
B
R

IC
S

R
S

-99-3
P.B

.M
iltersen:

Tw
o

N
otes

on
the

C
om

putationalC
om

plexity
ofO

ne-D
im

ensionalS
andpiles

BRICS
Basic Research in Computer Science

Two Notes on the
Computational Complexity of
One-Dimensional Sandpiles

Peter Bro Miltersen

BRICS Report Series RS-99-3

ISSN 0909-0878 February 1999

Copyright c© 1999, Peter Bro Miltersen
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/3/

Two notes on the computational complexity of
one-dimensional sandpiles

Peter Bro Miltersen∗

February, 1999

Abstract

We prove that the one-dimensional sandpile prediction problem is
in AC1. The previously best known upper bound on the ACi-scale
was AC2. We also prove that it is not in AC1−ε for any constant
ε > 0.

1 Introduction

In a recent paper, Moore and Nilsson [3] considered the following one-dimen-
sional sandpile prediction problem, which can be described as follows (the
description of Moore and Nilsson is slightly different but can be easily seen
to be equivalent to the following). A one-dimensional sandpile is a map
h : Z→ {0, 1, 2, . . .}. The value h(i) is interpreted as the height of a pile of
sand at position i. A pile of height 2 or more is unstable, and may topple,
distributing sand evenly to the two neighboring positions. Formally, if map
h′ satisfies that for some i, h′(i) = h(i)−2, h′(i−1) = h(i−1)+1, h′(i+1) =
h(i + 1) + 1, and h′(x) = h(x) for all x 6∈ {i − 1, i, i + 1}, we’ll say that
h′ is a possible successor to h, or h → h′. If there is no possible successor
to h, we’ll say that h is stable. If h is zero outside some interval I, say,
I = {1, 2, . . . , n}, it can be shown that there is a unique stable g, so that

∗BRICS, Basic Research in Computer Science, Centre of the Danish National Research
Foundation, Department of Computer Science, University of Aarhus, Denmark. Email:
bromille@brics.dk.

1

h →∗ g. We will denote this unique g by h∗. The one-dimensional sandpile
prediction problem is the following: Given h : {1, 2, . . . , n} → {0, 1, 2}, find
h∗.

A similar definition can be made for the d-dimensional sandpile problem
for any d ≥ 1, but in this paper, we concentrate on the one-dimensional case.

The sandpile model is popular in the theory of complex dynamical sys-
tems. A general program by Moore and others seek to capture and measure
the informal notion of the “complexity” of such a system by the computa-
tional complexity of the problem of predicting the behavior of the system.
Following this program, Moore and Nilsson showed that the d-dimensional
sandpile prediction problem is in P for all d, that it is P-complete for d ≥ 3
and that the 1-dimensional problem is in AC1[NL] ⊆ AC2 ⊆ NC3. They
also present an efficient sequential algorithm for the 1-dimensional problem
with a time bound of O(n logn).

The purpose of this note is to present two pieces of information about
the complexity of the one-dimensional sandpile prediction problem.

First we show the following improvement of the parallel upper bound
of Moore and Nilsson: The one-dimensional sandpile prediction problem is
in AC1 ⊆ NC2. Conceptually, the algorithm is simpler than the parallel
algorithm of Moore and Nilsson. It is based on refining their sequential
algorithm slightly, and then noticing that the refined algorithm can be carried
out by a deterministic logspace Turing machine with access to an auxiliary
pushdown store. It is known that the class of languages so computed is
LOGDCFL [5], the class of languages logspace reducible to a deterministic
context-free language, and as LOGDCFL ⊆ AC1 [4], the result follows.

Second, we prove that one-dimensional sandpile prediction is hard for
TC0 by AC0-reductions. That the one-dimensional sandpile prediction prob-
lem is hard for TC0 means that the one-dimensional sandpile is sufficiently
complex to carry out at least some slightly non-rudimentary computation,
such as computing the parity or majority of n bits. This provides a (weak)
formal justification for the statement of Moore and Nilsson that the dynam-
ics of the one-dimensional sandpile problem is “non-trivial”. It also implies
the following lower bound: The one-dimensional sandpile prediction problem
is not in AC1−ε for any constant ε > 0. As ACi is the class of prob-
lems solvable by CRCW PRAMs with polynomially many processors in time
O((logn)i), we thus have fairly tight upper and lower bounds for solving the
one-dimensional sandpile problem in this model of computation.

2

2 The upper bound

In their paper, Moore and Nilsson show that the one-dimensional sandpile
problem can be solved by the following sequential algorithm. Given an input
sandpile h : {1, . . . , n} → {0, 1, 2}, extend it to Z by making zero the values
of h outside the interval from 1 to n. We maintain two subsets T and N

of the integers. Initially T is the set {i ∈ Z|h(i) = 2} and N is the set
{i ∈ Z|h(i) = 0}. Note that while N is an infinite set, it has an obvious
finite representation. Now, while T is not empty repeat the following two
steps, a round:

1. Pick an t ∈ T . Find z1, z2 ∈ N so that z1 ≤ t < z2.

2. Let N = (N − {z1, z2}) ∪ {z1 + z2 − t}. Let T = T − {t}.

When T is empty, h′ defined to be 0 on N and 1 on Z − N is the unique
stable successor of h. We refer the reader to the argument for this in Moore
and Nilsson.

Moore and Nilsson suggest implementing the above algorithm directly
by maintaining the “finite part” of the set N in sorted order, and, for each
t ∈ T , do a binary search in N to find z1 and z2. Our first observation is
that this binary search can be eliminated when going through the list T in
increasing order. Indeed, we can maintain the following invariant. Between
rounds, if T = {t1 < t2 < . . . < tm}, we can maintain a partition of N into
N1 and N2 in such a way that the following properties are true:

1. All elements in N1 are smaller than each element in N2.

2. The elements z1, z2 so that z1 ≤ t1 < z2 are either

(a) The largest element of N1 and the smallest element of N2 or

(b) Both in N2.

First note that we can easily establish the invariant at the beginning of
the computation. Now given the invariant, we want to perform one round
of the algorithm of Moore and Nilsson. We should find an appropriate z1, z2

so that z1 ≤ t1 < z2. If case (a) applies, we remove t1 from T (so t2 will
be the “new” t1 in the next round), z1 from N1 and z2 from N2. Note that
z1 < z1 + z2 − t1 ≤ z2 and also note the t2 is greater than the new largest

3

element of N1 (since t1 was). Thus, if we insert z1 +z2− t1 as the new largest
element of N1 if z1 +z2−t1 ≤ t2 and we insert z1 +z2−t1 as the new smallest
element of N2 if t2 < z1 + z2 − t1, we have maintained the invariant. If case
(b) applies, we move elements from N2 to N1 until case (a) applies, reducing
it to this case. This completes the description of the algorithm.

Because of case (b), the reader may conclude that we have replaced binary
search with linear search which does not sound like such a grand idea, but
note that the size of N2 is never increased during a round. Thus, the total
cost of moving elements from N2 during the entire execution of the algorithm
is linear.

Concerning the complexity of the refined algorithm, viewed as a sequen-
tial algorithm we have to be somewhat careful about the exact model of
computation. On a log cost RAM, the unrefined algorithm of Moore and
Nilsson has complexity O(n logn) because of

1. The binary searches which cost O(logn) time each.

2. Adding and subtracting O(logn)-bit integers, each operation costing
O(logn) time.

The refined algorithm also has complexity O(n logn) in the log-cost model.
However, it is common practice to only use the log-cost time measure when
integers of bit length much bigger than the log of the input are involved
(e.g., as in case of the problem of multiplying two n-bit integers). When only
O(logn)-bit length integers are involved, the unit cost RAM model is much
more commonly used. In the unit cost RAM model, the refined algorithm has
complexity O(n) while the Moore-Nilsson version keeps having complexity
O(n logn) because of the binary searches.

More important than its sequential complexity in various RAM models is
the consequences of the refined algorithm for the parallel complexity of the
sandpile prediction problem. Indeed, we next note that the refined algorithm
can be implemented by a polynomial time, logspace Turing machine with
access to an auxiliary pushdown store (i.e., an extra “free” tape, where a
tape cell is erased when the head moves from the cell to its left neighbor).
Because of the robustness of logarithmic space, we just have to argue that
the algorithm can be implemented by a while-program using O(1) variables,
each holding an integer of O(logn) bits and an auxiliary object STACK where

4

such O(logn) bit integers can be pushed and popped. We show how each
variables in the refined algorithms can be represented using such objects.

N1 will be represented by the STACK object and a single integer vari-
able v. The invariant of the representation is the following: N1 is exactly
{. . . ,−v − 2,−v − 1,−v} ∪ {the elements in STACK} furthermore, the ele-
ments of STACK are sorted, with the largest at the top. With this repre-
sentation, we can remove the largest element from N1, and add an element
to N1 larger than the largest one. These are the only operations we need
to perform on N1 when running the refined algorithm. We can also easily
initialize the representation to the correct content in the beginning of the
refined algorithm.

N2 will be represented by three integer variables l, i and w. The invariant
of the representation is that N2 = {l} ∪ {j ≥ i|H [i] = 0} ∪ {j ∈ Z|j ≥ w}.
Here H [1..n] is the structure holding in the input, representing the map
h : {1, . . . , n} → {0, 1, 2}. With this representation, we can replace the
smallest element of N2 by another element and remove the smallest element
from N2. These are the only two operations the refined algorithm uses.

T is represented in a way similar to N2.
We have now shown that the refined algorithm for one-dimensional sand-

pile prediction can be implemented by a deterministic, polynomial time,
logspace Turing machine with access to an auxiliary pushdown store. At
the end of the algorithm, the output is contained in the representation of N1

and N2. If we are interested in the i’th bit of the output for some i, we can
find it by either inspecting the structure for N2 or the structure for N1, in the
last case popping a sufficient number of elements from the stack. Thus the
language 1SANDPILE = {〈h, i〉| the i’th bit in h∗ is 1} can be decided by a
deterministic logspace Turing machine with an auxiliary pushdown store. By
a result of Sudborough [5], this means that the language is in LOGDCFL
which, by a result of Ruzzo [4] is a subset of AC1. The functional version of
the problem, i.e. the map h→ h∗ itself is therefore computable in the same
class.

3 The lower bound

Moore and Nilsson showed P-completeness of higher-dimensional versions
of the sandpile prediction problem; here we show hardness for much lower

5

complexity classes of the one-dimensional problem. When considering P-
completeness, logspace reductions are most often used. However, these are
not meaningful for classes below L, as those classes are not closed under
logspace reductions. Here, we use a weaker notion of reductions, DLOGTIME-
uniform constant depth reductions [1]. All classes considered here are closed
under those reductions. A language π1 reduces to an language to π2 by such
reductions if we can build DLOGTIME-uniform, constant depth, polynomial
size circuit for π1, using unbounded fan-in AND-gates, unbounded fan-in
OR-gates, NEGATION-gates, and oracle-gates computing π2.

Let MAJORITY be the problem of deciding whether a string of n input
bits (n odd) have more 1’s than zeros. We shall show that MAJORITY
reduces to 1SANDPILE. Since MAJORITY is complete for TC0 by constant
depth reductions (indeed, the definition of TC0 is that it is the closure of
MAJORITY under constant depth reductions), it follows that 1SANDPILE
is hard for TC0 under constant depth reductions.

Let PARITY be the problem of deciding whether a string of n input bits
have an odd number of ones. As PARITY is in TC0, PARITY is not in AC1−ε

for any ε > 0 [2], and AC1−ε is closed under constant depth reductions, we
get the corollary that 1SANDPILE is not in AC1−ε for any constant ε > 0.

It remains to show that MAJORITY constant depth reduces to 1SAND-
PILE. We have to construct a uniform circuit for MAJORITY using un-
bounded fan-in AND gates, unbounded fan-in OR gates and 1SANDPILE
oracle-gates.

Given an input x1x2 . . . xn of the MAJORITY problem, we can assume
that n is odd. Our circuit first constructs an instance 1y11y12y13y21y22y23 . . .

yn1yn2yn3 of the sandpile problem where yi1 = xi, yi2 = 1−xi and yi3 = 2, ex-
cept for yn3 = 1 . For example, we reduce 0101011 to 1 012 102 012 102 012 101.
Applying the Moore-Nilsson algorithm, we see that this instance reduces to a
stable value with exactly one zero with an index between 1 and 3n, this index
being n+ 1 + #ones in x1x2 . . . xn. Thus, to find the majority of x1x2 . . . xn,
we just need to check if the index of the unique one in the reduced pile is
bigger than 3n/2 + 1. This is easily checked with a uniform constant depth
circuit.

6

4 Discussion and open problems

In general, to carry out the program of making formal the informal notion of
the “complexity” of a complex dynamical system by identifying “complex-
ity” with the computational complexity of the prediction problem, it seems
appropriate to use the finest scale available in the theory of computational
complexity.

We have shown a TC0 lower bound and a LOGDCFL upper bound for
the one-dimensional sandpile prediction problem. Obviously, getting tighter
bounds would be desirable. In particular, is the one-dimensional problem
hard for NC1? Is it in L or NL?

Moore and Nilsson classified the d-dimensional sandpile prediction prob-
lem as P-complete for d ≥ 3 and left open whether the 2-dimensional sandpile
prediction problem is also hard for P. We may note that the reduction used
by Moore and Nilsson to show that the 3-dimensional problem is hard for
P also establishes that the 2-dimensional problem is hard for NC1: Their
reduction is a reduction from the monotone circuit value problem and the
third dimension is only used when implementing crossovers of wires. Thus,
the monotone planar circuit value problem reduces to 2-dimensional sandpile
prediction, and this problem is hard for NC1. Getting a better lower bound
than NC1 or a better upper bound than P for the 2-dimensional sandpile
prediction problem would be most interesting.

5 Acknowledgement

I would like to thank Chris Moore for helpful discussions.

References

[1] D. A. M. Barrington, N. Immerman and H. Straubing. On uniformity
within NC1. Journal of Computer and System Sciences, 41(3):274–306.

[2] J. H̊astad. Computational Limitations of Small-Depth Circuits. ACM
doctoral dissertation award 1986. MIT Press, 1987.

7

[3] Christopher Moore and Martin Nilsson. The Computational Complexity
of Sandpiles. Journal of Statistical Physics, to appear. Also available on
http://www.santafe.edu/ moore/.

[4] W. Ruzzo. Tree-size bounded alternation. J. Comp. System Sci. 21:218-
235, 1980.

[5] I. Sudborough. On the tape complexity of deterministic context-free
languages. J. Assoc. Comp. Mach., 25:405-414, 1978.

8

Recent BRICS Report Series Publications

RS-99-3 Peter Bro Miltersen.Two Notes on the Computational Complex-
ity of One-Dimensional Sandpiles. February 1999. 8 pp.

RS-99-2 Ivan B. Damg̊ard. An Error in the Mixed Adversary Protocol by
Fitzi, Hirt and Maurer . February 1999. 4 pp.

RS-99-1 Marcin Jurdziński and Mogens Nielsen. Hereditary History
Preserving Simulation is Undecidable. January 1999. 15 pp.

RS-98-55 Andrew D. Gordon, Paul D. Hankin, and Søren B. Lassen.
Compilation and Equivalence of Imperative Objects (Revised Re-
port). December 1998. iv+75 pp. This is a revision of Technical
Report 429, University of Cambridge Computer Laboratory,
June 1997, and the earlier BRICS report RS-97-19, July 1997.
Appears in Ramesh and Sivakumar, editors,Foundations of
Software Technology and Theoretical Computer Science: 17th
Conference, FST&TCS ’97 Proceedings, LNCS 1346, 1997,
pages 74–87.

RS-98-54 Olivier Danvy and Ulrik P. Schultz. Lambda-Dropping: Trans-
forming Recursive Equations into Programs with Block Struc-
ture. December 1998. 55 pp. To appear inTheoretical Computer
Science.

RS-98-53 Julian C. Bradfield. Fixpoint Alternation: Arithmetic, Transi-
tion Systems, and the Binary Tree. December 1998. 20 pp.

RS-98-52 Josva Kleist and Davide Sangiorgi.Imperative Objects and Mo-
bile Processes. December 1998. 22 pp. Appears in Gries and
de Roever, editors,IFIP Working Conference on Programming
Concepts and Methods, PROCOMET ’98 Proceedings, 1998,
pages 285–303.

RS-98-51 Peter Krogsgaard Jensen.Automated Modeling of Real-Time
Implementation. December 1998. 9 pp. Appears inThe 13th
IEEE Conference on Automated Software Engineering, ASE ’98
Doctoral Symposium Proceedings, 1998, pages 17–20.

RS-98-50 Luca Aceto and Anna Inǵolfsdóttir. Testing Hennessy-Milner
Logic with Recursion. December 1998. 15 pp. Appears in
Thomas, editor,Foundations of Software Science and Computa-
tion Structures: Second International Conference, FoSSaCS ’99
Proceedings, LNCS 1578, 1999, pages 41–55.

