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2 Laboratoire Spéci�cation et Véri�cation, CNRS UMR 8643,

ENS de Cachan, 61 av. du Pr. Wilson, 94235 Cachan, France.

Email: fl@lsv.ens-cachan.fr, Fax: +33 1 47 40 24 64

Abstract. This paper studies the structural complexity of model check-

ing for (variations on) the speci�cation formalisms used in the tools CMC

and Uppaal, and fragments of a timed alternation-free µ-calculus. For

each of the logics we study, we characterize the computational complexity

of model checking, as well as its speci�cation and program complexity,

using timed automata as our system model.

1 Introduction

The extension of the model checking paradigm to the speci�cation and veri�ca-
tion of real-time systems has been thoroughly studied in the last few years. This
extensive research e�ort has led to the development of speci�cation logics that
extend standard untimed formalisms with the quantitative analysis of timing
constraints (see, e.g., [4, 15, 18]), and to important theoretical results setting the
limits of decidability for model checking. This theory is now embodied in veri-
�cation tools like HyTech [23], Kronos [24] and Uppaal [20], which have been
successfully applied to the veri�cation of real sized systems.

The successful application of the aforementioned veri�cation tools to the
analysis of realistic systems indicates that automatic veri�cation of real-time,
embedded software may be feasible in practice. However, despite many impor-
tant theoretical results presented in op. cit., the literature is lacking a compre-
hensive analysis of the structural complexity of model checking for real-time
logics. In the untimed case, model checking algorithms with a polynomial time
complexity, and often small space requirements, have been developed for several
branching time temporal logics [8, 9]. In the timed case, most of the model check-
ing problems considered in the literature are PSPACE-hard [3, 10, 15]. Clearly
the quantitative analysis of timing constraints increases the complexity of model
checking, but it is interesting to analyze precisely in which cases this complexity
blow-up occurs. In the untimed case, several papers (see, e.g., [13, 22, 11]) study
in detail the e�ect of the temporal operators, the number of atomic propositions
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or the depth of operators' nesting in the complexity of model checking, giving
a better understanding of the complexity issue. Here, among other things, we
address the same kind of problem for the timed case: what happens if time is
inserted either only in the model or only in the formula? And what happens if
we use less expressive logics with restricted operators?

We consider several timed modal logics: Lν has been introduced in [18], and is
the speci�cation language used in the tool CMC [17]; Ls is a fragment of Lν which
has been proposed in [19] in order to improve the e�ciency of model checking in
practice; SBLL [2] and L∀S [1] have been introduced for their properties w.r.t.
the testing timed automaton method that is currently used in veri�cation tools
like Uppaal to check for properties other than plain reachability ones.

For each of these property languages, we study the computational complexity
of model checking, using timed automata [5] as our system model. As argued by
Lichtenstein and Pnueli [21], the complexity of the model checking problem can
be measured in three di�erent ways. First, one can �x the speci�cation and mea-
sure the complexity as a function of the size of the program being veri�ed (the
program complexity measure). Secondly, one can �x the program and measure
the complexity as a function of the size of the speci�cation (the speci�cation

complexity measure). Finally, the combined complexity of the model checking
problem is measured as a function of the size of both the program and the spec-
i�cation. In this paper we o�er complexity results for these three di�erent views
of the model checking problem for the logics we consider. In so doing, we give an
a posteriori justi�cation, couched in complexity-theoretic arguments, for some
of the folk beliefs in the area of model checking for real-time systems, and for
some of the choices made by developers of real-time veri�cation tools.

Outline of the Main Results. We begin by analyzing the complexity of model
checking for Lµ,ν , a timed alternation-free modal µ-calculus (AFMC). In the
untimed setting, such a fragment of the modal µ-calculus plays an important
role as a speci�cation formalism because it is fairly expressive and its restricted
syntax makes the symbolic evaluation of expressions very simple (more precisely,
linear both in the size of the model and the speci�cation). In the real-time setting,
we show that the complexity of model checking for the timed AFMC, and for its
sublogic Lν , is EXPTIME-complete, as are both the program complexity and the
speci�cation complexity. (Perhaps surprisingly, the model checking problem for
Lν�and a fortiori for the timed AFMC�is EXPTIME-complete even if we �x
the model to be the inactive process without clocks, nil.) We also prove that the
model checking problem for Lν without greatest �xpoints�essentially, a timed
version of Hennessy-Milner logic [14]�is PSPACE-complete.

It is instructive to compare the above results with similar ones for the un-
timed alternation-free µ-calculus. As previously mentioned, for such a program
logic, we have algorithms for model checking that run in time linear both in the
size of the program and of the speci�cation. Moreover, both the program and
the speci�cation complexities are P-complete [6, 12]. Note, however, that the
program complexity of the alternation-free µ-calculus for concurrent programs
is EXPTIME-complete [6], and this matches exactly the complexity results we
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Model checking Prog compl. Spec compl.

Lµ,ν ,Lν EXPTIME-complete EXPTIME-complete EXPTIME-complete

Ls, SBLL, L∀S PSPACE-complete PSPACE-complete PSPACE-complete

L−ν PSPACE-complete P PSPACE-complete

L−s coNP-complete P coNP-complete

SBLL−, L−∀S PSPACE-complete PSPACE-complete coNP-complete

Table 1: Overview of the Results
o�er for Lµ,ν model checking. It is also interesting to note that the complexity
of CTL model checking and reachability for concurrent programs is PSPACE-
complete [6], matching the complexity of model checking for TCTL [4] and of
reachability in timed automata, respectively. These results seem to provide a
mathematical grounding to the folk belief that �clocks act like concurrent pro-
grams�, and that increasing the number of clocks corresponds to adding parallel
components.

We then proceed to develop a thorough analysis of the complexity of model
checking for all the other timed modal property languages that we have found
in the literature. In each case, we o�er results pinpointing the program, the
speci�cation as well as the combined complexity of model checking for the prop-
erty languages with and without �xpoints. An overview of the results we have
obtained is presented in Table 1, where L− denotes the �xpoint free fragment
of L. Here we just wish to point out that the model checking problem for the
property language Ls is PSPACE-complete, no matter whether the complexity is
measured with respect to the size of the program, of the speci�cation or of both.
In light of the aforementioned results, and assuming that PSPACE is di�erent
from EXPTIME, the model checking problem for Ls has a lower computational
complexity than that for Lν . Our results thus o�er a complexity-theoretic justi-
�cation for the claims in [19]. The source of the lower complexity derives from
the observation that the model checking problem for Ls, unlike that for Lν , can
be reduced in polynomial time to reachability checking in timed automata�a
problem whose PSPACE-completeness was shown in [5].

2 Basic de�nitions

We begin by brie�y reviewing a variation on the timed automaton model pro-
posed by Alur and Dill [5] and the property languages that will be used in this
study.

Timed Automata. Let Act be a �nite set of actions, and let N and R≥0 denote
the sets of natural and non-negative real numbers, respectively. We write D for
the set of delay actions {ε(d) | d ∈ R≥0}.

Let C be a set of clocks. We use B(C) to denote the set of boolean expressions
over atomic formulae of the form x ∼ p and x − y ∼ p, with x, y ∈ C, p ∈ N,
and ∼∈ {<,>,=}. Moreover we write Bk(C) for the restriction of B(C) to
expressions where the integer constants belong to {0, . . . , k}. Expressions in
B(C) are interpreted over the collection of time assignments. A time assignment,
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or valuation, v for C is a function from C to R≥0. We write RC≥0 for the collection
of valuations for C. Given g ∈ B(C) and a time assignment v, the boolean value
g(v) describes whether g is satis�ed by v or not. For every time assignment v
and d ∈ R≥0, we use v+d to denote the time assignment which maps each clock
x ∈ C to the value v(x)+d. For every C′ ⊆ C, [C′ → 0]v denotes the assignment
for C which maps each clock in C′ to the value 0 and agrees with v over C\C′.

De�nition 1. A timed automaton (TA) is a quintuple A = 〈Act, N, n0, C,E〉
where N is a �nite set of nodes, n0 is the initial node, C is a �nite set of clocks,
and E ⊆ N×B(C)×Act×2C×N is a set of edges. The tuple e = 〈n, g, a, r, n′〉 ∈ E
stands for an edge from node n to node n′ with action a, where r denotes the

set of clocks to be reset to 0 and g is the enabling condition (or guard). We use

MCst(A) to denote the largest integer constant occurring in the guards of A.

A state (or con�guration) of a timed automaton A is a pair (n, v) where n is a
node of A and v is a time assignment for C. The initial state of A is (n0, [C → 0])
where n0 is the initial node of A, and [C → 0] is the time assignment mapping
all clocks in C to 0. The operational semantics of a timed automaton A is given
by the Timed Labelled Transition System (TLTS) TA = 〈SA,Act ∪ D, s0, −→〉,
where SA is the set of states of A, s0 is the initial state of A, and −→ is the
transition relation de�ned as follows:

(n, v)
a−→ (n′, v′) i� ∃〈n, g, a, r, n′〉 ∈ E. g(v) = tt ∧ v′ = [r → 0]v

(n, v)
ε(d)−→ (n′, v′) i� n = n′ and v′ = v + d

Remark 1. Note that we could consider extended TAs where we assign an invari-

ant (i.e. a downward closed clock constraint) to each node to avoid excessive time
delays. All the results presented here will still hold for extended TAs. Note that,
given a complexity class C, having a C-hardness result for (simple) TAs implies
the same for extended TAs, while having a C membership result for extended
TAs implies the same for TAs.

The speci�cation languages. We now de�ne Lµ,ν a timed alternation-free modal
µ-calculus.

De�nition 2. Let K be a �nite set of clocks, Id a set of identi�ers. The set Lµ,ν
of formulae over K and Id is generated by the following grammar:

Lµ,ν 3 ψ, ϕ ::= g | ϕ ∧ ψ | ϕ ∨ ψ | 〈a〉 ϕ | [a] ϕ | ∃∃ϕ | ∀∀ϕ
| K ′ in ϕ | max(X,ϕ) | min(X,ϕ) | X

where a ∈ Act, g ∈ B(K), K ′ ⊆ K and X ∈ Id. Moreover, each occurrence

of an identi�er X in a formula has to be bound by a min(X,ϕ) (or max(X,ϕ))
operator, and it cannot occur in a ϕ-subformula of the form max(X ′, ψ) (resp.

min(X ′, ψ)). (This restriction corresponds to the �alternation-free� property.)

New operators like tt, ff, g ⇒ ψ (read `g implies ψ') can be easily de�ned.
Let MCst(ϕ) be the largest integer constant occurring in the clock constraints in
ϕ. Given a TA A, we interpret formulae in Lµ,ν w.r.t. extended con�gurations
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(n, v, u) |= [a] ϕ i� ∀ (n′, v′). (n, v)
a−→ (n′, v′) ⇒ (n′, v′, u) |= ϕ

(n, v, u) |= ∀∀ ϕ i� ∀d ∈ R≥0, (n, v + d, u+ d) |= ϕ

(n, v, u) |= g i� g(u) = tt

(n, v, u) |= K′ in ϕ i� (n, v, [K′ → 0]u) |= ϕ

(n, v, u) |= max(X,ϕ) i� (n, v, u) belongs to the largest solution of X = ϕ

Table 2: Semantics of Lµ,ν .

(n, v, u), where (n, v) is a con�guration of A and u is a time assignment for K.
Whereas the classical modal operators 〈a〉 and [a] deal with action transitions,
the operator ∃∃ (resp. ∀∀) denotes existential (resp. universal) quanti�cation over
delay transitions. The clocks in K are so-called formula clocks; they increase
synchronously with the automata clocks, and they are used as stopwatches for
measuring the time elapsing between states of the system. The formula K ′ in ϕ
initializes the set of formula clocks K ′ to 0 in ϕ. The constraints g are used to
compare the value of formula clocks in the current extended con�guration with
an integer value. Finally, an extended con�guration satis�es max(Z,ϕ) (resp.
(min(Z,ϕ)) if it belongs to the largest (resp. least) solution of the equation
Z = ϕ over the complete lattice of sets of extended con�gurations. The existence
of these solutions is guaranteed by standard �xpoint theory. The semantics of
Lµ,ν is sketched in Table 2. (The operators 〈a〉 and ∃∃ are duals of [a] and ∀∀;
the semantics of boolean operators is omitted.) The full formal details of the
semantics are standard [16].

As an example of a property that can be expressed in Lµ,ν using �xpoints
and clock constraints, consider the formula

max

(
X,
(

[b]{x} in ∃∃(〈c〉 tt ∧ x ≤ 3)
)
∧ [a]X ∧ ∀∀X

)
.

This formula expresses the fact that, in every state that is reachable by per-
forming a-actions and delays, every occurrence of a b-action can be followed by
a c-action within 3 time units.

Fragments of Lµ,ν . The logic Lν [18] is the fragment of Lµ,ν in which only
greatest �xpoints are allowed. The logic Ls [19] is the fragment of Lν without
the existential modalities 〈a〉 and ∃∃, and where only a restricted disjunction of
the form g ∨ ϕ (with g ∈ B(K)) is allowed.
The property languages SBLL and L∀S extend Ls, and use a slightly di�erent
kind of TAs where (1) U is a subset of Act s.t. any edge labeled with a ∈ U has the
guard tt and (2) Act contains the label τ used for the internal action of automata.
Moreover they are based on di�erent semantics (denoted by `) compared with
Lν and Ls: a formula ϕ holds for (n, v, u) only if ϕ holds for every (n′, v′, u)
with (n′, v′) reachable from (n, v) in zero or more τ -transitions. For example,

(n, v, u) ` [a]ϕ i� for every (n, v)
τ−→
∗

(n′, v′) we have that (n′, v′)
a−→ (n′′, v′′)

implies (n′′, v′′, u) ` ϕ. Moreover (n, v, u) ` ∀∀ϕ i� for every (n′, v′) reached from
(n, v) by using τ -transitions and delay transitions (of total duration d), we have
(n′, v′, u+ d) ` ϕ.
SBLL extends Ls by allowing the use of 〈a〉 tt subformulae with a ∈ U . L∀S
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extends SBLL with new operators ∀∀S with S ⊆ U . A formula ∀∀Sϕ holds for
(n, v, u) i� ϕ holds for any (n′, v′, u + d) s.t. (n′, v′) is reachable from (n, v) by
using only τ -transitions and delay transitions (with total duration d), but delay
transitions occur only in states in which none of the actions in S are enabled.
These two languages can be translated into Lν in the following sense: for any
ϕ ∈ L∀S, there exists an Lν formula ϕ s.t. A ` ϕ i� A |= ϕ. For example, we
have that [a]ψ = max(X, [a]ψ ∧ [τ ]X). An important property [2, 1] of SBLL
and L∀S is that their model checking problem can be reduced to a reachability
problem: for any formula ϕ of these languages, we can build a testing automaton

Tϕ s.t. A ` ϕ i� a reject node is not reachable in the parallel composition
(A|Tϕ). Moreover it has been shown that L∀S is expressive enough to encode
any reachability property [1].

Veri�cation of timed systems. Automatic veri�cation of timed systems is possi-
ble despite the uncountably in�nite number of con�gurations associated with a
timed automaton. The decision procedure for A |= ϕ is based on the well known
region technique [4]. Given A and ϕ, it is possible to partition the in�nite set
of time assignments over C+ = C ∪K into a �nite number of regions in such a
way that two extended con�gurations (n, u) and (n, v), where u, v ∈ RC+

≥0 are in
the same region, satisfy the same formulae. Formally the regions can be de�ned
as the equivalence classes induced by the equivalence relation over valuations
de�ned thus: given u, v ∈ RC+

≥0 , u and v are in the same region i� they satisfy

the same clock constraints in BM (C+), where M = max(MCst(A), MCst(ϕ)).
We write [u] for the region which contains the time assignment u, and use RClk
to denote the (�nite) set of all regions for a set Cl of clocks and the maximum
constant k. Given a region [u] in RClk and C′ ⊆ Cl, we de�ne the reset operator
thus: [C′ → 0][u] = [[C′ → 0]u]. Moreover, given a region γ, its successor region,
denoted by succ(γ), is the region γ′ s.t. for any u ∈ γ there exists δ ∈ R≥0 with
[u+δ] = γ′, and [u+δ′] ∈ {γ, γ′}, for every δ′ < δ. The region succ(γ) is di�erent
from γ i� γ(x ≤ k) = tt for some clock x.
Now, given a timed automaton A = 〈Act, N, n0, C,E〉, a set K of formula
clocks and an integer constant M with M ≥ MCst(A), we can de�ne a sym-
bolic semantics [18] over the �nite transition system (S,→), called region graph,

de�ned thus: S = N × RC∪KM and →= (
⋃
a

a−→)∪ succ−→. The symbolic se-
mantics is closely related to the standard one: for every Lµ,ν formula whose
clock constraints do not use constants greater than M , and u ∈ γ, (n, γ) |= ϕ
i� (n, u) |= ϕ. Therefore each instance of the timed model checking problem
can be reduced to an untimed model checking query over the region graph.
Note that the size of RC+

M is in O(|C+|! ·M |C+|). Moreover for any region γ,
|{γ′|γ′ = succi(γ), i ∈ N}| ≤ 2 · |C+| · (M + 1).
The reachability problem, which is a fundamental question in system veri�cation,
is know to be PSPACE-complete [3, 10]. Moreover the model checking problem
for TCTL (a timed extension of CTL) is PSPACE-complete [4].

We shall use the abbreviations A+t |=? Ψ+t, A |=? Ψ+t and A+t |=? Ψ to
denote, respectively, the model checking problems where clocks are allowed both
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in automata and speci�cations, where clocks are allowed only in speci�cations
and where clocks are allowed only in automata.

3 Complexity results for model checking

We now consider the complexity of model checking (MC) for the property lan-
guages introduced previously. These results require to de�ne what are the size of
a timed automaton A = 〈Act, N, n0, C,E〉 and a formula ϕ ∈ Lµ,ν . The size |ϕ|
of a formula is its length. We de�ne |A| as |N |+ |C|+ |E|+ MCst(A) +Σe∈E|ge|,
and assume a binary encoding for the elements of the sets N and C. Consider-
ing constants represented in unary or binary does not change our results except
when it is explicitly mentioned.

Theorem 1. The complexity of Lµ,ν and Lν model checking is EXPTIME-

complete. Moreover, we have that the speci�cation and program complexities of

Lµ,ν and Lν model checking are also EXPTIME-complete.

Proof. EXPTIME membership: We have seen that A |= ϕ i� Ã |= ϕ where

Ã is an untimed automaton (the region graph) whose size is exponential in |A|
and over which ϕ is interpreted as an untimed formula. If we modify slightly Ã
by adding the transitive closure of

succ−→, the size of the resulting automaton is
still exponential in |A|, and ∃∃ and ∀∀ become �one step� modalities. Then ϕ is a
simple (untimed) alternation-free µ-calculus formula for which model checking
is linear in |Ã| and |ϕ| [9]. This gives the EXPTIME membership for Lµ,ν and
Lν .
EXPTIME-hardness: Deciding whether a given linear bounded alternating
Turing machine (LBATM) M accepts a given input string w is EXPTIME-
complete [7], and it can be reduced in polynomial time to a MC problemAM |= Φ
with Φ ∈ Lν . The main idea is that we can build a TA AM over actions s and
accept s.t. any s-transition of AM corresponds to a step of M due to the
tape boundness (see [3, 10]). By following the same approach proposed in [6] for
untimed concurrent systems, the alternating behaviour1 ofM can be handled by
an Lν formula of the form: Φ = max(X, [accept]ff∧ ∀∀ [s] ∃∃ 〈s〉X). Intuitively Φ
holds for AM if the current �or� state is not an accepting state and after any step
(leading to an �and� state), there exists a transition leading to a non-accepting
�or� state and so on. We have AM |= Φ i� the LBATM M does not accept w.
This gives the EXPTIME-hardness for Lν and Lµ,ν .
Speci�cation complexity: In fact the acceptance of w by a LBATMM can be
reduced in polynomial time to a problem of the form nil |= ΨM,w where ΨM,w is
an Lν formula. This encoding is based on the use of formula clocks to represent
the con�gurations ofM. This gives the EXPTIME-hardness.
Program complexity: This is due to the proof of EXPTIME-hardness for Lν
model checking where the formula Φ = max(X, [accept]ff ∧ ∀∀ [s] ∃∃ 〈s〉X) does
not depend on the LBATMM. 2

1 We assume w.l.o.g. that we have a strict alternation of �or� and �and� states inM,

and that the initial and �nal states are �or� states.
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sat

t = 1 a1 x1 := 0 t = 2 a2 x2 := 0 t = n an xn := 0

rnr1r0

t = 1 a1 t = 2 a2 t = n an

t = n ∧ ϕ̃
end

Fig. 1: The automaton A(ϕ) with ϕ̃ = ϕ[pi ← xi = n− i; p̄i ← xi = n].

Remark 2. In [15], a timed µ-calculus Tµ has been proposed, and MC for Tµ was
shown to be PSPACE-hard. Tµ is more expressive than Lµ,ν because it allows
for �xpoint alternations and it uses a powerful binary operator . (instead of our
modalities 〈a〉 and ∃∃). In fact the proof of Theorem 1 can be adapted2 to Tµ
and this yields an improved lower bound on the complexity of Tµ MC. Moreover,
using techniques from [6], we can prove that the MC problem for Tµ (and the
extension of Lµ,ν with alternations) is in EXPTIME, and is thus EXPTIME-
complete. To the best of our knowledge this is the �rst precise characterization
of the complexity of MC for this logic.

Theorem 2. The model checking problem for L−ν is PSPACE-complete. More-

over the speci�cation complexity of L−ν MC is PSPACE-complete. The program

complexity of L−ν MC is in P, if the integer constants in the automata are rep-

resented in unary.

Proof. PSPACE membership: A nondeterministic model checking algorithm
in PSPACE can be easily de�ned by considering the parts of the region graph
associated to A |= ϕ only when they are required. The di�erence with Lν is that
we do not need to compute arbitrary sets of con�gurations for �xpoints.
PSPACE-hardness: Let Φ = Q1p1 . . .Qnpn.ϕ be an instance of the QBF
(Quanti�ed Boolean Formulae) problem, where each Qi ∈ {∃, ∀} and ϕ is a
propositional formula over the pi's. We reduce the validity of Φ to a model
checking problem. Consider the TA A(ϕ) in Figure 1 and the L−ν formula

Φ̃ = ∃∃(〈a1〉 tt ∧O1(∃∃(〈a2〉 tt ∧O2 . . .∃∃(〈an〉 tt ∧On〈sat〉 tt))))

where Oi is 〈ai〉 (resp. [ai]) if Qi is ∃ (resp. ∀). Clearly A(ϕ) |= Φ̃ i� Φ is valid.
Speci�cation complexity: In fact any QBF instance can be encoded as a
problem of the form nil |= Φ, with Φ ∈ L−ν , by using formula clocks. This entails
the PSPACE-hardness of speci�cation complexity.
Program complexity: Let ϕ be a given L−ν formula. We can de�ne a poly-
nomial (in |A|) algorithm by building the pertinent part of the region graph in
an �on the �y� manner. The key points are that (1) deciding if ϕ holds for a
TA A needs to consider only sequences with at most |ϕ| action transitions and
(2) between two action transitions the number of possible delay transitions is
bounded by 2(|CA| + |K|)(max(MCst(A), MCst(ϕ)) + 1) which is polynomial in
|A| if MCst(A) is given in unary. The time complexity of such an algorithm is in
O(|A|2|ϕ|) and, as ϕ is �xed, the program complexity is in P. 2

2 For ex. by considering a formula like: µX.accept∨ [tt.(po∧¬(tt.(pe∧¬X)))] where
pe (resp. po) marks even (resp. odd) states.
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Note that some of our proofs are based upon the realization that the MC prob-
lems of the form nil |= ϕ (where ϕ is a formula in any of the logics considered so
far) are just as hard as the MC problems for arbitrary TA. Thus the worst-case
complexity of MC for these real-time logics may be seen as deriving solely from
the use of clocks in formulae. This pattern will remain true for all the property
languages we study in what follows, except SBLL− and L−∀S.

The property language Ls has been introduced in [19] as a sub-language of
Lν that allows for more e�cient model checking algorithms. To the best of our
knowledge, however, such an intention has not been supported yet by precise
complexity theoretic considerations. These we now proceed to present.

Theorem 3. The complexity of Ls MC is PSPACE-complete. Moreover, the

speci�cation and program complexities of Ls MC are also PSPACE-complete.

Proof. PSPACE membership: For every Ls formula ϕ, it is possible to build
a TA Tϕ such that, for any TA A, A |= ϕ i� a reject node of Tϕ is not reachable
in the parallel composition (A|Tϕ) [2]. The size of Tϕ is linear in that of ϕ and
(A|Tϕ) can be seen as a new TA Ā corresponding to the product A×Tϕ. The
reduction of A |= ϕ to a reachability problem for Ā is done in polynomial time,
and thus gives the PSPACE membership.
PSPACE-hardness: A reachability question for node n in a TA A can be re-
duced to checking that A 6|= max(X, [in_n]ff ∧ [a]X ∧ ∀∀X) if we suppose that
every edge in A has label a, except for a new transition 〈n, tt, in_n, ∅, n〉.
Speci�cation complexity: It is possible to reduce reachability in a linear
bounded nondeterministic Turing machine M with input w to a problem of
the form nil |= ΦM,w by means of the same kind of encoding used for Lν .
Program complexity: It is PSPACE-complete because the formula expressing
the reachability problem does not depend on the input automaton. 2

Theorem 4. The model checking problem for L−s is coNP-complete, as is the

speci�cation complexity of model checking. The program complexity of L−s is in

P, if the constants in the input automata are represented in unary.

The property languages SBLL and L∀S have the same complexity:

Theorem 5. The complexity of SBLL and L∀S model checking is PSPACE-

complete. Moreover we have that the speci�cation and program complexities of

SBLL and L∀S MC are also PSPACE-complete.

For the property languages SBLL− and L−∀S, we obtain the following result:

Theorem 6. The MC problem for SBLL− and L−∀S is PSPACE-complete. The

speci�cation complexity of MC for SBLL− and L−∀S is coNP-hard, and is coNP-

complete if constants in the formulae are represented in unary. Finally, the pro-

gram complexity of MC for SBLL− and L∀S is PSPACE-complete.

There is an implicit recursion (over τ and delay transitions) which is hidden in
the semantics of the SBLL− operator ∀∀, and this recursion is su�cient to make
SBLL− and L−∀S model checking PSPACE-hard.

9



L−ν
L∀S
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"L is more expressive than L′"

Fig. 2: Expressiveness vs complexity of model checking
Concluding remarks. The relationships between the relative expressive power
of the property languages that we have considered, and the complexity of their
model checking problems is summarized in Figure 2. (There L −→ L′ means
that any model checking problem A |= ϕ with ϕ ∈ L′ can be reduced in linear
time to a veri�cation Ã |= ϕ̃ with ϕ̃ ∈ L.)

Note that, for every speci�cation language we consider, the proof of C-
hardness of the MC problem uses formulae without clocks. This implies that

the problems A+t |=? Ψ and A+t |=? Ψ+t have the same complexity. The remark

about the complexity of MC problems of the form nil |= ϕ shows that A |=? Ψ+t

and A+t |=? Ψ+t also have the same complexity. Therefore the complexity of MC
does not depend on whether time is added to the model, to the speci�cation or
to both.
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