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Abstract

We investigate the difference between two well-known notions of
independence bisimilarity,history-preserving bisimulationandheredi-
tary history-preserving bisimulation. We characterise the difference be-
tween the two bisimulations intrace-theoreticalterms, advocating the
view that the first is (just) a bisimulation forcausality, while the second
is a bisimulation forconcurrency. We explore the frontier zone between
the two notions by defining ahierarchyof bounded backtracking bisim-
ulations. Our goal is to provide a stepping stone for the solution to
the intriguing open problem of whether hereditary history-preserving
bisimulation is decidable or not. We prove that each of the bounded
bisimulations is decidable. However, we also prove that the hierarchy
is strict. This rules out the possibility that decidability of the general
problem follows directly from the special case. Finally, we give a non
trivial reduction solving the general problem for a restricted class of
systems and give pointers towards a full answer.

∗Full version of an extended abstract appearing in Proc. of MFCS ’99,c©Springer-Verlag.
†Laboratory forFoundations ofComputerScience.
‡BasicResearchin ComputerScience, Centre of the Danish National Research Founda-

tion. Part of this work was done while the second author was at LFCS.

1



1 Introduction

Bisimulation equivalence for concurrent systems was introduced by Park and
Milner [14, 9] as a way of describing when two systems can be considered to
denote the same process. The idea was to identify systems that could not be
distinguished by interaction with an environment, and notably, this took into
account the branching structure of systems. It was defined for models for pro-
cess algebras like e.g. CCS and CSP in which concurrency is treated asnon-
deterministic interleavingof actions. However, for some situations, a more
detailed description of the causal ordering between actions is needed. One ex-
ample is whenaction refinementis considered, as studied by e.g. Vogler [19],
Glabbeek and Goltz [16]. Models of this kind, that do not abstract from con-
currency, are commonly referred to asindependence, partial order or true
concurrencymodels. Examples of these are labelled event structures, Petri
nets and asynchronous transition systems, e.g. see [21].

Many attempts have been made to answer the question what the appropri-
ate generalisation of the interleaving bisimulation to independence models is.
Two interesting bisimulations for independence models are history-preserving
bisimulation (HPB) and hereditary history-preserving bisimulation (HHPB).
HPB was introduced in [15] and [5] under the name ofbehaviour structure
bisimulation, andmixed ordering(mo) bisimulation respectively. The term
history-preservingoriginates from [16], where Goltz and vanGlabbeek define
the notion for event structures and prove the key property of HPB, namely
that it is preserved under action refinement. This result has given history-
preserving bisimulation its prominent place among independence bisimula-
tions. In [2] the notion is introduced as fully concurrent bisimulation. There
it is independently shown that HPB preserves action refinement for the more
general model of Petri nets.

The notion of HHPB first appears in [1], where Bednarczyk studies sev-
eral history-preserving bisimulations with a downwards closure condition. He
calls sets that satisfy this conditionhereditary. HHPB has also been intro-
duced in [8] under the name ofstronghistory-preserving bisimulation. This
paper describes a uniform way of defining a bisimulation equivalence across
a wide range of different models by applying category-theoretical ideas. For
many concrete models, the abstract bisimulation specializes to already known
equivalences [4]. In particular, one gets classical bisimulation for standard
transition systems. For independence models, the abstract bisimulation spe-
cializes to HHPB suggesting that this notion is a very natural independence
bisimulation. This is further confirmed by the results of [12]. Relational,
logical and game-theoretical characterizations are found which come as con-
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Figure 1: Two labelled netsN andN ′ that are HP bisimilar but not HHP
bisimilar. The transitions are labelled by the actions{a, b, c, d} as the names
suggest, e.g.a1 is labelled bya

servative extensions of the corresponding characterizations of classical bisim-
ulation.

Altogether a fair amount of work has been done already in studying both,
HPB and HHPB. However, very few attempts [17] have been made to de-
marcate the two notions from each other. Moreover, an intriguing question
remains unsolved: Is HHPB decidable for a reasonable class of systems? In
contrast, HPB has been shown to be decidable for finite 1-safe Petri nets by
Vogler [18], DEXPTIME-complete by Jategaonkar and Meyer [7] and decid-
able forn-safe nets by Montanari and Pistore [10]. But there is no straight-
forward adaption of these proofs to HHPB, and it seems that the hereditary
condition brings about new dimensions. This justifies a deeper investigation
of the difference between plain and hereditary HPB, which is the goal of this
paper.

One statement we want to put forward is that hereditary HPB is a bisimu-
lation forconcurrencyas opposed to plain HPB (just) being a bisimulation for
causality. Intuitively, HPB is an equivalence notion that relates systems with
the samecausalbranching structure. It extends the classical notion of bisim-
ulation with the requirement, that any two related runs must have the same
causal dependency between actions, that is the samehistory. Hereditary HPB
additionally imposes a backtracking condition: for any two related runs, the
runs obtained bybacktrackinga pair of related transitions, must be related,
too. We allow backtracking not only in the order which is laid down by the
related runs; as long as no other transitions depend on a particular transition,
it can be backtracked. Thereby it is ensured that the matching is not depen-
dent on the order in which independent actions are linearized. Intuitively this
is what we expect from a bisimulation for concurrency.

3



Figure 1 shows the standard example from [12] of two systems that are
plain but not hereditary HP bisimilar. Both systems have ana-action (b-
action) that can be followed by a dependentc-action (d-action) or an inde-
pendent (not competing on any places)b-action (a-action). And both have an
a-action (ab-action) which can be followed by an independentb-action (a-
action). Consequently, the two systems are HP bisimilar. However, observe
that in any HPB we can find, the matching of the parallela- andb-transitions
depends on the order in which they appear in the runs to match. So, the sys-
tems are not hereditary HP bisimilar. Note that thec transition dictates that
we have to matcha1 to a′1, and soa1.b1 to a′1.b

′
1. Then the backtracking con-

dition requires thatb1 andb′1 are related. But from this point, the systemN ′

can make ad transition whichN cannot match, sob1 andb′1 can clearly not
be related runs.

After stating the necessary definitions in Sec. 2, we present a trace-
theoretical characterisation of the difference between HHPB and HPB in Sec.
3. This will confirm our view of HHPB as a bisimulation for concurrency
as opposed to HPB as a bisimulation for causality. In Sec. 4, we consider
the effect of restricting HHPB, by bounding how far back in two related runs
one can pick transitions to backtrack. Remarkably, we prove in Sec. 4.1 that
for a fixed bound, each such bisimulation is decidable. However, in Sec. 4.2
we find that the bounded bisimulations form astrict hierarchy, all trivially
stronger than HPB but also strictly weaker than hereditary HPB. In Sec. 5 we
apply our results to approach the decidability of HHPB (for finite-state sys-
tems). After noting that decidability follows almost immediately for the class
of bounded asynchronous nets, we present a non-trivial reduction in Sec. 5.2
showing that HHPB is decidable for systems with transitive independence re-
lation. In the end, we remark on other partial results and give directions for
further progress.

Let us note that one can also consider hidden actions in the context of HPB
and HHPB. To avoid confusion with this standard use of strong and weak in
the context of bisimulation, we prefer the namehereditaryHPB overstrong
HPB. The weak version of HPB has been proved to be decidable in [7] and
[20]. Here we will restrict our attention to (hereditary) HPB without hidden
actions.

As our model of computation we choose 1-safe Petri nets. However, e.g.
by using the results of [21], our results can equally be formulated for other
suitable independence models, as for example transition systems with inde-
pendence or labelled asynchronous transition systems.
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2 Preliminaries

The following definitions are standard and/or can be found in [7], [11], or
[18], perhaps in a slightly varied form.

Petri nets. A labelled Petri netN is a tuple(SN , TN , FN , initN , lN), where

• SN is the set of places,

• TN is the set of transitions,

• FN : (SN × TN ) ∪ (TN × SN)→ {0, 1} is the flow relation,

• initN : SN → IN0 is the initial marking, and

• lN : TN → Act is the labelling function, whereAct is a set of actions.

A netN is finite iff SN andTN are finite sets.
The pre-set of an elementx ∈ SN ∪ TN , •x, is defined by{y | FN (y, x) >

0}, the post-set ofx, x•, similarly is{y | FN (x, y) > 0}.
A markingM of N is a mapSN → IN0. We sayM enables a transition

t ∈ TN if M(s) ≥ F (s, t) for everys ∈ SN . If t is enabled atM it can occur.
The resulting markingM ′ is defined byM ′(s) = M(s) − F (s, t) + F (t, s)

for all s ∈ SN . We denote this byM
t→M ′.

We say thatw = t1 . . . tn, is atransition-sequenceof N . We write|w| for

the length ofw, that is|w| = n. If M
t1→ · · · tn→M ′ we useM

w→M ′ as short
notation. For any transitiont we writew.t for the sequencet1 . . . tnt.

A netN is 1-safeif for every markingM that is reachable frominitN ,
we have:M(s) ≤ 1 for everys ∈ SN . Thus, in 1-safe nets a marking can be
viewed as a set of places. We says ∈ SN holds at markingM iff s ∈M . We
will always refer to this net class whenever we speak of ‘nets’ or ‘Petri nets’
in the following.

Runs. A run of a netN is a possibly empty transition-sequencer such that
initN

r→ M ′ for someM ′. LetRuns(N) denote the set of all runs of a net
N . When we haver ∈ Runs(N), t ∈ TN , and two markingsM , M ′, such

thatinitN
r→M andM

t→M ′, then we writer
t→ r.t.

Independence of Transitions. We say two transitionst and t′ of a netN
areindependentin N , denoted byt IN t′, iff their neighbourhoods of places
do not intersect, i. e. iff(•t ∪ t•) ∩ (•t′ ∪ t′•) = ∅.
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Pomsets. A pomsetis a labelled partial order.1 It is a tuplep = (Ep, <p

, Lp, lp), whereEp is a set of events,<p a partial order relation onEp, Lp is
a set of labels, andlp a labelling functionlp : Ep → Lp. A function f is an
isomorphism between pomsetp and pomsetq iff f : Ep → Eq is a bijection,
such that we havelp = lq ◦ f , ande <p e

′ iff f(e) <q f(e′) for all e, e′ ∈ Ep.

Transition-pomsets. The transition-pomsetof a runr = t1 . . . tn, denoted
by trPom(r), has as events the integers from1 to n, where the label of event
i is ti and the partial ordering is the transitive closure of the following “prox-
imate cause” relation: eventi proximately causeseventj iff i < j andti and
tj are not independent inN . The pomsetof r, denoted bypom(r), is the
transition-pomset ofr, where the label of each eventi is lN(ti), the label of
ti, rather thanti itself.

Trace Theory. A trace alphabetis a pair(Σ, I), where the alphabetΣ is a
finite set, andI ⊆ Σ × Σ is an irreflexive and symmetric independence re-
lation. LetΣ∗ be the set of finite words overΣ, and letr, r′ range overΣ∗.
For T ⊆ Σ, let r ↑ T denote the projection ofr ontoT , i. e. the sequence
obtained by erasing all occurrences of letters which are not inT . The inde-
pendence relationI induces a relation∼I ⊆ Σ∗ × Σ∗ defined byr ∼I r′ iff
r ↑ {a, b}= r′ ↑ {a, b} for all a, b ∈ Σ such that¬(a I b). Clearly,∼I is an
equivalence relation. The∼I equivalence classes are usually referred to as
(Mazurkiewicz’s) traces. For r ∈ Σ∗, [ r ] stands for the trace containingr.
Σ∗/∼I represents the set of all traces over(Σ, I).

Petri nets and Trace Theory. We can associate the trace alphabet(ΣN , IN)
to a Petri netN , whereΣN = TN , andIN is as defined above. Transition-
pomsets of a netN correspond one-to-one to traces inRuns(N)/∼IN ⊆
Σ∗N/∼IN . A trace [r] ∈ Runs(N)/ ∼IN corresponds totrPom(r) and a
transition-pomsetp ofN corresponds to the trace{r | r is a linearization ofp}.

3 (Hereditary) History-Preserving Bisimulation
and Trace Theory

We are now ready for the two notions which are central to this paper,HPB
andHHPB. Originally, these bisimulations have been defined on structures

1This is not the original definition, but the convention used in [7].
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that represent the partial order explicitly. By employing the notion ofsyn-
chronous runsfrom [7], and the notion ofbackwards enabled transitionsin-
troduced in [12] we can define (hereditary) HPB on runs, instead. This gives
a characterization closely related to work in [5] and [12].

Definition 1 Let r1 and r2 be runs of netsN1 andN2, respectively. We say
that r1 andr2 are synchronousiff the identity function on{1, 2, . . . , |r1|} is
an isomorphism between the pomset ofr1 and the pomset ofr2.

Intuitively, two runs are synchronous if their induced pomsets are isomor-
phic, and both runs correspond to the same linearization of the associated
pomset isomorphism class.

Definition 2 Let N be a net, and(ΣN , IN) the associated trace alphabet.
Let r = t1 . . . tn ∈ Runs(N). For t ∈ ΣN , we sayt is backwards enabled
in r, written t ∈ BEn(r), iff there is i ∈ {1, . . . , n} s. t. ti = t, and
∀j ∈ {i+ 1, . . . , n}. tj IN ti. This means thati is a maximal element in
pom(r). If t ∈ BEn(r) we defineδ(r, t) to be the result of deleting the last
occurrence oft in r, i. e. δ(r, t) = t1 . . . ti−1ti+1 . . . tn iff last(r, t) = i,
wherelast(r, t) denotes the position of the last occurrence oft in r. That is
last(r, t) = i iff ti = t andtj 6= t for all j ∈ {i+ 1, . . . , n}.

Definition 3 A HPB between two netsN1 and N2 consists of a setH ⊆
Runs(N1)× Runs(N2) of pairs(r1, r2) such that

(i) Whenever(r1, r2) ∈ H, thenr1 andr2 are synchronous.

(ii) (ε, ε) ∈ H.

(iii) Whenever(r1, r2) ∈ H andr1
t1→ r1.t1 for somet1, then there existst2,

such thatr2
t2→ r2.t2 and(r1.t1, r2.t2) ∈ H.

(iv) Vice versa.

A HPB ishereditarywhen it further satisfies

(v) Whenever(r1, r2) ∈ H andt1 ∈ BEn(r1) andt2 ∈ BEn(r2) for some
t1, t2 such thatlast(r1, t1) = last(r2, t2), then(δ(r1, t1), δ(r2, t2)) ∈ H.

We say two nets are (hereditary) HP bisimilar iff there is a (hereditary) HPB
relating them.

7



It is trivial that one can regard a relationR ⊆ { (r1, r2) ∈ T ∗N1
× T ∗N2

|
|r1| = |r2|} as a language over the alphabetTN1 × TN2 , and vice versa. With
this in mind, we can regard a (hereditary) HPBH as a language over thetrace
alphabetTN1,N2 . We defineTN1,N2 asTN1,N2 = (Σ, I), whereΣ = TN1×TN2 ,
andI is defined as(t1, t2) I (t′1, t

′
2) iff t1 IN1 t

′
1 ∧ t2 IN2 t

′
2.

We will now characterize the difference between HPB and HHPB in trace-
theoretical terms. For this we consider two properties of languages.

Definition 4 We say a languageL ⊆ Σ∗ is prefix-closediff r.t ∈ L implies
r ∈ L.

We sayL is trace-consistent w. r. t. an independence relationI on Σ iff
r ∼I r′ ∈ L impliesr ∈ L. For L ⊆ Σ∗, let L∼I denote the smallest trace
language includingL, i. e.L∼I = {r ∈ Σ∗ | ∃r′ ∈ L. r′ ∼I r}.

By definition every HHPB is prefix-closed. This does not generally apply
for HPBs. But as prefix-closed HPBs correspond to bisimulations that have
been built up inductively from(ε, ε) without adding “any redundant tuples”,
we can extract from any given HPB one that is prefix-closed.

Proposition 1 Two nets are (hereditary) HP bisimilar iff there exists aprefix-
closed(hereditary) HPB language relating them.

A HPB languageH is not necessarily trace-consistent, neither is a HHPB.
But this can always be obtained.

Observation 1 LetH be a (hereditary) HPB language between two netsN1

andN2. LetTN1,N2 = (Σ, I), thenH∼I is a (hereditary) HPB too.

Prop. 1 ensures, that it is safe to consider only prefix-closed HPBs. Note
that if this property is fixed, an analogue to Obs. 1 is no longer possible. In
general, ifH is a prefix-closed HPB,H∼I is not necessarily prefix-closed.
However, ifH is hereditary, this will still be true.

Interestingly, if a prefix-closed HPB is also trace-consistent, it is in fact
hereditary. So, if one takes as part of the definition that a HPB is prefix-closed,
one can regard hereditary HPBs as the class of trace-consistent HPBs.

Proposition 2 Two nets are hereditary HP bisimilar iff there exists atrace-
consistentprefix-closed HPB relating them.

8



PROOF: “⇒” By Obs. 1, we can extend every prefix-closed HPBH to the
trace-consistent HPBH∼I . If H is hereditary we have thatH∼I is still prefix-
closed.

“⇐” Let H be a trace-consistent and prefix-closed HPB relating the two
netsN1,N2. We only need to check property (v) of definition 3. Note that we
can useBEn andδ for joint runs and transitions ofN1 andN2 in the obvious
way. Then to prove property (v) we assumer ∈ H andt ∈ BEn(r), and have
to show thatδ(r, t) ∈ H.

So assumer ∈ H, andt ∈ BEn(r). AsH is trace-consistent, we have
r′ ∈ H such thatr′ corresponds tor with the last occurrence oft reshuffled
to last position. AsH is prefix-closed, we getδ(r′, t) = δ(r, t) ∈ H. �

Remark: Conversely, from Obs. 1 it follows that one could take as part of
the definition that a HPB is trace-consistent. Then HHPBs become the class
of prefix-closed HPBs. This is exactly the approach taken in the original def-
inition of HHPB, since HPBs defined on partial orders correspond precisely
to the class of trace-consistent HPBs defined on runs. We find the view we
have put forward more natural. Taking trace-consistency as part of the defini-
tion disguises how the linearized runs of the two systems are matched to each
other. Since in HPBs the matching can be dependent on the order in which
independent actions are linearized, this is information we do not want to hide
away in a HPB.

With the property of prefix-closure we merely restrict our attention to
HPBs that have been inductively built up. Hence, defining HPB on syn-
chronous runs and fixing prefix-closure as part of the definition seems very
natural. The interpretation of HHPBs as the class of (prefix-closed) HPBs
that aretrace languagesexpresses then nicely that in HHPB the matching
does not depend on the order of how independent transitions are linearized.

It is not difficult to capture the conditions(i)-(iv) of the definition of HPB
in terms of languages as well. Together with the results above, this gives a
purely language-theoretical characterisation of HPB and HHPB, which can
be found in [6].
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4 History-Preserving Bisimulation and Bounded
Backtracking

We define a hierarchy of backtracking bisimulations by bounding the number
of transitions which one can backtrack over to an arbitrary numbern.

Definition 5 A HPBH is (n)-hereditary when it further satisfies

(v) Whenever(r1, r2) ∈ H andt1 ∈ BEn(r1) andt2 ∈ BEn(r2) for some
t1, t2 such thatlast(r1, t1) = last(r2, t2) ≥ |r1| − n, then
(δ(r1, t1), δ(r2, t2)) ∈ H.

Note that (0)-hereditary HPBs are exactly the prefix-closed HPBs.
It is easy to give a dynamic condition on nets, which guarantees that (n)-

hereditary HP bisimilarity coincides with hereditary HP bisimilarity.

Definition 6 Let N be a net. We say thatN is (n)-bounded asynchronous
if for any r = t1t2 . . . tk ∈ Runs(N) such thatti ∈ BEn(r), it holds that
k − i ≤ n.

Proposition 3 LetN andN ′ be two (n)-bounded asynchronous nets. Then
N andN ′ are hereditary HP bisimilar iffN andN ′ are (n)-hereditary HP
bisimilar.

4.1 Decidability of (n)-Hereditary History-Preserving Bisim-
ilarity

For any fixedn, (n)-HHP bisimilarity is decidable for finite systems. The idea
behind our proof is that we can define HHPB and (n)-HHPB in a ‘forward
fashion’. At each tuple we keep a matching directive that prescribes how
transitions are going to be matched from this point onwards. The matching
directive allows us to express the backtracking requirement as a property of
the matching directives of two connected tuples.

To characterize HHPB in this manner we need to record the matching of
the entire future. Because of this the forwards characterization merely shifts
the difficulty of the decidability of HHPB from the past to the future: now we
are confronted with an infinite amount of possible futures. This is not the case
for (n)-HHPB. But we shall see that it is sufficient to record future matchings
of lengthn. Our proof builds on this fact and insights gained in the proofs of
the decidability of HPB [18, 7].

Below is the definition of (n)-D HPB, our forwards characterization of
(n)-HHPB.

10



Convention. For a pair of synchronous runs(r1, r2) of two netsN1 and
N2, we user as a short notation. Similarly, we writet for a pair of transi-
tions(t1, t2) whent1 andt2 correspond to each other in a pair of synchronous

runs(r1, r2). We also writer
t→ r′ when we have two pairs of synchronous

runs(r1, r2), (r′1, r
′
2), and a pair of transitions(t1, t2), such thatr1

t1→ r′1 and

r2
t2→ r′2.

Definition 7 A (n)-D HPB between two netsN1 andN2 consists of a setHD

of triples(r1, r2, D) such that

(i) r1 is a run ofN1, r2 is a run ofN2, andr1 andr2 are synchronous. The
matching directiveD is a non-emptyand prefix-closedset of pairs of
words(w1, w2), such thatw1 is a transition-sequence ofN1, w2 of N2

respectively, and|w1| = |w2| ≤ n.

(ii) For someD, (ε, ε,D) ∈ HD.

(iii) Whenever(r1, r2, D) ∈ HD, andw ∈ D for somew, such that|w| < n,

and for somet1, r1.w1
t1→ r1.w1.t1, then there is somet2 such that

(w1.t1, w2.t2) ∈ D.

Note that(ε, ε) ∈ D becauseD is prefix-closed and non-empty.

(iv) Vice versa.

(v) Whenever(r1, r2, D) ∈ HD, and (t1, t2) ∈ D, then there is someD′,
such that(r1.t1, r2.t2, D

′) ∈ HD and

(a) ∀w s. t. |w| < n. tw ∈ D ⇔ w ∈ D′.
(b) ∀w′. w′ ∈ D′ ∧ t I t′ for all t′ ∈ w′ ⇒ w′ ∈ D.

We now prove that (n)-D HPB is indeed equivalent to (n)-HHPB. As in
Sec. 3 it is sufficient to consider only prefix-closed (n)-D HPBs since they
correspond to bisimulations that are built up inductively from the empty runs
without adding any “redundant tuples”. Prefix-closure for (n)-D HPB is de-
fined as follows.

Definition 8 We say a (n)-D HPBHD is prefix-closediff whenever
(r1.t1, r2.t2, D

′) ∈ HD, then there is(r1, r2, D) ∈ HD for someD such that
t ∈ D and

1. ∀w s. t. |w| < n. tw ∈ D ⇔ w ∈ D′.

11



2. ∀w′. w′ ∈ D′ ∧ t I t′ for all t′ ∈ w′ ⇒ w′ ∈ D.

Lemma 1 Two nets are (n)-hereditary HP bisimilar iff they are (n)-D HP
bisimilar.

PROOF: For one direction letH be a (n)-HHPB relatingN1 andN2. It is also
safe to assume prefix-closure ofH. We defineHD by assigning a matching
directiveD to every pair(r1, r2). We takeD = {w | |w| ≤ n ∧ r.w ∈ H}.
Prefix-closure ofD is given by prefix-closure ofH, hence property (i) of
definition 7 clearly holds. Properties (ii), (iii), and (iv) are also trivial.

To see that property (v) holds, let(r1, r2, D) ∈ HD and (t1, t2) ∈ D.
Then, due to the wayD is defined there isD′ such that(r.t, D′) ∈ HD.
Condition (a) is also immediate by the way matching directives are added to
the tuples. To check condition (b) assume we havew′ ∈ D′∧ t I t′ for all t′ ∈
w′. But then we haver.t.w′ ∈ H with t being backtrack enabled. The fact
that|w′| ≤ n together with property (v) of definition 5 implies thatr.w′ ∈ H.
Hence, by definition ofD we havew′ ∈ D as required.

For the other direction assumeHD to be a prefix-closed (n)-D HPB. De-
fineH by simply ignoring the matching directiveD of triples (r1, r2, D) ∈
HD. It is clear that properties (i), (ii), (iii) and (iv) of the definition of
(n)-HHPB are satisfied. To prove property (v), letr.t.w ∈ H such that
t is backtrack enabled, and|w| ≤ n. By prefix-closure ofHD we have
(r,D), (r.t, D′) ∈ HD for someD, D′ such thatt ∈ D, w ∈ D′, and the
two conditions of property (v) of definition 7 are satisfied. But then we have
w ∈ D by condition (b), and thus(r.w,D′′) ∈ HD for someD′′ as required.
�

Now that we have expressed the backtracking condition in a forwards
fashion, we can proceed along the lines of the decidability proofs for HPB
[18, 7]. We will sketch these proofs, and thereby explain the remaining steps
of our decidability proof.

For this we need a further definition from [7].

Definition 9 Let p = (Ep, <p, Lp, lp) be a pomset ande, e′ ∈ Ep. Evente′ is
a maximal causeof evente in p iff e′ <p e and there is no evente′′ ∈ Ep such
thate′ <p e

′′ <p e.

The key insight of the proofs of the decidability of HPB is the following
fact: two isomorphic pomsets stay isomorphic after the addition of a pair
of transitions iff the maximal causes of the new events are the same (up to
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isomorphism) in the resulting pomsets. This means that we do not need to
keep the entire history, but it is sufficient to record only those events that can
act as maximal causes.

The next step is to find a notion that contains this most-recent history,
but is finite in the sense that there are only finitely many instances of it. In
any partial order run the events that can act as maximal causes correspond to
distinct transitions. This is so because a transition cannot be independent of
itself. Thus, as one possibility we can take pomsets whose events have dis-
tinct transitions as labels. As we consider only finite nets there are clearly
only finitely many such pomsets. What we have just described is the notion
of growth-sites defined by Jategaonkar and Meyer. Vogler develops a differ-
ent concept called ordered markings (OM), where the most-recent history is
captured by imposing an order on the markings of a net.

Instead of defining HPB on runs we can now base HPB on growth-sites
or OMs. The resulting bisimulations are called gsc-bisimulation, and OM-
bisimulation, respectively. Jategaonkar and Meyer show that gsc-bisimulation
is indeed equivalent to HPB. Vogler proves the analogue for OM-bisimulation.
As there are only finitely many growth-sites or OMs for a system, these bisim-
ulations can be decided by exhaustive search. The decidability of HPB is then
immediate.

We can define a growth-sites or OM bisimulation that corresponds to (n)-
D HPB just as well, and call the resulting notions (n)-D gsc-bisimulation and
(n)-D OM-bisimulation. The proof that (n)-D gsc- and (n)-D OM-bisimulation
indeed coincide with (n)-D HPB is a straightforward adaptation of the proofs
in [7] and [18]. Since there are only finitely many matching directives of size
n, (n)-D gsc- and (n)-D OM-bisimilarity can also be decided by exhaustive
search. Consequently, (n)-D HP bisimilarity is decidable and with it (n)-HHP
bisimilarity.

Theorem 1 For any fixedn, it is decidable whether two finite nets are (n)-
HHP bisimilar.

4.2 Strictness of the Hierarchy

It is a simple consequence of the definition, that HHP bisimilarity implies (n)-
HHP bisimilarity for anyn, which again implies (n’)-HHP bisimilarity for
n′ < n. Given the result of the previous section, an obvious question to ask is
whether HHP bisimilarity coincides with (n)-HHP bisimilarity for some fixed
boundn. The example of Fig. 1 shows that (0)-HHP bisimilarity is weaker
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Figure 2: Two netsN andN ′ that are (n)-HHP bisimilar but not (n+1)-HHP
bisimilar. Note that forn = 0 one gets the two systems given in Fig. 1

than (1)-HHP bisimilarity. Fig. 2 shows an elegant generalisation, which dis-
criminates (n)-hereditary from (n+1)-hereditary HP bisimilarity. Despite its
simple appearance, it was not at all trivial to find.

Let us first argue why no HHPB relatesN andN ′. In any HHPB we must
matchai with a′i, andbi with b′i for 1 ≤ i ≤ n. Then one option inN ′ is to
performa′n+1 andb′n+1. These transitions have to be matched with eitheran+1

andbn+1, or an+2 andbn+2 respectively. Suppose we choose the matchan+1,
bn+1. We can now backtrack all thea-transitions such thatd becomes enabled
inN ′. But nod action is possible inN . If we choosean+2, bn+2 as our match,
we can backtrack all theb-transitions. Thenc becomes possible inN ′, but not
in N . The systems are clearly (n+1)-bounded asynchronous, so by Prop. 3N
andN ′ are not (n+1)-HHP bisimilar either.

The above counter-strategy does not apply for (n)-HHPB, but we can use
the following strategy to match the criticaln + 1 transitions. Say we have
to matcha′n+1, and b′n+1 has not been fired yet, i. e. we can still choose
betweenan+1 andan+2 as a match. We make our match dependent on the first
transition in the history. Assume it is ana-transition. Then it is safe to match
a′n+1 with an+1, which determines thatb′n+1 is later matched withbn+1. Ford
to become enabled inN ′, we need to backtrack all thea-transitions, however
there will ben + 1 b-transitions following the firsta, so this is not possible.
Similar, it is safe to matcha′n+2 with an+2. A symmetrical argument applies
if the first action was a b-action, and similar for the remaining cases.

Lemma 2 For all n ∈ IN0, there exist two finite nets that are (n)- but not
(n+1)-HHP bisimilar.

Theorem 2 For all n ∈ IN0, (n)-HHP bisimilarity is strictly weaker than
(n+1)-HHP bisimilarity, and hence (unbounded) HHP bisimilarity.
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5 Applications to the Decidability Problem of
Hereditary History-Preserving Bisimulation

In the previous section we have shown that the hierarchy of (n)-HHPBs is
strict. However, for any two fixed finite systems the hierarchy collapses, and
so the decidability of the general problem would follow immediately, if the
bound can be effectively computed for any two given systems. That this might
not be possible in general is indicated by the fact, that the problem of hered-
itary history-preservingsimulationhas recently been shown to be undecid-
able [13]. Though, even if the general problem turns out to be undecidable, it
is interesting to investigate for which classes of systems deciding HHPB does
reduce to deciding (n)-HHPB. Below, we will give some restricted classes of
systems, for which this is indeed the case.

5.1 Bounded Asynchronous Systems

We say that a netN is bounded asynchronous, if there exists some natural
numbern such thatN is (n)-bounded asynchronous. It is easy to see, that
a finite 1-safe net fails to be bounded asynchronous if and only if there is
a reachable markingM and aloop, M

t1→ M1 · · · tn→ Mn = M such that
every markingMi in the loop enables a transitiont which is independent of
all transitions in the loop, i.e.t IN ti for all i. Since finite 1-safe nets have
only finitely many markings we get the following lemma.

Lemma 3 It is decidable if a finite 1-safe net is (n)-bounded asynchronous
for somen, and the boundn can be computed.

With Prop. 3 the decidability of HHPB for bounded asynchronous systems
follows immediately.

Proposition 1 HHP bisimilarity is decidable for bounded asynchronous nets.

5.2 Systems with Transitive Independence Relation

Definition 10 An independence relationI over an alphabetΣ is transitive if,
for everydistinctt, t′, t′′ ∈ Σ, t I t′ ∧ t′ I t′′ impliest I t′′.

LetN be a net. A transitiont ∈ TN is a self-loopiff •t = t•. Intuitively, a
self-loop is a transition that can be repeated immediately, i. e. independently
of the occurrence of other transitions. Note that the existence of a runr =
r′.t.t implies thatt is a self-loop (in our context of 1-safe nets).
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Let us first draw our attention to systems with transitive independence
relation that do not contain any self-loops. It is easy to see that for such
systems the number of transitions over which can be backtracked is bound
by the size of the maximal independence clique. In other words, a system
with maximal independence clique of sizek is (k)-bounded asynchronous,
and hence decidability for finite systems of this subclass is immediate.

If a system contains a self-loop that can occur concurrently with another
transition, then this system is clearly not bounded asynchronous. However,
we can transfer the decidability result to the full class of finite systems with
transitive independence relation with the help of another key observation. In
every (H)HPB between two systems with transitive independence relation,
concurrently occurring self-loop transitions have always to be matched to
self-loops. Hence, we do not need to consider the unfoldings of such self-
loops. It is sufficient to match the first occurrence of such a transition, when
we make sure that the match is indeed a self-loop. But then the number of
transitions over which one can backtrack is again bound by the size of the
maximal independence clique, and so we have established decidability. The
precise definition of what it means for a self-loop to occur concurrently in a
given context, and the details of the proof can be found in the appendix.

Theorem 3 For finite systems with transitive independence relation, HHP
bisimilarity is decidable.

6 Final Remarks

There is still undiscovered land in the zone between plain and hereditary HPB.
One possibility to advance the frontier is to identify system classes for which
the two notions coincide. Several classes of such systems have already been
found. The most interesting one is the system class of BPP in full standard
form [6]. Plain and hereditary HPB for the class offree-choicenets have re-
cently been shown not to coincide by the first author, disproving a conjecture
in [3].

The trace-theoretical characterization looks promising for approaching the
decidability problem of HHPB, see [6] for more details.
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A Systems with Transitive Independence Relation

Here we will give the detailed proof of the decidability of HHPB for the full
class of finite systems with transitive independence relation. As described in
Sec. 5.2 the essence of the proof is the observation that concurrently occurring
self-loops have always to be matched to self-loops. We will first give the
precise definition of what it means for a self-loop to occur concurrently, and
then formulate and prove the corresponding lemma.
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Definition 11 Assume a given netN . Lett be a self-loop transition ofN , and
let r be some run ofN . We say the self-loopt is concurrently occurring atr
iff

• t is enabled atr, and

• there existst′, s. t. t I t′ and we haver
t′→ r.t′ or BEn(r, t′).

Lemma 4 LetH be a history-preserving bisimulation relating two nets with
transitive independence relation,N1,N2.

• Whenever(r1.t1, r2.t2) ∈ H, and t1 is a concurrently occurring self-
loop atr1, thent2 is a self-loop as well.

• Vice versa.

PROOF: To prove the first part of the lemma let(r1.t1, r2.t2) ∈ H and lett1
be a concurrently occurring self-loop atr1. First assume we havet′1 I t1, such

thatr1
t′1→ r1.t

′
1. Clearly we have(r1.t1.t1, r2.t2.t

∗
2) ∈ H for somet∗2 D t2, and

(r1.t1.t1.t
′
1, r2.t2.t

∗
2.t
′
2) ∈ H for somet′2, s. t. t′2 I t2 andt′2 I t

∗
2. With transi-

tivity of independence the latter leads to a contradiction with the requirement
t∗2 D t2, unlesst∗2 = t2. But if t∗2 = t2, thent2 must be a self-loop because it
can occur twice consecutively.

Secondly, assume we havet′1 I t1, such thatBEn(r1, t
′
1). A similar argu-

ment shows thatt2 must be a self-loop, too.
The second part of the lemma can be proved by a symmetric argument.

�

This lemma ensures that we do not need to consider the unfoldings of
concurrently occurring self-loops. It is sufficient to match one instance of
a concurrently occurring self-loop transition, and to make sure it is really
matched to a self-loop.

This idea is translated into what we shall call ‘No Self-loop Unfolding’
(NSU) HPB. After giving the definition we will show that for systems with
transitive independence relation this new kind of bisimilarity indeed coincides
with (hereditary) history-preserving bisimilarity.

Note that in the following we will make use of the convention introduced
in Sec. 4.1.

Definition 12 A NSU (No Self-loop Unfolding) history-preserving bisimula-
tion between two netsN1 andN2 consists of a setHNSU of pairs(r1, r2) such
that
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(i) Whenever(r1, r2) ∈ HNSU , thenr1 is a run ofN1, r2 is a run ofN2,
andr1 andr2 are synchronous.

(ii) (ε, ε) ∈ HNSU .

(iii) Whenever(r1, r2) ∈ HNSU andr1
t1→ r1.t1 for somet1, such thatt1 is

not a concurrently occurring self-loop atr1, then there existst2, such
that r2

t2→ r2.t2 and(r1.t1, r2.t2) ∈ HNSU .

(iv) Vice versa.

(v) Whenever(r1, r2) ∈ HNSU and r1
t1→ r1.t1 for somet1, such thatt1

is a concurrently occurring self-loop atr1, and there exists nox2 such
that (t1, x2) ∈ BEn(r), then there existst2, such thatt2 is a self-loop,

r2
t2→ r2.t2, and(r1.t1, r2.t2) ∈ HNSU .

(vi) Vice versa.

A NSU history-preserving bisimulation is hereditary when it further satisfies

(vii) Whenever(r1, r2) ∈ HNSU and t1 ∈ BEn(r1) and t2 ∈ BEn(r2) for
somet1, t2 such thatlast(r1, t1) = last(r2, t2), then(δ(r1, t1), δ(r2, t2)) ∈
HNSU .

We say two nets are (hereditary) NSU history-preserving bisimilar iff there is
a (hereditary) NSU HPB relating them.

Lemma 5 Two nets with transitive independence relation are (hereditary)
history-preserving bisimilar iff they are (hereditary) NSU history-preserving
bisimilar.

PROOF: With lemma 4 it is easy to check that every (hereditary) HPB is also
a (hereditary) NSU HPB.

For the non-trivial direction letHNSU be a (hereditary) NSU HPB. Define
H by unfolding self-loop matches inductively as follows:

Base StepH = HNSU ,

Inductive Step Wheneverrr′ ∈ H andt1, t2 is a pair of concurrently occur-
ring self-loops atr1, r2, s. t.(t1, t2) ∈ BEn(r) thenr.t.r′ ∈ H.

20



It is easy to check thatH is a (hereditary) HPB. �

We can restrict our attention to the special class ofminimal (hereditary)
NSU HPBs, which strictly do not contain any unfoldings of concurrently oc-
curring self-loops.

Definition 13 A (hereditary) NSU HPBHNSU is minimal iff

• Wheneverr.t.r′ ∈ HNSU and t1 is a concurrently occurring self-loop
at r1, then there existsnox2 such that(t1, x2) ∈ BEn(r).

• Vice versa.

Lemma 6 Two nets are (hereditary) NSU history-preserving bisimilar iff there
exists a minimal (hereditary) NSU history-preserving bisimulation.

PROOF: We can simply ‘collapse’ any given (hereditary) NSU HPBHNSU to
a minimal one: erase all tuples that violate the above conditions fromHNSU .
Clearly, the result is still a (hereditary) NSU HPB. �

Minimal (hereditary) NSU HPBs between systems of our subclass look
exactly like (hereditary) HPBs of systems with transitive independence rela-
tion and no self-loops. They meet all characterisics that made it possible to
find a decision procedure for the latter subclass. In particular, the number
of joint transitions which one can backtrack over is bound by the size of the
maximal independence clique. So, we get the following result.

Lemma 7 Hereditary NSU HP bisimilarity is decidable for finite systems
with transitive independence relation.

PROOF: By lemma 6 it is sufficient to check whether there exists a minimal
hereditary NSU history-preserving bisimulation. But this is clearly decid-
able for our subclass. We only need to adapt the steps of the proof of the
decidability of (n)-hereditary HPB to show that the corresponding notion of
(n)-hereditary NSU HPB is decidable for our subclass. �

With this and lemma 5 we immediately get decidability for the whole class
of finite systems with transitive independence relation.
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