2m + 1 states.

S → A1 A1
A1 → A2 A2

...
Am−2 → Am−1 Am−1
Am−1 → a a

(5.1)

A Mohri-Nederhof transformed grammar has up to twice as much nonterminals
as the original grammar. Which nonterminals reference which others can be deter-
mined in O(uvh). The transitive closure to determine the reachability between non-
terminals requires quadratic runtime in terms of number of nonterminals. The re-
sulting runtime for the Mohri-Nederhof Transformation is O(u2+uvh) ⊆ O(u2vh) ⊆
O(n2).
Regularizer2 was designed to avoid the exponential blowup of the other method.

It has only a linear number of states compared to the number of nonterminals.

59

5. Evaluation

Additionally, there is a linear number of states for each of the 2uv right-hand-side
production sequences of a length up to h. Accordingly, the maximal number of
states is O(2u + 2uvh) ⊆ O(uvh) = O(n). The price is that, for instance with
Grammar 5.1, this results in a less close approximation.
Regularizer2 has to be executed for every nonterminal that needs to be approx-

imated. Therefore, the combined runtime of the Mohri-Nederhof Transformation
and Regularizer2 on 2u nonterminals is O(u2 + uvh+ u(2u+ 2uvh)) ⊆ O(u3vh) ⊆
O(n3).
Because of the potential exponential runtime of the position automaton method,

which would cover all other worst-case estimations, we will use Regularizer2 for any
further discussions. We define s := O(2u + 2uvh) as the number of states of the
approximation automaton. The approximation automaton of the right-hand-side of
a production has O(hs) states, because this is the concatenation of up to h automata
for nonterminals with O(s) states each. We assume that the number of transitions
is linear dependent on the number of states. This is a realistic assumption if the
number of terminals is treated as a constant.
A single check of a vertical ambiguity between two productions needs up to

O((hs)2 + (hs)2) processing steps. This includes the quadratic runtime of the
intersection and the breadth-first search to find a sample sequence. The breath-first
search algorithm has a runtime of O((hs)2), the number of states in the automaton.
The vertical ambiguity check has to be done for every combination of two pro-

ductions of the same nonterminal, thus up to uv2 times. This results in a total
runtime of O(uv2((hs)2 + (hs)2)) ⊆ O(u3v4h4) ⊇ O(n4).
The overlap operator requires a runtime of O((hs)2). This is the quadratic run-

time of intersection between the regular expressions 3.7 and 3.8. The automaton
representations have O(hs) states each because these are variations of a single pro-
duction. The third regular expression 3.9 is constant and thus the intersection
requires only constant time and space. Again, the search for a sample string using
breadth-first search requires linear time in respect of the number of states. The
total runtime for a single horizontal ambiguity check is O((hs)2 + (hs)2).
There are h − 1 possible divisions in up to uv productions. This makes O(uvh)

combinations and a total runtime of O(uvh(hs)2) ⊆ O(u3v3h5) ⊆ O(n5) for all
horizonal ambiguity checks.
Together horizontal and vertical ambiguity requires a total runtime of

O(u2 + uvh︸ ︷︷ ︸
Mohri-Nederhof

+ 2u2 + 2uvh︸ ︷︷ ︸
Regularizer2

+ u3v4h4︸ ︷︷ ︸
vertical a.

+ u3v3h5︸ ︷︷ ︸
horizontal a.

) ⊆ O(u3v4h5) ⊆ O(n5)

The approximation automata can be optimized by determinizing and minimizing
them. In theory, the determinization can blow up the automaton exponentially
again and hence it is not considered here. Nevertheless, in practice this optimization
decreases the number of states and therefore this is done with every automaton in
the implementation.

60

5.2. Results

5.1.2. Regular/LR-Regular/Noncanonical Unambiguity
For Regular, LR-Regular and Noncanonical Unambiguity based on LR(0), all items
of the grammar have to be found. There are up to uv(h+1) different positions for a
grammar, in particular h+1 positions for a single production with h right-hand-side
symbols for all of the O(uv) productions.
The mutual accessibility algorithm evaluates tuples. When uv(h + 1) is the

number of positions, then there are O((uvh)2) tuples. This results in a asymptotic
runtime of O(n2).
Choosing a k different from 0 results in a greater number of positions, up to tk

times more than for an LR(0) automaton (This is the number of combinations of
a sequence of k lookahead symbols out of a set of t terminals). The total runtime
would be O((uvhtk)2) = O(n2t2k). This has exponential growth in respect of k,
but k is rarely chosen to be greater than 1.

5.2. Results
To test the power and usefulness, a collection of grammars is tested on the ACLA
and the Noncanonical Unambiguity algorithms. This also allows us to compare
both algorithms.
An example output of the ambiguity package is the following.

1 potential ambiguities with LR(1) precision detected:
(S -> "a" "b" . , S -> A "b" .)

This if the output of the command

eli "grammar3.1.con :ambiguity >"

when the Eli system, including the bisonamb package, have been installed suc-
cessfully and the file grammar3.1.con (the file of Grammar 3.1) is in the current
directory. The output shows the position of a conflict between the items S → ab�

and S → Ab�. This is a reduce/reduce-conflict because both positions are at the
end of the productions.
An example output produced by the grambiguity package is

Total number of nonterminals: 2
Total number of terminals: 2
Total number of productions: 3
Number of strongly connected components: 2
Dimension sizes: (2, 2, 2)

S: 12/3/3
A: 4/2/2

Confirmed vertical ambiguity in nonterminal S
between productions S -> ’a’ ’b’ and S -> A ’b’
shortest sample string: "ab"

61

5. Evaluation

found 2 derivation trees for nonterminal S

Found 0 horizontal (0 confirmed) and 1 vertical (1 confirmed) ambiguities.

This grammar is ambiguous

This is printed on the screen when the command

eli "grammar3.1.con :grambiguity >"

is executed. At first, it displays some basic properties of the grammar. These can
be different from the data on the .con file because package maptool pre-processes
it. Then, the approximation automaton size of every nonterminal is printed. The
first number is the number of states produced by the regularizer. The second is
the number of states after determinisation and the third is the number of states
after this automaton has been minimized. Finally, it prints all found potential and
confirmed ambiguities. An ambiguity becomes a confirmed ambiguity if at least
two derivation trees have been found for the sample string.
Most test grammars have been taken from the grammar collection of Anders

Møller [11]. These include the grammars that were used in the articles [2], [17], [18]
and [3].
Other grammars tested are trivial.con (which consists of only one production

S → ε) and all grammars mentioned in this document. The grammar pgram.con,
which is used to generate a parser for grammar descriptions for the grambiguity
package, is also included in this test.
Moreover, the “real world” grammars ALGOL60.con, F77Phrase.con and

F90Phrase.con (both Fortran), Java.con, cminus.con and pascal-.con (shrinked
versions of C and Pascal) where used for the testings. These are included in the Eli
system distribution.
The computation time was measured using the real execution time printed by the

command “time -p”. Only the execution time of the executables grambiguity.exe
and bison without the overhead of the Eli system was measured. The execution
environment was “Ubuntu 7.10” running on a Pentium M (1600 Mhz) processor
with 1.25 GB of physical memory.
Some computations did not finish in reasonable time and were aborted. Other

computations required more memory than available in the virtual address space
(2 GB on Windows without /3GB option, 3 GB on Linux, both 32 bit systems).
Values that are unknown because of these limits are replaced by question marks.
The implementation used for the bisonamb package still has some issues. First,

the computation of the LR-Regular condition for some unambiguous grammars fails
because of invalid memory accesses. Second, it reports two ambiguous grammars
as unambiguous when (and only then) using the “+conflicts” option. This violates
the conservativeness of the algorithm. Both problems have been reported to the
author, Sylvain Schmitz.
In total 67 context-free grammars have been tested of which 50 are unambiguous.

30 of them are horizontally and vertically unambiguous and 39 are Noncanonically

62

5.2. Results

Unambiguous in regard of the LR(1) item set. More detailed statistics can be found
in Figure 5.1.

Number of Grammars

50 unambiguous
43 Recognised as unambiguous

39 Noncanonical LR(1)
35 LR-Regular LR(1)

33 Noncanonical SLR(1)
30 ACLA Position Automaton
30 LR-Regular SLR(1)

27 ACLA Mohri-Nederhof
25 Noncanonical LR(0)
25 LALR(1)

24 LR(1)1

23 LR-Regular LR(0)
20 SLR(1)

10 LR(0)

17 ambiguous
15 ACLA Position Automaton

14 ACLA Mohri-Nederhof

Figure 5.1.: Results of all tested unambiguity definitions over 66 grammars. The displayed
numbers are the numbers of grammars which have been found as unambiguous
by the given methods. “Recognised as unambiguous” means the number of
grammars which has been identified correctly by at least one method. Only
the grambiguity package (blue) is also able to detect ambiguous grammars.

5.2.1. Unambiguous Grammars

This section presents the results of the detection approximations on grammars,
which are known to be unambiguous. The first table (Table 5.1) contains some
basic properties of the grammars and the results return by the bisonamb package.
These are the number LR-conflicts, the LR-Regular test and the test for Noncanon-
ical Unambiguity. For better comparability the “+conflicts” has been used for the
latter two. Thus, the tables shows the number of LR(0) conflicts that are involved
in a potential noncanonical ambiguity or lookahead-intersection respectively. The
precision column shows the lowest precision that finds as many potential noncanon-
ical ambiguities (without “+conflicts” option) as LR(1) does.

1LR(1) is less than LALR(1) because the LR(1) item set could not be computed for some gram-
mars

63

5. Evaluation

The next two Tables 5.2 and 5.3 show the results of the grambiguity package.
The automaton column contains the number of states of the approximation automa-
ton of the whole grammar. This automaton is not always used by the horizontal
and vertical ambiguity checking, but normally it is greater than all automata used
there and therefore a useful estimation of the overall size.

Grammar properties Results of bisonamb
Grammar |P | |Σ| |C|1 (u, v, h)2 Prec.3 C4 I5 A6 Time D7

trivial.con 1 0 1 (1,1,0) LR(0) 0 0 0 0.00s una.
Grammar 2.1 4 3 2 (3,2,3) SLR(1) 0 0 0 0.00s una.
Grammar 2.3 3 3 2 (3,1,3) LR(0) 2 0 0 0.00s una.
Grammar 2.4 6 3 4 (4,3,3) LR(0) 3 0 0 0.00s una.
Grammar 3.10 3 3 3 (3,1,2) LR(0) 0 0 0 0.00s una.
Grammar 3.11 3 3 2 (2,2,3) LR(0) 0 0 0 0.00s una.
Grammar 3.13 3 3 2 (2,2,3) LR(0) 0 0 0 0.12s una.
Grammar 3.14 5 4 3 (3,2,3) LR(0) 0 0 0 0.00s una.
Grammar 3.15 6 3 4 (4,2,3) LR(1) 1 1 0 0.15s una.
Grammar 4.1 4 5 2 (2,3,3) LR(0) 0 0 0 0.00s una.
Grammar 5.1 10 1 10 (10,1,2) LR(0) 0 0 0 0.00s una.
(m = 10)
pgram.con 24 11 15 (15,3,4) SLR(1) 0 0 0 0.00s una.
03_02_124.con 6 3 5 (5,2,4) LR(0) 1 0 0 0.00s una.
03_09_027.con 8 6 6 (6,2,3) LR(0) 2 0 0 0.00s una.
03_09_081.con 10 3 6 (6,2,3) LR(0) 4 1 0 0.00s una.
04_02_041.con 4 6 3 (3,2,4) LR(0) 0 0 0 0.00s una.
05_03_092.con 12 9 5 (5,4,4) LR(1) 0 0 0 0.00s una.
05_03_114.con 7 3 4 (4,2,3) LR(0) 2 0 0 0.00s una.
90_10_042.con 8 3 5 (5,3,3) LR(1) 3 ?8 1 0.00s n/a
98_05_030.con 7 6 2 (3,3,6) LR(0) 4 1 0 0.00s una.
98_08_215.con 7 6 5 (5,2,4) LR(0) 2 0 0 0.00s una.
basepairs.con 8 4 2 (2,7,3) LR(1) 12 6 6 0.00s n/a
exp.con 5 4 2 (3,2,3) LR(0) 1 0 0 0.00s una.
g3.con 9 3 3 (4,4,3) LR(1) 4 2 2 0.00s n/a
g4.con 7 3 2 (3,3,5) SLR(1) 0 0 0 0.00s una.
1Number of strongly connected components
2Grammar dimension: u = number of nonterminals, v = max. number of productions per
nonterminal, h = max. number of right-hand-side symbols

3Precision; smallest item set which finds the same number of potential noncanonical ambiguities
as LR(1)

4Conflicts; Number of LR conflicts with the given precision
5Intersections; Number of LR-regular conflicts using the same precision
6Ambiguities; Number of conflicts that are potential noncanonical ambiguities with the same
precision

7Detection result; “una.” means that the grammar has been correctly identified as unambiguous,
i.e. no potential ambiguities were found

64

5.2. Results

Grammar properties Results of bisonamb
Grammar |P | |Σ| |C|1 (u, v, h)2 Prec.3 C4 I5 A6 Time D7

g5.con 4 3 2 (2,3,4) SLR(1) 0 0 0 0.00s una.
g6.con 7 3 2 (4,2,3) LR(1) 0 0 0 0.00s una.
g7.con 14 3 3 (6,4,3) LR(1) 5 2 2 0.00s n/a
g8.con 12 3 2 (5,3,4) LR(1) 0 0 0 0.00s una.
java_arrays.con 12 8 8 (10,2,4) LR(0) 1 0 0 0.00s una.
java_casts.con 10 3 3 (8,2,4) LR(0) 1 0 0 0.00s una.
java-exp.con 27 18 3 (11,5,3) LR(0) 36 0 0 0.01s una.
java_modifiers.con 48 23 22 (22,8,4) SLR(1) 12 0 0 0.00s una.
java_names.con 20 11 12 (12,2,4) LR(0) 10 0 0 0.00s una.
odd-even.con 6 2 3 (3,2,5) SLR(1) 0 0 0 0.00s una.
palindromes.con 6 2 2 (2,5,3) LR(1) 14 14 14 0.00s n/a
R.con 8 4 2 (2,7,3) LR(1) 12 6 6 0.03s n/a
reverse.con 6 2 2 (2,5,3) LR(1) 14 14 14 0.00s n/a
s2.con 3 3 2 (2,2,3) LR(0) 0 0 0 0.00s una.
s3.con 9 1 7 (7,2,3) LR(0) 2 0 0 0.00s una.
s5.con 6 3 4 (4,2,3) LR(0) 1 1 0 0.00s una.
s7.con 3 2 2 (2,2,3) LR(0) 0 0 0 0.00s una.
voss-light.con 15 3 6 (7,4,3) LR(1) 1 1 0 0.00s una.
voss.con 64 3 5 (27,9,7) LR(1) 68 19 18 0.16s n/a
sets.con 9 3 7 (7,2,4) LR(0) 2 0 0 0.04s una.
ALGOL60.specs 161 55 48 (81,8,5) LR(1) 0 0 0 3.85s una.
ebnf.specs 23 15 6 (10,4,4) SLR(1) 0 0 0 0.00s una.
F77Phrase.specs 532 102 189 (225,22,11) SLR(1)9 11 9 7 0.94s n/a
F90Phrase.specs 958 184 292 (352,29,11) SLR(1)9 12 10 10 4.21s n/a
Java.specs 361 103 89 (150,12,9) SLR(1)9 12 11 11 0.61s n/a

Table 5.1.: The properties of unambiguous test grammars and the results of the bisonamb
package.

Position Automaton
Grammar Automaton size10 Ambiguities11 Time D7

trivial.con 3/1/1 0/0 (0/0) 0.53s una.
Grammar 2.1 21/4/3 2/0 (0/0) 0.00s n/a
Grammar 2.3 33/4/2 0/0 (0/0) 0.01s una.

8The computation failed because of a segmentation fault
9The computation using LR(1) did not finish in reasonable time or required more than the
available amount of memory

10Number of states in the approximation automaton; without optimization/after determinisa-
tion/after minimization

11Number of potential ambiguities; horizontal/vertical (confirmed horizontal/confirmed vertical)

65

5. Evaluation

Position Automaton
Grammar Automaton size10 Ambiguities11 Time D7

Grammar 2.4 28/6/5 0/0 (0/0) 0.01s una.
Grammar 3.10 14/4/4 0/0 (0/0) 0.00s una.
Grammar 3.11 14/4/2 0/0 (0/0) 0.00s una.
Grammar 3.13 18/7/4 0/0 (0/0) 0.00s una.
Grammar 3.14 30/7/4 0/0 (0/0) 0.01s una.
Grammar 3.15 35/4/3 0/1 (0/0) 0.12s n/a
Grammar 4.1 20/6/2 0/0 (0/0) 0.01s una.
Grammar 5.1 (m = 10) 5115/1025/1025 0/0 (0/0) 7.29s una.
pgram.con 196/42/13 0/0 (0/0) 0.17s una.
03_02_124.con 27/5/5 0/0 (0/0) 0.01s una.
03_09_027.con 67/19/9 0/0 (0/0) 0.03s una.
03_09_081.con 61/10/9 0/0 (0/0) 0.02s una.
04_02_041.con 19/7/6 0/0 (0/0) 0.01s una.
05_03_092.con 89/25/15 0/0 (0/0) 0.04s una.
05_03_114.con 32/5/4 0/0 (0/0) 0.01s una.
90_10_042.con 62/5/4 0/0 (0/0) 0.06s una.
98_05_030.con 63/9/3 7/3 (0/0) 0.06s n/a
98_08_215.con 33/9/8 0/0 (0/0) 0.02s una.
basepairs.con 43/5/1 0/0 (0/0) 0.02s una.
exp.con 34/7/2 2/1 (0/0) 0.01s n/a
g3.con 57/6/1 2/1 (0/0) 0.02s n/a
g4.con 36/6/1 2/1 (0/0) 0.02s n/a
g5.con 21/4/1 2/0 (0/0) 0.00s n/a
g6.con 59/5/2 2/2 (0/0) 0.03s n/a
g7.con 184/23/7 2/4 (0/0) 0.10s n/a
g8.con 98/14/5 4/2 (0/0) 0.08s n/a
java_arrays.con 55/11/10 0/0 (0/0) 0.01s una.
java_casts.con 45/6/5 0/0 (0/0) 0.01s una.
java-exp.con 35554/4047/2 26/22 (0/0) 2652.29s n/a
java_modifiers.con 230/59/22 0/0 (0/0) 1.05 una.
java_names.con 129/19/10 0/0 (0/0) 0.04s una.
odd-even.con 30/8/4 0/0 (0/0) 0.02s una.
palindromes.con 23/3/1 0/0 (0/0) 0.00s una.
R.con 43/5/1 0/0 (0/0) 0.05s una.
reverse.con 23/3/1 0/0 (0/0) 0.00s una.
s2.con 18/7/4 0/0 (0/0) 0.00s una.
s3.con 171/35/35 0/0 (0/0) 0.10s una.
s5.con 39/5/4 0/1 (0/0) 0.01s n/a
s7.con 25/6/3 1/0 (0/0) 0.00s n/a
voss-light.con 83/8/7 0/1 (0/0) 0.02s n/a

66

5.2. Results

Position Automaton
Grammar Automaton size10 Ambiguities11 Time D7

voss.con7 30676/98/7 ?/? (?/?) ? ?
sets.con 77/11/5 0/0 (0/0) 0.28s una.
ALGOL60.specs7 ?/?/? ?/? (?/?) ? ?
ebnf.specs 1447/93/8 3/2 (0/0) 5.85s n/a
F77Phrase.specs9 ?/?/? ?/? (?/?) ? ?
F90Phrase.specs9 ?/?/? ?/? (?/?) ? ?
Java.specs9 ?/?/? ?/? (?/?) ? ?

Table 5.2.: Results of the grambiguity package on unambiguous grammars using the po-
sition automaton regularizer

Mohri-Nederhof Transformation
Grammar Automaton size10 Ambiguities11 Time D7

trivial.con 5/1/1 0/0 (0/0) 0.54s una.
Grammar 2.1 30/4/3 2/0 (0/0) 0.00s n/a
Grammar 2.3 30/4/2 0/0 (0/0) 0.00s una.
Grammar 2.4 36/6/5 0/0 (0/0) 0.01s una.
Grammar 3.10 20/4/4 0/0 (0/0) 0.00s una.
Grammar 3.11 22/4/2 0/0 (0/0) 0.00s una.
Grammar 3.13 18/5/4 0/0 (0/0) 0.17s una.
Grammar 3.14 25/6/3 0/0 (0/0) 0.01s una.
Grammar 3.15 38/4/3 0/1 (0/0) 0.07s n/a
Grammar 4.1 26/6/2 0/0 (0/0) 0.01s una.
Grammar 5.1 (m = 10) 70/3/3 8/0 (0/0) 7.29s n/a
pgram.con 121/21/13 0/0 (0/0) 0.06s una.
03_02_124.con 37/5/5 0/0 (0/0) 0.01s una.
03_09_027.con 48/9/9 0/0 (0/0) 0.01s una.
03_09_081.con 50/8/8 0/0 (0/0) 0.01s una.
04_02_041.con 25/7/6 0/0 (0/0) 0.01s una.
05_03_092.con 57/18/11 0/0 (0/0) 0.01s una.
05_03_114.con 34/5/4 0/0 (0/0) 0.01s una.
90_10_042.con 37/4/3 1/1 (0/0) 0.00s n/a
98_05_030.con 45/9/3 7/3 (0/0) 0.21s n/a
98_08_215.con 40/9/8 0/0 (0/0) 0.21s una.
basepairs.con 41/5/1 0/0 (0/0) 0.03s una.
exp.con 33/5/2 2/1 (0/0) 0.02s n/a
g3.con 58/6/2 1/2 (0/0) 0.01s n/a
g4.con 39/6/1 2/1 (0/0) 0.02s n/a

9The computation did not finish in reasonable time or required more than the available amount
of memory

67

5. Evaluation

Mohri-Nederhof Transformation
Grammar Automaton size10 Ambiguities11 Time D7

g5.con 23/4/1 2/0 (0/0) 0.01s n/a
g6.con 46/5/2 2/2 (0/0) 0.01s n/a
g7.con 79/11/6 2/4 (0/0) 0.04s n/a
g8.con 72/11/5 4/2 (0/0) 0.05s n/a
java_arrays.con 68/11/10 0/0 (0/0) 0.01s una.
java_casts.con 78/6/5 0/0 (0/0) 0.03s una.
java-exp.con 155/19/2 26/22 (0/0) 0.41s n/a
java_modifiers 200/46/22 0/0 (0/0) 0.54s una.
java_names.con 103/14/10 0/0 (0/0) 0.02s una.
odd-even.con 44/8/4 0/0 (0/0) 0.00s una.
palindromes.con 31/3/1 0/0 (0/0) 0.00s una.
R.con 41/5/1 0/0 (0/0) 0.01s una.
reverse.con 31/3/1 0/0 (0/0) 0.00s una.
s2.con 18/5/4 0/0 (0/0) 0.00s una.
s3.con 52/4/2 3/0 (0/0) 0.01s n/a
s5.con 40/5/4 0/1 (0/0) 0.00s n/a
s7.con 23/4/2 1/0 (0/0) 0.00s n/a
voss-light.con 77/8/4 2/2 (0/0) 0.02s n/a
voss.con 390/15/6 27/42 (0/0) 0.98s n/a
sets.con 49/5/5 0/0 (0/0) 0.06s una.
ALGOL60.specs 869/114/50 41/31 (0/0) 30.32s n/a
ebnf.specs 117/17/6 3/5 (0/0) 0.30s n/a
F77Phrase.specs 2742/406/160 158/254 (0/0) 657.47s n/a
F90Phrase.specs 5080/815/269 322/403 (0/0) 6781.21s n/a
Java.specs 1944/246/93 105/105 (0/0) 820.82s n/a

Table 5.3.: Results of the grambiguity package on unambiguous grammars using the
Mohri-Nederhof Transformation

Nearly all unambiguous grammars have been detected as such by one of the
techniques. Exceptions are g3.con and g7.con. The grammars voss.con,
ALGOL60.con, F77Phrase.specs, F90Phrase.specs and Java.specs are too big
and could not be processed by all algorithms.
Some grammars, like palindromes.con were detected by the grambiguity pack-

age but not by the bisonamb package. Others, like exp.con, have been detected by
bisonamb, but not by grambiguity. Hence, it makes sense to use both algorithms
in conjunction.

s7.con has not been recognised as unambiguous by the grambiguity package,
although it is LR(0), but the Noncanonical Unambiguity necessarily detects any
LR(1) (and LR(0)) grammar correctly. This is a general rule caused by the differ-
ent techniques. Furthermore, as shown in [17], ACLA detects every unambiguous

68

5.2. Results

grammar which is also detected by Regular Unambiguity. Hence, Regular Un-
ambiguity can be considered as the weakest definition. ACLA and Noncanonical
Unambiguity can be used in combination to detect more grammars.
There are just four grammars (Grammar 3.15, 03_09_081.con, 98_05_030.con

and voss-light.con) that are correctly found as unambiguous by Noncanonical
Unambiguity, but not by LR-Regular Unambiguity. However, 03_09_081.con and
98_05_030.con are LR-Regular if the LR(1) item set is used.
Another observation is that the position automaton regularizer seems to be more

accurate than Regularizer2. Grammar 5.1 illustrates the difference between them.
The position automaton method produces a huge finite state machine, Regularizer2
creates a smaller one, but it does not detect the grammar as unambiguous. However,
Regularizer2 can analyze grammars where the other methods exhaust the limits.
Note that this does not mean that the Mohri-Nederhof Transformation is neces-

sarily less accurate. This weakness can be caused by the optimization of Regular-
izer2 to have polynomial runtime. The reference implementation by Andres Møller
does not show this difference, but is unable to check Grammar 5.1 for instance
(using the default Java VM settings), due to exhausted resources.
In general, the ACLA scheme seems to have a weakness with expression/tree

grammars, which can be seen on exp.con and java-exp.con. The latter one has
a huge approximation automaton, which is optimized to an automaton with only
2 states (the same size as Regularizer2). The reason is probably that expression
grammars usually consist of only one big strongly connected component, but the
position automaton regularizer processed every nonterminal separately.
Moreover, even the relatively simple expression grammar exp.con is not detected

as unambiguous. Anyhow, a transformation called Unfolding developed by Braband
and Møller [3] modifies grammars, such that it can be detected as unambiguous by
the ACLA technique. The grammar voss.con can also be detected correctly after
this transformation.
The “real world” grammars ALGOL60, Fortran and Java are too big to be pro-

cessed by the position automaton regularizer. Additionally, programming languages
like these usually contain expressions that we identified as a weakness of the ACLA
technique. The Noncanonical Unambiguity technique should work well on these
grammars, because they have been created to be processed by an LALR(1) parser.
However, LR(1) can have a lot more items and causes some algorithms to exceed
the limits.
Although these grammars may be too big to be analyzed as a whole, they

can be analyzed by parts. For instance, the grammars java_arrays.con,
java_casts.con, java-exp.con, java_modifiers and java_names.con are such
sub-grammars. All of them have been proven unambiguous by the Noncanonical
Unambiguity algorithm.

69

5. Evaluation

5.2.2. Ambiguous Grammars
While the previous section only considered unambiguous grammars, this section is
about grammars which are known to be ambiguous. The three tables are organised
like in the previous section.
The Noncanonical Unambiguity implementation just finds potential ambiguities,

but does not try to verify them. Therefore, it cannot confirm that a grammar is
ambiguous. If it works correctly, it finds at least one potential ambiguity for all of
these grammars.
In contrast, the ACLA method produces sample strings which can be checked

whether more than one derivation tree exists for them. If this is the case for at
least one of the sample strings, the grammar is known to be ambiguous.

Grammar properties Results of bisonamb
Grammar |P | |Σ| |C|1 (u, v, h)2 Prec.3 C4 I5 A6 Time
Grammar 3.1 3 2 2 (2,2,2) LR(0) 1 1 1 0.00s
Grammar 3.12 4 1 3 (3,2,1) LR(0) 1 1 1 0.00s
01_05_076.con 12 5 6 (7,2,3) SLR(1) 3 2 012 0.00s
03_01_011.con 9 4 9 (6,2,2) LR(0) 2 1 012 0.00s
03_05_170.con 11 8 7 (7,2,7) LR(0) 1 1 1 0.00s
04_11_047.con 27 14 6 (11,7,7) LR(1) 23 ?8 9 0.04s
05_06_028.con 9 8 4 (4,4,8) LR(0) 4 2 2 0.00s
06_10_036.con 33 18 3 (13,5,4) LR(0) 15 2 2 0.09s
91_08_014.con 16 12 3 (6,6,4) LR(0) 15 8 8 0.00s
g1.con 6 3 2 (2,5,3) SLR(1) 16 16 16 0.00s
g2.con 8 3 2 (3,5,3) SLR(1) 18 18 18 0.00s
h-amb.con 5 3 3 (3,2,2) LR(0) 1 1 1 0.00s
s1.con 7 5 3 (4,3,2) LR(0) 3 2 2 0.00s
s4.con 9 1 7 (7,2,4) LR(0) 2 1 1 0.01s
v-amb.con 4 3 3 (3,2,3) LR(0) 1 1 1 0.00s
cminus.specs 68 31 22 (34,9,7) SLR(1) 15 15 11 0.01s
pascal-.specs 113 41 53 (64,8,6) LR(1) 3 1 1 0.56s

Table 5.4.: The properties of some ambiguous test grammars and the results of the
bisonamb package.

1Number of strongly connected components
2Grammar dimension: u = number of nonterminals, v = max. number of productions per
nonterminal, h = max. number of right-hand-side symbols

3Precision; smallest item set which finds the same number of potential noncanonical ambiguities
as LR(1)

4Conflicts; Number of LR conflicts with the given precision
5Intersections; Number of LR-regular conflicts using the same precision
6Ambiguities; Number of conflicts that are potential noncanonical ambiguities with the same
precision

70

5.2. Results

Position Automaton
Grammar Automaton size10 Ambiguities11 Time D7

Grammar 3.1 12/3/3 0/1 (0/1) 0.00s amb.
Grammar 3.12 14/2/2 0/1 (0/1) 0.00s amb.
01_05_076.con 65/10/4 2/0 (1/0) 0.03s amb.
03_01_011.con 42/7/4 1/0 (1/0) 0.01s amb.
03_05_170.con 88/23/8 2/1 (1/1) 0.04s amb.
04_11_047.con 438/71/10 6/2 (0/1) 0.85s amb.
05_06_028.con 142/44/12 10/3 (2/0) 0.11s amb.
06_10_036.con 2120/732/25 18/9 (0/1) 37.64s amb.
91_08_014.con 169/52/10 5/5 (0/3) 0.50s amb.
g1.con 30/4/1 1/5 (1/5) 0.00s amb.
g2.con 40/5/1 1/6 (0/6) 0.08s amb.
h-amb.con 19/7/5 1/0 (1/0) 0.00s amb.
s1.con 72/13/6 2/1 (2/1) 0.02s amb.
s4.con 172/36/2 0/1 (0/1) 0.07s amb.
v-amb.con 18/4/4 0/1 (0/1) 0.00s amb.
cminus.specs6 ?/?/? ?/? (?/?) ? ?
pascal-.specs6 ?/?/? ?/? (?/?) ? ?

Table 5.5.: Results of the grambiguity package on ambiguous grammars using the position
automaton regularizer

Mohri-Nederhof Transformation
Grammar Automaton size10 Ambiguities11 Time D7

Grammar 3.1 16/3/3 0/1 (0/1) 0.00s amb.
Grammar 3.12 20/2/2 0/1 (0/1) 0.00s amb.
01_05_076.con 61/6/2 2/0 (0/0) 0.01s n/a
03_01_011.con 41/5/4 1/0 (1/0) 0.00s amb.
03_05_170.con 58/12/7 2/1 (2/1) 0.03s amb.
04_11_047.con 134/22/10 6/2 (0/1) 0.23s amb.
05_06_028.con 62/12/3 10/4 (2/0) 0.07s amb.
06_10_036.con 182/32/13 18/9 (0/1) 0.49s amb.

7Detection result; “amb.” means that the grammar has been correctly identified as ambiguous,
i.e. at least one confirmed ambiguities was found

8The computation failed because of a segmentation fault
10Number of states in the approximation automaton; without optimization/after determinisa-

tion/after minimization
11Number of potential ambiguities; horizontal/vertical (confirmed horizontal/confirmed vertical)
12Obviously, this is wrong. However, there are potential ambiguities when the conflicts option is

not used.
6The computation did not finish in reasonable time or required more than the available amount
of memory

71

5. Evaluation

Mohri-Nederhof Transformation
Grammar Automaton size10 Ambiguities11 Time D7

91_08_014.con 93/19/10 5/3 (0/2) 0.10s amb.
g1.con 28/4/1 1/5 (1/5) 0.00s amb.
g2.con 41/5/1 1/6 (0/6) 0.03s amb.
h-amb.con 25/7/5 1/0 (1/0) 0.00s amb.
s1.con 42/6/3 2/1 (2/1) 0.00s amb.
s4.con 53/4/2 3/1 (0/0) 0.01s n/a
v-amb.con 24/4/4 0/1 (0/1) 0.00s amb.
cminus.specs 378/51/17 25/10 (0/0) 3.78s n/a
pascal-.specs 625/84/35 22/6 (0/1) 4.58s amb.

Table 5.6.: Results of the grambiguity package on ambiguous grammars using the Mohri-
Nederhof Transformation

The ACLA algorithm performs well on these grammars. All grammars (except
cminus.specs, which could not be processed with the position automaton regular-
izer) have been successfully detected as ambiguous. This is possibly a coincidence
since just one sample string is checked for every potential ambiguity.
Again, the position automaton regularizer seems to be more accurate than Reg-

ularizer2 as more sample strings happen to be true ambiguities of the original
grammars.
The “real world” grammars cminus.specs and pascal-.specs are ambiguous

because of the dangling else problem. Both require external disambiguation tech-
niques which neither the bisonamb nor the grambiguity package support so they
are classified as ambiguous.

72

6. Summary

The problem to decide whether a given context-free grammar is ambiguous is un-
decidable. However, there are algorithms that can confirm the unambiguity (or
ambiguity) of a nontrivial subset of all context-free grammars.
Two families of algorithms were presented in this thesis: Ambiguity Checking

with Language Approximations (ACLA) and regular, LR-regular and Noncanonical
Unambiguity.
The ACLA method checks possible horizontal and vertical ambiguities between

the grammar’s nonterminals and productions. This is possible on a superset of the
original grammar, but may find more ambiguities than the grammar actually has.
Hence, this is a conservative approximation. The worst-case runtime is O(n5) (with
n being the size of the grammar). A noticeable advantage of this method is that
it provides a less-abstract output, which includes which parts of the grammar are
ambiguous and ideally a sequence with multiple parse trees.
The regular, LR-regular and Noncanonical Unambiguity scheme essentially tries

all context-free grammars

unambiguous

horizontally
and vertically
unambiguous

noncanonically
unambiguous

LR-regularregular
unambiguous
Grammar 3.14

voss.con

basepairs.con exp.con

voss-light.con

03_09_081.con

h-amb.con

v-amb.con

Figure 6.1.: Detection precision inclusions when using the same equivalence classes. The
more an area covers the area of all unambiguous grammars the more precise
the approximation is. Example grammars for all areas exist.

73

6. Summary

to find two different paths through a GLR parser. The existence of such two paths
means two possible interpretations of the input. The actual check is done on the
item set the GLR parser is based on, which is also is a regular approximation of the
original grammar. Its worst-case runtime is O(n2) and therefore considerably better
that the ACLA algorithm. Many existing context-free grammars are designed to
work in conjunction with LR(k) parsers and this method works particularly well
with LR(k) grammars.
Both algorithms are able to recognise unambiguous grammars, which the other

cannot. Therefore, one can use both approaches to detect as many unambiguous
grammars as possible. An overview which classes of detection precision include
which others can be found in Figure 6.1.
Within the context of this thesis the Ambiguity Checking with Language Approx-

imations technique has been implemented and, together with the implementation of
Noncanonical Unambiguity by Sylvain Schmitz, integrated into the Eli Framework.
Eli is an open source toolset that allows to generate compilers from its specifi-
cations. Since the integration of the GNU Bison GLR parser generator by Ulf
Schwekendiek, it allows to generate compilers for arbitrary context-free grammars.
With the integration of these two ambiguity approximations, these grammars can
be checked for potential ambiguity within the same environment.

6.1. Future Work

The execution time of the grambiguity can be optimised. Using a hash set instead
of binary trees may reduce memory usage. A different equivalence relation for the
position automaton regularizer can reduce the size of the approximation automaton
without losing accuracy. These are only some ideas to improve the execution time.
Also the accuracy of the ambiguity approximation can be improved. Unfolding,

as presented in [3], can improve the accuracy for expression grammars.
The current implementation of LR-regular and Noncanonical Unambiguity sup-

ports precisions up to LR(1). A new implementation could handle any k or even
non-LR(k) equivalence relations. Anyhow, one has to consider whether the effort
and execution time (exponentially in respect to k) is worth the increased precision.
Also, it is possible to generate sample strings for any path through the position
automaton. The same modified Cocke-Younger-Kasami algorithm can be used to
confirm such ambiguities.
Both detection schemes could be combined for increased accuracy. For instance,

the nonterminals and productions involved in a potential horizontal and vertical
ambiguity form a sub-grammar. This sub-grammar can be checked using the Non-
canonical Unambiguity scheme. The potential horizontal or vertical ambiguity is
not a “real” one if this second test does not find any potential ambiguities.
Furthermore, one can think about the relationship between potential horizontal

and vertical ambiguities and potential ambiguities found during the noncanonical
ambiguity check. This might eliminate even more potential ambiguities. For in-

74

6.1. Future Work

stance, a horizontal ambiguity in the production A→ αβ between the sequences α
and β always results in a shift/reduce-conflict in one of the productions that can
be derived from α.

75

6. Summary

76

A. Appendix

Proof of the Undecidability of the Vertical Ambiguity
Problem

Proof of Theorem 3.2. Let G = (N,Σ, P, S) be a arbitrary grammar. We reduce
the Post Correspondence Problem (PCP) to the ambiguity problem. The first step
is to convert an instance of the PCP to an instance of the ambiguity problem. A
solution of the ambiguity problem is a string of terminals that has two or more
leftmost derivations for the converted grammar. Then we have to show that if
there is such a solution, then the source PCP also has a solution. Therefore if there
is an algorithm that decides the ambiguity problem it also decides the PCP, which
is known to be undecidable. This is a contradiction.
At first we convert an instance of the PCP to an instance of the ambiguity

problem. For a definition of the PCP, see [20] chapter 5.2 for example. Let
(v1, w1), . . . , (vn, wn) be an instance of the PCP over the alphabet Σ. Define a
context-free grammar G = ({S,A,B} ,Σ ∪ {a1, . . . , an} , P, S). The productions in
P are constructed as follows. For every pair (vi, wi) of the PCP add

A→viAai
A→viai
B →wiBai
B →wiai

and additionally

S →A
S →B

to the set of productions.
Now we have to show that both problems either have a solution or none of them.

We start with the assumption that there is a solution of the PCP. Then one word x
and a sequence i1, . . . , im exist such that vi1vi2 . . . vim = x = wi1wi2 . . . wim . Using
this information we can construct a string for the converted grammar.

vi1vi2 . . . vimaim . . . ai2ai1 = xaim . . . ai2ai1 = wi1wi2 . . . wimaim . . . ai2ai1

77

A. Appendix

This string has two leftmost derivations (all derivations ⇒ are leftmost deriva-
tions here):

S ⇒A
⇒vi1Aai1
⇒vi1vi2Aai2ai1
...
⇒vi1vi2 . . . vim−1Aaim−1 . . . ai2ai1

⇒ vi1vi2 . . . vim−1vim︸ ︷︷ ︸
x

aim−1aim . . . ai2ai1

S ⇒B
⇒wi1Bai1
⇒wi1wi2Bai2ai1

...
⇒wi1wi2 . . . vim−1Baim−1 . . . ai2ai1

⇒wi1wi2 . . . wim−1wim︸ ︷︷ ︸
x

aim−1aim . . . ai2ai1

Therefore xaim . . . ai2ai1 is a solution of the ambiguity problem.
Now we assume that there is a solution of the ambiguity problem for G. At first,

we have a look at GA, the grammar which has A instead of S as start nonterminal.
Every word in L(GA) has a trailing sequence of ai terminals. There are only two
productions A→ viAai and A→ viai, which contain ai for a given i. Because the
second production can only be applied as the last one, the terminals ai uniquely
define the sequence of derivations (which are also leftmost derivations since there
is at most one nonterminal symbol in the sequence) to be applied. Therefore, there
cannot be any ambiguity within GA. The same applies for GB, the grammar with
B as start symbol.
In consequence, there is just one potential ambiguous choice left in grammar G:

derive S to A or B. In both cases, GA and GB, the trailing ai uniquely define the
sequence of productions. If these were different, the resulting word would also be
different.
Additionally, if there is an ambiguous word xaim . . . ai1 , x ∈ Σ∗ that can be

derived in GA and GB, the x-part is a sequence of vi and wi. This sequence is
defined by the sequence of ai symbols in reverse order. Accordingly, the sequence
i1 . . . im must be a solution for the PCP, because v1 . . . vm = x = w1 . . . wm.
We have shown that the PCP can be reduced to the ambiguity problem. If

there was an algorithm that would solve the ambiguity problem, it would also solve
the PCP. This is a contradiction because it is known that the PCP is undecidable.
Hence there can be no algorithm that solves the ambiguity problem. In other words:

78

the ambiguity problem is undecidable.

More precisely, this proves the undecidability of the vertical ambiguity problem
since the ambiguity between the productions S → A and S → B matches the
definition of a vertical ambiguity (Definition 3.4).

79

A. Appendix

80

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principples, Techniques, and Tools. Pearson Education, Inc, Boston, USA,
2nd edition, 2006.

[2] H. J. S. Basten. The usability of ambiguity detection methods for context-free
grammars. In LDTA’08: 8th Workshop on Language Descriptions, Tools and
Applications, 2008.

[3] Claus Brabrand, Robert Giegerich, and Anders Møller. Analyzing ambiguity of
context-free grammars. In Proc. 12th International Conference on Implemen-
tation and Application of Automata, CIAA ’07, Prague, Czech Republic, July
2007. http://www.brics.dk/~amoeller/papers/ambiguity/journal.pdf.

[4] Geoffrey Clemm. The odin system. In Selected papers from the ICSE SCM-4
and SCM-5 Workshops, on Software Configuration Management, pages 241–
262. Springer-Verlag, London, UK, 1995.

[5] Free Software Foundation. Bison - GNU Parser Generator. http://www.gnu.
org/software/bison/.

[6] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Addison-Wesley, 3rd edition,
2006.

[7] Steve C. Johnson. YACC - Yet Another Compiler-Compiler.

[8] Donald Ervin Knuth. On the translation of languages from left to right. In-
formation and Control, 8(6):607–639, 1965.

[9] Bernard Lang. Parallel non-deterministic bottom-up parsing. In Proceedings of
the international symposium on Extensible languages, pages 56–57, New York,
USA, 1971. ACM.

[10] Mehryar Mohri and Mark-Jan Nederhof. Regular Approximation of Context-
Free Grammars through Transformation, chapter 9, pages 251–261. Kluwer
Academic Publishers, 2000. http://www.research.att.com/~fsmtools/
grm/postscript/approx.ps.

[11] Anders Møller. dk.brics.grammar. http://www.brics.dk/grammar/.

81

http://www.brics.dk/~amoeller/papers/ambiguity/journal.pdf
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://www.research.att.com/~fsmtools/grm/postscript/approx.ps
http://www.research.att.com/~fsmtools/grm/postscript/approx.ps
http://www.brics.dk/grammar/

Bibliography

[12] University of Colorado at Boulder. The odin software build system. ftp://
ftp.cs.colorado.edu/pub/cs/distribs/odin/odin-1.17.4.tar.gz, 2002.

[13] University of Colorado at Boulder, University of Paderborn, and Macquarie
University. Eli: Translator construction made easy. http://eli-project.
sourceforge.net/.

[14] University of Colorado at Boulder, University of Paderborn, and Macquarie
University. Eli Documentation Version 4.4, May 2007. http://eli-project.
sourceforge.net/elionline4.4/index.html.

[15] Sylvain Schmitz. Bison 2.3a + ambiguity. http://www.loria.fr/~schmitsy/
papers.html#expamb.

[16] Sylvain Schmitz. Approximating Context-Free Grammars for Parsing and Ver-
ification. PhD thesis, Nice Sophia Antipolis University, Nice, France, 2007.
http://www.loria.fr/~schmitsy/pub/phd.pdf.

[17] Sylvain Schmitz. Conservative ambiguity detection in context-free grammars.
volume 4596 of Lecture Notes in Computer Science, pages 692–703, Nice,
France, 2007. Laboratoire I3S, Nice Sophia Antipolis University & CNRS,
Springer. http://www.loria.fr/~schmitsy/papers.html#ambiguity.

[18] Sylvain Schmitz. An experimental ambiguity detection tool. Electronic
Notes in Theoretical Computer Science, 203(2):69–84, April 2008. http:
//www.loria.fr/~schmitsy/pub/expamb.pdf.

[19] Ulf Schwekendiek. Integrating a GLR Parser Generator in Eli. Bachelor’s The-
sis, August 2007. http://ag-kastens.uni-paderborn.de/paper/Bachelor_
Schwekendiek.pdf.

[20] Michael Sipser. Introduction to the Theory of Computation. Course Technology,
2nd edition, 2005.

[21] Masaru Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for
Practical Systems. Kluwer Academic Publishers, Norwell, USA, 1985.

[22] Karel Čulik II and Rina Cohen. Lr-regular grammars – an extension of lr(k)
grammars. Journal of Computer and System Sciences, 7(1):66–96, 1973.

82

ftp://ftp.cs.colorado.edu/pub/cs/distribs/odin/odin-1.17.4.tar.gz
ftp://ftp.cs.colorado.edu/pub/cs/distribs/odin/odin-1.17.4.tar.gz
http://eli-project.sourceforge.net/
http://eli-project.sourceforge.net/
http://eli-project.sourceforge.net/elionline4.4/index.html
http://eli-project.sourceforge.net/elionline4.4/index.html
http://www.loria.fr/~schmitsy/papers.html#expamb
http://www.loria.fr/~schmitsy/papers.html#expamb
http://www.loria.fr/~schmitsy/pub/phd.pdf
http://www.loria.fr/~schmitsy/papers.html#ambiguity
http://www.loria.fr/~schmitsy/pub/expamb.pdf
http://www.loria.fr/~schmitsy/pub/expamb.pdf
http://ag-kastens.uni-paderborn.de/paper/Bachelor_Schwekendiek.pdf
http://ag-kastens.uni-paderborn.de/paper/Bachelor_Schwekendiek.pdf

	Introduction
	Parsing Techniques
	Context-Free Grammars
	LR(k)-Parsing
	Generalised LR-Parsing

	Ambiguity Detection
	Ambiguous Context-Free Grammars
	Ambiguity Approximation

	Ambiguity Checking with Language Approximations
	Horizontal and Vertical Ambiguity
	Approximation of Horizontal and Vertical Ambiguity
	Approximation Using Regular Grammars
	Regular Supersets

	Detection Schemes Based on Position Automata
	Regular Unambiguity
	LR-Regular Unambiguity
	Noncanonical Unambiguity

	Design, Implementation & Integration
	Design
	The Algorithms

	Implementation
	Integration
	Installation of Eli
	Introduction to Odin/Eli Packages
	Grammar Files
	The grambiguity Package
	The bisonamb Package

	Evaluation
	Asymptotic Worst-Case Runtime
	Ambiguity Checking with Language Approximation
	Regular/LR-Regular/Noncanonical Unambiguity

	Results
	Unambiguous Grammars
	Ambiguous Grammars

	Summary
	Future Work

	Appendix
	Bibliography

