
Master’s Thesis

Static Validation of XSLT

Mads Kristian Østerby Olesen, madman@daimi.au.dk

Advisors:

Anders Møller, amoeller@brics.dk

Michael I. Schwartzbach, mis@brics.dk

June 1, 2004

Abstract

XML has become a widely popular standard for storing and exchanging
structured data, particularly on the Web. Many languages and language
extensions have been proposed for manipulating XML data, and a number
of these employ static analyses in order to statically guarantee the validity
of their XML output against some schema.

Among the XML manipulation languages, XSLT has been embraced as
an XML-to-XML tranformation language, and although some research ef-
forts have gone into statically analyzing the output of such transformations,
no pratically useful analysis technique has so far come out of it. We attempt
to remedy this by designing such an analysis technique, conservatively ap-
proximating an answer for the property of schema-conforming output.

Our analysis technique centers around a detailed analysis of the possible
flow of template instantiations in the transformation, as well as the appli-
cation of an abstraction, which has already proven useful in other contexts,
for modelling the construction of XML values.

Empirical study shows the analysis to perform well enough for practical
use, and errors are found in a number of transformations gathered from
various independent sources.

i

Table of Contents

1 Introduction 1

1.1 Setting the Scene . 1

1.2 Summary of Contributions . 2

1.3 Overview of Chapters . 2

2 Background 3

2.1 Markup Languages . 3

2.2 Extensible Markup Language (XML) 4

2.3 Classes of XML Documents 7

2.4 Related XML Standards . 9

2.5 The XPath Data Model . 11

2.6 XML Path Language (XPath) 12

2.7 XSL Transformations (XSLT) 15

2.8 Summary . 19

3 Static Output Validation of XSLT 21

3.1 Motivation . 21

3.2 The Problem . 23

3.3 Related Work . 27

3.4 Goals and Restrictions . 33

3.5 Summary . 34

4 Analysis and Design 35

4.1 The Analysis Approach . 35

4.2 Data Mining . 37

4.3 Overview . 39

4.4 Simplification . 40

4.5 The Flow Analysis . 46

4.5.1 The XSLT Flow Graph 53

4.5.2 The XSLT Flow Analysis 58

4.5.3 Path Simulation Test 64

4.5.4 Paths Automata Test 67

4.5.5 The Priority Override Filter 73

4.5.6 The Result . 76

4.6 Parameter Analysis . 76

4.7 The Summary Graph Analysis 78

iii

iv TABLE OF CONTENTS

4.7.1 Summary Graph Construction 80
4.7.2 Summary Graph Inclusion Analysis 87

4.8 Summary . 88

5 Experimentation and Interpretation 89

5.1 Implementation Details . 89
5.2 The Examples . 94
5.3 Precision . 96
5.4 Performance . 101
5.5 Summary . 104

6 Conclusions 105

6.1 Evaluation . 105
6.2 Contributions . 107
6.3 Future Work . 108

A Appendix 111

A.1 Output Summary Graph for the News Transformation 112
A.2 Flow Graph for General Identity on the News DTD 113
A.3 A Fragment of the ontopia2xtm.xsl Example 114

References 116

List of Figures

2.1 Example XML Document . 5
2.2 Example DTD . 6
2.3 XPath Step Evaluation . 13
2.4 Example XSLT Transformation 17

3.1 The General Identity . 26

4.1 XSLT Transformation Sizes 37
4.2 XSLT Construct Mining . 38
4.3 Select and Match Mining . 39
4.4 Overview of the Analysis . 39
4.5 Reduced XSLT Grammar . 45
4.6 The Simplified News Transformation 47
4.7 Imprecise General Identity Flow Graph 49
4.8 Precise General Identity Flow Graph 49
4.9 Flow Graph for the News Example 54
4.10 Example Run of the Location Path Simulation 67
4.11 Example Run of the Path Expression Construction 71
4.12 Paths Automaton for the News DTD 72
4.13 Summary Graph Template Grammar 79
4.14 Example Summary Graph . 80
4.15 An Unfolding of the Example Summary Graph 80
4.16 Example Content Model Fragment 83
4.17 Single Step Selection Fragments 85
4.18 Multiple Step Selection Fragments 86

v

1
Introduction

1.1 Setting the Scene

The Extensible Markup Language (XML) [18] of the World Wide Web Con-
sortium (W3C) has gained much popularity as a standard for describing and
exchanging structured data, particularly on the Web. Today, one of the great
strengths of XML is precisely this popularity. A large number of languages
and tools have been developed and are available, freely or commercially, to
developers using XML. This is a self-increasing effect, and XML seems to be
here to stay.

A great focus on XML development is the use of XML schemas for de-
scribing domain-specific languages obeying the XML syntax. These schemas
provide safety by allowing one to check—in a standardized way—whether
some XML document is of the expected format. This is commonly used to
ensure correct input to programs. The formal character of these schemas
also gives rise to the possibility of static analysis of XML manipulation pro-
grams, i.e. analyzing statically the types of XML values in programs, as well
as the output of these programs.

One widely accepted XML manipulation language is XSL Transforma-
tions (XSLT) [23], which in essence is a language for transforming an XML
document into another XML document through structural recursion. Many
efforts have gone into trying to statically determine the validity of XSLT
transformation output, but no practically useful tool has yet been devel-
oped. The goal of this thesis is to lay the foundations for such a tool by
designing a sufficiently fast and accurate static analysis technique, which is
able to assist in the debugging of XSLT transformations and which allows

1

2 Introduction

for static guarantees to be issued on the output of these transformations.

1.2 Summary of Contributions

The contributions of this thesis can be summarized as follows:

• A static analysis technique for determining whether all output of an
XSLT transformation conforms to a specified DTD.

• A flow analysis technique exposing the structure in which templates
are instantiated in an XSLT transformation. This shall be a vital tool
in our static analysis technique.
The core of the flow analysis is a couple of techniques for determining
whether two XPath location paths can accept the same kinds of nodes,
as well as a test for statically resolving priorities between the XSLT
template rules.

• An alternate form of the summary graph abstraction with accompa-
nying schema validation algorithm, which has proven useful in other
contexts of XML manipulation. This model shall be used for describing
the possible outputs of an XSLT transformation.

• An implementation of our static analysis technique, successfully ana-
lyzing and finding errors on XSLT transformations written indepen-
dently of this project. Experimental evidence, indicating the practical
usefulness of our analysis technique in (1) locating errors in transfor-
mations, and (2) establishing static guarantees of output validity.

• The outline of a simplification technique for reducing XSLT transfor-
mations to a more manageable form, thereby easing the job for our
analysis.

1.3 Overview of Chapters

In Chapter 2 we shall examine the details of XML and a number of its re-
lated standards, including XSLT. In Chapter 3 we describe more precisely
the problem we wish to solve, and we survey related work in the field. Chap-
ter 4 describes in full detail the static analysis approach we employ, while
Chapter 5 describes our implementation and contains a series of experiments
trying to determine the usefulness of our approach, and whether we achieved
our goals. Finally, in Chapter 6 we round up by evaluating our work and
examining further work that would be natural to do in extension to the work
done in this thesis.

2
Background

This chapter presents the basic knowledge and terminology upon which the
thesis rests. The content presented here will be the frame of reference for
the remaining chapters.

2.1 Markup Languages

The term “markup” refers to the traditional publishing practice of “mark-
ing up” manuscripts that are to be typeset. More recently, the word also
refers generally to marking up the structure of a document, and not just to
formatting.

The emergence of Standard Generalized Markup Language (SGML) [74]
was an attempt to formalize the specification of markup languages on com-
puters. SGML consists of a standardized way of marking up documents
through markup tags, and a meta-language for specifying the syntax of
markup languages.

SGML ended up too complicated to be widely adopted. One SGML
application did however catch the eye of the public: the Hypertext Markup
Language (HTML) [44] by Tim Berners-Lee and Robert Caillau.

HTML was originally designed for formatting research documents at
CERN, but has since evolved into a rather complex formatting and layout
language. It is presently the dominating standard for presenting information
on the Web, and is probably the most wide-spread markup language to date.
The latest version is HTML 4.01 [70], developed by the World Wide Web

3

4 Background

Consortium (W3C).
Other examples of SGML applications include: TEI [76], DocBook [63],

and HyTime [73].

2.2 Extensible Markup Language (XML)

The increased importance of data exchange on the web, particularly in the
relatively new field of application-to-application Web services, where both
server and client is an application, has given rise to the Extensible Markup
Language (XML) [18] project of the World Wide Web Consortium (W3C).
XML is derived from SGML and HTML, recognizing the problematic nature
of the complexity in SGML and simplifying it. Certainly, SGML is more
customizable than XML, but also much more expensive to implement.

XML provides:

• A platform independent standard for storing and exchanging struc-
tured data.

• The ability to define markup languages tailored to each domain.

• A large base of existing technologies ready for use, including parsing,
manipulation and validation tools.

XML is widely used as a data storage and exchange format in the in-
formation technology business today. Since XML is rather central to this
thesis, we shall examine it in some detail in the following.

Basically, XML is just a linear syntax for unranked, ordered and labeled
trees. Elements form the structure of the tree and are specified by start-
and end-tags such as <mytag>...</mytag>, enclosing further elements, plain
text, comments and other content. Elements can be annotated with name-
value pairs called attributes written myattribute="somevalue". In their
basic and most used form the value is simply a string. These StringType
attributes can be considered nodes in the tree having a single text leaf. How-
ever, in contrast to the elements and other content, attributes are unordered.
An example of an XML document can be found in Figure 2.1, describing news
items.

Apart from StringType attributes, there are a number of other forms of
attributes, most notably the ID, IDREF, and IDREFS of the TokenizedType
attributes. They are used to assign unique string identifiers to elements and
referring to the elements through these identifiers. Also, the EnumeratedType
attributes only allow one of a specified set of values.

IDs and IDREFS can be interpreted as node-to-node references on level
with parent-child relations, as is done in XML-QL [31]. In this view, XML
documents become general unordered graphs.

2.2 Extensible Markup Language (XML) 5

<?xml version="1.0" encoding="ISO-8859-1"?>

<news>

<item category="international" date="May 7, 2004" time="10:30 PM">

<headline>Rumsfeld apologizes</headline>

<text>

<p>Defense minister Donald Rumsfeld apologizes for the

mistreatment of iraqi prisoners.</p>

<p>Constant inquisitive questioning by democratic and republican

senators made it clear that the apology, in their opinion, was

too late.</p>

</text>

</item>

<item category="national" date="May 6, 2004" time="3:34 PM">

<headline>Carlsberg still on to China</headline>

<text>

<p>Carlsberg is still interested in the Chinese market, despite

that competition in the market is tight.</p>

</text>

</item>

</news>

Figure 2.1: An example of an XML document, in this case representing news
items.

Processing instructions are a means to pass instructions to applications.
They are not intended as part of the actual data. The format of each pro-
cessing instruction is entirely up to their designers, so long as they fit into
the <?pi_identifier ... ?> construct.

General entities and Parameter entities allow re-use and recursive decla-
ration of fragments of content in XML documents. Basically, they are named
declarations of content, and the two occupy distinct namespaces. Parameter
entities are resolved before general entities, and are used exclusively in the
declaration part of the document. Thus only general entities may be refer-
enced from the actual XML content. External general and parameter entities
can be used to get data from the environment, which is not necessarily in
the same character encoding, and not necessarily text at all.

All XML documents must be well-formed, which entails conforming to
the grammatic productions and well-formedness contraints of the specifica-
tion. As an example, the Element Type Match constraint requires that the
name in an element’s end-tag matches the name in its start-tag1.

XML, having been designed for the Web, necessitates platform indepen-
dence, which has been achieved by allowing a variety of character encodings.
The character encoding used in some document is specified in the document
prolog. Although providing platform independence, this feature at the same

1The term well-formed XML is often used to refer to the Element Type Match con-
straint alone, but it does in fact cover much more. See the XML specification [18] for
further details.

6 Background

<!ELEMENT news (item*)>

<!ELEMENT item (headline,text)>

<!ATTLIST item category (national|international|business) "national"

date CDATA #REQUIRED

time CDATA #REQUIRED>

<!ELEMENT headline (#PCDATA)>

<!ELEMENT text (p+)>

<!ELEMENT p (#PCDATA)>

Figure 2.2: An example DTD, describing a syntax for representing news items.

time complicates the task of writing a parser for XML.

Typically, an application of XML involves a more or less fixed “notation”
for describing data in a certain domain. This notation defines a class of
XML documents - also called an XML markup language. An important
part of XML is the Document Type Declaration (DTD), which allows one to
formalize the description of such a class of documents. In this respect DTD
is a metalanguage for specifying the grammar2 of markup languages.

The grammar consists of a set of element content models and attribute
lists. The element content models describe the element vocabulary and the
legal sub-content of each type of element—including order—through deter-
ministic regular expressions, as well as a further restricted model for content,
including plain text. The attribute lists define possible attributes and their
types for each element name. Figure 2.2 shows a DTD for news items. The
example XML document of Figure 2.1 conforms to this DTD.

The DTD can be internal or external to the XML document, or both.
The DTD is also where entities are declared, and the DTD can be recursively
constructed through the use of entities like the rest of the document. How-
ever, unlike its predecessor SGML, XML allows “undeclared” markup—i.e.
markup with no attached DTD.

The XML specification defines an XML document as valid, if it refers to
a DTD and conforms to the rules described therein.

Although DTDs undoubtedly are useful, they have proven too weak in
practice to describe all desirable markup languages. This has lead to further
research on the subject. More about this and XML languages in general in
Section 2.3.

Today, the term XML commonly refers to the entire W3C XML Archi-
tecture, which is a family of XML related standards by the W3C. These
standards will be described in more detail in Section 2.4.

2Grammar as in the general sense: A set of rules describing syntax.

2.3 Classes of XML Documents 7

2.3 Classes of XML Documents

As described in the previous section, DTDs can be used to formalize XML
markup languages. This formalization brings some palpable benefits:

• It provides a precise reference for the developers involved as well an
easily readable definition for newcomers to the language.

• It allows documents to be validated against the DTD automatically by
a progam.

• The automatic validation implies that applications can assume valid
input, thereby reducing their complexity.

But as also mentioned in the previous section, the DTD language has proven
too weak in practice. For example, an element of a certain name will always
be subject to the same constraints no matter the context it appears in, i.e.
the content model can not depend on for example which type of parent the
element has. Also, DTDs are unable to describe what root element or ele-
ments are required of documents conforming to the DTD, although this is
often desirable. Several alternative languages have been suggested to try to
remedy the many shortcomings of DTDs. Unfortunately no consensus has
been reached.

Languages such as DTD are called XML schema languages 3. In general
schema languages specify grammars for describing classes of XML docu-
ments. An XML document conforming to some schema is called an instance
document of that schema. Adopting the vocabulary of the XML specifica-
tion, we shall say that a document instance is valid if it conforms to the
constraints expressed in the schema. Thus, a schema processor or validat-
ing parser checks the input document against the schema constraints and
reports any errors. After parsing, the document is returned in normalized
form, where for example default attribute values have been inserted, and
entities resolved.

When XML was designed, the authors did not anticipate the inadequacy
of the DTDs. As a consequence, XML 1.0 incapable of pointing to any
types of schemas other than DTDs. References to schemas written in other
languages must be referred to in other ways. For example, the XML Schema
language achieves this through a global attribute: schemaLocation in the
XML Schema namespace (More on global attributes in Section 2.4).

A consequence of the lack of consensus on which schema language to use,
is that you cannot expect every tool you encounter to understand the specific

3The term schema is a greek word, among other things meaning “A diagrammatic
representation”, or ”an outline or model”.

8 Background

schema language you have employed. This leaves room for DTDs to act as
a sort of “common language”.

Certainly, DTD—being part of the XML specification—is the most widely
used schema language today. A DTD is often used as a “fallback” schema,
combined with a more powerful schema language to describe the exact XML
language. Since most people involved in XML development know DTDs, the
DTD fallback allows people, who are not familiar with the specific schema
used, to understand the basics of the XML language. Similarly any appli-
cation working with XML documents and their classes can be supplied with
the fallback, in case the application does not know the original schema lan-
guage. Of course, this may result in less than perfect—but hopefully better
than nothing—results.

One important alternative to DTDs is the XML Schema 4 [78] language.
It is designed by the W3C (same as XML), and is their attempt to cover
the shortages of the DTDs. Certainly XML Schema belongs to a more ex-
pressive category than DTDs [53], and other important improvements have
been made in the language, such as supporting XML Namespaces [16] (see
Section 2.4). But the language still leaves room for improvement. For exam-
ple, the inability of DTD to specify a root element, as well as its inability to
express context dependency, is still present in XML Schema. And for some
reason XML Schema ended up being very complex. The specification is very
hard to comprehend, and the schemas made with it also tend to be tough to
read.

Fortunately it seems that it is possible to have the expressiveness of
XML Schema without its complexity. The Document Structure Description
2.0 (DSD2) [60] does exactly that. The specification is remarkably simple
compared to that of XML Schema.

Many other schema languages have been proposed: XML-Data [52],
DCD [15], DDML [11], SOX [29], Assertion Grammars [69], Schematron [46],
TREX [24], Examplotron [80], RELAX NG [26], and more.

Classes of XML documents are often referred to as XML types, since the
schemas restrict XML documents in the same manner as types do variables
in general-purpose languages. We shall refer to them mostly as XML classes
to avoid any ambiguities in connection with type systems.

The most widely known XML language is XHTML [65], which is a refor-
mulation of HTML 4.01 [70] into XML. Other examples of XML languages
are: CML [61], WML [82], ThML [22], XSLT [23], VoiceXML [12], SVG [37].
We shall examine the XSLT language in much greater detail in Section 2.7

4Note that “XML Schema” with a capital S refers to the XML Schema standard, while
“XML schema” refers simply a schema for XML in general.

2.4 Related XML Standards 9

2.4 Related XML Standards

Over the years, the core XML specification has been augmented and built
upon with a number of related technologies. We will here examine some of
the most central: XML Namespaces [16], XPointer [39], XInclude [56], and
XLink [30]. The XPath [25] and XSL [1] standards will in later sections be
examined for their special relevance to this thesis. There are many more
standards in what is called the XML Architecture. See “W3C Technical
Reports and Publications” [84] for an overview of these.

XML Namespaces

One of the most important—and perhaps the most important—W3C stan-
dard from an XML viewpoint is XML Namespaces [16]. The standard is an
augmentation of the original XML standard, and it refines the basic syntax
of XML documents. The standard has quickly been embraced, and is often
considered to be the new “core XML standard”.

The idea behind XML Namespaces is that with the many different classes
of XML documents, it is natural to start mixing them, i.e. having documents
containing data of several different XML classes intermixed. For example to
contain formatted text as XHTML, instead of having to design a whole new
set of formatting elements. If the classes are nicely separated in the document
there may not be any ambiguities, but in a setting of complex intermingling
of elements and where some element names are shared between the classes
it is a different matter.

To solve this, W3C came up with the XML Namespaces extension of
the XML standard. It basically requires names (element names, attribute
names and the like) to be paired with a Uniform Resource Identifier (URI),
uniquely identifying the XML class—or more precisely the namespace 5—
from which it originates. Writing these URIs at each name would of course
seriously impede an already verbose syntax, so the standard allows one to
define prefixes referring to these URIs. A prefix is a sort of alias for a
namespace URI, and the prefix name is local to the document. Furthermore,
as documents usually contain a greater part of its content in a single XML
class, the default namespace allows one to omit prefixing elements of this
dominant class.

A point to note is the namespace partitions which are part of the XML
namespaces standard. There are three major partitionings of the names in
an XML class, within which the names must be unique:

• Element names have a partition.

• Local attributes have a partition for each element type.

5An XML namespace URI actually refers to several namespaces in the form of the
namespace partitions.

10 Background

• Global attributes have a partition.

So to clear it up: element names naturally reside in a single namespace, as
they must be unique among themselves. Different elements can without loss
have attributes with the same names, because the attributes are local to the
element. Therefore the attributes local to an element type have their own
namespace: one namespace per element type. Finally, the concept of global
attributes refers to attributes which are not bound to a single element. Global
attributes must be prefixed while locals must not. Globals can therefore
not collide with the local attribute names. Defining global attributes and
constraining their occurrence is for the schema to describe.

A final detail to consider is that the DTDs of the core XML standard
are completely ignorant of XML Namespaces. For namespaces support, one
must seek other schema languages such as XML Schema or DSD2.

XPointer, XInclude, and XLink

The XPointer standard forms the base of XInclude and of XLink. It is
essentially a syntax for pointing to XML resources. Both whole documents
and fragments of them. XPointer extends XPath, the basic XML node-
selection language, with a few concepts—most notably points and ranges
for more precise pointing—and defines a suitable syntax for specifying the
so-called XPointers.

XInclude provides a syntax for modularizing XML documents through
the use of URIs and XPointer, by specifying a syntax for inserting XML
documents or fragments thereof at specified locations. Also some forms of
processing can be applied to documents, such as converting to text and
translating between UNICODE encodings.

XLink6 on the other hand is an XML notation that very generally al-
lows one to describe relationsships between resources. It is basically a more
general and powerful version of the well-known HTML hyperlinks. XPointer
may be used to refer more precisely to XML fragments, if such is needed.

Work In Progress

One must be aware that the W3C XML standards are in constant evolution.
This means that work done in this field must be continuously updated or fall
behind. As an example, the XML 1.0 core standard [18] was, in February
2004, upgraded from second to third edition. The changes were mostly small
details regarding UNICODE [77] support. Also released in February 2004
as a W3C Recommendation was XML 1.1 [19][17] (also mostly dealing with
UNICODE issues), and XHTML 2.0 [6] is in the works as a Working Draft,
and has been for some time. Many more standards have been produced by

6Formerly known as the Extensible Linking Language (XLL).

2.5 The XPath Data Model 11

the W3C or are in progress. The reader is again referred to “W3C Technical
Reports and Publications” [84] for a thorough listing of their work.

2.5 The XPath Data Model

As mentioned in Section 2.2, XML is simply a linear syntax for unranked,
ordered and labeled trees. Behind this short statement however is a perhaps
slightly more complex logical model. This model can and has been expressed
in various ways. The W3C specifications for DOM [83], XPath [25], and XML
Information Set [28] each define such a logical model, and none of them quite
agree.

Nonetheless, it is advantageous to view XML through the eyes of a spe-
cific logical model, and for the topic of this thesis, the XPath data model [25]
is the most relevant. So in the interest of uniformity, the XPath data model
will be the frame of reference regarding XML structure throughout the the-
sis. This model is the foundation of the XPath location paths, described
in detail in Section 2.6. Note that the XPath data model’s relation to the
XML Information Set in particular is described in an appendix of the XPath
specification.

The XPath data model defines a set of node types, which covers all the
different entities found in an XML document. The node types are related to
each other in a tree structure. The node types of the data model are:

• Root nodes

• Element nodes

• Text nodes

• Attribute nodes

• Namespace nodes

• Processing instruction nodes

• Comment nodes

The element nodes again form the core of the structure by being the
only type of node—apart from the root node—that can have children. Each
element is labeled, and can have any number of children, attributes and
namespace nodes. Thus the attribute and namespace nodes are not consid-
ered children of an element, but they are “attached” to one, and that element
is considered their parent element.

An attribute node has a name and a string-value7, while a namespace
node—not to be confused with namespaces themselves—is a prefix and URI
pair corresponding to a namespace prefix declaration as defined in XML

7The string-value being the normalized value defined in the XML specification.

12 Background

Namespaces. The namespace prefix declarations themselves—although being
attributes—are replaced by the namespace nodes. An element will have
an attached namespace node for each namespace prefix in scope8 at that
element.

In order for the logical structure to be unambiguous, character data is
grouped in as large chunks as possible into text nodes. As a consequence,
text nodes never have other text nodes as preceding or following siblings.

The element nodes form an unranked tree, and the root of this tree is
denoted the document element. As the name implies, the document element
is an element node. The root node is the absolute topmost node in the node
structure. It has as its only children the document element, along with any
processing instruction or comment nodes that occur outside the document
element tags in the XML document. The root node is not an element.
It has no name, no attributes, and no namespaces. It serves purely as a
“meta-root”, and is easily confused with the document element. While the
document element has a concrete representation in the XML document, the
root node is purely a logical entity.

XML being ordered implies that the order of child nodes must be impor-
tant in the data model as well. The XPath data model handles this through
the concept of document order, which is basically the order in which the nodes
are first encountered in the linear form of the document after expansion of
general entities. In other words, elements are ordered according to the order
of occurence of their start-tags. The document order is equivalent to the
visiting order in a pre-order traversal. Attribute and namespace nodes occur
after their parent element but before the children, and namespace nodes are
defined to occur before attribute nodes. The reverse document order is the
inverse of the document order.

Although the document order seems unexpectedly to impose an order-
ing on attribute and namespace nodes, it should be made clear that their
ordering is implementation specific and should not be relied upon.

2.6 XML Path Language (XPath)

The XML Path Language (XPath) is a language for “selecting” or “pointing
out” parts of XML documents. It may be used in many contexts. The
best known today is probably XPointer, which is again used by XLink and
XInclude to refer to fragments of other documents. XPath is the primitive
that allows pointing to the internals of documents, and not just their wholes.

XPath is restricted to operate on XML Namespaces compliant docu-
ments, and of course operates under the XPath data model. The core of

8Namespace declarations in XML Namespaces are inherited to child elements of the
containing element. Thus a prefix declaration is in scope for all element descendants unless
“overridden” by a prefix declaration with the same prefix on such a child.

2.6 XML Path Language (XPath) 13

Union(Similar to node test)Node testAxis
Predicates

Start
node-set Result

node-set

Figure 2.3: XPath evaluation model for a single location step.

XPath expressions are the location paths, used for selecting nodes in XML
data.

A location path consist of a series of location steps, each consecutively
producing a set of nodes working from the set produced by the previous
step. The final node-set—i.e. the result of the last step—is the result of the
location path evaluation. A node-set is one of the four types of values in
the XPath language, and it is simply an unordered collection of references
to nodes in some XML document9. See Figure 2.3 for a visualization of the
evaluation model for one location step.

A location step is comprised of three parts:

• An axis, doing an initial rough selection of nodes by their structural
relationships to the context node (the nodes in the source set). An
example is the child axis, selecting all children of the context node.

• A node test, refining what kind of nodes we are interested in. This is
often a specific element type such as chapter, leaving only elements
with the name chapter in the set.

• Any number of predicates, which are essentially boolean expressions
that filter out all nodes for which the expression is not true.

9Although the node-sets themselves are unordered, the document order implicitly im-
poses an ordering on the nodes in the set.

14 Background

The XPath axes are: child, attribute, namespace, descendant, self,
descendant-or-self, parent, ancestor, ancestor-or-self, preceding,
following, preceding-sibling and following-sibling. Each axis is ei-
ther a forward- or reverse axis. From the specification:

“An axis that only ever contains the context node or nodes that
are after the context node in document order is a forward axis.
An axis that only ever contains the context node or nodes that
are before the context node in document order is a reverse axis.”

Thus the reverse axes are: parent, ancestor, ancestor-or-self, preceding
and preceding-sibling. The self axis can be said to be “directionless”,
as it falls into both categories, but since it always selects a single node, the
ordering makes no difference. The same can be said about the parent axis:
it only ever selects one node or—for the root node—none at all.

Also, every axis has a principal node type, which is element nodes for
all the axes that can select elements. This means most of the axes, except
for the attribute and namespace axes, for which the principal node type is
attribute and namespace nodes respectively.

The principal node type is of importance only in the qname and * node
tests. The former accepts nodes of the given name and principal node type.
The latter accepts simply all nodes of the principal node type.

XPath includes a full expression language with booleans, numbers and
strings, as well as the node-sets which the location paths yield. These expres-
sions allow quite complex filtering in the predicates. A common predicate is
testing the proximity position of nodes through the position() function, for
example to select every other node of the given type. For a forward axis, the
proximity position will be according to the document order. For a reverse
axis it will be the reverse document order.

The full syntax for XPath is somewhat cumbersome, so some syntac-
tic sugar has been introduced. For example, if no axis is specified, the
child axis is used as default. This—together with a couple of other short-
hand notations—leads to a syntax very similar to directory paths of modern
operating systems, so long as you restrict yourself to only the child axis.
Certainly, the child axis is the most used of the axes.

For example, with the root node as context node, the location path
"news/item[@date]" selects all the news elements with a date attribute
(which under the news DTD of Figure 2.2 will always be present). "news/
item/*" will select all headline and text elements. These two are relative
paths, as the depend on a context node given before hand. This context node
is provided by the parent language in which XPath is used, for example by
XPointer. An absolute path on the other hand always starts from the root
node, such as: "/news/item/*".

2.7 XSL Transformations (XSLT) 15

A number of other things are provided by the parent language, such as
variable declarations for variable resolution, and a function library. Xpath
is a complex language, and for further details, we refer to the XPath speci-
fication [25].

A tricky couple of examples from the XPath specification, which are
worth noting, are the expressions "//para[1]" and "/descendant::para[1]".
Although they might seem equivalent at first sight, they do in fact se-
lect quite different nodes. The former selects all para elements that are
the first para child of their parent (note that "//para[1]" is short for
"/descendant-or-self::node()/child::para[position()=1]"). The lat-
ter simply selects the first para element in the document. The difference
comes from the way predicates filter the nodes: A predicate filters only the
result of axis and node test operations from a single node. Thus, the context
position, which is the one tested with the "[1]" predicate, is the position
in this small intermediate set, not the position in the union of the sets. We
again refer to Figure 2.3.

2.7 XSL Transformations (XSLT)

The Extensible Stylesheet Language (XSL) [1] standard has evolved from the
much used HTML styling language Cascading Style Sheets, level 1 (CSS1) [54]
and its successor Cascading Style Sheets, level 2 (CSS2) [10]. Further inspi-
ration no doubt originated from the Document Style Semantics and Speci-
fication Language (DSSSL) [75] of SGML, which included a transformation
language as part of the standard. An idea which was adopted by XSL, as
we shall see.

Like its predecessors, XSL is designed to extract presentation specifics
from data. This is in XSL achieved through two sub-standards10: XSL
Formatting Objects (XSL-FO) and XSL Transformations (XSLT) [23]. XSL-
FO is an XML language for describing precise layout and formatting, and
XSLT is for transforming the data into a formatted document ready for
presentation.

As it stands, although XSL evolved partly from CSS, CSS continues to
be used widely, and it is still developed upon. At the time of writing CSS 3.0
is in development. It seems the foundation of existence for CSS is the fact
that XHTML has not really taken over from HTML (and perhaps never
will). XSLT has been designed so that it can output HTML but not use it
as input, thereby rendering XSL unable to style HTML. Thus, the XSL and
CSS working groups are eagerly developing on both styling systems.

10XPath is sometimes mentioned as a third sub-standard, although it was just as much
designed for XPointer as well.

16 Background

No matter what styling language one might prefer, XSLT—the trans-
formation part of XSL—has its uses outside the styling community. It has
proven a quite versatile and expressive XML transformation language, and
has seen extensive use on the Web today. Huge amounts of transformations
can be digged out of the web by the keen searcher.

XSLT has three output modes: XML, HTML and plain text, and al-
though the text mode can be used to produce documents of whatever lan-
guage you desire, XSLT was clearly developed with XML-to-XML transfor-
mations in mind. This is also how it is most used on the Web, and will be
the focus in this thesis.

XSLT is a declarative language in XML format. An XSLT transforma-
tion is based on a number of template rules. A template rule is a pattern
and template pair. The pattern is an XPath expression limited to a sub-
set of XPath, and is a description of the kind of context this template rule
can be applied to. The template is basically a fragment of the result tree,
containing XSLT instructions which are used among other things for flow-
control, complex data construction and invoking other template rules. The
act of executing these instructions and producing a literal result tree frag-
ment is called instantiating the rule or template. An example of an XSLT
transformation can be found in Figure 2.4.

The core of the processing is based on matching template rules—defined
by template elements—against the input XML tree. Each apply-templates

instruction selects a set of nodes in the input tree, and matches the template
rules against each of the selected nodes. Every node must—after prece-
dence resolution—be matched by exactly one template rule, and this rule
is then instantiated with the given node as context node. The produced
result fragments for each of the selected nodes are concatenated according
to the document order of the input nodes and inserted at the place of the
apply-templates instruction. Built-in template rules ensure that a selected
node is guaranteed to always match some rule, although the result of in-
stantiating a built-in rule is often unwanted as all string values in text and
attribute nodes are copied directly over. It may occur that more than one
rule matches a selected node, and such an error should be corrected through
priorities, which is simply a number specifying precedence between the tem-
plate rules. The template instantiation process is continued recursively until
no more XSLT instructions need processing.

The template instantiation process is initiated by matching the template
rules up against the root node. The final result document will be the result
of instantiating this initial root-matching template rule.

The elements of XSLT go in three categories: Document elements, top-
level elements and instructions. Either of the document elements stylesheet
or transform can be used to define the transformation. The document ele-
ment contains all the top-level elements, and defines some global properties

2.7 XSL Transformations (XSLT) 17

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"

xmlns="http://www.w3.org/1999/xhtml">

<xsl:template match="news">

<html>

<head>

<title>News</title>

<meta http-equiv="Pragma" content="no-cache"/>

</head>

<body>

<xsl:apply-templates select="item"/>

</body>

</html>

</xsl:template>

<xsl:template match="item">

<xsl:apply-templates select="headline"/>

Den

<xsl:apply-templates select="@date"/>

Kl.

<xsl:apply-templates select="@time"/>

<xsl:apply-templates select="text"/>

<hr/>

</xsl:template>

<xsl:template match="headline">

<xsl:value-of select="text()"/>

</xsl:template>

<xsl:template match="text">

<xsl:value-of select="../@category"/> -

<xsl:apply-templates select="p"/>

</xsl:template>

<xsl:template match="p[1]">

<xsl:value-of select="text()"/>

</xsl:template>

<xsl:template match="p">

<p>

<xsl:value-of select="text()"/>

</p>

</xsl:template>

</xsl:stylesheet>

Figure 2.4: An example XSLT transformation, presenting news headlines in
XHTML format.

18 Background

such as the version of XSLT being used. The top-level elements are all
the document-wide constructs such as template rules, output format spec-
ifications and so on. They may only appear as children of the document
element. Finally, the instructions are all those elements occurring in XML
templates, which construct the output. Extraordinarily the variable and
param elements can occur both at top-level and in templates - inferring dif-
ferent meanings according to their place - and are therefore both top-level
elements and instructions.

XSLT makes heavy use of the XPath language, and it is XPath that is
used to select nodes for template rule matching. It has been slightly ex-
panded by including the result tree fragment data type. Values of this type
basically—as the name implies—describe a fragment of the result tree, in
contrast to the node-sets which refer to the input tree. These result tree
fragments can be stored in variables and re-used throughout the transfor-
mation, but they can not be manipulated. They can only be copied directly
into another result fragment, or be coerced to one of the basic data types.

XSLT has no small number of features, the most important being:

• The template rules can be partitioned into named disjunct sets called
modes. Each apply-templates instruction must address one of the
modes exclusively. The modes are commonly used to form a sort of
state machine, where the processing depends on the which state it is
in.

• XSLT has a rather elaborate inclusion and import mechanism. In-
cluded documents are treated as if actually written in the including
document. Imports however are subject to import precedence, which
basically states that constructs from imported documents have lower
priority than non-imported ones, and the last import takes precedense
over the first import.

• Variables and parameters allow re-use of values, as well as passing
values around in the document. Top-level parameters are assigned a
value by the XSLT processor at instantiation. While the type of vari-
ables can be determined statically from their definitions, parameters
are weakly typed in the sense that they can recieve any type of value.
An elaborate system for value coercion enables the processor to always
coerce values to the required type.

• A number of well-known flow-control constructs from imperative lan-
guages have their place in XSLT: if, for-each, choose and
call-template. The call-template instruction is reminiscent of a
procedure call, as it is used to call a specific template rule, typically
with parameters. The rest of the instructions function much like their

2.8 Summary 19

imperative counterparts, except that the code blocks have been re-
placed with XML templates to be instantiated.

• The element, attribute, and value-of instructions are for construct-
ing output nodes dynamically. value-of iunstructions are typically
used for copying string values over from the input. element, attribute
instructions can—in conjunction with attribute value templates—be
used to construct elements and attributes with computed names.
Attribute value templates generally just allow one to perform dynamic
attribute value construction. For example, the attribute definition:
date="{@day}.{@month}.{@year}" constructs the value of a date at-
tribute from a number of attribute values in the input document. On
literal result elements, this is simply a sugared form of an attribute

instruction. When used in attributes of other XSLT constructs, it is a
different matter.

The template rules and apply-templates instructions of XSLT form a quite
simple core of XSLT resembling structural recursion on trees 11. However,
the full language has many features, and there are many corners of the lan-
guage that one can stumble upon. To name an one, the for-each instruction
seem at first sight simply to be an embedded template rule. However, the
for-each instruction is in fact able to recurse on namespace nodes, which
normal template rules is not. The for-each does not have to go through
the filtering of a template rule match expression.

For more details on the language, we refer to the specification [23].

2.8 Summary

We have now been introduced to the XML Architecture and its many stan-
dards. The core standards have been described in detail, and the important
subject of XML classes and schema languages has been examined.

The XPath data model has been identified as a suitable reference model
for describing XML data abstractly, and it will be the basis of discussion
throughout the rest of the thesis.

Finally the XML transformation language XSLT, and its related standard
XPath, has been looked into. Like with any other language of this complex-
ity, errors will creep in, and the question whether we can find these errors
statically comes to mind. This question will be the topic of the following
chapter.

11Structural recursion: The process of recursively applying some transformation rule on
the nodes of a tree, starting from the top.

3
Static Output Validation of XSLT

This chapter examines the problem of static output validation of XSLT,
how a solution might be approached, whether the problem is already solved,
and to what extent it is solvable at all.

3.1 Motivation

The many XML applications which one can find on the Web all define small
languages, essentially sets of XML documents, which describe data of some
sort. These XML languages are often formalized with schemas, but even
if they are not, some specific format is still expected of documents in the
language.

XML languages are used in many ways. Often stylesheets are provided
for presenting the data in some way, for example as HTML. Or the XML
data can be used as intermediate values in application pipelines 1. The latest
trend seems to be XML Web APIs2, such as the “Google Web API” [38] and
“Amazon Web Services” [4].

Unfortunately, programming errors are inevitable, and the XML applica-
tions can fail in many ways. One of these ways is recieving invalid input. If an
application for example queries the Google Web API for a search, it expects
the data to be of a certain format, as specified by Google. If the query result
is not of this format, the application will most likely fail either explicitly with

1Pipeline: A sequence of applications each using the the results of the previous appli-
cation in the line.

2Web API: Application Programming Interface over the internet

21

22 Static Output Validation of XSLT

an error message, or implicitly through arbitrary behavior. Especially with
the application-to-application Web services the problem becomes apparent,
as also the output of the Web service programs almost certainly will lead
to failures. And perhaps worse: the recieving applications can do nothing
about the error, except contact the Web service authors.

The practice of today regarding debugging of XML programs seems
mostly to be test-runs of the program, possibly combined with runtime
schema checks to at least make the errors explicit.

At this point however one can only speculate whether these checks could
be done statically instead. That is, examine, simply by looking at the pro-
gram, whether the documents always conform to some schema. Given two
programs where one, the sender, produces some XML document used as in-
put in the other program, the reciever, we wish to statically verify that the
reciever can never fail because of invalid input from the sender. For this, we
must analyze the sending program.

Statically validating the conformance of XML output for some program
would offer us two things: (1) Fewer runtime errors, and (2) possibly skipped
runtime schema conformance checks, in the recieving programs. More pre-
cisely:

• the explicit or arbitrary errors resulting from invalid input in the re-
cieving programs do not occur, and

• if runtime conformance checks are performed, and if the same or a
stronger schema is used in the static validation as in the runtime con-
formance checks, the runtime checks will be superfluous, and can be
removed.

Regarding the case of static analysis with a weaker schema: Statically vali-
dating of the output may be too difficult with the more expressive of the
schema languages, so the static analysis might only be able to validate
against a lesser schema. In this case, the amount of runtime errors is cer-
tainly reduced, but the runtime checks are not superfluous as they otherwise
would be.

Among the many XML manipulation languages, XSLT is certainly one
of the most popular. Perhaps because it was the first such language by
the W3C, and perhaps because it is molded about presenting XML data as
XHTML, which is an often needed tool when working with XML.

There is lots of static validation work on various XML manipulation lan-
guages out there, which we will examine in more detail in Section 3.3, and
some nice results have been achieved. In particular, XSLT has recieved quite
some attention towards static analysis of output and other types of analyses,

3.2 The Problem 23

but as we shall see, most of the results tend to work with less useful frag-
ments of XSLT. In any case, there has yet to be developed a practical tool
capable of statically validating the output of XSLT transformations written
in practice. We intend to remedy this.

3.2 The Problem

Having identified this unresolved issue for XSLT transformations, we wish to
create a tool that can statically validate conformance of the output of XSLT
transformations to some schema, or in case the transformation output is not
always valid, present the user with comprehensible error reports.
But let us first define what we mean by an XML transformation:

An XML transformation is a program that takes one or more
XML documents X1

in · · ·X
n
in as input and, if it terminates, pro-

duces one or more new XML documents X1
out · · ·X

m
out.

Note that although we require a transformation to take at least one input
document, we do not require that it is used. We will refer to XML transfor-
mations as simply transformations, when there is no ambiguity.

Though a number of properties might be of interest with regard to static
analysis of transformations, we have chosen to examine the apparently trou-
blesome problem of determining conformance of the output document to
some schema. Let us define the property in question as output validity with
respect to some input and output schemas:

Given input schemas S1
in · · ·S

n
in and output schemas S1

out · · · S
m
out,

an XML transformation T is said to be output valid with respect
to S1

in · · · S
n
in and S1

out · · · S
m
out if and only if all sets of output doc-

uments producable by a terminating execution of T conform re-
spectively to S1

out · · ·S
m
out given that the input documents conform

respectively to S1
in · · ·S

n
in.

The concept of output validity is often referred to as type checking, but
that particular wording can be misunderstood if the transformation language
works with types in some other way, and many transformation languages do.

The problem we shall be tackling in this thesis is output validity with
respect to only a single input document and producing only a single output
document. In this case, the problem of deciding output validity with respect
to schemas Sin and Sout can be formulated algebraically as: Given a trans-
formation T , input and output schemas Sin and Sout, T is output valid if and
only if T (L(Sin)) ⊆ L(Sout). In this definition, we view the transformation T

24 Static Output Validation of XSLT

as a function mapping XML documents to XML documents. The language,
L, of some schema is the set of XML documents conforming to that schema.

Statically determining the truthfulness of this property for some trans-
formation may not be so easy however, and often analyses must make use
of approximations in order to at least give some results rather than none.
A conservative approximation of the output validation problem will roughly
speaking give an answer in either {INVALID, MAYBE VALID} or in {MAYBE

INVALID, VALID}. The difference is that the former is able to guarantee
invalidity, while the latter is able to guarantee validity. Furthermore, the
former reports only definite errors, while the latter may produce spurious
error reports. But there shall be no doubt that determining the truth of
the property—i.e. guaranteeing output validity—is by far the most useful
result in this context. Every transformation is supposed to be output valid.
Recieving the guarantee allows one to lay it to rest.

In contrast to the approximations, an analysis that is able to determine
exactly when a transformation is output valid or not, is said to be sound and
complete.

We wish to analyze output validation for XSLT transformations. This
will be on the current version 1.0 of XSLT. We do not claim to be able to
make a complete analysis, but in order to still be able to make guarantees
about the output of transformations, we must approximate conservatively
such that we answer “valid” only when the transformation is in fact output
valid.

We may not be able to issue such guarantess for the more complex trans-
formations. In such cases, the transformation in question can sometimes be
simplified in order for the analysis to better understand the transformation,
and thus perhaps be able to produce the guarantees. The more precise the
analysis, the less of a problem this will be.

It would be unrealistic to tackle this problem for all the schema languages
out there. A single model has to be adopted. Examining the problem at
hand, it stands out that the more expressive the output schema model, the
harder it will be to solve the problem but the more potentially useful the
result. The usefulness potential stems from the fact that a more expressive
model is able to cover more classes of XML documents accurately. Regarding
the input schema model, a more precise input description has the potential to
produce more accurate analysis results, since we are given more information
for narrowing down the possible outputs.

But it is not given that this problem can be solved satisfactorily at all
for a more expressive ouput schema model. So it seems sensible to start at
the bottom and work our way up.

Furthermore, this project being of a pragmatic nature suggests the use of
not just a formal model, but rather a schema language in practical use. Un-

3.2 The Problem 25

fortunately no consensus has been achieved on a common schema language,
except perhaps DTDs. DTDs are inherently weak and lack important fea-
tures. But it is part of the XML standard itself and is a derivative of the
DTDs of SGML, which has been around for quite some time. In effect, DTDs
are widely used either as the main schema language where possible, or as an
easily human readable and well-understood alternative schema. Such alter-
native DTDs will most often express a superset of the language described
by the main schema, so relying on them for analysis, rather than the main
schema, loses some precision.

Given these considerations, DTD has been chosen as the schema language
of this project in spite of its weaknesses. Essentially, DTD as output schema
model shall ensure the tractability of the problem. We have already chosen
the transformation language to be analysed, but a less expressive schema
model can reduce the complexity of the problem as well. DTDs for input are
at this point a natural choice for uniformity. Their simplicity will also make
extracting information about the input easier. It will remain for future work
to try and extend the analysis to more expressive schema models, as well as
to start handling namespaces. Namespaces are not supported by DTDs, but
are an important part of the XML architecture today.

The availability of schemas for the various transformations found on
the Web shall be important for experimenting with practical examples. If
schemas are missing, DTDs can be produced through XML-to-DTD genera-
tors such as the SAXON DTDGenerator [49]. Schema-writing is often kick-
started this way by automatically generating an initial schema from sample
XML files. However, such tests are of secondary quality. While they do
help examine the precision of the analysis on practical tranformations, they
do not help identifying what output validity errors occur in practice. The
intended types can not be known simply from example XML files.

Finally, we wish this work to be a help for XSLT development in practice,
so:

The analysis should be as correct and quick as is necessary for it
to be practically useful in day-to-day development of XSLT trans-
formations.

This means that we must test our work on a decent number of XSLT trans-
formations randomly picked on the Web. It also seems appropriate to require
the transformation to be able to handle the identity transformation. Real-
ising that such an identity can be written in many ways in XSLT, we define
the general identity as the most generally written identity that copies all in-
put to the output exactly, and which is completely independent of the class
of XML documents it recieves as input. Such a tranformation can be seen
in Figure 3.1. Another variation of the general identity can be found in the

26 Static Output Validation of XSLT

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="/|child::node()|attribute::node()">

<xsl:copy>

<xsl:apply-templates select="child::node()|attribute::node()"/>

</xsl:copy>

</xsl:template>

</xsl:stylesheet>

Figure 3.1: The general identity transformation. Note that namespace nodes are
copied automatically with the elements.

XSLT specification.

The work of Audebaud and Rose in “Stylesheet Validation” [5] indicates
an interesting definition of the output validation problem. In this definition
we allow specifying more than one schema for each input or output document.
I.e. the documents in question may conform to any one of a set of schemas.
Or in yet other words: The document must conform to the union of those
schemas.

Adopting a schema model that is closed under union means that this is
no issue, since the sets of schemas can be merged into one. Unfortunately,
schema languages in practice often do not enjoy this property of closed-
ness under union. This includes the schema languages DTD3, DSD24, XML
Schema. Regular tree automata [27] on the other hand are closed under
union [27]—and thus also the regular expression types of XDuce [41] and
specialized DTDs [64]. So is Relax NG [26].

However, the practical relevance of this idea of multiple schemas for a
document is doubtful, as transformations seldom are intended for more than
one kind of input or to produce more than one kind of output. An example
is the general identity transformation (Figure 3.1), which is rather artificial,
and for which such multiple-schema analysis is somewhat pointless: It can
be analyzed one schema at a time.

Not dismissing the notion entirely, it is clear that a multiple-input-schema
transformation is trivially validated by a single-input-schema validator by
simply running the validation for each input schema. If each run guarantees
valid output, then the output is valid for the union of the schemas. Multiple
output schemas on the other hand are not as easily handled, unless of course
the schema model is closed under union. It can not be done simply by calling
a single-output-schema validator as a black box.

3Given a DTD with the two content models a: (b) and b: (c), we can not express
a union of this, with the content models q: (b) and b: (d), in the DTD language. The
content model of b would depend on its parent. Note however, that specialized DTDs [64]
describe precisely the extension needed for DTDs to express the above union.

4DSD2 can not express a set of legal root elements. Only one or any.

3.3 Related Work 27

Since DTDs are not closed under union, we can not trivially handle mul-
tiple schemas for the output, but as these multiple schema transformations
have very limited or no practical use, we ignore the issue. We allow specify-
ing only one input and one output schema.

We now conclude with the PROBLEM STATEMENT of the thesis:

Given DTDs Din and Dout, respectively describing the expected
input and output of a single-input XSLT 1.0 transformation T,
we wish to approximate conservatively whether T is output valid
with respect to Din and Dout. The analysis shall answer “valid”
only if T is guaranteed to be output valid, and otherwise report
error messages that may or may not be actual inconsistencies with
the output validity of T. The analysis must further be practically
useful in day-to-day XSLT development.

Note that XSLT 1.0 transformations only are able produce a single output
document. This is not the case with XSLT 2.0 [48], which is currently in a
working draft.

3.3 Related Work

As discussed in Section 3.1, testing the output validity of programs often
amounts to running the application on various input, and examining the
output.

A more systematic approach are the step-by-step debuggers. A num-
ber of these debuggers for XSLT exist today, including: XSLDebugger [72],
Xselerator [55], XSLT-process [68], XSLTracer [47], CodeX [7], xsldbg [43],
XML Spy [3]. They mainly consist of an XSLT processor able to run trans-
formations in small steps, along with some visual tool to inspect the state of
the processor along the way.

These attempts are clearly inspired by the traditional approach on de-
bugging programs in general-purpose languages, but XML manipulation has
some special characteristics separating it from the general programming:
The exact composition of input as well as inteded output is likely known,
paving the way for our type checking ideas. And the above approaches seem
pitiful compared to the idea of statically guaranteeing valid output simply
by looking at the transformation and the input and output schemas.

One early optimistic attempt on static output validation of XSLT while
still in a working draft state was “Stylesheet Validation” [5] by Audebaud
and Rose. The analysis is given input and output DTD patterns, an exten-
sion of DTDs essentially describing sets of DTDs. Through a set of typing
rules they try to establish guarantees about output validity for an XSLT
transformation.

28 Static Output Validation of XSLT

While their goals are ambitious, the method is unfortunately only applied
to a small toy-example, effectively reducing their work to the tiny fragment
of XSLT that this example represents.

Although the attempt had little success, it perhaps helped the community
to define the problem and realize the difficulty of it. And as mentioned in
Section 3.2, they did have an interesting angle on the output validation
problem.

The problem is certainly not trivial. As Kepser proved in “A Proof of the
Turing-completeness of XSLT and XQuery” [50], XSLT is Turing-complete,
making Rice’s theorem [71] apply. Thus, any interesting question about the
behavior of an XSLT transformation is undecidable.

But that does not mean we can not get some good results by approximat-
ing. Kepser’s proof basically relies on template calling, parameter passing,
and some simple arithmetic and string handling, so we can expect analyzing
these features to be hard. But we note that those features seldomly are
used to shape the processing of documents. That job usually lies with the
template rules, apply-templates instructions, and other basic constructs.

An interesting line of research has carried the static output validation
problem into the field of tree automata and tree transducers (see [27] and
[62] for a further treatment of the subject). The basic idea is that XML data
can be viewed as ordered and labeled trees, and thus the established research
on tree automata and transducers can be applied to XML as well. This twist
of events has to some degree revived the research on tree transducers.

The beauty in this approach lies in the the elegance and simplicity of
the tree formalisms. It—in a way—examines the essence of the problem.
It exposes the essential features of XML schema validation (automata) and
transformations (transducers).

In light of the many and volatile XML transformation languages in the
field, Milo et. al. propose in [58] a tree transducer formalism called k-pebble
transducers, attempting to cover all the languages in one model. This model
is able to simulate most XML transformation languages (here called query
languages) when ignoring text and attribute values (collectively called data-
values). This expresses the core of languages such as XSLT, XML-QL [31],
and the like.

Schemas are modeled through regular tree expressions, which are equiv-
alent to regular tree automata, and which therefore are equivalent in expres-
sive power to specialized DTDs [64]. This of course means that they subsume
DTDs.

Sound and complete static output validation is then performed on these
transducers through inverse type inference. That is: Given a transducer T
and an output type Sout, find the type Sout

−1 = T−1(Sout). Then check
whether L(Sin) ⊆ L(Sout

−1). This novel approach proves to make the static
output validation problem tractable for k-pebble transducers, and it has

3.3 Related Work 29

since been adopted in a number of works, as we shall see.

The static output validation problem is proven decidable for the k-pebble
transducers, but with non-elementary time complexity5. This result can
hardly be called of practical interest, without empirical study showing oth-
erwise, but the work has definitely helped us understand the nature of the
problem.

Later work in “XML with Data Values: Typechecking Revisited” [2] fur-
ther examines decidability for static output validation of XML transforma-
tion languages when text and attribute values are present. The boundaries
of decidability are traced by trying a number of more or less expressive for-
malisms for schemas and transformations. They mostly center around DTDs
and XML-QL like transformations.

It turns out that static output validation quickly turns undecidable when
comparisons of text and attribute values are allowed, and the authors are
forced to restrict their schema and transformation models tightly in order
to keep the decidability. The results again yield results of very high time
complexity. One of the best results in this direction are PSPACE complex-
ity when restricting to non-recursive transformations and non-cyclic input
DTDs6.

In “Towards static type checking for XSLT” [79], Tozawa examines a
fragment, XSLT0, of XSLT, covering the structural recursion core of XSLT.
Inspired by the work of Milo et. al. in [58], exact static output validation
is performed through inverse type inference. The problem is found to be
decidable in exponential time complexity, and even claimed to be fast in
practice.

However, the fragment only contains simple child steps in the recursion,
and attributes are disregarded. XSLT0 is unsuited for a reduction of full
XSLT transformations to XSLT0. This can be achieved for only very basic
transformations. And finally, Tozawa presents insufficient experiments to
back the claim of practically useful performance.

Where Milo et. al. [58] examined decidability for the exact static out-
put validation problem, Martens and Neven investigates in “Typechecking
Top-Down Uniform Unranked Tree Transducers” [57], the polynomial time
computability of the problem. More precisely, it is examined to what de-
gree tree transducers and their types must be restricted in order to achieve
PTIME complexity. PTIME is finally achieved with DTDs by restricting
copying power and deletion for top-down uniform unranked tree transduc-

5Non-elementary time: Not bounded by a fixed number of compositions of exponentials.
6Non-cyclic DTDs: No element can have itself or an ancestor as its child. Such cycles

result in trees of arbitrary depth. XHTML for example is cyclic.

30 Static Output Validation of XSLT

ers: The number of recursions in transformation rules are bounded, and
every input node must produce an output node. The transformer moves
strictly downwards and it cannot distinguish the order of siblings.

The results seem only of theoretical interest considering the heavy re-
strictions imposed on the transducers.

Looking back, it would seem that trying to perform sound and complete
static output validation on even very simple models of tree transformation
is of too high a computational complexity to be feasible. We have however
seen some results with low enough complexity so as to indicate such practical
usefulness, but the indications have been backed by very limited empirical
study. And even if they turn out to be practical, the computational models
have such a poor expressiveness that it will make it very impractical to pro-
gram directly to these models. Also trying to approximate transformations
in contemporary languages, such as XSLT, into the models will prove diffi-
cult, as the models lack vital features. In the particular case of XSLT, the
restriction to top-down traversal seems to be difficult, and the restrictions
on deletion we have seen seem out of the question. Work will definitely have
to be done if such approximations shall be proven useful.

However, we do note that practicality and especially approximation have
not been the primary focus in most of these papers, and the theoretical as-
pects are certainly of interest.

On the more pragmatic side, we shall examine a number of XML manip-
ulation languages for which various static analyses, including static output
validation, has been an important design goal. These languages can serve as
an inspirational source for our analysis of XSLT.

In XDuce [41], Hosoya describes a functional and statically typed XML
manipulation language. The static typing ensures correct use of XML values,
as well as output validity. The type system is based on regular expression
types, which are equivalent in expressiveness to regular tree automata. This
results in decidable and exact algorithms, but also in exponential time com-
plexity on the subtyping checks. However, Hosoya seems to have achieved
acceptable performance in practice by applying a number of heuristics [42].
Furthermore, the XDuce type system has been extended with constraints on
attributes in [40].

The work on XDuce has inspired other work in the field. Most closely
related is Cduce [8], which extends the type system of XDuce with higher
order functions as well as intersection, and complent type operators. The
Xtatic project [67] attempts to integrate the type system of XDuce, into the
C# general purpose programming language.

In “A Type-safe Macro System for XML” [66], Perst and Seidl design a
language for describing small XML macros, meant to alleviate users from
the quite verbose syntax of XML. The macros closely resemble named tem-

3.3 Related Work 31

plate rules of XSLT with template parameters of type result tree fragment,
and with only static recursion through call-templates and fragment in-
sertion through copy-of. The macro language additionally has a construct
for passing strings for attribute values. Although Perst and Seidl prove that
the language is not expressible with the k-pebble transducers of Milo et.
al. [58], the language is quite limited: Recursion and mutual recursion be-
tween macros is not possible, and neither is deconstruction or any other kind
of probing of the input. This leaves only rigid insertion of whole argument
fragments in an input independent manner. The exact output tree of a macro
call can be statically determined.

Various typing issues is examined for the macros. The static output val-
idation problem is shown decidable in exponential time through the Milo et.
al. inspired inverse type inference problem. Further, a faster type inference
algorithm is developed for the macros. However, attributes are left entirely
out of the static validation, and little experimentation is performed to sup-
port the claim of practical usefulness.

The <bigwig> project [14] takes an interesting approach on Web service
programming by developing a language with direct high-level support for
sessions, which is a series of connected Web pages, with for example forms
for interacting with the service. Furthermore, the Web pages are in <bigwig>

constructed dynamically from HTML fragments and computed values. A
powerful static analysis ensures correct use of HTML values, and guarantees
valid HTML output.

In the following JWIG project [21][20], the work of <bigwig> is taken to a
more pragmatic setting, by infusing the high-level Web page construction—
this time in XHTML—into the highly popular programming language Java.
In both the <bigwig> and JWIG projects, static analysis of HTML/XHTML
values are performed through the unique concept of summary graphs, first
defined in “Static Validation of Dynamically Generated HTML” [13]. These
graphs describe how the HTML/XHTML fragments are inserted into each
other, as well as some specific knowledge about the use of the programming
constructs in the analyzed programming language. Through control and data
flow analysis, a summary graph is constructed, conservatively approximating
possible output of a program. This allows for quite exact and efficient static
output validation of <bigwig> and JWIG programs.

The Xact [51] framework further extends of the work in JWIG to de-
velopment of application-to-application Web services. In this setting, not
only construction of general XML values is needed, but also deconstruction
of especially XML provided as input to the service. Xact provides an ex-
tension to Java with such high-level manipulation of XML values, and—like
its predecessors—provides static output validation, as well as analysis of the
use of intermediate XML values. The analysis uses a summary graph model
modified to suit the new setting, still using the summary graph analysis of

32 Static Output Validation of XSLT

JWIG. Of particular interest is the Xact’s ability to analyze deconstruction
of not only the input XML values, but also intermediate constructed values.
Also note that analysis of XML values in Xact are performed on arbitrary
XML, with DTDs as input and output types.

A second XML manipulation language out of the W3C is XQuery [9][33].
It is basically SQL in an XML setting, and takes more of an information
retrieval angle on the issue, compared to XSLT. Recognizing the usefulness
of static guarantees, XQuery defines, as part of the standard, a set of type
inference rules, allowing conservatively approximated static output validity
guarantees to be made. This is particularly interesting, since XQuery is
one of the first languages from a standards organization, using such formal
methods. XQuery is still in a working draft state.

The next generation XSLT language, XSLT 2.0 [48], introduces some
static type checking as well. By supplying the transformation with type
declarations, the XSLT 2.0 processor may detect type errors statically. This
functionality is optional in the XSLT processors, and the static type check-
ing procedure is left entirely to the implementors. The language is still in
a working draft state, but unless the specification becomes more specific,
the static type errors will likely never move beyond trivial literal element
validations in the template rules.

In “Static Analysis of XSLT Programs” [32], Dong and Bailey pursue a
different aspect of debugging XSLT transformations. Given an XSLT trans-
formation and an input DTD, they perform static analysis of the flow of
template instantiations for the transformation, in order to examine various
properties such as unreachable templates, termination, and others. Their
analysis is conservatively approximating, so that the errors reported are guar-
anteed to be actual errors in the transformation. This means, for example,
reporting template rules which are guaranteed to never be instantiated.

Rounding up, we can see that there are a number of XML manipulation
languages successfully producing static output validity guarantees, which
seem to perform well enough for practical use. The trouble is that it is
very hard to gain acceptance with such languages, even though your work is
practically useful. By attacking the problem for an already popular language,
we do not have this problem. But at the same time, it leaves us incapable—
perhaps to the better—of forming the language to our analysis. We have to
form our analysis around the language, and this can prove troublesome.

We shall try and apply some of the best static analysis ideas in the field of
XML manipulation languages, in order to achieve a practically useful static
output validation algorithm for XSLT.

3.4 Goals and Restrictions 33

3.4 Goals and Restrictions

In recapitulation, let us state our goals for the output validation analysis of
XSLT tranformations in a concise form:

• Generally the analysis should be as precise and fast as necessary for it
to be practically useful in day-to-day development of XSLT transfor-
mations.

• It should be able to verify output validity of the general identity trans-
formation depicted in Figure 3.1.

• The validator should be able to verify validity of, or identify errors in
most practical XSLT transformations.

On the flipside we have established some restrictions to make the project
doable:

• We only handle XSLT 1.0 transformations with a single input docu-
ment.

• Only one input and one output schema can be specified.

• Input and output schemas must be DTDs.

• We do not analyze the text output method, since there is simply no
schema to check against in this case.

• The transformation must use only one input and one output names-
pace. Since DTDs do not support namespaces, we can only analyze
single-namespace output transformations.

• We do not handle disable-output-escaping. Analyzing this would
require complex string analyses, and then trying to figure out what
XML it can represent. This would be a project in itself. And quoting
the XML specification: “Since disabling output escaping may not work
with all XSLT processors and can result in XML that is not well-
formed, it should be used only when there is no alternative.”

• We do not support extension elements or functions except the ones we
introduce ourselves.

• We do not support the namespace axis. The axis is troublesome in
certain situations, as briefly discussed in Section 2.7. Furthermore,
selecting namespace nodes is very seldom used, and it seems pointless
given that the DTDs are unaware of namespaces.

34 Static Output Validation of XSLT

3.5 Summary

The concept of output validity of XSLT transformations has been defined
as having the output of the transformation conform to some XML schema.
Such conformance is often expected of the output, but is hard to verify
statically. The usefulness of statically verifying output validity has been
discussed, and related work in the field has been examined. No practically
useful analysis technique has emerged for XSLT, but some interesting ideas
have been applied to related languages which might be of use. Finally some
reasonable expectations of a static output validator has been set, to establish
a foundation for design of the analysis.

4
Analysis and Design

With the problem to be solved and some goals and restrictions in hand,
we shall now design a static output validation analysis, while attempting to
meet our goals.

4.1 The Analysis Approach

The basic idea behind our approach to the static output validation prob-
lem for XSLT stems from the striking similarity between the XSLT pro-
cessing model and the output document construction in the <bigwig> [14],
JWIG [21], and Xact [51] languages. In Xact—which is the most recent
and most closely related of the three languages—you construct XML output
basically by plugging well-formed XML fragments into each other. Inser-
tion points are defined by named gaps in the fragments. The construction
process starts out with a number of constant XML fragments and possibly
some fragments extracted from input documents, and then simply proceeds
by plugging these XML fragments into one another until the desired result
XML document has been produced. Furthermore, strings can be plugged in
as attribute values or as plain text.

Similarly the XSLT processing model consists, as described in Section 2.7,
of a number of constant fragments as well as one or more input documents.
The fragments contain XSLT instructions which upon execution will be re-
placed by some other XML fragment or plain text. So the key here seems to
be insertion of XML fragments and strings into designated points in XML
fragments. In Xact, the insertion process is described by a Java program. In

35

36 Analysis and Design

XSLT, it is more or less described through interconnecting apply-templates

selections and subsequent template rule instantiations. The Xact static anal-
ysis tries to figure out the flow of the XML fragments in the program through
classical control and data flow analyses. The result of these flow analyses
are a number of summary graphs, expressing a conservative approximation
of each intermediate XML value, and of the possible output for each exit
point1 in the program. The approximation is conservative in the sense that
the summary graph is guaranteed at least to express all actually possible
output. This sounds much like what we want of the XSLT analysis.

The summary graph concept shall be of direct use to us in analyzing
XSLT. In order to construct such a graph representing a conservative ap-
proximation of the possible output of an XSLT transformation, we must be
able to figure out the flow of construction in the transformation. XSLT is not
an imperative language like Java is, although it does have some constructs
with similar semantics. We shall instead perform a more ad hoc analysis of
the flow in a transformation by connecting each apply-templates instruc-
tion with the possible matching template rules. This should cover the core
of the language, but the many other language features will also need to be
handled. Some, such as the call-template instruction referring to a named
template rule should be easy. Others, such as the element instruction has
the potential to be very hard to analyze.

With the flow of template instantiations exposed, we shall try and con-
struct the final summary graph as accurately as possible, by modelling the
order and cardinality of the XSLT template instantiations. This final sum-
mary graph will be referred to as the output summary graph. Let L(SG)
refer to the set of XML documents which the summary graph SG repre-
sents. Given an XSLT transformation T and its respective input and output
DTDs Din and Dout, it must hold for the output summary graph SG that:
∀x ∈ L(Din) : T (x) ∈ L(SG). Determining output validity is then a matter
of checking whether L(SG) ⊆ L(Dout). The better we are at figuring out the
flow and construct the output summary graph, the better the chance that
that last property will hold. If it does not hold, we shall print error reports
of what might be wrong with the given transformation. These reports may
be true errors, or they may be spurious. We must strive to create the output
summary graph as tightly around the actually possible output as possible,
so as to generate as few spurious error reports as possible.

Assumptions

The first layer of errors which can be expected in XSLT is simple mistakes
leading to invalid XSLT, in the sense that the written transformation does

1Here we refer to the show and exit statements which produce the output documents.

4.2 Data Mining 37

195

100

156

200

80

300

38

400

31

500

26

600

16

700

18

800

4

900

4

1K

20

2K

4

3K

1

4K

0

5K

1

6K

2

7K

Figure 4.1: XSLT transformation sizes in number of lines.

not conform to the XSLT specification. These errors are generally easy to
find, and most XSLT processors will do some form of conformance checking
during parsing of the transformation document. The focus of this project
is on the more subtle errors, and we shall, for the sake of keeping to the
point of the problem, assume that trivial errors such as lacking specification
conformance have been taken care of. More precisely:

• We assume the XSLT transformation conforms fully to the XSLT 1.0 [23]
and XPath 1.0 [25] specifications, as well as any other specifications
referred to by these two. Note that this says nothing about the schema
conformance of input or output documents to the transformation. The
XSLT specification is unconcerned with schemas except describing the
XSLT language itself.

• We assume the input and output DTD to conform fully to the XML [18]
core specification, as well as any other specifications referred to by it.

These assumptions are a natural extension to the limitations established
in Section 3.4. Note that specification conformance not only establishes the
basic syntax, but also includes errors such as referencing variables that have
not been defined.

4.2 Data Mining

In order to keep the pragmatic focus of the analysis, let us begin with some
data mining on how XSLT is used in practice. A rather large amount of
XSLT transformations have been gathered from the Web to represent XSLT
use in practice. This may only be a tiny fraction of what has been written,
as many transformations are not shared with the public, but it should suffice
for giving us a general idea of the use.

A total of 596 stylesheets have been gathered, amounting to 185,117
lines of XSLT code written by hundreds of different authors. The sizes of
the stylesheets distribute as illustrated in Figure 4.1. As can be seen, the

38 Analysis and Design

Top-level Element Number Fraction

template 8,769 73.344%

attribute-set 1,034 8.648%

param 793 6.633%

variable 576 4.818%

output 378 3.162%

include 180 1.506%

import 116 0.970%

strip-space 57 0.477%

key 20 0.167%

constant 9 0.075%

preserve-space 8 0.067%

function 6 0.050%

namespace-alias 4 0.033%

if 2 0.017%

decimal-format 2 0.017%

script 2 0.017%

Instruction Number Fraction

value-of 12,333 16.940%

text 9,953 13.671%

apply-templates 8761 12.033%

when 8,653 11.885%

if 5,921 8.133%

attribute 5,853 8.039%

call-template 4,228 5.807%

with-param 3,911 5.372%

choose 2,913 4.001%

otherwise 2,535 3.482%

variable 2,070 2.843%

for-each 1,878 2.579%

param 1,455 1.998%

element 938 1.288%

copy-of 356 0.489%

sort 229 0.315%

number 221 0.304%

message 173 0.238%

comment 161 0.221%

copy 123 0.169%

processing-instruction 28 0.038%

apply-imports 26 0.036%

use 25 0.034%

eval 24 0.033%

result-document 10 0.014%

document 8 0.011%

template 7 0.010%

sequence 6 0.008%

entity-ref 2 0.003%

fallback 2 0.003%

pi 1 0.001%

script 1 0.001%

for-each-group 1 0.001%

Figure 4.2: The distribution constructs used in our gathered XSLT transforma-
tions.

sizes of transformations are typically below 800 lines, which means we should
aim for being able to handle at least such sizes.

In Figure 4.2 the distribution of top-level elements and template instruc-
tions can be seen. Naturally, most of the top-level elements are template
rules, but apart from that there seems to be an unfortunate tendency for
using top-level parameters. If these are used to recurse on, or if they are
copied to output, we can say nothing about the results. We can only hope,
for the sake of statically analyzing XSLT, that most of these parameters are
used for simple string values or something similar.

On the instruction side, we can see that apply-templates instructions
take care of most recursion, but perhaps not as much as could be expected
of the main recursion construct. Developers certainly have a tendency to
transfer their imperative programming habits into XSLT. Fortunately sort

instructions, which express complex ordering which would be very hard to
analyze, are seldom used. copy and copy-of are equally seldom used, in-
dicating that the input of the transformation rarely is of the same type as
the output. Also, a testament to bad programming habits, a number of con-
structs and instructions, which are not part of the XSLT 1.0 standard, litter
the XSLT tranformations.

We have further examined the use of select expressions on the core XSLT

4.3 Overview 39

Select Category Number Fraction

default 3,393 30.9%

a 3,326 30.3%

a/b/c 1,163 10.6%

* 758 6.9%

a | b | c 474 4.3%

text() 235 2.1%

a[...] 223 2.0%

/a/b/c 115 1.0%

a[...]/b[...]/c[...] 82 0.7%

@a 68 0.6%

/a[...]/b[...]/c[...] 43 0.4%

.. 32 0.3%

/ 8 0.1%

$a 371 3.4%

name known 254 2.3%

parent and name known 200 1.8%

set of names known 73 0.7%

sibling known 31 0.3%

set of parents known 12 0.1%

parent known 9 0.1%

nasty 124 1.1%

Match Category Number Fraction

a 4,712 53.7%

absent 1,376 15.7%

a/b 523 6.0%

a[@b=’...’] 455 5.2%

a/b/c 446 5.0%

/ 254 2.9%

* 218 2.5%

a | b | c 179 2.0%

text() 52 0.6%

@a 24 0.3%

@* 16 0.2%

a:* 13 0.1%

processing-instruction() 11 0.1%

@n:* 4 0.0%

a[...] 234 2.7%

.../a[...] 234 2.7%

.../a 117 1.3%

.../@a 24 2.7%

.../text() 11 0.1%

.../a:* 1 0.0%

nasty 97 1.1%

Figure 4.3: Our mining results on the select and match expressions in our gathered
XSLT transformations. Each category covers the path shown, and any path similar
to it in structure.

Simplification
Flow

Analysis
Summary Graph

Analysis

XSLT
Transformation

Input
DTD

Output
DTD

Output
Validity

Reduced
XSLT

Flow
Graph

Figure 4.4: Overview of the static output validation analysis.

instructions: apply-templates, for-each, and copy-of, and the match ex-
pressions on template rules. The results can be found in Figure 4.3. They
suggest that about 90% of all select and match expressions are simply dealt
with, a further 9% ought to be reasonably approximated while the final 1%
may pose serious problems for our analysis.

4.3 Overview

As Figure 4.4 illustrates, the analysis will be formed about three major
phases:

• Simplification shall reduce XSLT documents to a much simpler core
language,

• Flow analysis will analyze the XSLT transformation, trying to figure
out the behavior of the tranformation, and the

40 Analysis and Design

• Summary graph analysis shall transform the results of the flow analysis
into an output summary graph representing possible output of the
transformation, and try to establish whether all output conforms to
the output DTD.

In the following sections, each phase shall be described in detail.

4.4 Simplification

As with many other W3C standards, XSLT is a vastly complex language.
It has many different constructs for doing the same thing, and there is lots
of subtle details to be aware of in the specification. In order to simplify
our work in the rest of the analysis, we start by performing a number of
simplifications on the transformation being analyzed. Some similar ideas
can be found in “Translating XSLT programs to Efficient SQL queries” [45].

The three phases of the simplification will proceed by applying a number
of simplification rules in a specific order, each taking care of a single, or a
group of similar constructs. The phases are:

• The semantics preserving simplification essentially rewrites redundant
language constructs and normalizes those that are left by inserting
default values. As the name implies, these simplifications make no
semantic changes to the transformation, and could therefore be used
in many other contexts than our static output validation. However, this
first level of simplifications can only take us so far. The language is still
complex after this phase. Note also that some of these simplifications
rely on our limitation of no namespace axis (recall Section 3.4). They
were in fact one of the main reasons for imposing this limitation in the
first place.

• The second phase consists of validity preserving simplifications. This
means the simplifications may introduce semantic changes, but only
changes that does not affect the static output validation analysis.

• Lastly, a number of approximating simplifications are applied. These
are basically an early filter, reducing constructs and features that are
hard to analyze to less accurate constructs that we are able to an-
alyze to some degree. In other words, we basically remove complex
information we will not be analyzing anyway.

The result of the simplification will be transformations defined in a fragment
of XSLT that we shall call reduced XSLT. The fragment is essentially formed
around the core of XSLT: Template rules and apply-templates instructions.
It will contain only the features which we will be analyzing in the following

4.4 Simplification 41

sections. The difference from the related work is that we perform a conserva-
tively approximating mapping from XSLT to reduced XSLT. This is a major
step on the way towards practical usefulness.

Before we start on the actual simplification phase, we must check that
no element in the XML templates, that are declared as EMPTY, contains any
content other than whitespace. Theoretically, this is an approximation, since
a non-empty content template of the given element may evaluate to empty.
However, in practice no EMPTY declared element should contain any XSLT
instructions. It should simply be empty.

The point of this empty check is that it allows us to ignore commments
and processing instructions in the output, for the rest of the analysis. This
will simplify or work significantly.

Semantics Preserving Simplifications

As explained above, the first group of rules preserve the semantics of the
transformation. Therefore the stylesheet resulting from these simplifications
does completely the same as before the simplifications.
The most important of the simplifications are:

• import and include resolution: Any external documents taking part
in describing the transformation are merged into the document, taking
proper care of import precedence with priorities and so on.

• Replace redundant constructs: for-each, if, call-templates, copy-of
with node sets, and copy instructions are replaced with the equivalent
constructs. This means a choose instruction instead of if and an
element instruction instead of copy. The rest of the instructions can
be imitated by template rules and apply-templates instructions.

• Template de-nesting: Nested templates are moved to their own tem-
plate rules. This involves when, otherwise, and with-param. Each
of these will have a single apply-templates instruction in a unique
mode, in practice pointing to their former contents. The new template
rules will inherit the match expression of their former containing rule.

• Defaults insertion: All default attribute values such as priorities are
inserted, and the otherwise implicit build-in template rules are made
explicit.

• Variable resolution: All variables are replaced by their definitions.

• Uniform XML construction: All literal result elements2 are converted
to element and attribute instructions, and plain text and the text

instruction are converted to value-of instructions.
2Literal result elements are simply elements not in the XSLT namespace.

42 Analysis and Design

This concludes what can be done without starting to alter the transformation
semantics. Note again that the above simplifications rely on the limitations
made in Section 3.4. In particular, the namespace axis turned out to invali-
date several of the above simplifications.

Validity Preserving Simplifications

This phase takes care of a couple of things not relevant to our particular
analysis. The simplifications presented here do not affect the outcome of the
analysis as a whole, but still serve to simplify the language being analyzed.
Here, we perform the following:

• HTML to XML output method: There is a number of issues with han-
dling the HTML output method itself, so in order to ease our job, we
convert HTML output to XHTML output in XML mode instead. This
means: (1) Converting all element and attribute names to lower case,
(2) converting all name attributes to id attributes, (3) converting enu-
merated attribute type values to lower case, (4) setting the XHTML
namespace, and finally (5) there is some small structural changes which
can be expressed in a DTD. An examination of the differences between
HTML4.01 and XHTML 1.0 can be found in the XHTML 1.0 specifi-
cation [65]. Our job is made a lot easier by the simple fact that the
XSLT document already is in XML format. Thus all the non-XML
constructs in HTML, such as unbalanced tags, are already handled.
This also includes more subtle differences like attribute values already
having been forced to normalized form, and that text in script and
style elements already is escaped. If some other HTML version than
the default is specified, any further differences between the versions
can be rectified.

• Removal of comments and processing instructions: Although the com-
ments and processing instructions in the input document may have
decisive influence on the output, for example if they are selected and
result in template rule instantiations. However, in the case of com-
ments and processing instructions on the output, they are unimpor-
tant for our analysis: Comments and processing instructions are not
in themselves part of the XML they are imbedded in, and DTDs put
no restrictions on the occurrence of either. Note that comments and
processing instructions found in the transformation document are part
of the transformation and not the output. For the output they must be
constructed with comment and processing-instruction instructions.
And so, these we remove.

4.4 Simplification 43

Approximating Simplifications

Here, we simplify a number of constructs that we do not intend to han-
dle in our analysis. This mostly involves arithmetic calculations and string
manipulations, as well as irrelevant constructs such as the message instruc-
tion. We use a couple of extension functions to denote unknown values:
xslv:unknownBoolean() models any boolean value, and xslv:

unknownString() analoguely describes arbitrary strings.

It is important to note that the simplifications are conservative and sound
approximations with respect to the analysis, i.e. they preserve the soundness
and conservatism of the analysis as a whole. The approximations always
simply “reduce the information” in the transformation to something easier
to analyze. The important features of this simplification phase are:

• Complex constructed element or attribute names are reduced to simply
"xslv:unknownString()"

• Complex templates describing attribute values in the attribute in-
structions are reduced to simply <value-of select="xslv:

unknownString()"/>.

• key functions are replaced by "//M" where M is the match expression
of the corresponding key declaration.

• Constructs that are irrelevant for our analysis are removed. This in-
cludes message, fallback, output, as well as others.

The XSLT transformation has now been reduced to the absolute core of
XSLT. The core that most transformations already more or less use. Some
constructs has been roughly approximated, but this mostly involves con-
structs that are inherently hard to analyze or that are used rarely.

To show the principle in the simplifications, let us examine the for-each
instruction. It can be reduced to an apply-templates instruction and a
template rule, without changing the semantics of the transformation, as fol-
lows:

<xsl:for-each select="s">

template

</xsl:for-each>

is reduced to:

44 Analysis and Design

<xsl:apply-templates select="s" mode="m">

sorts

with-params

</xsl:apply-templates>

<xsl:template match="child::node()|/|attribute::*" mode="m"

priority="0">

params

template

</xsl:template>

The mode is generated automatically so that it is unique in the transforma-
tion. Note also that the priority is insignificant, as only a single template
rule exists in the given mode. However, reduced XSLT requires a priority to
be defined. The param and with-param instructions forward any parameters
defined in the template rule containing the for-each. This is necessary so
that any references to the parameters inside the template continue to be
defined with their proper values.

Reduced XSLT

What comes out of the last simplification phase, we call reduced XSLT. We
summarize what is left in the language:

• Template rules, each with one match and one priority attribute, and
possibly a mode and any number of template parameters.

• apply-templates instructions expressing all recursion in the transfor-
mation together with the template rules. The apply-templates in-
structions always have a select expression, may have a mode, and can
be accompanied by any number of sort and with-param instructions.

• element, attribute, and value-of instructions handle all construc-
tion. Troublesome element and attribute names have been approx-
imated away, and so has complex string manipulation for attribute
values and text nodes.

• The choose instruction handle all branching in the transformations.
We have not bothered trying to analyze the test expressions on each
branch. They most likely do not have much influence on the output va-
lidity. Each branch in the choose has been moved to its own template
rule.

• Those copy-of instructions with a single parameter reference that we
could not resolve immediately or replace with other constructs have

4.4 Simplification 45

stylesheet ::= <stylesheet>toplevelelement∗</stylesheet>

toplevelelement ::= templaterule | param

templaterule ::= <template match="pattern" priority="number" (mode="name")?>

(param∗, xmltemplate)
</template>

xmltemplate ::= instruction∗

instruction ::= applytemplates | choose | copyof | element | attribute | valueof

applytemplates ::= <apply-templates select="nodesetexp" (mode="name")?>

(sort | withparam)∗

</apply-templates>

choose ::= <choose>(when+, otherwise)</choose>

when ::= <when>applytemplates</when>

otherwise ::= <otherwise>applytemplates</otherwise>

copyof ::= <copy-of select="$name" />

element ::= <element name="constructedname" >xmltemplate</element>

attribute ::= <attribute name="constructedname" >valueof</attribute>

constructedname ::= (name | {local-name()} | {xslv:unknownString()})

valueof ::= <value-of select="valueofselect" />

valueofselect ::= string | xslv:unknownString() |

string(self::node()) | string(attribute::a)

param ::= <param name="name" select="exp" >xmltemplate</param>

withparam ::= <with-param name="name" (select="exp")?>

xmltemplate

</with-param>

sort ::= <sort/>

Figure 4.5: The grammar for reduced XSLT. exp refers to an XPath expression,
nodesetexp refers to an XPath expression producing a node-set, while pattern refers
to an XPath pattern. name, string, and number refers to the respective primitives
of the XSLT specification.

been kept, so that parameter passing can be analyzed to some degree
later in the analysis.

• Top level parameters describe completely unknown content. These are
kept in order to examine if they are inserted somewhere in the output
document. If they turn out to have direct influence on the output, we
must signal an error. The output can then never be guaranteed valid.

A grammar for reduced XSLT can be found in Figure 4.5.

There are certain constructs in the reduced XSLT that we shall not be
able to analyze. These are: (1) Template recursion on parameter values, and
(2) Element and attribute construction with complex names now reduced to

46 Analysis and Design

{xslv:unknownString()}. Naturally we can never guarantee output validity
in the presence of arbitrarily named elements or attributes. Our output
DTDs can not express such content. Note that the ANY content model of
the XML DTDs do not allow arbitrary element names. Regarding template
recursion, we rely on our flow analysis for resolving template parameters, so
when parameters themselves are used in defining the recursion, the problem
becomes much harder. We do not attempt to handle such cases.

Either of the above two problem cases shall produce a suitable error
report.

As an example of a simplification run, the news XSLT transformation
from Figure 2.4 can be found in simplified form in Figure 4.6. Note that
literal content has been kept intact, or the transformation would have been
utterly unreadable to the human eye. This example far from covers all the
intricacies of the simplification phase, but it nevertheless serves to show the
general idea.

4.5 The Flow Analysis

We begin with some overall considerations regarding the design of the anal-
ysis. As described in the beginning of the chapter, we must figure out the
“flow of construction” in the given XSLT transformation. This will allow us
to construct a summary graph representing all possible output of the XSLT
transformation. We can not expect to be able to figure out the flow per-
fectly, so the summary graph will most likely end up describing also output
that can in fact never happen. However, the better we are at figuring out the
flow of construction, the more accurate we will be able to make the summary
graph. We call the process of figuring out the flow of construction for a flow
analysis.

At this point, a number of approximations has already been done in the
simplification phase, that will result in reduced accuracy of the result sum-
mary graph, but these mostly involve features which are very seldom used
and hard to analyze. The worst approximations are already done at this
point.

Recall that XSLT consists of a number of template rules and instructions.
Most of the instructions are responsible for inserting XML fragments in their
place during the transformation process. The flow analysis must basically
locate all these “fragment-inserting” XSLT instructions, and then identify
which fragments of XML can be inserted at each of these instructions.

The fragment-inserting instructions of reduced XSLT are: apply-templates,
value-of, choose, copy-of, element, and attribute.

The apply-templates instructions must, as stated earlier, be connected
to their possible target template rules. This is nothing less but the core of

4.5 The Flow Analysis 47

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns="http://www.w3.org/1999/xhtml"

xmlns:xslv="urn:XSLTValidator">

<xsl:template match="child::news" priority="0.0">

<html>

<head>

<title>News</title>

<meta http-equiv="Pragma" content="no-cache" />

</head>

<body>

<xsl:apply-templates select="child::item" />

</body>

</html>

</xsl:template>

<xsl:template match="child::item" priority="0.0">

<xsl:apply-templates select="child::headline" />

Den

<xsl:apply-templates select="attribute::date" />

Kl.

<xsl:apply-templates select="attribute::time" />

<xsl:apply-templates select="child::text" />

<hr />

</xsl:template>

<xsl:template match="child::headline" priority="0.0">

<xsl:value-of select="string(xslv:unknownString())" />

</xsl:template>

<xsl:template match="child::text" priority="0.0">

<xsl:value-of select="string(xslv:unknownString())" /> -

<xsl:apply-templates select="child::p" />

</xsl:template>

<xsl:template match="child::p[xslv:unknownBoolean()]" priority="0.5">

<xsl:value-of select="string(xslv:unknownString())" />

</xsl:template>

<xsl:template match="child::p" priority="0.0">

<p>

<xsl:value-of select="string(xslv:unknownString())" />

</p>

</xsl:template>

<!--BUILT-IN TEMPLATE RULES-->

<xsl:template match="child::*|/" priority="-0.5">

<xsl:apply-templates select="child::node()" />

</xsl:template>

<xsl:template match="child::text()|attribute::*" priority="-0.5">

<xsl:value-of select="self:node()" />

</xsl:template>

<xsl:template match="child::processing-instruction()|child::comment()" priority="-0.5" />

</xsl:stylesheet>

Figure 4.6: The news example of Figure 2.4, after simplification has been per-
formed. Literal content has been preserved in order to make it more readable.

48 Analysis and Design

XSLT processing. Even more so after the simplification phase, as many lan-
guage constructs of XSLT has been reduced to templare rules and apply-templates

instructions. As we shall see, it will also be the hardest nut to crack in the
flow analysis.

value-of, element, and attribute need no connecting, as they con-
tain all necessary information already. They may depend on the containing
XML template for resolving "local-name()" expressions, but that is for the
containing template rule to resolve.

Finally the choose instruction contains a number of possible branches in
the form of when and otherwise instructions. They each describe one pos-
sible XML template to be instantiated and inserted instead of the choose.
Post-simplification, each of these branches each contain a single apply-templates
instruction, and the analysis of choose will therefore depend entirely on the
analysis of its descendant apply-templates instructions.

In recapitulation: All the XSLT instructions in reduced XSLT depend on
the template rules and the apply-templates instructions for their analysis.

Now this connecting is obviously taking shape as a kind of graph, where
the nodes are template rules, and the edges connect apply-templates se-
lections with template rules. However, note that the edges originate from
within the nodes of the graph. We shall call this an XSLT flow graph.

The principles behind our flow analysis and flow graphs are much the
same as for the Refined-TAG graphs in “Static Analysis of XSLT Programs” [32],
the QTrees of “Translating XSLT programs to Efficient SQL queries” [45],
and the execution flow trees of iXSLT [81]. However, our end goal is not
quite the same, and as we shall see, our flow analysis will go into more detail
than theirs.

Some Problems to Consider

Before we go on, we should perhaps take a look at the select and match
expressions which lie at the core of the template rules and apply-templates

instructions: The first level of complexity in the select and match expressions
are node-set unions. Both expressions can be a union of any number of
location paths. This looks like it will lead to individual analysis of each select-
match pair, so let us make the analysis simpler from the start by making the
flow graph edges point between the individual location paths instead. This
has to some degree already been achieved on the match side through template
rule “splitting”, but there still remains unions in the matches. It is simply not
always semantically sound to split template rules: If the two match paths
overlap—i.e. are able to match on some of the same nodes—and if they end
up with the same priority, they can represent two alternative template rule
targets for the same node in a selection. This is illegal in the processing
model of XSLT. Neither is it semantically sound to split apply-templates

4.5 The Flow Analysis 49

Start of
Processing

Copy
Context

Node

Any
node

Root
node

Figure 4.7: Imprecise flow
graph for the general identity

transformation.

Start of
Processing

Copy
root

Root
node

Copy
news

Copy
item

Copy
headline

Copy
text

news
node

item
nodes

headline
node

text
node

Figure 4.8: More precise flow graph for the gen-

eral identity transformation, mirroring the input
DTD, which in this case is the news DTD of Fig-
ure 2.2.

select paths. The document order of the selections must be preserved.

This now means that our flow graph will describe what templates can be
instantiated by nodes selected by each path in a selection separately, and it
will describe what match path it matched on.

But, already we run into trouble. One of our main goals for the analysis
is to be able to analyze the general identity transformation (See Figure 3.1
in Section 3.2). If we connect the apply-templates instruction as described
above, we get that it eventually can and will select every node in the input
document, since the template rule will be instantiated with every possible
type of node on the input as context node. Figure 4.7 visualizes the flow
graph this will result in.

We see that the connections of the graph indicate that any node can
be selected by the apply-templates instruction of the template rule. Each
select, match and following instantiation (Recall Section 2.7) of the template
leads to a simple copy of the context node followed by recursion. Now, the
transformation process starts with the root node, and—according to the
flow graph—proceeds to copy arbitrary nodes in arbitrary structure. This

50 Analysis and Design

is indeed a rough approximation, given that we know exactly how the input
documents look. The transformation process will in practice recursively copy
children of the input, eventually producing an exact copy of the input. So
the flow graph ought to simply mirror the structure of the input schema,
as illustrated in Figure 4.8. A very similar situation of “arbitrary recursion”
occurs when the built-in template rules are used. They do not copy the nodes
as the general identity template rule does, but they recurse on children in
the same “minimal information” way as the general identity. Also, nothing
hinders the user himself in producing similarly troublesome template rules.

This is not the only problem. The copy instruction (Converted to an
element instruction in reduced XSLT, but it is the same thing), used for
example in the general identity, is very poorly supported in the output sum-
mary graph so far. If template rules are represented in a single summary
graph node for each rule, the copy instructions will have to point to all
possible nodes for which the containing template rule can be instantiated.
This turns out horrible in the general identity: It will end up pointing to
all possible types of nodes on the input, for insertion. But the problem will
occur also in much simpler cases. The copy instruction makes little sense
to use unless there are more than one possible context node, so this can be
expected.

Finally, we have reduced the copy-of instruction to appy-templates in-
structions and template rules, utilizing a structure similar to the general
identity. This will be equally hard to analyze.

In light of these things, we have to do something if we wish to be able to
analyze these constructs, and well as meet our goals.

A More Detailed Design

Our solution to the problems presented above shall be to create a summary
graph expressing the flow of context nodes more accurately, and to extend
the flow analysis to recognize these flows and make proper use of the more
detailed summary graph. We change our analysis from being monovariant
in the template rules to being polyvariant. In other words: We will now
not only create a single summary graph node for each template rule, but
one for each of the possible context nodes the template can be instantiated
with. This means that the template in each of these summary graph nodes
represent instantiation of a template rule with a specific context node. A
copy instruction can now simply be replaced with the context node, and
apply-templates selections can take the context node into account.

To support the detailed summary graph model, we extend the flow anal-
ysis by making it “context-flow sensitive”. That is: We will analyze how
each context node flows, by examining each template rule for each in-flowing
context node, and determine, as precisely as we can, what flow each of the

4.5 The Flow Analysis 51

contained apply-templates instructions are responsible for.

These improvements give us the power to express for example the output
of the general identity, mirroring the input DTD: The template rule will
result in an summary graph node for each node type in the input class,
making the copy a simple matter, and the child recursion can be correctly
expressed by referring from the apply-templates to the possible children of
the context node.

A potential problem with the above more detailed model is the blow-
up in complexity: The increased amount of times each template rule must
be analyzed, and the increased number of summary graph nodes. Luckily
however, there seldom are more than one possible context node for a template
rule in practice, except of course from the trouble-cases mentioned earlier.
But certainly, some rules matching on more than a few nodes can blow up
the complexity considerably. The same goes for many different modes each
making use of the built-in template rules. However, we do get a considerably
improved precision, so the price definitely seems worth paying. We will
examine the cost of these blow-ups in Section 5.4.

Notation

Let us define a notation for referring more conveniently to the entities in-
volved in the flow analysis. To start, let T denote the transformation being
analyzed after simplification. This phase will work only on the simplified
transformation, so we will assume that the transformation has been through
the simplification phase. Then let Din and Dout represent the input and
output DTDs respectively. As we will be working a lot with the information
contained in the input DTD, let further E contain all element names from
Din, and similarly A shall contain the attribute names. For some other DTD
D, we shall write ED and AD

Now, let Σ refer to the node types of Din, and be defined as follows:

Σ = E ∪ (A × E) ∪ {root,pcdata, comment,pi}

where root, pcdata, comment, and pi respectively represent the root node,
text nodes, comment nodes, and processing instruction nodes.

This set Σ describes the node types distinguishable under the XPath
data model (recall Section 2.5), which we have adopted, with the exception
that the names of processing instructions are not differentiated. Processing
instructions are not part of the XML itself, and our output schema model
(DTD) is not able to constrain the occurrence of processing instructions, or
their names. And add to this, that processing instructions are hardly ever
used. Comments see more use, but seldom have influence on the output of
XSLT transformations. Nevertheless, selection of comments and processing
instructions from the input shall be modeled, albeit ignoring the names of

52 Analysis and Design

the latter.

Note that we shall make no distinction between the names of elements
and their node types, i.e. E shall be used interchangably to refer to the names
and to their corresponding node types. Also, the coupling of attributes with
their element is natural, since attributes with the same name, but with dif-
ferent parent elements, essentially are two different attributes. They each
have their own definition in the attribute list of their parent element, defin-
ing various properties, including allowed values. We shall write name(n) to
refer to the name of n ∈ Σ :

name : Σ 7→ S, where S refers the set of all strings.

name(n) =

{
n if n ∈ E
a if n = (a, e) ∈ A × E

Although DTDs do not in themselves allow constraining which elements are
allowed as the document element, we shall incorporate this information in
the analysis. When the knowledge of allowed document elements is present,
let the set of those elements be denoted as: Ê ⊆ E. If no such knowledge
exists, we must assume that any element is allowed as document element,
and we let: Ê = E.

Having the DTDs in place, let now the template rules of T be denoted T .
Furthermore let the following functions refer to the match expression, mode,
and priority of a template rule respectively:

match : T 7→ Φpattern

mode : T 7→ S

priority : T 7→ R

Here, Φ is the set of all XPath node-set expressions, and Φpattern ⊂ Φ refers
to the subset that is patterns, as defined in the XSLT specification [23].

Extended Content Models

There is an inherent complexity for our analysis in the sharp lines that are
drawn between the different node types of the XPath data model. The el-
ements are described by content models in the DTD, the attributes by the
attribute lists, the root content is defined by the XML standard, coupled
with possibly the knowledge of a specific document element. Apart from
this, comment and processing instruction nodes can—according to the XML
specification—appear anywhere in a document. We shall unify all this by

4.5 The Flow Analysis 53

extending the content models of our input DTD to general regular expres-
sions3 over the node types in Σ, and by defining a content model for each of
the node types in Σ. For referring to these extended content models we shall
write: contentmodel : Σ 7→ REGΣ, where REGΣ are all regular expressions
over the alphabet Σ. We write sequences of content in parantheses and sin-
gle nodes without, such that for example the following holds: (a · b) ∈ exp,
where exp = (a, b∗), and: b ∈ exp. The latter statement simply expresses
that b nodes occur in exp, or in other words, that b nodes can occur in
the sequences described by exp. The former statement describes one such
sequence of exp.

The extended content models shall be defined as follows:

• For elements, the content model of the DTD is expanded with
(comment|pi)∗ on both sides of every name in the original content
model. Thus the content model for item : (headline, text) of the DTD in
Figure 2.2 is expanded rather verbosely to: (((comment|pi)∗, headline,
(comment|pi)∗), ((comment|pi)∗, text, (comment|pi)∗)). The ex-
pansion is only linear in the size of the content model though.
In the case of ANY, the content model becomes (Σ −A × E)∗, and
with EMPTY it shall be the empty string ().

• At the top level, only one of the elements from Ê is allowed, but
also any number of comments and processing instructions. Thus, the
content model of the root shall be: ((comment|pi)∗, Ê, (comment|
pi)∗).

• For the rest of the node types, i.e. attributes, text, comments, and
processing instructions, the content model shall be the empty string ()
as well. None of these nodes can have any children.

Note that attributes are still not part of the content models of elements.
Their unorderedness make them fundamentally different from the rest of
the content. Merging them with the content models pose some inherent
difficulties, as their order in the expressions should be ignored, and they
cannot have any cardinality except a single occurrence.

4.5.1 The XSLT Flow Graph

Let us define more precisely what the structure and semantics of the flow
graph shall be.

3As opposed to the deterministic regular expressions of DTDs. See the XML specifi-
cation [18].

54 Analysis and Design

0.0
"child::news"

{news}

0.0
"child::item"

{item}

{news}->{item}

0.0
"child::headline"

{headline}

{item}->{headline}

1

0.0
"child::text"

{text}

{item}->{text}

4

-0.5
"attribute::*"

{date(item),time(item)}

{item}->{date(item)}

2

{item}->{time(item)}

3

0.5
"child::p[]"

{p}

{text}->{p}

2

0.0
"child::p"

{p}

{text}->{p}

2

-0.5
"/"

{[root]}

{[root]}->{news}

-0.5
"child::processing-instruction()"

{[pi]}

{[root]}->{[pi]}

-0.5
"child::comment()"

{[comment]}

{[root]}->{[comment]}

Initial
Selection

Figure 4.9: Visualization of the flow graph for the simplified news transformation
described in Figure 4.6. The numbers on the tails of the edges denote which XSLT
instruction it originates from, and the octagon shaped nodes are the built-in tem-
plate rules. Each flow graph node is labeled with its priority, match pattern, and
possible nodes for instantiation. The edges are annotated with which instantia-
tions produce what flow. Thus, {news}->{item} means that when the template is
instantiated with a news element, an item element will flow along the edge. The
special node types have been put in square brackets, such as [root].

The Nodes

We do not need to mirror the nodes of the summary graph in the flow graph.
Having a flow graph node for each possible context node will do nothing but
complicate the graph unnecessarily. Instead, we shall annotate the nodes and
edges with the knowledge of the flow of context nodes. This construction will
express exactly the same as individual graph nodes for each context node,
but the edge annotation is a much more compact representation.

We will however have a separate flow graph node for each match location
path in the case of a union. As we shall see in a moment, this will improve
the analysis precision slightly.

4.5 The Flow Analysis 55

In order to have some idea of what our goal is, Figure 4.9 illustrates
the flow graph of our running example. Each node is labeled with: (1) Its
priority, (2) its match patttern, and (3) the set of possible nodes for instan-
tiation. As can be seen, this graph describes accurately what types of nodes
each template rule can be instantiated with. Also, each edge is annotated
with the index of the XSLT instruction it originates from, and the flow that
it is responsible for. The diamond shaped nodes in the illustration represent
the built-in template rules. In this example, the built-in template rules take
on the two typical jobs that the built-in template rules are responsible for:
(1) “Filling in” with simple downwards child recursion when no explicit rules
are provided, and (2) copying text over directly from attribute values or text
nodes.

When the time comes for summary graph construction, we need to know
what possible context nodes a template rule will be instantiated with. To
support this, we will attach a context set to each flow graph node. Ini-
tially, these sets will be empty. One of the jobs of the flow analysis is then
to fill the context sets as tightly around the sets of actually possible con-
text nodes. Note that some information is in fact lost in this process. For
example, a template rule with the match expression "child::b/child::c"
will be instantiated only with c nodes that have an b node as parent. But
the context set will contain simply a c node. In other words: Any knowl-
edge about the context node, apart from its node type and possibly name,
is lost. The information about the parent b in this case is still present
through the match expression, but what if the match expression had just
been "child::c", and the only selection pointing to our template rule being
"child::b/child::c"? The information about the parent now lies one step
away in the flow graph, at the source selection. In general, the context infor-
mation not approximated away could always be extracted by examining all
the flow eventually ending up in the template rule in question, or one could
try and propagate it with the flow, by describing the context with for exam-
ple regular tree automata. However, such precision in context knowledge is
complicated, and it is hardly necessary. As we shall see, we will come quite
far with simply the context sets.

We can now see the benefit of separate flow graph nodes for each match
path. The analysis of instructions inside the given template rule can benefit
from the specific match location path. In other words: We maintain the
knowledge about which match path the node matches on in the further
analysis. It also simplifies the analysis of those instructions, by having only
a single match pattern location path to consider.

In a more concise form:

That the node σ lies in the context set of some flow graph node
N means that the template rule that N represents possibly can

56 Analysis and Design

be instantiated with σ as context node. That σ does NOT lie in
the context set means that the template rule of N never can be
instantiated with σ as context node.

The conservatism in the semantics of the flow graph must support the con-
servatism of the entire analysis: If some event is possible for an actual run
of the transformation on some input conforming to the input DTD, then the
event must be expressed in the flow graph. Concretely, in the case of the
context sets, this means that all nodes that some template rule can be in-
stantiated with as context nodes, must be present in the context set of at
least one of the flow graph nodes representing the template rule. This is just
another way of saying what is stated more formally above. Of course, the
statement about the conservatism of the flow graph must hold in all aspects
of the graph.

The Edges

The edges of the flow graph shall—as discussed—point from individual lo-
cation paths in apply-templates selections, to possible target templates.
In order for the now polyvariant summary graph construction to accurately
connect the nodes of the summary graph, we need knowledge of the flow of
context nodes along the edges of the flow graph. Thus, each edge in the
flow graph shall describe the edge flow that the edge produces. The edge
flow maps each context node of the containing flow graph node to a set of
context nodes. This set describes the context nodes that can end up in-
stantiating the target template rule, and which matches the targer match
location path (Remember, edges point to individual location paths in the
match expression).
More precisely:

An edge from the selection S in the flow graph node Nfrom, to
the flow graph node Nto, means that for some context node in the
context set of Nfrom, it is possible that S selects some node in the
context set of Nto which may instantiate the template rule which
Nto represents. Absence of the edge means that the template rule
that Nto represents can never be instantiated with nodes selected
by S.

This also means that if there is no edges from any of the selections of some
apply-templates instruction to any of the flow graph nodes representing
some template rule, then that template rule can never be instantiated at
that apply-templates instruction.
Regarding the edge flow, we have that:

Given an edge between (Nfrom, S) and (Nto, M), an edge flow
with the context node σ, to the set of node types F , means that

4.5 The Flow Analysis 57

each node in F possibly can be selected by S with σ as context
node, and that each node in F possibly can be matched by M .
Each node NOT in F can never both be selected by S under σ
and matched by M .

Note that a node in the edge flow implies that this node must be in the
context set of the target flow graph node.

The flow graph initially only contains the nodes as defined above. The
nodes of the graph are fixed, although if their context set after the flow
analysis is empty, they might as well not be in the graph, as they can never
be instantiated. This is not to be viewed as an error in itself, as for example
the built-in template rules often are not used.

Also, the context set of each flow graph node is empty, and there are
no edges in the graph. This shall serve as the starting point for the flow
analysis.

Formally

We shall now formulate the structure of the flow graph algebraically. Not so
much for the notation it provides, but rather we shall use it as an descriptory
tool, describing more concisely what we have said with words.

Let the set of all apply-templates selection paths in T be denoted Ps,
and similarly the match paths of the template rules in T shall be Pm. By
paths, we refer to each location path in the select and match expressions sep-
arately. Also, each separate selection or match path in the transformation
document shall correspond to an element in either Ps or Pm, so several of
the same location paths may be in a set, so long as they each correspond to
a different piece of the transformation document. Let also N be the set of
all flow graph nodes. Note that there exists a one-to-one mapping between
the flow graph nodes and the match paths.

The XSLT flow graph shall now be defined as:

XFG = (N̂ , E, C,F)

Where:

N̂ ⊆ N are the root nodes of the graph,

E ⊆ N ×Ps × N are the edges of the graph,

C : N 7→ 2Σ describes the context set for each node, and

F : E × Σ 7→ 2Σ maps each edge to its edge flow.

58 Analysis and Design

We further define the following mappings:

rule : N 7→ T maps a flow graph node to the template rule from which
it originates.

target : E 7→ N describes the target graph node of an edge.
match : E 7→ Φ
select : E 7→ Φ
priority : E 7→ R assigns a priority to each edge.

Note that the priority of an edge is simply the priority of the target graph
node’s template rule (i.e. priority(e) = priority(rule(target(e)))).

We shall refer to the target flow graph node, and the template rule of the
target flow graph node interchangably when it is not of significance. Likewise
we shall not distinguish between an edge and its target unless it is relevant.

4.5.2 The XSLT Flow Analysis

Starting out with the initial flow graph described in the previous section,
we must now fill in the graph so that it respects the semantics we have
established. This means (1) filling the context sets of the graph nodes, (2)
creating the graph edges, and (3) annotating the edges with the edge flows.
We shall accomplish this by starting with the root node, and propagating the
flow along the edges, until all possible flow has been described. This process
of flow propagation is in a way a simulation of the transformation process
on all possible input trees at once.
More specifically, we shall need the following parts for the analysis:

• A flow propagation algorithm, describing how flow moves along the
edges.

• Some flow propagation tests, conservatively approximating the possible
flow along some possible edge such that the semantics of the flow graph
is upheld.

• A priority override filter, removing edges which, because of its priority,
never can carry any flow. This is of paramount importance for ruling
out the always present built-in template rules.

The flow propagation algorithm is the foundation of the flow graph contruc-
tion. It describes how the propagation tests and the priority override filter
is used. We shall describe this first.

The Propagation Algorithm

The XSLT transformation process starts by finding all template rules with
no mode, that can match on the root node. A single target template rule for

4.5 The Flow Analysis 59

the node must be found, the same as any other instantiation, and that rule
is then instantiated to form the root of the output document. Similarly we
must initiate the flow propagation by finding out with what template rule
the process starts. The idea can be nicely described through a small piece
of XSLT that we shall call the initial selection:

<apply-templates select="/"/>

This apply-templates instruction perfectly describes the initiation pro-
cess. To start the flow analysis, we simply start by finding out which tem-
plate rule can match on this initial selection of the root. Note that the
apply-templates instruction above serves exclusively to illustrate the mech-
anism. It is neither a part of the XSLT transformation nor of the flow graph.

Now, the flow propagation algorithm centers around analyzing the im-
plications of a new node being added to a context set. The establishment
of this new node as a possible context node for instantiation, implies that
the apply-templates selections in the corresponding template rule possibly
can select new elements in the context of this new context node. Thus, we
need to establish what nodes all the selection paths in the rule can select
under this context node, and what template rules are possible targets for
these selected nodes. The resulting flow graph edges must further be an-
notated with their possible edge flow. And if this means that new nodes
flow into some flow graph nodes, then these graph nodes must in turn be
analyzed in the same way, under the new context nodes added. Whether
the flow propagation proceeds in breadth-first or depth-first manner is not
of importance.

The flow analysis proceeds as follows:

1. For each selection path p in flow graph node, iterate through each flow
graph node n with the same mode as the of p enclosing apply-templates

instruction and calculate the possible flow from p to n. This flow is
calculated through intersecting the results of the individual flow prop-
agation tests. Their consevatism ensures that the nodes which can flow
along an edge in practis, always will be in the edge flow sets.

2. For each pair of edges we examine if one of the edges overrides flow in
the other edge. I.e. we examine if some nodes will always flow to the
higher priority target. This is the priority override filter.

3. Any edge flow established is now fixed, and will remain unchanged
throughout the rest of the flow analysis. Any edge flow resulting in
context nodes that were not already there cause a recursion of this
analysis on the flow graph node and the new context node.

60 Analysis and Design

It is important to note that the flow analysis for a given context node
in no way interferes with the edge flow already established for the other
nodes in the context set. The point of emphasizing the static nature of the
flow for a given context node is, that at the point when the flow has been
propagated out along the edges to other graph nodes, it cannot simply be
recalled: The propagated flow may be responsible for any number of flow
propagations further away in the graph. Because the priority override filter
is able to remove flow, it is imperative that we finish the priority override
filtering, before adding the edge flow to the context set of the target graph
node and the subsequent recursion. Since priority override only examines
the edge flow for a specific context node, and on two edges out of the same
selection path, we simply need to finish analyzing each selection path for
the given context node before recursing. This is accomplished in the flow
propagation algorithm described above.

In the context of the above algorithm, the flow propagation analysis is
initiated by analyzing the possible edge flow, out of the initial selection,
as if a new context node had just been added to the selection’s flow graph
node (although it has none). As we can see, the initial selection is entirely
independent of context nodes and match expressions. It always just selects
the root node.

The Flow Propagation Tests

The flow graph must describe possible nodes to flow along an edge. In other
words: It describes what nodes can be selected by the given apply-templates

instruction, when instantiated with a certain context node. As explained,
the analysis is done on the individual selection paths of an apply-templates

instruction.
Since the apply-templates instruction lies in a certain template rule,

we also know that the context node matches one of the match paths in the
match pattern of the template rule. Again, since our flow graph contains
nodes for each match path, a specific match path is given. In other words,
we are given the following four facts when analyzing some apply-templates
selection:

(1) A source match path,

(2) an instantiation context node matching the match path,

(3) a selection path, and

(4) a target flow graph node with its attached target match path.

Given these four pieces of information, we must conservatively construct a
set of context nodes such that nodes not in the set is guaranteed either (1) to
not match the target match path, or (2) not to be selectable with the selection
path, from a node that both matches the source match path and that is of

4.5 The Flow Analysis 61

type equal to the context node. This set is to be the edge flow annotation
of the relevant edge, and we shall call an algorithm determining such sets
for a flow propagation test. In the construction of these edge flow sets, the
conservatism means that the sets always must describe “too much” flow.

The problem is now essentially reduced to examining the compatibility
of the selection path with the target match path, under the input DTD.
For example, nodes selected by the path "child::a/child::b" could never
match the pattern "child::c/child::b". Only b nodes with a parents are
selected, while only b nodes with c parents match the pattern. We say that
these two paths are incompatible.

Taking a peek at the four pieces of knowledge available to us, we can see
that the selection path will start the selection process from the context node,
and that this context node is guaranteed to match the source match pattern.
This allows us to do a more precise compatibility test by expressing all of
these three things in a single location path. The source match and selection
paths can simply be concatenated, but the knowledge of the context node
should be included too. If for example the match path is "child::*", and
the context node an a element, we can express both pieces of knowledge
as "child::a". One might be tempted to simply express the knowledge of
the context node in a self axis expression such as "self::a", and then
concatenate. The above example would become "child::*/self::a". In
this case it works, but since an XPath name test only leaves nodes with a
matching name that are also of the principal node type—which for the self

axis is elements—it does not work if the context node is an attribute.
In general, we know that the context node matches the source match

path. Thus we know that the context node matches the node test of the last
location step4 in the source match path. It is then simply a matter of—in
a way—intersecting this last name step with the context node type. We
elaborate:

Let Ms be the source match path, c the context node, and S the selection
path. The concatenation of these is defined as:

CONCAT (Ms, c, S) =

S if S is an absolute path
/S if c = root

MERGE(Ms, c)/S otherwise

MERGE(P axis::test[P1] · · · [Pn], c) = P axis::NODETEST (c)[P1] · · · [Pn]

NODETEST (c) =

name(c) if c ∈ E ∨ c ∈ A × E
text() if c = pcdata

comment() if c = comment

processing-instruction() if c = pi

4The last location step in a location path refers to the rightmost step. This stems from
the processing model for evaluation of XPath location paths [25].

62 Analysis and Design

This construction is similar to the location path concatenation of Dong and
Bailey in [32], except that we have further incorporated the context node.

An important fact for the soundness of the above is that the axis of the
last location step in Ms always will be either child or attribute: This is due
to the limited syntax for match patterns (recall Section 2.7). A match pattern
is only allowed to used the child and attribute axes, as well as the //

construct, which is syntactic sugar for "/descendant-or-self::node()/".
This // construct is however only allowed in the beginning of the location
path, or as separator between two normal location steps. Thus, a pattern
can never end with a step using the descendant-or-self axis.

The reason for all this is that the MERGE operation above is not sound
if the axis of the last step in the pattern is able to select both elements
and attributes. We can not make a test on the name of both elements and
attributes at the same time, without resorting to predicates. And since we
generally avoid predicates in our analysis, we do not want to create more
than there already is. But as argued above, the source match path—being
an XPath pattern—can only end with either the child or the attribute

axis. The former can not select attributes, and the latter can only select
attributes. Thus the MERGE operation will always be sound.

Because of the way we define attributes of each element separately, a
small improvement on the path concatenation can be made in case the con-
text node is an attribute and match path a single attribute step. Since the
context node expresses the name of its parent element, we can further elab-
orate the match path by prefixing it with a child axis step with the given
parent element name.

As an example of constructing a concatenated selection path, assume
that Ms = "child::*", c = a, and S = "child::b". Then we get:

CONCAT (child::*, a, child::b) =

MERGE(child::*, a)/child::b =

child::NODETEST (a)/child::b =

child::a/child::b

Now that the flow propagation test has been reduced to a seemingly simple
comparison of two location paths, let us examine the compatibility problem.
Certainly, in the case of simple child axis steps and name tests, there is
a simple linear algorithm: Run through the path from right to left5 and
check if the name tests agree. The edge flow consists simply of the element
represented in the last name test.

However, when the name tests start using * and node(), it is no longer

5The paths may be of differing length, so we must start at the right.

4.5 The Flow Analysis 63

trivial to find the edge flow of the selection, and testing compatibility with
the target match path starts to depend on the DTD. Is for example "child::*
/child::*/child::b" compatible with "child::c/child::*/child::*"?
In themselves, it certainly is possible that they can select the same nodes,
but it also depends on whether b elements can be children of children of c

elements. In other words: It depends on the input DTD. And it does not
get any easier if we start looking at the rest of the XPath axes.

In conclusion, there seems to be no simple and general analysis of this
compatibility problem. We shall present two flow propagation tests: In
Section 4.5.3 we present the path simulation test, while Section 4.5.4 takes
another angle in the paths automata test. As we shall see, each propagation
test strategy shall eliminate different kinds of nodes. We know that if a
node is NOT in the context set of one of the propagation tests, then it is not
possible as a context node for instantiation, ever. Thus, the final edge flow
for an edge shall be the intersection of the results of the individual tests.

A direct consequence of this is that we might not have to perform more
than one of the propagation tests. As it turns out, most candidate edges
being examined in the flow propagation will be false, i.e. they can never
propagate any flow. This falseness is often quite obvious and easily deter-
mined. And if just one of the flow propagation tests return the empty set as
edge flow, then no further tests have to be made: It is already guaranteed
that no nodes can flow along this edge. This also means that it makes sense
to perform the fastest of the flow propagation tests first.

The Priority Override Filter

While the edge tests look exclusively at one edge, the edge filter examines
edges from the same source in relation to each other. Each edge represents
some possible flow to its target flow graph node. But so far, the priorities of
the template rules have been completely ignored. This for example means
that the built-in template rules always will be possible targets, because of
their unrestrictive match patterns. But we know that they implicitly have the
transformation-wide lowest priority6. Thus we need to handle the template
rule priorities, if we wish any kind of precision in the flow graph.

The idea in the priority override filter is to examine each pair of edges
going out of some selection path, under the context node currently being
examined (recall the flow propagation algorithm described above). If one
of the edges has higher priority than the other, it will, at runtime, always
carry flow that it matches before the lower priority edge. However, statically
we can not just remove any nodes in the higher priority edge flow from the
lower priority one: Since the edge flows are conservative approximations,
none of the nodes in the set are guaranteed to actually flow along that edge.

6made explicit in the simplification phase. Recall Section 4.4.

64 Analysis and Design

Furthermore, a node type being in some edge flow does not mean that all
nodes of that type can flow along the edge. It might for example only be
nodes with a certain named parent element.

So, we need an algorithm that is able to determine whether all nodes of a
certain type, able to flow into the lower priority flow graph node, also always
can match the higher priority graph node. In order to do this, we shall need
some tools developed for the flow propagation tests. We will present such an
algorithm in Section 4.5.5. It will naturally be a conservative approximation,
but it turns out to be pretty accurate.

4.5.3 Path Simulation Test

One of our flow propagation tests (recall Section 4.5.2) is the path simulation
test. The idea behind this particular test is quite simply to simulate the
process of selection of an XPath location path. Not on an XML tree as is
normally done, but on a DTD. In particular, we simulate the execution of the
concatenated source match path, context node, and selection path described
in Section 4.5.2 on the input DTD. This will give us a set of node types
that are guaranteed to cover the types which can be selected by the path in
practice. We then run a similar simulation on the target match path being
analyzed, in order to get a set of nodes describing the possible nodes which
the target match path can match on. The intersection of these two sets
shall cover the node types which can be both selected by the concatenated
selection path and which match the target match path. Since we work on
sets of node types from Σ, this test is oblivious of context information apart
from the node types, but it can handle all the axes, except the namespace

axis, which we have left entirely out of our treatment. Under a model that
included namespace nodes, this simulation test ought to be easily extended
with the namespace axis.

As an example of the simulation test, consider the concatenated selection
path "child::a/child::b" and the target match expression "child::b".
The path simulation will yield the set {b} for both paths, stating correctly
that b nodes can flow along this edge. Now, if the target match path had in-
stead been "child::q/child::b", the simulation would still yeild the same
{b} sets for both paths, but nodes selected by the concatenated selection
can in fact never also match the target match path. This illustrates the lack
of information about the context of the nodes in the simulation sets. As we
shall see in Section 4.5.4, the paths automaton test will be able to catch the
impossible flow in the second example above, but it can not handle all axes.

The XPath simulation proceeds by iterating through the steps in the
location path being simulated. Each step describes an axis, a node test, and
any number of predicates. However, due to the complexity of the predicates,
we shall not examine them. The axes and node tests of the location steps

4.5 The Flow Analysis 65

give rise to alternating operations on the set of node type found so far in the
simulation. The axis operation finds—with the help of the input DTD—all
node types that have the specified relation to nodes types in the result set
of the last operation. For the child axis, this means finding the children
of each node in the last set, and adding them to a new set. The node test
operation will then filter the nodes resulting from the axis. For example, a
name test will leave only the nodes with the specified name and which are
of the principal node type.

In order to perform the axis operations, we will need a couple of binary
relations describing relationships between the nodes on the input. The possi-
ble child relation, denoted PCR, describes what children each node type can
have. This information relies exclusively on the content model for that node,
so the relation can easily be constructed by inspecting the input DTD. Recall
from Section 4.5.2 that we work with uniform content models, including—
among other things—comments and processing-instructions in the models.
This means that our task here becomes much simpler. The possible child
relation can be described concisely as follows:

PCR ⊆ Σ × Σ

PCR = {(n, m) | n ∈ contentmodel(m)}

This will take care of the child and descendant axes for us. Similarly, we
must also construct a possible parent relation, denoted PPR. This relation is
necessary solely because of the asymmetry in the child/parent relationships
in the XPath data model. Attributes have a parent element, but they are
not children of their parent.

PPR ⊆ Σ × Σ

PPR = {(n, m) | (m, n) ∈ PCR}∪{(n, m) | m = (a, e) ∈ A×E∧a ∈ attlist(n)}

Thus the upwards axes, parent and ancestor, are taken care of. The rest
of the axes are now easily handled, except following, following-sibling,
preceding, and preceding-sibling. These four have a semantics not too
easily handled. Although these axes could be handled more precisely, we
shall—in light of their rare usage in practice—make rough approximations
of their functionality.

The complete simulation process is described algebraically below. It is
first defined how to convert an XPath location path to a series of alternating
axis and node test operations. These operations are then defined individu-
ally for each axis and node test.

66 Analysis and Design

S : Φ 7→ 2Σ

Sstep
a::t : 2Σ 7→ 2Σ

Saxis
a : 2Σ 7→ 2Σ

StestE
t : 2Σ 7→ 2Σ

StestA
t : 2Σ 7→ 2Σ

S(ε) = {root}
S(a :: t) = Sstep

a::t (Σ))

S(P/a :: t) = Sstep
a::t (S(P)))

Sstep
a::t (∆) =

{
StestA

t (Saxis
attribute(∆)) if a = attribute

StestE
t (Saxis

a (∆)) otherwise

Saxis
child(∆) = {n ∈ Σ | ∃m ∈ ∆ : (n, m) ∈ PCR}

Saxis
descendant(∆) = Saxis

child

∗
(∆)

Saxis
attribute(∆) = {(a, e) ∈ A × E | e ∈ ∆}

Saxis
self (∆) = ∆

Saxis
descendant−or−self (∆) = Saxis

descendant(∆) ∪ Saxis
self (∆)

Saxis
parent(∆) = {n ∈ Σ | ∃m ∈ ∆ : (n, m) ∈ PPR}

Saxis
ancestor(∆) = Saxis

parent

∗
(∆)

Saxis
ancestor−or−self (∆) = Saxis

ancestor(∆) ∪ Saxis
self (∆)

Saxis
following−sibling(∆) = Saxis

preceding−sibling(∆) = Saxis
child(S

axis
parent(∆ −A × E))

Saxis
following(∆) = Saxis

preceding(∆) = Σ − (A × E)

StestE
qname(∆) = ∆ ∩ {n ∈ E | name(n) = qname}

StestE
∗ (∆) = ∆ ∩ E

StestA
qname(∆) = ∆ ∩ {n ∈ A × E | name(n) = qname}

StestA
∗ (∆) = ∆ ∩A × E

StestE
node()(∆) = StestA

node()(∆) = ∆

StestE
text()(∆) = StestA

text()(∆) = ∆ ∩ {pcdata}

StestE
comment()(∆) = StestA

comment()(∆) = ∆ ∩ {comment}

StestE
processing−instruction()(∆) = StestA

processing−instruction()(∆) = ∆ ∩ {pi}

In the above, Saxis
child

∗
(∆) and Saxis

parent
∗
(∆) refer to the transitive closure of the

operations, i.e. continually applying the operation and adding the result to
the previous set, until the set remains unchanged after an application. This
can be done in a finite number of steps, since the operations never remove
nodes from the set, and since there is a finite amount of nodes in Σ.

The reason for splitting the node test operation into S testE
t and StestA

t is
that the node tests qname and * depend on the principal node type. And as
can be seen in the above formalization, we approximate the following and
preceding axes with simply Σ−(A×E), at least taking advantage of the fact
that neither axis can select attributes. Regarding the following-sibling

and preceding-sibling, the following quote from the XPath 1.0 specifica-
tion [25] can perhaps help to clarify the construction:

4.5 The Flow Analysis 67

S(”parent::*/descendant-or-self::item/child::*/child::node()”) =

S
step

child::node()
(Sstep

child::∗(S
step

descendant−or−self()::item
(Sstep

parent::∗(Σ)))) =

S
testE

node()
(Saxis

child
(StestE

∗ (Saxis
child

(StestE
item (Saxis

descendant−or−self
(StestE

∗ (Saxis
parent(Σ)))))))) =

S
testE

node()
(Saxis

child
(StestE

∗ (Saxis
child

(StestE
item (Saxis

descendant−or−self
(StestE

∗ ({root, news, item, headline, text, p}))))))) =

S
testE

node()
(Saxis

child
(StestE

∗ (Saxis
child

(StestE
item (Saxis

descendant−or−self
({news, item, headline, text, p})))))) =

S
testE

node()
(Saxis

child
(StestE

∗ (Saxis
child

(StestE
item ({news, item, headline, text, p, item.category, item.date, item.time,pcdata}))))) =

S
testE

node()
(Saxis

child
(StestE

∗ (Saxis
child

({item})))) =

S
testE

node()
(Saxis

child
(StestE

∗ ({headline, text}))) =

S
testE

node()
(Saxis

child
({headline, text})) =

S
testE

node()
({pcdata, p}) =

{pcdata, p}

Figure 4.10: An example run of the location path simulation algorithm under the
news DTD schema in Figure 2.2.

“the following-sibling axis contains all the following siblings of
the context node; if the context node is an attribute node or
namespace node, the following-sibling axis is empty”

As mentioned earlier, the path simulation test now consists of simulating
both the concatenated selection path and the prospective target match path.
If the intersection of these two sets is empty, it is guaranteed that no edge
flow to this target can exist, under the given context node. Otherwise, the
intersection set describes possible edge flow, to be incorporated in the flow
propagation algorith as described in Section 4.5.2.

An example run of the location path simulation on the news DTD of Fig-
ure 2.2 can be found in Figure 4.10.

4.5.4 Paths Automata Test

The path simulation test has some limitations that typically surface when a
match path has more than one location step. If for example the concatenated
selection is "a/b/c" and the match path "d/c". The path simulation test will
determine c as possible selection of each path independently, and will thus
mark the edge flow to be c. But obviously, c nodes from the above selection
can never match on "d/c". They each require a different parent element.

In order to be able to catch these kinds of intricacies, we present the paths
automata flow propatagtion test. The idea is to not only compare the final
node types being produced by the paths, as the simulation test does, but
also to consider their ancestors. Since the XSLT processing almost always
recurses downwards, knowledge about the ancestors are often the distin-
guishing factor in template rule matching.

68 Analysis and Design

Ignoring the actual selection and match process, the selection and match
paths for some candidate edge both simply express a number of constraints
on nodes. In particular, this means that, after selection of some node-set by
a selection path, each node in that node set will meet the constraints which
the selection path expresses. If a node leads to instantiation of a template
rule, this means that the node will further meet the constraints set by the
match pattern.

While the predicates of a path can express all sorts of constraints, the
actual path, consisting of the axes and node tests, can only constrain the
node type and ancestry of a node. The ancestry is simply the node types
and order of all ancestors of a node. So the text nodes in the news document
of Figure 2.1 all have the ancestry root · news · item. These constraints on
ancestries are much simpler to handle than the general XPath expressions
of the predicates, and they usually take on the dominant role in controlling
the processing of XSLT transformations. This fact is what we shall take
advantage of.

The basic idea is—for each path—to produce a regular expression de-
scribing all possible top-down paths which the given selection or match path
can accept, and then to compare these paths. A top-down path in some XML
document is a path from the root to some node in the tree (possibly the root
itself) only by “child or attribute steps”. For example the path (root, news,
item(1), headline) is a top-down path in the example news XML document
of Figure 2.1. The “(1)” annotation should be read simply as “child number
1”. Other examples of paths in the news example would be: (root, news,
item(1)), (root, news, item(2), text, p(1), pcdata), and (root).

However, we are not working on document instances, so we need a more
abstract way to express these paths: A path expression shall be a regular
expression over a set of node types, that expresses a set of top-down paths in
documents that use that set of node types. For example, the path expression
(root ·news · item ·headline) expresses all top-down paths to headlines in our
news documents. (root · news · item? · headline) expresses the same paths, as
well as some paths that can never happen in documents conforming to the
news DTD (Figure 2.2), namely (root · news · headline) paths, but we know
headline can never be a child of a news element. Thus, these extra paths are
“empty” under the news DTD.

Now, the idea behind the path expression construction is that a path
such as "/child::a/descendant::b" shall produce a regular top-down ex-
pression such as: (root · a · E∗ · b). In this simple case with only child

and descendant axes, the construction is simple. The path is already in a
top-down form, so the conversion is straight forward. However, when self-
selection becomes involved with the self and descendant-or-self axes,
the expressions become somewhat more complex as we shall see.

4.5 The Flow Analysis 69

In order to build path expressions for the concatenated selection path
and the match path, we shall simply “convert” each location step to a regular
expression over Σ. This will be straight forward for the downwards axes such
as child and descendant, but the upwards axes pose a serious problem. We
can not directly describe the behavior of upwards location steps with top-
down paths. The same can be said for the sideways axes such as following
and following-sibling. Also, a relative path does not in itself describe
top-down paths. A relative path may start from any context node in the
input tree.

We shall tackle these issues firstly by approximating away any “non-
downwards behavior”. This means removing location steps from the left of
the path until only downwards or self axis steps are left. Next, any rel-
ative path shall be prefixed with "/descendant-or-self::node()/". This
effectively makes the path top-down, i.e. it starts from the root, while still
describing the same constraints on the ancestors of the nodes which the path
accepts. Finally, we shall remove any predicates from the path as well. Pred-
icates describe complex constraints on the accepted nodes, and these we shall
not be able to express.

As an example of this path “preparation”, the path "parent::node()/
child::item[@category]" will be approximated with simply
"/descendant-or-self::node()/child::item". In this particular case, no
information is in fact lost. The parent step expresses nothing but the fact
that the item element must have a parent, which is already given, and ac-
cording to the news DTD the category attribute specifies a default value for
category attributes. Thus an item element will always have a category at-
tribute, leaving the predicate always true. However, in general, information
will be lost, but it is a sound approximation upholding the conservatism of
the analysis.

Regular Path Expression Construction

We express the process of generating the path expressions by recursive def-
initions. The expressions make use of intersection operations in addition to
the usual sequence, union, and Kleene * operations. ε denotes the empty
string.

Formally, the path expression construction proceeds as follows:

Rdescend(a) =

{
E∗ if a = descendant ∨ descendant-or-self

ε otherwise

R̂step
att (t) =

(e1, t)| . . . |(en, t) ∀ei ∈ E if t=qname ∧ ∃(ei, t) ∈ A
A if t=node()∨ t=*

∅ otherwise

70 Analysis and Design

R̂step
self (t) =

t if t=qname

E if t=*

Σ if t=node()

pcdata if t=text()

comment if t=comment()

pi if t=processing-instruction()

R̂step
child(t) =

{
E ∪ {pcdata,pi, comment} if t=node()

R̂step
self (t) otherwise

Rstep
a (t) =

R̂step
att (t) if a=attribute

R̂step
self (t) if a=self ∨ a=descendant-or-self

R̂step
child(t) if a=child ∨ a=descendant

R(ε) = root

R(P/a :: t) =

R(P/descendant::t) | R(P/self::t) if a=descendant-or-self

R(P) ∩ (Σ∗Rstep
a (t)) if a=self

R(P)Rdescend(a)Rstep
a (t) if a=child ∨ a=descendant ∨

a=attribute

Note that the name step always works only on the principal node type.

Let us examine how the algorithm constructs a path expression for the
small example "/child::a/descendant::b", mentioned earlier:

R(/child::a/descendant::b) =
R(ε) · Rdescend(child) · Rstep

child(a) · Rdescend(descendant) · Rstep
descendant(b) =

root · ε · R̂step
child(a) · E∗ · ̂Rstep

descendant(b) =

root · R̂step
self (a) · E∗ · R̂step

self (b) =

root · a · E∗ · b

As we can see, the expression construction performs as expected on this
example. In the calculations above, · denotes concatenation to make the ex-
pressions more readable. A more complex example run of the path expression
construction can be found in Figure 4.11.

After construction of a regular expression, we need to convert the expres-
sions to deterministic finite state automata in order to be able to intersect
with other regular path expressions and the DTD. Such an automaton con-
struction shall be denoted FA(exp) for some regular path expression exp.

An important property of these resulting automata is that the accept
states of the automata describe all the node types which occur as last step
in a top-down path: More precisely, the incoming edges of the accept states

4.5 The Flow Analysis 71

R(/descendant-or-self::node()/child::*/self::item/child::text/child::*) =

R(/descendant-or-self::node()/child::*/self::item/child::text)Rdescend (child)Rstep
child

(*)
=

R(/descendant-or-self::node()/child::*/self::item/child::text) ε
̂
R

step

child
(*) =

R(/descendant-or-self::node()/child::*/self::item/child::text) ̂
R

step
self

(*) =

R(/descendant-or-self::node()/child::*/self::item/child::text) E =

R(/descendant-or-self::node()/child::*/self::item) Rdescend(child) R
step

child
(text) E =

R(/descendant-or-self::node()/child::*/self::item) text E =

(R(/descendant-or-self::node()/child::*) ∩ (Σ∗R
step

self
(item))) text E =

(R(/descendant-or-self::node()/child::*) ∩ (Σ∗ item)) text E =

((R(/descendant-or-self::node()) Rdescend(child)Rstep
child

(*)) ∩(Σ∗ item)) text E =
((R(/descendant-or-self::node()) εE) ∩(Σ∗ item)) text E =
(((R(/descendant::node()) | R(/self::node())) E) ∩(Σ∗ item)) text E =

((((R(ε)Rdescend (descendant)Rstep
descendant

(node())) | (R(ε)∩(Σ∗R
step
self

(node())))) E) ∩(Σ∗ item))
text E =
((((rootE∗(E ∪ {pcdata,pi, comment})) | (root ∩ (Σ∗Σ))) E) ∩(Σ∗ item)) text E =

Which is equivalent to:
(root · E∗ · (E ∪ {pcdata,pi, comment}) · item · text · E) | (root · item · text · E)

And intersected with news DTD of Figure 2.2, it becomes simply:

root · news · item · text · p

Figure 4.11: A complex example run of the regular path expression construction
algorithm.

are labeled with all the possible last step node types. These node types are
the node types which can be selected by a selection path, or matched by a
match path. We shall make use of this fact for extracting the resulting edge
flow of this flow propagation test.

The DTD Paths Automaton

In order to be able to intersect the paths automata of the selection and
match paths with the input DTD, we need to be able to construct a finite
automaton for this DTD as well. This leads us to a DTD paths automaton.
The construction is rather simple. We do not need to concern ourselves with
the order and cardinality of siblings expressed in the content models of the
DTD. We only need the possible child relation constructed in Section 4.5.3,
which is derived from the content models.

The construction process proceeds simplest by constructing a determin-
istic finite automaton directly. Given D ∈ DTD, we shall construct FAD as
follows:

• Each node type in Σ corresponds to a state in the automaton, which
we shall here denote state(n) for some node type n ∈ Σ.

• For each possible child m of a node n, an edge from state(n) to state(m)
with label m is constructed.

• The initial node is denoted initial, and it has a single edge to state(root).

72 Analysis and Design

item

category(item)

headline

date(item)

text

time(item)

pcdata

newsroot

p

pcdata

Figure 4.12: The paths automaton for the news DTD schema from Figure 2.2. The
otherwise ubiquitous edges and states for comments and processing-instructions—
which are allowed almost everywhere—have been removed for a better overview.

• All states are accept states, except the initial state initial. This means
that empty paths are not allowed.

Note that, in the resulting automaton, all edges going into a state state(n)
are labeled with the node type n. The DTD automaton can be described
more formally, using the standard notation of FAD = (Q,ΣD, q0, δ, A), defin-
ing the set of states, input alphabet, initial state, transition function, and
accept states of the automaton respectively:

ΣD = ED ∪ (AD × ED) ∪ {root,pcdata, comment,pi}
Q = ΣD ∪ {initial}
q0 = initial

A = ΣD

∀n,m ∈ ΣD : (n,m) ∈ PCRD ⇒ δ(n,m) = m
δ(initial, root) = root

Here, PCRD refers to the possible child relation constructed from D. The
construction of FAD can easily be implemented in time proportional to the
automaton constructed with the right data structures. The paths automaton
for the input DTD of our running news example can be found in Figure 4.12.

This construction is very similar to the DTD-Graphs of Dong and Bailey
in [32], except for the fact that we here use all the node types of the XPath
data model, as expressed in our extended content models.

The Flow Propagation Test

Finally, the paths automata flow propagation test shall consist of intersect-
ing the automata for the selection path, the match path of the prospective
target, and the DTD. If the resulting automaton is not empty, we can—as
explained earlier—extract the edge flow by examining incoming edges of the
accept states of the intersected automaton. These are the node types which

4.5 The Flow Analysis 73

can both be selected by the selection path, matched by the match path, and
which are meaningful under the input DTD. More precisely:

Given a candidate flow graph edge (ns, S, nt) ⊆ N ×Ps ×N , and a context
node c ∈ C(ns) in the source context set, let:

FA∩ = FA(CONCAT (match(ns), c, S)) ∩ FA(match(nt)) ∩ FADin

FPTaut = {n ∈ Σ | ∃a ∈ AFA∩
, s ∈ QFA∩

: δFA∩
(s, n) = a}

FPTaut defines the edge flow of the path automata flow propagation test,
while QFA∩

, AFA∩
, and δFA∩

refer to the states, accept states, and transi-
tion function of FA∩.

Note that the regular path expression construction itself is complete in
the sense that no information is lost. It is in the path preparation where
information is potentially lost, and this is the source of inaccuracy for this
flow propagation test.

4.5.5 The Priority Override Filter

As described Section 4.5.2 we need to find an algorithm that can determine
when flow on a higher priority edge overrides flow on a lower priority edge.
This algorithm will need exact knowledge of the flow along the higher priority
edge in relation to the lower priority edge: Does node type n always flow
to the higher priority edge when given the choice between the two given
edges? If it does not, some nodes of the given node type can still flow into
the low priority template rule. Since we have no way of expressing that only
a specific fraction of n flows along an edge, this is not good enough. We have
chosen only to work with whole node types.

The conservatism in the approximated context sets means that we cannot
use them in this priority filtering: They contain no knowledge about what
can with certainty flow along some edge, only knowledge of what might flow
along an edge. We must instead examine the two flow graph nodes in relation
to each other. There are three properties which influence whether a template
rule matches some node: (1) The match pattern, (2) the priority, and (3) the
mode. When filtering flow by priority, the targets of the two edges will have
the same mode, and we are only interested in pairs of edges where one has
higher priority than the other. Now, all that differentiates the two targets
from each other is the match paths. Let us formulate the priority filtering
problem more precisely:

Given edges e1 and e2 where priority(e1) > priority(e2), and
n ∈ F(e1) ∩ F(e2). We must guarantee that whenever a node of
type n can match match(e2), it can also match match(e1).

74 Analysis and Design

If this guarantee can be made, then we know that flow will always prefer e1

over e2, and thus nodes of type n can never flow along e2.

So, we need some kind of inclusion test between two match paths. For
this, we can use the paths automata of Section 4.5.4. If we, for each of the
two edges, could construct an automaton describing possible top-down paths
that the target match path can match under the given concatenated selection
path, it would be a simple matter of checking inclusion of the automaton for
e2 in the automaton for e1. However, there are two problems: (1) The paths
automaton algorithm can not handle all axes, and (2) predicates on the lo-
cation path degrades the precision of the automaton. Only a fragment of
the XPath location paths are allowed in the match expressions because they
are XPath patterns. These patterns are restricted to the child, attribute,
and descendant-or-self axes, which means that our paths automaton al-
gorithm can construct an automaton for any match path. We also wish to
take the concatenated selection path into account, but this will not always be
possible. At least not the full concatenated selection. Since it is a sound and
conservative approximation to leave out the concatenated selection, we shall
simply include as much of it as possible by stripping away non-downwards
axes as described in Section 4.5.4.

Now, the problem with predicates are that they can filter out any number
of nodes in the edge flow. In the extreme case where the target match path
contains a [false] predicate, the target template rule can never match on
anything, and all flow will go somewhere else. For example to a built-in
template rule. This example serves well to illustrate that, without some
kind of analysis on the predicates, we can trust neither the edge flow, nor
the paths automaton. Note however that since the predicates are filters,
they can only remove nodes. For a match path, this means that a predicate
can only shrink the set of nodes that the path can match. Thus, predicates
on the match path of the lower priority edge are unimportant. However,
predicates on the match path of the higher priority edge can not be ignored.

Finally, incorporating the input DTD in the priority override shall pro-
vide some additional precision. For example, if we are examining two edges
whose target match paths are "*/b" and "a/b", the second match path obvi-
ously expresses a subset of the paths which the first expresses. The opposite
does not hold in general, but if the input DTD says that only a elements
are allowed as parents of b elements, then the two match paths are suddenly
equal. So we shall intersect with the paths DTD from Section 4.5.4 as well.

To conclude, the priority override test will do the following:

Given edges e1 and e2 with the same origin, and under the same
context node: Let S be the non-downwards-axis stripped con-
catenated selection path. If priority(e1) > priority(e2) ∧ ∃n ∈
F(e1) ∩ F(e2) ∧ e1 contains no predicates ∧ FA(match(e2)) ∩

4.5 The Flow Analysis 75

FA(S)∩Σ∗n∩FADin
⊆ FA(match(e1)), then n is removed from

F(e2).

Essentially what the test is doing is—given e1, e2, and n as above—to: (1)
Find all the top-down paths ending with the node type n, which match(e2)
accepts: FA(match(e2)) ∩ Σ∗n. (2) Narrow these down to the paths which
are meaningful in Din: Intersect with FADin

. (3) Check whether all these
paths are accepted by the higher priority match path by doing an inclusion
test on FA(match(e2)).

Recall that for this to be a sound priority override filter, we must “guar-
antee that whenever a node of type n can match match(e2), it can also
match match(e1).”. We shall argue as follows: Because e1 contains no pred-
icates, it exclusively describes constraints on the ancestries of nodes that
it accepts, in addition to the node type itself. Since predicates filter out
nodes by imposing additional contraints, a path with predicates can always
accept only a subset of the nodes that the same path without predicates
can. Thus we can safely ignore the predicates in match(e2), and assume
that it has none: They only make our problem harder. Now, the property
FA(match(e2)) ∩ Σ∗n ∩ FADin

⊆ FA(match(e1)) implies that all nodes of
type n which match(e2) accepts will have ancestries which match(e1) ac-
cepts. In other words: Every node of type n accepted by match(e2) is also
accepted by match(e1). Since e1 has the higher priority, we know with cer-
tainty that no nodes of type n can ever flow to the target of e2.

Let us examine a couple of examples to illustrate the process. Examining
two edges, each from the same selection, and each annotated with the edge
flow {d} for the given context node:

priority(e1) = 1 priority(e2) = −1
match(e1) = ”a/d” match(e2) = ”b/d”
F(e1) = {d} F(e2) = {d}

This leads to the path automata: R(”a/d”) = (root·E ∗·a·d), and R(”b/d”) =
(root · E∗ · b · d). But R(”b/d”) ∩ Σ∗d = R(”b/d”) * R(”a/d”)

Another example is:

priority(e1) = 1 priority(e2) = −1
match(e1) = ”c/d” match(e2) = ”b/c/ ∗ ”
F(e1) = {d} F(e2) = {d, ...}

The path automata become: R(”c/d”) = (root ·E ∗ ·c ·d), and R(”b/c/∗”) =
(root · E∗ ·b · c · E). And R(”b/c/∗”)∩Σ∗d = (root · E∗ ·b · c ·d) ⊆ R(”c/d”).
Thus we can remove d from F(e2).

76 Analysis and Design

4.5.6 The Result

Summarizing, we have now described our XSLT flow graphs, and how they
are constructed by propagating flow around in the graph, examining prospec-
tive edges with the propagation tests and the priority filter. An example of
the outcome of our analysis has already been introduced in Figure 4.9. We
shall now move on to how we can make use of the constructed flow graph.

4.6 Parameter Analysis

Parameters are a convenient and regularly used construct, but they can be-
come serious obstacles for our analysis, if used in certain ways. To adress
the most obvious, top-level parameters—which can be passed to the XSLT
processor at each transformation run—can potentially contain any values at
runtime. They can even be of any type. Although each parameter must
define a default value, which indicates what the expected input to this pa-
rameter is, there are in fact no constraints on that input. This means that if
the part of the transformation we are analyzing depends on such a top-level
parameter, we can do nothing but to give up. Alternatively, we can report
the validity error, and continue analysis with the default value provided. But
we can in such a case never fully guarantee output validity.

But when is the analysis dependent on top-level parameters? References
to parameters in value-of instructions are of little importance. We do not
examine text in the output much farther than if text is allowed at some point
or not. The output DTD is unable to describe further constraints anyway. A
parameter reference in an apply-templates selection path definitely matters
for our analysis. But this particular construct is very hard to analyze: The
possible values of parameters depend on the flow analysis, and conversely,
the flow analysis depends on the apply-templates selection paths. As such,
this construct bites itself in the tail. We must again give up in such a case.

However, single parameter references in the select expressions of copy-of
instructions are another matter. From the simplification phase of Section 4.4,
we have reduced copy-of instructions to apply-templates instructions, ex-
cept with these singleton parameter references such as "$p". In the case of
p being a local parameter, we must examine the flow graph to find possi-
ble values for insertion. When p is a top-level parameter, we again know
nothing, and must report an error.

Note also that top-level parameters can flow into the local parameters,
and thus create errors on local parameter references as well.

Analyzing the flow graph for local parameter values is rather simple. Due
to the flow graph being an approximation, the possible parameter values will
of course be an approximation as well.

4.6 Parameter Analysis 77

For every parameter reference "$p" in copy-of instructions, and for every
incoming edge to the containing flow graph node:

• If there is no with-param instruction for p at the source of the edge,
then the default value specified in the param instruction is a possible
value.

• If there is a with-param instruction for p at the source of the edge,
then the value specified in the with-param instruction is a possible
value.

Note that, if the with-param is further dependent on something, this
must be resolved first. Cycles, we cannot analyze.

This analysis is rather rough, and it operates independent of the context
sets and other specific flow information. However, this is enough to catch
for example simple parameter passing to named templates, as they will have
only a single incoming edge in the flow graph.

When the selections in copy-of instructions have been resolved, we wish
to reduce the instructions to the other constructs of reduced XSLT, just as
we did in the simplification phase. With the parameter analysis in hand we
shall do the following:

• If the referenced parameter can have more than one value, we con-
struct a choose instruction with a branch for each possible value of
the parameter.

• If the parameter is of the result tree fragment type, we simply insert the
fragment in place of the copy-of instruction. The result tree fragment
is already simplified.

• If the parameter is of the node-set type, we convert the copy-of in-
struction to an apply-templates instruction and some template rules,
just as is done in the simplification phase.

• If the parameter is of string or number type, we convert to a value-of

instruction.

As it turns out, copy-of instructions are mostly used in conjunction with
multiple input documents. Since we can not handle these multiple inputs,
our parameter analysis is in fact rarely useful in practice. Nevertheless, the
principles should be useful if one were to extend our analysis with these
multiple input schemas.

78 Analysis and Design

4.7 The Summary Graph Analysis

The summary graph abstraction comes originally from “Static validation of
dynamically generated HTML” [13] by Brabrand, Møller, and Schwartzbach.
It has later been seen in various alternative forms in JWIG [21] and Xact [51].
We shall present here yet another alternative definition of summary graphs,
suited to our needs. Our alterations shall require modifications to the sum-
mary graph inclusion algorithm, but the changes to the graphs and the
inclusion analysis are not fundamental. We shall use the summary graph
definition of JWIG as a starting point.

Recall that a summary graph is essentially a number of well-balanced
XML fragments called templates. Each template may, in addition to XML
content, contain gaps, which are named insertion points. The edges of the
summary graph describe what content may be inserted at which gaps.

First off, the version of summary graphs we will use in this analysis does
not contain a gap presence map, which in JWIG is used to detect various
programming errors concerning the use of gaps. Since we will be constructing
the graph ourselves, this is not needed. The code gaps of JWIG have no
relevance in our context either.

Next, we need to handle attributes more generally. The problem is that
attributes can be constructed with attribute instructions in XSLT. These
attribute instructions are conceptually disconnected from their parent, and
can be involved in arbitrarily complex template rule recursions, before get-
ting instantiated. This complexity is not directly supported in the summary
graph model of JWIG, and neither is it in any of the other formulations
of summary graphs which have been published. We shall call these discon-
nected attributes for floating attributes. In our summary graph model, all
attributes are modeled as floating attributes, and they occur in the sum-
mary graph node templates along with the other ordered content such as
elements, text, and gaps. This will describe such properties as whether an
attribute always is present on some element. Note that this abstraction sub-
sumes the attribute gaps of the JWIG summary graphs, since these are easily
modeled with a floating attribute and the normal gap structure. However,
JWIG models string values—and thereby also attribute values—much more
precisely than we will need, through general regular expressions. The DTDs
we work with can only express very loose constraints on string values.

Note that there is now information about the ordering of attributes in
the summary graph. This extra information might seem superfluous consid-
ering the unorderedness of attributes in XML, and it is to some degree, but
taking a look at the semantics of the attribute instructions in XSLT1.0, we
see that it is not an error if more than one attribute instruction constructs
the same attribute on some element. The value of the attribute will then
simply be the value constructed in the last of the attribute instructions.

4.7 The Summary Graph Analysis 79

xmltemplate ::= content∗

content ::= element | attribute | gap

element ::= <element name="name" >xmltemplate</element>

attribute ::= <attribute name="name" >gap</attribute>

gap ::= <sg:name />

Figure 4.13: The grammar for XML templates in the summary graphs. name

refers to a legal element name under the XML specification.

For the summary graph model, this means that the order of the floating
attributes does in fact make a difference. We shall not make perfect use of
this information though, as we shall see in Section 4.7.2.

The summary graph templates of our model can be derived from the xmltem-
plate non-terminal in the grammar depicted in Figure 4.13. These summary
graph templates, which we shall denote T , form the nodes of the summary
graph, and we shall use the two terms: templates and nodes interchange-
ably. Let further Et, and Es be the template edges and string edges of the
summary graph respectively. The template edges describe insertion of XML
fragments, while the string edges denote string insertions. A summary graph
shall now be defined as:

SG = (T̂ , Et, Es)

Where:

T̂ ⊆ T is the root nodes of the summary graph.

Et ⊆ T × G × T represents the template edges, while

Es : T × G 7→ 2S ∪ {ANY } is the string edge map of the graph.

Here, ANY refers to the set of all strings, which can be expressed for exam-
ple as a finite state automaton.

The summary graph expresses a set of XML documents, and in the spirit
of the JWIG summary graph terminology, we shall call one such XML docu-
ment, which the summary graph expresses, for an unfolding. The unfolding
relation, which describes all the possible unfolding of a summary graph, is for
our summary graphs essentially the same as for the JWIG summary graphs,
except for the floating attributes. We shall not go into too much detail in
this, but instead describe the unfolding relation informally as follows:

80 Analysis and Design

<element name="html">

</element>

<sg:gap1/>
<sg:gap2/>

gap1 gap2

<element name="head">
<element name="title">

<sg:title/>
</element>

</element>

"My Web Page"

title

<element name="body">
<sg:g/>

</element>

<element name="a">

<sg:more/>
</element>

g

more
<sg:att/>

"My Link"
"My Link 2"

textatt

<attribute name="href">
<sg:g/>

</attribute>

"my.url.com"
"other.url.com"

g

εmore
<sg:text/>

Figure 4.14: Example summary graph.

<html>

<head>

<title>My Web Page</title>

</head>

<body>

My Link

My Link 2

</body>

</html>

Figure 4.15: One possible un-
folding of the example summary
graph in Figure 4.14.

An unfolding of a summary graph is produced by starting at one
of the root templates, and then replacing all gaps in the tem-
plate with either: (1) an unfolding of the summary graph template
pointed to by one of the template edges, or (2) one of the strings
described by a string edge. Finally, each element is replaced by
an element of the given name, and each attribute is turned into
an attribute with the given name on its—now unfolded—parent
element.

An illustration of a summary graph can be found in Figure 4.14, while Fig-
ure 4.15 describes one of the possible unfoldings for that summary graph.

4.7.1 Summary Graph Construction

As discussed in Section 4.5.2, we will construct a summary graph node for
each flow graph node and node type pair. That is, each flow graph node
will correspond to a summary graph node for each of the node types in its
context set. This extra dimension allows a much more precise expression of
the flow of construction of an XSLT transformation.

4.7 The Summary Graph Analysis 81

Each flow graph node originates from a certain template rule, and this
template rule will form the base for constructing the summary graph tem-
plates. Recall that the templates in reduced XSLT consist exclusively of
XSLT instructions (See the grammar in Figure 4.5). Also note that the
copy-of instructions have been handled as far as possible at this point, so
none of those are left.

The roots of the output summary graph we are about to construct is are
the summary graph templates constructed from the roots of the flow graph.
In other words, the root templates correspond to the roots of the flow graph.
Now, given a flow graph node and a context node from its context set, we
shall convert each instruction in the template rule corresponding to the flow
graph node as follows:

• apply-templates: These instructions take care of all recursion in re-
duced XSLT. Given a context node, the instruction selects a node-set
from the input, and instantiates a template rule for each of the nodes
in the node-set, with that node as context node. All the instantiations
are then concatenated in document order of their context nodes, and
inserted in place of the apply-templates instruction.
In order to model this in the summary graph, we must first model the
order and cardinality of the nodes in the selected node-set in document
order, and then model which templates are possible for instantiation for
the given node. The summary graph fragment modeling the selected
node-set shall be called a selection fragment, while the connection to
possible target rules shall be constructed through instantiation gaps
and edges. This construction shall be described in detail later in the
section.

• choose: This instruction essentially describes a number of possible
templates to be instantiated. After simplification, each of these tem-
plates are a single apply-templates instruction, so we shall simply
construct summary graph fragments describing each of the branches,
and then make a template edge to each. This expresses that any of the
branches are possible.

• element or attribute: The element and attribute constructions can
be converted almost directly to the summary graph template. However,
the name attribute does not always specify a constant string name as
the summary graph templates require. The "xslv:unknownString()"
has already been sorted out, since they can never be guaranteed to
conform to the output DTD. Now, all that is left to handle is the
"{local-name()}" construct, which amount to simply inserting the
name of the context node of our summary graph template. If the
context node is a node which has no name, i.e. root, comment, or
pcdata, this is an error, and in the case of a processing instruction,

82 Analysis and Design

the name can be anything, and we have to signal an error too.
Finally, we must recurse on the content of the instruction.

• value-of: The text insertion of the value-of instruction is replaced
by a gap, and a string edge expressing the value in the select attribute is
inserted. If the selection is a name, the string edge maps to that name.
If the selection is "xslv:unknownString()", the edge shall point to
ANY .

With the above conversion, we now have a small piece of summary graph
for each flow graph node and possible context node pair. We shall call these
pieces for instantiation fragments. Just as the execution of the transforma-
tion would result in alternating selections and template instantiations, our
summary graph will basically be alternating between selection fragments
and instantiation fragments. The instantiation fragments express the pos-
sible content resulting from a particular template instantiation, while the
selection fragments model how the selection node-sets are structured.

Content Model Fragments

The selection node-sets very often select children of the context node. This
means that the node-set will mirror the content model of the context node.
Similarly, if children of children are selected, the node-set will mirror several
content models inserted into each other. So we need to be able to construct
summary graph fragments mirroring these content models. These we shall
call content model fragments. The construction of a content model fragment
proceeds very similarly to the DTD to summary graph conversion described
in Xact [51], except that here we work with the extended content models of
Section 4.5.2.

Each regular expression operator in the content model will be converted
to summary graph constructs as follows:

• (..,..,..): Sequence results in a single summary graph template
with a gap for each sub-expression of the sequence. Each gap shall
have a single template edge pointing to the summary graph fragment
corresponding to the respective sub-expression.

• (..|..|..): Union results instead in a template with only a single
gap, and with a template edge from this gap to each of the fragments
corresponding to a sub-expression.

• (..)+: One or more is modeled by summary graph node with a small
loop. The template will be: "<sg:g/><sg:more/>". The gap g shall
have a template edge to the fragment of the sub-expression, while the
more gap shall have an edge pointing to the template itself. This

4.7 The Summary Graph Analysis 83

b
c

d

*

|

a

*

Figure 4.16: An illustration of the content model fragment for the content model:
(a∗, b, (c|d)∗). The boxes represent instantiation gaps, while the circles describe the
internal structure of the regular expression.

describes exactly one or more insertions of what the g template edge
points to.

• (..)?: Optional is simply handled by inserting a template edge to the
fragment of the sub-expression, and an edge to an empty template.

• (..)*: Kleene * is modeled as the composition of optional and one or
more: ((..)+)?.

• name: An element name is represented simply by a gap with a name
that uniquely identifies this gap as an instantiation gap for the given
element type.

• node type: The node types in {pcdata, comment,pi}, introduced in
the extended content models, produce uniquely named instantiation
gaps the same as the element types.

After this construction, the content model fragment essentially expresses the
same regular expression as the content model, but over instantiation gaps
instead of node types. The idea is then to plug the possible template instan-
tiations, or further content model fragments, into the instantiation gaps. An
illustration of a content model fragment can be found in Figure 4.16. The
example is taken from an actual content model of the layout-master-set

element of the XSL Formatting Objects language.

In addition to the child elements handled above, our content model
fragments must also support selection of attributes. Thus, our content
model fragments shall be rooted at a summary graph template of the form:
"<sg:attributes/><sg:children/>". The attributes gap shall have a
template edge pointing to a fragment expressing attribute selection, while
the children gap has an edge pointing to the fragment constructed above
from the element content model.

The trouble with the attribute part of the content model fragment is
that attributes are unordered. According to the XSLT specification, the

84 Analysis and Design

order of attributes in the document order is implemementation specific. In
practice, this typically means the order that the attributes occurred in the
XML document, but relying on this would not be sound. We also can not
feasibly express a single occurrence of each attribute in arbitrary order, in
the summary graph. Thus, we must in general approximate the attributes
with arbitrary order and cardinality.

However, there are two cases which can save us: When only one attribute
is selected, then the order of the attribute gaps is inconsequential. Only the
selected attribute will produce an intantiation edge. The other case is when
only non-element content is produced by the attribute selections. A DTD is
unable to contrain the order of anything but elements. Thus, if no possible
template instantiation, following the selection of an attribute, can produce
elements in the output, the order of the attribute instantiation gaps is again
inconsequential.

One final issue to handle is the requiredness of the attributes in the input.
Given that we did not have to approximate the attribute selection with the
worst-case fragment, we must add an edge to an empty template when the
given attribute does not always occur. This can only happen if the attribute
is declared IMPLIED in the input DTD. Otherwise, the attribute is either
declared REQUIRED, or a default value is specified.

Selection Fragments

We must now make use of the content model fragments, and construct the
selection fragments, which model the order and cardinality of the document
order in selection node-sets.

Using the data mining on select expressions in Figure 4.3 as a starting
point, we shall construct selection fragments for the most used selection
expressions. Note that we can ignore union expressions for now, as they have
been pulled apart in the analysis. We shall take a look at the implications
of this further down. It is very important that we handle the constructs
created in our simplification phase, as these constructs will be abundant in
reduced XSLT. This includes for example "self::node()", which is used,
among other things, for named template calling and if/choose de-nesting.

Each of the common selections shall result in the following selection frag-
ments:

• child::test: A single child step shall result in a single content model
fragment for the context node, plugging instantiation gaps according
to the edge flow.

• child::test1/child::test2/child::test3: A series of content model
fragments concatenated. Each element matching the node test in a
step, shall have its relevant content model inserted in the proper in-
stantiation gaps of the previous step.

4.7 The Summary Graph Analysis 85

Selection
Content

Model
Fragment

n1

nk

Tn1
1

Tn1
v

Tnk
1

Tnk
w

Selection
Content
Model

Fragment

n1

nk

Tn1
1

Tn1
v

Tnk
1

Tnk
w

ε

ε

Figure 4.17: Selection fragment for: "child::test" and "child::test [...]".

• ..: This selection will only ever contain a single node, namely the
parent of the context node. Thus we simply add an edge to each of the
possible targets. I.e. no instantiation gaps need to be constructed.

• /: This selection will only ever contain the root node. So we again just
add an edge to each of the possible targets.

• self::node(): This selection is used extensively in our simplification
constructs, so we must handle it. The selection will always only contain
the context node. Thus—like with the parent and root selections—we
simply add an edge to each of the possible targets.

• If none of the above, we construct the worst-case construct represent-
ing any order and cardinality. This corresponds to the content model
fragment of Σ∗ (treating attributes the same as the rest of the node
types). Or altenatively (n1|n2| · · · |nk|, where ni are all the node types
which have possible targets for this selection and context node.

After construction of the selection fragment, each possible target for a given
node type, described by the flow graph, shall produce a template edge from
the relevant instantiation gap to the instantiation fragment for the given flow
graph node and context node.

Any of the above selection fragments can be handled in the presence of
predicates: Since the predicates can filter out any nodes, we must insert an
edge to an empty template at every instantiation. I.e. we model that any of
the nodes can have been filtered out.

According to the mining this takes care of most of the selection expres-
sions. The modular design easily allows for extending the summary graph
construction to handling more complicated XPath selections.

Illustrations of some of the selection fragments described above, can be
found in Figure 4.17, and Figure 4.18.

86 Analysis and Design

Selection
Content

Model Fragment
(context node)

n1

nk

Content
Model Fragment

(n)

m1

mk

Tm1
1

Tm1
v

Tmk
1

Tmk
w

Content
Model Fragment

(n)

p1

pk

Tp1
1

Tp1
c

Tpk
1

Tpk
d

1

k

Figure 4.18: Selection fragment for: "child::test/child::test".

Regarding unions of location paths, recall that the possible targets for
each selection path have been analyzed separately. Since the nodes selected
by each path end up in the same node-set, this separate knowledge must now
be merged into one. In general, this merging can be hard to do precisely.
Consider for example the select expression "child::n/descendant::n/
child::m | child::n/child::m". Both paths select m elements, but dif-
ferent m elements. The first path requires loops involving n elements, while
the second disallows such loops. To model this precisely in the selection
fragment, we would need to distinguish m elements by whether any loops of
n elements occurred before reaching m.

Fortunately, such complexity in the selection paths are rare, and we shall
handle the most frequently used case, while approximating the rest with
the worst-case construct. We shall handle a union of single-step paths such
as "child::test1 | child::test2 | child::test3", by simply constructing
the selection fragment for a single child-step, and then adding instantia-
tion edges to the possible targets for each path. This will be enough in most
cases. It certainly handles the general identity selections: "child::node() |

attribute::node()". Note that the handling of predicates described above
applies to these unions as well, though empty instantiation edges only need
to be inserted if all the paths able to select the given node type contain
predicates.

One final issue that needs to be handled are the sort instructions of
XSLT. They specify complex orderings, effectively overriding the document
order which we have based our selection fragments on. Thus the occurrence

4.7 The Summary Graph Analysis 87

of a sort in an apply-templates instruction forces us to approximate with
the worst-case construct of arbitrary order and cardinality. However, in the
special case of only a single node type being selected, the order is insignifi-
cant, and we can ignore the presence of sort instructions.

An example of an output summary graph, constructed from the news
transformation of Figure 2.4, can be found in Appendix A.1.

4.7.2 Summary Graph Inclusion Analysis

With the output summary graph finally constructed, we must test whether
all the XML documents it represents are contained in the output DTD. More
precisely we want to test whether L(SG) ⊆ L(Dout), where L(SG) is the
set of all unfoldings for SG and L(Dout) is the set of all XML documents
conforming to Dout.

Such an analysis of summary graph validity, with respect to the strictly
more expressive schema language DSD2, is examined in the JWIG project [21].
The difference between instance document validity checking and summary
graph validity checking of course lies in the fact that we need—at least
conceptually—to check all unfoldings of the summary graph.

In our case, checking only for DTD validity, the analysis becomes much
more simple. It essentially reduces to the declaration checking phase of the
DSD2 analysis, where only a single regular expression for legal content must
be considered for each element and attribute, and with much simpler con-
straints on text and attribute values.

The algorithm proceeds as follows: First, all default values are insterted
similarly to the normalization phase of the DSD analysis. Next, for every
element, the summary graph nodes that represent the content of that element
are used to construct a context-free grammar describing the possible content
of that element. This grammar is then approximated by a regular language.
Without so-called top-level loops7 in the content-describing summary graph
nodes, the grammar actually describes a regular language, and the inclusion
test is efficient. Otherwise, some precision is sacrificed in the approximation,
in order to allow the more efficient regular language inclusion algorithm to
be used in contrast to examining inclusion for the context free language
directly. As suggested by the JWIG paper, it is possible to provide much
better context-free grammar to regular language approximations. In [59],
Mohri and Nederhof examines this topic.

In parrallel to the content examination, the attributes on each element
are checked against the attribute list in the DTD. This amounts to checking
that (1) each attribute is legal, (2) that required attributes are present, and

7Top-level loops are loops in the summary graph, where the gaps in the loop occur
only at the top level of the summary graph node templates.

88 Analysis and Design

(3) that the attribute values are legal. The latter depends on the string edges
in the summary graph. Because of our limited string handling, the string
edges are quite easily checked.

The floating attributes in our summary graph model pose the greatest
difficulty here. In order to extract the presence of attributes or lack thereof,
we shall construct a regular content expression for attributes in much the
same way as for the rest of the content. This regular expression now ap-
proximates the order and cardinality of the floating attributes. Ignoring the
order of the attributes, we shall assign cardinality labels to each attribute
from the set {+, ∗}. We shall do this recursively on the regular expression
for the attributes in a bottom-up fashion, thus assigning a map from at-
tribute names to cardinality labels for each sub-expression. The final map
for the root expression suitably describes the presence of each attribute. A +
means that a floating attribute with the given name is constructed in every
unfolding. A ∗ means that an attribute with the given name may or may
not constructed.

If an attribute is required on the element being examined, that attribute
must have assigned a + label. Otherwise, it may not always be present, and
we report an error. Any attribute, which has been assigned a cardinality
label, and which is not declared for the element, results in an error report.
Finally, each value assigned to some desclared attribute under the element
being examined, must be legal according to the DTD.

4.8 Summary

We have now completed the design of our static analysis technique for deter-
mining output validity of XSLT 1.0 transformations. The transformations
are first reduced to a manageable form called reduced XSLT. The flow anal-
ysis then statically tries to determine the flow of template rule instantiations
going on when the transformation is executed. Finally, the flow analysis is
used to create a summary graph representing all possible output of the trans-
formation. This summary graph is then compared to the given output DTD,
in order to determine output validity, or detect possible inconsistencies with
such output validity.

However, the question remains whether the analysis technique is useful
in practice. We shall examine this question in the following chapter.

5
Experimentation and Interpretation

5.1 Implementation Details

In order to test the ideas presented in Chapter 4, and to prove the practical
usefulness of the analysis, we have implemented most of the analysis and
run it on a number of examples gathered from various sources, mostly the
Web. None of the examples, except our running news example, have been
written specifically to test the analysis, so they all represent “practical XSLT”
in some form. Details of the analysis which have not been needed in the
experimentation have not been implemented. The implementation is not
meant as an commercial quality tool.

The implementation is written in Java, which has an extensive and very
useful library of algorithms and data structures. More importantly, this
choice of language allows us to re-use the summary graph validation algo-
rithm of JWIG in our project, which has graceously been made available
by Anders Møller. The main drawback of this is that the JWIG summary
graphs are unable to express the floating attributes of our summary graph
model. Any floating attributes, which are in the same summary graph tem-
plate as their parent, can be emulated in JWIG summary graphs by attribute
gaps. Those that are at the top level of a template can not be handled un-
less we start analyzing the summary graph ourselves, i.e. separately from
the JWIG package. We have opted instead to analyze this feature by hand
in our experimentation. The use of an existing implementation of summary
graphs and the associated inclusion analysis saves considerable amounts of
time.

89

90 Experimentation and Interpretation

An advantage of using the JWIG summary graph inclusion analysis is
that it works on DSD 2.0 [60] schemas rather than DTD schemas. DSD 2.0
is strictly more expressive than the DTD language: a DTD can easily be
converted to a DSD 2.0 schema, and this is exactly what we do. Provided
by Anders Møller is a DTD to DSD schema converter. If a single element is
known to be required as document element, this information can be included
in the DSD 2.0 schema. DSD 2.0 can not express multiple allowed document
elements, but fortunately this is not needed for those of our examples left
after sorting out transformations using multiple inputs or extension elements.
Note that multiple document elements is relevant for stylesheets operating
on for example XSLT documents, or TMML [36] documents. TMML and
its associated XSLT transformations was discarded as an example because
of multiple input document use.

Another benefit of the DSD summary graph analysis is that it is names-
pace aware, i.e. we are able to handle and analyze multiple namespaces in
the output.

Recognizing the fact that the exactness of the output schema is impor-
tant for the usefulness of our static output validation guarantees, we shall
try to analyze as many of the examples with the more precise DSD schema
for XHTML instead of the DTD converted to DSD. This means that our
implementation is able to provide higher quality error reports or static guar-
antees for a number of our examples, but in the cases where spurious errors
occurred as a result of the more precise output schema, we have fallen back
on the DTD converted to DSD. Such fallbacks typically involves the strin-
gent constraints on URLs in attribute values expressed in the XHTML DSD.

As it turns out, the use of copy-of instructions in conjunction with pa-
rameters is very seldom used. It is mostly used for copying input data over
from alternative input sources, which we do not handle. As such, our pa-
rameter analysis has become superfluous. None of our examples make use of
it, so it has not been implemented. It shall remain for future work to test
the analysis, perhaps in the setting of multiple input sources.

The simplification outlined in Section 4.4 is implemented in a manner so
as to minimize the number of passes required. It proceeds bottom up, in
order to avoid unnecessary template rule copying due to the template rule
splitting. For example, if a template rule contains a choose instruction, it
makes no difference semantically whether we first split the template rule and
then de-nest the choose instruction in each of the split rules, or whether we
first de-nest and then split. However, the latter approach potentially results
in fewer template rules in the simplified document. The bottom up simpli-
fication achieves this minimization.

The construction of the JWIG summary graph is quite similar to if we

5.1 Implementation Details 91

had our own summary graph implementation. The basic functionality is
almost the same. The floating attributes are handled as follows:

• If the parent of the attribute is in the same template as the attribute
itself, we replace the floating attribute with an attribute gap with the
proper name. An attribute gap is essentially a literal attribute where
the attribute value is described by string edges.

• If there is no parent in the same template, we remove the floating
attribute and report an error.

Apart from this, the only difference in implementation between the JWIG
summary graph model and our own, is that the summary graph templates
in JWIG are described with literal content, i.e. with literal elements, text
and so on. And as mentioned, the elements and global attributes can belong
to differing namespaces.

Optimizations

A number of optimizations have been employed in the flow analysis, some of
which have been mentioned in Chapter 4. Most of the time complexity in the
flow analysis stems from the large number of possible flow edges examined,
and from the constructions of and operations on finite automata. In order to
reduce the use of the path automata test, we always run the simulation test
first, and discard the edge immediately if the resulting edge flow is empty.
Also, we do not bother running the path automata test if the target match
expression is a root node selection (i.e. "/"), or a relative path with a single
node step. In these two cases, the path desribes nothing but the node type
involved, and this is analyzed just as well with the simulation test alone.

In order to bring down the number of prospective edges examined in
the first place, we employ a context node insensitive flow analysis. This is
a reduced form of the flow analysis, where the possible context nodes for
instantiation are not propagated along the edges. Instead, each template
rule is only analyzed once, where it is assumed that the rule could be in-
stantiated with any node type, or at least any node type possible under the
match path. Thus, the context insensitive flow propagation tests serve to
identify roughly which edges might carry flow, and which can never carry
any. The tests themselves remain unchanged in this new setting, but the
concatenated selection path is altered so that it does not take the context
node into account as follows:

CONCATinsensitive(Ms, S) = Ms/S

The priority override test is altered similarly by removing the intersection
with Σ∗n. The test then becomes the following:

92 Experimentation and Interpretation

Given edges e1 and e2 with the same origin: Let S be the non-
downwards-axis stripped concatenation of the match and selection
paths of the origin flow graph node. If priority(e1) > priority(e2) ∧
e1 contains no predicates ∧ FA(match(e2))∩FA(S)∩FADin

⊆
FA(match(e1)), then edge e2 is removed.

The automaton inclusion now determines if every path which can occur un-
der Din and which is accepted by the match path of e2, can also be accepted
by the match path of e1.

The point is now that all the edges which have been discarded in the
context insensitive analysis, can be ignored entirely in the context sensitive
analysis. This narrows down the number of edges examined considerably. In
the most extreme case observed, the number of edge tests was taken from
67,227 to 11,386, which makes it a reduction to a 6th of the original number
of edge tests. However, it can go the other way too. In another example, the
number of edge tests increased from 1,393 to 1,597, which makes it about
15% more than originally. Nevertheless, the context node insensitive analysis
serves to smooth out the possible blow-up from the context sensitivity, and
in most examples it improves performance.

Finally, we try to keep down the number of nodes and edges in the output
summary graph by skipping superfluous parts of the selection fragments. If
only attributes are selected, the modelling of children is skipped, and if
only child content is selected, the attributes are skipped. The ubiquitous
comments and processing instruction gaps can also be skipped when they
are not part of the selection.

Analysis Output

The analysis output centers around the error reports. If no errors are found,
the transformation analyzed is guaranteed to be output valid. Otherwise,
the error reports describe possible inconsistencies with the output schema.
A typical error report can look like this:

***Validation error: contents of element ’item’ does not match declaration

Rule: <xsl:template match="child::*">...</xsl:template>"

Context node: item

Element: <item category="national">...</item>

DSD: (x:headline,x:text)

The error report consists of four items:

• The error message, describing the nature of the inconsistency with the
output schema.

• The signature of the involved template rule. This is essentially a print-
out of the template rule element and its attributes as it appears in

5.1 Implementation Details 93

the source document, and it helps the developer to locate the relevant
fragment of the transformation.

• The context node is the type of node used for instantiating the tem-
plate, when the inconsistency occurs.

• The DSD fragment is a piece of the output DSD, describing the at-
tribute name or content model involved. The content model is either
shown directly, or a named content declaration from the DSD is re-
ferred to. The x: namespace prefix shown above is simply the names-
pace prefix assigned to the given element in the DSD schema. It is in
this case bound to the news DTD from our running example.

Not all these pieces of information are relevant to every kind of error reported,
so only those relevant will be displayed for the given type of error.
Another example of an output report is:

***Validation error: required attribute missing in element ’item’

Rule: <xsl:template match="child::*">...</xsl:template>"

Context node: item

Element: <item category="national">...</item>

DSD: @date="???"

This particular example represents the kind of errors that our incomplete
handling of floating attributes can produce. However, it may result from
other inconsistencies as well, such as the attribute actually missing. An
error often seen in XHTML outputting transformations is missing alt at-
tributes on img elements. The alt attribute is a required, but often forgotten
feature of HTML and XHTML.

In order to aid the identification of errors, and to properly test the func-
tionality of our analysis, the implementation outputs intermediate results
in the form of two Graphviz [35] dot files. One representing the XSLT flow
graph generated during analysis, and the other representing the output sum-
mary graph. These can be converted to PostScript format and viewed in
any PostScript capable viewer. However, the graphs—especially the sum-
mary graphs—can become quite large, making them infeasible to examine
visually. In such cases, the error reports must suffice. For our purposes of
examining the precision of our analysis, later in this chapter (Section 5.3),
the smaller examples shall be more than adequate.

When converted to PostScript format, the flow graphs take on the form
shown in Figure 4.9. Each node in the illustration is labeled with its priority
(made explicit in the simplification phase), match path, and context set.
The edges are each annotated with their edge flow.

Ellipses describe flow graph nodes originating from user template rules.
Boxes (not seen in the news flow graph) are rules generated in the simpli-
fication phase, such as from de-nesting templates for choose, if, for-each
and similar. The diamonds represent the built-in template rules.

94 Experimentation and Interpretation

The summary graph dot file can be output in two different forms. One,
with the same labels as on the flow graph nodes, except that only a single
context node type is given. The other form shows the exact XML template
of each summary graph node. These summary graph files are—at least on
the smaller examples—well suited for inspecting the result of the summary
graph construction.

The implementation can be downloaded from the thesis Web site, at:

http://www.daimi.au.dk/˜madman/xsltvalidation/

Also on the site is instructions for running the implementation, and all our
example transformations and their relevant schemas.

5.2 The Examples

The trouble with gathering examples for experimentation have mainly been
that not only the transformations themselves, but also schemas for the in-
put and output had to be found. These are not so often available as one
might think. Constructing the schemas ourselves would be tedious work,
and would not yield quite the same realism. In order to get a decent amount
of example transformations with accompanying schemas, we chose to gath-
ering also transformations with only example XML documents available. A
example document can be used to automatically produce a DTD through
the SAXON DTDGenerator [49]. The resulting DTDs will be very tight
around the example document, i.e. it will accept the XML document itself,
and other documents very close to it in structure. This should, at least for
input schemas, be a safe approximation of the original idea of the authors.
Going through this tool also makes the schemas independent of our hands,
so that the examples can not be formed to our needs.

Not surprisingly, most of the examples found produce HTML or XHTML
output. The problem with this is that XHTML is quite loose in its require-
ments. Most elements are allowed as children of each other in arbitrary
number in one large jumble. It is, however, a dominant use for XSLT, so
it only makes sense to examine how the analysis performs on such trans-
formations. Still, we shall examine transformations of non-XHTML output
with particular interest when it comes to testing the precision of the analysis.

After gathering a number of examples from various sources independent
of this project, those examples that included features not supported by our
analysis, such as multiple input or extension elements, were sorted out. Fea-
tures like multiple namespaces in the input have, instead of being sorted out,
been reduced to a single namespace, in order to have more examples to run

5.2 The Examples 95

Example Input DTD Output Schema

poem.xsl (35 lines) poem.dtd (8 lines) xhtml.dsd (2,278 lines)
AffordableSupplies.xsl (42 lines) Catalog.dtd (31 lines) xhtml.dtd (1198 lines)
agenda.xsl (43 lines) agenda.dtd (19 lines) xhtml.dsd (2,278 lines)
news.xsl (54 lines) news.dtd (12 lines) xhtml.dsd (2,278 lines)
CreateInvoice.xsl (74 lines) PurchaseOrder.dtd (37 lines) dtdgen.dtd (32 lines)
adressebog.xsl (76 lines) dtdgen.dtd (22 lines) xhtml.dsd (2,278 lines)
order.xsl (112 lines) order.dtd (31 lines) fo.dtd (1,480 lines)
slideshow.xsl (118 lines) slides.dtd (26 lines) xhtml.dtd (1,198 lines)
psicode-links.xsl (145 lines) links.dtd (15 lines) xhtml.dtd (1,198 lines)
ontopia2xtm.xsl (188 lines) tmstrict.dtd (113 lines) xtm.dtd (202 lines)
proc-def.xsl (247 lines) proc.dtd (69 lines) xhtml.dtd (1,198 lines)
email_list.xsl (257 lines) dtdgen.dtd (41 lines) xhtml.dtd (1,198 lines)
tip.xsl (262 lines) dtdgen.dtd (56 lines) xhtml.dsd (2,278 lines)
window.xsl (701 lines) dtdgen.dtd (84 lines) xhtml.dtd (1,198 lines)
dsd2-html.xsl (1,353 lines) dsd2.dtd (104 lines) xhtml.dsd (2,278 lines)
xhtml2fo.xsl (1,697 lines) xhtml.dtd (1,198 lines) fo.dtd (1,480 lines)
xmlspec.xsl (2,528 lines) xmlspec.dtd (2,561 lines) xhtml.dtd (1,198 lines)

identity.xsl (9 lines) - -

Table 5.1: The examples we use in our experiments and their input and output
schemas.

the analysis on.

Also a certain amount of pre-processing was done on the examples.
Conversion from XHTML to HTML output was performed with an XSLT
transformation, and unnecessary use of disable-output-escaping was con-
verted to less ugly constructs. And various other disagreements with the
XSLT specification—which is unimportant for our experimentation—were
corrected as well.

For those examples that produce HTML output (i.e. which use the HTML
output method), we ought to have produced a DTD describing the structure
of HTML documents, since it is slightly different from XHTML. This detail
has been ignored however, as it is not of importance with respect to testing
our analysis.

An overview of the examples we shall examine can be found in Table 5.1,
sorted by the size of the transformations in lines of code. Note that the
sizes of both transformations and schemas are before entity expansion. The
xhtml.dtd, and xhtml.dsd are the XHTML 1.0 DTD and DSD schemas
respectively. fo.dtd is a DTD for the XSL Formatting Objects (XSL-FO),
which are a part of the Extensible Stylesheet Language (XSL) specification
(recall Section 2.3). The rest of the DTDs are less widely known. They
can all be found in versions modified for this project, as described above,
together with the transformations and output schemas at the thesis Web
site (http://www.daimi.au.dk/˜madman/xsltvalidation/).

The examples perform various tasks, but mostly they produce an HTML/
XHTML presentation of XML data, or convert between two XML classes.

96 Experimentation and Interpretation

The CreateInvoice.xsl example has extraordinarily an automatically gener-
ated output DTD. The tightness of this DTD is directly responsible for
several of the errors found in the transformation: the currency attributes in
the input schema are declared as PCDATA, while the DTD Generator decided
it should be of type NMTOKEN. When the values are copied over from the in-
put, it inevitably results in errors. This is to be expected, and while it may
be unfair to the authors of the transformation, the issue is not of importance
to our testing of the analysis.

5.3 Precision

Let us start by examining our running news example from Figure 2.4. The
flow graph constructed in the analysis can be found in Figure 4.9. The
analysis produces no errors on the news example, so let us inspect the analysis
run.

Firstly, we can note that the built-in templates have been overridden in
all but one case: for the root element. Indeed, an explicit rule for matching
the root node is missing in the transformation. We can also see that the
match="p[1]" template rule has not overridden the match="p" rule, even
though it has higher priority. This is a good example of why we must test for
the existence of predicates in the priority override filter. The match="p[1]"

rule only matches first p children of text nodes. The rest is handled by
the match="p" rule. Thus, both rules recieve some of the p nodes, and both
must be present in the flow graph. We can conclude that the priority override
filter seems to work well. Apart from this, every apply-templates selection
produces some flow into other template rules. The value-of instructions
do not result in recursion, so they have no part in the flow graph. We shall
claim that the flow analysis has completely exposed the flow of node types
for template instantiation in the news transformation.

An illustration of the output summary graph generated for the news
example can be found in Appendix A.1. The automatically output summary
graph can not be fit into a page, but the illustration in the appendix has
been manually constructed from the automatically generated output. The
major difference is that the selection fragments have been made much more
compact. Also, the illustration has been made so that it resembles the flow
graph illustration closely. This should make the transition from flow graph
to summary graph clear.

To test that the generated output summary graph really represents the
output of the transformations, we can try infusing errors in the transfor-
mation. Inserting an element1 anywhere in the transformation, pro-
duces a “sub-element ’li’ (http://www.w3.org/1999/xhtml) of element ’body’

1li elements describe list items in XHTML. The element is allowed as child only of
ul, ol, menu, and dir elements.

5.3 Precision 97

(http://www.w3.org/1999/xhtml) not declared” error. Thus, all the tem-
plate rules must be represented in the summary graph. Also, removing the
required element title under the head element gives us the following er-
ror: “contents of element ’head’ (http://www.w3.org/1999/xhtml) does not
match declaration”. A number of other errors such as invalid elements or
attributes can be infused as well, producing suitable error messages, and a
visual inspection of the summary graph does not reveal any problems. We
conclude that the summary graph must be describing all possible output of
the news transformation, and apparently precisely enough to statically guar-
antee output validity of the transformation.

Recall that one of our goals was to be able to analyze the general identity
transformation. This has been achieved to the extent possible under our
limited floating attribute handling in the implementation. What this means
is that running our analysis on the identity transformation inevitably fails on
required attributes in the output schema. Basically, every attribute in the
input DTD is constructed with an attribute instruction (representing the
simplified form of the copy instruction). Each of these attribute instructions
are contained in a separate template rule, and do therefore not have a parent
in the same template in the output summary graph. The result is that none
of the attributes are represented in the output summary graph, and every
attribute required to be present without having a default value, is therefore
responsible for a spurious error report. However, this is solely an effect of
our inadequate implementation. The analysis design itself would be able to
recognize the attributes.

The flow graph for the identity run on the news DTD can be found in Ap-
pendix A.2. Recall that copy instructions are replaced by apply-templates

instructions in separate modes in the simplification phase. In this case, the
mode is auto_0_copy. The auto_0_copy templates take care of copying the
given node, as well as contain the contents of the original copy instruction,
which in this case means a simple recursion on all children and attributes.

An interesting example of how our analysis exposes the structure of the
output, on a fragment of the ontopia2xtm.xsl transformation, can be found
in Appendix A.3.

Practical examples

Let us now examine on a more general level, how the analysis performs on
the various examples gathered from independent sources. Each example has
been run, and the error reports closely examined and categorized, except
for the two biggest examples: xhtml2fo.xsl, and xmlspec.xsl. These two
produced too many errors to go through in detail. We have also left out the
error reports resulting from the inadequate floating attribute handling of our
implementation, though only two such errors occurred in the independent

98 Experimentation and Interpretation

Example Correct Errors Spurious Errors

poem.xsl 2 0
AffordableSupplies.xsl 2 0
agenda.xsl 2 0
news.xsl 0 0
CreateInvoice.xsl 4 2
adressebog.xsl 2 0
order.xsl 0 0
slideshow.xsl 12 1
psicode-links.xsl 20 0
ontopia2xtm.xsl 0 6
proc-def.xsl 6 1
email_list.xsl 3 0
tip.xsl 1 1
window.xsl 0 22
dsd2-html.xsl 0 0

identity.xsl, news.dtd 0 0
identity.xsl, fo.dtd 0 0

Table 5.2: The number of errors generated in the analysis of each example. Errors
resulting from the lacking analysis of floating attributes have been ignored.

examples. Table 5.2 shows the number of correct and spurious errors on
each of the example transformations. The correct errors are those that were
determined to describe actual inconsistencies with output validity, while the
spurious errors are those that were determined not to be a problem in actual
executions of the transformation.

In the particular case of the dsd2-html.xsl example, a lot of the input
data to the transformation is defined in additional namespaces not described
in the DTD schema for DSD 2.0. Thus, the result of the analysis is an output
validity guarantee, given that the input to the transformation conforms to
the official DSD 2.0 specification.

Correct Error Reports

To our satisfaction—as the table in Table 5.2 shows—a considerable amount
of errors were found in the example transformations analyzed. The errors
found range over a number of different kinds of errors:

• Misplaced elements, such as link elements occurring outside the XHTML
header, where they are required to be.

• Undefined elements, attributes, and attribute values.

• Missing elements or attributes. A typical missing attribute already
mentioned is the alt attribute of img elements in XHTML, and also
the title element in the XHTML header, as well as the header itself,
has been seen missing.

5.3 Precision 99

• Empty content where it is not allowed. Not unexpectedly, a typical
example is empty lists in XHTML. The list elements of XHTML, such
as ul and ol, require at least one list item element li, but it is often
the case that such lists can in fact become empty. This error was
also observed and worked around in the JWIG project. They simply
remove empty lists from the output, which is convenient when using
the language. XSLT does no such thing though, so the empty lists are
output validity errors.

• Wrong namespaces. The ability to catch these errors arise from our
usage of the DSD 2.0 analysis package, and surprisingly one of the ex-
ample transformations turned out to contain a number of these errors:
psicode-links.xsl. They all come from copying elements directly
over from the input, without realizing that—in the given case—the
namespace has to be changed as well.

• ...

Most of the errors found are easily identified and corrected. However, some
of them are more tricky, such as the “sub-element ’li’ of element ’body’ not
declared” error in the proc-def.xsl transformation. The construction of
the body element is quite complex, and the li element in question occurs at
a recursion depth of four template instantiations inside each other. It turns
out that the template rule generating the li element appears twice in the
transformation document, with the exact same signature: <xsl:template

match="execlist/proc">. This clearly indicates that something is amiss,
since two equally suitable matches on a selected node at runtime is an error,
according to the XSLT specification. Such errors are not the focus of this
project though.

Spurious Error Reports

The spurious errors describe invalid output that can in fact never occur at
runtime. The frequency of these errors can be said to measure the precision
of our analysis. At first glance, there seems to be an awful lot of spurious
errors in the examples analyzed. The main focus of our analysis have been
on exposing the structure of documents, and as we shall see, the spurious
errors coming from inadequate structural analysis are sparse. The rest of
the errors are a testament to the fact that analysis of structure alone is not
quite enough. It seems that strings must be analyzed more carefully than
we have done.
The spurious errors found in the examples can be categorized as follows:

Spurious Error Category Number of Errors

Inadequate Structural Analysis 3
Inadequate String Analysis 30

100 Experimentation and Interpretation

As can be seen, there are three spurious error reports with a structural na-
ture. The first of them is from the tip.xsl example. The error report
occurs because of inadequate summary graph construction for rhe selection
path "../analysis". In our analysis, this selection results in the worst-case
selection fragment expressing “arbitrary order and cardinality”, but inspect-
ing the input DTD reveals that this selection will in fact always yield exactly
one element. Unfortunately, this knowledge is required in order to satisfy the
output DTD requirements of at least one child element in the given situation.

The issue in this particular case could easily be handled by “walking
the selection path” on the input DTD and observing the cardinality in each
step. However, precisely analyzing upwards paths in general is not quite that
easy, as several different node types can be selected in each step. But again:
Our analysis could easily be extended to handle the simpler upwards selec-
tions such as the one causing a spurious error report in the tip.xsl example.

Regarding the last two spurious errors of structural category, they are
both located in the CreateInvoice.xsl example transformation, and they
both stem from selections of the type "//a". Before considering how to han-
dle such selections, we note that they are in fact entirely unnecessary in this
particular example transformation. All the "//a" selections in
CreateInvoice.xsl could be replaced with simple child selections like "a",
without loss. Nevertheless, such selections do occur regularly, and could end
up resulting in spurious error reports less easily avoided.

Selections of the form "//a" represent simply any a elements in the docu-
ment, and they can be modeled by inserting a summary graph fragment rep-
resenting the entire structure of the DTD, much like the individual content
models are handled in our analysis. However, such fragments can become
very large, and some minimization will be essential so as to not blow up the
size of the summary graph considerably.

As shown in the error categorization table above, the rest of the spurious
errors are a consequence of inadequate analysis of string-values in the trans-
formations. Some of these errors come from copying the value of an input
attribute over to an output attribute. If these both are of type NMTOKEN for
example, then only name-characters can occur, and the value of the output
naturally must always be valid. Our analysis is unaware of the difference
in character sets, and models the output attribute value as any string. But
this includes all charaters, and is not always an NMTOKEN. Also, an attribute
constructed as id={generate-id(...)} will always be of type ID, but again
the analysis will model it as any string even though the output may allow
only ID values. Handling such simple cases as described here would avoid
many of the spurious errors found in our example set, and would thus greatly
benefit our output validation analysis.

There are however some string related errors which would be much harder

5.4 Performance 101

to handle. In particular, one of the spurious errors in ontopia2xtm.xsl

is part of a template calling mechanism where a tokenized attribute value
(IDREFS to be specific) is split up with the XPath expression "substring-
after($n_topicRefs,’ ’)", and a template instantiation called for each
token. Constructs like this, will be inherently difficult to analyze. But we
can note that the analysis could in fact easily be made to validate the trans-
formation by removing a superfluous if instruction, so in case the author
of the transformation wished to achieve static output validity guarantees,
he could still easily get them here by performing small modifications in the
transformation.

Conclusions

Summing up, our analysis seems to do well with exposing the structure of
output, but insufficient string handling result in some amount of spurious
error reports. This is an area that can be improved on, and it ought to
be possible to avoid most of the spurious errors found here with little effort.
Overall, the analysis seems to do well with exposing errors in practical XSLT
stylesheets.

5.4 Performance

An important aspect of practical usefulness of our analysis is that it performs
well enough to be used in day-to-day development of XSLT. In order to test
the performance of our analysis, we have measured the execution time for the
analysis on each of our examples from Table 5.1. The results can be found
in Table 5.3, together with the number of nodes and edges (in that order)
in the constructed flow and summary graphs. The tests were performed on
a 3 GHz Pentium 4, with 1 GB RAM, running Linux. Each of the main
phases, i.e. the flow analysis, summary graph construction, and summary
graph inclusion analysis, were timed individually. The total time measures
all aspects of the analysis, including loading the files from disk, simplifying
the transformation and so on.

As the table shows, most of the smaller examples are executed within
a few seconds, which can only be said to be satisfactory. However, the
performance does seem to worsen quite a bit with the larger transforma-
tions. But—as the identity transformation runs illustrate well—the size of
the transformation is not the only important factor on the performance.
Note that the identity runs are sorted by the size of the DTDs in number
of lines, but apparently the number of lines far from reflect on the execu-
tion times. The picture becomes much clearer if we examine the number of
elements and attributes in each DTD as depicted in Table 5.4. Especially
the number of attributes in each DTD differ quite a bit, and the number

10
2

E
x
p
er

im
en

ta
ti
on

an
d

In
te

rp
re

ta
ti
on

Example XFG Size SG Size Flow Analysis SG Construction SG Analysis Total

poem.xsl 10/16 37/58 0.221 sec 0.072 sec 0.046 sec 0.927 sec
AffordableSupplies.xsl 2/2 5/17 0.049 sec 0.045 sec 0.281 sec 1.066 sec
agenda.xsl 5/5 14/24 0.081 sec 0.059 sec 0.076 sec 0.825 sec
news.xsl 10/11 35/46 0.184 sec 0.075 sec 0.065 sec 0.918 sec
CreateInvoice.xsl 12/13 39/61 0.252 sec 0.112 sec 0.859 sec 1.773 sec
adressebog.xsl 10/23 180/232 0.187 sec 0.203 sec 0.316 sec 1.319 sec
order.xsl 10/21 73/100 0.257 sec 0.113 sec 0.158 sec 1.172 sec
slideshow.xsl 18/33 99/155 0.360 sec 0.138 sec 0.817 sec 2.108 sec
psicode-links.xsl 20/50 117/187 0.424 sec 0.153 sec 0.188 sec 1.454 sec
ontopia2xtm.xsl 37/45 140/178 0.336 sec 0.196 sec 0.826 sec 2.082 sec
proc-def.xsl 21/22 155/189 0.372 sec 0.186 sec 0.801 sec 2.102 sec
email_list.xsl 23/38 111/180 0.391 sec 0.176 sec 0.345 sec 1.693 sec
tip.xsl 42/71 209/283 0.691 sec 0.240 sec 0.282 sec 1.916 sec
window.xsl 45/55 182/333 0.407 sec 1.467 sec 3.017 sec 5.831 sec
dsd2-html.xsl 167/245 26,515/46,184 6.946 sec 15.224 sec 56.168 sec 79.553 sec
xhtml2fo.xsl 217/1,275 10,421/17,655 258.838 sec 6.428 sec 12.771 sec 279.774 sec
xmlspec.xsl 318/2,101 12,182/24,267 150.057 sec 6.959 sec 89.314 sec 247.691 sec

identity.xsl, news.dtd 9/10 67/90 0.155 sec 0.155 sec 0.118 sec 0.819 sec
identity.xsl, dsd2.dtd 9/10 1,200/2,653 0.439 sec 1.120 sec 1.408 sec 3.515 sec
identity.xsl, xhtml.dtd 9/10 10,144/15,966 14.455 sec 6.365 sec 3.398 sec 25.035 sec
identity.xsl, fo.dtd 9/10 44,802/45,742 581.491 sec 25.563 sec 7.318 sec 615.315 sec
identity.xsl, xmlspec.dtd 9/10 4,822/7,459 4.427 sec 3.511 sec 2.598 sec 11.351 sec

Table 5.3: Lists for each example: The sizes of the flow and summary graphs, the execution times of the individual phases (flow analysis,
summary graph construction, and summary graph inclusion analysis), and the total execution time.

5.4 Performance 103

DTD Lines Elements Attributes Unique Attribute Names

news.dtd 12 5 3 3
dsd2.dtd 104 40 33 15
xhtml.dtd 1,198 89 1,609 119
fo.dtd 1,480 56 10,972 334
xmlspec.dtd 2,561 162 563 56

Table 5.4: The number of elements and attributes in a selection of the DTDs.

of attributes appear to be quite independent of the number of lines in the
DTD document. This is a direct consequence of heavy use of entities in the
DTDs. When many elements share the same attribute definitions, they will
typically be specified in entities, and this can apparently blow up the number
of attributes greatly. This is taken to extreme hights in the fo.dtd schema.
The last column in the table shows the number of unique attribute names
in each DTD, and these numbers seem more in proportion with the size of
the schema.

The conclusion we draw from this discussion must be that it is impractical
to handle attributes on each element separately, as we have done in our
analysis (recall the A × E attribute set). One should perhaps focus more
on the number of distinct attribute definitions in the DTD. This would lie
much closer to the number of unique attribute names shown in Table 5.4,
and would avoid this blow up in numbers from entity use.

Examining the execution times in Table 5.3 in light of this realization,
offers a plausible explanation of why the flow analysis of xmlspec.xsl is
performed in almost half the time of the flow analysis for the xhtml2fo.xsl

example. While both the transformation and the DTD in the former example
is notably larger than the latter, the number of attributes in the xmlspec.dtd
DTD is about a third of the number of attributes in xhtml.dtd.

Where the input DTDs have great influence on the analysis execution, the
output schema size seems to be of little importance. Most of the examples—
small and large—are run with large output schemas without the execution
time being notably affected.

While testing our analysis, a potential problem in the summary graph
inclusion test was uncovered. When the content expressions for some el-
ement, constructed in the summary graph inclusion analysis, becomes too
large, the process of making the respective finite automaton deterministic
can take exponential time: a state is potentially produced for each possible
subset of the set of states in the non-deterministic automaton. It turns out
that the content expressions generated for output summary graphs for XSLT
transformations can become quite large, potentially resulting in a great slow
down of the summary graph inclusion analysis. However, in many cases,
these complex content expressions arise where the allowed children may oc-

104 Experimentation and Interpretation

cur in any order and cardinality (i.e. for output content models allowing
(n1 | n2 | · · · | nm)∗). In such cases, an exact content expression describing
order and cardinality of elements is completely unnecessary. All that needs
to be checked is, that only allowed node types occur. But, in the case of
a more complex output content model, we might have to try and recognize
the situation and approximate the content expression, in order to avoid the
heavy automaton determinization process. Fortunately, no such case oc-
curred in any of the examples we tested on.

One final consideration is the memory consumption of our analysis. The
consumption has been tested with the java profiling tool: JProfiler [34].
Among the three biggest of our example transformations, dsd2html con-
sumed the most memory. For this transformation, the maximum heap size
allocated by the Java virtual machine is 136 MBs. This is not a precise mea-
sure of the memory consumption of our analysis, due to the extra memory
required for the garbage collection to function. But it is a safe upper bound.
About a 13% of the memory is allocated in the initial loading phases and dur-
ing the flow analysis. The rest is spent in the summary graph construction.
Contemporary desktop machines typically have considerably more memory
than 136 MBs, so this seems acceptable. Note also that the xhtml2fo and
xmlspec examples consumed only 80 MBs and 64 MBs respectively.

5.5 Summary

We have implemented our summary graph technique and performed a num-
ber of experiments on XSLT transformations, most of which were written
independently of this project. The results indicate inadequate handling of
string values, but overall the analysis ought to be useful to XSLT developers.
Also the execution time and memory consumption of the analysis seems to
be reasonable.

6
Conclusions

At the end of our path, the question is: did we reach our goals? Did we solve
the problem we set out to solve? In this section, we shall evaluate our efforts
and results, and we shall try to establish how our results could be further
improved and built upon.

6.1 Evaluation

In recapitulation, we have designed a static output validation technique for
statically determining whether an XSLT 1.0 transformation always produces
valid output under a given input and output DTD. The analysis builds upon
an analysis of the flow of context nodes for template instantiations. This
flow analysis manifests itself as a flow graph, which is then used to construct
a summary graph, representing a conservative approximation of all possible
output of the transformation. Our summary graph model is a slight variation
over the summary graph abstraction of the JWIG and Xact projects. The
transformation can now be guaranteed to be output valid, if every unfold-
ing of the summary graph is valid under the given output DTD. This can
be determined by examining whether the contents of each element in the
summary graph will always fulfill the given content model and attribute list
of that element. If the transformation can not be determined to be output
valid we produce error reports, which should help the developer in locating
errors in the transformation.

Our intention with this project was to design and implement a static
analysis technique, which is able to guarantee output validity of XSLT 1.0

105

106 Conclusions

transformations. Recalling Section 3.4, our goal was for the analysis to be
practically useful by being: (1) precise, (2) fast, and (3) by being able to
handle most XSLT 1.0 transformations. The last requirement is fickle in the
sense that determining what “most XSLT 1.0 transformations” is, or similarly
what “practical XSLT” is, is not an easy task. However, we shall claim that
our analysis is able to handle at least a large part of practical XSLT. The
major obstacle in this matter is the use of multiple input documents. It shall
be no secret that a not insignificant part of the example transformations
gathered for our experimentation, were sorted out precisely because they
used multiple input documents. There is room for improvement on this issue,
but still, most examples remained and were part of our experimentation
described in the previous chapter.

Regarding the precision of our analysis, we determined on the one hand
that the flow analysis was able to expose the structure of template instanti-
ations in transformations quite precisely. On the other hand, we also found
out that our handling of strings, particularly in attribute values, were less
successful. But overall the analysis was able to detect a considerable amount
of errors in the example transformations, and it should be helpful in both
debugging transformations and in establishing output validity guarantees.

Finally, the performance results were quite good for most of the exam-
ples. However, a couple of situations were exposed, where the analysis can
suffer a notable performance hit. When entities are used in describing at-
tributes shared between many elements, the number of attributes we have
to handle in our analysis can become excessively large. This is an effect of
the way we represent attributes for each element separately. It should be
possible to eliminate this particular problem by treating attributes, which
are defined identically, as one. The other performance issue manifests itself
through unstable execution time of the summary graph inclusion analysis.
It is a direct consequence of the fact that determinizing the finite automata,
representing the content of some element in the output summary graph,
takes exponential time in the worst case. This is not easily handled, but can
in many cases be worked around by recognizing unnecessary determinization
operations. Perhaps other heuristics can be applied to further bring down
these performance fluctuations. Otherwise, we might have to approximate
away the troublesome content expressions.

Some additional conclusions can be drawn from our work, which might
be of interest. Firstly, the predicates in selections and match patterns ap-
parently have little influence on output validity under DTDs. No predicates
were involved in the error reports, spurious or correct, found during our ex-
perimentation. Almost the same can be said about the branch tests in if

and choose instructions, which we ignore entirely as well. They were only
observed being part of one of the spurious errors, and that was the most
complex of the string natured errors where a tokenized string is split up and

6.2 Contributions 107

recursed on. Thus, this area of our analysis does not seem to be needing
much improvement.

6.2 Contributions

The following contributions are made to the field of XML related research:

• A static analysis technique for determining output validity for XSLT
transformations, enabling debugging of XSLT transformations and, in
many cases, static guarantees of output validity under the given output
DTD.

• A flow analysis technique, which exposes the flow of context nodes for
template rule instantiation in XSLT transformations. This is used to
construct a summary graph describing all possible output of a trans-
formation.

• A variation over the summary graph model, and companion inclusion
analysis, with attributes as first class members of XML templates.
This is needed in order to model the complex attribute constructions
of XSLT.

• An implementation of the output validation analysis, which handles
most features of the analysis and successfully analyzes and finds er-
rors on XSLT transformations written independently of this project.
The implementation allows visual inspection of the flow and summary
graphs produced during the analysis.

• Experimental evidence, which indicates the practical usefulness of our
analysis technique in both locating errors in transformations, and in
establishing static guarantees of output validity.

• The outline of a simplification technique for reducing XSLT transfor-
mations to a more manageable form. The reduced form is described by
a short grammar, and it is this reduced form that our analysis operates
on.

• An extension of the DTD content models, which simplifies information
extraction from a DTD, when underlying the XPath data model.

• Two location path compatibility tests, which conservatively approxi-
mates whether a pair of location paths can select or accept the same
types of nodes. One test handles all the XPath axes to some degree.
The other test is limited to non-upwards axes, but it is more precise,
since it examines not only the node types, but also the paths used to
reach the nodes. These tests form the core of our flow analysis.

108 Conclusions

• A priority override test, which conservatively approximates whether
one template rule always overrides another for some selectable node
type. This test is also vital for the precision of our flow analysis.

• An algorithm for constructing finite automata, which describes all pos-
sible top-down paths acceptable by some location path. A companion
algorithm constructs an automaton describing all possible top-down
paths in a given DTD.

• Some data mining, which suggests how the XSLT language is used in
practise.

6.3 Future Work

Firstly, some direct improvements can be made on the analysis. In particular,
a more precise string analysis will greatly benefit the analysis. Also, multiple
namespaces in both input and output turned out to be often used. Coupling
input and output elements with namespaces should be enough to handle
this, and it should be incorporated easily in the analysis. However, such a
change requires namespace aware input and output schemas, ruling out the
DTDs. Lastly, the use of multiple input documents in a transformation is by
no means a rare occurrence. Handling multiple inputs in themselves is not a
big problem. It simply entails loading a schema for each input, and keeping
track of which data comes from which source. However, these extra inputs,
and fragments of them, are often handled through variables and parameters.
Thus it is likely that some extra attention in this area will be needed as well.

Recalling the discussion in Section 3.2, we note that multiple schemas for
a single data source, as explained, is easily handled by a separate run of the
analysis with each schema. We can now extend this to multiple schemas for
the output as well, simply by running the summary graph inclusion analysis
once for each output schema. If just one of the schemas validate the output,
then the transformation is output valid for the union of the output schemas.
However, the analysis time complexity will be blown up seriously, the more
schemas that have to be tested for both input and output. Especially so
in the presence of multiple document sources, as all combinations of input
schemas have to be considered. In such a scenario, it will perhaps be more
feasible to design a generalized schema model, which is closed under union,
and then analyze once with the unioned schemas instead.

One of the troubles working with XML and the Web is that all the tools,
languages, and standards are in constant evolution. Work on a successor to
XSLT 1.0 has been underway for some time. First as XSLT 1.1, and later
moving to XSLT 2.0. But also XML, XML Namespaces, and XPath, all of
which lay the foundation for XSLT, are moving on. This makes our results

6.3 Future Work 109

age rather quickly, but hopefully, most of our results will carry over, or at
least be of use to the next generation of standards.

One feature of XSLT 1.1/XSLT 2.0 that has already been adopted by
XSLT processors is the document construct, which allows multiple output
documents to be constructed. Thus, this feature already seems to be in use.
This feature should be easily incorporated into our analysis, by generating
an output summary graph for each output document. Other features of
XSLT 2.0, such as being able to further manipulate the results of template
instantiations, might not be as easily handled. XSLT 2.0 is turning into a
very different language.

While our analysis was developed specifically with static output valida-
tion of XSLT in mind, our results could perhaps be of use in other contexts.
The issue of optimization comes to mind. Inspecting the flow graphs gener-
ated by our analysis, there is often only a single possible target template rule
for each apply-templates selection, or at least a single target for each given
node type. This knowledge will enable an XSLT processor to completely
skip finding the target for such a selection node, if it is given that the input
to the transformation conforms to the input DTD. The only possible target
template is already known, and if the match expression is sufficiently simple,
it need not even be inspected. Such optimizations ought to improve runtime
performance considerably for XSLT processors. This is especially relevant
for transformations which are executed often, such as schemas presenting
XML data in XHTML format on some Web site. The analysis time has to
be worth the effort.

Our techniques and ideas might also be useful in analyzing other lan-
guages, such as XML-QL [31] and XQuery [9]. In particular, the summary
graph abstraction has now proven useful outside its original domain, so it
seems natural to try and apply it in yet other settings of XML manipulation.

Finally, it would be interesting to try and detect some of the flow errors
examined by Dong and Bailey [32]. With our more detailed flow analysis,
we should be able to do better.

A
Appendix

111

112 Appendix

A.1 Output Summary Graph for the News Trans-
formation

Below is a compact form of the summary graph constructed by our analysis,
for the news example of Figure 2.4.

<html>

<sg:apply/>

apply

apply

1 2 3

news

Comments
& PIs</html>

<sg:apply/>
...

...

+

?

ε

<sg:apply1/>

<sg:apply2/>
<sg:apply3/>

<sg:apply4/>
<hr/>

Den
Kl.

apply1 apply2 apply3 apply4

1

item

headline

@2 @3 2

text@date @time

<sg:valueof/> <sg:valueof/>

ANY ANY

valueofvalueof

<sg:valueof/>

<sg:apply/>

<sg:valueof/>

ANY

valueof ANY

valueof

+

apply

<sg:valueof/><sg:valueof/>
<p>

</p>

ANY

valueof

ANY

valueof

+

?

ε

A.2 Flow Graph for General Identity on the News DTD 113

A.2 Flow Graph for General Identity on the News
DTD

The flow graph constructed by our analysis on the general identity transfor-
mation of Figure 3.1 with input conforming to the news DTD of Figure 2.2
can be illustrated as follows:

0.5
"/"

{[root]}

auto_0_copy
0.5
"/"

{[root]}

{[root]}->{[root]}

-0.5
"child::node()"

{item,[comment],text,
[pcdata],news,p,

[pi],headline}

auto_0_copy
-0.25

"child::*"
{item,text,news,

p,headline}

{headline}->{headline}
{news}->{news}
{item}->{item}
{p}->{p}
{text}->{text}

auto_0_copy
-0.5

"child::text()"
{[pcdata]}

{[pcdata]}->{[pcdata]}

auto_0_copy
-0.5

"child::comment()"
{[comment]}

{[comment]}->{[comment]}

auto_0_copy
0.0

"child::processing-instruction()"
{[pi]}

{[pi]}->{[pi]}

-0.5
"attribute::node()"

{date(item),category(item),time(item)}

auto_0_copy
-0.25

"attribute::*"
{date(item),category(item),time(item)}

{category(item)}->{category(item)}
{time(item)}->{time(item)}
{date(item)}->{date(item)}

{[root]}->{[comment],news,[pi]}

1.1

{p,headline}->{[comment],[pcdata],[pi]}
{news}->{item,[comment],[pi]}
{item}->{[comment],text,[pi],
 headline}
{text}->{[comment],p,[pi]}

1.1

{item}->{date(item),category(item),time(item)}

1.2

Initial
Selection

114 Appendix

A.3 A Fragment of the ontopia2xtm.xsl Example

Here we present a good example of how our static output validation ex-
poses the structure of the output of a transformation. The fragments are
taken from the ontopia2xtm.xsl example, and the transformation code is
annotated with small type expressions, representing the content expression
which the summary graph inclusion test will extract for the association

element. A content expression is determined for each XSLT instruction un-
der the association element, as well as for the two template rules which
take part in the description of the content. The final content expression
becomes ((instanceOf | instanceOf), scope?,member+), which it should
be clear is included in the content model for the association element:
(instanceOf?, scope?,member+). Thus, our analysis correctly produces no
content errors on this element.

Note that the floating attributes give rise to another content expression,
which we have left out for simplicity. It is not hard to see that the two
attribute instructions in the fragment below will result in the expression
(@id | @id), which is legal under the output DTD. Although our implemen-
tation is unable to recognize this, it will not produce a spurious error, since
the id attribute is only optional.

From the input DTD:

<!ELEMENT assoc (assocrl+)

<!ATTLIST assoc

linktype CDATA #IMPLIED

scope IDREFS #IMPLIED

type IDREF #REQUIRED>

From the output DTD:

<!ELEMENT association (instanceOf?,scope?,member+)

<!ATTLIST association id ID #IMPLIED>

From the transformation itself:

<xsl:template match="assoc">

<association>

<xsl:choose> ->()

<xsl:when test="@id">

<xsl:attribute name="id">

<xsl:value-of select="@id"/>

</xsl:attribute>

</xsl:when>

<xsl:otherwise>

<xsl:attribute name="id">

<xsl:value-of select="generate-id(.)"/>

</xsl:attribute>

</xsl:otherwise>

</xsl:choose>

<xsl:apply-templates select="@type"/> ->(instanceOf | instanceOf)

<xsl:apply-templates select="@scope"/> ->(scope?)

<xsl:for-each select="assocrl"> ->(member+)

<member>

A.3 A Fragment of the ontopia2xtm.xsl Example 115

<xsl:apply-templates select="@id"/>

<xsl:apply-templates select="@type" mode="roleSpec"/>

<topicRef href="#{@href}"/>

</member>

</xsl:for-each>

</association>

</xsl:template>

<xsl:template match="@type|@role"> ->(instanceOf | instanceOf)

<xsl:choose>

<xsl:when test="contains(.,’:’) or contains(.,’.’) or contains(.,’\’) or contains(.,’/’)">

<instanceOf><subjectIndicatorRef href="{.}"/></instanceOf>

</xsl:when>

<xsl:otherwise>

<instanceOf><topicRef href="#{.}"/></instanceOf>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

<xsl:template match="@scope"> ->(scope)

<scope>

<xsl:call-template name="topicRefSplit">

<xsl:with-param name="topicRefs" select="."/>

</xsl:call-template>

</scope>

</xsl:template>

References

[1] Sharon Adler et al. Extensible Stylesheet Language (XSL) version 1.0,
October 2001. W3C Recommendation.
http://www.w3.org/TR/2001/REC-xsl-20011015/.

[2] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu.
XML with data values: Typechecking revisited. In Symposium on
Principles of Database Systems, 2001.

[3] Altova. xmlspy, 2004. http://www.xmlspy.com/.

[4] Amazon.com. Amazon Web Services.
http://www.amazon.com/gp/browse.html/102-7542609-2813756?node=3435361,
2002.

[5] Philippe Audebaud and Kristoffer Rose. Stylesheet validation.
Technical Report RR2000-37, ENS-Lyon, November 2000.

[6] Jonny Axelsson et al. XHTML 2.0, May 2003. W3C Working Draft.
http://www.w3.org/TR/2003/WD-xhtml2-20030506/.

[7] Eric Bae and James Bailey. Codex: An approach for debugging XSLT
transformations. In Proc. 4th International Conference on Web
Information Systems Engineering (WISE), 2003.

[8] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce:
An XML-centric general-purpose language. In Proc. 8th ACM
SIGPLAN International Conference on Functional Programming,
ICFP ’03, pages 51–63, August 2003.

[9] Scott Boag et al. XQuery 1.0: An XML query language, November
2003. W3C Working Draft.
http://www.w3.org/TR/2003/WD-xquery-20031112/.

[10] Bert Bos, Håkon Wium Lie, Chris Lilley, and Ian Jacobs. Cascading
style sheets, level 2, CSS2 specification, May 1998. W3C
Recommendation. http://www.w3.org/TR/1998/REC-CSS2-19980512/.

[11] Ronald Bourret, John Cowan, Ingo Macherius, and Simon St. Laurent.
Document definition markup language (DDML) specification, version
1.0, January 1999. W3C Note. http://www.w3.org/TR/NOTE-ddml.

117

118 REFERENCES

[12] Linda Boyer, Peter Danielsen, Jim Ferrans, Gerald Karam, David
Ladd, Bruce Lucas, and Kenneth Rehor. Voice eXtensible Markup
Language, version 1.0, May 2000. W3C Note.
http://www.w3.org/TR/voicexml/.

[13] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Static
validation of dynamically generated HTML. In Proc. ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, PASTE ’01, pages 221–231, June 2001.

[14] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The
<bigwig> project. ACM Transactions on Internet Technology,
2(2):79–114, 2002.

[15] Tim Bray, Charles Frankston, and Ashok Malhotra. Document
content description for XML, July 1998. W3C Note.
http://www.w3.org/TR/NOTE-dcd.

[16] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in
XML, January 1999. W3C Recommendation.
http://www.w3.org/TR/1999/REC-xml-names-19990114/.

[17] Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin.
Namespaces in XML 1.1, February 2004. W3C Recommendation.
http://www.w3.org/TR/2004/REC-xml-names11-20040204/.

[18] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and
François Yergeau. Extensible Markup Language (XML) 1.0 (third
edition), February 2004. W3C Recommendation.
http://www.w3.org/TR/2004/REC-xml-20040204/.

[19] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François
Yergeau, and John Cowan. Extensible Markup Language (XML) 1.1,
February 2004. W3C Recommendation.
http://www.w3.org/TR/2004/REC-xml11-20040204/.

[20] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach.
Static analysis for dynamic XML. Technical Report RS-02-24, BRICS,
May 2002. Presented at Programming Language Technologies for
XML, PLAN-X, October 2002.

[21] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach.
Extending Java for high-level Web service construction. ACM
Transactions on Programming Languages and Systems, 25(6):814–875,
November 2003.

[22] Christian Classics Ethereal Library. Theological markup language
(thml), 2004. http://www.ccel.org/ThML/.

REFERENCES 119

[23] James Clark. XSL Transformations (XSLT) version 1.0, November
1999. W3C Recommendation.
http://www.w3.org/TR/1999/REC-xslt-19991116.

[24] James Clark. TREX – tree regular expressions for XML, February
2001. http://www.thaiopensource.com/trex/spec.html.

[25] James Clark and Steve DeRose. XML path language version 1.0,
November 1999. W3C Recommendation.
http://www.w3.org/TR/1999/REC-xpath-19991116.

[26] James Clark and Makoto Murata. RELAX NG specification,
December 2001. OASIS.
http://www.oasis-open.org/committees/relax-ng/.

[27] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree automata techniques and
applications, 1999. Available from
http://www.grappa.univ-lille3.fr/tata/.

[28] John Cowan and Richard Tobin. XML Information Set (second
edition), February 2004. W3C Recommendation.
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/.

[29] Andrew Davidson et al. Schema for object-oriented XML 2.0, July
1999. W3C Note. http://www.w3.org/TR/NOTE-SOX/.

[30] Steve DeRose, Eve Maler, and David Orchard. XML linking language
(XLink) version 1.0, June 2001. W3C Recommendation.
http://www.w3.org/TR/2001/REC-xlink-20010627/.

[31] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan
Suciu. A query language for XML. In Proc. 8th International World
Wide Web Conference, WWW8, 1999.

[32] Ce Dong and James Bailey. Static analysis of XSLT programs. In
Proc. 15th Australasian Database Conference (ADC), January 2004.

[33] Denise Draper et al. XQuery 1.0 and XPath 2.0 formal semantics,
February 2004. W3C Working Draft.
http://www.w3.org/TR/xquery-semantics/.

[34] ej-technologies. JProfiler, 2004.
http://www.ej-technologies.com/products/jprofiler/overview.html.

[35] John Ellson et al. Graphviz - open source graph drawing software,
2004. http://www.research.att.com/sw/tools/graphviz/.

120 REFERENCES

[36] J. English. Tcl manual markup language (TMML), 2002.
http://tmml.sourceforge.net/index.html.

[37] Jon Ferraiolo et al. Scalable vector graphics (svg) 1.1 specification,
January 2003. W3C Recommendation.
http://www.w3.org/TR/2003/REC-SVG11-20030114/.

[38] Google. Google Web APIs (beta), 2004. http://www.google.com/apis/.

[39] Paul Grosso, Eve Maler, Jonathan Marsh, and Norman Walsh.
XPointer framework, March 2003. W3C Recommendation.
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/.

[40] Haruo Hosoya and Makoto Murata. Boolean operations and inclusion
test for attribute-element constraints. In Proc. 8th International
Conference on Implementation and Application of Automata,
CIAA ’03, volume 2759 of LNCS, pages 201–212. Springer-Verlag,
2003.

[41] Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed
XML processing language. ACM Transactions on Internet Technology,
3(2), 2003.

[42] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular
expression types for XML. In Proc. 6th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’00, pages 11–22,
September 2000. Also in SIGPLAN Notices 35(9) (2000).

[43] Keith Isdale, Justin Fletcher, and Igor Zlatkovic. xsldbg, 2004.
http://xsldbg.sourceforge.net/.

[44] Masayasu ISHIKAWA. HyperText Markup Language (HTML) home
page, 2004. http://www.w3.org/MarkUp/.

[45] Sushant Jain, Ratul Mahajan, and Dan Suciu. Translating XSLT
programs to efficient SQL queries. In Proc. 11th International
Conference on World Wide Web, pages 616–626. ACM Press, 2002.

[46] Rick Jelliffe. The Schematron: An XML structure validation language
using patterns in trees, 1999.
http://www.ascc.net/xml/resource/schematron/schematron.html.

[47] Jiri Jirat. Zvon XSLTracer.
http://www.zvon.org/xxl/XSLTracer/Output/introduction.html.

[48] Michael Kay. XSL Transformations (XSLT) version 2.0, November
2003. W3C Working Draft.
http://www.w3.org/TR/2003/WD-xslt20-20031112/.

REFERENCES 121

[49] Michael H. Kay. SAXON DTDGenerator. Available at
http://users.breathe.com/mhkay/saxon/dtdgen.html.

[50] Stephan Kepser. A proof of the Turing-completeness of XSLT and
XQuery. Technical report, SFB 441, University of Tübingen, 2002.

[51] Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach.
Static analysis of XML transformations in Java. IEEE Transactions
on Software Engineering, 30(3):181–192, March 2004.

[52] Andrew Layman et al. XML-Data, January 1998. W3C Note.
http://www.w3.org/TR/1998/NOTE-XML-data/.

[53] Dongwon Lee and Wesley W. Chu. Comparative analysis of six XML
schema languages. SIGMOD Record (ACM Special Interest Group on
Management of Data), 29(3):76–87, 2000.

[54] Håkon Wium Lie and Bert Bos. Cascading Style Sheets, level 1,
December 1996. W3C Recommendation. Revised January 1999.
http://www.w3.org/TR/1999/REC-CSS1-19990111.

[55] MarrowSoft. Xselerator XSL Editor and Debugger, 2004.
http://www.vbxml.com/xselerator/.

[56] Jonathan Marsh and David Orchard. XML Inclusions (XInclude)
version 1.0, April 2004. W3C Candidate Recommendation.
http://www.w3.org/TR/2004/CR-xinclude-20040413/.

[57] Wim Martens and Frank Neven. Typechecking top-down uniform
unranked tree transducers. In 9th International Conference on
Database Theory, volume 2572 of LNCS. Springer-Verlag, January
2003.

[58] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML
transformers. Journal of Computer and System Sciences, 66, February
2002. Special Issue on PODS ’00, Elsevier.

[59] Mehryar Mohri and Mark-Jan Nederhof. Robustness in Language and
Speech Technology, chapter 9: Regular Approximation of Context-Free
Grammars through Transformation. Kluwer Academic Publishers,
2001.

[60] Anders Møller. Document Structure Description 2.0, December 2002.
BRICS, Department of Computer Science, University of Aarhus, Notes
Series NS-02-7. Available at http://www.brics.dk/DSD/.

[61] Peter Murray-Rust and Henry Rzepa. The site for chemical markup
language, March 2004. http://www.xml-cml.org/.

122 REFERENCES

[62] Frank Neven. Automata theory for XML researchers. ACM SIGMOD
Record, 31(3), 2002.

[63] OASIS. OASIS DocBook TC.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=docbook.

[64] Yannis Papakonstantinou and Victor Vianu. DTD Inference for Views
of XML Data. In Proc. 19th ACM SIGACT-SIGMOD-SIGART Symp.
on Principles of Database Systems, PODS ’00, pages 35–46, Dallas,
Texas, May 2000.

[65] Steven Pemberton et al. XHTML 1.0 The Extensible HyperText
Markup Language (second edition), January 2000. W3C
Recommendation. Revised 1 August 2002.
http://www.w3.org/TR/2002/REC-xhtml1-20020801/.

[66] Thomas Perst and Helmut Seidl. A type-safe macro system for XML.
In Proc. Extreme Markup Languages, August 2002.

[67] Benjamin C. Pierce et al. The Xtatic project: Native XML processing
for C#, 2004. http://www.cis.upenn.edu/˜bcpierce/xtatic/.

[68] Ovidiu Predescu and Tony Addyman. XSLT-process.
http://xslt-process.sourceforge.net/.

[69] Dave Raggett. Assertion grammars.
http://www.w3.org/People/Raggett/dtdgen/Docs/, May 1999.

[70] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01
specification, December 1999. W3C Recommendation.
http://www.w3.org/TR/1999/REC-html401-19991224/.

[71] H. G. Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society,
74:358–366, 1953.

[72] Chris Stefano. XSLDebugger, 2004.
http://www.vbxml.com/xsldebugger/.

[73] Joint Technical Comittee ISO/IEC JTC1/SC18/WG8, Information
technology. ISO/IEC 10744:1997: Information technology —
Hypermedia/Time-based Structuring Language (HyTime).
International Organization for Standardization, 1997. Second Edition.

[74] Joint Technical Comittee ISO/IEC JTC1/SC34, Information
technology. ISO/IEC 8879:1986: Information processing — Text and
office systems — Standard Generalized Markup Language (SGML).
International Organization for Standardization, 1986.

REFERENCES 123

[75] Joint Technical Comittee ISO/IEC JTC1/SC34, Information
technology. ISO/IEC 10179:1996(E): Information technology —
Processing languages — Document Style Semantics and Specification
Language (DSSSL). International Organization for Standardization,
1996.

[76] TEI Consortium. The TEI website, 2004. http://www.tei-c.org/.

[77] The Unicode Consortium. The Unicode Standard, Version 4.0.
Addison Wesley, 2003.
http://www.unicode.org/versions/Unicode4.0.1/.

[78] Henry S. Thompson, David Beech, Murray Maloney, and Noah
Mendelsohn. XML Schema part 1: Structures, May 2001. W3C
Recommendation.
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.

[79] Akihiko Tozawa. Towards static type checking for XSLT. In Proc.
ACM Symposium on Document Engineering, DocEng ’01, November
2001.

[80] Eric van der Vlist et al. Examplotron, 2003. http://examplotron.org/.

[81] Lionel Villard and Nabil Layaïda. iXSLT: An incremental XSLT
transformation processor for XML document manipulation, 2001.

[82] WAP Forum. Wireless Markup Language, version 2.0, September
2001. Wireless Application Protocol Forum. Available from
http://www.wapforum.org/.

[83] Lauren Wood et al. Document Object Model (DOM) Level 1
specification version 1.0, October 1998. W3C Recommendation.
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/.

[84] World Wide Web Consortium. W3C technical reports and
publications, http://www.w3.org/TR/.

