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Department of Computer Science
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DK-8000 Aarhus C, Denmark

kohlenb@brics.dk

Dedicated to Solomon Feferman for his 70th Birthday

Abstract

In this paper we develop mathematically strong systems of analysis in
higher types which, nevertheless, are proof-theoretically weak, i.e. conser-
vative over elementary resp. primitive recursive arithmetic. These systems
are based on non-collapsing hierarchies (Φn-WKL+, Ψn-WKL+) of principles

which generalize (and for n = 0 coincide with) the so-called ‘weak’ König’s

lemma WKL (which has been studied extensively in the context of second or-

der arithmetic) to logically more complex tree predicates. Whereas the second
order context used in the program of reverse mathematics requires an encoding
of higher analytical concepts like continuous functions F : X → Y between
Polish spaces X,Y , the more flexible language of our systems allows to treat
such objects directly. This is of relevance as the encoding of F used in reverse
mathematics tacitly yields a constructively enriched notion of continuous func-

tions which e.g. for F : ININ → IN can be seen (in our higher order context)

∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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to be equivalent to the existence of a continuous modulus of pointwise conti-
nuity. For the direct representation of F the existence of such a modulus is
independent even of full arithmetic in all finite types E-PAω plus quantifier-
free choice, as we show using a priority construction due to L. Harrington.
The usual WKL-based proofs of properties of F given in reverse mathematics
make use of the enrichment provided by codes of F , and WKL does not seem
to be sufficient to obtain similar results for the direct representation of F in
our setting. However, it turns out that Ψ1-WKL+ is sufficient.

Our conservation results for (Φn-WKL+, Ψn-WKL+) are proved via a new

elimination result for a strong non-standard principle of uniform Σ0
1-bounded-

ness which we introduced in 1996 and which implies the WKL-extensions stud-
ied in this paper.

1 Introduction

This paper addresses a central theme of proof theory expressed by the following
question:

‘What parts of ordinary mathematics (in particular of analysis) can be carried out
in certain restricted formal systems?’

The relevance of this question is twofold:

1) Foundational relevance: suppose a formal system TPA allows to formalize

a great amount of mathematics but can be shown (by restricted means) to be
a conservative extension of first order Peano Arithmetic PA, then that part of
mathematics has an arithmetical foundation (partial realization of H. Weyl’s

program, see S. Feferman’s discussion in [8]).

If we work in a system TPRA which can be shown (finitistically) even to be

conservative over Primitive Recursive Arithmetic PRA and identify (following

[35]) PRA with finitism, then the parts of mathematics which can be carried

out in TPRA have a finitistic foundation (partial realization of D. Hilbert’s

program, see e.g. [33]).

2) Mathematical relevance: here the guiding question is

‘What more do we known if we have proved a theorem by restricted means
than if we merely know that it is true?’ (G. Kreisel)

The aim is to get additional mathematical information out of the fact that a
certain theorem S has been proved by certain restricted means. Such addi-
tional information may be the extractability of a realizing construction for an
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existential statement or of an algorithm or a numerical bound for a ∀∃-theorem
by unwinding the given proof.

Both motivations are of course closely related and research on them has mutually

influenced each other: e.g. a proof of a Π0
2-theorem carried out in a system which

can be (effectively) reduced to PRA allows to extract at least a primitive recursive
algorithm. In the other direction, e.g. our analysis of proofs in approximation theory
(which used the principle of the attainment of the maximum of f ∈ C[0, 1], see [20])
led us to an elimination procedure of the weak König’s lemma WKL over a variety
of subsystems of arithmetic in all finite types thereby contributing to ‘1)’ above (see

[19]). Likewise our treatment of e.g. the Bolzano-Weierstraß principle in [26] via an
elimination technique of Skolem functions yielded also new conservation results for
comprehension principles ([27]).
However, there are also important differences due to the different points emphasized
in 1) and 2):

Whereas there are hardly foundational (understood in the sense of Hilbert) reasons to
study systems weaker than PRA, merely primitive recursive algorithms and bounds
are in most cases much too complex to be of any mathematical value. So on the one
hand further restrictions are needed to guarantee the extractability of mathemati-
cally more interesting data whereas on the other hand e.g. proofs of large classes of
lemmas (having a certain logical form) can be shown not to contribute to the com-
plexity or growth of algorithms or bounds extracted from proofs of theorems using
these lemmas. Hence such lemmas can be treated simply as axioms (no matter how

non-constructive their proofs might be) in the course of the analysis of a given proofs.
Also, for successful unwindings the complexity of the proof transformations used is
critical. It has turned out that methods using functionals of finite type like appropri-
ate versions of Gödel’s functional interpretation or modified realizability combined
with tools like negative translation and/or the Friedman-Dragalin translation are

most useful (in particular compared to techniques which try to avoid any passage

through higher types, see [29]).

Whereas we have focused on ‘2)’ in several publications (see [21],[20],[24] among oth-

ers), this paper addresses ‘1)’ to which S. Feferman has contributed so profoundly.
We study mathematical strong, but nevertheless PRA-reducible, systems in all finite
types emphasizing the need of third order variables already for a faithful formaliza-
tion of continuous functions between Polish spaces.

Let us recall very briefly some of the history of research on ‘1)’. As Feferman pointed

out in [7], ‘Hermann Weyl initiated a program for the arithmetical foundation of
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mathematics’ in his book ‘Das Kontinuum’ ([39]. In this book, Weyl observed that
large parts of analysis can be developed on the basis of arithmetical comprehension.
This theme was further developed in the 50’s by P. Lorenzen among others. In the
late 70’s Feferman [5] and G. Takeuti [36] independently designed formal systems
based on arithmetical comprehension in the framework of higher order arithmetic
which are conservative over PA. For this property it is important that the schema

of induction is restricted to arithmetical formulas only.1 Work on the program of so-
called reverse mathematics by H. Friedman, S. Simpson and others has shown that
almost all of the mathematics that can be developed based on arithmetical compre-
hension at all can also be carried out if induction is restricted in this way. This work
uses a second order fragment ACA0 (formulated in the language of second order

arithmetic) of the system from [5] (which is formulated in the language of function-

als of all finite types). Via appropriate representations and codings of higher objects

(like continuous functions between Polish spaces) a great deal of mathematics can

be developed already in ACA0 (see [34] for a comprehensive treatment).
Feferman’s system, however, allows a more direct treatment of such objects and
their mathematics and also contains a strong uniform (‘explicit’) version of arith-
metical comprehension via a non-constructive µ-operator. These features hold in an
even stronger form for theories with flexible (variable) types which were developed

successively by Feferman in his framework of explicit mathematics in [4],[6],[7] culmi-

nating in a formal system called W (where ‘W’ stands for ‘Weyl’) which was shown

to be proof-theoretically reducible to and conservative over PA in [11]. The enor-

mous mathematical power and flexibility of the system W led Feferman in [9] to the

formulation of the thesis that all (or almost all) scientifically applicable mathematics
can be developed in W.
In the late 70’s, H. Friedman observed that large parts of the mathematics that can be
carried out in ACA0 are already formalizable in a subsystem WKL0 which instead
of the schema of arithmetical comprehension is based on the binary König’s lemma

(for quantifier-free trees) and Σ0
1-induction only (see again [34] for a comprehensive

treatment of ordinary mathematics in WKL0). This fact is of foundational rele-

vance since WKL0 can be proof-theoretically reduced to and is Π0
2-conservative over

PRA (H. Friedman (1976, unpublished) and [32]; for a historical discussion which

in particular points out various errors in the literature on WKL see [23] (p.69)).

1As was shown by Feferman in [5], the corresponding system with full induction is proof-
theoretically stronger than PA. In [36], Takeuti considers in addition the variant where param-
eters (except arithmetical ones) are not permitted in the schema of arithmetical comprehension. In
this case the resulting system is conservative over PA even in the presence of the full schema of
induction.
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In [19] we introduced an extension (in the spirit of Feferman’s PA-conservative sys-

tem from [5] mentioned above) of WKL0 to all finite types and proved among other
things that this extension still can be proof-theoretically reduced to PRA and is

Π0
2-conservative over PRA.

Although this extension is already much more flexible than the system WKL0, the
use of WKL still requires a complicated encoding of analytical objects. While work-
ing on ‘2)’ mentioned above and investigating what parts of analysis produce only

provable recursive function(al)s which can be bounded by polynomials (see [24] for a

survey) we faced the problem that already the formulation of WKL involves coding
devices of exponential growth. That is why we introduced a non-standard axiom F
which together with some form of quantifier-free choice proves a strong principle of

uniform boundedness Σ0
1-UB which allows to give short proofs of the usual WKL-

applications in analysis relative to very weak (polynomially bounded) systems (see

[23],[25]) but does not contribute to the growth of provably recursive functionals.
This axiom as well as the principle of uniform boundedness is ‘non-standard’ in the
sense that it is not true in the full set-theoretic type structure. Nevertheless all of its
analytic (i.e. second order) consequences are true. In [23] we also studied a restricted

version F− of F which yields a correspondingly restricted version of uniform bound-
edness which is sufficient for many applications (although a bit more complicated to

use, see [25]) but which allows a very easy proof-theoretical elimination. In section
3 of this paper we show that in the presence of the axiom of extensionality and a

form of quantifier-free choice, F actually is implied by F− so that in this context

(which we use throughout this paper) the F−-elimination applies to proofs based on

F as well. The proof of this fact uses an argument due to Grilliot [14]. The result

allows to construct a PRA-reducible finite type system T ∗ which is based on Σ0
1-UB.

The foundational relevance of this is due to fact that T ∗ allows to treat continuous
functions between Polish spaces directly as certain type-2-functionals and to prove all
the usual WKL-consequences known from reverse mathematics without the coding of
such objects used reverse mathematics. We investigate that coding and show that it
tacitly yields a constructively enriched representation of continuous functions. More

precisely, we show that already for continuous functions f : ININ → IN, the represen-
tation used in reverse mathematics entails the existence of a (continuous) modulus
of pointwise continuity functional, which for the direct formulation of such functions

as type-2-functionals is not even provable in E-PAω+QF-AC1,0 (arithmetic in all fi-
nite types with full induction and Gödel’s T plus quantifier-free choice, see below for
a precise definition). In the presence of arithmetical comprehension, the difference
between both representations disappears, since the existence of such a modulus of
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pointwise continuity can be proved using arithmetical comprehension and QF-AC1,0.
However, for theories based on WKL instead this does not seem to be possible.
The main part of this paper (sections 5-7) analyzes that greater mathematical strength

of the non-standard principle Σ0
1-UB compared to WKL in terms of standard ex-

tensions of WKL. We develop a non-collapsing hierarchy Φn-WKL+ of extensions
of WKL. Basically, Φn-WKL+ extends WKL from binary trees which are given by
quantifier-free predicates to binary trees which are given by formulas belonging to a
larger class Φn (see section 5 below for details). Φ0-WKL+ is equivalent to WKL,

but for n ≥ 1, Φn-WKL+ is not even provable in E-PAω+QF-AC1,0 + µ (here µ is

Feferman’s non-constructive µ-operator mentioned above). Nevertheless, Φn-WKL+

is provable in T ∗ for all n ∈ IN so that by the results mentioned before the whole hi-
erarchy can be reduced proof-theoretically to PRA. Already Φ2-WKL+ (and even a

variant Ψ1-WKL+ in between this principle and WKL) allows to carry out the usual
WKL-applications now even for the direct representation of continuous functions
instead of their constructively enriched encoding the WKL-based proofs in reverse
mathematics rely on. The (PRA-reducible) system T , which results from T ∗ be

replacing Σ0
1-UB by Φ∞-WKL+ :=

⋃
n∈IN{Φn-WKL+}, can be viewed as a standard

approximation to T ∗.
One might also ask for an explicit version (with flexible types) of such systems based

on (extensions of) WKL. However, things are quite delicate in this case. Already

for the uniform (‘explicit’) version UWKL of WKL (analogously to the uniform ver-

sion of arithmetical comprehension given by µ), the strength of the resulting system

crucially depends on the amount of extensionality available (see [30]).

2 Description of the theories E-GnA
ω, E-PRAω

and E-PAω

The set T of all finite types is defined inductively by

(i) 0 ∈ T and (ii) ρ, τ ∈ T⇒ τ(ρ) ∈ T.

Terms which denote a natural number have type 0. Elements of type τ(ρ) are
functions which map objects of type ρ to objects of type τ .
The set P ⊂ T of pure types is defined by

(i) 0 ∈ P and (ii) ρ ∈ P⇒ 0(ρ) ∈ P.

Brackets whose occurrences are uniquely determined are often omitted, e.g. we
write 0(00) instead of 0(0(0)). Furthermore we write for short τρk . . . ρ1 instead of
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τ(ρk) . . . (ρ1). Pure types can be represented by natural numbers: 0(n) := n+ 1.

Our theories T used in this paper are based on many–sorted classical logic formu-
lated in the language of functionals of all finite types plus the combinators Πρ,τ ,Σδ,ρ,τ

which allow the definition of λ–abstraction.
The systems E-GnAω (for all n ≥ 1) are introduced in [23] to which we refer for de-

tails. E-GnAω has as primitive relations =0,≤0 for objects of type 0, the constant 00,

functions min0,max0, S
00 (successor), A0, . . . , An, where Ai is the i–th branch of the

Ackermann function (i.e. A0(x, y) = y′, A1(x, y) = x+ y, A2(x, y) = x · y, A3(x, y) =

xy, . . .), functionals of degree 2: Φ1, . . . ,Φn, where Φ1fx = max0(f0, . . . , fx) and Φi

is the iteration of Ai−1 on the f–values for i ≥ 2, i.e. Φ2fx =
x∑
i=0

fi,Φ3fx =
x∏
i=0

fi, . . ..

We also have a bounded search functional µb and bounded predicative recursion pro-

vided by recursor constants R̃ρ (where ‘predicative’ means that recursion is possible

only at the type 0 as in the case of the (unbounded) Kleene-Feferman recursors R̂ρ).

In this paper our systems always contain the axioms of extensionality

(E) : ∀xρ, yρ, zτρ(x =ρ y → zx =τ zy)

for all finite types (x =ρ y is defined as ∀zρ1
1 , . . . , z

ρk
k (xz1 . . . zk =0 yz1 . . . zk) where

ρ = 0ρk . . . ρ1).

In [23] we had in addition to the defining axioms for the constants of our theories all

true sentences having the form ∀xρA0(x), where A0 is quantifier–free and deg(ρ) ≤ 2,

added as axioms.2

By ‘true’ we refer to the full set–theoretic model Sω. In given proofs of course only
very special universal axioms are used which can be proved in suitable extensions of
our theories. Nevertheless one can include them all as axioms if one is only insterested
in the applied aspect ‘2)’ discussed above, since they (more precisely their proofs)

do not contribute to the provable recursive function(al)s of the system. In particular
this covers all instances of the schema of quantifier-free induction. In this paper,
however, we include only the schema of quantifier-free choice to E-GnAω instead
of taking arbitrary universal axioms, since we are interested in proof-theoretical
reductions.

E-PRAω results if we add the functional

Φit0yf =0 y, Φitx
′yf =0 f(x,Φitxyf)

2The restriction deg(ρ) ≤ 2 has a technical reason discussed in [23].
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to E-G∞Aω :=
⋃
n∈ω{E-GnAω}. The system E-PRAω is equivalent to Feferman’s sys-

tem E-P̂A
ω|\ from [5] since Φit allows (relative to E-G∞Aω) to define the predicative

recursor constants R̂ρ (see [23]).

E-PAω is the extension of E-PRAω obtained by the addition of the schema of full
induction and all (impredicative) primitive recursive functionals in the sense of [13].

The schema of full choice is given by

ACρ,τ : ∀xρ∃yτA(x, y)→ ∃Y τ(ρ)∀xρA(x, Y x), AC :=
⋃

ρ,τ∈T

{ACρ,τ}.

The schema of quantifier-free choice QF-ACρ,τ is defined as the restriction of

ACρ,τ to quantifier-free formulas A0.3

The theory T + µ results from T if we add the non-constructive µ-operator µ2 to T
together with the characterizing axiom

µ(f) =

 the least x such that f(x) =0 0, if ∃x0(f(x) =0 0)

0, otherwise.

Notation: For ρ = 0ρk . . . ρ1, we define 1ρ := λxρ1
1 . . . xρkk .1

0, where 10 := S0.

Definition 2.1 1) Between functionals of type ρ we define the relation ≤ρ: x1 ≤0 x2 :≡ x1 ≤ x2,

x1 ≤τρ x2 :≡ ∀yρ(x1y ≤τ x2y);

2)

 min0(x0
1, x

0
2) := min(x1, x2),

minρτ (x
ρτ
1 , x

ρτ
2 ) := λyτ .minρ(x1y, x2y).

In the following we will need the definition of the binary (‘weak’) König’s lemma as

given in [38]:

Definition 2.2 (Troelstra(74))

WKL:≡ ∀f 1(T (f) ∧ ∀x0∃n0(lth n =0 x ∧ fn =0 0) → ∃b ≤1 λk.1∀x0(f(bx) =0 0)),
where
Tf :≡ ∀n0, m0(f(n ∗m) =0 0→ fn =0 0) ∧ ∀n0, x0(f(n ∗ 〈x〉) =0 0→ x ≤0 1)

(i.e. T (f) asserts that f represents a 0,1–tree).

3Throughout this paper A0, B0, C0, . . . denote quantifier-free formulas.
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3 On two non-standard principles

In this section we in particular prove a new conservation result for the non-standard

axiom F which was introduced first in [23]4 (and has been applied e.g. in [25]):

F :≡ ∀Φ2(0), y1(0)∃y0 ≤1(0) y∀k0∀z ≤1 yk(Φkz ≤0 Φk(y0k)).

We call this axiom ‘non-standard’ since it does not hold in the full set-theoretic type
structure Sω. Nevertheless its use can be eliminated from certain proofs thereby
yielding classically true results. This has been discussed extensively in [23] to which
we refer for further information. In that paper we mainly made use of a weaker

version F− of F which allows a direct proof-theoretic elimination whereas the elim-
ination of F was based on a model-theoretic argument. In this paper however we
need the full version F . We show – using an argument known as Grilliot’s trick in the

context of recursion theory for the countable functionals (see [14])5 – that in the fully

extensional context of theories like E-PRAω+QF-AC1,0, F− actually implies F . This

allows to extend the proof-theoretic elimination of F− to F thereby strengthening
results in [23].

We apply F via one of its consequences, the following principle of uniform Σ0
1-

boundedness:

Definition 3.1 ([23]) The schema6 of uniform Σ0
1–boundedness is defined as

Σ0
1–UB :

 ∀y
1(0)(∀k0∀x ≤1 yk∃z0 A(x, y, k, z)

→ ∃χ1∀k0∀x ≤1 yk∃z ≤0 χk A(x, y, k, z)),

where A ≡ ∃lA0(l) and l is a tuple of variables of type 0 and A0 is a quantifier–free

formula (which may contain parameters of arbitrary types).

Proposition 3.2 ([23]) Let T :=E-GnAω (n ≥ 2), E-PRAω or E-PAω. Then

T +QF-AC1,0 + F ` Σ0
1-UB.

Proposition 3.3 ([23]) E-G3Aω + Σ0
1-UB ` WKL.

4A special case of F was studied already in [21] and called also F in that paper but F0 in [23].
5This argument recently has had a further proof-theoretic application in [30].
6Σ0

1-UB can be written as a single axiom. However the schematic version is easier to apply.
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Σ0
1-UB implies the existence of a modulus of uniform continuity for each extensional

Φ1(1) on {z1 : z ≤1 y} (where ‘continuity’ refers to the usual metric on the Baire

space ININ):

Proposition 3.4 ([23])

E-G2Aω + Σ0
1-UB `

∀Φ1(1)∀y1∃χ1∀k0∀z1, z2 ≤1 y(
∧

i≤0χk
(z1i =0 z2i)→

∧
j≤0k

(Φz1j =0 Φz2j)).

Remark 3.5 The argument above can actually be used to show that a sequence of

functionals Φ
1(1)
i has a sequence of moduli of uniform continuity on a sequence of

sets {z : z ≤1 yi}.

As mentioned above, in [23] we mainly studied a weaker version

F− :≡ ∀Φ2(0), y1(0)∃y0 ≤1(0) y∀k0, z1, n0(
∧
i<0n

(zi ≤0 yki)→ Φk(z, n) ≤0 Φk(y0k))

(where, for zρ0, (z, n)(k0) :=ρ zk, if k <0 n and := 0ρ, otherwise) of F and gave

a proof-theoretic elimination procedure for the use of F− which – relative to so-
called weakly extensional variants WE-GnAω+QF-AC of our systems E-GnAω+QF-

AC1,0+QF-AC0,1 – applies for quite general classes of formulas. In the presence of
the full extensionality axiom (E) we got corresponding results if the types involved

were somewhat restricted. We now show that in the presence of (E), F is already

implied by F− and so that these results extend to F as well.

Proposition 3.6 E-G3Aω+QF-AC1,0 + F− ` F.

Proof: From [23] it follows that E-G3Aω+QF-AC1,0 +F− proves the following weak-

ening of Σ0
1-UB:

Σ0
1–UB− :


∀y1(0)(∀k0∀x ≤1 yk∃z0 A(x, y, k, z)→ ∃χ1∀k0, x1, n0

(
∧
i<0n

(xi ≤0 yki)→ ∃z ≤0 χk A((x, n), y, k, z))),

with A ≡ ∃l0A0(l) as in Σ0
1-UB. Σ0

1-UB− combined with (E) in turn yields that

(1) ∀Φ1(1), y1∃χ1∀x, x̃ ≤1 y∀k0(
χk∧
i=0

(xi =0 x̃i)→ ∀z0(Φ(x, z)k =0 Φ(x̃, z)k)).
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So if Φ1(1) satisfies the special case of pointwise continuity

(2) ∀x∀k0∃n∀m ≥ n(Φ(x,m)k =0 Φxk),

then we obtain

(3) Φ is uniformly continuous for x ≤1 y and has a modulus of uniform continuity χ.

It is easy to see, that (3) implies F (relative to E-G3Aω). So it remains to show that

(4) E-G3Aω+QF-AC1,0 + F− ` (2).

Suppose that ¬(2), i.e. there exist Φ1(1), k0, x1 such that

(5) ∀n0∃m ≥ n(Φ(x,m)k 6= Φxk).

By QF-AC0,0 (which follows from QF-AC1,0), (5) implies

(6) ∃f 1∀n(fn > n ∧ Φ(x, fn)k 6= Φxk).

Hence for xi := x, fi we have

(7) ∀i0∀j ≥ i(xj(i) =0 x(i))

and
(8) ∀i0(Φ(xi, k) 6= Φxk).

Define Ψy1 :=0

 1, if Φyk 6= Φxk

0, if Φyk = Φxk.

Then
(9) ∀i, j(Ψxi =0 Ψxj 6= Ψx).

Now one can apply an argument from [14], which can be formalized in E-G3Aω (see

[30] for details on this and a further proof-theoretic application of that argument),
to derive

(10) ∃ϕ2∀f 1(ϕf = 0↔ ∃x(fx = 0))

from (7) and (9). (10), however, contradicts F− (relative to E-G3Aω+QF-AC1,0),

since F− implies that every Φ2 is bounded on the set of all functions x, n with x ≤1

1, n ∈ IN, whereas QF-AC1,0 together with (10) yields the existence of a functional
µ such that

∀f 1(∃x0(fx = 0)→ f(µ(f)) = 0),

which obviously is unbounded on this set. 2
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Theorem 3.7 Let ∀f 1, x0∃y0A0(f, x, y) be a sentence of the language of T where

T :=E-GnAω (n ≥ 3), E-PRAω or E-PAω. Then the following rule holds
T + QF-AC1,0+QF-AC0,1 + F ` ∀f 1, x0∃y0A0(f, x, y)

⇒ one can extract a closed term Ψ001 of T such that

T ` ∀f 1, x0A0(f, x,Ψfx).

Proof: The theorem follows from proposition 3.6 together with theorem 4.21 from
[23]. 2

4 Continuous functions: direct representations ver-

sus codes

A functional Φ1(1) is continuous at x1 if

∀k0∃n0∀y1(
n∧
i=0

(xi =0 yi)→
k∧
j=0

(Φxj =0 Φyj)).

Φ is continuous if it is continuous at every x.
Using a suitable so-called standard represenation of complete seperable metric (‘Pol-

ish’) spaces X (which in turn relies on a representation of real numbers as Cauchy

sequences of rational numbers with fixed rate of convergence), elements of X can be

represented by number-theoretic functions x1 and, moreover, every such function can
be considered as a representative of a uniquely determined element of X (see [2] and

[20] for details). On these representatives we have a pseudo metric dX . The elements

of X can be identified with the equivalence classes w.r.t. x =Y x :≡ (dX(x, y) =IR 0).

Functions G : X → Y between Polish spaces therefore are just functionals Φ
1(1)
G

which repect =X ,=Y , i.e.

∀x1, y1(x =X y → ΦGx =Y ΦGy).

ΦG represents a continuous function G : X → Y if

∀x1∀k0∃n0∀y1(dX(x, y) ≤IR
1

n+ 1
→ dY (ΦGx,ΦGy) ≤IR

1

k + 1
).

This definition is just the usual ε-δ–definition of continuous functions. One could also

consider to define continuity as sequential continuity. In the presence of QF-AC0,1
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(which is included in all the systems we consider in this paper) both definitions are
equivalent as we will show now.
As usual G : X → Y is called sequentially continuous in x iff

∀x1(0)
(·) ( lim

n→∞
xn =X x→ lim

n→∞
ΦG(xn) =Y ΦG(x)),

where ( lim
n→∞

xn =X x) :≡ ∀k0∃n0∀m ≥0 n(dX(xm, x) ≤ 1
k+1

).

Proposition 4.1 The theory E-G3Aω+QF-AC0,1 proves

∀G : X → Y ∀x ∈ X(G is sequentially continuous at x↔ G is ε–δ–continuous at x).

Proof: ‘←’: Obvious!
‘→’: Suppose that G is not ε–δ–continuous at x, i.e.

(∗) ∃k0∀n0∃y1( dX(x, y) <IR
1

n + 1
∧ dY (ΦG(x),ΦG(y)) >IR

1

k + 1︸ ︷︷ ︸
≡:A∈Σ0

1

).

By coding pairs of natural numbers and numbers into functions one can express ∃y1A

in the form ∃y1A0. Hence QF-AC0,1 applied to (∗) yields

∃k0, ξ1(0)∀n0(dX(x, ξn) <IR
1

n + 1
∧ dY (ΦG(x),ΦG(ξn)) >IR

1

k + 1
),

i.e. (ξn)n∈IN represents a sequence of elements of X which converges to x. But

¬ lim
n→∞

ΦG(ξn) =IR ΦG(x) and thus G is not sequentially continuous at the point

represented by x. 2

Remark 4.2 The use of QF-AC0,1 in the proof of ‘→’ in the proposition above is
unavoidable already for X = Y = IR since in this case the implication is known to
be unprovable even in Zermelo–Fraenkel set theory ZF, see [16],[15] and [12].

We now discuss the indirect representation of continuous functions G : X → Y
between Polish spaces X, Y via codes g as used in the context of reverse mathe-
matics (see definition II.6.1 in [34]). Since reverse mathematics takes place in the

language of second-order arithmetic (instead of a language with higher types), the
direct representation of such continuous function which is available in our systems

is not possible. We will show that provably in E-G3Aω+QF-AC1,0, for every such

13



code g there exists a direct representation in our sense of the function coded by g,
but that the reverse direction in general is not even provable in E-PAω+QF-AC. The
latter phenomenon is due to the fact that the indirect representation of continuous
functions G via codes g tacitly yields a constructive enrichment of the direct rep-
resentation of G by a modulus of pointwise continuity. To be more specific, let us
consider the special case X = Baire space, Y = IN (with the usual metrics). Then

the existence of a code g for a continuous functional Φ2 is (relative to E-G3Aω+QF-

AC1,0) equivalent to the existence of a continuous modulus of pointwise continuity

functional Ψ2 for Φ2 which in turn is equivalent to the existence of an associate of Φ
in the sense of the Kleene/Kreisel countable functionals.

Definition 4.3 1) α1 is a neighborhood function if

(a) ∀β1∃n0(α(βn) > 0) and

(b) ∀m,n(m v n ∧ α(m) > 0 → α(m) = α(n)), where ‘m v n’ expresses

the (elementary recursive) predicate that the sequence encoded by m is an
initial segment of the one encoded by n.

2) α1 is an associate of Φ2 if

(a) ∀β1∃n0(α(βn) > 0) and

(b) ∀β, n(n least s.t. α(βn) > 0→ α(βn) = Φβ + 1).

Without loss of generality we may assume that an associate of Φ2 is a neighborhood
function, since otherwise we define

α̃(n) :=

 α(m), where m shortest initial segment of n s.t. α(m) > 0, if existing

0, otherwise.

Proposition 4.4 E-G3Aω+QF-AC1,0 proves (uniformly in Φ2) that the following
properties are pairwise equivalent:

1) ∃f(f is an r.m.-code of Φ),7

2) ∃α1(α is an associate of Φ),

7By ‘r.m-code’ we here refer to definition II.6.1 in [34] specialized to Â := ININ and B̂ := IN. We
identify the set Φ in that definition with its characteristic function f .
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3) ∃ω2
Φ(ωΦ is a continuous modulus of pointwise continuity for Φ).

Proof: ‘1)→ 3)’: Let f be a r.m.-code of Φ2. Since Φ is total, we have8

∀β1∃a0, r0, b0, s0(d(β, λi.(a)i) <IR 2−r ∧ (a, r)f(b, s) ∧ 2−s <Q 1)

and hence

∀β1∃a0, r0, b0, s0, l0( d(β, λi.(a)i) + 2−l <IR 2−r ∧ (a, r)f(b, s) ∧ 2−s <Q 1︸ ︷︷ ︸
≡:∃v0A0(f,β,a,r,b,s,l,v)

),

where A0 is quantifier-free. By quantifier-free induction and QF-AC1,0 we obtain a

functional X2 such that

∀β(Xβ minimal s.t. A0(f, β, ν6
1(Xβ), . . . , ν6

6(Xβ))).

It is clear that X is continuous9 and that Φβ = ν6
3(Xβ). With X, also

ωΦβ :=Q 2−ν
6
5(Xβ)

is continuous. One easily verifies that ωΦ is a modulus of pointwise continuity for Φ.

‘3)→ 2)’: Let ωΦ be a continuous modulus of pointwise continuity for Φ2. Then

(1) ∀β, γ(β(ωΦβ) =0 γ(ωΦβ)→ Φβ =0 Φγ)

and
(2) ∀β∃n0(ωΦ(β, n) ≤ n)

(where β, n is the continuation of βn with 0).
Define

α(n) :=

 Φ(λi.(n)i) + 1, if ωΦ(λi.(n)i) ≤ lth(n)

0, otherwise.

(2) yields

∀β∃k(α(βk) > 0).

8As in reverse mathematics we represent real numbers as Cauchy sequences with fixed rate of
convergence. As a consequence of this, <IR∈ Σ0

1.
9Here we use the fact that A0(f, β, a, r, b, s, l, v) can be written as tA0(f, β, a, r, b, s, l, v) =0 0 for

a suitable closed term tA0 of E-G3Aω and that every closed term t2 of E-G3Aω is provably pointwise
continuous.
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Assume that α(βk) > 0, then – by (1) and the definition of α – ωΦ(β, k) ≤ k ∧
Φ(β, k) = Φβ and therefore α(βk) = Φβ + 1.

‘2)→ 1)’: Let α be an associate for Φ. By the remark above we may assume that α
is a neighborhood function. Define an r.m.-code f for Φ by

(a, r)f(b, s) :≡ α((λi.(a)i)r) > 0 ∧ |(α(λi.(a)ir)− 1)− b| < 2−s.

This is a quantifier-free (and hence Σ0
1-)predicate (which we identify with its char-

acteristic function). It is straightforward to verify that f satisfies the properties of
an r.m.-code and that f is a code for Φ. We omit the tedious details. 2

Remark 4.5 For the equivalence between 2) and 3), see also [2] (p.143, E.8).

Theorem 4.6 E-PAω+QF-AC1,0+QF-AC0,1 does not prove that every continuous

functional Φ2 has an r.m.-code (i.e. that Φ is continuous in the sense of reverse

mathematics).

Proof: In [31](6.4) a type-structure A = 〈Ak〉k∈IN over ω is constructed with the
following properties:

(i) E2|\A1 /∈ A2, where E2(f 1) = 0↔ ∃x(fx = 0);

(ii) A is closed under computation in the sense of Kleene’s schemata S1-S9.

(iii) there exists a Φ ∈ A2 such that Φ has no associate in A1. By (ii), A is a model

of the restriction of E-PAω+QF-AC1,0 to the fragment with pure types only. Mod-

ulo the well-known reduction to pure types (see [37](1.8.5-1.8.8)), E-PAω+QF-AC1,0

therefore has a model in which there exists a functional Φ2 which has no associate
and therefore – by the previous proposition – no r.m.-code f . Nevertheless, all func-

tionals Φ2 of type 2 are continuous: one could use here an argument due to [14]
to show that the existence of a non-continuous functional in A2 would contradict
(i). However, it requires some care to verify that this argument (which usually is

formulated for the full type-structure) relativises to A. We therefore use directly the

construction of A which is based on a certain type-2 functional F : ININ → IN (con-

structed by L. Harrington using a complicated priority construction, see [31](4.21))
which has the following properties

(i) F is continuous (and therefore has an associate in ININ),

(ii) F |\REC is not computable (in the sense of S1-S9) and therefore has no recursive
associate,
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(iii) 1-sc(F ) =REC.

A1 :=REC, Ak+1 := {Φ : Ak → IN : Φ computable in F |\REC.}
It is clear that every Φ ∈ A2 is continuous.

As a further consequence of this, QF-AC0,1 reduces in A to QF-AC0,0 since

∀x0∃f 1A0(x, f)→ ∀x0∃y0A0(λi.(y)i). So A |= QF-AC0,1. 2

The fact that the representation of continuous functions in reverse mathematics via
codes goes together with a constructive enrichment is also used heavily in many proofs
of basic properties of continuous functions in the system WKL0, while WKL does
not seem to be sufficient to prove the same results for our direct representation. We

discuss this for simplicity again for the case of continuous functions Φ : ININ → IN.

As we have seen above, reverse mathematics treats Φ via an associate α1. This
representation allows to prove the uniform continuity of Φ on the Cantor space of all
0-1-functions by WKL. Define a binary tree by

f(n) :=

 1, if ∀i < lth(n)((n)i ≤ 1) ∧ α(n) > 0

0, otherwise.

Since we may assume that α is a neighborhood function, f satisfies T (f). The
contraposition of WKL applied to f yields

∀β ≤1 1∃x0(α(βx) > 0→ ∃x∀β ≤1 1(α(βx) > 0),

i.e. Φβ = α(βmin n[α(βn) > 0])− 1 is uniformly continuous on {β : β ≤ 1}.
Together with QF-AC0,0, WKL even implies the existence of a modulus of uniform

continuity function for continuous functionals Φ1(1) on {β : β ≤ 1} (if given by an

associate or – equivalently – by an r.m.-code). This is due to the fact that WKL
yields

∃k0∀x0∃β ≤1 1(α(〈k〉 ∗ βx) = 0)→ ∃k∃β ≤ 1∀x(α(〈k〉 ∗ βx) = 0)

and so with QF-AC0,0 (and the fact that ‘∃β ≤1 1(α(〈k〉 ∗ βx) = 0)’ can be written

as a quantifier-free formula) using contraposition

(+) ∀k∀β ≤1 1∃x(α(〈k〉 ∗ βx) > 0)→ ∃ω1∀k∀β ≤ 1(α(〈k〉 ∗ β(ωk)) > 0).

Thus ω is a modulus of uniform continuity for the functional Φ1(1) encoded by α.
This argument can be adopted to real functions coded as in reverse mathematics
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and is reponsible for the fact that in that context one can prove e.g. that every
continuous function f : [0, 1] → IR is uniformly continuous and has a modulus of
uniform continuity.

In our direct type-2-treatment of continuous functions Φ : ININ → IN as functionals

Φ2 satisfying

∀f 1∃n0∀g1(fn = gn→ Φf = Φg),

the binary tree to which we have to apply König’s lemma in order to prove the
uniform continuity of Φ on {f : f ≤1 1} is given by

Tree(n) :≡ ∃g, h ≤1 1(
∧

i<lth(n)

(g(i) = (n)i = h(i)) ∧ Φg 6= Φh)

which no longer is quantifier-free and apparently does not possess a characteristic

function (in E-PAω+QF-AC1,0) which would be necessary to apply WKL. So we need
an extension of WKL to trees of the form Tree above. To show the existence of a
modulus of continuity function for a continuous Φ1(1) on {f : f ≤1 1}, not even
this extension is enough since QF-AC no longer suffices to prove the version of this
extension corresponding to (+) above.

On the other hand – as we saw in proposition 3.4 – the non-standard principle Σ0
1-UB

easily proves the existence of such a modulus function for arbitrary functionals Φ1(1)

(and also of functions G : [0, 1]d → IR represented directly as type-2 functionals; see

[23],[25]).
In the next section we study extensions Φn-WKL+ and Ψn-WKL+ of WKL to trees

given by Φn- (resp. Ψn-)formulas, where, roughly, a formula is in Φn (Ψn) if it has n

alternating bounded function quantifiers – starting with a universal (resp. existen-

tial) one – in front of a Π0
1-formula.10 For n = 0, these principles are equivalent to

the usual WKL, but from n ≥ 1 (resp. n ≥ 2) on they form a proper hierarchy (even

relative to E-PAω+QF-AC1,0 +µ, where µ is Feferman’s non-constructive µ-operator
corresponding to the E2-functional). Adopting the argument above, one can show
that Ψ1-WKL+ suffices to prove the existence of a modulus of uniform continuity

for continuous functionals Φ2 on {f 1 : f ≤ 1} but also (using the representation

of [0, 1]d, IR from [26]) for continuous functions f : [0, 1]d → IR (and – via suitable

standard representations – for other Polish spaces K,Y instead of [0, 1]d, IR with K

10That we allow a universal number quantifier underneath the bounded function quantifiers is
usefull for the treatment of continuous functions G : K → X for spaces like K = [0, 1]d, X = IR

instead of 2IN, ININ.
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compact) in their direct type-2 representation.

For all n ∈ IN, the principles Φn-WKL+ and Ψn-WKL+ (which – in contrast to

Σ0
1-UB – are true in the full set-theoretic model) follow from Σ0

1-UB (relative to

E-G3Aω+QF-AC1,0). So by theorem 3.7 (and proposition 3.2), proof-theoretically
these extensions of WKL are not stronger than WKL which allows to define PRA-
reducible systems of analysis whose mathematical strength goes beyond that of the
system WKL0 used in reverse mathematics and which in particular allow to treat
continuous functions directly without a constructively enriched representation.

We close this section with an open problem whose solution which we conjecture to be
true would relativise the foundational significance of WKL for a partial realization of
Hilbert’s program (see [33]): It seems unlikely in view of the comments above, that

WKL (used in a finite type extension like E-PRAω+QF-AC1,0 of the base system

RCA0 used in reverse mathematics) suffices to prove e.g. the existence of a modulus

of uniform continuity for continuous functions F : [0, 1]→ IR or F : 2IN → ININ when

those are represented directly as type-2 objects (and not via r.m.-codes). However
we have not been able to show its unprovability. This problem has connections to ap-
parently rather non-trivial questions in the context of recursion theory for continuous

functionals. We now formulate a conjecture which would imply this unprovability:11

Conjecture: There exists a type-structure A = 〈An〉n∈IN such that

1) A is closed under µ-recursion;

2) A0 = ω;

3) A1 is a model of WKL;

4) every Φ ∈ A2 is continuous (in the usual sense);

5) there exists a Φ(f, n) ∈ A2 such that the restriction of Φ to x ∈ ω and f ∈ A1

with f ≤ 1 does not have an associate in A1.

Corollary 4.7 (to the conjecture) E-PRAω+QF-AC1,0+QF-AC0,1+WKL does not

prove that every continuous Φ1(1) has a modulus of uniform continuity when restricted

to 2IN. Thus the prominent role of WKL in the context of analysis for continuous
functions as carried out in reverse mathematics crucially depends on the particular –

11We are indebted to Professor Dag Normann for correspondence about this problem and which
led us to formulate it as a conjecture.
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constructively enriched – representation of continuous functions via codes (enforced

by the restricted language of second-order arithmetic used in reverse mathematics).

Proof: By 1)-3), A is a model of (the pure-type fragment of)

E-PRAω+QF-AC1,0+QF-AC0,1+WKL. If the (restriction of the) functional Φ from

5) had such a modulus in A1, then one could construct an associate for this restriction
in A1. 2

Remark 4.8 A stronger version of this conjecture results if 1) is replaced by ‘1*)
A is closed under S1-S9 computation’. This strong version implies that even E-

PAω+QF-AC1,0+QF-AC0,1+WKL does not prove the existence of a modulus of uni-

form continuity for continuous functions F : 2IN → ININ.

5 Generalization of WKL to more complex trees:

Φ∞-WKL+

Definition 5.1 1) A ∈ Φn if

A ≡ ∀f1 ≤1 s1[a]∃f2 ≤1 s2[a] . . .∀(d)fn ≤1 sn[a]∀x0A0(a, f1, . . . , fn, x),

where A0 is quantifier-free and a contains all free variables of A and si (which

may have arbitrary types). The fi must not occur in a.

2) A ∈ Ψn if

A ≡ ∃f1 ≤1 s1[a]∀f2 ≤1 s2[a] . . .∃(d)fn ≤1 sn[a]∀x0A0(a, f1, . . . , fn, x),

where A0 and si as above.

3) The classes Φ−n and Ψ−n result if we restrict ourselves to parameters a of type
level ≤ 1 in A0 and si.

Remark 5.2 One could also allow further universal number quantifiers ∀x0 (but no

existential quantifiers) to occur in between the bounded function quantifiers in the
definition of Φn. The results of this paper easily extend to this slightly generalized
case. However, for applications to continuous functions on Polish spaces one appar-
ently does not need this. So we restrict ourselves to the definition of Φn as stated
above in order to improve the readability of the proofs.
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Remark 5.3 In the extensional context of our theories T we can code pairs of
bounded function quantifiers of the same sort together:

∀f1 ≤1 s1∀f2 ≤1 s2A(f1, f2)↔ ∀f ≤1 j(s1, s2)A(min1(j1f, s1),min1(j2f, s2))

for some monotone function pairing as used e.g. in [23]. Analogously for ∃f ≤1 s.

Definition 5.4 The generalization of WKL to Φn-trees is given by

Φn-WKL : ∀n0∃f ≤1 1∀ñ ≤ nA(fñ)→ ∃f ≤1 1∀n0A(fn),

where A(k0) ∈ Φn (with arbitrary further parameters of arbitrary types). Ψn-WKL

is defined analogously. Φ∞-WKL:=
⋃
n∈ω{Φn-WKL}.

Remark 5.5 1) Φn-WKL (Ψn-WKL) can be written as a single axiom for each
fixed n.

2) Instead of the special bounding function λx.1 in Φn-WKL we may also have

a function variable g1. All proofs in this paper remain valid. For notational
simplicity and because of the fact that this more general version actually can
be derived from the special one, we formulate only the latter in this paper.

The next proposition shows that in the absence of parameters of types ≥ 2 (and so

in particular in a second-order context) there is no point in considering Φn-WKL

instead of WKL.12 For its proof we need the following

Lemma 5.6 Let A0(a, g1, y0) be a quantifier-free formula of T :=E-GnAω (n ≥ 3),

E-PRAω or E-PAω containing (in addition to g, y) only parameters a of type levels
≤ 1 and let s be a term of T containing at most a as free variables. Then one can

construct a Π0
1-formula B(a) of T (containing only a free) such that

T + WKL ` ∀a(B(a)↔ ∃g ≤1 s[a]∀y0A0(a, g, y)).

Proof: For T =E-PRAω and T = E-PAω this follows from (the proofs of) proposition

4.14 and corollary 4.15 in [19]. The use of the modulus t̃xyk of pointwise continuity

in y used in the proof of proposition 4.14 in [19] can easily be replaced by a modulus

t̂xk of uniform continuity on {y : y ≤1 sx}. For closed t ∈E-GnAω such a modulus t̂

can be constructed in E-GnAω by the method of [18] since the majorization argument

used there is available in E-GnAω as was shown in [23]. 2

12This is in sharp contrast to the case where arbitrary parameters are allowed as we will see
below.
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Proposition 5.7 Let m,n ≥ 0. Over T :=E-GkA
ω (k ≥ 3), E-PRAω or E-PAω the

following principles are equivalent:

(i) WKL, (ii) Φ0-WKL, (iii) Ψ0-WKL, (iv) Φ−m-WKL, (v) Ψ−n -WKL.

Proof: We first show the following

Claim: Let A(a) be a Φ−n (or Ψ−n ) formula containing only parameters a of type

degree ≤ 1. Then one can construct a Π0
1-formula B(a) such that

T + WKL ` A(a)↔ B(a).

Proof of the claim: We proceed by meta-induction on n:

n = 0 : In this case A ∈ Π0
1 and so B := A suffices.

n→ n + 1 : Case 1: A ∈ Φn+1. Then A(a) ≡ ∀f ≤1 s[a] Ã(a, f), where Ã ∈ Ψn. By

the induction hypothesis there exists a formula B̃(a, f) ≡ ∀y0B̃0(a, f, y) ∈ Π0
1 with

T + WKL ` A(a)↔ ∀f ≤1 s[a]∀y0B̃0(a, f, y).

Let tB̃0
be a closed term of T such that

T ` ∀a, f, y(tB̃0
(a, f, y) =0 0↔ B̃0(a, f, y).

From results in [18] (using for the case of E-GkA
ω also [23]) it follows that one can

construct a closed term t̂B̃0
of T such that t̂B̃0

(a, y) is (provably in T ) a modulus

of uniform continuity for λf.tB̃0
(a, f, y) on {f : f ≤1 s[a]}. Using this modulus,

∀f ≤1 s[a] B̃0(a, f, y) can be written as a quantifier-free formula and hence ∀f ≤1

s[a]∀y B̃0(a, f, y) as a Π0
1-formula B̂(a). So

T + WKL ` A(a)↔ B̂(a).

Case 2: A(a) ∈ Ψn+1. Then A(a) ≡ ∃f ≤1 s[a] Ã(a, f) with Ã(a, f) ∈ Φn. By I.H.

there exists a formula B̃(a, f) ≡ ∀y0B̃0(a, f, y) ∈ Π0
1 with

T + WKL ` A(a)↔ ∃f ≤1 s[a]∀y0B̃0(a, f, y).

By the lemma, there exists a Π0
1-formula B̂(a) such that

T + WKL ` B̂(a)↔ ∃f ≤1 s[a]∀y0B̃0(a, f, y).
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So again

T + WKL ` A(a)↔ B̂(a)

with B̂ ∈ Π0
1. This finishes the proof of the claim.

The claim implies that

T + WKL ` Φ−m-WKL↔ Ψ−n -WKL

for all m,n ≥ 0. Since trivially Φ−0 -WKL ↔ Φ0-WKL, it therefore remains to show
that

T ` Φ0-WKL ↔ Ψ0-WKL ↔ WKL.

Φ0-WKL≡ Ψ0-WKL holds by definition. We have to show WKL↔ Φ0-WKL:
The right-hand side obviously implies the left-hand side since Φ0-WKL allows the

tree-predicate to be given even by a Π0
1-formula whereas in WKL T (f) is quantifier-

free. So it remains to show that WKL→ Φ0-WKL: Assume

(+) ∀n0∃g ≤1 1∀ñ ≤ n∀z0A0(gñ, z).

Define f such that

(++) f(x) =0 0↔ ∀i < lth(x)((x)i ≤ 1) ∧ ∀x̃ v x∀z ≤ lth(x)A0(x̃, z),

where ‘x̃ v x’ means that x̃ is the code of an initial segment of the sequence coded by
x (note that the right-hand side of (++) can be written as a quantifier-free formula

in T ).

f satisfies T (f) and – by (+) – represents an infinite binary tree, i.e.

∀n∃g ≤1 1 (f(gn) = 0).

Hence WKL yields
∃g ≤1 1∀n (f(gn) = 0),

which implies
∃g ≤1 1∀n∀m ≤ n∀z ≤ nA0(gm, z),

and therefore
∃g ≤1 1∀n∀z A0(gn, z).

2

In the presence of higher type parameters, however, we get non-collapsing hierarchies
of principles Φn-WKL and Ψn-WKL as we will show now.
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Definition 5.8 We define the classes of formulas Π1,b
n and Ψ1,b

n simultaneously by
induction on n:

(i) A ∈ Π1,b
0 = Σ1,b

0 , if A is quantifier-free;

(ii) if A(f) ∈ Π1,b
n , then ∃f ≤1 1A(f) ∈ Σ1,b

n+1;

(iii) if A(f) ∈ Σ1,b
n , then ∀f ≤1 1A(f) ∈ Π1,b

n+1.

A may contain arbitrary parameters (of arbitrary types).

Remark 5.9 Π1,b
n ⊆ Φn and Σ1,b

n ⊆ Ψn.

Definition 5.10 1) The schema of Π1,b
n -comprehension is given by

Π1,b
n -CA : ∃g1∀x0(gx = 0↔ A(x)),

where A(x) ∈ Π1,b
n and may contain arbitrary parameters (of arbitrary types)

in addition to x. Σ1,b
n -CA is defined analogously but with Σ1,b

n instead of Π1,b
n .

2) The schema of Π1,b
n -choice for numbers is given by

Π1,b
n -AC0,0 : ∀x0∃y ≤0 1A(x, y)→ ∃g ≤1 1∀xA(x, gx),

where A(x, y) ∈ Π1,b
n and may contain arbitrary parameters.

Proposition 5.11 Let T :=E-PAω. Then

T + Φn+1-WKL ` Π1,b
n -CA

(Likewise for Ψn+1-WKL).

Proof: We use the following tree-predicate from [38]:

Ã(k) :≡


(k)lth(k)−· 1 ≤ 1 ∧ ((k)lth(k)−· 1 = 0→ A(lth(k)−· 1))∧

((k)lth(k)−· 1 = 1→ ¬A(lth(k)−· 1))), if lth(k) > 0

true, otherwise.

For A ∈ Π1,b
n , Ã(k) can be written as a Φn+1-formula (using remark 5.3). By induction

on n we can prove in E-PAω that

∀n0∃f ≤1 1∀ñ ≤ nÃ(fñ).

Φn+1-WKL therefore yields the characteristic function for A(n). 2
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Proposition 5.12 E-PAω + Π1,b
n -CA+µ contains (modulo a canonical embedding

which doesn’t change the first order part) the second order system (Π1
n-CA) known

from reverse mathematics.13

Proof: Systems formulated in the language of second-order arithmetic with set

variables like (Π1
n-CA) can be embedded in (suitable) systems formulated in the

language of functionals of all finite types by representing sets X by their characteristic
functions χX and replacing formulas ‘t ∈ X’ by ‘χX(t) =0 0’. In doing so and using
the fact that the presence of µ allows to absorb an arbitrary arithmetical quantifier-
prefix in front of a quantifier-free formula with arbitrary parameters uniformly in

these parameters, the comprehension schema of (Π1
n-CA) reduces to Π1,b

n -CA above.
2

The two propositions above show that the systems E-PAω+QF-AC1,0+QF-AC0,1 +
µ+ Φn-WKL (and similar with Ψn-WKL) form a non-collapsing hierarchy which as
n increases eventually exhausts full second-order arithmetic.

Together with the result due to Feferman that E-PAω+QF-AC1,0+QF-AC0,1 +µ can

be reduced proof-theoretically to (Π0
1-CA)<ε0

14 and hence is proof-theoretically much

weaker than (Π1
1-CA), it in particular follows that for n ≥ 2, Φn-WKL and Ψn-WKL

are underivable in E-PAω+QF-AC1,0+QF-AC0,1 +µ. The next proposition improves
this further:

Proposition 5.13 E-PAω+QF-AC1,0+QF-AC0,1 + µ /̀Φ1-WKL.

Proof: One easily verifies that E-PAω + Φ1-WKL proves Π1,b
1 -AC0,0 which in the

presence of µ yields the so-called Σ1
1-separation principle (see [34]), hence (again by

[34]) the subsystem ATR of second order arithmetic, whose proof-theoretic strength

is much higher than that of (Π0
1-CA)<ε0, is contained in E-PAω+QF-AC1,0+QF-

AC0,1 + µ+ Φ1-WKL. 2

Remark 5.14 A more detailed analysis of the proof-theoretic strength of the sys-

tems E-PAω+QF-AC1,0+QF-AC0,1 + µ + Φn-WKL which would allow to determine
the precise relationship between Φn-WKL and Ψm-WKL has to be postponed for a
subsequent paper.

As we have seen already above, Ψ1-WKL suffices to prove the uniform continuity of

continuous functions Φ : [0, 1]d → IR (and more general: for continuous functions

13In the notation of [34], (Π1
n-CA) is the system Π1

n-CA0+full induction.
14This follows from [5] together with elimination of extensionality (see also [1]).

25



from compact metric spaces into Polish spaces). However, in order to show the
existence of a modulus of uniform continuity function we apparently need a slightly
stronger form Ψ1-WKL+:

Definition 5.15 Let A(a0, k0) ∈ Φn (with arbitrary parameters).

Φn-WKL+ : ∀h1∃a0∃f ≤1 1∀ñ ≤ h(a)A(a, fñ)→ ∃a∃f ≤1 1∀n0A(a, fn)

(Ψn-WKL+ is defined analogously with A ∈ Ψn.)

Remark 5.16 In T :=E-GkA
ω (k ≥ 3), E-PRAω or E-PAω, trivially Φn-WKL+ →

Φn-WKL.

For n = 0, Φ0-WKL (and hence WKL) together with QF-AC0,0 implies already
Φ0-WKL+:

Proposition 5.17 Let T :=E-GkA
ω (k ≥ 3), E-PRAω or E-PAω. Then

T +QF-AC0,0 ` Φ0-WKL↔ Φ0-WKL+.

Proof: The direction ‘←’ is trivial.
‘→’: For A(a, k) ∈ Φ0 (= Π0

1), Φ0-WKL implies

∃a0∀n0∃f ≤1 1∀ñ ≤ nA(a, fñ)→ ∃a∃f ≤1 1∀n0A(a, fn).

‘∃f ≤1 1’ in ‘∃f ≤1 1∀ñ ≤ nA(a, fñ)’ can be replaced by a bounded number

quantifier. Together with the fact that the Σ0
1-collection principle is derivable in

T +QF-AC0,0, this implies that ‘∃f ≤1 1∀ñ ≤ nA(a, fñ)’ can be written as a Π0
1-

formula. Hence (again using QF-AC0,0), T +QF-AC0,0 proves

∃a0∀n0∃f ≤1 1∀ñ ≤ nA↔ ∀h1∃a0∃f ≤1 1∀ñ ≤ h(a)A,

which concludes the proof. 2

The proposition above is the reason for the phenomenon that in the context of
reverse mathematics (where the more constructive definition of continuous functions

used makes it possible to replace the use of Ψ1-WKL by WKL=Φ0-WKL) WKL
suffices even to show the existence of a modulus of uniform continuity. For our
direct representation of continuous functions, however, we have to use Ψ1-WKL+

which does not seem to be implied by Ψ1-WKL and QF-AC0,0.
In the next two sections we will show that, nevertheless, proof-theoretically Φ∞-
WKL+ (=Ψ∞-WKL+) is not stronger than WKL.
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6 The computational strength of Φ∞-WKL+

Proposition 6.1 Let T :=E-GkA
ω (k ≥ 3), E-PRAω or E-PAω. Then

T + QF-AC1,0 + F− ` Φ∞-WKL+.

Proof: Because of proposition 3.6 it suffices to show that

T + QF-AC1,0 + F ` Φ∞-WKL+.

The idea of the proof is to use proposition 3.4 (together with propositions 3.2 and 3.3)
to show similarly to the argument in the proof of proposition 5.7 that every A ∈ Φn

(or ∈ Ψn) can be written as a Π0
1-formula B. Whereas in the proof of proposition

5.7 we could use the fact that for every term t2[a] of T containing only variables

a of type ≤ 1 one can construct a modulus of uniform continuity on {x : x ≤1 b}
(uniformly in a and b), we have to use proposition 3.4 in the presence of arbitrary
parameters. The latter provides such a modulus of uniform continuity only uniformly
in number parameters but not uniformly in function parameters f unless the latter
are themselves restricted to a compact set {f : f ≤1 b} (in which case a modulus

that is independent of f does exist). However this is just the case in the situation at
hand since all function variables f1, . . . , fn of A ∈ Φn which are not parameters are
bounded. So all we need is

(∗)

 ∀Φ, a∃α
1∀x0, z0(λf.(Φxzfa)0 is uniformly continuous for all

f1 ≤1 s1[x, a], . . . , fn ≤1 sn[x, a] with modulus αxz),

where a are all the remaining free variables of si (which may have arbitrary types).15

(∗) is implied by

(∗∗)

 ∀Φ, a, b
1(0)∃α1∀x0, z0(λf.(Φxzfa)0 is uniformly continuous for all

f1 ≤1 b1x, . . . , fn ≤1 bnx with modulus αxz).

But this follows in T + Σ0
1-UB (and therefore in T +QF-AC1,0 + F by proposition

3.2) similarly to the proof of proposition 3.4. Since by proposition 3.3 also WKL

15Here ‘z’ is the variable from the Π0
1-kernel of A (which of course can be merged together with

x).
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is available in this theory, we can argue as in the proof of the claim in the proof of
proposition 5.7 and show that for A(x) ∈ Φn (with arbitrary additional parameters)

T + Σ0
1-UB ` ∃Φ∀x0(A(x)↔ ∀z0(Φxz =0 0)).

Hence for all n ∈ IN

(∗ ∗ ∗)T + Σ0
1-UB ` Φ0-WKL+ → Φn-WKL+

and therefore (using propositions 3.3,5.7 and 5.17)

T + QF-AC0,0 + Σ0
1-UB ` Φn-WKL+

and therefore by proposition 3.2

T + QF-AC1,0 + F ` Φn-WKL+,

which concludes the proof. 2
Corollary to the proof of proposition 6.1:

T + QF-AC0,0 + Σ0
1-UB ` Φ∞-WKL+

7 PRA-reducible theories

Theorem 7.1 1) E-G3Aω+QF-AC1,0+QF-AC0,1+Σ0
1-UB is Π0

2-conservative over
EA,

2) E-PRAω+QF-AC1,0+QF-AC0,1 + Σ0
1-UB is Π0

2-conservative over PRA,

3) E-PAω+QF-AC1,0+QF-AC0,1 + Σ0
1-UB is conservative over PA.

Proof: We first prove 3): Let A be a sentence of PA which is provable in E-

PAω+QF-AC1,0+QF-AC0,1+Σ0
1-UB and hence (using proposition 3.2) in E-PAω+QF-

AC1,0+QF-AC0,1 + F . Then the Herbrand normal form AH ≡ ∀f∃yA0(f, y) of A is

provable there a-fortiori. Hence by theorem 3.7

E-PAω ` ∀f A0(f,Ψ(f))

for suitable closed terms Ψ of E-PAω. Thus

E-PAω ` AH .
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By [17](thm.4.1) we can conclude that16

PA ` A.

1) and 2): For Π0
2-sentences A the argument above applies equally to E-G3Aω (resp.

E-PRAω) yielding E-G3Aω ` A (resp. E-PRAω ` A). The conclusion now follows

from the fact that E-G3Aω (resp. E-PRAω) is Π0
2-conservative over EA (resp. PRA).

2

Theorem 7.2

1) E-G3Aω+QF-AC1,0+QF-AC0,1 + Φ∞-WKL+ is Π0
2-conservative over EA,

2) E-PRAω+QF-AC1,0+QF-AC0,1 + Φ∞-WKL+ is Π0
2-conservative over PRA,

3) E-PAω+QF-AC1,0+QF-AC0,1 + Φ∞-WKL+ is conservative over PA

Proof: The theorem follows from theorem 7.1, proposition 6.1 and 3.2. 2

Remark 7.3 The purely proof-theoretic proofs of theorems 7.1 and 7.2 also yield
corresponding proof-theoretic reductions.

Summary about PRA-reducibility:

In this paper we in particular have constructed two new mathematically strong PRA-

reducible and Π0
2-conservative extensions of PRA. One of these systems

T ∗ := E-PRAω+QF-AC1,0+QF-AC0,1 + Σ0
1-UB

is a non-standard system in the sense that the full set-theoretic type structure Sω is
not a model of T ∗.
Analysing the greater mathematical strength of T ∗ (w.r.t. to derivable consequences

which are true in Sω) in terms of generalizations of WKL to logically more complex
binary trees, we developed the subsystem

T := E-PRAω+QF-AC1,0+QF-AC0,1 + Φ∞-WKL+

which has Sω as a model.
In particular, T allows to carry out substantial parts of classical analysis in a
much more direct way than the second order system WKL0 or even E-PRAω+QF-

AC1,0+QF-AC0,1+WKL.

16Warning: this argument does not apply to the subsystems E-PRAω, PRA; see [17] for a coun-
terexample to this.
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Concluding remarks:

1) There is also a different route to design PRA-reducible systems which is based
on E-G∞Aω instead of E-PRAω. Although E-G∞Aω contains all primitive re-
cursive functions and primitive recursive functionals of every Grzegorczyk level
n, it does not contain all ordinary Kleene-primitive recursive functionals of type
2, in particular it does not contain Φit. As a consequence of this, E-G∞Aω+QF-

AC0,0 does not prove the schema of Σ0
1-induction. As we have shown in [26],[27]

and [28], one can add to E-G∞Aω+QF-AC1,0+ QF-AC0,1 function parameter-

free schematic forms of e.g. Π0
1-comprehension, the Bolzano-Weierstraß prin-

ciple for sequences in [0, 1]d, the Arzela-Ascoli lemma etc. and still obtain a

PRA-reducible system (whereas the addition of any of these principles to E-

PRAω would make the Ackermann function provably total). This result was

obtained via a certain Σ0
2-generalization of the principle Σ0

1-UB− mentioned in
the proof of proposition 3.6. Using the results of this paper we can even allow a

corresponding generalization of the principle Σ0
1-UB instead. As a consequence

of this and the fact that Φ∞-WKL+ follows from Σ0
1-UB already relative to

E-G∞Aω, we may add Φ∞-WKL+ to the principles listed above without losing

PRA-conservation. This results in a mathematically fairly strong system (note

that E-G∞Aω+QF-AC0,0 allows to interpret the weak base system RCA∗0 from

reverse mathematics and see remark X.4.3 in [34]) which is incompatible with
the systems studied in this paper. A detailed treatment of this theme, however,
has to be postponed for another paper.

2) The results of this paper and [30] suggest to propose the following extension of
the program of reverse mathematics to finite types: Replace the base system

RCA0 by its finite type extension RCAω
0 := E-PRAω+QF-AC1,0. This system

can be shown to be conservative over (an inessential variant with function

variables instead of set variable of) RCA0. So for second order statements

A,B (i.e. the type of statements which can be discussed in the framework

of currently existing reverse mathematics) nothing is lost if we prove an
equivalence between A and B relative to RCAω

0 instead of RCA0. However, the

richer language allows to consider new statements (in their direct formulation)
which can not even be expressed in RCA0 and to apply reverse mathematics
to them as well. As first example, we can recast a result from [30] as a result
in reverse mathematics in this extended sense:

‘Relative to RCAω
0 , the uniform weak König’s lemma UWKL and the existence

of Feferman’s µ-operator are equivalent’.
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Likewise, the equivalence between µ and strong uniform versions of analytical
theorems like the attainment of the maximum of f ∈ C[0, 1] can be obtained.
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