Practical type-safe XSLT 2.0 stylesheet authoring

Sgren Kuula

6th December 2006

Contents

1 Abstract

2 Contributions

I The Scene

3 THE XSLT SCENE

4 XSLT AUTHORING PROBLEMS

5 (GOALS AND RESTRICTIONS

II XML Technologies

6 XML SCHEMA LANGUAGES

7 XML INFOSET

8 XQUERY 1.0 AND XPATH 2.0 DATA MODEL (XDM)

9 XSLT2

10 XSLT2 AND STATIC ANALYSIS

IIT XSLT flow analysis

11 DEFINITIONS AND RESTRICTIONS

12 STYLESHEET SIMPLIFICATION

11

17

21

21

40

40

46

52

53

53

55

13 FLOW ANALYSIS 68

IV Flow graph applications 112
14 XSLT VALIDATION 112
15 EVALUATION OF VALIDATION 126
16 CODE-ASSIST ALGORITHMS 134
V Conclusion 142
17 SOME RESULTS 142
18 DEMONSTRATOR APPLICATION 143
1 Abstract

In computer programming, strict data typing is well known to safeguard against a large
class of common errors, and statically verifying compilers advance the time of awareness
of even more errors. XML documents can also be formally typed, and recently it has been
demonstrated that sound although not complete static validation of XSLT transforms against
specified input and output type descriptions (DTDs) is feasible.

The purpose of this work is to show that static validation of XSLT can be brought to the
same utility in practical XSLT authoring work as that of statically validating compilers and
code-assisting integrated development environments in application programming. The work
extends upon previous work on static XSLT validation, refining the method towards meeting
the requirements identified in a real (as opposed to purely academic) XSLT development
situation: Real-time performance, confidence-building analytic precision, and operability with
the standards that are believed to become dominant in the near future: W3C XML Schema
and XSLT 2.0.

We further investigate some simpler static analysis algorithms for XSLT, and examine how
they can be used for advancing the time of error awareness in practical XSLT authoring,
helping to shorten development time.

Finally, we present a demonstrator application framework for experimentation with static

analysis enhanced XSLT authoring tools, and we evaluate the algorithms presented using a
set of real stylesheets.

2 Contributions

e A proof-of-concept demonstration that XSLT 2.0 (XSLT2) validation and on-line code
assist tools can feasibly be integrated into a development environment, like in the well-
known IDEs for several other programming languages

e An extension of the only known practical XSLT validation algorithm, to

Work with W3C XML Schema as the input/output document type definition
language, including:
*x Extending the basic algorithm from working with local-type regular tree lan-
guages to single-type (as opposed to simply using a local-type approximation)
* Finely modeling the XML Schema data types, providing precise validation
also for data

— Work with the nontrivial new features in XSLT?2

Perform fast enough for on-line use in an editor; much faster than the previous
algorithm, despite an increase in overall complexity

Provably retain at least the precision of the known algorithm

e A solid, extensive (about 40k lines) quality software framework for XSLT2 simplifica-
tion, analysis and validation

e A technique for statically approximating the result of template recursion on variables
in XSLT2

e A single-pass, fast XSLT2 stylesheet simplification technique
e A dead code and empty-selection detection algorithm for XSLT2

e An algorithm for detecting templates in XSLT2 that never output data, neither directly
or via other templates

e An algorithm detecting unused input schema declarations, for a slightly restricted vari-
ant of XSLT2. This can serve as a basis for a filter generator, helping reduce input tree
size.

T ppihy- e s Jee e e e I NETT
£ G0 I DT el RaThar e ML 5
cpAEris < el e
il PP N E 0 aT = TR RIT ERERT
e H
CE W AT 1 T R [it
< gl — < JrdsiEEis

i I
| awininat | ElmFﬂEll.'
et =i e L T T P B T
SLEEmR -~ e, Mk | rToR1aEd. ITUmET SEmeT [s
o il e e LY s nladig e -5
4 ErarREpor mEror e L4 -
£ Grd e atpen="Ti b, } Fedivea) dor g ang J 6 peeriabo et) res oerCes nophes Nenne- srtara femnd L -irensnional 107 38 310
< rease simald child<imessages-
o« W G s | P i 0 LS T e) G
I-: EEmET e W ey W orgl LSS0 e mEi e srgine Sl ihenvefoomspisnpiipasne Aes iregurpee Arpl el ramisp el
< ETI
-« EFTOr aopn= T |hame fdon gl ang o et afe el fresogroes inples Destmi-schema fetviml L-iran s fion - FEQT 27
o (ol 5 S) ST R il o e
< ERETI Ok nAme =L fEd AR e
= el D = RE e w T arg s L aerinsia® angen =S e airegl En g mee i e r e T Tl e r-m:pnr_r-in
=)
] IFl

I

LRzl

| Resead schemas || (g it IEthm Sinigle- | ||-||1“ #isim. & Tow [#Con. =V,

Figure 1: The exploratory application has found and highlighted a validation error in a
stylesheet/schema combination. In the version shown, errors are presented in raw XML back-end
format. About 50.000 lines of code went into the work, of which about 5000 are now legacy code,
and 5000 were one-time experiments. The code is separable as stylesheet simplifier, XPath2 parser
and expression model, flow analyzer, validation translator and UI.

A command line front end, and even a Web-based validator exist; the latter at

http://dongfang.dk/xslv/xslv.html

Part I

The Scene

3 THE XSLT SCENE

XML is probably only challenged by HTML, ASCII and English in being the best known
language on the Web, and as its specification’s 10 year anniversary closes in, few computer
application domains remain with if not several competing, then least one XML language to
contain their data and exchanges: XML has made its way into everything from legal court
filings to hog farming, and there seems to be nothing end to that trend any time soon.

Some XML applications have evolved into entities of their own: News agencies broadcast in
RSS; librarians categorize in MARC, typesetters typeset in FO and web services talk SOAP. A
name and a schema defining an XML application’s language, and some organization designing
and managing them make them the lingua franca of the Web. Besides these standardization
applications, XML is easy to use for almost any data representation: Opposite SGML, its
predecessor, an XML application does not even need to be specified by a schema, and being
self-describing, XML serves as the syntactic container of countless structured languages,
replacing small languages of the old school that each had its own structure — if defined at
all — down to the lexical level.

An example of an XML document, holding structured data on a company’s salespeople and
customers is in Figure 2.

The XML language is merely syntax; any structure fitting a tree with labeled nodes can be
described in XML. As [27] put it, “... these XML-related standards seem quite poor: The
basic layer of the specifications just regulates the encoding of arbitrarily formed trees”. There
must be some way of telling what makes up an XML application, and how to decide whether
a document is of the right kind or not. Schemas are that, as formal descriptions that are both
human- and machine readable, specifying a subset of the XML-encoded trees that belong to
a particular XML application. Schema validation is the process of determining automatically
whether an XML document is valid with respect to a schema,; if it is in the language specified
by the schema. A schema for our sales report example application appears in Figure 4.

Structured data often needs to be converted to other structured data: Data querying is a part
of that, so are the mechanics that enable separation of data representation and presentation
and a large part of data interchanges on the Web. With structured data represented in
XML, it becomes immediate to skip the distinction between the structured data proper with
versus its XML representation, and just regard the task an XML to XML transformation:
A language for this purpose, XSLT, was developed with Web data presentation layering in
mind, and has been a World Wide Web Consortium (W3C) Recommendation since 1999.
Today, its Version 1 is the most popular XML to XML transformation language, and Version
2 (XSLT2) is at the Candidate Recommendation stage, soon to replace Version 1.

<sales xmlns="http://www.example.com">
<spersons>
<sperson teamcolor="ff1010">
<name>Amy</name>
<email>mailto:am@exa.com</email>
<sales>
<customer>barco</customer>
<amount>34</amount>
<customer>bozinc</customer>
<amount>44</amount>
</sales>
</sperson>
<sperson teamcolor="10ff10">
<name>Bertha</name>
<email>mailto:be@exa.com</email>
<sales>
<customer>barco</customer>
<amount>54</amount>
<customer>bozinc</customer>
<amount>64</amount>

</sales>
</sperson>
</spersons>

<customers>
<customer id="barco">
<name>The Bar Company</name>
<homepage>www.bar.com</homepage>
<contact>
<name>Bar the Barbarian</name>
<email>mailto:bar@bar.com</email>
</contact>
</customer>
<customer id="bozinc'">
<name>Frobozz Magic</name>
<homepage>
http://www.frobozz.zork</homepage>
</customer>
</customers>
</sales>

Figure 2: An example XML document: A file of salespersons and customers. Amy and Bertha both
have made sales to both customers on file; the customer for each sale precedes the amount. Details

of the customer sold to is in a customer element inside
The name sales is used in two different meanings he

the customers element, identified by the id.
re; one being the complete sales report, the

other a list of each salesperson’s sales. The customer name is also used both for holding details of a
customer and for referring to the holder from elsewhere.

- Sales Scoreboard -

SP: Amy

The Bar Company

34

Frobozz Magic 44

SP: Bertha

The Bar Company

54

Frobozz Magic €4

Figure 3: An XHTML rendering of the sales report, as done by the transform in Figure 5.

<schema
xmlns="http://www.w3.o0rg/2001/XMLSchema"
targetNamespace="http://www.example.com"
xmlns:foo="http://www.example.com"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<element name="sales">
<complexType>
<sequence>
<element name="spersons">
<complexType>
<sequence>
<element name="sperson"
type="foo:SPerson"
minOccurs="1"/>
</sequence>
</complexType>
</element>
<element name="customers">
<complexType>
<sequence>
<element ref="foo:customer"
minOccurs="0"/>
</sequence>
</complexType>
</element> </sequence>
</complexType> </element>

<element name="customer">
<complexType>
<all>
<element name="name"
type="string"/>
<element name="homepage"
type="anyURI"/>
<element name="contact"
type="foo:Person"/>
</all>
<attribute name="id" use=
"required" type="string"/>

Figure 4: Example sales report schema, written in XML Schema.

</complexType>

</element>

<complexType name="Person">

<sequence>
<element name="name" type="string"/>
<element name="email" type="anyURI"/>
</sequence>

</complexType>

<simpleType name="TeamColor">
<restriction base="string">
<enumeration value="ff1010"/>
<enumeration value="10ff10"/>
<enumeration value="1010ff"/>
</restriction>
</simpleType>

<complexType name="SPerson'>

<complexContent>
<extension base="foo:Person'">
<sequence>
<element name="sales">
<complexType>

<sequence minOccurs="1"
maxOccurs="unbounded">
<element name="customer"
type="string"/>
<element name="amount"
type="integer"/>
</sequence>
</complexType>
</element>
</sequence>
<attribute name="teamcolor"
use="required" type="foo:TeamColor"/>
</extension>
</complexContent>
</complexType>
</schema>

Elements named sales and

customer are declared twice each, reflecting the different uses of them in instance documents. Team
colors could arguably have been defined more readably, and a referential constraint enforcing that a
customer with the right id exists for each sales would have improved the design, but it has been

omitted.

<xsl:stylesheet version="1.0"
xmlns:xsl=
"http://wuw.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ex="http://www.example.com">

<!-- rl: document element -->
<xsl:template match="/ex:sales">
<html>

<head><title>Sales Report</title>

</head>
<body>
<xsl:apply-templates
select="ex:spersons"/>

</body> </html>

</xsl:template>

<!-- r2: the sperson matches -->
<xsl:template match="ex:spersons'">
- Sales Scoreboard -
<xsl:apply-templates/>
</xsl:template>

<!-- r3: Color table in team color -->
<xsl:template match="Qteamcolor">
<xsl:choose>
<!-- red color too ugly; change it -->

<xsl:when test=". = ££1010°">

#££1212</xsl:when>
<xsl:otherwise>
<xsl:value-of
select="concat (’#>,.)"/>

</xsl:otherwise> </xsl:choose>

</xsl:template>

<!-- r4: Individual salespersons -->
<xsl:template match="ex:sperson'">
<xsl:apply-templates select="ex:name"/>
<table>
<xsl:attribute name="bgcolor">
<xsl:apply-templates
select="@teamcolor"/>
</xsl:attribute>

<xsl:apply-templates select="ex:sales"/>

</table>
</xsl:template>

<!-- r5: Name of salesperson -->
<xsl:template
match="ex:sperson/ex:name">
<h2>SP:
<xsl:value-of select="text()"/></h2>
</xsl:template>

<!-- r6: Other names -->
<xsl:template match="ex:name">
<a>
<!-- use contact mail if available -->
<xsl:choose>
<xsl:when test="../ex:contact">
<xsl:apply-templates
select="../ex:contact"/>
<xsl:value-of select="../ex:name"/>
</xsl:when>
<xsl:otherwise>
<!-- otherwise use the homepage -->
<xsl:attribute name="href">
<xsl:value-of

select="../ex:homepage"/>
</xsl:attribute>
<xsl:value-of select="."/>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<!-- r7: contacts’ email -->

<xsl:template match="ex:contact">
<xsl:attribute name="href">
<xsl:value-of select="ex:email"/>
</xsl:attribute>

</xsl:template>

<!-- r8: sales(2) elements -->
<xsl:template match="ex:sales'">
<xsl:for-each select="ex:customer">
<tr>
<td>
<!-- customers in sales elements -->
<xsl:apply-templates select="."/>
</td>
<xsl:apply-templates select=
"following-sibling: :ex:amount [1]"/>
</tr>
</xsl:for-each>
</xsl:template>

<!-- r9: match customer in sales -->

<xsl:template match="ex:sales/ex:customer">

<xsl:variable name="id" select="."/>

<xsl:apply-templates select=
"//ex:customers/ex:customer [@id=\$id] /ex:name" />

</xsl:template>

<!-- r10: render the amount as a proportional length horz rule -->
<xsl:template match="ex:amount'>

<td><hr align="left" width="{text()}"/><xsl:value-of select="."/></td>
</xsl:template>

</xsl:stylesheet>

Figure 5: Example XSLT transform producing the output in Figure 6 from the XML in Figure 2.
Basically, the input document is processed by the XSLT transformer first finding a template matching
its root (r1). The template is then invoked with the root node as its context item, causing non-XSLT
elements to be copied to a result tree, and XSLT instructions (the XSLT elements inside templates)
to be evaluated. Any apply-templates instruction selects a sequence of nodes relative to the context
item, then matches each against the other templates and recurses to the one offering the best match,
this time with a selected node as the context item.

This structural traversal of the input tree and outputting of nodes to a result tree goes on until all
selected nodes have been processed.

<?xml version="1.0"7>
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:ex="http://www.example.com">
<head> <title>Sales Report</title> </head>
<body> - Sales Scoreboard -
<h2>SP: Amy</h2>
<table bgcolor="#££1010">
<tr> <td>The Bar Company</td>
<td><hr align="left" width="34"/>34</td> </tr>
<tr> <td>Frobozz Magic</td>
<td><hr align="left" width="44"/>44</td> </tr> </table>
<h2>SP: Bertha</h2>
<table bgcolor="#10f£10">
<tr> <td>The Bar Company</td>
<td><hr align="left" width="54"/>54</td> </tr>
<tr> <td>Frobozz Magic</td>
<td><hr align="left" width="64"/>64</td> </tr> </table>
</body>
</html>

Figure 6: XHTML output of the transform in Figure 5, run on the XML in Figure 2 and whitespace-
edited. This rendered to Figure 3 in a browser.

10

Suppose somebody wants a translation of the sales report to HTML, making the sales report
readable in a Web browser. The example XSLT transform in Figure 5 does that. The
transform it not a particularly pretty piece of code (but please accept for the sake of the
argument that it ended up that way); one may wonder if it works at all? Whether it always
works? Or whether it really produces good HTML (actually, XML HTML; XHTML) code?

XSLT1, itself an XML application, has long proved its worth as an universal expert tool in
XML transformation, but it has several limitations:

e The language is inherently difficult to understand for most non-expert developers, al-
though it seems that its expressiveness was targeted “just right”; not ridiculously strong
for the purposes for which it is used, and usually strong enough not to be given up in
complex cases.

e Type safety and type checkers can safeguard against a large class of programming errors:
Those occurring when a data value of some kind becomes input of a computation that
does not work with that kind of data. Strongly typed languages use type systems and
static analysis to make a proof prior to run-time that this situation will never happen;
if the proof cannot be made, the program will be rejected for execution, with an error
message telling where in the program a problem was found.

On the XML/XSLT scene, XML is the data, schemas define types and XSLT transforms
describe programs, but in the present situation, although schemas may be at hand,
XSLT developers do not have a practical static type checker to guarantee that their
transformation output will conform to a given schema.

e Integrated development environments that support an enhanced view of code as more
than just text exist for several programming languages. Several boast on-line syntactic
and semantic verifiers that help programmers correct errors earlier in the process. XSLT
currently lags behind on the tooling scene:

— Most XML editors will do basic XML syntax checks and maybe schema validation,
and some of the more advanced development environments for XML and XSLT
provide an abstracted view of the transform, with a debugger and some analysis
tools added.

— However, the full power of on-line code validity checking and type checking algo-
rithms that have proven extremely helpful to users of IDEs for other programming

languages, such as IntilliJ, eclipse and Microsoft Visual Studio! is currently lacking
for XSLT.

4 XSLT AUTHORING PROBLEMS

We first examine which problems seem to be the most prevalent in practical XSLT authoring,
and what has been done to solve them.

!Bordering on forming habits: Some people get dependent on features like automatic highlighting of errors
caused by edits elsewhere!

11

4.1 THE sTATIC XSLT VALIDITY PROBLEM

The static XSLT validity problem is: Given an XSLT transformation T" and the XML schemas
Diny Doy, does it hold that the transformation, when run on any document which is valid
with respect to Dy, will produce a result that is valid with respect to Dyy:??

The solution of this problem is interesting for several reasons:

Safety: Many programs and services accepting input in the form of XML documents have a
well-defined behavior for documents that are valid with respect to a particular schema,
but not for documents that are not. If using XSLT to generate such documents, it is
desirable to know whether all of the documents are schema-valid.

Performance: If a static validity guarantee exists, then any schema validation for ensuring
XSLT output validity can be removed, and with that the need to consider what should
be done if schema validation fails. Programs that use output of the XSLT need not
implement input validation, or have any error handling for schema-invalid input.

The static XSLT validation problem has been the subject of a great deal of research: It is
nowhere near easy. The full XSLT language is Turing complete®, meaning (Rice’s Theorem)
that it is impossible to soundly and completely prove any interesting property, such as validity,
about XSLT stylesheets.

Researchers have taken two different approaches around this problem: Either restricting to
non-Turing-complete sublanguages of XSLT, and proving decidability for those, or sacrificing
decidability and make do with estimates.

EXACT SOLUTIONS FOR TOY SUBLANGUAGES

Milo et al.[19] were among the first to formulate exact validation, which they called type-
checking, for a fragment of XSLT. Their analysis is based upon modeling the transform as
a k-pebble transducer, and the input and output schema as the regular tree languages that
we will also use. They then argue that the straightforward solution, namely finding the im-
age of the transform represented by the transformer is not possible, because generally, the
transform image is not a regular tree language and can thus not be checked for inclusion in
the output regular tree language. Instead, they invert the transform and map the output
language to a regular tree language. If that language is then a superlanguage of the input
schema’s language — inclusion for regular tree languages is decidable — then the image of
the input language is sure to be contained in the output language.

Unfortunately, their approach is not very practical, applying only to a subset of XSLT that is
so small that any such stylesheet might as well be inspected by hand. The time complexity of

2This extends, without any challenge, to multiple input and output schemas.
3[16]. There even exists a universal Turing machine implemented in XSLT, at
http://wuw.unidex.com/turing/utm.htm

12

the algorithm is hyperexponential, making validity only theoretically decidable. Tozawa|25]
improved the time complexity of this to exponential, but the object XSLT sublanguage
remained small.

APPROXIMATE SOLUTIONS

[11] provide the ground work for some early static analysis on XSLT: Not validation, but
analysis of other interesting properties of XSLT stylesheets under an assumption that XML
input is valid wrt. a given schema. They used an approach of modeling XSLT stylesheets as
graphs, and evaluating expressions that affect control flow abstractly, not over XML nodes
but over their schema declarations. As a result, they were able to determine roughly which
parts of a stylesheet can pass control to which parts, and, particularly interesting, which
control flows seem to exist by a look at the stylesheet alone, but are always absent when
processing XML documents that are valid with respect to a particular schema.

To a large extent, an approximative solution for the static XSLT validation problem has been
found, by [23] and [20] of the University of Aarhus.

Their approach relies on a fized point flow analysis on the XSLT code, given an input schema’s
constraints, followed by the construction of a summary graph, generating a superlanguage of
the language that the transform may output. The summary graph is finally validated against
an output schema using an algorithm from a different project, resulting in either a message
that the output is always contained in the language of the output schema, or a list of error
messages. The analysis is incomplete, meaning that the result is an estimate and is sometimes
wrong, but also sound, meaning that the approximation is always to the side of reporting too
many errors: A stylesheet that may sometimes produce invalid output is never passed as one
that will not, but the converse, spurious errors, sometimes happens.

The algorithm is targeted at practical XSLT, and it was demonstrated to work with a set
of real-world XSLT stylesheets and schemas, with a reasonable number of spurious errors.
However, it is limited to working only with Version 1 of XSLT, and only with XML’s rather
primitive built-in schema language, DTD. It also makes rather rough approximations at
places.

We will use this algorithm is the basis of our work, extending and improving it in several
aspects to work in an on-line editing, next-generation XSLT context, and adding new sub-
algorithms and data extractors to it.

4.2 XSLT USABILITY PROBLEMS

Two mini-surveys were conducted, to get an idea of which aspects in which the most practical
problems with XSL development are encountered and how these problems can be met.

13

Zz P
%ysis H design H impl. Hdepl oyment
N——

Figure 7: The sorry reality of software development: Development of any nontrivial software is a trip
down a windy and bumpy road. Situations are believed to be understood, design decisions are made,
and code is implemented. Often, setbacks occur: Situations are found to be different than at first
thought, and things need to be re-analyzed and redesigned. Software is rarely completed without
setbacks, but the smaller and the earlier, the less expensive.

DEVELOPER INTERVIEWS

A local company, using XSLT extensively in its production, agreed to participate in inter-
views. The company, Stibo, is in the publishing business, and receive very large XML docu-
ments from customers; one developer task is to write transforms that convert these into an
in-house XML language. The in-house XML, usually representing product catalogs, is then
processed (indexing, pagination etc.) and transformed to a third XML format for delivery
back to the customer.

Developers had little concern for schema validity of the result of their transforms, as they
were very well acquainted with the in-house schema, and almost always got correctness right
by careful consideration when the transform was written, or by simply saying that their
output was right, adapting their in-house tools down the pipeline to accept it. They used
specialized XML editing tools like XML Spy together with common text editors for authoring
transforms in XSLT1, and Xalan-j on dedicated 4 GB servers for executing them. With very
large documents, a run could take more than a day to complete.

This process of ad-hoc recoding and little or no use of schemas seems very typical for the
use of XML formats and XSLT in off-the-Web settings. Delivery and return schemas, when
available, always were given as “hand-downs”, directly from a customer with no possibility of
alterations.

With recurring experiences of transforms of very large documents* failing after hours of
execution, either because memory had run out, or because an invalid piece of transform code
was finally triggered, Stibo were very interested in any tool that could enhance time and
memory performance of XSLT, helping to relieve out-of-memory failures, and shortening the
time before other failures eventually happen. The developers were especially intrigued by the
idea of a tool that, on the basis of an input schema and an XSLT stylesheet, could generate a
pre-transform in some faster transform language, removing unused subtrees from input XML
trees.

Stibo’s developers were not aware of STX or other high-performance streaming transformer technologies
would apply to their work. It seems that they will generally not, as keys (a feature incompatible with
streaming) was often used.

14

%ysisH design |—= impl. }ebeploy}menﬁ/
k

Figure 8: A wrong path can have been followed, and errors and omissions can have followed along
a development process all the way from basic analysis and design; not getting aware of that until
after deployment is bad quality management. Static analysis, integrated into standard development
tooling, can automatically detect many erroneous situations through design and implementation,
helping increase quality and saving last-minute repairs.

INTERNET FORUMS

Another survey was made in the comp.text.xml newsgroup on Usenet: The newsgroup is
a forum for general XML questions and answers. Questions related to XSLT were isolated,
and divided into rough categories. The result is in Table 1.

OBSCURITY OF CONTROL FLOW

For the uninitiated, and even for the advanced XSL developer, probably the hardest problem
in analyzing an existing XSL transform is to comprehend the possible control flow of the
transform: Which templates may pass control to which, and in which context??

Common XSLT debuggers can visualize the control flow for a transform of a single instance
document, and so can can the well-known “hack” of adding some text in templates for trace-
ability. These approaches, however, require that an input instance input is available to test
with, and it can be a time-consuming affair to come up with one that will trigger exactly the

5 Anyone disagreeing is encouraged to download W3C’s latest xmlspec XML Schema and to-XHTML XSLT
stylesheet (or pick the files from the project programs, at test/resources/triples/xmlspec), and try to figure
how it works.

OPs problem Count
Describing a desired transformation, requesting complete solution 12
Related to XSLT whitespace handling 3
Related to XML namespaces in XSLT and XPath 2
How to select [nodes with some property| in XPath 19
How to collect all [nodes with some property| in a group 6
Meaning and context dependency of position() and [n] 2
Related to other XPath functions 3
Other XSLT problems 10
XSLT related, not problems 13

Table 1: Three months of XSLT-related threads on the comp.lang.xml Usenet newsgroup, divided
into rough categories.

15

situation to be checked for, write it, and step through the debugger to the stage of interest.
Debuggers give no clue what the template control flow may be for other documents than the
specific one used in the debugging session, and complex debugging sessions can be easy to
lose overview of. Code repair made after debugging also tends to be bad, often introduc-
ing “special cases” and complicating the structure of the code further. On the other hand,
debuggers are valuable for inspection of value computations.

Static analysis of XSL, where the input schema is taken into account (and even where it is not)
is particularly suited as a basis for a tool computing and visualizing the possible control flow
between templates. Ultimately, a static analysis based tool could give the stylesheet author
the debugging insight of “all instances at the same time”, it could save him the trouble of
writing debugging instances. Probably the most important benefit is: It can help advancing
much of the awareness of the real (as opposed to what the developer had imagined) control
flow in a stylesheet from test time to edit time, and awareness of errors from deployment time
to test time, which, for a sufficiently fast analysis, could be the same as edit time.

In design rather than analysis work, we contend that a static, on-line flow visualizer built into
an editor can significantly shorten the cycle time of trial and error development, by updating
displayed feedback immediately, instead of the usual “edit-save-try” cycle. The first category
of our comp.text.xml survey indicates that XSLT design is difficult, at least for the beginner,
or maybe that XSLT authors generally are lazy. The latter would contrast with other Usenet
computer programming groups, where people rarely ask for complete solutions.

OBSCURITY OF XPATH

One reoccurring problem, partially linked with the control flow problem, is the comprehen-
sion of XSLT’s expression language, XPath, with an evaluation model that is little used
elsewhere. [26] has written a whole research paper trying to make a sensible meaning out
of the way XPath patterns (a restricted kind of expressions) were defined in a draft of the
XSLT Recommendation, and did not neglect to mock other semanticists for publishing code
libraries for the same purpose on a misunderstood foundation®.

A more practical problem with XPath is the rather confusing way that XML namespaces
are referred to from within expressions: Here, an on-line tool displaying roughly what each
expression may select would be really useful.

XPath generation tools exist now in several XML IDEs, enabling point-and-click assembly of
basic XPath expressions, but their expressiveness is rather limited.

The Usenet survey speaks for hardness of XPath, too: Questions about how to construct
XPath expressions were the most asked of all XSLT questions.

6See [26], p. 10, on [Wallace and Runmican].

16

UNDERSTANDING FUNCTIONAL PROGRAMMING

XSLT is designed over a functional paradigm, with structural template recursion, and vari-
ables that are assignable only at the beginning of stylesheet or template invocation. Learning
to master the tricks of the functional programming trade has to be overcome by the program-
mer, no matter what. Anyway, with the loose, structural matching of patterns, a flowgrapher
tool of course is a help.

4.3 EXISTING XSLT TOOLS

Altova’s XML Spy 7 is probably the best known XML-specialized editor today. It features
XSLT editing under on-line tool tip guidance, and different abstracted views on stylesheets.
Schema-aware XSLT2.0 editing, debugging and transformation is now supported, but trans-
formations apparently only work from within the IDE. It also boasts the “usual” XPathl and
XPath2 point-and-click prototypical expression generators and an XPath evaluator, but no
static analysis features.

StyleVision, also from Altova, features generation of XSLT code for a fixed selection of output
languages, and random XML input.

Stylus Studio® has about the same features as XML Spy, with a couple of interesting additions:
An XSLT profiler, and a data-oriented debugger that will back-map, at a mouse click on some
XSLT output, to the XSLT instruction that created it. Like XML Spy, Stylus Studio has
schema-supported code views and completion and a dynamic debugger, but no static analysis,
much less validation.

5 (GOALS AND RESTRICTIONS

We base our proposal for a tool improving the XSLT authoring scene simply on:

e What we believe will be useful in a practical type-safe XSLT 2.0 authoring context
e What we found to be possible, based on extending the [23] algorithm
and disregard considerations about general features that are not related to the algorithm,

and about general usability: Although all this certainly is important for the success of a
computer tool, it is not a central subject of this work.

"http://www.altova.com/products_ide.html/
Shttp://www.stylusstudio.com/

17

5.1 PROPOSAL — AN ON-LINE ANALYZING XSLT EDITOR

The algorithm by [23]/[20] will do basic validation of practical XSLT, and some data extrac-
tion can easily be added.

Summarizing the problems in practical development of reliable XSLT that we will try counter
by building tools for them:

e Find (on-line, during edit) errors that make some transformation results become invalid
wrt. to the output schema.

e Illustrate flows of control and nodes between templates (on-line, during edit).

e Illustrate apparently plausible, but nonexistent flows (on-line, during edit). This is
complementary with the above.

e Detect XPath node selection expressions that never select or match anything.

e Detect dead code, and detect control flows that never reach anything contributing to
output.

e Boost performance: Generate pre-transforms in a streaming transformation language,
cutting away data that is never used by the main transform.

The list of other niceties to include in the ultimate XSLT tool has no end: XSLT generators
generating XSLTs for a set of prototype input and output documents (there are infinitely
many solutions for each case), XSLT compilers that compile faster XSLT processors for one
input language and one transform — or a compiler compiler, generating processors for one
input language, any transform. Output schema inference engines for input schemas and
transforms, or the other way around, also would be nice to have; so would a transform class
analyzer, that could translate part of all of a transform to a simpler and faster transformation
language. All this falls beyond the intended scope of this project.

REQUIREMENTS FOR A PRACTICAL TOOL
There are some basic requirements for a tool to be appreciated and used at all:
1. It must be applicable for real-world tasks. For our XSLT tool, that means that the

tool:

e Must work with the XSLT Version 2.0 language

e Must work with the most widely used schema languages
2. It must appear to be of more help than trouble:

e It must be able to actually mitigate at least some of the user’s doubts and concerns.

18

e It must perform well, without annoying sluggishness.
e It must deliver easily understandable results.

e It must not force the user to think of everything in a new and different way?.
3. It must be able to compete with its alternatives. For the XSLT setting, they are:

e Debuggers

e Manual trial runs

The overall problem of this work is to show that it is feasible to construct a practical tool,
integrated into an editor, that fulfills all this.

Although XML DTD[5] is surprisingly capable of describing most of the schemas used!?,
is can be predicted to become gradually phased out'!. A large number of proposals for
stronger XML schema languages have emerged. Of these, W3C’s XML Schema Description
(XSD: [1]]2] and [3]) and OASIS’ Relax NGJ[4] have become the most widely used, with XML
Schema, as the officially endorsed W3C Recommendation.

Because the XSLT language is now facing a transition from Version 1 to Version 2, we believe
that the claim will only hold if XSLT2 is supported. Also, since the most widely schema
language in the foreseeable future seems to be the World Wide Web Consortium’s (W3C)
XML Schema'?, and since XSLT2 itself to some extent depends on XML Schema, we will
extend the [23] static XSLT validation algorithm to work with that schema language.

5.2 GOALS

The core claim is that the [23] static validation algorithm can be extended to:

e Work with XSLT 2.0

e Work with XML Schema, without approximating the type systems for structures, and
with only very few approximations of data types

9Many problems have a brilliant solution that is based upon redefining the problem entirely, but that
approach is not very marketable: People are not generally not willing to relearn.

°Tn a survey by [10], 85% of all valid XML Schema’s examined were of a language class that could as well
have been expressed in DTD, leading to the question whether the better expressiveness of XML Schema is
generally not needed, not understood, or both. We hope that the answer is “not yet understood”.

"Even if XML application designers should for the most part not need a very strong language class, they
will be needing namespace support for interoperability, and many applications will undoubtedly be designed
to work with some of the XSD-specified mainstream data format application like that of Microsoft Office.

121t is not easy say anything definitive about the future, and the future schema situation in particular.
Certainly, most XML developers see DTD as being too limited, and its weakness of not supporting namespaces
as severe. XML Schema is the official Recommendation from the organization that defines XML, but it is
under fire from many critics for being too complicated compared to its expressiveness, and for not being
completely well-defined. However, in practical XML use, it appears to be very popular, and almost all
business and industry standards that include a XML schema use W3C XML Schema.

19

Performance

. Precision

Applicability

Figure 9: We improve the existing XSLT validation algorithm in three dimensions: Its application
area (to XSLT2 and XML Schema), its precision and its performance.
e Perform acceptably in time and memory, even for large stylesheets and large schemas.

e Apart from validity, also supply other valuable, nontrivial input schema-sensitive code-
assist information.

We will seek to show this, and:

e Develop a exploratory XSLT editor application, demonstrating that the technique is
practical.

e Perform, analyze and evaluate test runs on real stylesheets.

e For features which are not in common use yet, construct test cases.

5.3 NON-GOALS
Explicit non-goals are:

e A formal proof of the correctness of our approach

e A complete tutorial in all the technologies involved: The reader is assumed to know
basic XML, XML DTD and XSLT1. XML Schema, XSLT Version 2 changes and XPath
Version 2 are introduced briefly, though.

e A complete production-quality XSLT editor implementation.

e Detailed consideration of every aspect of every feature of the languages involved.

20

5.4 STRUCTURE

The rest of the work proceeds as follows: First, the most important technologies on the XML
and XSLT scene are briefly introduced, with some emphasis on XML Schema, since this
Recommendation is so hard to comprehend that we will try to capture its meaning in our
own framework, avoiding any reference to the formulations in the Recommendation. XML’s
own schema language, DTD, has also been included in the framework (and in the exploratory
application program), with a conceptual model that covers both. The reader is assumed to
know basic XML and XML Namespaces.

The largest section is dedicated to flow analysis, because a redesign of this was one of the most
important contributions of this work, and it was here some interesting new discoveries were
made: We have improved the best known flow algorithm significantly in all major aspects.

A section was devoted to following up on the different applications of the result of flow analysis
— first and foremost validation, and also all the smaller algorithms for editor enhancements.

Finally, we present evaluation data and a conclusion.

Part 11

XML Technologies

We start out by introducing the XML technologies and model used, and then present a unified
model of the two most widely used schema languages, DTD and XML Schema, providing the
necessary schema information for the central XSLT flow analysis algorithm presented next.

6 XML SCHEMA LANGUAGES

[W3C XML Schema] is one spec where your eyes will still twitch and your
head still go buzzZZZ even when you read it for the tenth time. Except
that you will no longer be surprised by surprises.

Dr. Michael Kay

Since XML is just a markup syntax for ordered, labeled and unranked trees with character
data, the different schema languages have one thing in common: They are representations of
some class of tree languages. Schema languages feature constraints on several aspects, some
going beyond tree languages:

e Structure of markup — determines the (tree) structure of instance document markup

21

e Sublanguages for data — determine the allowable data types for text and attribute
leaves in instance documents

e Constraints on integrity — specify referential or uniqueness constraints in instance
documents

e Other constraints, often called “business rules”

We will focus on the markup structure and data language aspects here, and ignore integrity
and other constraints entirely: Firstly, the former apply universally in XML, whereas the
latter are rarely used, and secondly, the latter are notoriously hard to analyze statically.

[22] provides a foundation for the definitions and properties of the regular tree languages
subset of tree languages. [21] is an early characterization of the most common schema classes,
along with closure properties and (non-static document) validation algorithms for them. The
article also suggests an interesting, powerful and efficient yet unexploited class of regular tree
languages called restrained-competition languages.

[18] gives a nice, brief analysis of the properties of some of the most popular schema languages
classes, and proposes an alternative characterization of restrained-competition languages,
one-pass pre-order typeability, based on the largest class that can be efficiently validated and
typed.

We will relate the findings of the above papers to the way in which we use them, introduce
a consistent terminology. Therefore, we will begin by analyzing the properties of DTD and
W3C XML Schema that will be useful later on, in tree language terms. Finally, we will
introduce definitions for a unified DTD and XML Schema model, also for later use.

In describing XML content in the following, we will ignore all other kinds of nodes than
elements. We will make up for that when re-introducing them later. This is not hands-
waving at inadequacies of the model with respect to “real” XML schema classes'® — using a
large enough hammer, all node kinds could be slammed into it — but as we shall see, it is
not necessary.

6.1 Y-TREES

We begin with a way expressing the structure of a tree, and identifying its nodes. Since we
are dealing with schemas, declaring a finite number of names, let ¥ be a finite alphabet of
names.

Let 7x. be the set of X-trees:

l. leaf: 0 € ¥ = 0 € Ty

13Well, almost. Because of its subtyping feature with xsi:type, XML Schema is only single-type if at-
tributes are considered. We will restrict the discussion for XML Schema by assuming no subtype substitution,
and repair later.

22

2. internal node: 0 € ¥ and t1,--- ,t, € Ty = o(t1, -+ ,tn) € Tx.

We do not need to distinguish between nodes and the subtrees they root.

Next comes the domain of a tree t € Ty, as a string of natural numbers:

Dom : Ty, — N*
Dom(t) = {e}uU {uli € {1,--- ,n},u € Dom(t;)}*

That is, the root node of ¢ is identified by the string e, the Dom applies recursively to each
child, and each child ¢;’s ordinal ¢ is prepended to all members of Dom(¢;). All children of
each node share a common prefix, and siblings each have a unique, 1-symbol suffix. In the
following, we will not distinguish between a node and its identifier string.

Each node has a name; for XML elements, it is just the element name:
name! : Dom(t) — ¥
The t qualifier in the function name indicates that it varies with each tree instance.

For each node u in a tree ¢, we may define its ancestor string: The string of names (recall that,
for our purpose, a name is a symbol in the alphabet ¥, not a string) encountered through a
descent from the root of ¢ to u:

anst : Dom(t) — ¥*
t e
anst(n) = { name’(e) ifn=ce¢

ans'(ng - - - 1y, _g).name’(n) otherwise

Complementary to ancestor strings, the child string of node v is the string of the names of
its children:

chst : Dom(t) — £*
chst(v) = name'(vl). - .namet(vn)

It should be easy to see that this is sufficient to describe the elements in XML trees.

6.2 TYPES AND STATES

Restricting from any Y-trees to trees in some tree language, need a way of describing the
permissible relationships between nodes, their names, and other nodes and their names. A
“tree automaton” perspective as by [22] and a “extended context-free grammar” perspective
by [21] both have in common that a state assignment is performed on the nodes of an instance
tree. The automaton perspective is easier to reason about formally:

23

TREE AUTOMATON PERSPECTIVE

Define an alphabet X' of states. A nondeterministic reqular tree automaton is a tuple
A=(X.%,4,F)

where X is as before, F' C Y/ is a set of final states, and § is a function from a node’s
(tentatively) assigned state and its name, to a regular expression over the permissible strings
over its child nodes’ assigned states:

§:% x ¥ — Reg(Y)

Now, if there exists a function A\, assigning states to all nodes:
A:Dom(t) — ¥/

so that for every node v with n children € Dom(¢):
A(wl) -+ Aon) € 6(A\(v), namet(v))

then the tree is accepted by the automaton. In some regular tree languages, there may be
more than one choice of A for the same tree.

Most XML schema languages express regular tree languages; reformulating the description
slightly in the following section, it becomes easier to see.

6.3 A CONTEXT-FREE GRAMMAR PERSPECTIVE

A slightly different perspective on regular tree languages uses extended context-free grammars
to define them:

G=(¥,%,8,P)

where Y’ and X are as in the automaton perspective, and are here called the nonterminals
and the terminals, respectively. The set of final states is now called S, the set of start
nonterminals, and the function 9§ is replaced by a set P of productions of the form ¢ — or,
where ¢ € ¥/, 0 € ¥ and r € Reg(Y'):

It can be assumed that there are no two productions in P with the same ¢ and ¢, like:
{ag— 01,0 =072} UPnore

since that pair of productions without loss of generality can be rewritten to
{g — a(rilr2)} U Prore

An interpretation of a tree ¢ against the grammar G is still a state (nonterminal) assignment

24

customers

21 customer |
sales spersons sales customers customer

| customer | 22
A

:jaspersonssperson 12 | sperson | | name | |h0mepage| | name | |homepage|
113 / A \ 211 212 221 222
| name | | email | Lsal&e || name | | email | | sdes J123 213

111 112 / f 121 122 / R\‘\Wname | | email |
: 2132

| customer | | amount | | customer | | amount | | customer | | amount | | customer | | amount |

1131 1132 1133 1134 1231 1232 1233 1234

Figure 10: A X-tree, with the label, domain and some ancestor strings written out. The tree is the
XML element tree of Figure 2.

Notice that ancestor strings do not uniquely identify nodes — for example, the name nodes of sales-
persons all have the same ancestor string. Domain labels are unique, though.

The tree is accepted by the grammar in Figure 11.

Y = {Sales', Spersons, Customers, Sperson, Customer', Name,
Email, Sales?, Customer?, Homepage, Contact, Amount}

Y = {sales,spersons, sperson, customers, customer,
name, email, homepage, contact, amount}

S = {Sales'}

P o=
Sales! u= sales Seq(Spersons, Customers),
Spersons = spersons Card(1,unbounded, Sperson),
Customers := customers Card(0,unbounded, Customer!),

Sperson = sperson Seq(Name, Email, Card(1, unbounded, Sales?)),
Customer! := customer All(Name, Homepage, Contact),

Sales? = sales Seq(Customer?, Amount),

Contact ;= contact Seq(Name, Email),

Name ;= name €,

Email = email €,

Homepage := homepage ¢,

Customer? := customer e,

Amount 1= amount €

}

Figure 11: A regular tree grammar, accepting the tree in Figure 10. With some effort, it can be seen
to be equivalent with the XML Schema in Figure 4 , still regarding only elements, and fixing the
choice of root element to sales.

25

A to each node, such that:
A : Dom(t) — X/, A(root(t)) € S

For each v € Dom(t) : There exists a production rule r € P :
A(v) — labt(v) r, such thatA(vl).--- A(vn) € L(r)

A tree t is generated by a grammar G, if there is an interpretation of ¢ against G.

6.4 REGULAR TREE LANGUAGES VS. SCHEMA DEFINITIONS

The automaton and the regular tree grammar perspectives are, of course, the same thing:
Each production ¢ — or can be translated to a d-mapping 6(q,0) = r, and for all absent
(q,0) pairs, § maps to (), and automaton definitions translate to grammars with the same
ease. If only considering structure!®, an XML document is valid with respect to a schema if
it is accepted by schema’s tree automaton cf. the schema’s grammar.

Both DTD and XML Schema are declarative, declaring elements, attributes and their content.
Declarations in these schema languages translate to automaton states, or nonterminals: They
apply to nodes of a certain name in a certain context, and they specify a set of acceptable
content sequences for each node. We call all declarations in a schema ¥4, and it will become
evident that this is just an extension of ¥'.

XML permits most, but not all characters in the Unicode alphabet: Let char be the produc-
tion production of the same name in [5|, and char® be any XML string.

Element content models — models of the allowed child element content of elements — are
regular in both DTD and XML Schema, and the regular expression language

M := Al (M™)
| Seq (M)
| Choice (M)
| Card (min,max, M)
| q ey
|

€
where min € Ny, and maxz € No U {unbounded} .

can describe the content models of both DTD and XML Schema (Card is cardinality, meaning
man - - - max repetitions. Text, comment and processing-instruction content has been left out,
and will be added later).

Both schema languages can have their attribute models adequately described with the lan-
guage

15 As opposed to also considering data values, referential constraints etc. expressed in the schema.

26

A = Required (¢ € Y,S € Reg(char))
\ Optional (¢ € ¥',S € Reg(char))
| Fixed (g € X.,s € char")

by associating a set of attribute uses, each with an A-description, with each element dec-
laration. In DTD and XML Schema, character data models are regular, or approximately
regular. Character data appear in attribute values, and in element content.

In XML Schema, the combined content, data and attribute models of an element declaration

is called a type, and to avoid confusion, we will also use the word with that meaning (even
for DTD).

We will use the term declared node type (DNT) for the nodes that are declared in declarations:
A DNT is a name associated with a type. Introduce the functions:

Cp Y — L(M)
Ad 2 Y — 22:,
Ap X — L(A)

and
D;:¥Y — Reg(char)

that return the content model for a node (for any other nodes than root and element nodes,
it returns ()), the set of declared attributes for elements ({) for non-elements), and a data
model, respectively.

The function m simply extracts the symbols mentioned in an M-expression!®:
m(ANM; M) = UL m(M)
m(S GQ(Ml - My)) = Uiy m(M;)
m(Choice(M; --- M,)) = Ui, m(M;)
0 if max =0
m(Card(min, maz,m’) = { m(m') otherwise
m(q € X) = {d}
m(0) = 0

the function Cj: Y — 2% returns the declared children of a DNT:
Ca(q) = m(Cm(q))
and the function Pp : &' — 2% returns the possible parent DN'Ts for a DNT:

Pi(q) ={d :q€Ca(d) | g€ An(d)}

18Card(.,0,.) may appear in a derivation by restriction.

27

6.5 DTDS AS REGULAR TREE LANGUAGES

A Document Type Definition(DTD) is (as far as elements are concerned) a list of element
declarations:

<!ELEMENT name content >

where content is an one-unambiguous regular expression over element names, declaring the
content with cardinality and order constraints. Alternatively, content is a list of element
names, headed by a special token #PCDATA, that only restricts the allowed names of child
elements (no restrictions apply on cardinality or order), and allows character data contents
interspersed between child elements. There is also an EMPTY token, allowing no content
at all, not even a comment or a processing instruction (these are otherwise allowed to appear
anywhere outside tags)'”, and an ALL token, that works like a #PCDATA with a list of
every declared element name.

It is only allowed to have one declaration for each element name in a DTD. Indeed, in DTD,
for any element node in an instance document, the only thing determining the allowed content
of the node is the name of the element node.

The effect of these state insensitive, local declarations of element contents is that the definition
of the corresponding tree automaton can be restricted: Since there is exactly one regular
expression over Y’ for each name in ¢/, we can do away with state assignment entirely, and
just use names:

dprp : ¥’ — Reg(X)

A validation run on a DTD-declared XML instance tree is, then, only a matter of checking,
for each node v, that:

chst(v) € éprp(namet(v))

6.6 W3C XML SCHEMA

An XML schema (XSD) instance consists of a number of schema documents, each containing
a number of schema components. A schema component is:

e A target namespace
e A number of declarations:

— FElement declarations associate element names with type definitions

" This seems overly strict, and was probably the result of a slip in the XML specification. [23] went a long
way to validate comments and processing instructions pedantically; we will be a little more relaxed on the
subject, not considering comment and processing instructions output in validation.

28

— Attribute declarations associate attribute names with type definitions

— QOther declarations that are not relevant in this treatment
e A number of definitions:

— Simple type definitions define data model types
— Complezx type definitions define content model and attribute model types

Model group definitions define (parts of) content models

— Attribute group definitions define sets of attribute declarations

Other definitions that are not relevant in this treatment
e A number of include/import/redefine references to other schema documents

e Some “helper” components (annotations, etc...)

Complex type definitions (still considering only element content) and model groups are com-
posed of:

e Sequence compositors, translating to the Seq nonterminal of our M-language
e Choice compositors, translating to the Choice nonterminal of our M-language
e Declarations, possibly as references, translating to symbols in ¥’

e Wildcards: any represents any element with any name and any content. It is to some
degree possible to limit the allowed namespaces of the represented elements.

e Cardinality ranges, two numbers minOccurs and maxOccurs may be applied to any of
the above. minQOccurs ranges from 0 to infinity, and maxOccurs from 0 to infinity, plus
the special value unbounded. These translate to the Card nonterminal of our M-language

e Model group references, referring to a model group (they can be expanded syntacti-
cally)!8

e Special All compositors, that represent any permutation of their contents. These are
heavily restricted to appear only directly under a type definition (after model group
expansion), and only contain declarations, and only with a cardinality from 0 to 1.
They translate to the All nonterminal of our M-language

For some reason or another, only compositors and not particles like declarations and wild-
cards, are acceptable as the outermost component of a model group or a complex type.

The names of element declarations, the names of attribute declarations, the names of type
definitions, the names of model group definitions and the names of attribute group definitions
all belong in distinct symbol spaces, preventing name conflicts between one kind and another.

8There is a nice way to handle them more elegantly: Considering them nonterminals without a terminal
in their production. In our implementation, they are just expanded syntactically, though.

29

attribute groups refer

contain, refer

refer simple types restrict
contal n, refer
extend
extend,
complex types)
restrict
A

contain, contain

refer
contain

contain

Figure 12: An attempt to sort out the confusing multitude of containment and reference structures
of XML Schema. Edges describe a relationship between the schema component at the tail of the
edge, and that at the head; for example, complex type definitions may extend simple type definitions.
compositors are sequence, choice and all. Notice the containment cycle through element decls,
complex types and compositors, permitting arbitrary nesting of those schema components.

Declarations and definitions may appear at different places:

e Globally, at top-level in a schema document, meaning that they are named and ac-
cessible throughout the schema. The name of a global declaration is the name of the
element or attribute it declares, and there may be at most one global declaration per
symbol space for any name. The name of a globally declared type has no semantic
significance. The namespace of them all is always the target namespace of the schema
(even for attributes).

e Element or attribute declarations may appear locally, contained in complex type defini-
tions. Alternatively, there is a reference mechanism available for referring to a global
declaration by its name.

e Type definitions may appear locally, contained in element or attribute declarations.
Alternatively, there is another reference mechanism available for referring to a global
definition by its name. Of course, the type definition used for an attribute declaration
must be simple.

e Model and attribute group definitions are uniquely named; they may appear only at

top-level, and may be referred to from within any type or group definition.

The possibility to opt between global or local declarations and definitions leaves XML Schema
authors with the freedom (and burden) of deciding where to put them.There is, however, a
slight but basic semantic difference between the two: Element declarations contained in type

30

definitions can re-declare element names, even if those names are declared elsewhere (as
opposed to global declarations, where any name in a symbol space may be declared at most
once).

To be more specific, let us assume that model groups are dealt with for now by expanding
them syntactically, that type derivation is not used, and look at the set of all (global and
local) complex type definitions. The analogy to our definitions of regular tree languages
now begins to take shape, if we let ¥ be the names of the elements declared in a schema,
and assign one symbol in ¥’ to each element declaration (resolving element references) : An
element declaration becomes a triple of

(its state ¢ € ', its element name o € X, Cy(q))

that can be written into a mapping of a ¢ function, or an extended context-free production,
in the obvious way.

There is a opportunity for clarification calling at us here: We might as well use the element
declarations as the set of states cf. nonterminals as the state names:

q — € |q is the i’th declaration (in some order) of an element named o

and define a function p that maps declarations to the name of the node type declared:

Y — X
pley) = o, play)=Qo , u(root) = root
u(pi) = pi , p(comment)=comment , p(pcdata) = pcdata

In contexts where a variable ranging over Y’ is used, and the symbols o or i are not bound
or have any significance, we will still use just the name gq.

DTD is local-type — XML Schema is not as limited: In some XML Schema instances, there
are more than one declaration with the same element name. On the other hand, care has
been taken by the designers of XML Schema to make elements typeable already as their
opening tags are encountered by an XML parser.

The XML Schema Recommendation[2] specifies two Schema Component Constraints on con-
tent models (restated here in a simpler language than in the Recommendation):

e FElement Declarations Consistent (EDC): If there is, within the same type definition, a
pair of declarations of elements with the same name, then both declarations must use
the same global type.

e Unique Particle Attribution (UPA): It must be possible to determine, when validating
in document order a sequence of elements against a type, for each element in the
sequence, without looking at attributes and without looking ahead, which particle in
the type declares the element. This basically means that the content model regular
expressions must be one-unambiguous.

31

We shall see that the first constraint will bestow every XML Schema instance with some
properties that are very useful for our XSLT analysis, while the second constraint is useless

for our purposes (and is indeed not even necessary at all for efficient parse-time validation of
XML instances):

A single-type regular tree language is a regular tree language, for which for any (¢, 0):
ch b €m(d(q,0)) =i=j

The EDC constraint makes XML Schema single-type, under our assumption that type deriva-
tion is not used, and with one exception: Wildcards. It is possible in XML Schema to define
constructs like:

<sequence>
<element name="a" type="integer"/>
<any namespace="##targetNamespace"/>
</sequence>

Here, the first element declaration will be represented by the regular expression a’ for some 4,
whereas the latter will, in our terms, be represented by (e |€2 |e; |el, €2, |es. |-+), that is,
any name (limited to the target namespace in this example) associated with any type, among
those a’,j # i. For our purposes however, which will be to type nodes statically in order
to estimate the possible outcome of an XSL transform run on the node, we will give up any
analysis on the results of transformations of wildcards, and just approximate the outcome to
“any well-formed XML whatsoever”.

ANCESTOR-LANGUAGE TYPEABILITY

We want to show that: For all accepted tree state assignments of a single-type regular tree
language:

i. For any DNT ¢, the set of possible ancestor strings of nodes typed ¢ is a regular
language.

ii. For any DNTs ¢y, g9, if g1 # g2, then the language of possible ancestor strings of nodes
typed q1 is disjoint with that of nodes typed ¢2.

Single-type languages let us determine the DNT of a named child element of a DNT, given
the child’s name and the parent’s DNT:

gndtetype : Y xE oY
single—type _ i . i
5child (q7 U) = 6,16, € m((s(Q7G))

32

<schema xmlns="http://www.w3.org/2001/XMLSchema"> ¢
<element name="a'> <t--a”1l-->0—-—+— --l--
<complexType> comment | o 1 root

<choice> \\/
<element name="b" type="t1"/> <!--b~1--> ’:\’ !
<element ref="c"/> pi v

</choice> o

</complexType> T \\

</element>

<element name="c" type="t2"/> o—ctl--> ¥

<complexType name="t1">
<sequence> a
<element name="a" type="t2"> <t--a"2-->
</sequence> 2
</complexType>

r r
<complexType name="t2"> \ /
<choice>

<element name="a" type="t1"/> <1--a”3-->3 a
<element name="r" type="t2" <t--r~1-->
minOccurs="0"/>
</choice>
</complexType>
</schema> &

An XML Schema with type recursion. The comments contain the DNT names used.
Elements named a are declared once globally, and twice locally — the global declaration
uses a local type definition, and in that, an element reference is used for the ¢ element. The
other element declarations refer to their type by its name. Since the DNTs a! and c?! are
global, either a or ¢ can be the document element of documents valid wrt. this schema. In
the flow algorithm presented later, we assume the one declaration is chosen as the
document element declaration, and edges from root to the others are removed.

Cycles in the DFA indicate that the schema’s instance trees have unlimited height (it is
type recursive), whereas nothing in the DFA reflects that a choice compositor was used in
a’s content model, but sequence was used in the others. The minOccurs=0 cardinality on
the “r” particle leaves no trace of itself in the DFA, either, but without that, there would be
no finite instance document of the schema (and if such a no-instance schema is fed to a
working static validator, any validation result is correct — no instances at all means no
invalid instances).

The ancestor languages of the DNTs are:

anly(at) = a anlg(a?) = a(balcr*aa)(1r*aa)*
anly(a®) = a(c|ba)r*a(ar*a) anly(b') = ab
anly(cl) = ac anly(r!) = a(c|(blc)a(aa)*)r™

33

(i): Consider an automaton whose state set is ¥/, its input language is strings over X, and its
transition function is 5;73;’;6_@7’ . Obviously, it is a DFA, and the language of input strings

that makes the automaton reach any particular state is regular.

(ii): Now consider any two nodes vy,vy € Dom(t) in an accepting run of a single-type tree
automaton on a tree ¢, where

A(v1) # A(v2) and ans(vy) = ans(ve)

But it has been shown that the state A(v) of any node v is the state of some DFA run
on its ancestor string (specifically, the state is (5;?{’;6_@’) “V*(ans(v), X(root(t)))), and that
state is reached deterministically. It is thus not possible that \(v1) # A(vg) while ans(v1) =
ans(ve). O

Having established that in single-type regular tree languages, nodes may be typed by their
ancestor strings alone, we will define an ancestor language function that we will use later:

anly : ¥’ — Reg(X)

DTD is single-type, too, for the simple reason that there can be at most one type for an ele-
ment name: Single-type regular tree languages contain the local-type regular tree languages,
and the class is strictly larger (the single-type example above was not local-type).

6.7 SPECIAL XML SCHEMA CONSTRUCTS

XML Schema makes a valiant attempt at mimicking inheritance models of object-oriented
programming languages, with type derivation: Types may be derived from other types by
restriction, reflecting a smaller class eztension (the set of phenomena modeled by the class), or
by extension, reflecting a larger intension (the set of modeled properties of each phenomenon
of the class). Subtype substitution is one of the fundamentals of the object-oriented paradigm,
meaning that at any place where objects of a certain class are expected, objects of a derived
class are accepted as well.

SUBSTITUTION GROUPS

XSD has two different yet rather similar features for enabling subtyping, while retaining
typeability at the time a parser reaches its opening tag: One is substitution groups, which is a
way of allowing an element DNT to appear in place of another, keeping the two distinguishable
by requiring that they both are declared globally, with different element names. The DNT
that may be substituted is called the head of the substitution group, and any DNT that
may substitute it — including the head itself — is a member of the group. Concretely, an
attribute substitutionGroup="name-of-head" is added to the declaration of each member.
They work transitively; if a member of one substitution group is the head of another, all
members of the last group also become members of the first group. The types of the member

34

declaration must be derived from the type of the head in zero or more steps (apparently, this
serves to limit the surprise when a substitution group head is substituted — the type is still
compatible).

Substitution groups can be desugared away by replacing every reference to a group head by
a choice compositor over all the members of the group, but doing so would be unfaithful
to XPath2’s model of element declarations, which includes substitution group affiliation, and
uses that in the schema-element () function. If insisting on removing substitution groups,
the function could be approximated, though.

DERIVATION BY EXTENSION

The other major type derivation feature in XSD is derivation by extension, which is only
possible where the derived type is complex, as only these can have more than a single member.
With this feature, for each derivation by extension of a complex type ¢, all DNTs declared
with type t implicitly spawn a new element DNT, with the same element name and with
the derived type, and with an implicit declaration of a required attribute, xsi:type="name-
of-type"!? for distinguishability. One consequence of these implied DNTs is that attributes
must somehow contribute to element naming, in order for us to remain single-type. Later,
when relying on ancestor-language typeability of elements, we will have to find a solution for
that.

Types can be blocked for derivation by using a block attribute on their definition; the effect
is to switch off implied subtype substitutability for those types. Derivation of new types from
blocked types is still possible, though.

An extension y of a content model z is itself a content model, and it is combined with the
extended content model = simply as Seq(x,y), not exceedingly faithful to the usual idea of
object-oriented classes, where properties are named, not ordered. [14] has advised against
using extension at all (and against many other features of XML Schema), and use model
groups instead to obtain the same effect, without the complications of automatic declaration
generation and xsi:type.

An upper bound for the set of DNTs mentioned in the content of a DNT, without knowledge
of the presence or value of its xsi:type attribute can still be made, given a schema:

Wy D Y))

Wa(g) = m(Cm(g)) U Uq’e{all types substitutable in one derivation step from ¢} Wa(q)

— which is a set of all DN'Ts mentioned in the transitive closure of derivation by extension,
and certainly an upper bound. The function C,, simply extracts the content model of a DNT.

19the namespace prefix xsi (or whatever prefix is used instead) must be bound to the namespace
http://wuw.w3.org/2001/XMLSchema-instance.

35

OTHER DERIVATION FEATURES

Derivation by restriction is not quite as hard to deal with as extension. It is simply a way
of restricting a content model (replacing it by a sublanguage), a data model (in the same
way), or an attribute model (replacing Optional cardinalities by Required or Prohibited),
in order to make validation more critical. It can indeed be soundly ignored (as we will do)
when estimating an upper bound of for the language of a schema, and its transform: If a
DNT (element or attribute) uses a type that is derived by restriction, its set of permitted
values is a subset of that of the derived-from type, and the cost of widening is then just a
small loss of precision. For simple types, however, that are all derived by restriction from a
simple “ur-type” (the type of char®), restriction will be considered.

The nillable feature, when used on a complex-typed DNT, permits a so declared element
to have no content at all, if it instead has an attribute xsi:nil="true". Like derivation
by extension, this feature breaks ancestor-string typeability by effectively declaring a new,
empty-content DNT for the original ancestor language. As with derivation by restriction,
as long as one is satisfied with upper bounds on DNTs mentioned in a content model, this
feature can be ignored.

Abstract element declarations are element declarations that can not be instantiated, only
substituted. They are very useful for simulating a context-free specification of s schema;
substitution group heads taking the place of nonterminals, with non-head group members as
terminals.

6.8 ATTRIBUTE AND DATA TYPES

Attributes in XML have no order, and in DTD and XML Schema, attribute models can be
adequately described as just a set of attribute uses for each element declaration.

In general, an attribute declaration associates a name with a datatype, and an attribute use
(our own term) associates an attribute declaration with an element declaration, a cardinality,
possibly a default value and possibly a statement that the attribute value is fixed to the default
value.

In DTD, attribute declarations and attribute uses are wound up in one:
<!ATTLIST element-name (attribute-name attribute-type default-declaration)* >

although in some cases, entities (a simple macro definition and expansion mechanism) is
used for repeated attribute uses (explaining how DTDs can contain many more elements
and attribute declarations than appearing in the schema text!). attribute-type is one of
eight regular types defined in [5], and the default-declaration contains the information
determining whether the attribute is Required, Optional or Fixed (and to which string).
In XML Schema, attributes may be declared globally, and referred to from a type definition,
assigning a cardinality and a default/fixed value for the reference only.

36

We will still prescribe ancestor languages for attributes, though, as they we will be needed
later. To allow for some experimentation in balancing performance vs. precision, attribute
uses were designed as being able to substitute attribute declarations. We first need to extend
Y beyond element names, and ¥’ beyond element declarations:

anlg(al,) = anlg(Py(al)).o

where P, is a function ¥’ — 2% that, for an attribute use, returns the single element decla-
ration that uses it, or, for an attribute declaration, returns all the element declarations that
use it, and anly is extended to return, for a set) C X/, the union language quQ anlq(q).

As with attribute models, DTD and XML Schema are not very expressive in how contents
and data can combine. Both have no way of imposing any particular order or dependency
between the two, enabling a complete separation of the data model from the content model,
as just a function returning a regular sublanguage of char*.

In already stated, DTD only has a few predefined data types that can describe attribute
content, whereas character data in elements is “all or nothing™ Either any XML string at all,
mixed with declared elements, or no character data at all.

XML Schema offers a much more fine-grained control of datatypes than DTD: Any simple
type can be used, and there are more than 40 of them built into the language; all regular
or approximately regular 2°. XML Schema has some limitations in its ability to describe
mixtures of element and data contents: It can restrict data contents of elements only if the
declaration is simple (declares no element content). If the element declaration is complex,
data content declaration is “all or nothing”, like DTD: Either any XML string content at all is
declared as data content (the mixed attribute of the declaration is true), or no data content
at all is declared (mixed — false).

Again, we can get away with using a simple function (Dy below) on declarations that returns
a regular expression over char that are declared as a node’s data content (or the empty
language, if no data content is declared).

XML Schema has a declared wildcard node type for attributes, anyAttribute. It represents
any number of attributes, with any name and any content, and like any, it is to some degree
possible to limit the allowed namespaces of the represented attributes. Also like any, the
problem of fitting it into the schema model is circumvented by leaving it out of the ancestor
language model, and let it be accessible separately: We need not model its effect on schema
structure, only its effect on transformation results.

20 An example of a type needing approximation is bounded floating-point numbers: Such a number can be
written 1e0, 10e-1, 100e-2 etc., and the “pumping lemma” can prove that languages over them are not regular

37

A SUMMARY OF UNIFIED DTD AND XML SCHEMA

In the following description of the static analysis algorithms, DTD and XML Schema are
unified into one description:

The XML Data Model node kinds comment and pi (processing-instruction) and are assumed
to be implicitly declared, with no content or attributes, and the char* data model. The
namespace node kind is deprecated and unsupported in XSLT?2, so it is not declared.

To summarize the functions available for accessing information for a schema d, the following
functions all have a set Y, of all declarations, implicit declarations included, of a schema as
their domain:

Yq =& UA U {root, text, comment, pi}
where £; and A, are the element and the attribute declarations of d.

We will also supplement the information in both DTD and XML Schema schemas with
the declaration of a chosen root element for the schema: Both schema languages have no
facility for specifying this, but it is a natural item of information to associate with an XML
application, and in any case, the information will be needed?!. In an implementation, the
function can be implemented as an auto-detection, as a program parameter, or by asking the
user to select the declaration from a list.

Ry:{} — &4
The root node kind is also declared implicitly, with the content model

Seq(Card(0, unbounded, Choice(comment, pi)).R4().
Card(0, unbounded, Choice(comment, pi)))

e (), returns the content model of a DNT, as an expression in the M-language.

e (; returns the set of possible content DNTs of a DNT. For root, it returns Ry(Xy), for
elements, it returns the element’s declared children, pcdata if the element is declared
to contain text, and comment and pi if the element is not declared EMPTY in DTD.
For other node kinds, it returns the empty set.

o W, returns the set of possible content DNTs of a DN'T, widened to remain valid even if
the type of the DNT is substituted by any declared, substitutable type. For non-XSD
schemas or non-element DNTs, this is just Cjy.

e P, returns the set of possible parents of a DNT; every node that has the argument as
a possible child or attribute, or as a contained pcdata, comment or pi.

e A, returns the attribute model of a DNT, as a set of DNTs, wildcards not included.

2lFurther analysis is based on the knowledge of that. It could be replaced by a set of candidate root
elements, though.

38

e A,, expressions attribute info in the A-language for an attribute DNT.

e D, returns character data model of a DNT} it is a regular language over char, and, with
the limitations in the schema language specifications, it is independent of the DNT’s
content model.

e S returns the reflexive transitive closure of the set of declared substitute DNTs for a
DNT. Abstract DNTs are removed. For any other DNTs than heads of XSD substitution
groups, only the argument DNT is in the set returned.

e anly returns the regular ancestor DNT language for a DNT. For each DNT ¢, ancestor
languages of all DN'Ts that ¢ may substitute through the substitution group mechanism
are included in a union language. In the implementation, the language is described as
an automaton.

The function T} takes two types as arguments, and decides whether the second may substitute
the first — and returns true, if the second argument is an XML Schema type, derived in
zero or more steps from the first argument, and no step used in the derivation is blocked for
the derivation kind used. Otherwise, false is returned.

The function T,; : @ x &y — {true, false} takes the QName of a type and a DNT, and returns
true if the type referred to by the first argument is replaceable by the type of the second
argument, as per T3, and the first argument is not blocked for derivation in its XML Schema
declaration. Otherwise, false is returned.

The function T, : &; X &4 — {true, false} forwards to T}, first extracting the name of the
declared type of its first argument.

Some trivia applies to XML declared node types:

e Elements declared with a global type reference have an extra Optional xsi:type at-
tribute declared, with a type of just the QName of the type. All implicit declarations
spawned by defined extension derivations of the type are made explicit, and each has
an extra Fixed(name-of-derived-type) xsi:type attribute declared.

e Elements declared nillable=true have all declarations repeated twice; once set has
the declared content model and an extra declared-Optional attribute xsd:nil with a
type of the singleton value false; the other set with the declared content

Card(0, unbounded, Choice(comment, pi))
and a Fixed(true) xsi:nil attribute declaration.
A nilledness function Ny is defined as:

Na(q) = {

true if ¢ has a required xsi:nil attr. declaration with the value true
false otherwise

These attributes guarantee that elements copied as-is from input to output by an XSLT2 pro-

cessor do not lose required attributes in our static simulation. Ny is for the schema-element ()
XPath2 element () item test described later.

39

7 XML INFOSET

The XML Infoset specification provides a consistent description and abstraction basis for use
in other specifications:

e It applies to well-formed, but not necessarily valid XML

e It abstracts documents and nodes out of their context: An information item is an
abstraction of a node, which is given abstract properties that may be queried for values
relevant for the item: A document information item, for example, has a property named
base URI, providing a base URI to resolve relative URIs in the document against. Even
element information items in the document have the property abstractly inherited.

e Namespaces are supported directly (named nodes have a namespace name property)

e It has properties for accessing sub-items of an information item: children (child el-
ements of elements and the document element of a document), attributes (of an el-
ement), and namespace attributes (for accessing the xmlns:...="..." namespace
declarations, of elements). In the upward direction, all information items except doc-
ument have a parent property (for attributes, the name is owner element) for
accessing their containing item. This model is equivalent to the XPath2 Data Model
(to be presented), except for a few naming conventions.

e It models a document as having a root node above the root element (also called the
document element), equivalently with XPath.

e It canonicalizes different representations of the same thing, such as converting PCDATA
sections, entities and character references to the characters that they represent. Since
XSLT runs on top of the Infoset model, we assume in the following that there are no
PCDATA sections, entities or character references left in stylesheets.

XML Infoset does not specify any implementation; it only is an abstracting description of
local and context information access.

8 XQUERY 1.0 AND XPATH 2.0 DATA MODEL (XDM)

Basically, the XDM is a restatement of XML Infoset, with a definition of document order, a
definition of node types, and the addition of a type system for values. Types are defined in
terms of XML Schema.

The most basic term of the type system is an item, which has its name from the information
items of XML Infoset, but are higher-level entities: An item is either an atomic value (a
restricted XML Schema simple type instance) or a node. Items have an associated type, a
typed value and a string value (as it appears in an XML document), and the type is a map

40

between the two: For example, an element node of type xs:integer may have the string
value “0042”, and the typed value 42. An instance element of a complex type declaration
has a string value that is composed of the string values of its text node descendants (which
happens to be the same string value that the XSLT instruction value-of would evaluate to,
given the element), and the typed value is just the string value.

There are seven node kinds in the data model:

Document nodes encapsulate XML documents. We label this node kind as root. Docu-
ment nodes can have any number of element, comment, processing-instruction or text
children, as opposed to root nodes in XML documents; this is because XPath2 uses
document nodes as containers for temporary trees. Opposite Version 1, XPath2 also
supports computations on XML fragments which are not documents.

Element nodes, attribute nodes are as in XML.

Text nodes are models of the text that may appear inside element nodes. No text node in
the model represents an empty string, and text nodes never have sibling text nodes.
We label this node kind as pcdata.

Namespace nodes are the namespace declarations that we saw above, separated from the
attribute nodes that they are in the XML1.0 sense. It was found after some experience
was XPathl’s data model that namespaces bindings are better modeled abstractly than
as nodes, and referencing to namespace nodes has become deprecated in XPath2.

Comment nodes, processing instruction nodes are as in XML.

The document order is an ordering of all nodes in a document, which we restate here in a
simplified form:

e The root node is the first node.

e Every node occurs before its children and descendants.

e Namespace nodes immediately follow the element node with which they are associated.
Attribute nodes immediately follow namespace nodes. The relative order is undefined
in XDM, but is stable.

e The relative order of siblings is the order in which they occur in the children property
of their parent node.

e Children and descendants occur before following siblings.

This ordering is called the document order because it orders nodes in a tree in about the same
way as their lexical representations — start tags etc. — are ordered in an XML document.

Every value in XDM and XPath2 is a sequence: A single node is a singleton sequence of the
node; a sequence of nodes is itself, and the sequences of sequences that may conceptually

41

k5AMy Typa

Ry

el Uy ped
ssarySimplaTypa anE apeacific
compias ypes

wittaryAtomicTypa Spaciiic ligt and urion
typas such = x5 IDREFS

xl:r.'un'...'|:nrr.ﬂ.lnm-:. and
spocific alomic ppes
such ms xsombegar,
wizgiring, and
wid day TimeDairation

Figure 13: Simplified XDM type hierarchy. xs maps to the XML Schema namespace, and xdt to
the XDT namespace. xdt:anyAtomicType is a non-instantiable supertype of all atomic types.
xs:untyped/xs:untyped Atomic are for unknown types, as when coming from a document without
an associated schema to type it by.

appear in some evaluations are considered flattened and ordered in document order. Se-
quence types are composed of item types and cardinalities, as what that can be syntactically
expressed by XPath2’s SequenceType nonterminal:

SequenceType = (empty-sequence())

| (TtemType Occurrencelndicator’)
ItemType == KindTest|item()|AtomicType
Occurrencelndicator := 7|x*|+
AtomicType == QName

The Occurencelndicator has the usual meaning from regular expressions. Without one,
a sequence type becomes a singleton, equal to its item. A sequence is an instance of some
sequence type if all its items are instances of its ItemType, and its length is within the
bounds set by the Occurencelndicator.

The various terminals call for some explanation:

KindTest may produce any of:

42

element (), element (*)

element (QName)

element (QName, TypeName),
element (¥, TypeName)

element (QName, TypeName?),
element (¥, TypeName?)
schema-element (QName)

attribute (QName)

attribute (QName, TypeName)
attribute(*, TypeName)
schema-attribute (QName)
document-node ()

document-node (element (...))

document-node
(schema-element(...))

text (), comment (),node (),
processing-instruction(...)

Item test for any element
Item test for named elements
Item tests for elements, the type of which
are the named type or are derived from it,
and not having the nilled property
Item tests for elements, the type of which
are the named type or are derived from it
Item test for schema-declared elements, or
their declared substitution-group substitutes
Item test for named attributes
Item tests for attributes, the type of which
are the named type or are derived from it
Item test for schema-declared attributes
Item test for any document node
Item test for document nodes of documents
whose document element pass the element test
Item test for document nodes of documents whose
document element pass the schema element test
Tests for text, comment,
any-kind or processing instruction nodes

item() is an item test for any item type (node or atomic type) at all.

The QName in the AtomicType production are QNames of atomic simple types:

There may appear to exist some competition between XDM’s sequence types, and XML
Schema’s list and union-derived simple types: Is a value of a XSD list-derived type a singleton
sequence of the list type, or is it a sequence of the list item type? The conflict is eliminated by
only permitting XML Schema atomic simple types, which are simple types that do not have
a list or union step anywhere in their XSD derivation path from the simple ur-type. Thus,
only the 19 of the 44 specified XSD simple types that are “primitive simple types’?? are also
atomic types. Instances of non-atomic types, such as IDREFS or TOKENS are converted to
sequence types in a process called atomization, before they become proper XDM values.

8.1 XPATH 2.0

XPath2 is integrated into XSLT2 as a “language in the language”; its primary purposes are
selection of sequences of nodes in documents, and output of sequences of items to result
trees. XPath2 can also perform computations on values, such as evaluation of boolean and
numerical expressions; we will largely ignore this kind of computations, since we concern
ourselves mostly with types and not with values.

XPath2 is strongly typed, which is good news for static XSLT2 analysis, compared to situation
under the dynamic and rather messy type system of XPathl: XPath2 expressions can be
type-declared in XSLT2, and with XPath2’s optional static typing feature, it can be verified

223 term defined in the XML Schema Recommendation; they are non-list and nonunion types

43

that the expressions always produce results that conform to the declared type. Since this
verification can be assumed to take place at the time of initialization of an XSLT2 processor,
or, if unsupported, that XSLT processing will terminate at type errors , we need not look
into it any deeper here.

As an integrated sub-language, XPath2 has a static context, as a definition for how static
context information is passed to XPath2 from its environment. We will make use of that
definition when analyzing XPath, in an assumption that XSLT’s imported schemas etc. are
known. Parts of the context are:

Statically known documents , mapping document names to document types

In-scope schema types: These are specified to be equivalent with the types that nodes
are annotated with during XPath2 evaluation . We assume that the schemas used for
static analysis and in the XPath2 in-scope schema types are the same.

In-scope variables: Statically known types of XSLT variables

Function signatures: This component defines XSLT2-defined and XPath2-defined func-
tions that can be called from within an expression. Each function signature can be
looked up by name and arity, and contains parameter and return types

LIMITATIONS OF THE XDM TYPE SYSTEM

The XDM type system is not as expressive as XML Schema content models. As we saw, it
can only express sequences of instances of the same type, and only with four different choices
of Occurencelndicator, so there is little chance of success in trying to achieve static XSLT
validation simply by XDM-typing templates in a XSLT transform (it is possible!) in order
to make static typing features validate output. On the other hand, XML Schema content
models can express some XDM types, a trick we will use later.

Type annotations in stylesheets will, however, provide us with a chance to make a sharper
guess at the possible output of XSLT copy-of instructions that invoke a function, or copy
the content of unknown, but typed variables or parameters.

XPATH2 PATH EXPRESSIONS

Path expressions are what was known as location paths in XPathl: They select, given an
XML tree, a sequence of nodes.

In the XPath2 grammar, almost every expression uses the PathExpr nonterminal; even the
XPath2 expression 42 is is syntactically a path expression (among many more kinds). We
will use the term path expression, written as XPath,,;, to mean expressions that actually

44

select nodes from an XML tree, in much the same way that the XSLT2 Recommendation
does.

A path expression in this sense is a number of step expressions, each consisting of an axis, a
node test and a number of predicates; for example, the path expression

child: :foo[descendant-or-self()::node()/child: :baz]/attribute: :attribute(bar)

has two steps; the first uses the child axis, and has a foo name (node) test and a pred-
icate; the second step uses the attribute axis and the XPath2 item test attribute().
In this example, both child:: and attribute:: could have been omitted entirely, as
these axes are the default before name tests and attribute item tests; however, we will
write XPath expressions in their full form to avoid confusion. The content of the predi-
cate, descendant-or-self () :node()/child: :baz, could also have been abbreviated to just
.//baz.

Axes describe directions of navigation in an XML tree, and can be described as functions
from nodes to sequences of nodes: A step over the parent axis relative to a context node
evaluates to the empty or singleton sequence of the parent property of the node; a step
over the child axis relative to a context node evaluates to the node’s children property
as a sequence, etc. Upward axes like parent and ancestor arrange the sequence in reverse
document order; downward steps like child and descendant in normal document order,
and preceding-sibling and following-sibling in reverse and normal order, respectively.
attribute orders in an undefined but stable order, and finally, the singleton axis self eval-
uates to a sequence of length 1, and needs not have an order.

Node tests are derived from the NodeTest nonterminal. They are the ItemTests already
introduced, or NameTests, which are just QNames or the token *. A node test can be
considered a function depleting a sequence, by removing all nodes that fail the test. For
ItemTests, the semantics of the test is as in the ItemType definitions; for NameTests, a
node passes if it has a name property (element and attribute nodes have) and the NameTest
is either * or the same qualified name as that of the node.

Predicates are a kind of further node tests, consisting of an XPath2 expression (the full
language can be used) enclosed in [and] and following a node test or a predicate?®. The
expressions in a predicate have access to the functions current() and last(), which are
sources of much confusion: They return the position of a node in a the sequence that is being
predicate tested, and the length of that sequence, respectively. That sequence is, in turn, the
sequence of the nodes that were left after the node test or predicate immediately preceding
the predicate, not the one after the axis step:

child::foo[position() > 1][position() < 3]%*

evaluates to up to two nodes: The might be any number of child nodes named foo; the first

23In Path?2, predicates can also appear in some non-path expressions; we will not need to consider that.
Mg gt; is “>” (greater than) escaped, and < is “<” (less than).

45

predicate removes the first, and makes a new 1-based sequence of the others. The second
predicate retains the first 2 of these.

child::foo[position() > 1 and position() < 3]

evaluates to at most one node; the second child node of the context node named foo. It
could have been written as [position()=2], or just [2], which means the same.

Multi-step path expressions have their first step evaluated like a single-step expression, re-
sulting in a sequence. The second step is then evaluated, with each node in that sequence as
the context node, and the resulting sequences are merged together in the order given by the
step’s axis; the remaining steps proceed the same way.

Path expressions can be combined in XPath2 as p; intersectps, and p;exceptps, in addition
to (and binding stronger than) XPathl’s p; | p.

Our final word about XPath must be on its size and complexity: The XPath Version 1
Recommendation([6]) and the XML Infoset Recommendation([7]) together are 1449 lines
long when pasted into a text editor. The XPath2 Recommendation ([12]), XQuery 1.0 and
XPath 2.0 Functions and Operators ([17]) and the XDM Recommendation ([8]) together are
14664 lines; about 10 times as large.

9 XSLT2

The version 2.0 Recommendation of XSLT (currently in Working Draft status) is a significant
change from the current XSLT1 status. It has more expressive power, making static analysis
more complicated. On the other hand, it is strongly typed, making some aspects of type
analysis of the language and its output easier than in the Version 1 generation: Static typing
has been thought into the design of XPath2, and static typechecking of its expressions can
be safely left to a stylesheet processor that supports it.

The XSLT2 Candidate Recommendation pasted into a text editor is 11283 lines long; the
Version 1 Recommendation only 3497.

We will try keeping it below eleven thousand lines here, introducing only major changes from
Version 1 to Version 2:

XSLT is a declarative language describing stylesheets; programs that will transform XML
trees to other XML trees or even non-XML output.

9.1 STYLESHEET STRUCTURE

The most important constituents of a stylesheet are:

46

e template rule declarations

e named template declarations

o stylesheet parameter declarations

e key declarations

e include/imports declarations

e attribute-set declarations

e (in XSLT2): import-schema declarations

e (in XSLT2): function declarations

key and attribute-set are not detailed here, but it is described how they are handled in
our analysis in Section 12.

TEMPLATES AND PATTERNS

Template rules are the core components of XSLT: Each has a match pattern associated,
constraining the set of nodes to which the rule applies, and each has a priority used in
determining which rule wins, in cases where more than one applies.

Patterns are XPath2 path expressions, used not for selection of nodes but for determining
whether a context node is accepted by, or matches the pattern.

Some restrictions from general XPath2 expressions apply:

e Only the child or attribute axes are permitted
e The special operator // is permitted:

— before the first step of a pattern, where it translates to
fn:root(self::node()) treat as document-node()/descendant-or-self::node()/

— between two steps, where it means /descendant-or-self::node()/

The semantics of patterns has been changed in XSLT2, compared to earlier versions, to allow
for matching on XML fragments that are not rooted in a document node, and for the new
XPath2 item tests:

e Patterns with document-node(...) as their first node test default to the self axis in
that step.

47

e Patterns that begin with a child axis step now accommodate for parentless content
(element, comment, pi) by automatically converting to the pseudo child-or-top axis:
That axis has child semantics for parented nodes, and self semantics for parentless
nodes.

e Patterns that begin with an attribute axis step now accommodate for parentless
attributes, in the same way (attribute-or-top).

The semantics of a pattern is now:

To determine whether a node N matches the pattern p, evaluate the expression
root(self::node())//(p) with N as the context item. If the result is a sequence
of nodes that includes N, then node N matches the pattern; otherwise node N
does not match the pattern.

It can be seen that some other node is involved in the pattern expression; that node is
somewhere in between the root of N’s XML tree and N itself, or equal to either. In any case,
it must exist in the same XML tree fragment as N.

Patterns can not use the XPath2 intersect and except operators. We will use XPath,uster,
to denote any pattern.

Named templates are like in XSLT1. Both template rules and named templates contain
a sequence constructor, formerly known as a template body: A sequence of instructions,
defining output and onwards control flow of the template.

VARIABLE-BINDING ELEMENTS

The semantics of variables and parameters is one important change in XSLT2: XPath2 can
evaluate expressions in the context of variable-bound XML trees. XSLT1, with its Result
Tree Fragments, could not.

It is thus possible to do define, for example, a two-stage transformation?s:

<xsl:stylesheet
version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:import href="phasel.xsl"/>
<xsl:import href="phase2.xsl"/>

% The example comes from [15]

48

<xsl:variable name="intermediate">
<xsl:apply-templates select="/" mode="phasel"/>
</xsl:variable>

<xsl:template match="/">
<xsl:apply-templates select="$intermediate" mode="phase2"/>
</xsl:template>

</xsl:stylesheet>

PARAMETERS

In XSLT2, stylesheet and template parameters may be declared required, forcing a caller of
functions or templates to bind a value for the parameter. In XSLT1, unbound parameters
defaulted to a declared default value, or the empty string if absent.

XSLT2 supports automatic forwarding of value bindings for a template parameter that has
been declared as a tunnel parameter: Even after flow of control through templates that do
not declare a tunnel parameter, it is preserved. A tunnel parameter named p is created by
adding a tunnel="yes" name="p" attribute to a with-param instruction; it can be overrid-
den (re-bound) for later template recursion (until the next re-binding, that is) by another
explicit <with-param tunnel="yes" name="p" select="..."/>20 instruction, or shadowed
for a single template invocation in the same way, but without the tunnel="yes" attribute.

Tunnel parameters are conceptually similar to dynamically-scoped variables in some func-
tional programming languages, and they are a curse to analyze statically. They make param-
eter analysis more confusing, but actually not worse. We will chew through the whole story
on template parameters in Section 12.

STYLESHEET FUNCTIONS

XSLT2 supports user-defined functions, with parameters and result types defined as Se-
quenceTypes. In the function definition, an XPath2 expression or an XSLT2 sequence
constructor computes the function’s value. Functions and named templates are not very
different entities; parameters of functions are always required, and only functions can be
prescribed as just an XPath2 function. Functions, however, output to anywhere whereas
templates output to a result tree.

260f course, this also goes for values constructed by a sequence constructor in the with-param instead of
the select expression

49

TYPE DECLARATIONS

Templates, stylesheet functions and stylesheet and template variables may be type-annotated
in XSLT2, with an as="SequenceType" attribute, thus strongly typing them?’.

OUTPUT VALIDATION

XSLT2 features dynamic schema validation of its output, making it possible to specify an
XSLT2 transform that either outputs valid XML, or fails at runtime. This could seem like
making static validation redundant, then, as output validity can be guaranteed. However,
static validation can still make a stronger guarantee; namely that no run-time failure because
of an output validation error will happen.

The result construction semantics is bottom-up in XSLT2, a change from XSLT1’s top-down.
This makes dynamic result validation difficult, because nodes are typed, and as we saw in
Section 6.8, the type of a node can be derived from its ancestor string — but at the time of
dynamic validation, there is no ancestor string! Therefore, there are provisions for stripping
off and redoing type annotation, and for validating against type definitions — not against
declarations, as it is usually done.

An obscure aspect of validation is PSVI annotation: Validating trees may add nodes to them.
If a tree is recycled in a two-stage transformation, validating or not may change semantics of

the 2nd pass, even without validation errors?®.

GROUPING

One often recurring problem in XSLT1 stylesheet authoring was, as we saw in the Usenet
mini-survey, that of grouping a set of input nodes by some criterion, and process the groups
sequentially. The for-each-group instruction in XSLT2 was designed to mitigate that. Its
format is:

<for-each-group select="XPath" g="XPath">body</for-each-group>

There are some different grouping methods g available, with different semantics. We refer to
[15].

A sequence of nodes is selected by the select expression, and for each node in the sequence,
a grouping key is generated by evaluating the g expression with the node as the context item.
A group is then a largest sub-sequence of nodes that all generated the same key (by the eq
comparison semantics), and the sequence constructor body is invoked for each group, adding
to a final sequence that is the result of the for-each-group instruction.

*TSee 9.2: Basic stylesheet processors do not understand types, and instead are specified to fail.
28Someone ought to specify a something that separates validation and validation-related transformation
tasks. Next project...

50

Inside body, the function current-grouping-key() returns the current key if g defines one,
or the empty sequence otherwise. current-group() returns the current group as a sequence.

apply-imports AND next-match

The apply-imports instruction works like <apply-templates select="."/>, except that it
only propagates flow to template rules in stylesheet modules that are imported, directly or
indirectly from the stylesheet level that contains the instruction. Its semantics resembles
of a call to an overridden method in an object-oriented language, from within the overrid-
ing method: super.foo() in the body of foo(), and the purpose is the same: To allow
programmers to specialize some behavior without having to repeat the prescription of the
general part.

The next-match instruction works the same way as apply-imports, except that control may
go only to template rules with a lower import precedence than that of the containing rule
(which is different from apply-imports — a stylesheet level may have a lower precedence
than another, without having to be imported from it!), or to template rules with the same
import precedence and a lower priority than that of the containing rule.

BUILT-IN TEMPLATE RULE MODEL

The built-in template rules in XSLT2 are rather similar to those in XSLT1: Output the
value-of any text and attribute nodes, recurse to templates matching all children of element
and root nodes, and do nothing for comment and pi nodes. The built-in rules in XSLT2
now have a mode="#all" added, no longer necessitating conceptual on-the-fly creation of
default rules for each mode used. The rule for element nodes also forwards the current mode
as #current and any template parameters, as opposed to the one in XSLT1 which shed the
parameters.

This behavior actually makes built-in rules quite easy to handle; only the implicit parameter
forwarding needs consideration. Again, the treatment of this goes into Section 12.

9.2 CONFORMANCE AND RESTRICTIONS

The Conformance part of the XSLT2 Recommendation specifies two different levels of stylesheet
processors (programs that execute XSLT transforms) conformance:

Basic XSLT processors do not understand schemas, and enforce type safety by failing at
any import-schemas instruction or as type declaration with other than built-in types
in a stylesheet.

Schema-Aware XSLT processors can import schemas; they enforce typing of type-declared

51

variables and parameters, and they can dynamically validate their output against a
schema.

10 XSLT2 AND STATIC ANALYSIS

The XSLT2 changes that affect the static analysis situation, compared to Version 1, are:

Functions: In addition to stylesheet-declared user functions, the library of predefined XPath2
functions has expanded significantly from that of XPathl, meriting a whole Recommen-
dation of its own ([17]).

Variable-binding Constructs: As we have seen, XPath2 can perform evaluation on variable-
bound XML trees.

Grouping: for-each-group is handled in Section 12.

Value-of: The text-node constructor instruction value-of now accepts and outputs se-
quences, not only items?. It has also been extended by a separator attribute for
specifying separator strings; this needs to be considered. value-of has no implications
for flow; its handling in validation is explained in Section 14.4.

Modes: XSLT2’s polyvariant modes complicate flow analysis somewhat. This is described
in Section 13.4.

apply-imports/next-match: The way we model these instructions is described in Section
13.5.

Initial contexts: In XSLT2, an initial context node and an initial named template name or
an initial mode can be supplied from the environment of the stylesheet processor (see
[15], Section 2.3). Since none of these poses any threat, or challenge, to the feasibility
of our static analysis, and we found no examples of transforms using the feature, these
have been fixed to default values: / for the initial context node, #default for the
mode, and no initial named template name. This reflects XSLT1 semantics.

Multiple input documents: XPath2’s static context definition makes it possible to stat-
ically retrieve any schemas associated with documents loaded with the XPath2 doc
function, and the XSLT2 document instruction. These both evaluate to the root node
of the document loaded. Semantics of XPath expressions are defined such that infor-
mation about which schema it applicable can be reached from every node, so multiple
documents are no special challenge in static analysis. To save the complications, we
will not pursue multiple input documents any further.

Multiple output documents: XSLT can create and output any number of XML trees in
each transform. Since instruction for output of other than the primary result tree can

29In XPathl, value-of will drop any but the first item, if its argument is a node-set

52

statically associate the tree with a schema, statically validating for more than one result
tree is only a matter of retrieving the relevant schema, and process as for the primary
result tree. This is not pursued any further here.

Pattern semantics: The troublesome pseudo-axes in XSLT2 patterns will not affect us,
as they have effect only for parentless nodes in other patterns than /, that is, for
variable-bound nodes. We treat variable-bound nodes by adding a pseudo-parent to
them, making the pseudo-axes redundant.

Other changes will not need any consideration in this work, including:

Value computations, other than value-of: A large number of improvements have been
made in expression evaluation. Semantics of relational operations are defined in the
XML schema value spaces in XSLT2, making different representations of the same typed
value identical, as opposed to XPathl’s use of its own type conversion for operators.
XPath2 also features new quantifier expressions (“for any” and “for all”)3?. In the
present version of our analysis, which makes no attempt at all to statically bound the
results of other than a few string expressions, the new operators are, like the XSLT1
ones, ignored.

Serialization: Features for finer grained result tree serialization have been added, whites-
pace semantics was refined, and disable-output-escaping has become deprecated
and replaced by character maps. We have ignored this, as our analysis operates at the
tree level of XML, not considering serialization.

Dynamic errors: Many previously ignored erroneous situations have become defined static
or dynamic errors. Since a non-recoverable dynamic error raised guarantees against
invalid output of a transformation (stopping it), we have ignored this aspect. Of course,
it is also interesting to make guarantees that this cannot happen; static typechecking
is specified as an option for XPath2, and as implementation-defined for XSLT2.

Part 111

XSLT flow analysis

11 DEFINITIONS AND RESTRICTIONS

We assume in the following that a schema for any XML that is used for input for an XSLT
transformation is available to our analysis, and, when a schema-aware stylesheet processor

30 A5 a curiosity, the claims in the first four use cases in Section 1.3 of the XPath2 requirement document
(http://www.w3.org/TR/xpath20req/) about comparisons that XPathl can not express — are all wrong!

53

is used, that any schemas declared with import-schema are those that will be used in our
analysis. For basic stylesheet processors, we need to assume only that they are compliant,
ie. never output anything from stylesheets that use schema typing features for other than
primitive datatypes.

For XSLT2, some language constructs (that are not really core features, and are not a chal-
lenge to the basic feasibility of our algorithm) have been ignored completely. They are:

e The exclude-result-prefixes standard attribute

e analyze-string, matching-substring, non-matching-substring

e Conditional element inclusion; use-when

e Backwards and forwards compatible processing

e Extension functions, extension instructions and the fallback instruction
e Collations, and their meaning

e XPath2’s statically available collections and collations, and their defaults
e Character maps

e Result tree serialization, disable-output-escaping and non-XML output
e User-defined data elements

e format-number formats, system-property, element-available...

Below-XDM model details like expansion of entities etc. are abstracted away at this level.

We assume that the transform outputs XML, not HTML or text. HTML transforms can be
analyzed after XHTML conversion, though.

Output and onwards control flow from templates that match comment and pi nodes are
not considered, because these node kinds are not declared, and are allowed almost anywhere
in an XML document. In cases where pi nodes are matched for output, we can only advise
users to wrap them in a freshly declared element, and copy the matching template’s content
to one matching the new element.

We assume syntactic and referential validity of input stylesheets and schemas, even though
the implementation uses schema validation on these.

The algorithm described bases largely on approximation; good approximations again base
on good estimates on where to focus particular attention. [23] and [20] both have excellent
empirical backing of their basic decisions — and where we have extended upon their work
directly, we see no reason to repeat their observations. We refer to the two articles.

54

Finally, again, transform validity is defined in terms of a stylesheet T, an input schema and
an output schema. The output schema is not used until later in the process, but the input
schema Dj, is used so often that we will just call it d, and use that as a qualifier for most
function names related to it.

12 STYLESHEET SIMPLIFICATION

Stylesheet simplification is the process of reducing the complex and somewhat redundant
XSLT2 language to a smaller core XSLT2 language, reducing the number of constructs that
need to be considered in later analysis. It is divided into two overall stages:

1. Semantics-preserving simplification translates an XSLT2 stylesheet to a core language
stylesheet with all semantics preserved

2. Approrimate simplification no longer preserves semantics, but preserves any validity
error there may have been in the original stylesheet

Stylesheet simplification was used in previous work ([23]); our contribution is a definition
of a general-purpose implementation of a single-pass process>', modeling stylesheets more
coherently with the XSLT2 Recommendation (import tree structure in particular) and more
generally.

Backmapping of desugared constructs was added in the editor-oriented implementation: Each
element is decorated with a source ID, and a core ID, along with parse location information.
During all stages of simplification, whenever an element in a source stylesheet module or
schema document is converted to a different construct, the original element’s source ID and
parse location are copied to the replacement construct. In subsequent analyzes, both can be
back-mapped to source documents, helping target any message about that particular element.

The primary tasks of semantics-preserving stylesheet simplification are:

e To reduce most control-flow related instructions to apply-templates, preserving se-
mantics by adding moded template rules

e To resolve, as far as possible, stylesheet and template variables and parameters
e To unify all branching instructions into choose instructions with otherwise branches

e To reduce all text output to value-of expressions

First, we will introduce a new design of ours, for replacing XSLT instructions whose effect
on control flow or effect on output depend on a typed value.

311ts implementation is much faster than that of [23], but considerable time was also spent designing it!

55

12.1 TYPE RECONSTRUCTION

A few extra function definitions are used:

e xslv:unknownCollation() is a pseudo-collation with an unknown ordering.
e xslv:unknownSequence () is a function evaluating to anything in item() *.
e xslv:unknownBoolean() is a function evaluating to an unknown boolean value.

e xslv:unknownText () is a function evaluating to any string in char*.

Type reconstruction is a simple idea®?, helping to reduce the two type systems of XPath2 Se-
quenceTypes and the content models of schema declarations to just one: SequenceTypes
are translated to content models where possible.

Assume that ¢ is a copy-of, value-of or apply-templates instruction, with a select ex-
pression:

<i select="$pr"/> or <i select="fn:foo"/>

where

e the variable reference p or the function fn:foo is declared to have a sequence type of
type t with Occurencelndicator o

e the path expression r is empty, or begins with / otherwise

copy-of, value-of output things, depending on a value typed as a sequence of ¢, and
apply-templates controls flow, with the same dependency. The instructions can be ap-
proximated:

if ¢t is element(...) or schema-element(...): An element declaration x is added to a
fresh schema, with no attributes or data content:

Y if ois absent
Card(0,unbounded,y) if o==x

Card(1,unbounded,y) if o=+

Card(0,1,y) if o=?

Another element declaration y is added to the fresh schema, with no attributes or data
content: Ci,(y) = Choice(T')

Cn(z) =

where T is an upper-approximated set of element DNTs that pass the item test t; the
computation of this is described in Section 13.8.

32Proposed by us; currently not implemented fully.

56

An import-schema declaration, referring to the fresh schema, is added to the stylesheet
module being simplified.

The following template rule is also added to the module:

<template match="xslv::u(x)">
<i select="child::u(y)/child: :*r"/>
</template>

and the original instruction ¢ is replaced by
<apply-templates select="xslv::u(z)">

The axis xslv is a pseudo-axis introduced, defined to map to only the element declara-
tions added here. Since these declarations are not reachable from the defined schema
document element, they do not interfere with the schema-based analysis that we will
soon introduce.

if ¢ is attribute(...) or schema-attribute(...): An element declaration x is added as
in the previous case. Another element declaration y is added, with no element or data
content: Ag(y) = A

where A is the set of attribute DN'Ts in the input schema that pass the item test ¢.
The following template rule is added to the stylesheet module being simplified:

<template match="xlsv::u(x)">
<i select="child::u(y)/attribute: :*r"/>
</template>

and the original instruction ¢ is replaced by
<apply-templates select="xslv::u(z)">
if t is text (): The original instruction is replaced by <i select="xslv:unknownText()"/>

if ¢ was xsl:value-of or xsl:copy-of, otherwise by
<apply-templates select="/descendant-of-self::node()/text()"/>

if t is an AtomicType: If ¢ is apply-templates, there is a static error in the stylesheet;
report it and terminate. Otherwise,

An element declaration z is added to a fresh schema, as in the first case. Another
element declaration y is added, with no element content or attributes: D;(y) = L(t)

that is, y is a simple-typed element declaration with the AtomicType.
The following template rule is added to the stylesheet module:

<template match="xslv::u(z)">
<i select="child::u(y)/child: :text()r"/>
</template>

and the original instruction ¢ is replaced by

<apply-templates select="xslv::u(z)">
pPpLy P

Any other case: — including t=item() and t=node(): There is too little type information
available to make a proper model. <copy-of select="xslv:unknownSequence()"/>

57

is substituted for ¢ = apply-templates or copy-of, or <value-of select=
"xslv:unknownText ()"/> for i = value-of,

and a warning is issued, asking the user to sharpen the declared type if possible.

This extra-declaration hack unfortunately needs a pseudo xslv axis, but then again, it can
squeeze the most of two type systems into one (and the cases for which it can not are almost
hopeless to analyze statically anyway).

12.2 STAGED SIMPLIFICATION

The implemented semantics-preserving simplifier is modular, and separable from the approx-
imate simplifier and the static analysis part of the code. The semantics-preserving simplifier
can be considered a general-purpose simplifier for XSLT, as it significantly reduces the lan-
guage, without doing any harm.

SEMANTICS-PRESERVING SIMPLIFICATION

A number of sequential stages for simplification were identified:

Loading: Stylesheet modules in the simplified XSLT2 syntax are wrapped in a template
rule with a / match pattern, returning them to full syntax. Stylesheet modules named
transform are renamed to the equivalent stylesheet.

All include and import instructions in the primary stylesheet module are expanded,
and an import tree, as of [15, XSLT2, Section 3.10.3| is built, pulling in the entire
stylesheet. Each stylesheet module is validated against an XML Schema for XSLT2 by
the parser, preventing transient syntactic errors occurring during on-line editing from
setting off a confusing plethora of error messages from back-end code. Backmapping
information of element IDs and parse locations is added.

Context-free simplification: Each stylesheet module is processed a top-down, non copying
manner: All attribute values that are specified to contain XPath expressions are parsed,
and the parsed expressions are cached. Expressions at top-level, outside any templates,
are simulated as being evaluated in the initial context, rewriting:

e current() to the initial context item requested from the validation environment
(which defaults to /)33
e position() and last() to 1

e name(), local-name () and namespace-uri() to the results of evaluating the func-
tions on the value substituted for current ()

330nly the default is currently implemented in the demonstrator program

58

For some instructions, if an XPath attribute is absent (parser defaults insertion turned
off), a default is added:

e child::node() for select attributes in apply-templates instructions.

e #default for mode attributes on apply-templates instructions and all template

rules.

For some elements, if an as attribute is absent (parser defaults insertion turned off), a
default is added:

e item()* for as attributes in variable instructions.

e item()* for as attributes in param instructions.

e item()* for as attributes in with-param instructions.

e item()* for as attributes in function top-level elements.

Restructuring simplification: Each stylesheet module is processed a bottom-up, copying
manner:

e <text>s</text> elements are converted to <value-of select="’s’"/>, preser-
ving whitespace.

e All adjacent text nodes are joined® into a string s, and depending on the applicable
value of the space property®® and on whether s is all whitespace, it is discarded
or converted to <value-of select="’s’"/>.

o <if test="e">seq</if> expressions are converted to
<choose><when test="e">seq</when></choose>

e choose expressions without an otherwise branch have one added, with an empty
sequence constructor.

e All top-level variables and parameters are bound in the scope of their contain-
ing stylesheet level. Variables will later be resolved where they are used, and
parameters will trigger3® a request for a value from the validation environment.

e All top-level attribute sets are bound in the scope of their containing stylesheet
level.

e All key definitions are bound in the scope of their containing stylesheet level.

e References to all call-template instructions are collected and bound in the scope
of their containing stylesheet level.

o All literal elements

<elename atty = "avty” - - - atty, = 7 avty” >body</elename>
in a namespace different from the XSLT namespace are converted to

34Not all DOMs do this automatically
35as derived from the scoped space attributes of ancestors, see [XSLT2| Section 4.2
36Not implemented in the current demonstrator program

59

<element name="elename">
<attribute name="att;">
<value-of select="avt}"/>

<value-of selec‘c="cwtll1 />
</attribute>

<attribute name="att;">
<value-of sele ct="avti "/>

<value-of select="avtfj"/>
</attribute>
[the converted body|
</element>

where (wtg is the jth XPath expression parsed from the ith attribute’s attribute
value template: The attribute value template (AVT)

foo{substring-after($clark, ’}}’)}
is, for example, parsed to

{’foo’,substring-after($clark, ’}’)}.
Attributes 4n the XSLT namespace not named space are not converted, though,
but are copied to the resulting element element constructor.

Variable resolution: Each stylesheet module is processed in a bottom-up, copying manner:

e Variable references, including those in bound attribute sets, are resolved, as far as
possible.

Global and local variable references are replaced by their definitions, except:

1. References inside a for-each instruction that refer to locally-bound variable
(in the same template) that transcend the for-each instruction, are not re-
solved. This is to maintain soundness of a later move of the instruction’s
body to a fresh template rule, forwarding the named bindings as template
parameters.

2. References to variables bound by XPath2’s for clauses, quantified expres-
sions etc. that declare intra-expression variables. These are pinpointed using
standard scoping analysis.

3. For variable declarations containing a sequence constructor, references to

these are only resolved in one case: <copy-of select="e'"/> instructions,
where e is a variable reference, are outright replaced by the content sequence
constructor®”.

3TExpressions referring to the current context item have been replaced by the initial context item already.
At this stage, there is also a possibility of removing copy-of instructions that have a stylesheet function in
their select expressions, replacing them by the sequence constructor of the function declaration. However,
the only situation where that would be worthwhile is when the function evaluates to a sequence of nodes —
we do not expect stylesheet authors to do the copy-of functions, then; named templates are the thing to use.

60

e All instances of use-attribute-sets, including those in bound variables, are re-
solved, taking care that attributes already present override set attributes properly,
and that sets override each other in the specified way.

e Each body of
<for-each select="e">
sorts
body
</for-each>

is copied to a template rule:

<template mode="m" match="child::node() | attribute::x | /">
<param name="v{" as="as;"/>

<param name="v;" as="as"/>
the converted body
</template>

where m is a fresh mode, v; - - - v, are the for-each-transcending variables men-
tioned above, and as; - - - asg are their declared types. The for-each instruction
is replaced by
<apply-templates mode="m " select="e">

<with-param name="uv" select="$v;" as="as;"/>

<with-param name="v," select="$v;" as="asy"/>
sorts
</apply-templates>

Template simplifier: Each stylesheet module is processed in a top-down, non copying man-
ner, replacing named templates, and splitting union match patterns:

1. Templates with both a name and a match attribute are modified to two templates;
a rule without the name and a named template without the match.

2. Named templates have a mode="m" attribute for some fresh mode m, and a
match="child::node() | attribute::* | /"
attribute added.

All
<call-template>
<with-param name="p;">

<with-param name="p,">
</call-template>

61

instructions invoking the named template are altered to®®

<apply-templates select="self::node()" mode="m">
<with-param name="position" select="position()" as="xs:integer"/>
<with-param name="last" select="last()" as="xs:integer"/>
<with-param name="p;">

<with-param name="p,">
</apply-templates>

The names of the templates are then removed.

3. All template rules have

<param name="position" select="position()" as="xs:integer"/>
<param name="last" select="last()" as="xs:integer"/>

prepended to their parameter list3®. All calls to the functions position() and
last() are altered to become references to variables of the same name, except
that position() inside for-each-group is left unchanged. This serves to hide
that call-template retains the focus (the values of the two functions, and the
context item) while the apply-templates that will replace it updates it.

4. All apply-imports and next-match instructions have their focus forwarded through
parameters in the same way as call-template. This serves to allow the focus-
altering apply-templates and the focus-retaining apply-imports and next-match
instructions to be treated uniformly later (the latter two are not replaced).

Template rules with a union match pattern are split into a set of template rules that are
identical, except that their match patterns each are a non-union subexpression of the
union.

Template rules that do not have an explicit priority attribute have one added, containing
the default priority computed from the match pattern of the rule, as by [15], Section
6.4.

Remaining named templates are unused, and can be removed.

APPROXIMATE SIMPLIFICATION

Key-killing: All function calls to the key function with key name k are replaced by the path
expression /descendant-or-self: :node()/k(k), where k(k) is the match attribute for
the key’s definitions, bound in the environment of the stylesheet module one step back.
However, if k(k) is absolute, no /descendant-or-self: :node()/ is prepended.

384s is bound to the XML Schema namespace, http://www.w3.org/2001/XMLSchema
391f some of these names are in use as parameter names already, the other names are consistently converted.

62

For-each-group: Each for-each-group instruction:
<for-each-group select="p;" g="py">body</for-each-group>

is translated to:

<apply-templates select="p;" mode="m">
<with-param name="current-group" select="p;" as="node()+"/>
<with-param name="current-grouping-key" select="p;/py" as="node()?"/>
<sort select="xslv:unknownCollation()"/>

</apply-templates>

if g is group-by or group-adjacent; otherwise, p1/ps is replaced by "empty-sequence ()".
The sort serves to indicate that sequences are reordered in some unknown way.

A new template is added:

<template match="child::node() | attribute::* | /" mode="m">
<param name="current-group" as="node()+" required="yes"/>
<param name="current-grouping-key" as="node()?" required="yes"/>
body
</template>

Inside body, function calls to current-grouping-key () are replaced by a variable refer-
ence to $current-grouping-key, and function calls to current-group() are replaced
by variable references to $current-group.

Template parameters: First, let us recapitulate what is left of variables and parameters:

e References to variables bound by sequence constructors and referred to from the
select expression of value-of and apply-templates are still present

e Stylesheet and template parameters are still present

There are different ways to proceed with template parameters, in order of growing
ambitions:

Leave for later: Not feasible. The later flow and validation analyzes are too difficult
to model conservatively with variables and parameters.

Smudge: All template parameter references are replaced by xslv:unknownSequence().
This is unacceptable, given that template parameters often end up in output.

Flow-insensitive resolution: All with-param instructions are partitioned by param-
eter name, and all variable-binding expressions for each partition is collected (those
that depend on a context node will have to be approximated; they cannot reli-
ably be moved). Every reference to a template parameter with some name is
now replaced by a choose, ranging over all bindings in the name’s partition, with
xslv:unknownBoolean test expressions. This is the approach suggested by [20],
and it was fine for XSLT'1, where the only nasty construct, RTFs, could be replaced
by xslv:unknownText ().

63

Declared-type based resolution: The XSLT2 as() type declaration for the vari-
able of parameter is used, replacing variable references by some other construct,
constrained by the declared type

Hybrid type-based and flow-insensitive resolution: This has the advantage over
a pure type-based solution that it will retain some precision the case of a pure
XSLT1 stylesheets, where variables and parameters are untyped.

Flow-sensitive resolution: If the effect of parameter binding on control flow can be
reasonably approximated — it can, if there are no parameter references in any
apply-templates instruction — then resolution could be performed after flow
analysis, sharpening the set of possible bindings for each reference.

Hybrid, with inference: As the above, inferring more specific types than declared,
where possible, as a luxury for the stylesheet author. For XSLT2, resolution of
template parameters can be improved over that over that of XSLT1, because they
may be declared required, eliminating the default binding to the empty sequence.

Currently, our implementation uses flow-insensitive resolution, because it automatically
emulates both parameter tunneling and the parameter-forwarding effect of XSLT2 built-
in templates: It is easy. For a real XSLT tool, put into the hands of users who do not
know these details, a flow-sensitive approach seems easier to defend.

Function call expressions and template parameters: After variable and parameter res-
olution, function call expressions still remain as non-path expressions that may af-
fect control flow or output. No attempt is made to statically analyze functions, and
stylesheet parameters are not resolved (by asking for a value). Instead, both of these
are approximated for value-of, copy-of and apply-templates using our type recon-
struction technique, and just left as-is for other instructions.

<copy-of select="e"/> instructions are converted to:
<apply-templates mode="m" select="e">
and a template rule is added:

<template mode="m" match="child::node() | attribute::* | /" priority="0">
<copy>
<apply-templates mode="m" select="child::node() | attribute::*"/>
</copy>
</template>

(this rule is re-used for all copy-of instructions converted, with the same mode m)

number instructions are converted to value-of

64

Scope copy-of value-of apply-templates other
global, exp resolve resolve resolve resolve
global, seq replace t t leave as-is
local, exp resolve resolve resolve resolve
local, seq replace t t leave as-is

Table 2: How variables can be dealt with: expression-declared variables are generally easily resolved.
sequence-declared variables can outright replace copy-of instructions referring to them by a copy of
the sequence, but are harder to deal with for other instructions — we suggest type reconstruction. In
XSLT1, sequence-bound variables were RTFs, and could not be referred to from apply-templates
instructions. In XSLT2, they can.

Scope | copy-of value-of apply-templates other

global | t t t leave as-is
local | resolve+choose-wrap resolve+choose-wrap resolve+choose-wrap leave as-is

Table 3: How parameters can be dealt with: Global parameters can, of course, at best be type-
approximated, unless one accepts a simplified stylesheet that only represents one particular binding
— in that case, the parameter can be treated as a global variable. Local parameters need resolution
and replacement of the referencing instruction by alternatives.

Experience with implementation of stylesheet simplification:

1. Namespace binding scoping makes stylesheet document restructuring painful! To
be certain of correctness, it is necessary to parse all XPath expression and QName
attributes, and resolve namespace prefixes to URIs. After restructuring, it is
again necessary to verify that all namespace bindings are still intact. XSLT2’s
xpath-default-namespace feature (that allows binding of unprefixed QNames
in XPath expressions to namespaces) is likewise scoped, and just makes it even
worse. A good brute-force technique might be to copy namespace bindings to
every node in their scope, before any restructuring is done.

2. Using parameters for forwarding variables and focus is not a problem in seman-
tics preserving simplification, but after approximate simplification, there is an
unnecessary loss of precision (which could be avoided by using fresh names for
the parameters).

3. It is felt, after the experience of implementing stylesheet simplification, and up-
grade it with backmapping, that it is a fine technique for research projects where
empirical data are used, helping reduce the number of entities necessary to ex-
plain. However, in a production setting where better backmapping and especially
better scalability (nested for-each expressions desugar in an all-out code explo-
sion) are needed, abstraction would probably work better than translation: Every
construct that evaluates an XPath path expression, given a context (focus), and
passes control to some other construct, could be abstracted the object-oriented
way, and the particulars — apply-templates, for-each etc. — could be made
as specializations of that. Likewise, sequence constructors could have their own
abstraction, with its own context set (see the flow analysis section), and a general
abstraction could be made of containers of sequence constructors.

Simplification has the advantage of staying &athin a well-known language (XSLT2) a
long part of the way, but in the present project, implementation of the simplifier was
disproportionally difficult, compared to the simplicity of the constructs that benefited
from it.

Splitting template rules with union patterns into single-path pattern rules s a great ad-

12.3 THE CORE XSLT2 LANGUAGE

We have selected not to formally specify a grammar for the core XSLT2 language, because
a carving out of every element and every attribute removed or retained would make a very
long and rather useless list anyway. Instead, we just assert that the core-language stylesheet:

e Is syntactically correct, less the xslv axis.
e Preserves any transform invalidity of the original (and possibly adds more).

e Hashad all call-template instructions invoking named templates replaced by apply-templates
instructions, semantics preserved.

e Hashad all for-each instructions replaced by a semantically equivalent apply-templates
and template rule construct (namespace nodes are ignored).

e Only has template rules; no named templates.
e Has no union template rule patterns.

e Has instrumentation data identifying cases of template priority conflicts introduced by
union pattern splitting.

e Has an explicit priority on all templates. In the templates that were created with a
fresh mode, the priority is irrelevant, though.

e Has had all literal text replaced by value-of instructions.

e Has had all literal result elements replaced by equivalent element instructions.

e Has had all literal result attributes replaced by equivalent attribute instructions.
e Has no copy-of instructions.

e May have function declarations, but these are not used from value-of, or apply-templates
instructions (except xslv:unknownSequence()).

e May have variable declarations, but these are not used from value-of, or apply-templates
instructions.

e May have template parameters, but these are not used from value-of, or apply-templates
instructions.

e Has no number instructions — so only value-of and copy can create text nodes.

hold after simplification. Also, all XPath2 expressions in the stylesheet not mentioned here
are retained fully, except that implicit axes have been made explicit.

66

XSLT 2.0 simplified . template schema— schema-
extraction less flow
stylesheet stylesheet rule set less flo graph
built—in schema flow flow
template repr. death
rules graph anal. anal.
input flow (;%Egicf})‘é‘g
schema process graph report
: datatype fraggent SG transform C?irtrilopg_
- BRICS library set assembly SG report
: Schematools | T/——— o M
output i N r-RNG output validation
{ converter —=
schema N P schema SG report
N N ,
document algorithm data structure

Figure 14: The overall data flow in the exploratory program implemented is rather involved: In-
put is on the left-hand side of the figure. BRICS Schematools is an external component used for
transform validation. The major components are the flow analysis, depending on a set of template
rule representations and an input schema, and the SG (Summary Graph) construction and assembly,

generating summary graphs for BRICS Schematools to validate.

On the right-hand side are the outputs that target fulfilling of our goals: A dead flow and code
report containing information on empty-selecting expressions and dead code, a competition report on
template priority issues, and a validation report on the overall validity of the transform output with

respect to an output schema.

67

13 FLOW ANALYSIS

In this part, we will present the algorithm devised as the main engine of our proposed type-
safe XSLT tool, the background definitions necessary to understand it, and the results of
some experiments performed to verify the design.

13.1 GOAL OF THE ANALYSIS

Flow analysis is the computation of a flow graph. The analysis is done on basis of a stylesheet
and an input schema, and the graph contains information that applies to any application of
the stylesheet to an input document that is valid with respect to the input schema.

The information derivable from the flow graph is essential in all subsequent analyzes in the
XSLT2 tool kit: The validator assembles its summary graph to resemble the control flow
graph; however, the summary graph is polyvariant, whereas the flow graph is monovariant.
Dead flow and code analysis, and virtually any other static analysis of a stylesheet will depend
on a good flow graph. The most important information derivable from a flow graph is:

e Given a template, the contert set of declared node types that may be type of the context
node of the template at some instance at runtime

e Given a template-invoking instruction (apply-templates, apply-imports or next-match),
a context type and a template, the edge flows of declared node types that may be se-
lected by the instruction when its context node has the context type, and flow to the
template.

The very basic algorithm is taken over from previous work ([23]), but most of its superstruc-
ture have been redesigned, to satisfy new criteria:

e Aiming for a tool that can enhance an XSLT2 development process, the control flow
algorithm must, besides computing flow, also be able to provide the user with informa-
tion on what we will call absent flows — template recursions that do not materialize at
run-time because the input schema does not permit the necessary structure for them
to happen.

e XSLT2 has several new control flow-related constructs that also need to be accounted
for: Mode values and next-match.

e Flow analysis is largely XPath analysis. The new features of XPath2 needed to be
included.

e XML Schema is a larger language class that DTD, and some features of the old algo-
rithm needed to be extended for that.

68

e It was found that the worst obstacle for successful application in an on-line editing
context was time and memory performance. The work had its focus turned towards
that, and resulted in a new algorithm that was much more satisfactory.

The overall contributions of this work to static XSLT flow analysis are:

1. An extension of the algorithm to report absent template recursions
2. An extension of the algorithm to work with XSLT2 and XPath2
3. An extension of the algorithm to work with XML Schema

4. A new flow algorithm, with significantly improved time and memory performance, com-
pared to the previous algorithms. All the extensions to the algorithm were incorporated,
and there was no loss of precision.

The description of the algorithm is rather detailed, making the result of the work practically
implementation-ready.

Section 13.2 presents the problem to be solved in sufficient detail and Section 13.3 describes a
general fixed point solution, allowing functions representing the different restrictions on flow
that will exist in the combination of the stylesheet and the input schema to be “plugged” into
it.

Section 13.4 presents a function modeling how template modes restrain flows, and Section 13.5
presents a function representing the semantics of the different template-invoking instructions.
No XSLT flow analysis would be complete without these.

The rest of the functions all examine XPath path expressions to determine if a flow is feasible:
Section 13.7 describes a simple, efficient but only moderately precise function, that will be
put into service as an early eliminator of most infeasible flows. The remaining functions are
more precise, but also computationally heavier: The abstract evaluation function of Section
13.8 and the ancestor language function of Section 13.9 are both candidates for the final stage
of the analysis, where the few, hardest to rule out flows are found. It will be shown which
different advantages and disadvantages the two have.

Section 13.11 describes how the functions can be composed into a more efficient flow analysis
algorithm without loss of precision, and an experiment is performed, finding a much filter
method for boosting its performance than what was previously used. More experimental
results are presented, indicating a substantial improvement compared with previous work,
but still with some things left to be desired.

Section 13.11 and Section 13.13 present two new algorithms invented in this work to decide
certain aspects of flow feasibility in an apparently less general, but still simple, and much
faster way than before. We will then prove that the new algorithms have at least as good
precision as the composite algorithm they replace, and that there is no loss of generality.

69

A final, composite algorithm will then be presented in 13.12, and a series of practical test
runs will show that its precision is the same as, or better than that of previous algorithms,
but its application area is wider, and it runs much faster and in much less memory.

Finally, Section 13.15 concludes.

13.2 DEFINITIONS

Under pedantic correctness, the names of some of the functions defined below should be
parameterized by the simplified stylesheet 7', since they may change when T is changed. We
omit that, and just refer to a given T where necessary.

Let M be the XSLT2 mode names; the set of valid QNames, plus the special token #de-
fault; a default, unnamed mode.

Let R be the template rules in 7', and Z be the template-invoking instructions in 7'. Let

match : R — XPathy,uster, return the match pattern of each template, and

select : T — XPath,,;, return the selection expression of each template-invoking instruction:
For an apply-templates instruction, that is its select expression; for the remaining template
invoking instructions, self: :node() is used, enabling a uniform treatment of all template-
invoking instructions while preserving semantics.

r; : T — R returns the template rule containing a template-invoking instruction.

We base the analysis on the context model of [15], Section 5.4: At runtime, at any given time
during the execution of a stylesheet, a certain template rule, the current template rule is in
control, a certain XPath node is the contert node (the official name is now context item, but
it is known for sure that context items of templates are nodes), and a certain mode is the
current mode. Statically, we abstract runtime instances to their types, and call the declared
node type (see 6.4) of a context node its contezt type.

xslv:unknownSequence () select expressions in apply-templates instructions are just con-
sidered incompatible with everything in the analysis.

The flow described is the run-time transfer of control between template rules, that carries
along with it a context node and a mode. The term contezt flow will also be used; this is the
mapping of one context type to a set of context types, when a path expression is abstractly
evaluated.

An edge flow with mode m and context type ¢’ from a template-invoking instruction i to a
template rule r’ is a static abstraction that is may happen that a node of type ¢’ flows from
i to r’ during a valid execution of T, invoking r’ under mode m.

The goal is to construct a graph that abstractly describes, for any valid execution of S, the
DNTs that may become context types for each template rule, and in turn which DNTs may

70

/ ,
/ ’
/ /
/ /
| I
I N
I
I ! |
| \ ,
| \ N
| \
AN
| N
| ~
|
|
|
\
\
\
\
\
N .
< phi
pre
~

U (surrounding the figure) is a universe of all edge flows that can be described in terms of
some given stylesheet and schema.

F,, is the set of edge flows that may exist during execution of the stylesheet, given that
input documents are valid with respect to the input schema, also known as the exact
edge flow set.

Gpres ®1 and ¢y are examples of upper approximations of I}, — containing all of it, and
possibly more.

N is an example of a set of describable edge flows that a lower-approximating negative flow
algorithm can guarantee will never exist during execution

P is a lower approximation of F,.
Static analysis precision can be enhanced by:

e For a single flow, using as an upper approximation ¢; N ¢2, instead of just either
e If, for some reason, ¢ is not used, ¢1\NV is better than ¢, alone.
Static analysis performance can be enhanced by:
e First excluding most of U by running a complete analysis, using a fast test like ¢,

e For a single flow, if the ¢; test runs significantly faster than the ¢o test, run the ¢;
test first, and then run the ¢y test if the flow passed ¢ (filtering)

e For a single flow, if the P test runs significantly faster than the most precise
upper-approximate test, run that test only if the P test was negative (stuffing).

We used all of these observations in the design of the flow analysis algorithm.

71

flow from which template-invoking instructions to which template rules:
G=(C,F)

where

>4 is the declared node types of the input schema D;,

C : M — R — 2%4 describes the context sets for the template rules. These are upper
approximations of the set of types of possible context nodes for a template € R

F: M —¥%;— T — R — 2% upper-approximates sets of edge flows from a template-
invoking instruction € I to a template € R , given a current mode € M and a context
type € X4

Conservativity of the whole validity analysis requires the graph to be “on the large side”,
yielding these requirements:

Conservativity of context sets: If there exists a document valid wrt. to d, such that at
some time during application of 7" to the document, m € M is the current mode, g € ¥y
is the current context type and r € R is the current template, then ¢ € C(m)(r).

Conservativity of edge flows: If there exists a document valid wrt. to d, such that at
some time during application of T to the document, the current mode is m € M, the
current context node has type ¢ € ¥; and the template-invoking instruction i € 7
transfers control to the template rule 7’ € R, with a context node of type ¢’ € X4, then

¢ € F(m)(q)(@)(r").

Integrity: The context set of every template rule must contain the context types of flows
that flow into the template rule.

Nothing was said about anything required not to be included in C' and F, so an obvious
solution that satisfies the requirements is, of course, to include all DNTs in all values of C
and F'. This “solution” would hardly lead to anything that is able to provide the user with
interesting information. As we shall see later, a “larger” graph uniformly transforms to a
larger set of spurious errors — situations that will be reported as static errors but really are
the effects of approximations in the analysis.

Two of our ultimate success criteria for an analysis tool in a wider setting return here:

e To maintain a pleasant user experience — the algorithm must have good time and
memory performance

e To build user confidence — spurious errors should be kept to a minimum

The engineering challenges of this analysis are:

72

e Flow analysis should be efficient enough for on-line evaluation in an editor on a standard
desktop computer

e The constructed control flow graph should be accurate enough to avoid most spurious
errors. (one previously used success criterion was to have a generic identity transform
validate OK with all schemas in a test set, plus evaluation of a corpus of practical use
cases)

13.3 THE FIXED POINT FLOW ALGORITHM

Traditionally [24], a fixed point algorithm starts out with a lattice, a control flow graph
and a set of constraints, but in this case, a control flow graph is part of the result, not a
prerequisite. The “control flow graph” used at start-up is a directed graph with a node for
every template rule and every template-invoking instruction. It will have an edge from every
template rule to its contained template-invoking instructions, and one from every template-
invoking instruction to every template rule. The lattices used are (at largest) subsets of
Ed x M.

Under the fixed point algorithm, these constraints will satisfy the requirements:

Initialization: The initial template rule as of the [15], Section 2.3, that is, the template
rule r that is initially invoked with the initial context type ¢ under the initial mode m,
must have ¢ € C(m)(r).

Flow propagation: When some node type ¢ becomes a new context type of template rule
r under mode m, for each template-invoking instruction i : 7;(i) = r and for each
template rule r’, then if there exists a document valid wrt. d, such that a context flow
at r maps a node of type ¢ to a node of type ¢/, and template 7’ is directly invoked
with ¢’ as its context node, ¢" € F(m)(q)(i)(r").

Integrity: This final constraint simply enforces that in-flowing types become context types:

F(m)(g)(@)(r) € C(m)(r)

For now, we will solve the seemingly difficult flow propagation constraint simply by defining
a class of ®-functions fulfilling it, and then look for realizations of such functions.

$-FUNCTIONS

Define a ®-function to be any function ¢ : M x Xy xZ x R — 2%, such that for the stylesheet
S, for any input document valid wrt. to d, and for any combination of (m,q,,r") of

e a mode m,

e 3 DNT g,

73

e a template-invoking instruction 7 in T’

e and a template rule r’ in T,

¢(m,q,i,7") is a superset of the types of the nodes that may be selected by i when m is
the current mode, ¢ is the context type, and 7;(¢) is the current template rule, and become
context nodes of a flow from i directly to r’.

If ¢ is a ®-function, then the constraint

q € C(m)(r) = ¢(m,q,i,7") S F(m)(q)(i)(r')

where » = r;(i), will by the definition satisfy conservativity of edge flows locally, and we
can rely on the fixed point algorithm, with suitable initialization, to satisfy the two other
conservativity criteria.

Notice that ®-functions have the property that the intersection ﬂj ¢; is a P-function if all of
¢; are.

In the following, we will present six ®-functions:

e A mode-compatibility function was designed for the extended mode system of XSLT2,
and is a new design.

e An apply-imports/next-match priority compatibility function is also a new design,
accommodating for the template-invoking instructions that restrict the range of their
target template rules. The apply-imports instruction was apparently ignored in pre-
vious work on static XSLT validation|[23].

e A schemaless function; originally the idea of [11], and sharpened and extended for
XSLT2 by us.

e An abstract evaluation function, which is a re-branding of previous work on static XSLT
analysis[23], extended for XSLT2. Later on, it is extended and refined further, and its
internals are put to new uses.

e An ancestor language function that was also derived from previous work ([23]), and
extended for single-type schema languages.

e A new fast flow function, which is a primary result of this work, based on composing
the above functions in a new way, and using new sub-algorithms.

After a detailed description of these functions, we are able to describe the special character-
istics of each of them, and describe the experiments and results of composing them into an
analysis algorithm.

74

13.4 A MODE-COMPATIBILITY $-FUNCTION

XSLT2 template modes allow stylesheet authors to produce different transformation results
for multiple transforms of the same input node by restricting flow, so a flow analysis can
benefit from incorporating modes. Each template rule has a set of modes associated (from
the mode attribute of the template rule) of incoming flow that the rule applies to, or instead,
the special token #all, which means that the rule applies to flow of any mode. A mode is a
member of M.

When a template rule is invoked, a mode is passed along with the rest of the dynamic context,
becoming the current mode for the template invocation. Each template-invoking instruction
in the template rule in turn selects a new mode, and, if the instruction passes control to
other template rules, it does so only to those rules that are applicable to the new mode. For
apply-templates, the mode may be given in the stylesheet, or a special token #current may
be used to pass the current mode. The other template-invoking instructions are hard-wired
to #£current. Our first ®-function will model this. Let:

mode, : R — 2M U {#any}

return the mode list for each template rule in the simplified stylesheet S, and let
mode; : T — M U {#current }

return the mode of each template-invoking instruction in S.

m if ¢ =<apply-templates mode="m" .../>
#current otherwise

mode; (i) = {
The following functions reflect the semantics of template modes:

app(M) returns a set of modes to which a template rule with mode list M is applicable:

app : 2M U {#all} — 2M

M if M = {#all}
app(M) { M otherwise

modeflow (m, ¢) returns the mode of the flow out of some template-invoking instruction with
mode m, given a current mode c. It simply states that #current passes on the current
mode, and any other mode attribute specifies a new mode:

modeflow : (M U {#current}) x M — M
B { ¢ if m = {#current}

modeflow(m, c) m otherwise

The mode-enforcing ®-function now becomes:

75

| root:(6,0)

import import

href=b href=c

| b:(1,1) | | c(4,2) |

import import

href=d href=e
| d:(2,2) | | e(33) |

Figure 15: An import tree. The label of a stylesheet level [is formatted as: name of [: (P(1), P, (1))-
The built-in rules as a level is only conceptual.

. - live if modeflow(mode;(i), m) € app(mode,(r))
win (M, 1,7) - { dead otherwise
. Bq if wi(m,i,r’) = live
’ o b
Pm(m,q,1,7") = { ® otherwise

It rules out that any flow ends up at template rules that are not applicable to the mode of the
flow. This will not be the last time we will see modes, however: Later on, when introducing
context-sensitive ®-functions, we will make edge flows variant in modes.

A fixed point algorithm over this ®-function will have subsets of M with and the subset
relation as its lattice, causing a mode propagation to be queued for each time a mode flows
to a template rule for the first time.

13.5 AN apply-imports/next-match ®-FUNCTION

This ®-function that models the semantics of the apply-imports/next-match instructions:

At the stylesheet load time, the import tree, as described in [15], section 3.10.3, is constructed.
Then, the stylesheet levels are numbered in the order in which a post-order traversal of the
tree will visit them:

P:L—N
A lowest precedence of imported levels for each level is assigned:

P, : L—-N
P,o(l) = min{P(l)} U{P,(I")|l' is imported from [}

Define P, : R — Q as the priority of each template rule, and the relative strength of template
rules as the composition of import precedence and priority:

76

l #default

<template mode="#default’ ...>

§<apply—templates mode="#default’ .../>
R R R R R R LR LR ERRRRREE #default

m
<template mode="a b’ ...>

#default #default

Figure 16: An example of a mode flow graph.

r1 > 19 < P(r1) > P(re) | (P(r1) = P(r2) A Py(r1) > P.(r2))

Now, if [,.(r) is the stylesheet level that contains the template r, and 1,;(i) = I,-(r;(7)), we can
pin down the largest set of template rules that may receive flow from a template-invoking
instruction (as far as apply-imports/next-match is concerned):

R if ¢ =<apply-templates.../>
o(i) = {reR: Pn(i() <
P(l.(r)) < Ppn(l,(3)) } if i =<apply-imports/>
{reR: l;(i)>r Nr2li)} ifi=<next-match/>

The final ®-function becomes:

wa(m,a,r) =

live ifrew(a)
dead otherwise

g ifw (CL m 7",) = live
4 N a\d, M,
¢z (m7 q,a,r) { 1} otherwise

A fixed point algorithm over this ®-function will have as its lattice just ({done, notdone}, {done J
notdone}), limiting the number of visits to each template to 1.

13.6 SELECT-MATCH COMPATIBILITY

The following functions all determine select-match compatibility between template-invoking
instructions and template rules by examining compatibility properties of select and match
XPath expressions.

7

We will use the notation

p
u+——"7v

x
meaning: Given a XML tree fragment x, and a node u in the tree, evaluation of the XPath2
path expression p with w as the initial context node results in a sequence that contains a
node v.

This notation will allow for simpler description of the tests that determine if edge flows exist
from some template-invoking instruction to some template rule.

A necessary requirement for an edge flow from template-invoking instruction ¢ to a template
rule 740

Necessary requirement for select-match compatibility:

There exists an XML tree fragment = containing the nodes n1, ng and ns, so

select(i) match(r')
ny —— ngand ng +—— ng
x T

An abstraction of this to undeclared node types is the basis of the schemaless ®-function
in the next section. Another abstraction to declared node types is used in the abstract
evaluation ®-function in Section 13.8 and, with further refinements, in the ancestor language
®-function in Section 13.9.

13.7 A SCHEMALESS ®-FUNCTION

The next ®-function in our flow analysis is capable of finding upper bounds for the values of
the function C; the context sets for template rules, as well as for the values of the function F.
The algorithm is a sharpened version of the Raw-TAG (Template and Association Graph)
graph algorithm presented by [11]. The term “raw” refers to the algorithm not considering d
— this is deferred to a later, input schema-aware ®-function. The purpose of doing this is
twofold: First, it will find a number of apparently very plausible flows that the schema-aware
analysis will show not to exist after all — what Dong & Bailey call “invalid template calling
relationships”, and we term “absent flows”: Control and context type flows that depend on
structural features of the input tree which are not permitted by the input schema, and might
surprise a user by their absence.

The second reason for wanting to perform this analysis — even if not interested in absent flows
— is that it is a ¢-function that can be implemented very efficiently, so that when determining
the absence of any flow at all for some combination of template-invoking instruction and
template rule, this fact can be stored, and save us from coming to the same conclusion in
a later stage of the analysis, when using a heavier ®-function. In particular, the raw-TAG

40This models on the select-match semantics of XSLT1, and should be updated. For the present purpose,
it does not harm, though.

78

®-function is contert insensitive — it does not depend on its context type (q) parameter,
which helps keep its associated lattice low.

This ®-function uses a select-match compatibility test. The tests approximate towards too
large context flows: A affirmative result for some certain context type, mode, template-
invoking instruction and target template rule is not conclusive. A negative result is.

The analysis makes no use of input schema knowledge, but it is still accurate down to the
level of element and attribute names.

DEFINITIONS

Q is the (infinite) set of valid namespace-qualified XML element or attribute names. The
undeclared wildcard element type e, represents any number of elements, each with with any
name, and likewise, a, represents any number of attributes, each with any name. These are
needed as finite representations of unknown elements and attributes in a lattice and in an
implementation. ¥, is the set of all undeclared node types, which are distinguishable in the
XPath data model (no schema is used, so there are no declarations):

£, = {e}Uledae Q)
Ay = {a.}U{aglq € Q}
&, U A, U{root, pcdata, comment, pi}

™
S
Il

Abstracting —— to undeclared node types,
Uv-Lv

means: Given a set of undeclared node types U , there exists an XML tree fragment x with
a node n of some undeclared type € U, n s vand v e V.
x

Using the abstraction, and allowing the types of ny and ns of 13.6 to be any undeclared type
(thus not restricting anything), a select-match (z,7’) compatibility condition for an edge flow
of type ¢’ becomes:

select(t) match(r’)

Yo — ' {d}and X, — " {}

DoMAINS

U : XPath,q;, — 25

t ; test test
U, Ugsis, Ufeste Ufeste 9% — 9%

79

PATH EXPRESSIONS

These functions simulate evaluation of an XPath path expression on a set of nodes: They
iterate step by step, from the left to the right, and for each step, they simulate a context
flow over the axis step, and a filtering of nodes by the node test of the step. For intersect
expressions, a good approximation is possible, because nodes in a concrete evaluation inter-
section will certainly have a type in the intersected type set. There is no good approximation
for except, though: It may still select nodes of a type in the result of abstractly evaluating
the right-hand side.

vt (o) { U{i(aitrouie (V) if a = attribute
a: U7 (UF*(2)) otherwise

U (€) = {root}

U (a::t) = U ({e.,a.,root, pcdata, comment, pi})

U (Pla:t) = U (U(P))

U (p1 intersect pa) = U(p1) NU(p2)

U (p1 except p2) = Ulp1)

The function U(p) computes an upper bound for {X C ¥, |3, s X }, although approxi-
mately; it starts from a finite representation of ¥, and recurses once for each step. The €
mapping maps leading /’s to the root node type.

WALKING THE AXES

{e«,comment, pi} if root € Qand QNE, =0

aris —(Q) = {e«, pcdata, comment, pi} if QNE, # 0
0 otherwise
{e+} if QN (& U{comment,pi}) =0

N

wis (@) = Q1 (A, U {text}) # 0
{e«,root} if QN (£, U {comment, pi}) # ()
0 otherwise

amis @) = { {e,root} if Q # {root} AQ #(

ancestor 0 otherwise

U e (D) = US()

80

axis (Q) —

preceding
{ex,root, pcdata, comment, pi} if QN (£, U {pcdata, comment,pi}) # ()
0 otherwise
U}Lgllliwing(g) =
{e«, pcdata, comment, pi} if QN (€, U{root, pcdata, comment,pi}) # ()
0 otherwise
gf;csedmg—sibling(g) =](clglﬁ)wmg—sibling(ﬂ) =

{e., pcdata, comment, pi} if QN (€, U{pcdata, comment, pi}) # ()

0 otherwise
) @ =90 |
gﬁézstor—or—self (Q) = gﬁézStOT(Q)U ge:%‘s(ﬂ)
clllerszcsendant—or—self (Q) = g:szcsendant(ﬂ)u gerl;”s(ﬂ)
axis (Q) — {a*} iran 8u 7& 0
attribute N 0 otherwise
zslv) = {e}
These functions rather straightforwardly simulate axis steps. U4 / U4¥is . . returns

everything that can be a child, if any node type in the argument set can have children.
Ugg,}'gnt returns “any element” for argument sets of text and attributes only, and adds the
root node type if there are also elements, comments or processing instructions. Otherwise,
the argument is empty or it is the singleton {root}, which have no parents. The rest of the

axis step functions should need no further explanation.

NODE TESTS

Abstract node tests discard those types whose instances cannot pass the XPath node test.
Therefore, the result set is always smaller than the argument set, or made more specific
through the substitution of an undeclared wildcard for a concrete type.

{aq} ifa, €
Uiesta (Q) = {aq} ifag €

0 otherwise
Utesta (Q) = QN A,

{eq} ife,€Q
Uuieste (Q) = {eq} ife, e

0 otherwise

81

Uteste Q) = ané,
Unod (@) = U () Q

Uicart @ = Ugi (©) = Qn {pedata)
Cltsfft;nmt() @) = zszz:nent() () = Qn{comment}
Uyt (@) = Uyts(®) = QN {pi}

e () = Uyiriuseta (@) = Uy
attributc())= Uastrivure-) Q) = Ult(Q)
attribute(q) Q) = attribute(q.!) Q) =0

element(q)) = Uetement(a. Q@ =0

clement(a) (@) = Uifimient(aa) Q) = Ueste(Q)
Cioment(s) (@) = Uiorent(ot) Q) = Ult(Q)
e etement@) (D = Ulinte e atrinieiqy (D) = 0
:zlsll;na—attribute(q) Q) = Ut Q)

cehemaclement(a) (D) = UESt Q)

doement—node() () 0

Ulpeniment—node(y () = 2N {root}

The different naming of the test, and test., name tests serves to forward information to
each name test from the axis step preceding it, whether the principal node kind was at-
tribute or element. This influences the semantics of name tests. attribute(), element (),
schema-attribute () and schema-element () are XPath2-specific node tests, which may ex-
amine the schema-declared types of elements and attributes, as well as element substitution
groups (see...). Because the tests do not use schema information, there is no choice but to ap-
proximate to the larger: element() and attribute() ignore types and just match on names,
and schema-element(q) matches on any element, since any element is potentially member
of a substitution group headed by e,. All signatures for processing-instruction(...) are
represented as just pi(...) here.

The different overloads for the item tests schema-element(), schema-attribute() (typed
or not, nillable or not) are all treated the same, and trivial repetitions have been omitted;
the same goes for document-node () that may take an element test as a parameter.

THE ®-FUNCTION

. B live if U(select(i))NU(match(r))
wulm,,r) = { dead otherwise
Y if wy(m,i,r") = live

qbl(quviar,) = { @

otherwise
The N operator is a nonempty-intersection test that considers e, and a, semantics.

It might seem wasteful to reduce selections from 3, to emptiness or not, throwing away
the type information. However, without making use of any schema knowledge at all, any

82

fix ref

information gained is readily lost: Most select expressions contain steps over other axes
than self, which causes a loss of almost all information that could have been saved. Besides,
abstaining from recycling (almost worthless) information lowers the lattice for the fixed point
algorithm.

On the other hand, it may seem unnecessarily complex to evaluate every step of an expression,
given that any information about elements selected by name etc. in all but the last steps are
lost anyway. However, the ® function is still slightly more precise this way while remaining
simple conceptually, and , in the whole validation process, any performance cost of this will
hardly matter. If desired, U in the ¢, expression could be replaced by U’:

U(Pla:=t)y=Ula::t) .
The results in this report were obtained with the original, all-steps variant of ¢,*.

For the fixed point algorithm over this ®-function, the lattice will be M, with the subset
relation as ordering. This will cause flow propagation each time a new mode reaches a
template rule.

13.8 AN ABSTRACT EVALUATION ®-FUNCTION

Like the schemaless function, this ®-function is a select-match compatibility test, further
taking into account a context type and the input schema of the analysis: The result of this
test depends on the value of the context type parameter (q).

The idea of an abstract XPath evaluation select-match compatibility test originates from [23].
We have sharpened it, extended it for XPath2, and, as part of the extension of the general
XSLT static analysis algorithm from local-type to single-type schema languages, altered it
to work over declared node types, instead of over declared node names as earlier: Nodes with
the same name, but declared differently, are distinguished.

Abstracting —— to DN,
U-Lv
d

means: Given a schema d and two sets of DNTs U and V, there exists a node n of DNT
u € U in an XML tree fragment = that is valid wrt. d, so that

n—vandveV
X

A sharpened version of the edge flow condition, now considering schema restrictions, is: There
exists an XML tree fragment x which is valid wrt. to d, with a node n; of declared type ¢, a
node ns of type ¢’ and a node ng, so that

1A few trial runs with the U’ version were performed, showing it to be slightly less precise and slightly
slower than the original version.

83

o o
= =
o o
o o
S ~
o (9]
= =
e 2
o o

Figure 17: A pair of incompatible intermediate steps (the first steps of both expressions) that make
the path expressions incompatible for the schema graphed.

The figure illustrates that if beginning abstract evaluation of each expression from context type a or
y, the intermediate context sets after both first steps are disjoint but nonempty, making the steps
incompatible. After a 2nd step, the two sets again have a nonempty intersection. Evaluating the
paths separately, as in the abstract evaluation test, does not detect the incompatibility.

select(i) match(r')
no— N and n3 +— " ng
xr

which implies:

select(i match(r
far "2 g/} and 5, " (g}

The function S(p,(?) upper-bounds {X : Q % X}

Compatibility testing is composed from abstract evaluation of single XPath expressions sim-
ply as:

q € S(select(i),{q}) N S(match(r'),3y) .

It should be obvious that DNTs not in the intersection of the select and match evaluation
either are not possible results of the selection expression, or do not match the match pattern.
However, because the test performs the two abstract evaluations independently, it tests the
expression and the pattern only “end to end” — any effect that incompatible intermediate
steps may have on compatibility is lost: Pairs of non-final steps of the two path expressions
that have an empty intersection of accepted node types, and effectively make the expressions
incompatible. Figure 17 is an illustration of one incompatible intermediate step going un-
noticed. This loss led to [23]’s development of an even more precise test, described in the
following section. The present test it still rather powerful, though: It has excellent time and
memory complexity; it is conceptually simple, and precision is still quite good.

The abstract evaluation test works similarly to the one for the schemaless flow grapher, except
that it considers the constraints of a schema, limiting the sets of types that each axis step
generates, and each node test accepts. The general explanations for each group of functions
are as for the schemaless abstract evaluation functions.

84

DOMAINS

S : XPath,,q, ¥ 2% —; 9¥a

; :
St Savis Gpeste gyesta : g%a —, 2%

PATH EXPRESSIONS

sstr (q) { SQ:Z“(S%?M@(Q)) if o = attribute
* S5k (89715 (Q))) otherwise

S (€,82) = {root}

S (a::t,Q) = S

S (Pla:=t,Q) = SIP(S(P,Q))

S (p1 intersect pz) = S(p1) N S(p2)

S (p1 except po) = S(p1)

The function S is the recursive abstract XPath evaluation function. The ¢ mapping maps
leading /’es to the root node type.

WALKING THE AXES

nggf;lfi () UnECd(w)/\wEQ Sy(n)
parent (@) = {nln € Py(w) Aw e Q}
ais Q) = fin(Seis(9) U SIS0 ()
descendant (82) = Jiw(Seyin() U Sera(Senia(€2))
gavis @ = { Yi\Ag if Q# 0 and Q # {root}
preceding 0 otherwise
gazis @ = { Ya\(AqgU{root}) if Q#0
following 0 otherwise

gfeigedmg—sibling (Q) =
gaxis o (Q) — { Ed\(14d U {I‘OOt}) if Q\-/4d 7é 0
following—sibling @ otherwise
s @ = @
gg;jgendant—or—self (Q) = Sgg;jgendant U Sggllfs
gzéf:stor—or—self (Q) = gﬁ(gswr U gerlzfs
attribute (©) = {nln € Ay(w) N we}
Saxis (Q) = {All element declarations made at stylesheet simplification}

The U,y (w) A wea Siq(n) expression on the child axis step is one of the “blessings” of XML
Schema,; it selects all declared substitutes of all element declarations (explicit or implied from
derivation by extension) in).

fiz(f(x)) means fixed point; the function f is applied repeatedly to its value until f"*!(x) =
f™(x), which is the result. All of Cy, Py and A; and S}j were defined in Section 6.8.

85

NODE TESTS

(Variable names are bound where mentioned on the left hand side, otherwise unbound)

Sgeste (Q) = OnN {62 c Ed}
gueete Q) = Qné&
SéeSta (Q) — Q M {af] c Ad}
gyeote Q) = QNAy
teste _ testy o
Spotcy (D = Spay ()= 0
St:;t?) (Q) = St:itl(l) (Q) = QN {pcdata}
z(c;irtzem,ent() Q) = Sﬁi‘:ﬁ‘;ﬂem()(Q) = QN{comment}
Swey @ = S = en{pi
%itsv?bute(*) (Q) = SiéSta (Q) 4
aitsr(ilbute(*,t) (Q) = {a; € Q|Td(t,a;) = true}
Zitsitilbute(n) (Q) = SﬁéSta (Q) 4
Ziﬁ?bute(q,t) Q) = {a; € Séesml(QﬂTd(t,a;) = true}
zizt;ma—element(q) (Q) = {efl’ € S; (6751 € Q)|Te(elqa 6{],) = true}
S%?esirebent *) Q = Stt]eStE (Q)
€Ste teste
Selement q) Q Sq (Q)

teste
element(,t7)

(

(N . .

(= {e; € QTy(t, e,) = true}
teste (

(

(

{el € QTy(t, €,) = true}

A~~~ /N /N /N~
(o Ne)

~— O~ ~—
I

element(q,t?)

Seement(e) () = Seicrensear) N {a € TalNa(q) = false}
Siiiﬁient at) Q) = Szleg;ent(q,t?) N{q € X4|Na(q) = false}
S%Zez'ririent(q) Q) = S%Z%r?ent(q,t) () =0

S attribute(q) @) =5 attribute(q,t) () =0

S zizteama—element(q) @) =5 ﬁiiﬁfma_atmbm(q) @ =10
Szizteama—attribute(q)) = SéeSta

Sg}g\%“s(Q) () Sg}g\%“s(Q)(Q) = QN

THE $-FUNCTION

da(m,q,i,7") = S(select(i),{q}) N S(match(r'),Xq)

The lattice for the associated fixed point algorithm is here considerably higher than in the
previous algorithms: (259m¢a*M) again reflecting that the target of a flow depends on
both its context mode and its context type.

Again, many functions defined in Section 6.8 are used: The type tests Ty and T, that mimic
derives-from of Section 2.5.4 of the XPath2 Recommendation ([12]), and Ny that can tell if

86

a DNT is a pseudo-type for a nilled element type.

This function presents the best modeling of XPath2/XML Schema constructs, and its im-
plementation is very efficient (and done in all but an afternoon from the above formulae),
but it has the weakness of not detecting incompatible intermediate steps. The next (and last
non-composite) function presented will improve on that.

13.9 A HIGH-PRECISION ANCESTOR-LANGUAGE ®-FUNCTION

Ancestor language select-match compatibility testing is already a classic in static XSLT anal-
ysis ([23][20]), and the function presented here refines further upon it. As the abstract eval-
uation ®-function, is was extended from working only over declared node names to working
over declared node types, as a consequence of the upgrade from local to single-type schema
languages, it is no longer possible to simply map names to types, as before. This was dealt
with by introducing a rather performance-costly type search, that was later improved.

This project was originally conceived to just extend the traditional flow analysis, using this
function composed with the mode, apply-imports/next-match and schemaless functions,
and with some of the internal mechanics of the abstract evaluation function as helper com-
ponents where necessary. To be able to better compare this approach with a new one that
has superseded it*2, we will describe it in detail.

The fundamental idea of the function is, as we have seen in Section 6.6, that ancestor lan-
guages in DTD and XML Schema are regular and mutually disjoint. XPath2 path expressions
that use only downward axes (those that map nodes to their descendant nodes and their at-
tributes), or the self axis, can also be translated into regular expressions, and in such a
way that the languages of these REs will have a nonempty intersection with the ancestor
languages of the DN'Ts that match the path expressions. In particular, a select-match com-
patibility test can be made by translating the selection and the match XPath expressions
to two regular languages, and then intersecting them to obtain a single language containing
ancestor strings of nodes that are both selectable by the selection expression, and match the
match pattern.

This test is superior to the abstract evaluation test, because incompatible intermediate steps
are considered, and there is a further sharpening technique available for it, which we will call
path extension: Getting more potential incompatible intermediate steps from match pattern
of the template rule that contains the template-invoking instruction that is the source of the
flow tested. With these qualities, this test is, as already demonstrated by [23], sufficiently
precise for all cases seen in real-life XSLT except the few very most pathological.

42this function is now redundant, but still exists in the demonstrator application, and can easily be plugged
in as the active flow algorithm.

87

o o
= =
o o
o o
S ~
o o
= =
o o
o o

Figure 18: The ancestor language test detects an infeasible flow: £(X*%bd) N L(X%cd) =

13.10 REGULAR TRANSLATION OF PATH EXPRESSIONS

The desired regular expressions must have the conservativity property:
{a} = {d} = anla(¢') N E3R(p) # 0

Good precision is the converse:
anlg(¢)NE5R(p) #0=¢q % q

Define I'; to be the subset of X; of node types that may appear as content:
'y = &; U {pcdata, comment, pi} .

In the regular expressions following, we will loosely use subsets and elements of X4 to represent
the names of those subsets or elements, as not to clutter up the regular expressions with

(u(--))-

Rather obviously, non-downward steps are generally impossible to translate to regular lan-
guages over ancestor strings, as this would require some sort of negative-length language REs
— upward steps truncate an ancestor string, sibling steps alter the last symbols, and before-
or after steps have all sorts of effects. Fortunately, XSLT2 patterns are composed of only
downward steps, and can all be translated.

Assume for now that all XPath2 path expression p uses only downward steps (a fix for non-

downward steps will be made). A quite precise translation, including node test sharpening,
fulfilling conservativity is:

88

R(p1) + R(p2)

R(q) N S5.RUH (1)
R(q).R%i(a) N X5.RIest ()
Reeis(q) M 5% Rtest (1)

R(qdescendant: :t) + R(qself: :t)

root

if p has the form pq | po

if p has the form self :: ¢

if p has the form ¢ self :: ¢
and R(q) =€

if p has the form ¢ self :: ¢
and R(q) # €

if p has the form qa :: ¢
and self € a and R(q) # ¢

if p has the form a :: ¢

and self € a

if p has the form

q descendant-or-self :: ¢

if p has the form /

where self € a means that a is self or descendant-or-self.

n if a # attribute and (¢t = n or t = element (n)
or t = schema-element(n, .))
Q.n if a = attribute and (t = n or t = attribute(n)
or t = schema-attribute(n, .))
Eq if t = * and a # attribute
Ag if t = * and @ = attribute
Riest(y) — Y4 ?ft = node ()
root if t = document-node ()
or t = document-node (element(e))
or t = document-node (schema-element (e))
pcdata if t =text()
comment if ¢ = comment ()
pi ift=pi()ort=pi(t) ort =pi(’t?)
{olo = u(g) \g € Q} if t = DNTS(Q)
Ty if a = child
R®S(q) = £;.L'q if a = descendant
Ag if @ = attribute

The function is generalized from that of [20] to accept expressions that begin in a self axis

step. A few explanations:

The first step of a path expression p is translated to a regular expression representing the axis
context flow of the step. The expression is then sharpened by restricting its suffix language to
also be a sublanguage of the length-1 regular language from the R'*! function, modeling that
a node test throws away some nodes. This is repeated for the other steps, and the resulting

languages are concatenated.

We prefix regular path translations by the language X7, allowing any prefix of ancestor
strings. This is done in following up on abstracting nodes to types and nothing else: Contest
information, such as ancestry, are thrown out of the model. Note that this does not ruin

89

the effect of the root prefixing, as root only appears as the first symbol of ancestor strings
anyway.

The DNTs node test is introduced in the next section.

Select-match compatibility of a candidate edge with a context flow from ¢ to ¢’ is still:

select(z) match(r

{4} {¢'} and %4 q'}

translating to (the leading X}, is for permitting any ancestors):
anlq(q") N L(X5(qXY) N LR(select(i))) # 0
and
anly(q") N L(Z5R(match(r'))) # 0
In a world of downward-only selection expressions, this ®-function would work:
¢a(m,q,i,7") = {¢ € Ealanla(q’) N Lies # 0}
where
Lnes = L(X5 N R(select(i)) N X5 R(match(r')))

Because selection expressions are not generally downward-only, this variant is not useful. A
repair will be made shortly.

PATH EXTENSION

The above regular language test does consider incompatible intermediate steps; however, it
fails to make use of the information that may be derived from the source template rule of
a flow: The context node must have passed its pattern’s test, and from this, more context
information about its ancestry etc. may be derived*3.

A significant improvement can be made by extending the selection path expression by the
match pattern of r;(i) and the context type, in principle:

select(i) — match(r;(i))/self ::u(q)/select(i)

reflecting that nodes that are initial nodes for evaluation of the selection are context nodes
of the template rule, and must have matched its match pattern. The self ::u(q) inserted
sharpens any wildcards (* or node()) often seen in the last step of patterns, to accept only

43 A context node has also passed all tests of predicates in the pattern. This information would be useful
for further sharpening; for example, a predicate testing xsi:type=... could filter out all but one DNT that
resulted from a type derived by extension in XML Schema. We leave this for the future.

90

o o
= =
o o
o o
S ~
o o
= =
o o
o o

Figure 19: With path extension, the match pattern child::b of a template rule containing the
selection expression child::d is prepended to the expression, enabling a regular ancestor language
test to determine that no flow will go to a template rule with pattern child::c/child::d. Without
path extension, the incompatibility would have gone unnoticed.

nodes with the same name as the context node, further refining the resulting extended path
expression.

Selection path extension will also extend the length of the strings in the regular expres-
sion translation of the selection path, and, after 3% is prepended, the set of strings in the
intersection of the selection language will be smaller:

Consider two regular expressions over X4, 7 and 7..¢.r. It should be obvious that any string
s € L(X%.rege.r) 1s also in L(X}.r), but the converse is not generally true: There may exist a
string s = z.y in L£(X%.r) no suffix of a prefix x € L(rey) exists for any suffix y € L(r). O

Extending a path p on the left by a step ¢ will extend R(p) (by R(t) N ZHRMEs(--).

Path extension does not sacrifice conservativity; it merely applies contextual information to
context types. It will provide an improvement in precision for all combinations of ¢ and 7/,
where the select(i) has fewer steps than match(r’).

The above concatenation expression was an appetizer for the general idea, but it is not quite
correct: Not all node types are converted to a proper test, and absolute selection paths will get
the wrong semantics — they use the root node, not the context node, as their initial context.
The proper version defines a combiner function ¢ for match and selection expressions. If the
selection expression is relative, it prepends to it a sharpened version of the match pattern:

c : XPathpattem X XPathpath X Ed
- s if ps is absolute
C(pmvps) Q) - { Sc(pma Q)/ps otherwise

The sharpener function s, is:

| /s¢(pr,q) if p=/p, is absolute
se(pq) = { sr(p,q) otherwise

91

sp(p=p1/ /DK, q) =

p

pi/ -+
p1/ -+
pi/ -+
p1/ -

-/pr—1/a:
“/pp—1/a:
-/pr—1/a:
/pr—1/a:

p1/ -+ /prp—1/attribute::n

child: :DNTs(P)/attribute::n
child: :DNTs(P)/attribute::n
child: :DNTs(P)/attribute: :n

pi/ - /pr_1/a::m

m
:text O
:comment ()
:piQ)

if k> 1 and ¢ = @, and

(pr = attribute::*

or pr = attribute::attribute()

or pr = attribute::attribute(*)

or pr = attribute::schema-attribute(*)
or p, = attribute::schema-attribute(*,t)
or pr = attribute::node())

if p = attribute: :*

and ¢ = a!, and Py(q) = P
if p = attribute: :node()
and ¢ = a!, and Py(q) = P
if p = attribute::n

and ¢ = a!, and Py(q) = P
it g =e}, and

(pr = a::*

or pr. = a::element()

or p. = a::element(*)

or pr = a::schema-element(*,t)

or pr = a::schema-element(*,t?))
if pr, = a::node() and q = ¢!,

if pp = a::node() and ¢ = pcdata

if pp = a::node() and ¢ = comment

if pr = a::node() and ¢ = pi

otherwise

The multiple declaration test DNTs(Q) that accepts either of the DNTs in a set, is for internal
analyzer uses and is not syntactically expressible in XPath2.

REPAIRING FOR NON-DOWNWARD STEPS

The test above can only handle downward and self axis steps, which is never a problem with
patterns, but is not sufficient for selection expressions, which may be any path expressions.

A fix for that is: Let

l(p) = the lowest index i of a sequence so that p;/---/ p|p| all have downward or self axes

and cut steps away from the expression, so only a rightmost path of downward and self
steps, or ¢, is left:

wy(p)
dp(p)

p1/ - /pl(p)—l

Pup)/ -

/Py

92

We could make do with using ¥} R(dp(select(i))) as a regular language for the selection, but
a sharpening using the context type ¢ and wy(select(i)) is possible:

Rany : XPathpath X Ed — Reg(Zd)
Rany(p, q) = S(wp(p),)X NEIR(dy(p))

(S was defined in Section 13.8) The final ancestor-language ®-function becomes:

R, . XPathpsern x XPathy,, x Xqg — Reg(2,)
_ | R(e(m,s,q) i I(s) = 1
Rs(m, s.q) = { S(wp(m)).X5NEq.R(wg(m)) otherwise

a = 3% Re(match(r;(i)), select(i), q)
B = X5.R(match(r'))

Or(m, q,i,1") = {q' € Za | anla(q) N L(a) N L(B) # 0}

SOLVING THE TYPE SEARCH PERFORMANCE PROBLEM

¢r, in its naive form, has a serious performance problem: After £(«) N L(f) is computed (as
an automaton), the immediately apparent way to find the declared node types whose ancestor
language intersects with L£(«) N L(B) is to test every declared node type’s ancestor language
automaton with £(a) N L£(3) for a nonempty intersection. A first experiment revealed that
this test took up about 95% of the time of the whole ancestor language analysis — or, put
differently, an already barely acceptable (for on-line use) algorithm had been made about 20
times slower.

[23] took advantage in his validation of DTD-specified XSLT that names and types were the
same thing, and located all in-edges to accept states on £(«)NL(3) automata — the declared
node types sought after were then simply all types that had their name on such an edge, as
a transition label. We are not as lucky, though, because more than one type may have the
same name.

A solution was found: Using abstract evaluation for limiting the type search scope. It basi-
cally consists of running ¢, before ¢,., and performing type search in the ¢, result, which is, for
all path expressions but those using the typed XPath2 element () and schema-element ()%
tests, a superset of the ¢! result:

¢p(m, q,i,1") = {q" € ¢a(m, q,i,7")|anla(q’) N L{a) N L(B) # O}

A further refinement is to use the edge-label technique after all, and then perform an
nonempty-intersection test only on names that name more than a single declared node type.
This was not tried.

44in which case precision is only improved

93

13.11 A COMPOSITE FIXED POINT ALGORITHM

We now have ®-functions that model modes, apply-imports/next-match semantics and find
select-match compatible pairs with a quite descent precision, including recognition of some
incompatible intermediate steps.

One composite ®-function for the flow analysis (if adapted to use the same lattice) could be:

P1 = dm N i N P,

(That is, the mode function, the apply-imports/next-match function, and the ancestor
language function — the schemaless and the abstract evaluation functions are not included,
since they are generally less precise than the ancestor language function).

Obviously, there is no need to run all functions in all cases, and the computationally faster
functions are better used for upper-bounding the results of the slower.

We instead split the fixed point algorithm into a sequence of three algorithms:

1. A fixed point algorithm with a lattice of subsets of M, using ¢,, N ¢;, and computing
values for the function

Fo,:T—M—2R

2. A fixed point algorithm with a lattice of subsets of M, using ¢; as a constraint and F,
as its control flow graph, and computing values for
F:T—-M-—TR—2%

F; stores the values of U(select(i)) NU(match(r’)) to support dead flow reporting at a
later stage.

3. A context-sensitive fixed point algorithm, with a lattice of subsets of ¥4 x M, using as
its control flow graph:
F, I —>M—2R
Fu(i)(m) = {r'[E(i)(m)(r') # 0}

— essentially the same as ¢;, but re-using F;’s data structure.

Looking back at Figure 13.2, this is the ¢,,. performance enhancement introduced, with

qbpre = Q1N O N P

What exactly constituted the context-sensitive algorithm was the subject of some experi-
ments. First, an experiment will demonstrate that the three-stage composition of the algo-
rithms is soundly engineered.

94

Test case l t e a n1 9 ng Ion
adressebog 76 16 11 0 320 136 120 30
agenda 43 11 6 5 55 35 27 11
availablesupplies 42 10 18 5 40 24 10 2
dsd2html 1353 990 40 15 | 1200870 74387 8579 367
emaillist 257 54 20 1 345 460 162 43
links2html 128 20 12 1 340 340 340 185
ontopia2xtm 188 70 11 13 595 2074 434 45
order2fo 112 14 19 4 238 238 238 88
poem2xhtml 35 14 7 1 98 98 84 55
purchaseorder 112 18 22 6 306 114 96 31
slides2xhtml 118 21 13 2 231 210 281 70
sqlprocedures 258 20 14 3 300 300 280 50
staticanalysis 262 59 22 7 3599 1405 1453 195
window2xhtml 701 102 37 7 11832 2838 574 72
xhtml2fo 1697 462 89 119 235620 41319 | 11830 2430
xmlspec 2528 384 162 56 136704 32527 | 31351 22208

Table 4: Context-insensitive analysis of the [23] test corpus. For general information about the test
environment, see Section 15.1.

[is the line count of the original stylesheet, ¢ is the number of template rules in the simplified
stylesheet, e is the number of element declarations in the test case input schema and a is the number
of attribute declarations in the test case input schema.

ny is the number of context-less edges of (template-invoking instructions, mode, template rule)
checked for mode and priority compatibility.

ns is the number of such triples surviving the (w,, w;) test, n3 is the number of context-less edges
tested by the schemaless algorithm and n,4 is the number surviving the w; test.

The large ny for the dsd2html test case is the result of 1213 template-invoking instructions being
checked for mode compatibility with 990 template rules.

Test case tm Sm t s t s km, ki
dsd2html 653 6.19 197 0.49 850 0.03 1.73M 375736
ontopia2xtm 6.0 34.9 8.4 18.9 144 7.56 646k 241548
staticanalysis 2.1 39.0 23.8 13.9 25.9 5.41 1.04M 50840
window2xhtml 7.0 240 9.8 2.54 16.8 0.61 1.28M 282245
xhtml2fo 161 17.5 326 5.88 487 1.03 1.21M 119291
xmlspec 82 23.8 1929 68.3 | 2011 16.2 1.27T™M 5349

Table 5: Evaluation of context-insensitive flow algorithm efficiency. ¢, is the time for the mode and
priority compatibility analysis, s, is the test survival percentage, ¢; is schemaless flow analysis time
and s; its survival percentage. ¢t and s are total sums and products.

km and k; are kill rates (edges/sec) for the two tests.

Test cases that analyzed in less than 10 ms are not shown. With the exception of the xmlspec case,
the ¢.,, ¢; and ¢; functions eliminated over 90% of the later flow search space, in less than 1 second.

95

EXPERIMENT: PERFORMANCE OF MODE, apply-imports/next-match AND SCHEMA-
LESS ANALYZERS

As can be seen in Table 4, the relatively simple mode, apply-imports/next-match and
schemaless analyzers eliminate the vast majority of trivial cases, before the heavier, context-
sensitive analyzers are set loose. They also complement each other very well, both eliminating
a large fraction of infeasible flows (which is hardly surprising; the mode feature was designed
to be complementary to other flow-related features).

It might be worthwhile to try invent more simple analyzers to add to the pipeline, or upgrade
the schemaless analyzer to include undeclared node types in its lattice (it uses sets of unknown
size, but the sets of element names that may be added is finite (limited by what is found in
the stylesheet) — and a partial ordering, and least upper and greatest lower bound are all
definable).

Conclusion: The combination of a mode, apply-imports/next-match and schemaless an-
alyzers is appropriate for a front-end analysis. There are no performance problems in the
schemaless analyzer, despite that it appeared complicated when written out formally.

A COMPOSITE, CONTEXT-SENSITIVE $-FUNCTION

The fixed point flow algorithm is based on the work-list algorithm, where the items in the
work list are candidate edges — tuples of a mode, a declared node type, a template-invoking
instruction and a target template rule, for testing with a ®-function. Candidate edges are
found using the control flow graph function F; generated by the simple analyzers, with the
fm function of Section 13.4 and the already mentioned type search, for computing the mode
and context type of an edge, given those of the originating template rule.

Instead of adding new candidate edges to the work list directly, performance can be enhanced
considerably by filtering new-found candidates first, leaving some of the infeasible ones out
of the work list. This effectively corresponds to using a filter function of more than one
®-function, and evaluate one only if the other found a flow:

@ if ¢1(m,q,i,r’) - @
¢2(m,q,i,7") otherwise

f(é1, d2)(m, q,i,7") = {

As previous experience has shown, and as we will see again later, the ¢, function is precise,
but evaluates rather slowly, making the filter

f(¢a; ¢T')

a candidate for a faster than ¢,» (in practice) function, but still at least as precise.

96

EXPERIMENT: ANCESTOR LANGUAGE VS. ABSTRACT EVALUATION FILTER

Both [23] and [20] propose a sort of filtering before context-sensitive analysis, with a context-
insensitive ancestor language test.

It will not be described in detail here, because it is rather similar to the context-sensitive an-
cestor language test, with the exception that no context sharpening is done at path extension;
the path extension that we presented as a refined version of:

(select(i), q) — match(r;(i))/self :u(q)/select(i)
is simplified to:

select(i) — match(r;(i))/select(i) if select(i) is relative
’ select(7) otherwise

Interestingly, [23] and [20] used the test differently: Olesen in a complete stand-alone fixed
point analysis*, similar to the way we use ¢;, and just with a done/notdone lattice*S,
and Mgller as a filter on the ancestor language analysis, caching automata for re-use. And
interestingly, neither put very much faith in abstract evaluation: Both used it only as a last
resort when everything else failed, for the non-downward step repair.

An experiment was performed, comparing the performance of a (context-insensitive) ances-
tor language filter function, and an abstract evaluation filter function. The experiment is
interesting, because the two functions have different strong and weak points: The ancestor
language function has the already described advantage of eliminating flows with incompatible
intermediate steps, and its context insensitivity allows re-use of the same automata for all
context types. The abstract evaluation function has the advantage of being context-sensitive,
while still performing well.

The set-up for the experiment was: The mode, apply-imports/next-match and schemaless
analyzes were run first to populate the data structures that implement the function F,. The
two different filters were set before ¢, as f(.,).

The conclusion immediately apparent from Table 7 is that a context-insensitive ancestor
language filter tailgates the schemaless analyzer: In all of the larger examples, 93% or more
of the flows that passed the schemaless test also passed the ancestor language filter. In general,
the abstract evaluation filter scores much higher kill rates than the ancestor language filter,
and it also kills infeasible candidate edges much faster. A noteable exception is the xhtml2fo
test case, which has so many declarations in its schema that a context-insensitive filter won
performance-wise (until beaten again by caching abstract evaluation results).

One reasonable explanation for a context-sensitive filter to perform much more precisely
than a context-insensitive one is the high number of generic template-invoking instructions
like ...::* and ...::node(). They are used very often, and the stylesheet simplifier adds

45 At least, the implemented program of that project used it so.
“6With XSLT1, there is no #current mode propagation to consider

97

Test case ny n9 ns i
dsd2html 4944 4938 4944 4763
ontopia2xtm 40 39 40 34
staticanalysis 166 155 166 95
window2xhtml 57 53 57 47
xhtml2fo 13748 13680 13860 3933
xmlspec 21393 20047 22573 2168

Table 6: Flow survival rates for the context-insensitive ancestor language vs. the abstract evaluation
filters. my is the number of flows tested by the ancestor language filter, ns is the number surviving.
ng is the number of flows tested by the abstract evaluation filter and n4 is the number surviving.

Test case t, Sy t tic S k, ky ke
dsd2html 20364 99.9 1445 794 96.3 0.29 125 171
ontopia2xtm 388 97.5 3.8 2.8 85.0 25.8 1579 2142
staticanalysis 71.4 93.3 11.0 7.6 57.2 154 6455 9342
window2xhtml 87.6 93.0 6.4 6.4 825 45.7 1563 1563
xhtml2fo 13765 99.5 | 108942 31228 28.4 | 97.78 91.1 317
xmlspec 692072 93.7 | 142754 10793 9.60 1.94 144 1891

Table 7: Performance of the context-insensitive ancestor language vs. the abstract evaluation filters.
t, is the time in ms used by the ancestor language filter; s, is its survival percentage. t; is the time
used by the abstract evaluation filter, and ¢, is the time used by the cached abstract evaluation filter;
sy is its survival percentage. k. and k; are kills per second of execution time for the three.

In all cases except xhtml2fo without caching, the abstract evaluation filter was superior.

98

more. For each of these, a context-insensitive filter will approve any template rule matching
an element type, or any type at all, respectively, unless the template rule containing the
template-invoking instruction has a sharp pattern. This property is largely shared with the
schemaless flow analyzer, which was run before the analysis using filtering. On the other
hand, a context-sensitive filter uses context information instead of any (generic) containing
match pattern, and, with the simple implementation of abstract evaluation, it needs not be
expensive.

Adding a cache that maps each template rule to an upper-approximated set of DNTs matching
the pattern of the rule, and another cache

XPath, ., — Strings — Xgq — 2%d

storing evaluations of selection expressions from particular context DNTs, helped speed up
the abstract evaluation filter. The cache values are reused for all selection expressions that
are textually the same with predicates stripped off.

Conclusion from the experiment: At least while in the slipstream of the schemaless analyzer,
the context-sensitive abstract evaluation filter performs better than the context-insensitive
ancestor language filter. In the previous experiment, we saw that there is no reason not to
use the schemaless analyzer, so for the later experiments, the ancestor language filter was
abandoned in favor of the abstract evaluation filter.

EXPERIMENT: OVERALL FLOW ALGORITHM PERFORMANCE, ABSTRACT EVALUA-
TION FILTER

The previous two experiments focused on the environment of the context-sensitive “final”
®-function, but we have not yet looked into the performance of that function proper. With
the decision to use the abstract evaluation ®-function as a filter, that leaves only the context-
sensitive ancestor language ®-function for the task. That is no coincidence, of course, as this
is the most precise but also the slowest ®-function.

A test run was performed, still with complete mode, apply-imports/next-match and schema-
less analyzes performed first to populate the data structures that implement the function F,
followed by a fixed point analysis using the ®-function ¢, = f(¢..).

As can be seen, performance was quite good in all cases, except the large xmlspec and xhtml2fo
cases. It is also evident that the context-sensitive ancestor path test has a very low kill rate,
leading us to think of ways to circumvent or completely eliminate automaton testing.

Simply removing the test and accepting all flows, as found by the context-sensitive abstract
evaluation filter is not satisfactory, for two reasons: Incompatible intermediate steps would
be regarded as compatible, which is hardly acceptable from a usability viewpoint, and there
was not a lower-approximate test available for the competition analysis to be presented.

99

Test case a k k/t1 k/ty k/ts
dsd2html 17764 0 0 0 0
staticanalysis 96 0 0 0 0
xhtml2fo ? ? 0 0 0
xmlspec 3383 160 0.82 1.44 1.46
links2html 62 3 56 - -
sqlprocedures 30 9 196 - -
all others 0 0 0 0

Table 8: Infeasible flow kills for ancestor language context-sensitive flow analyzer, after abstract
evaluation filtering, for selected test cases. a is the number of edge flows found, & is the number of
edge flows surviving the filter, but killed by the ancestor language algorithm.

k/t1 is the kill rate of the uncached algorithm, k/t5 is the kill rate of the a-caching algorithm and
k/ts is the kill rate of the o and result caching algorithm

Test case ta i3 tap ts Ut tns Mmaz
dsd2html 13150 249 9337 44342 69014 24672 2TM
ontopia2xtm 31 15 4 42 89 47 -
staticanalysis 132 21 19 54 193 139 3.3M
window2xhtml 71 29 7 84 221 137 -
xhtml2fo ? ? ? ? “o00” ? -
xmlspec 24289 2073 10252 132687 195701 63014 202M
links2html 20 9 4 15 54 39

sqlprocedures 15 12 3 6 46 40

Table 9: Performance of ancestor language context-sensitive flow analyzer, after abstract evaluation
filtering, and with the result of the abstract evaluation as a type search scope limit.

to is the time used creating a-automata, tg is the time used creating J-automata (they are cached
at their respective templates) and ¢, is the time used intersecting - and [automata.

ts is the time used performing type search, t; is the total time used by the ancestor language tests
and t,s = t; — ts is a lower time bound on the ancestor language test; the time it would still take
even if a zero-time type search was invented.

Mumae Was the maximum heap allocated, as seen from the GC trace.

The very large xhtml2fo test case had to be given up; it did not complete even after several hours.

Test case to i tas ts t ths Momaz
dsd2html 467 246 9277 44171 55917 11746 29M
staticanalysis 43 22 24 42 141 99 3.4M
xmlspec 23168 1634 6766 58943 110393 51450 261M

Table 10: Caching a-automata. All table column headers have the same meaning as in Table 13.11.
« caching had little effect on the small staticanalysis case; the medium size dsd2html case remained
dominated by the search time, while remarkably little happened with the larger xmlspec: Few XPath
expression combinations mapped to the same cache keys. The xhtml2fo still did not terminate within
the limits of our patience.

100

Test case to i tag ts t ths tmm
dsd2html 532 265 324 4477 7329 2852 6946
staticanalysis 44 20 13 37 127 90 691
xmlspec 22727 1648 6675 58437 109309 50872 150057

Table 11: Caching a-automata and the results of type search (keyed by a string hash derived from
the XPath expressions that « and § are computed from, and the context type). The small staticanal-
ysis2html case still saw little change (and it was adequately fast already); the medium dsd2html case
now computed in 7 seconds, which is comparable with the time achieved by [23] in the tmm column
(leading us to conjecture that he also cached). The larger xmlspec case still suffered from having
overloaded its host computer.

AN INCOMPATIBLE-PATHS TEST

It was found that all edge kills scored by the context-sensitive ancestor path automaton
test were on the form: Selection expression child::x/child: :z (possibly composed in path
extension) incompatible with pattern child::y/child: :z.

Recalling the requirement for edge flow in Section 13.6, a characterizing feature of the problem
is that patterns conceptually read right-to-left starting from some wunknown node, while
expressions read left-to-right, and start from a context node; the evaluation of them all
boils down to the final nodes selected and matched, so the two expressions should really be
aligned “last step to last step” when inspected for compatibility.

Indeed, if restricting to child and attribute axes, and numbering steps backwards:

— . S .. S
S = ayuty---af o t]

S
n
M = apyty--al* ot
it becomes apparent that, for some node:
e If the node fails either the node test ¢{ or the node test ¢|*, then it is either not selected,

or not matched, so S and M are incompatible for the node.

o If aj # a", then one axis step selected only content, and the other only attributes. S
and M are incompatible (for any node at all).

e Both steps can only select nodes that are children or attributes of parents. If a] :

ty ---a5 = t5 is incompatible with a; :: ¢ - - - a3’ 2 t5* for any declared parent of our

node, then and S and M are incompatible.

The argument goes on inductively, until the mth or the nth step, whichever is less, at which
point there are no more opportunities to conclude incompatibility.

As an algorithm, and evaluating for a set of potential result types instead of just one:

Algorithm incompatible Paths (S, M,<):

101

1 +— 1
Qs — Q5 Q0 «—Q
while ¢ < minm,n do
if] # child | a] # attribute then
return unsure
end if
if a]" # child | a" # attribute then
return unsure
end if
if af # a]" then
return true
end if
Qy — SIEH() 5 Dy — S ()
if 0, Ny =0 then
return true
end if
Q REFS(); Quy — RE Q)
i—i41 '
end while
return unsure

The R axis step functions are the S axis steps reversed:

g}:lelsd(g) = {nedjwelCn) ANwe}
itribute(2) = {n € Xgln € Ag(w) Aw € O}

Consider how the context-sensitive ancestor language test compares with this test for child
and attribute axes only: The ancestor language test will test if

anla(q') NV L(SGREG () -+ R (17) 0 L(SGRI (tn) -+ Reg' (17)) = 0

(all the R's(-..) are length-1 languages). In other words, length-(min(m,n)) suffixes are
maybe incompatible in the ancestor languages; prefixes are not.

Also consider how an NFA is constructed for such a child/attribute axis-mix path expres-
sion: Linearly. It has one state more than the length of the expression, and transitions are
labeled with element or attribute names. Consider what happens when reversing such two
automata, and intersecting them: That becomes identical to incompatible Paths. So, for the
simple case of child/attribute expressions of equal length, the two compatibility tests are
equally precise.

That leaves automata with only self, descendant and descendant-or-self steps as cases
to argue about where they may still seem sharper than incompatible Paths, but

e hdescendant: :tr is equivalent to hdescendant-or-self: :node()/child: :{r

e hdescendant-or-self::i{r is equivalent to hdescendant::tr | hself::tr (but gives

102

us one more case to test)

for some prefix path expression h, suffix path expression r, axis a and node test ¢t. Considering
regular translation, we can also do:

e ha::t;/self::tror is equivalent to ha::(t1 Nta)r

e leading self: :¢r have the same translation as r and can be stripped.
The (t; Nt2) “node test” is an intersection node test — the result is a standard XPath node
test, or a “false()” test (use an absurd name test, then) for *, all name tests and comment (),

processing-instruction() and text(); the more advanced XPath2 item tests approximate
to name tests in regular translation, and can be treated as such.

— so for considerations about their regular translation, we might as well consider all path
expressions as composed of just child: :¢, attribute: :¢ and descendant-or-self: :node()
steps. Furthermore, arguing about select-match compatibility between two such expressions;
a selection and a pattern, we are free to switch around the two at will (neither the regular
test or incompatiblePaths make use of any special pattern properties), and we can remove
any leading /descendant-or-self::node()/ step from the pattern; it means nothing*7.

Assume that some DNT ¢’ is both selectable and matchable:
anly(¢") N L(Z5R(S)) # 0 and anly(q') N L(ESR(M)) # 0

Assume that the incompatiblePaths test failed to detect incompatibility:
incompatiblePaths (S, M,{q'}) = unsure

and also that the regular incompatibility test was sharper, and detected incompatibility:
anlqg(¢") N LZLR(S)) NL(ZZR(M)) =0 .

Let k be the largest k' such that the suffix expressions Sy ---S; and M} --- My have only
child or attribute axes. Their regular translations are:

R(S) = R(Sp - Sk+1)-R(Sk---51) and R(M) = R(My, - - - Sk41).-R(My, - - - My)
There is a string a € anly(¢’) : a € L(E;R(S)), and a has a suffix
ag---a; € R(Sk---S1) N R(My,--- M) (the NFA argument)
Then, is must be the case that ajq - agr1 & LIEZR(Sy -+ Skr1)) N L(ZGR(M, - - - My)).

and also one of:

47 Although surprisingly many stylesheet authors do not realize that. The // does affect the default priority,
though!

103

Sigmay | L(R() E

Sigmay L(R(M))

Figure 20: Dlustration of £}R(h)Ejx N X5R(M)

e Either S, - - Sgy1 =€or My, -+ Myi1 =€

One expression, say M, has en empty prefix; without affecting anything, we use
self: :node() as a prefix instead, and it translates to X5R(M,, - - - My11) = X R(self:
b

The prefix implication becomes

g+ a1 & LOEGFR(Sn - -+ Sk41)) N L(ZY)

which contradicts a € L(33R(S))

e or (say) M, -+ My, is on the form hdescendant-or-self::node(), where h has at
least one step

R(M,y, -+ - My11) = R(hdescendant :: node()) + R(hself ::node()) = R(h)E;Xq +
R(h)NX5%,

Intersecting with X R(M,, - - - Mj41) has no effect on X R(Ss - - - Si4+1) at all; see Figure
20 for an illustration, and we assumed that a € L(X;R(S5)).

anly(q) N L(SER(S)) N LSLR(M)) # 0

again contradicting the assumption about the ancestor language test being sharper than
incompatible Paths.

Really, we still need to show that

anla(q') N L(EFR(S)) # 0

¢ €SS {g))nqd € S(M,{Z3}) = { anla(q') N L(SER(M)) # 0

holds on the simplified expressions, so that abstract evaluation can replace automata entirely,
but that should be rather obvious. Also, for absolute path expressions (we argued only for
relative expressions above...), incompatiblePaths can be made as sharp as the regular language
test by having it return true if it reaches the left-hand end of an absolute expression, if the
other expression is longer.

What is the implication of this descendant-or-self weakness for the precision of the tool?
Well, for a pattern h//r the author of the stylesheet must have wanted to select only nodes
that have an ancestry passing the h test, and themselves pass the r test.

The static abstraction, however, accepts the type of any node that passes the r test, and has
a declared ancestor that passes the h test: The only case we can come up with, where the

104

:node()) =

incompatible Paths algorithm was unsure, but the ancestor language test could eliminate a
flow of DNT ¢/, is when S does not even select ¢/, or M does not even match ¢’; that case
will be caught in the abstract evaluation filter anyway.

The conclusion to all this is that there is no loss of precision in eliminating ancestor languages
entirely from flow analysis; the simpler abstract evaluation and incompatiblePaths tests have
the same power. This was further corroborated empirically: A test run resulted in identical
(extremely verbose) flow graph dumps for all test cases using the ancestor language test vs.
using the incompatiblePaths test.

We believe we are the first to present this kind of XPath path incompatibility test.

<t--rl -->
<template match="ingredients'">
<h:ul>
<apply-templates select="list"/>
</h:ul>
</template>

<t--1r2 -->
<template match="nutrition">
<h:table>
<apply-templates select="list"/>
</h:table>
</template>

<t-- 13 -->

<template match="*">
<apply-templates select="node()"/>

</template>

<t--r4 -->

<template match="ingredients/list/item">
<h:li><value-of select="name"/></h:1i>

</template>

<l--rb -->
<template match="nutrition//item">
<h:tr>
<h:td><value-of select="name"/></h:td>
<apply-templates/>
</h:tr>
</template>

105

An example of a construct that will cause a spurious validation error: Suppose the
input language has the declared element types ingredients and nutrition, both with
a declared list child, which in turn has a declared sequence of item children. Then,
r1 might pass 1ist elements with ingredients parents to r3. Likewise, ro might pass
list elements with nutrition parents to r3. At runtime, the parent element distinction
between the 1ist elements flowing to rs is maintained; however, in our static analysis
it is lost, causing an apparent flow from r1 via r3 and on to r5 to appear, along with an
apparent flow from r9 via r3 to r4. The result is a complaint from XHTML validation
that the child type h:tr is illegal for h:ul, and h:1i for h:table, even though this
mix-up will never happen at runtime. As usual, this kind of spurious errors may be
confusing to non-insiders.

A possible improvement of this requires attaching more information to context types
of edge flows, and using that information for sharpening select-match compatibility; in
other words, heightening the lattice of the fixed point analysis.

The sharpest lattice candidate we imagined was one of sublanguages of ancestor lan-
guages, represented as regular languages and ordered by language inclusion. Such a
lattice would cause the context types of the flow from r; to r3 to be distinct from
those from ry to r3 (the former’s ancestor sublanguage certainly has a ingredients as
the 2nd last symbol in its strings; the latter’s strings have a nutrition), and the two
different types would in turn propagate different edge flows out of r3, eliminating the
spurious error. But such a lattice also has infinite height, causing a possible nonter-
mination of the fixed point analysis (just consider a DNT declared as a descendant of
itself, with a matching set of recursive template rules). Lattice widening could solve
this; unfortunately, no efficient widening operation exists for regular languages, so the
approach will not work.

Another candidate is a subset lattice over limited-length ancestor language suffixes,
such that if using a suffix length limit 3 or more in our example, item nodes represented
by ingredient.list.item become distinguishable from nutrition.list.item nodes.
Such a lattice would solve half of our precision problem, making it possible to exclude
flows of nutrition.list.item to r4, but still not of the ingredients-ancestored items
to t5, for reasons explained in

Fortunately, the kind constructs provoking the spurious errors described here seems
to occur too rarely to justify the increased complexity of such “super” lattices, and
there were no additional problems found in the transition from local-type to single-
type languages in this respect. If the missing widening operation is invented, or if it
is experienced that spurious errors of this kind confuses users of a tool based on this
algorithm, one of the lattice heightening techniques could be added.

13.12 FAST FLOW ALGORITHM

First, the extended path expression p
p = c(match(r;(1)), select(i), q)

is cleaned up by the function fold, informally:

106

Test case ta t; trast teomp tne Monax
dsd2html 96 522 884 12 3 24.5M
ontopia2xtm 0.4 2 28 3 2 2.9M
staticanalysis 0.8 2 11 11 8 3.1M
window2xhtml 0.4 1 7 3 2 5.6M
xhtml2fo 48 403 2546 501 493 16.3M
xmlspec 9 12 1437 14 12 22.6M

Table 12: Performance of a select-match compatibility test using abstract evaluation combined with
incompatible Paths, vastly superior in time and memory performance to the regular ancestor language
test.

tq is the time used evaluating ¢, ¢; is the time used evaluating incompatiblePaths and tg,s is the
time used evaluating ¢ (which runs both of the previous).

teomp is the time used performing step 1 of the competition analysis using completeCoverage, ty. is
the time used performing step 2 of the competition analysis using complete Coverage and m 4, is the
maximum heap space used, measured in the same way as for the ancestor language test.

e child axis steps immediately followed by parent axis steps are both removed from p

e self::node() steps are removed from p, as long as that will not make p empty

helping incompatiblePaths exclude more infeasible flows, by conservatively rewriting some p
to have a “nicer” suffix of child steps.

The fast flow algorithm is then:

¢f(m7 iv q, T/) =
{¢" € ¢pa(m,i,q,r")|incompatiblePaths(fold(p), match(r’),{q'}) = unsure}

13.13 TEMPLATE COMPETITION ANALYSIS

One subject has been swept under the rug until now: Context flows that never materialize at
runtime, because they are overridden by context flows to other templates with a compatible
mode, a compatible match pattern and a higher import precedence or priority. Needless to
say, a flow analysis that does not account for this will be insufficiently precise, and confusing
for the user. The subject was deferred to here, because an introduction of it was not necessary
for an explanation of the basic flow algorithms, and would indeed just foul it with an even
larger wilderness of concepts.

Conservativity must be maintained, meaning that it must be considered very carefully that
all cases are covered, before a challenged edge flow is found to be overridden completely by a
higher-priority challenger flow: If the challenger flow’s target match pattern matches only a
subset of what the challenged flow’s target matches, for example, there might be some cases
where it does not override after all.

107

In the classic ancestor language flow algorithm, competition analysis was done as:

match(c) is predicate-free, and
Y4 R(o) N X5 R(match(v)) Nanlg(q') N (X5 R(match(c)))¢ =0

where v is the challenged flow’s target, and c is the challenger’s target. Both always have
the same source and context type. The statement may be read as: For every context node
that may be selected by the source, if the flow matches match(v), it also matches match(c).
If the challenger has higher priority, all such flows to the challenged target can be deleted; if
the challenged flow has a target different from that of the challenger flow, but both have the
same priority, a warning about unresolved template competition is issued.

In our effort to remove automata from the flow analysis altogether, there is a shortfall with
competition analysis: How can that be done without automata? The answer lies in a dual of
the incompatiblePaths algorithm, which will be presented next.

A POSITIVE ABSTRACT EVALUATION TEST

Problem:

Given an XPath path expression S, a pattern M, and a set Q2 of DNTs, will M match every
node of a type in €2 that S can select? The result is one of true or unsure, where true
is conclusive, and unsure is not. As incompatiblePaths, iteration is over the expressions in
reverse order, and so is the step numbering:

Algorithm completeCoverage(M € XPathpaitern, S € XPathyp, Q):
M = apth---al* ot
S = a)ut)-af o t]
if If any step of M has predicates then
return unsure
end if
if M has more steps than S (m > n) then
return unsure
end if
if M is absolute and S is not then
return unsure
end if
1 1; Qp — Q; Qs — Q
while 7 < m do
Q= SIEH Qs Qs — SEEH(D)
if Q0,\Qu # 0 then Z
return unsure
end if
if a]" # a; then

108

return unsure
end if
Qpy — RIFS(Qn); Qp — RAFS ()
if Q,\Qu, # 0 then Z
return unsure
end if
t— 141
end while
return true

where
R e endant () = fiw(REH(Q) U R (RE,(2)))
g?;zendant—or—self(g) = ggzendant(g) uQ

The idea is to check, step by step from the tail on, whether the M matches every node
type that S may select. Node tests are applied in the same way as in the normal abstract
evaluation, but axis steps are reversed. The test was originally devised for as a fast, lower
approximating “stuffer” for the context-sensitive regular ancestor language test (as M in
Figure 13.2), thus approximating it both from above and below.

This test performs much better than the ancestor language test, and it retains precision,
although this time we will not bring a proof, but only state that it is the NFA transition
function for difference languages. It should be easy to see the truth of this for patterns
composed of only child and attribute axes, and that the general inability of automaton
intersection tests to produce anything conclusive for descendant-of-self already has been
shown.

Given a template-invoking instruction 7, a context type ¢’ and two template rules ry # 7o
where ro > 71, there are two opportunities to conclude that an edge flow from ¢ with context
type ¢ must go to ro instead of rq, or, if also 1 > ro, that there is an unresolved competition
problem:

1. completeCoverage(match(ry), match(ry),{q'}) = true, meaning that ro will accept any
flow that r; will.

2. completeCoverage (match(rs), select(i),{q'}) = true, meaning that there may exist
ancestors of ¢ that 71 matches and r9 does not match, but a node with such ancestors
will not be selected. The likelihood of this test returning true will increase if path
extension is used on the selection.

Removing edges will not jeopardize the general soundness of our fixed point analysis — after
removal of an edge flow with context flow ¢ to some template, g is still left in the context
set of the template, possibly over-fulfilling the integrity constraint slightly. A simple hack —
testing against templates in priority order — can in fact eliminate all removals of established

109

flows, and ensure that competition only eliminates new edge flows, before a context type was
otherwise added.

13.14 PRECISION PROBLEMS, SOLUTIONS
Loss OF SIMPLE TEXT TYPES

The flow analysis presented till now was, with few exceptions, fine for DTD, but it does not
sufficiently preserve the simple data types of XML Schema: Having a fine-grained type system
for “simple types” (data types), modeling all text nodes as the single node type pcdata is too
rough an approximation; there is no problem with value-of simple-typed declared element
node types, but whenever text nodes selected by child::node() or by child::text() are
made edge flow context types, valuable information is lost: Type information is associated
not with the text node, but with the element node containing it. Several examples of spurious
errors caused by this were found, and, although this was not a very prevalent kind of error,
it was considered serious from the perspective of user experience: There should be as few as
possible confusing error messages arising from this kind of simple information loss.

The solution employed was simply to color the pcdata type, subtyping it and parameterize
each subtype by an automaton over the type represented, and to regard as different types any
two pcdata DN'Ts with different automata. Text nodes from XML Schema complex element
types and all DTD #PCDATA elements are parameterized by the char® language. XML Schema
simple-type element declarations g now implicitly spawn a declaration ¢’ = pcdata(t), with

t = Da(a) = Duld)

Attributes may be declared with different types in both DTD and XML Schema, but since
attribute text is part of the attribute node, and not contained in pcdata nodes, attribute
declarations need no coloring.

Of course, this subtyping solution will heighten the lattice by (at most) one for each simple
type declared, but no significant performance penalty was observed for any practical example.

PROCESSING INSTRUCTIONS

Several stylesheets triggered a number of spurious error messages about priority conflicts
among template rules matching processing instructions. Really, there were none, as their
match patterns were all on the processing-instruction(target) form, being mutually ex-
clusive. The problem was solved by declaring, on the fly, one subtype of pi for each distinct
target name, while still considering all subtypes of pi to be compatible with the targetless
processing-instruction() item test.

110

Test case Lo mso s mi mgy mp,,
dsd2html 884 24.5M 6946 136M 13M 2.7TM
ontopia2xtm 28 2.9M 336

staticanalysis 11 3.1M 691 0.5M 200k
window2xhtml 7 5.6M 407

xhtml2fo 2546 16.3M 258838 80M

xmlspec 1437 22.6M 150057 64M 20M 110M
identity/dsd2 1315 23.1M 581491

Table 13: Time and memory performance of our “fast” flow algorithm compared to that of [23]. tyo
and my are flow analysis time and maximum Java allocated heap space for our algorithm, and ts;
and m; are those of [23]. m, and mp,, are approximate memory sizes of our computed flow graphs
and our automaton input schema structures for the context-sensitive regular ancestor language flow
algorithm, respectively (without automata, input schema structures consume very little memory).

13.15 CONCLUSION

The final flow algorithm used became a composite fixed point algorithm:

1. A context-insensitive, mode-sensitive fixed point algorithm with ¢, N ¢;, on a fully
connected control flow graph

2. A context-insensitive, mode-sensitive fixed point algorithm with ¢;, doing a primitive
template competition analysis, on the result of the above

3. A context- and mode sensitive fixed point algorithm with ¢/, performing the template
competition analysis of Section 13.13, on the result of the above

We have reduced time and memory complexity of XSLT flow analysis considerably — from
hardly acceptable 110 seconds for the xmlspec test case ([23] clocked 150 seconds) to 1.4
seconds, and from about 260M to 22.6M of memory. There is no loss of precision, or any
other weakness of the new approach that we know of. In fact, precision is substantially
better than [23], with multiple pcdata types, and the full class of single-type languages is
supported.

Tests on the whole collection of test cases used by [23] showed that both algorithms produced
identical flow graphs.

Comparing the results of running the largest test cases:

o XSLT real-time flow analysis is now practical even for large instances.
e XSLT flow analysis now works for XSLT2.

e XSLT flow analysis now works with XML Schema, without approximation to local-type.

111

Part IV

Flow graph applications

A number of different algorithms using the output of the flow algorithm and each contributing
to a part of the XSLT editor solution are presented, with special emphasis on solving the
static XSLT validation problem for XSL.T2 and XML Schema, secondly, the somewhat simpler
code-assist algorithms.

14 XSLT VALIDATION

Static XSLT 2.0 validation is the prime application of our flow analysis result.

Our XSLT validation works with a formalism modeling XML document generation: summary
graphs. In XSLT2 stylesheet validation, two such summary graphs are constructed, one
generating the possible outcome of the transform, given that input documents are valid wrt.
the input schema, and one generating the language of the output schema. The former is then
validated against the latter, using an existing algorithm.

14.1 SUMMARY GRAPHS

48 The definition of summary graphs presented here is a version made for the XACT Project
and for the present project®®.

Summary graphs can be thought of as “abstract DOM trees”: They abstractly generate DOM-
like trees rather than being trees. We will not describe summary graphs in details here, since
they were invented and detailed on elsewhere®®, but we bring a brief reiteration:

A summary graph is defined relative to an input schema D;,, and an XSLT stylesheet T" (the
output schema is not used yet). Let Ng, N4, N7, Ngs, and N¢ be sets of element nodes,
attribute nodes, text nodes, sequence nodes, and choice nodes, respectively.

Intuitively, the former three kinds of nodes represent the possible elements, attributes, and
character data or attribute values that may occur when running the stylesheet on input valid
wrt. to D;,. The sequence and choice nodes are used for modeling element contents and
attribute lists. The edges in the graph describe how the constituents can be composed to

“8This summary graph introduction is largely a copy the work from [20], provided by Anders Mgller. It is
brought mostly to provide a complete introduction to summary graphs.

“by Anders Mgller, BRICS
50

112

form XML documents. More precisely, a summary graph SG is a tuple
SG = (Ng, Ny, Ny, Ns,N¢, R, S, contains, seq, choice)

where

Ng, N4, N7, Ns, and N¢ are finite disjoint sets of nodes of the different kinds mentioned
above; for later use we define N = Ng U N4 U N7 U Ns U Ng;

e R C N is a set of designated root nodes;

S: Ne UN4UNg — 2¢har™ defines node labels;

contains : Ne U N4 — N defines contains edges;
e seq: Ns — N* defines sequence edges; and

choice : Ne — 2V defines choice edges.

The language L(SG) of a summary graph SG is the set of XML trees that can be obtained
by unfolding the graph, starting from a root node:

L(SG)={z|FIreR:r=x}
We here use the unfolding relation, =, between summary graph nodes and XML trees, which

is defined inductively as follows:

neNe ecS(n) contains(n)=m mZ {a,...,a5} m=Zc

n=<ea...ap>c</e>

neNg a€Sn) contains(n) =m m s

n = a="s"

ne Ny seS(n)

n=s:s

n€ Ns seq(n)=ay...ap a;=b;foralli=1,... k

n=by...bg

n € Ne¢ a € choice(n) a=1b

n=>=0

This definition uses the operations aét;, ngt, and = to extract attributes, contents, and text.

These relations are defined as follows:

113

neNygy n=a n € NeUNr
n {q} nZ

A;foralli=1,...,k

tt
n € Ns seq(n)=aj...ax a; =

=
attr k
n = Uz’:l Al

neNe acé€ choice(n) a™ A

tt
nE A
neNeUNr n=z n € Ny
cont cont
n = n = €
cont .
ne€ Ns seq(n)=ay...ar a; = bjforalli=1,... k
t
n="by... by
neNe aé€ choice(n) a=b
n %y
neENyr n=zx n € NeUNy
text text
n = x n = €
text .
n€ Ns seq(n)=ay...ar a; = b;foralli=1,... k

text
n = by .. b

ne Ne ac€ choice(n) a b

t%t b

The language of summary graphs are of an even greater class than general tree languages.

Notice a few detail differences between DOM and summary graphs: XML attribute nodes to
not contain text nodes. Summary graph attribute nodes have edges to text nodes, though.
Summary graphs do not model the comment and pi node kinds, as these are hardly worth
consideration in a validity assessment context: They are permitted almost anywhere any-
way°!.

There are a few limitations applying to legal summary graphs: interleave nodes may only
appear as the content node of an element node, and element content models must be single-

type.

51In DTD, they are not permitted as children of element declared EMPTY, but we have never heard of
any major disasters caused but somebody overlooking that. We speculate that it was simply forgotten to
explicitly permit them in the XML spec.

114

SUMMARY GRAPH VALIDATION

An existing algorithm in BRICS Schematools can check, for any two summary graphs (SG1
and SG3), whether L(SG1) C L(SG2)

In the negative case, a list of error messages is produced, listing every element content model
whose constraints are violated, with an example of a violation where possible.

We will simply use this algorithm for validation: The summary graph constructed to model
out transform output, given that transform input is valid wrt. D;, is SG1, and the output
schema will be used as a basis for constructing SGo.

14.2 SUMMARY GRAPH CONSTRUCTION

Having constructed a flow graph, we will use the information of that for constructing a
summary graph, generating a superset of the XML tree set that the given transform may
generate for D;,. At this stage, the data description goes from monovariant (one graph node
for each template rule and template-invoking instruction, template nodes are decorated with
context sets and edges with context flows) to an equivalent polyvariant graph — there is
now one node for each (templaterule, contexttype) pair, and no context set decorations
on nodes or edges.

The summary graph will extend the flow graph in two dimensions, from describing only
flow of control and context types between template rules during stylesheet invocation, it will
describe everything missing in the flow graph alone:

e The nodes output during stylesheet invocation will be modeled. The very reason for
making the summary graph polyvariant is to support this, by making available a specific
context type for each sequence constructor.

e The content models of nodes, as given by the input schema, were approximated coarsely
in the flow analysis: All information in the content and attribute models of DNTs was
thrown away in the flow analysis, except whether some type was maybe a child or an
attribute of another. Flows were modeled on the large side, and never deemed not
to exist, unless that could be established with absolute certainty. The summary graph
constructed will to a large extent compensate for that, re-establishing the limits and the
“maybes” ignored earlier — and still conservatively: The graph reflect any uncertainty
that some flow or output will actually happen at transformation run-time.

The interplay between the flow analysis and the summary graph construction can loosely
be put this way:
— Flow analysis takes care to model any run-time invocation of templates that may
cause too much output for validity.

— The summary graph is composed from fragments, that are assembled on the basis
of information from the control flow graph.

115

Figure 21: A summary graph fragment with placeholders for the DNTs b, ¢ and d. It is typical for a
content model fragment, having no element or other output-generating nodes.

— The individual summary graph fragments model invocations of template instruc-
tions, taking care to also model that invocations may not happen, causing too
little output for validity5?.

The goal is to construct a summary graph, given a flow graph and an input schema. The
summary graph constructed must generate a tight superlanguage of the language generated by
the stylesheet, given that input is valid wrt. the input schema D;,

The process of converting the graph is somewhat involved, and in the demonstrator imple-
mentation, it accounts for the greater part of the source code. Despite appearing complex at
places, the time and space complexity of summary graph construction are just bounded by
the number of template rules multiplied by the number of declared node types, where each
template rule counts as the number of modes it is used for?3.

The basic building block used is the summary graph fragment, which we will describe in a
little more detail:

14.3 SUMMARY GRAPH FRAGMENTS

A summary graph fragment is a a summary graph extended by an entry node and a mapping
from DNTs to placeholders. Placeholder maps serve to allow specific choice nodes of a
summary graph fragment to be associated with DN'Ts. Summary graph fragments, although
very simple, are capable of filling out these roles:

e Modeling evaluation of XPath2 step expressions, from a given context and restricted
by a schema

e Modeling XSLT2 sequence constructors and template-invoking instructions

52This perception is not quite complete: A template may contain some instruction that outputs, say, an
undeclared element, which is really a “too much”. A template rule may have its in-flow sucked up by another
template, or it may be missing altogether, causing a “too little”. But for a three-item summary, it will do.
53S0, unless the #all mode is used, a template is just a template.

116

e Cloning schema content models

In overview, summary graph construction consists of these steps:

1. Fragment construction: For each mode m € M, for each template rule » € R, for
each context type ¢ € C(r), a fragment f,(m,r,q) is constructed, representing r when
invoked under mode m, with ¢ as the context type.

The fragment will model the output of r’s sequence constructor as faithfully as practical.
Each template-invoking instruction {7 : r;(i) = r} has a separate fragment constructed,
which may be referenced later as f;(m,i,q); this fragment will embody information
about the nodes that ¢ may select, under the restrictions of the input schema.

2. Fragment assembly: The information stored in the flow graph is used for assembling
the fragments into a connected summary graph, representing the possible output of the
entire transform. This final summary graph is then validated against another summary
graph representing the output schema.

14.4 MODELING SEQUENCE CONSTRUCTORS

The summary graph fragments elaborated on here model the output and outgoing flow of
some template rule once invoked — Assume that the template rule r is invoked with the
context type ¢, under the current mode m. The fragment representing this will be roughly
isomorphic with the sequence constructor of r, and it is appropriately transformed in a
recursive descent over this:

Sequences of instructions are transformed to a sequence node, with the children being
the transforms of the sequence’s children, in the same order

value-of instructions are transformed to a text node, with a text language automaton
constructed as detailed in Section 14.4.

attribute instructions are transformed to an attribute node, with a name automaton
constructed as in Section 14.4.

element instructions are transformed to an element node, with a name automaton con-
structed as in Section 14.4.

choose instructions are transformed to a choice node, with a choice edge to the transform
of each child

when instructions are transformed to the transform of their child sequence
otherwise instructions: are transformed to the transform of their child sequence

copy instructions are transformed depending on g:

117

Element context types result in an element node, constructed in the same way as
from an element instruction.

Attribute context types result in an attribute node, constructed in the same way
as from an attribute instruction. A text node is added as content, having the
language Dy(q), as defined in Section 6.8.

pcdata(l) 3* context types result in a text node, with the language .

The root context type results in the transform of the child instruction sequence of the
copy instruction.

The comment context type results in a sequence node with no edges.

The pi context type results in a sequence node with no edges.
The translation of any content of the copy instruction is made content of its translation.

Template-invoking instructions are transformed to a rather involved structure, contain-
ing at least one placeholder for each DNT that may be selected by the instruction, and
a model that describes, using input schema information, how many times each DNT
may be selected may be selected, and in what order relative to other DNTs. This is
described separately in Section 14.5.

value-of INSTRUCTIONS

This instructions always evaluates to a text node, and it is translated to a text node’.
A best-effort attempt is made to bound its language to what the select expression may
evaluate to:

union expressions result in the union language of the languages of each sub-expression
concat (...) function calls result in the concatenation language of the argument languages
name () function calls result in the singleton language of the name of the context type®

local-name() function calls result in the singleton language of the local name of the context
type

namespace-uri() function calls result in the singleton language of the namespace URI of
the context type

string literals result in the singleton language of themselves.

54The coloring of pcdata was explained in Section 13.14.

%5 As one might have guessed.

56The function is specified as a string function, not a qualified name function. This leaves a small problem
as to which namespace prefix to use: Using the language over all NCNAMEs would trigger any error with
the value as a datatype (such as not matching an enumerated simple type), but relying on that for use in
<element name="name()"/> would be a precision disaster. The solution is to use the NCNAME language
in a value-of evaluation context, and use a prefix bound to the namespace of the context node otherwise.

118

position() and last() function calls result in a language over the integers from 1 up, lex-
ically.

all other function calls are currently given up upon, and result in the char® language.
There is room for some improvement here, since XPath2 functions are strongly typed,
and some can be approximated to something better than just their declared type, like
with concat (). The only reasons that this was not pursued any further was the time
it would take to write a full function and operator library including coercion rules for
XPath2, and that nothing indicated a strong need for it.

path expressions are abstractly evaluated to a set of DN'Ts. These are each approximated
to a regular language that contains the results of evaluating <value-of select="."/>
on each type:

pcdata(l) evaluate to the language [.

DTD-declared element types evaluate to the language of the empty string if de-
clared EMPTY, otherwise to the char® language.

XSD-declared complex-typed mixed element types evaluate to the char® lan-
guage.

XSD-declared complex-typed non-mixed element evaluate to the empty-string
language if childless, otherwise to to the language of all XML strings (giving up
precision — value-of on an instance element returns the concatenation of all its
descendant text nodes, and is hard to limit statically)

XSD-declared simple-type or simple-content element types are not as easy to

deal with as it may seem: XSLT2 atomizes their value, splitting instances of some
non-primitive XDM types into a sequence of the corresponding, primitive atom
type, and normalizing whitespace. These atoms are then output separated by
whatever is given in the separator attribute of value-of, defaulting to a #&x20;
(a space).
As long as the separator attribute is absent, the language of the element’s de-
clared type is bound to be a superlanguage of that of the value-of, so that can
be safely used. Currently, if the attribute is present and has a value that is not
allowed as a separator for list-derived simple XML Schema types, char* is used
as an approximation. Of course, looking up the atom type’s language [in the
schema, and constructing a list language based on [, separator and the length
bounds of the list derivation would be slightly better.

Attribute types evaluate to the language of their fixed value if present, otherwise as
with simple-type or simple-content element types.

the root, comment and pi types evaluate to char®.

element AND attribute INSTRUCTIONS

These instructions have a name and a namespace attribute value template (AVT), from which,
together with the context node, an automaton is constructed that has as its language a
superset of the names of the elements that the instruction may construct.

119

First, the name AVT is parsed into a sequence {ej,---,e,} of XPath expressions in the
same way as described in Section 12. A function invocation expression concat(ey,--- ,ey,) is
constructed, and an automaton a,gme is constructed as for the value-of instruction. The
same is done for the namespace AVT (apamespace), and the two automata are then, obeying
the conflict resolution and no-prefix namespace semantics specified for the element cf. the
attribute instruction, merged to form an automaton whose language is:

{ ,{,-ﬁ(anamespace)-,},-ﬁ(aname) if E(anamespace) ?é {6}

L(aname) otherwise
which is the “Clark notation” of expanded qualified names expected by BRICS Schematools.

Care has been taken to take advantage that the XPath2 functions name, local-name and
namespace-uri can be evaluated statically because a context type is available: The generic
identity transform thus did not have any precision problems with any schemas tried.

14.5 MODELING TEMPLATE-INVOKING INSTRUCTIONS

A template-invoking instruction is an instruction that selects a sequence of nodes, and
then, for each node in the sequence, passes control to a template matching the node. An
<apply-templates select="s"/> instruction has an XPath2 expression s for selecting to
node sequence, which is specified in [15] to be erroneous if it can select anything else than
nodes. The other two template-invoking instructions left after stylesheet simplification,
apply-imports and next-match, always select the singleton sequence of the context node,
and are treated uniformly with the apply-templates instruction by adding self::node()
as a selection expression.

First, let us get rid of those apply-templates instructions that were made to select
xslv:unknownSequence () in stylesheet simplification. They result in a fragment outputting
an element with any name at all, enough to set off a somewhat meaningful error message in
validation.

Each template-invoking instruction is translated into a summary graph fragment. The idea
is to compose the fragment as an abstract evaluation of the selection expression of the in-
struction, from a chain of step fragments, of which one is constructed for each each location
step of the selection expression.

If s is on the form p; intersect po or p; except p2, we model selection of some unknown
subsequence pf what p; may select, translating only for p; and letting the result be a choice
node over the translation and an empty sequence.

Step fragments are constructed differently, depending on the axis of the source step. In
any case, the construction starts given set {2; of context types — the first step in a selec-
tion expression is constructed given the context node ¢ for the summary graph fragment
construction; Qp = {q}.

120

¢

24 SEQUENCE
cardinal:3:5

1[2]3] 4 &5&
23 CHOICE
cardinal-?:0:0

74 TEXT
urn:XSLTValidator:7:3
"Bravo"

22 SEQUENCE
epsilon:0:0

Figure 22: Cardinality construction: 3-5 times the text “Bravo”.

The result of evaluating abstractly the single step is constructed:

Qip1S(a = t,Q) = S5P(Q)

a::t

For multi-step selections, a summary graph fragment is constructed for each DNT in ;,1,
and the resulting fragments are concatenated onto the fragment constructed from the previous
step.

The fragment construction depends on the axis of each step, and the context type:

child: The content model of the DNT is modeled in a recursive descent using summary graph
primitives:

simple-typed elements are modeled as pcdata(t) placeholder, where ¢ is the lan-
guage of Dy(t) if there is a text type € ;11 , otherwise as an empty sequence
node.

mixed-complex-typed elements: If there is a text type € ;41, the result is a in-
terleave node, with a placeholder for pedata(char*) as one child, and the model
of the type’s other contents as another child. Otherwise, the result for the same
complex type, but non-mixed, is returned.

nonmixed-complex-typed elements are modeled as the model of their outermost
compositor.

Sequence compositors are modeled as a sequence node, recursing over children.
Choice compositors are modeled as a choice node, recursing over children.

All compositors are modeled as an interleave node, recursing over children.
element declarations g € (2,11 are modeled as a placeholder for q.

Card constructs are modeled precisely, using the sequence, choice and oneOrMore
summary graph node types.

element declarations not € {2, are modeled as an empty sequence.

121

any wildcards are modeled as a cover-any-case construct representing the result of
transforming the wildcard — outputting any elements, attributes or text in any
order, with the construct itself as the content model of elements and any text as
the model of attributes and text nodes.

comment and pi if € ;,1, are modeled as a placeholder for the comment DNT
and one for the pi DNT.

finally, a cleanup is performed:®7,

Dead subgraphs of sequence, choice, interleave and oneOrMore that do not
have a reachable placeholder are removed. Such subgraphs may arise if the set
Q;+1 does not contain every DNT of the content model. This is repeated until no
dead subgraphs are left.

Singleton sequence, choice or interleave nodes are replaced by their content.

parent: A fragment is constructed over a choice node, branching to each of {¢’ € parent(q)|q’ €
Qig1}-

attribute: A sequence node’® is returned, with the model of each attribute use, and at-
tribute wildcard of the context type as children:

attribute uses in ;11 are modeled as a placeholder node mapping the attribute’s
DNT. If the cardinality of the attribute use is Optional, an optional construct
using choice is added.

anyAttribute wildcards are modeled the same way as any (the rationale being that
attributes, too, may cause invocation of templates that output elements — it is
the transform output being modeled).

all other axes A fragment is constructed over a choice node, branching to a placeholder
for each DNT in ;,1. Admittedly, a bit more precision could be achieved by using the
axis directions: For example, on the ancestor axis, it is known that a near ancestor
comes before a remote ancestor — unless the ancestor types are mutually recursive.

A general approach could be using the Mohri-Nederhof algorithm to approximate doc-
ument order, given a schema. We have seen one case in the [23] test corpus (selections
beginning with /descendant-or-self::node()/...) that could benefit from that —
on the other hand, the expressions could as well (automatically?) have been rewritten
to something sharper.

A UNION SELECTION PROBLEM AND SOLUTION

In the above description, we have described context flows as emanating directly from template-
invoking instructions, and glossed over union selection expressions completely. Union expres-
sions in selections are handled by considering each template-invoking with a union selection

ST«finally” is conceptual — in an implementation, the cleanup may be done on the fly, during construction
58 Attributes are unordered, so the order of the attributes on the sequence node does not matter. inter-
leave could have been used, but it is costlier performance-wise.

122

<template match="a"'> -
<apply—templates select="*"/> _
<element.../> N N | sequence |

</template> N .
\\
N\

<element name="a'">
<complexType>
<sequence>- - - - - - _ -
<element ref="b"/> __ ~~~_

<choice>- - - - - - _ - ~~_
<element ref="d"/> ~<
<element ref="c'"/> - - _
</choice>
</sequence>
</complexType>
</element>

= sequence |
A R

N -7-=1 choice

a—> {b}

<template match="b"> entry
<choose> - - - - - - ——- - _ _ _
<when test="__."> e choice
<apply—templates select="x"/>
</when> \ o f--f> attribute
<otherwise> NP
<attribute.../> ---7 \

</otherwise> AN =7
</choose>
</template>

Figure 23: Constructed and assembled summary graph fragments. The upper fragment is translated
from a template rule with an apply-templates instruction. The center fragment is the translation
of the content model of the a element, and the fragment at the bottom is one of the targets of the
original apply-templates instruction.

The upper and center fragments are assembled already at fragment construction time; the lower
fragment was connected using the flow graph information when the upper template is invoked with
an-a typed node, there is an edge flow of node type b to the lower.

123

expression a set of template-invoking instructions, each with a singleton path selection ex-
pression. When constructing summary graph fragments for union selection template-invoking
instructions, care must be taken not to introduce any new ordering: Nodes are selected in
document order, even by a union selection expression.

A conservative approach would be to represent such a group by a OneOrMode node con-
taining a Choice node over the individual instructions’ summary graph fragments; call this
the “emergency union resolution”. This certainly does not mask any errors there may be in
ordering of output from the fragments; but the Choice node causes a rather bad loss of
precision, saying basically that all fragments but one is now only maybe invoked.

Most union selection expressions are on the form child::a | child::b | ..., selecting
more than one, but fewer than all child elements of the context node. This is simply restruc-
tured to child: :DNTs(a,b,---), where a, b etc. are sequences of all element DNTs that have
the name a, b, etc. Now, the union selection expression has become a single path expression,
semantics preserved. This “hack” eliminated a spurious error in the links2html test case. The
same technique is used on unions of attribute-only axis one-step path expressions.

For union expressions with different first-step axes, an approximation better than emergency
union resolution was used:

1. Call the set of path expressions of the union P = {p;---pn}.

2. Let Ppefore be the set of all relative p € P with a leading parent or ancestor axis step,
followed by zero or more parent or ancestor axis steps.

3. Let Py be the set of all p € P with a single self axis step.
4. Let P,y be the set of all p € P with a single attribute step.

5. Let Pyper be the set of all relative p € P with a child or descendant steps, not followed
by any parent or ancestor steps.

6. If |Poefore| + |Pseif| + |Pater| + |Pagter] # n, then give up and use emergency union
resolution on P.

7. Otherwise, make a list of {Ppefore, Pseif s Pattrs Pafter } With emergency union resolution
applied to each, except empty ones, which are removed, or singletons, which are added
to the list directly. The result is a Sequence node over the list.

This heuristic conservatively re-orders the path expressions of the union to the document or-
der of what they select, but it gives up in the face of absolute expressions, ancestor-or-self
or descendant-or-self first steps or path expressions of mixed forward and reverse order
steps.

124

FINISHING TOUCHES

In case one or more sort instructions are nested in an apply-templates instruction modeled,
at runtime, the node sequence selected will be re-ordered between selection evaluation and
template recursion, and any information about ordering of DNT flows that the constructed
summary graph fragments contain may become invalid. This may affect soundness of the
analysis (as masking an illegal ordering of output, caused by sort reordering) if not dealt
with.

The solution used was to replace sequence nodes by interleave nodes, preserving cardi-
nality but breaking ordering, but with one restriction: BRICS Schematools can only handle
interleave as the direct content of element nodes, so if if it is not known for sure that the
sequence node will have that position, an oneOrMore over a choice node is used instead,
sacrificing precise cardinality but retaining soundness.

One often used predicate is the integer literal [i], introduced in Section 8.1. It will filter out
all but the 7’th node in a sequence. If used in the last step of a selection expression, its effect
is that at most one node is selected (the i'th, or, if there are not i nodes in the sequence,
none). Selection expressions with this condition can have their summary graph fragments
constructed more precisely, by effectively limiting Card expressions to maxz = 1. It is done at
fragment construction time.

All predicates in selection expressions can potentially preclude a node from being selected,
and thus cause the transform to get invalid, because any output caused by that selection
was missing. The effect of the predicate is modeled by replacing the translation of the
apply-templates instruction by a choice node, choosing either the translation or an empty
sequence.

A further refinement that was left as an idea for future work is a way of bounding the types
selectable by a [¢] filter expression: Construct a deterministic automaton over C,(q) (it is
regular), and remove all dead states. For the number 4, the set of symbols that may appear
at the i’th position of a string generated by the automaton (and thus be the DNT of the i’th
node in a string; the node selected), perform a depth-i traversal into the DFA graph of the
automaton, starting from an entry node. A set of states will be reached. The set of symbols
of all out-edges from states in the state set is the set of possible i’th symbols in the language,
and it might narrow down ;4.

14.6 FRAGMENT ASSEMBLY

Summary graph assembly is the stage of validation where the flow graph and the constructed
summary graph fragments finally unite: We have constructed one (composite) fragment for
each template, with a set of placeholders for each union subexpression of each contained
template-invoking instruction. All that remains to be done is an assembly of everything,
using the edges of the flow graph for inserting edges.

125

Recall the flow graph G = (F,C). Assembly is as simple as:

Foralme M,qe ¥y, i € Z,r e R:

For all ¢’ € F(m)(q)(i)(r) :

Add a choice edge from the placeholder for ¢’ at f;(m,i,q) to fr(modeflow(m, mode(i)),r,q").

This is easily implemented as a work-list algorithm.

15 EVALUATION OF VALIDATION

D’oh!

Homer Simpson

Finding a proper way to evaluate the validator was harder than expected: It is wery hard to
find working empirical cases of XSLT2 and/or XML Schema based transform triples of an
input schema, a transform and an output schema.

Since performance-related aspects are almost the same for DTD- and XML Schema based
input, we have simply re-utilized previous work — the [23] set of test triples, believed to have
been originally provided by Michael 1. Schwartzbach.

15.1 DTD-BASED TEST SET

Since the [23] XSLT static validation project already has demonstrated that static XSLT
validation for DTD and XSLT1 is feasible with a quite acceptable precision, and since our
algorithm improves upon the previous one in all respects, we will not need to repeat the
basic findings here. Just to be sure, his set of DTD/XSLT1 test cases were run again, on our
validator.

THE TEST TRIPLES

Both [23] and we implemented in Java ([23] 1.4; we 1.5), and ran all tests on a 3 GHz Pentium
4 computer with 1GB of RAM, and running Linux. All times are in milliseconds.

VALIDATION PERFORMANCE

Performance results for a selection of the [23] DTD-based test set are in Table 15. For once,
there is something we have little to say about; the performance of the stylesheet simplifier,

126

Title # templates # element decl. # attribute decl.
adressebog2xhtml 16 11 0
agenda2xhtml 11 6 5
availablesupplies 10 18 5
dsd2html 990 40 15
emaillist 54 20 1
links2html 20 12 1
ontopia2xtml 70 11 13
order2fo 14 19 4
poem2xhtml 14 7 1
purchaseorder 18 22 6
slides2xhtml 21 13 2
sqlprocedures 20 14 3
staticanalysis 59 22 7
window2xhtml 102 37 7
xhtml2fo 462 89 119
xmlspec 384 162 56

Table 14: Complexity of the [23] triples

the input schema structure initialization (which now has no automata to construct), and the
flow analysis are fast, fast enough to be able to run a cycle every few seconds with any input
schema, and stylesheet of practical size.5. In the two largest cases, flow analysis completes
in about 1/100th of [23]’s time, despite better precision and a much lower memory profile.

There should then be no more reason for concern as to whether practical, reasonably precise
XSLT2 and XML Schema flow validation is feasible; it is.

%9Probably, this performance could be improved even more by simply turning off compiler debugging
instrumentation, and turning on optimization. Also, a simple experiment with bit sets showed that there is a
potential for making the many set addition and removal operations in the abstract evaluation algorithm run
almost twice as fast, compared to the current hash sets.

Test case tioad tD;, tflow tsgc tDyus tval Liot
adressebog 95 5 13 8 880 3646 4647
availablesupplies 95 4 0 8 857 4608 5590
dsd2html 842 13 1642 2175 950 214057 219680
sqlprocedures 140 5 26 31 882 8313 9397
window2xhtml 694 8 118 100 896 15649 17465
xhtml2fo 794 125 1171 - - - -

Table 15: Execution timing, for a selected set of test cases (most typical small cases were omitted).
BRICS Schematools seems to hang on the xhtml2fo test case. Overall, simplification and flow perfor-
mance are all fine for on-line use of the algorithms, but summary graph validation is slow, and had
better be run in a separate thread.

127

Test case true spurious comment
adressebog 1 0 illegal element in output
agenda2xhtml 1 0 required attribute missing
availablesupplies 2 0 missing XHTML head, alt attribute on img
dsd2html 0 0
emaillist 2 0 two documents elements output; p in small
links2html 2 0 table directly in p, h2 directly in p
ontopia2xtm 7 1 NMTOKEN attributes emptiable, one if test spurious
order2fo 0 0
poem2xhtml 1 0 missing XHTML head
purchaseorder 1 1 one // step O-infinite cardinality estimate spurious error
slides2xhtml 11 2 complicated depth-4 recursive error,

possible flow analysis bug.

9 errors are missing attributes
sqlprocedures 6 0 color attributes on hr, emptiable ul, ol content
staticanalysis 1 0 required attribute missing
window2xhtml 1 0 text before document element
xhtml2fo - - summary graph validation not terminated
xmlspec(DTD) - - summary graph validation not terminated

Table 16: True and spurious errors for most DTD and one XSD test cases.

Summary graph validation, however, has become slower in the larger cases, and in the DTD-
xhtml2fo case, does not terminate at all within reasonable time (hours). Now this could be due
to BRICS Schematools still rather immature, or it could be that we generate bad summary
graphs. Running a Schematools check on the generated summary graphs revealed nothing,
though, and an inspection for zero-out-degree choice nodes — a case we were advised against
— found none.

We hope that this is only an intermittent situation with BRICS Schematools (or that it is a
bug in our summary graph construction, for that matter), and believe that it can be solved.
At least, [23] has showed that fast summary graph validation is possible — his dsd2html
summary graph validated in less than a minute. Maybe some automaton uses in BRICS
Schematools can be replaced by something faster, following the idea of our flow analysis.

PRECISION

Precision-wise, the envelope of static analysis was once again being pushed.

The data here does not compare directly with that of [23], because of differences in reporting
counts of the same errors in the different summary graph validation software used. However,
both in theory and practice, we are more precise: A problem with attribute datatypes being
approximated to char® caused [23] a number of spurious errors — we have almost-exact data

types.

128

As for these DTD-based typical cases of schema/stylesheet triples, there remains only to say
that precision is excellent, and that our proposed Mohri-Nederhof document order approxi-
mation, and some kind of predicate evaluation (like our drop-off decorators) seem to be the
only things missing for perfection — with this test set, that is.

XSD BASED TEST CASES

Empirical testing with XML Schema bases triples was a moderate success, primarily because
available output-side schemas would not load into BRICS Schematools at the time of writing,
and could not be converted reliably to something that would.

Quite late in the process, we found a solution, but by then there was no time for evaluation
of a larger, real-world test set. This remains, then, largely a to-do.

GENERALLY

Demonstrating anything empirically about the adequacy of our modeling of XSLT2-specific
constructs was not possible, as it is not even a W3C Recommendation yet, and there is
currently only few and expensive schema-aware stylesheet processors available. We have
instead resorted to self-made unit test cases, on the aspects that we believed were the most
important:

e Proper functioning of the stylesheet simplifier; no masking of errors

e Proper behavior for modes and apply-templates/apply-imports

e Proper behavior for modes in summary graph construction

e Identity transformation error-free with copying of any simple datatype

e Identity transformation error-free with same-name, different-type elements in schema
e Identity transformation error-free with substitution groups in schema

e Identity transformation error-free with subtyping by extension in schema

e Reuse of experience: Identify corrections for [23] spurious errors

The tests are not automatic regression tests®’; they were run manually, and the results (an
XML dump of a control flow graph, or a summary graph) were inspected manually.

80For a production XSLT tool, a set of regression tests would be a must: Errors can come a long way
through data structures, and backmapping their origin can be very time-consuming. For this project, which
merely investigates feasibility, a test suite is too expensive.

129

VALIDATION

Instead, we have focused on finding any problems in the transition from XSLT Version 1 to
Version 2, and from DTD to XML Schema. Ignoring issues related to XSLT2 parameters
and variables (a full implementation of flow analysis on temporary trees or copy-of tem-
porary trees does not yet exist), the primary source of new spurious errors is the increased
expressiveness/strictness of XML Schema types.

How many spurious errors can be found depends strongly on the quality of the output schema
used. Throughout the project, proper evaluation was seriously hampered by:

e Scarcity of empirical test cases (triples of transforms and input, output schemas)

e Scarcity of high quality output schemas

Empirical test cases were hard to find on the Web: Many were not proper XML to XML
transforms, and many lacked a working input schema. This situation does not, however,
mean that the whole idea of static XSLT validation in is still-born for real-world application:
As soon as the XSLT Version 2 transition is complete, stylesheet authors will become aware
of the coupling between schemas and stylesheets (all will be needed at the same time), and
they will become more likely to be distributed together.

The quality problem of output schemas had a simple cause: Through the part of the project
where BRICS Schematools was available®!, it would only construct summary graphs from
one schema language: A restricted subset of Relax NG. Not a single Relax NG schema found
on the Web was on the proper, restricted form, and the only converter found to convert XML
Schema to Relax NG (Sun’s rngconv) would either crash (for all XML Schema versions of
XHTML1 schemas found), or convert to something that was not on the proper, restricted
form. Conversion from DTD (still with rngconv) was, then, used as a last resort, resulting in
output schemas that did not exceed DTD in expressiveness.

An almost obvious solution was found in the final hour®?: To use as the output schema

summary graph the transform summary graph constructed from an identity transform, using
the original output schema on the input side. This is quite feasible because, as [23] has
already demonstrated, summary graph construction from a generic identity transform can be
made completely without loss of information.

Only two good test cases were found. Both use the xmlspec schema on the input side, and
XHTML cf. XML-FO as output.

About the legacy DTD-based version of xmlspec, [23] wrote they it had too many errors
for practical evaluation. We largely agree: It is an old stylesheet, having had four different
editors and numerous changes in its specified input language.

611n fact, no validation back-end existed for the first 3/5 of the project’s duration
52hence the d’oh!

130

Category count
choose-guarded attribute copying 21
Whitespace normalization bug 58
xsi:type, xsi:nil 30
Parameters taking default empty value 124
Invalid child 414
Required attribute missing 1
Invalid (empty) contents 2

Table 17: First impression on fraction of spurious errors in a large stylesheet which [23] gave up
because of its (an older DTD-based version) many errors: There are still many errors in the stylesheet.
Many real errors stem from a template that matches *, and emits highlighted warnings (in HTML)
whenever no other template matches. Choose-guarded attribute copying is a copy instruction inside
a choose copying some attributes — some, if not all of our errors from that are definitely spurious.
“Whitespace normalization bug” are spurious errors caused by a missing whitespace normalization of
some values from input — they are concatenated onto a constant, and afterwards may have internal
whitespace, which the output schema does not accept.

The “parameters taking default value” category is caused by the flow-insensitive template parameter
resolution: The relevant template seems to always be called with a nonempty parameter, but the
default value is the empty string, causing the error. The stylesheet is an XSLT1 one; in XSLT2, this
can be avoided.

It failed validation with an impressive 650 errors, which were partitioned roughly in Table
17; roughly one third are spurious; the rest are real®

Spurious errors here appear largely to be due to stylesheet authors having lost control, and
using predicates for controlling flow at places where selection semantics had been more ap-
propriate. We suspect that many of these predicates were added during frantic efforts to get
the transformation results of single input instances to schema-validate!

Thirty errors were due to xsi:type and xsi:nil attributes with input-specified types being
xsl:copyed to the XHTML output, where they were undeclared.

The schema has a history dating back to 1998, with numerous revisions and additions since,
including the third-party specifications included, and with an editor backlog of four people.
This has lead to templates like this one:

<!- 8illy HTML elements used for pasting stuff in; shouldn’t ever
show up in a spec, but they’re easy to handle and you just

never know. ->

<xsl:template match="al|div|em|h1|h2|h3|h4|h5|h6|1lilol|pre|ul">

530ne and a half days were spent debugging the validator after getting this result, looking for the bug that
caused a set of official W3C releases to err that badly. The lesson learned was that (again) there was no bug:
It the beginning of the validator’s life as running code, maybe 80% of strange-looking results were due to
bugs in the validator. Later, after code maturity, most surprising results were really validation errors: Test
cases finding bugs in program the program code had become program code finding bugs in test cases...

131

This first experience with validating a large schema/transform/schema triple indicates that
the number of errors grows out of proportion with the schema/stylesheet size, and that the
size of the whole schema can grow towards loss of overview and control (“spaghetti”) without
proper power tooling.

THE SALESREPORT EXAMPLE

Despite a number of challenges to a validator (human or automatic), our example transform
validates; it always produces valid XHTML, given valid sales reports.

Some challenges, with requirements for a validator not to spuriously err, are:

e There are two sales-matching templates, one absolute and one not. Both had correct
priority computed; on the other hand, both were also used.

e Evaluation of the concat function in r3, over an enumerated simple type and a string
literal worked fine

e The choose instruction in ¢3 retained precision

e There are two different templates r5 and rg matching elements named name, with a risk
that a buggy validator confuses flow to the two. That did not happen.

e The width="{text ()}" AVT in the last template rule copied to an integer attribute
from an integer datatype. No errors were reported.

e URL datatypes copied OK.

CONCLUSION

To the degree tested, the only two aspects in our static XSLT validation that still need
improvement for a practical on-line application in an authoring tool are: Performance and
sensitivity towards predicates.

PERFORMANCE

The author of BRICS Schematools, Anders Mgller, informed us that there is still room for
large performance improvements (“factor 10”) in the validation algorithm. With such an
improvement, things would become much more useful.

Another possible improvement is to apply validation only to content models of elements
generated by the transform summary graph that have recently changed because of edits: A
difference graph between two flow graphs - a previous-generation one and a next-generation

132

one — could be computed as an add-on to the flow analysis. Validation should then be
applied only to the elements in the constructed summary graph that had their content model
changed during the generation. This is entirely possible within BRICS Schematools, but not
yet implemented.

PROPOSAL: PREDICATES AND DROP-OFF DECORATORS

Our general impression on precision of the flow analysis is that in most respects, it is excellent:
No examples were found — and none successfully constructed — that made elements with
the right name but wrong DNT become context types of some template in the analysis.
The path extension trick seemed overall sufficient to keep flows separate, even in complex or
poorly designed cases.

By far the most spurious errors, particularly in the XML Schema input- and output typed
xmlspec test case, were due to missing predicate tests. The xmlspec case seemed, ironically,
to be particularly bad because of its authors lacking static validation, driving them into
(late-night?) patching it with predicates, at points where their dynamic validation failed%4.

Predicates are very hard to analyze statically and generally: Even Milo et. al., who aimed at
a sound and complete analysis for a sublanguage, had to restrict away cases where data values
were being joined (compared). Mgller et al. suggest using “a primitive theorem prover”, but
do not go on to pursue it any further. We bring a suggestion for a simple predicate checker
— so simple, that it should be easy for users to identify the cases that it will recognize vs.
the cases it will give up upon®°:

The kinds of predicates recognized will be those that assert something within one child,
parent or attribute step’s distance of a node:

[attribute: :fool, [attribute: :foo="value"]
e [child::foo]
e [parent::foo]

e [name(self::node())="n"]

any of the above, with a not () function around the expression

Predicate tests could now be designed to work rather much like node test (S;..(£2)), except
that where node test only retained or discarded DN'Ts, a predicate that may retain, discard
or redecorate a DNT.

54This is pure speculation, though. We do not know who had authority to modify the transform and at
what time. But the transform does bear traces of something like that, and surely could benefit enormously
from static validity.

55The predicate in question could also just be highlighted in the editor, and a fly-over text could explain
what the validator “thinks” it means

133

The decorator is a standard Decorator design pattern instance ([13]), that will modify some of
the functions defined in Section 6.8 on the DNT. As a decorator, it will have all the properties
of a DNT, some modifying, and additionally a special operation accept(q, p), which determines
if some DNT ¢ can pass the predicate test p at all. If definitely negative, the DNT is discarded
in the predicate test. Otherwise, the DNT is replaced by a decorator over it:

Example: p = [attribute::fool. The predicate is syntactically recognized as a case for an
“attribute-present” decorator, found in a decorator library. The accept(q,p) operation
accepts a DNT if it has a declared attribute named foo. Once attached to the DNT
and now itself being a pseudo-DNT, the decorator declares the foo attribute Required.

Example: p = [not(child::foo)]. The predicate is syntactically recognized as a case
for an “content-model-restrictor” decorator. The accept(q,p) operation accepts a DNT
if its content model expressed as a regular language, does not result in the empty
language when intersected with Ed\(ejfoo)* (a language of all content models with no
foo elements). Once attached to the DNT, the decorator removes all declared foo
children from its content model (Cy(qdecorated) = Cd(q)\{ejfoo} is all the flow analysis
needs).

Example: p =[name(self::node())=n]. The predicate is syntactically recognized as a case
for an “extra-name-test” decorator, its accept operation just being an extra name test,
and the rest of it not modifying any properties of a DNT.

The technique will also apply for test expressions in XSLT’s when elements.

In the flow analysis, decorated DNTs will flow around between templates, modeling the flow
during a real transform more faithfully than ever. Some care must be exercised, though, when
flows of some decorated DNT merge at a template with flows of the same DNT without a
decorator, or with a different decorator: Conservativity could be endangered. One workable
solution could be to consider

{d(9)} E {q}

in lattices, such that a a re-propagation of a decorator-less DNT will happen automatically
when it is added to a context set, and to enforce: Whenever two different decorators over the
same DNT ¢ appear in the same context set, both are removed and ¢ is added (hence our
term drop-off decorators).

16 CODE-ASSIST ALGORITHMS

We follow up on our experiments with the several smaller code-assist algorithms suggested.
In general, neither is still integrated into the UI of the exploratory editor program, but the
algorithm code exists and, and we have tested simply that neither generally returns so little
data that it hardly contributes with anything interesting, and still does not return so much
information that it would be of no help to the user.

134

16.1 ABSURD PATTERNS AND SELECTIONS

A pattern is absurd relative to a schema, if it never matches a node in any instance document
that is valid with respect to the schema.

A path expression is absurd relative to a DNT ¢ in a schema d if: For any instance document
valid wrt. to d, the path expression always selects an empty sequence when the context node
for the its evaluation is of type ¢.

A path expression is absolutely absurd with respect to a schema d if: For any instance
document valid wrt. to d, for any DNT ¢ in d: the path expression is absurd relative to q.

Absurd paths and expressions are interesting to know about in an XSLT authoring context,
because:

e They reveal discrepancies between the way XML is used stylesheets vs. the way it was
defined in schema, very often version discrepancies.

e They reveal flow leaks into code that is not intended to be used, like legacy code or
built-in rules

e The exact way that XML namespaces are bound in XPath expression is a source of
much confusion and time wasting: Unintended namespace use will almost certainly
lead to absurd patterns or expressions, and can thus be caught without the need of
debugging.

The flow analysis algorithm was instrumented with absurd expression detection code:

For absolute absurdity of apply-templates selections and template rule match patterns (call
them both p), the test is simply

absurd if S(p,Xq) =0

b =) ’
abs(p) { ok otherwise

For apply-templates instructions selections, the relative absurdity test is

[absurd if S(p.{q}) =0
abs(p,q) = { ok otherwise

Relative absurdity in a selection does not imply absolute absurdity; there may be other
context types. value-of expressions were not tested, but they are worthy candidates for
such a test, too: 8 examples were found (during some different work) in the test set of the
kind <value-of select="e/text()"/>, where the type e was declared without text content.

Results from the test set are:

The seven test cases not shown have no absurd patterns or selections at all.

135

Test case ng MNg Ny comment

adressebog 1 0 0 No attributes declared; built-in attribute rule absurd
dsd2html 19 0 181 Inclusion of and later removal of schema part?
links2html 2 0 1

ontopia2xtm 2 0 3

order2fo 0 0 1

purchaseorder | 0 0 6

window2xhtml | 0 0 0

xhtml2fo 1 0 2

xmlspec 7 0 121

Table 18: Relatively and absolutely absurd selection expressions. mn; is the number of template
rules with absurd patterns. n, is the number of absolutely absurd selection expressions in live
code. n, is the number (selection expression, DNT) pairs for which the DNT was a context type of
the template containing an apply-templates instruction holding the selection expression, and the
selection expression was found to always select an empty sequence. Test cases not shown have no
template rules with absurd patterns, or absurd selections.

Even though there is not a single absolutely absurd selection, we still believe that such a test
is valuable in an editing context, because it is very cheap complexity-wise, and it catches
simple mistypings and namespace errors.

CONCLUSION

This test seems very suitable for generating on-line highlighting warnings that something is
definitely wrong with an expression, as evaluated in the context of a schema.

16.2 DEAD TEMPLATE DETECTION

Needless to say, this analysis is quite simple: Is merely looks for empty (for any mode)
context sets after flow analysis. If XSLT’s tests in if and choose were attempted evaluated,
their sequence constructors could also be added to dead code analysis, but stylesheet authors
typically use these instructions exactly to construct something that is hard to argue about
statically.

Some programmers consider it bad style to use built-in templates: [11] call that having a
missing template. For those, this dead code analysis is useful to verify that all built-in
templates remain unused.

136

comment
The dead built-in rule is the attribute: : * one

Test case
adressebog
agenda2xhtml
availablesupplies
dsd2html
emaillist
links2html
ontopia2xtm
order2fo
poem2xhtml
purchaseorder
slides2xhtml
sqlprocedures
staticanalysis
window2xhtml
xhtml2fo
xmlspec

S
<

S
>

—_
O O O O

The absurd-pattern rules, and some built-in rules

o= W WO WD NWWO -

O OO O OO O NDNDNO

Table 19: Counts of dead templates. n,, is the count of dead templates in the user stylesheet modules;
ny is the count of dead built-in templates.

CONCLUSION

Dead template detection is, of course, a really simple analysis. It caught almost no dead code
in small stylesheets, which is hardly a surprise since these were probably just written, tested,
deployed and not maintained later. The large xmlspec stylesheet has a revision history dating
back to 1998, with a large fraction of legacy code; the newest, XSD-specified version had 36
dead templates.

16.3 PLAUSIBLE, BUT absent FLOWS

We want to present to the stylesheet author, given a template-invoking instruction and a
context type, the reasons that some edge flows from the instruction when invoked with the
context type, do not exist. Of course, it course, targets for every absent target template
could be reported, but that would result in too many obvious, uninformative messages.

Recall F} : T—>M—R — 25

We expect that a stylesheet author looking at a stylesheet for a little while will not expect
more flows to exist than what F; returns — it 4s a rather rough approximation, and so look
into using the set difference

miss(m, q,i,7) = Fi(i)(m)(r)\F(m)(q)(i)(r)

137

— where the i 1 Xy X Xg — X4 operator expands e, a, on its left-hand-side to £; and Ay
before doing normal set difference (a detail).

A few experiments showed this miss to return too many flows to be informative, when select (i)
was on one of the forms a: :node() or a::* for any axis a, so the \ semantics was changed
to effectively expand ey, a, on its left-hand side to (), ignoring any-type schemaless flows.

With some code instrumentation added in the abstract evaluation and template competition
analyzes, the cause of a flow being removed can be queried:

1. The flow is infeasible under input schema validity (including path expression absurdity)
2. The flow is overridden by a template with a higher import precedence

3. The flow is overridden by a template with a higher priority

Further, death reporting of flows to built-in templates was kept separate from that of flows
to user template rules, to enable filtering them away. Call a set of edge flows for some fixed
1,7

UmEM,qEEd miss(m,q,i,r)

a bundle for the instruction ¢ and template r; these are missing flows that can be presented
together in an UI.

Some test cases appear to have dead code, but no flows to dead code have been removed.
In fact such flows have been removed, by the template competition analysis stage of the
schemaless flow analyzer, and does not appear in the table.

For each bundle except xmlspec, the number of bundles is quite moderate compared to the
stylesheet line count, meaning that this absent flow information could easily be displayed in
a Ul, and that it is not too verbose to be informative.

CONCLUSION

A little bit of inspection of the data indicated that it is quite good; most reporting schema,
incompatibility and incompatible intermediate steps quite sharply. The ultimate evaluation
of its utility will not come before a presentation of it is implemented in a UI, but it has
been demonstrated that the amount of data to be presented is quite appropriate — there are
several lines of space for each.

138

Test case Ny Npep i Npei Tui Nyei l
adressebog 2 2 0 0 0 0 76
agenda 1 1 0 0 0 0 43
availablesupplies 0 0 0 0 0 0 42
dsd2html 4 4 14 14 0 0 1353
emaillist 16 16 15 15 0 0 257
links2html 12 24 4 4 3 3 128
ontopia2xtm 8 9 8 8 2 2 188
order2fo 6 6 10 10 1 1 112
poem2xhtml 7 4 0 0 0 0 35
purchaseorder 5 5 4 4 0 0 112
slides2xhtml 11 26 6 6 0 0 118
sqlprocedures 14 14 9 9 0 0 258
staticanalysis 24 53 20 20 7 7 262
window2xhtml 14 43 13 13 0 0 701
xhtml2fo 27 845 5 5 3 3 1697
xmlspec 31 33 16 17 604 614 2528
Table 20:

npp: Number of nonempty bundles, where the target template is built-in. The cause of flow removal
was import precedence override.

npep: Number of absent edge flows to built-in templates. The cause of flow removal was import
precedence override.

np;: Number of bundles, where the target template is built-in. The cause of flow removal was schema
incompatibility.

npei: Number of absent edge flows to built-in templates. The cause of flow removal was schema
incompatibility.

ny;: Like np;, but targeting user templates. The cause of flow removal was schema incompatibility.
Nyei: Like mpe;, but targeting user templates. The cause of flow removal was schema incompatibility.
[: Number of lines in the stylesheet.

139

16.4 UNUSED INPUT ANALYSIS

This simple analysis can find all DNTs that never become context types during a transform,
and never are selected in a value-of instruction, and for all declared children and attributes
of which the same statement holds. Under some assumptions, a pre-transform can then be
generated that strips subtrees rooted in any of these DNTs from XML input, before being
fed to the main transform. In cases where large amounts of data is ignored (queries), this
could substantially save time and memory.

The usage of a generated pre-transform is not always safe, even if it does not remove data
actually accessed: Just consider an element declaration e, with the content model

Seq(r, s,t)

and an XPath expression selecting an s child an ¢!, context node as child::*[2]. It should
be evident that if r children are removed in a pre-transform, the selection will now select
something different than before.

The analysis works simply by saving into a set si:

e All DNTs that are found to be context types of some template

e All DNT that are in the result of abstractly evaluating any select expression on XSLT
instructions in live code. For value-of instructions that evaluated to {pcdata}, the
set of element DN'Ts that the semifinal step in the instruction’s select expression was
saved instead, or, if the length of the (path) expression was 1, the context type for
the evaluation was saved. This was to avoid saving pcdata itself, which would later
prevent any declared ancestor of pcdata from being filtered away.

and then

e Removing comment and pi from s;. The safety of this move is under the (reasonable)
assumption that the transform does not use upward steps from any of these types.

e computing a second set s; containing ancestor-or-self DNTs of all DNTs in the set,
taking care not to consider only DNTs that were used as context types and data carries,
but also the ancestor types that contain them.

e Finally computing u = £;\s2, this being the set of element types that neither are used

directly themselves, or have declared descendants that are used.

Attributes were ignored, as they are hardly worth removing.

140

Test case u ng d f
adressebog 0 11 0 24
agenda2xhtml 1 6 0 3
availablesupplies 2 18 0 2
dsd2html 0 40 0 4762
emaillist 1 20 0 28
links2html 2 12 0 15
ontopia2xtm 0 11 1 23
order2fo 10 19 0 11
poem2xhtml 0 7 0 5
purchaseorder 6 22 0 9
slides2xhtml 0 13 0 13
sqlprocedures 0 14 0 15
staticanalysis 0 22 0 39
window2xhtml 5 37 0 31
xhtml2fo 7 89 0 554
xmlspec 20 178 20 500

Table 21: Number of unused input element declarations and summary graph fragment counts. |u| is
the number of unused element declarations; n; is the total number of element declarations in each
input schema. The large count for order2fo is because of an absurd selection that misses the subtree
rooted at the ShipTo element declaration.

d is the number of summary graph fragments generated which have no reachable outputting fragment,
and f is the total number of fragments.

141

CONCLUSION

This algorithm is so inexpensive in computing resources that there was no need of measuring
that. It found a fair number of unused element declarations, which could be used in a pre-
filter generator, or as an information to stylesheet editors that there is still some input data
that has been missed (where completeness is required).

16.5 NO-OUTPUT-REACHABLE ANALYSIS

This algorithm test for subgraphs of the constructed summary graph that never generate out-
put. It was observed that some stylesheets processed some subtrees of their input recursively,
but seemed never to output anything in these traversals.

The summary graph fragment generated for each (m € M,q € ¥4,r € R) was marked,
depending on whether or not had any element, attribute, copy or value-of instructions.
Then, summary graph edges between all template fragments were (conceptually) reversed,
and the closure of all fragments with a reachable output instruction was computed. Finally,
the edges were reversed back to normal.

CONCLUSION

This analysis could actually catch some cases of time-wasting traversal of unused subtrees
of the input, provided that our (upper-approximate) flow analysis could prove that no flow
would go to templates with output instructions. However, this was hardly ever the case;
maybe because of the built-in rule for pcdata, that outputs copies of text nodes.

Part V

Conclusion

17 SOME RESULTS

We have pushed the envelope of static analysis yet a little bit further:

e A method for fast and quite precise XSLT2 flow analysis under XSL Schema validity
of input has been found.

e The time and memory performance of general XSLT flow analysis has been improved
enormously; this of course extends to XSLT1 and to other programs where XPath

142

pattern matching is used.
e Static XSLT validation had been extended to cover XSLT2 and XML Schema.

e It has been demonstrated that XSLT flow analysis is now fast enough for real-time
code-assist use, even for large stylesheets and large schema.

e The claims above have been verified using an existing test set.

e XSLT2 with its partially typed transforms is still not a W3C Recommendation, and it
is too soon for full-scale empirical tests.

e However, test cases were constructed for most apparently difficult cases, and no major
problems were found.

A performance bottleneck in the best (known) existing practical XSLT flow algorithm that
prohibited on-line XSLT flow analysis for large instances, was eliminated without loss of
precision. However, it turned out that validation was too slow for large instances!

This needs not be definitive: The summary graph validation in BRICS Schematools could be
altered to validate only a selected set of nodes, and an algorithm could then be made that
computes the difference between generational flow graphs. This is probably the first problem
to be solved, before on-line static validation (not just flow analysis) becomes practical for all
realistic instance sizes.

All proposed code-assist algorithms were implemented and evaluated for usability on real
stylesheets, and all seem to be able to provide some real, practical help. This will ultimately
show when they are integrated into the editor with proper Ul visualization.

The final test with the XML Schema input-defined xmlspec stylesheet showed that precision
still should be improved for practical use: Predicate evaluation and a context-sensitive tem-
plate parameter resolution are necessary to get the error count for this case down to where
some confidence can be established for the user that he has real errors when the tool tells
him he has errors. Alternatively, some way should be found to identify the flow through
a stylesheet between the bad construct (if there is one) and the element that contains it
— like decorating summary graph edges with origin information, or through a no-semantics
information node type.

18 DEMONSTRATOR APPLICATION

An XSLT editor application was made. Its back-end code can be hooked up with just about
any front-end, though — like the one at www.dongfang.dk/xslv/xslv.html

143

18.1 README — download and build instructions

The program can be retrieved from
http://www.dongfang.dk/xslv/xslv.tar.gz

It requires Java 1.5, Apache Ant and BRICS Schematools. The archive should be unpacked
so that its root is a sibling of the schematools root (otherwise, the summarygraph.home
property in build.xml can be changed to point to the actual schematools directory).

Schematools needs a slight addition: In src/dk/brics/relaxng/converter/RNGParser.java,
add

/%
* Parses schema from InputSource.
* Q@param source - an InputSource
* Qreturn schema
* Qthrows ParseException if error occurs during parsing
*/
public Grammar parse(InputSource source) throws ParseException {
try {
builder.setInitialOrigin(new Origin(source.getSystemId(), 0, 0));
return parse(builder.build(source), new URL(source.getSystemId()));
} catch (JDOMException e) {
throw new ParseException(e);
} catch (IO0Exception e) {
throw new ParseException(e);
}
}

Then, rebuild Schematools.

After unpacking the first time, the included third-party libraries need to be unpacked and
built. This is done by changing to the speciale/lib directory, and starting Apache Ant
(ant).

To build the XSL tool kit, issue ant from the speciale directory.

18.2 Program Manual
VALIDATION — COMMAND LINE

To validate a single instance from the command line, use

144

java dongfang.xsltools.validation.XSLTValidatorMain stylesheet input—schema output—
schema [input — namespace| [input — root|

stylesheet, input — schema and output — schema may be given as absolute or relative file
names, or as URLSs. input —namespace and inputroot are the namespace (for DTD) and the
root element name (for DTD and XML Schema) for input. The input schema language is
auto-detected to DTD or XML Schema, but only reduced Relax NG schemas can currently
(until the BRICS Schematools XML Schema front end is finished) be used as output schema
language.

input — namespace may be omitted; in that case the validator defaults to no namespace.

input — root may be omitted; the validator will auto-guess in that case, and print the guess
(which should be verified).

The Java class path is assumed to be configured (everything needed is included, or comes
with Schematools):

the build directory

dom4j.homebrew.jar in a build directory of the lib/dom4j directory

dtdparser.jar in lib/dtdparser

the build directory of BRICS Schematools

all jars in the lib directory of BRICS Schematools

schematools.jars in the dist directory of BRICS Schematools

VALIDATION — APACHE ANT

This has the advantage that the classpath is pre-configured.

ant validate -Dstylesheet=stylesheet -Dinput-schema=input—schema -Doutput-schema=output—
schema |-Dinput-namespace=input — namespace| [-Dinputroot=inputroot|

The meaning of the parameters and the results are the same as for command line validation.
TRIPLE FILES

To support bundling of stylesheet with schema resources and contextual (namespace, root
element name) information, a test-triple XML format was designed. The format is, by pro-
totype:

145

<triple name="name" enabled=enabled> <input type="inputlanguage" DIDNamespaceURI="inputnamesp
root">input—schema</input> <output type="output—language">output—schema</output>
<xslt>stylesheet</xslt> </triple>

input — language and output — language may be safely ignored. The other parameters are
as explained above.

RUNNING TRIPLE FILES — APACHE ANT

ant runtriple -Dtriple= {riple [-Duse-automaton-algorithm=use-automaton-algorithm]
[-Donly-xcfg=only-xcfg| [-Donly-sg=only-sg| [-Donly-test-files=only-test-files| [-Dnum-runs-each=n)|
[-Dwait-each-triple=wait-each-triple]

triple is the a triple file name. If the file is a directory, all its subdirectories are searched for
triple.xml files, and all such triples are run, if enabled.

use-fast-algorithm disables the context-sensitive ancestor language analysis, only-xcfg
terminates the validation process when the control flow graph has been constructed, only-test-files
terminates the process when all files referred to in the triple have been loaded, num-runs-each
specifies the number of times to run each triple and wait-each-triple waits for keyboard
feedback after each run.

DEPLOYING THE INTERACTIVE WEB VALIDATOR

This is basically a done by installing Tomcat, and editing the tomcat.home, webapp.name,
java.handler.extension and web.classpath properties in build.xml. The handler exten-
sion is needed to make the URL resolution internally in the validator use the web service
interactively for resolving resources (using a custom protocol in URLs, dongfang).

dk.brics.misc.Automata needs to be altered to load automata over the class loader of
the Automata class, not the system class loader. Otherwise, automata will not load under
Tomcat’s modified class loaders.

ant deploy will copy everything needed to the servlet container — and also a custom protocol
handler to the ext directory of the JVM. Permissions probably need to be set before this will
work.

Theoretically, the web application should work then. Tomcat and its JVM needs to be
restarted, with the JVM parameter -Djava.protocol.handler.pkgs=dongfang.xsltools.resolver.

It was only ever tested on one location, so deployment can be expected to take a little
experimentation before success.

146

RUNNING THE INTERACTIVE EDITOR

ant editor -Dtriple= triple

There is currently no save or load capability in the editor; it will only start from a triple. It
could be trivially added, but for the present feasibility study, it is not necessary (and the UI
thread stays running even if the validator thread crashes, leaving the user a chance to grab
his mouse, and copy out his data).

18.3 Configuration Parameters

Some configuration parameters are available, allowing control of:

Control flow algorithms used
Data logging and dumping

Sanity tests used

Configuration is not dynamic, i.e. it requires modification of a Java source file, and a rebuild:

Class dongfang.xsltools.controlflow.ControlFlowConfiguration

boolean killCandidateEdgesOnlySoftly(): Returning true, the ... tests will not
actually kill candidate edges (as discussed in...), but will only mark them as potentially
removed. Used for sanity checks.

boolean useColoredContextTypes(): Enables or disables colored context types, as
discussed in ...

boolean useColoredFlowPropagation: Enables or disables re-propagation of context
flow for each color of a context type. If disabled, flow propagation will only take place
the first time a context type is added to each template rule context set. If enabled,
context flows will be re-propagated for each new color of each context type of each
template rule.

boolean useCommentPIPropagation: Enables or disables generation of summary graph
fragments for comment and pi context types. For stylesheets in which some nonempty
templates that match either of those types, this property should be true. However,
such stylesheets are very rare, and for all other stylesheets, comment/pi summary
graph fragments will be empty, and will just clutter up the summary graph. Setting
this property to false will eliminate them.

147

Class dongfang.xsltools.controlflow.ModelConfiguration

The following two validation features work on XML representations of stylesheet modules
or schema passed to the static analysis algorithm. They are not related to what we term
(static)“XSL validation”, but simply serve to enforce consistency in the data passed to our
algorithms, preventing some kinds of spurious errors.

e boolean schemaValidateXSLTSource(): Whether to validate the XSLT2 stylesheet
modules, using an XML Schema for XSLT2.0.

e boolean schemaValidateXMLSchema(): Whether to validate XML Schema input schemas,
using the W3C Schema, for Schemas.

e boolean continueAfterXSLTParseOrValidationError(): Whether the validator should
ignore parse or XML validation errors in input (stylesheet / schema) parse phase, and
try to continue.

Class dongfang.xsltools.simplification.SimplifierConfiguration

e boolean shouldContinueStylesheetProcessingAfterSyntacticErrors(): Whether
the validator should ignore semantic errors encountered during simplification phase, and
try to continue.

e boolean removeVariableDeclarations(): Whether the simplifier should remove vari-
able declarations from the stylesheet.

e boolean removeAttributeSetDeclarations(): Whether the simplifier should remove
attribute set declarations from the stylesheet.

e boolean removeParameterDeclarations(): Whether the simplifier should remove pa-
rameter declarations from the stylesheet.

e boolean dumpIntermediateResultsAtEachStage(): Whether the simplifier should save
a copy the stylesheet primary module prior to and posterior to each stage of the sim-
plification, in the directory named by the String intermediateDumpPath() method.
Useful for diagnostics, but affects performance.

e WhitespaceNodeBehaviour whitespaceNodeBehaviour(): Whether the simplifier should
preserve or remove whitespace-only text nodes outside of xs1:text nodes in the stylesheet.

References

[1] XML schema part 0: Primer second edition, 2004.

[2] XML schema part 1: Structures (second edition), 2004.

148

[3]
4]
[5]
6]
[7]
18]
[9]

[10]

[11]

[12]
[13]

[14]
[15]

[16]
[17]
[18]

[19]

[20]
[21]

[22]

XML schema part 2: Datatypes (second edition), 2004.
RELAX NG specification, 2001.

Extensible Markup language (XML) 1.0 (Third Edition), 2004.
XML Path Language (XPath), 1999.

XML Information Set (Second Edition), 2004.

Xquery 1.0 and xpath 2.0 data model(xdm), 2005.

Geert Jan Bex, Sebastian Maneth, and Frank Neven. A formal model for an expressive
fragment of XSLT. Inf. Syst., 27(1):21-39, 2002.

Geert Jan Bex, Wim Martens, Frank Neven, and Thomas Schwentick. Expressiveness of
XSDs: from practice to theory, there and back again. In WWW, pages 712-721, 2005.

Ce Dong and James Bailey. Static analysis of xslt programs. In CRPIT °04: Proceed-
ings of the fifteenth conference on Australasian database, pages 151-160, Darlinghurst,
Australia, Australia, 2004. Australian Computer Society, Inc.

Anders Berglund et al. XML path language (xpath) 2.0.
http://www.w3.org/TR /xpath20/, 2005.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns :
Elements of Reusable Object-Oriented Software. Addison Wesley, March 1995.

Koshuge Kawaguchi. W3¢ XML schema made simple, 2001.

Michael Kay. XSL transformations (XSLT) version 2.0. http://www.w3.org/ TR /xslt20/,
2005.

Stephan Kepser. A simple proof for the turing-completeness of XSLT and XQuery. In
Ezxtreme Markup Languages, 2004.

Ashok Malhotra, Jim Melton, and Norman Walsh. Xquery 1.0 and xpath 2.0 functions
and operators(cr), 2005.

Wim Martens, Frank Neven, and Thomas Schwentick. Which XML Schemas Admit
1-Pass Preorder Typing? ICDT, LNCS(3363):68-82, 2005.

Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML transformers. In Pro-
ceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pages 11-22. ACM, 2000.

Anders Mgller, Mads @sterby Olesen, and Michael I. Schwartzbach. Static validation of
XSL Transformations. Technical Report RS-05-32, BRICS, October 2005.

M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal
language theory. In Ezxtreme Markup Languages, Montreal, Canada, 2001.

Frank Neven. Automata theory for XML researchers. SIGMOD Rec., 31(3):39-46, 2002.

149

[23] Mads Osterby Olesen. Static Validation of XSLT. Master’s thesis, University of Aarhus,
2004.

[24] Michael I. Schwartzbach. Lecture notes on static analysis. University of Aarhus, 2005.

[25] Akihiko Tozawa. Towards static type checking for XSLT. In DocEng ’01: Proceedings
of the 2001 ACM Symposium on Document engineering, pages 18-27, New York, NY,
USA, 2001. ACM Press.

[26] P. Wadler. A formal semantics of patterns in XSLT, 1999.

[27] Baltasar Trancon y Widemann, Markus Lepper, and Jacob Wieland. Automatic con-
struction of XML-based tools seen as meta-programming. Automated Software Engi-
neering, 10(1):23-38, 2003.

150

