
B
R

IC
S

R
S

-99-27
D

anvy
&

S
chultz:

Transform
ing

R
ecursive

E
quations

into
P

rogram
s

w
ith

B
lock

S
tructure

BRICS
Basic Research in Computer Science

Lambda-Dropping:
Transforming Recursive Equations into
Programs with Block Structure

Olivier Danvy
Ulrik P. Schultz

BRICS Report Series RS-99-27

ISSN 0909-0878 September 1999

Copyright c© 1999, Olivier Danvy & Ulrik P. Schultz.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/27/

Lambda-Dropping:

Transforming Recursive Equations into

Programs with Block Structure ∗

Olivier Danvy
BRICS †

Department of Computer Science
University of Aarhus ‡

Ulrik P. Schultz
Compose Project

IRISA/INRIA
University of Rennes §

July 30, 1998

Abstract

Lambda-lifting a block-structured program transforms it into a set of
recursive equations. We present the symmetric transformation: lambda-
dropping. Lambda-dropping a set of recursive equations restores block
structure and lexical scope.

For lack of block structure and lexical scope, recursive equations must
carry around all the parameters that any of their callees might possibly
need. Both lambda-lifting and lambda-dropping thus require one to com-
pute Def/Use paths:

• for lambda-lifting: each of the functions occurring in the path of a
free variable is passed this variable as a parameter;

• for lambda-dropping: parameters which are used in the same scope
as their definition do not need to be passed along in their path.

A program whose blocks have no free variables is scope-insensitive. Its
blocks are then free to float (for lambda-lifting) or to sink (for lambda-
dropping) along the vertices of the scope tree.

∗To appear in TCS.
†Basic Research in Computer Science (http://www.brics.dk),
Centre of the Danish National Research Foundation.
‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
Phone: (+45) 89 42 33 69. Fax: (+45) 89 42 32 55.
E-mail: Olivier.Danvy@brics.dk

Home page: http://www.brics.dk/~danvy
§Campus Universitaire de Beaulieu, F-35042 Rennes Cedex, France.
Phone: (+33) 2 99 84 75 36. Fax: (+33) 2 99 84 71 71.
E-mail: Ulrik.Schultz@irisa.fr

Home page: http://www.irisa.fr/compose/ups

1

To summarize:

recursive equations

block
sinking

�� lambda
dropping

��

scope-insensitive program

block
floating

OO

parameter
dropping

��
block-structured program

lambda
lifting

@@

parameter
lifting

OO

Our primary application is partial evaluation. Indeed, many partial
evaluators for procedural programs operate on recursive equations. To
this end, they lambda-lift source programs in a pre-processing phase. But
often, partial evaluators [automatically] produce residual recursive equa-
tions with dozens of parameters, which most compilers do not handle
efficiently. We solve this critical problem by lambda-dropping residual
programs in a post-processing phase, which significantly improves both
their compile time and their run time.

To summarize:

source
block-structured

program

lambda-lifting //

���
�
�
�
�
�

source
recursive
equations

partial
evaluation

��
residual

block-structured
program

residual
recursive
equationslambda-dropping

oo

Lambda-lifting has been presented as an intermediate transforma-
tion in compilers for functional languages. We study lambda-lifting and
lambda-dropping per se, though lambda-dropping also has a use as an
intermediate transformation in a compiler: we noticed that lambda-drop-
ping a program corresponds to transforming it into the functional repre-
sentation of its optimal SSA form. This observation actually led us to
substantially improve our PEPM’97 presentation of lambda-dropping.

2

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Recursive equations vs. block structure 6
1.3 Lambda-lifting and lambda-dropping 8
1.4 Overview . 9

2 First-Order Programs 9
2.1 Introduction . 10

2.1.1 The basics of lambda-lifting 10
2.1.2 The basics of lambda-dropping 11

2.2 Lambda-lifting . 12
2.2.1 Characterization of lambda-lifted programs 12
2.2.2 Lambda-lifting algorithm 14
2.2.3 Example . 16

2.3 Reversing lambda-lifting . 19
2.3.1 Block sinking . 19
2.3.2 Parameter dropping . 20

2.4 Lambda-dropping . 20
2.4.1 Characterization of lambda-dropped programs 21
2.4.2 Lambda-dropping algorithm 23
2.4.3 Example (revisited) . 26

2.5 Summary . 28

3 Higher-Order Programs 28
3.1 Introduction . 28
3.2 Lambda-lifting . 29
3.3 Reversing lambda-lifting . 32
3.4 Lambda-dropping . 32
3.5 Summary . 33

4 Perspectives on Lambda-Lifting and Lambda-Dropping 33
4.1 Optimal Static Single Assignment (SSA) form 33
4.2 Optimizing compilers . 34
4.3 Peyton Jones’s dependency analysis 35
4.4 Correctness issues . 35
4.5 Time complexity . 37
4.6 Empirical study . 37

4.6.1 Issues . 37
4.6.2 Experiments . 38
4.6.3 Analysis . 40

3

5 Applications and Synergy 40
5.1 Partial evaluation . 40

5.1.1 Example: a fold function 42
5.1.2 Example: the first Futamura projection 44

5.2 Programming environment . 45
5.3 From Curry to Turing . 45
5.4 Detecting global variables . 46
5.5 Continuation-based programming 46

6 Related Work 47
6.1 Enabling principles . 48
6.2 Curried and lazy vs. uncurried and eager programs 48
6.3 Closure conversion . 48
6.4 Analogy with the CPS transformation 49
6.5 Stackability . 49
6.6 Partial evaluation . 49
6.7 Other program transformations 50

7 Conclusion and Issues 50

A Graph algorithms 52

4

List of Figures

1 Simplified syntax of first-order programs. 10
2 A simple example: lambda-lifting the power function 11
3 Specification of a parameter-lifted program. 12
4 Specification of a block-floated program. 13
5 Parameter lifting – free variables are made parameters. 15
6 Block floating – flattening of block structure. 16
7 A textbook example. 17
8 The program of Figure 7, after parameter lifting. 18
9 The program of Figure 8, after block floating. 19
10 Specification of a block-sunk program. 21
11 Specification of a parameter-dropped program. 22
12 Block sinking – re-creation of block structure. 24
13 Parameter dropping – removing parameters. 25
14 Example involving a higher-order function. 30
15 The program of Figure 14, after parameter-lifting. 30
16 The program of Figure 15, after block-floating. 31
17 Experiments with lambda-dropping. 39
18 Source program. 41
19 Specialized (lambda-lifted) version of Figure 18. 42
20 Lambda-dropped version of Figure 19. 43
21 Example imperative program. 43
22 Specialized (lambda-lifted) version of the definitional interpreter

with respect to Figure 21. 44
23 Lambda-dropped version of Figure 22. 45
24 Graph functions. 52

5

1 Introduction

1.1 Motivation

As epitomized by currying, lexical scope stands at the foundation of functional
programming. And as epitomized by Landin’s correspondence principle [28], so
does block structure. Yet block structure is not used that much in everyday
programming. For example, the standard append function is rather expressed
with recursive equations:

fun append_lifted (nil, ys)

= ys

| append_lifted (x :: xs, ys)

= x :: (append_lifted (xs, ys))

Using block structure, this definition could have been stated as follows:

fun append_dropped (xs, ys)

= let fun loop nil

= ys

| loop (x :: xs)

= x :: (loop xs)

in loop xs

end

In the first version, append lifted, the second argument is passed unchanged
during the whole traversal of the first argument, only to be used in the base
case. In the second version, append dropped, the second argument is free in the
traversal of the first argument.

This example might appear overly simple, but there are many others. Here
are three. In the standard definition of map, the mapped function is passed as
an unchanging parameter during the whole traversal of the list. A fold function
over a list passes two unchanging parameters (the folded function and the initial
value of the accumulator) during the traversal of the list. Lambda-interpreters
thread the environment through every syntactic form instead of keeping it as an
enclosing variable and making an appropriate recursive call when encountering
a binding form.

1.2 Recursive equations vs. block structure

The above examples are symptomatic of an expressiveness tension.

Parameters vs. free variables: Recursive equations suffer from a chronic
inflation of parameters. As Alan Perlis’s epigram goes, “if you have a procedure
with ten parameters, you probably missed some.” Conversely, who can read a
program with nine nested blocks and fifty free variables in the inner one? As
Turner puts it in his Miranda manual, good style means little nesting.

6

Modularity: Block structure encourages one to define auxiliary functions lo-
cally. Since they are lexically invisible, they cannot be called with non-sensical
initial values, e.g., for accumulators. Recursive equations offer no such linguistic
support: auxiliary functions must be written as extra global equations.

In practice: Programmers tend to follow Perlis’s and Turner’s advices and
stay away from extremes, adopting a partly lifted / partly dropped style. In
addition, recursive equations are often provided modularity through an explicit
module system (“scripts” in Miranda), which is a form of separate block struc-
ture.

Efficiency at compile time: We have observed that with most implementa-
tions, block-structured programs are faster to compile than the corresponding
recursive equations. This is especially true for automatically produced recursive
equations, which are often afflicted with dozens of parameters. For example, be-
cause it uses lightweight symbolic values, a partial evaluator such as Pell-Mell
tends to produce recursive equations with spectacular arities [16, 29]. Compil-
ing these residual programs de facto becomes a bottleneck because compilers
are often tuned to typical handwritten programs. For example, Chez Scheme
and Standard ML of New Jersey handle functions with few parameters better
than functions with many parameters.

Efficiency at run time: We have also observed that with most implemen-
tations, block-structured programs are faster to run than the corresponding
recursive equations. And indeed the procedure-calling conventions of several
processors handle procedures with few parameters better than procedures with
many parameters.

Simplicity of representation: Block-structured programs are more implicit
than recursive equations, which are explicitly passed all of their live variables
as actual parameters. Recursive equations are thus simpler to process.

Synthesis: There seems to be no consensus about the relative efficiencies of
block-structured programs and recursive equations. For one example, Turner
wrote against nested blocks because they are “slower to compile,” even though
block-structured programs appear to be faster to run in Miranda. For one
converse example, the system code in Caml was deliberately block-structured
to make it run faster (Xavier Leroy, personal communication to the first author,
spring 1996).

7

1.3 Lambda-lifting and lambda-dropping

Lambda-lifting and lambda-dropping resolve the programming tension between
a monolithic, block-structured style and a decentralized style of recursive equa-
tions: they transform programs expressed in either style into programs expressed
in the other one. More generally, programs that are written in a partly lifted /
partly dropped style can be completely lambda-lifted or lambda-dropped.

For example, recursive equations can be efficiently implemented on the G-
machine. This led Hughes, Johnsson, and Peyton Jones, in the mid 80’s,
to devise lambda-lifting as a meaning-preserving transformation from block-
structured programs to recursive equations [21, 23, 34].

Recursive equations also offer a convenient format in Mix-style partial eval-
uation [26]. Indeed, modern partial evaluators such as Schism and Similix
lambda-lift source programs before specialization [9, 11].

source
block-structured

program

lambda-lifting //
source

recursive
equations

partial
evaluation

��
residual
recursive
equations

As a result, residual programs are also expressed as recursive equations. If
partial evaluation is to be seen as a source-to-source program transformation,
however, residual programs should be block structured. To this end, we de-
vised lambda-dropping: the transformation of recursive equations into block-
structured and lexically scoped programs.

source
block-structured

program

lambda-lifting //
source

recursive
equations

partial
evaluation

��
residual

block-structured
program

residual
recursive
equationslambda-dropping

oo

8

The anatomy of lambda-lifting and lambda-dropping: We present lamb-
da-lifting and lambda-dropping in a symmetric way, using four transformations:
parameter-lifting, block-floating, block-sinking and parameter-dropping.

scope-insensitive
recursive equations

block
sinking

��
lambda

dropping

��

scope-insensitive
block-structured program

block
floating

OO

parameter
dropping

��
scope-sensitive

block-structured program

lambda
lifting

BB

parameter
lifting

OO

Parameter lifting makes a program scope-insensitive by passing extra variables
to each function to account for variables occurring free further down the call
path. Block floating eliminates block structure by globalizing each block, mak-
ing each of its locally defined functions a global recursive equation. Block sinking
restores block structure by localizing (strongly connected) groups of equations
in the call graph. Parameter dropping exploits scope by not passing variables
whose end use occurs in the scope of their initial definition.

1.4 Overview

The rest of this article is organized as follows. Section 2 addresses first-order
programs. Section 3 generalizes the transformations to higher-order programs.
Section 4 puts lambda-lifting and lambda-dropping into perspective, and Section
5 lists some applications. Section 6 reviews related work and Section 7 concludes.

Conventions and notations: Throughout, we assume variable hygiene, i.e.,
that no name clashes can occur. Also, we refer to letrec expressions as “blocks.”

2 First-Order Programs

Section 2.1 provides a roadmap of lambda-lifting and lambda-dropping: we
first review the two steps of lambda-lifting (Section 2.1.1) and the two steps
of lambda-dropping (Section 2.1.2). Section 2.2 specifies lambda-lifting and
illustrates it with an example. Section 2.3 outlines how to reverse lambda-
lifting. Section 2.4 specifies lambda-dropping and illustrates it by revisiting the
example of Section 2.2. Section 2.5 summarizes.

9

p ∈ Program ::= {d1, . . . , dm}
d ∈ Def ::= f ≡ λ(v1, ..., vn).e

e, e ∈ Exp ::= `
| v
| f (e1, ..., en)
| LetRec {d1, . . . , dk} e0 where k > 0

` ∈ Literal
v, v ∈ Variable
f ∈ FunctionName ∪ PredefinedFunction

Figure 1: Simplified syntax of first-order programs.

2.1 Introduction

Our first-order programs conform to the syntax of Figure 1. To simplify the pre-
sentation, we leave out conditional expressions and (non-recursive) let blocks.
A program is represented as a set of functions. Each function may define lo-
cal functions in blocks. Function names can only occur in function position.
Applications involve either named functions or predefined operators (arithmetic
and the like). The predefined operators have no influence on the correctness
of our definitions and algorithms, and are included for use in examples only.
Also, for the purpose of program transformations, some expressions and formal
arguments are marked with a horizontal line. To make the informal descriptions
more concise, we sometimes refer to the set of global functions as a “block.” We
use FV to denote the set of free variables declared as formal parameters, and
FF to denote the set of free variables declared as function names.

2.1.1 The basics of lambda-lifting

Lambda-lifting is achieved by applying the following two transformations to a
block-structured program:

1. Parameter lifting. The list of formal parameters of each lambda-abstrac-
tion is expanded with the free variables of the lambda, and likewise for
the list of arguments at each application site, with the same variables.

2. Block floating. Local functions in a block are moved to the enclosing scope
level whenever they do not use locally defined functions and do not refer
to local free variables.

Example: the power function. To illustrate lambda-lifting, we use the
block-structured definition of the power function shown in Figure 2(a). The

10

(a) The power function:

(define power

(lambda (n e)

(letrec ([loop (lambda (x)

(if (zero? x)

1

(* n (loop (1- x)))))])

(loop n))))

(b) The lambda-lifted power function:

(define power

(lambda (n e)

(loop e n)))

(define loop

(lambda (n0 x)

(if (zero? x)

1

(* n0 (loop n0 (1- x))))))

Figure 2: A simple example: lambda-lifting the power function

variable n is free in the local definition of loop. Parameter lifting replaces this
free variable by a new formal parameter to loop named n0 (to preserve variable
hygiene), and passes n or n0 as appropriate in each call to loop. The function
loop no longer has any free variables. Block floating moves the loop function
outwards, making it a global function. In Figure 2(b), the two resulting global
functions have no block structure: they are recursive equations.

2.1.2 The basics of lambda-dropping

Symmetrically to lambda-lifting, lambda-dropping is achieved by applying the
following two transformations to a set of recursive equations:

1. Block sinking. Any set of functions that is referenced by a single function
only is made local to this function. This is achieved by moving the set
inside the definition of the function.

11

`Def
PL d1 ... `Def

PL dm

`PL {d1, ..., dm}
{v1, ..., vn} `Exp

PL e

`Def
PL f ≡ λ(v1, ..., vn).e

P `Exp
PL `

v ∈ P
P `Exp

PL v

P `Exp
PL e1 ... P `Exp

PL en

P `Exp
PL f (e1, ..., en)

`Def
PL d1 ... `Def

PL dk P `Exp
PL e0

P `Exp
PL LetRec {d1, ..., dk} e0

Figure 3: Specification of a parameter-lifted program.

2. Parameter dropping. A function with a formal parameter that is bound
to the same variable in every invocation can potentially be parameter-
dropped. If the variable is lexically visible at the definition site of the
function, the formal parameter can actually be dropped. A formal param-
eter is dropped from a function by removing the formal parameter from
the parameter list, removing the corresponding argument from all invo-
cations of the function, and substituting the name of the variable for the
name of the formal parameter throughout the body of the function.

Example: the power function, revisited. To illustrate lambda-dropping,
we use the recursive equations of the power function shown in Figure 2(b). The
function loop is used only by the function power. Block sinking inserts a block
defining loop into the body of power, removing the global definition of loop. The
now local function loop has an unchanging formal parameter n0 that is bound in
every invocation to the value of the formal parameter n of the enclosing function
power. Parameter dropping removes n0 as a formal parameter and replaces each
use of it with n. The result is the program of Figure 2(a).

2.2 Lambda-lifting

We now provide a detailed description of lambda-lifting. Lambda-lifting simpli-
fies program structure first by lifting free variables into formal parameters and
then by floating local functions outwards to make them global.

2.2.1 Characterization of lambda-lifted programs

We define a lambda-lifted program as a program that has been both “parameter
lifted” and “block floated.”

12

`Def
BF d1 ... `Def

BF dm

`BF {d1, ..., dm}
{v1, ..., vn} `Exp

BF e

`Def
BF f ≡ λ(v1, ..., vn).e

P `Exp
BF ` P `Exp

BF v

P `Exp
BF e1 ... P `Exp

BF en

P `Exp
BF f (e1, ..., en)

`Def
BF d1 ... `Def

BF dk P `Exp
BF e0

P `Exp
BF LetRec {d1, ..., dk} e0

if for each strongly connected com-
ponent C in the call graph of
{d1, ..., dm}, FV(C) ∩ P 6= ∅ or C
dominates a strongly connected com-
ponent C′ such that FV(C′)∩P 6= ∅.

Figure 4: Specification of a block-floated program.

Parameter-lifted programs: A block-structured program is completely par-
ameter-lifted if none of its functions has any free variables. Thus, all free vari-
ables occurring in the body of any function must be declared as formal param-
eters of this function. Figure 3 formally defines parameter-lifted programs. A
program p is parameter-lifted whenever the judgment

`PL p

is satisfied. A declaration d is parameter-lifted whenever the judgment

`Def
PL d

is satisfied. And an expression e whose closest enclosing formal parameters are
denoted by P is parameter-lifted whenever the judgment

P `Exp
PL e

is satisfied.

Block-floated programs: A block-structured program is completely block-
floated when each function f either is global or contains free variables (defined
by an enclosing function) or free functions (defined in the same block) such that
it cannot float to an enclosing block. Figure 4 formally defines block-floated
programs. A program p is block-floated whenever the judgment

`BF p

is satisfied. A declaration d is block-floated whenever the judgment

`Def
BF d

13

is satisfied. And an expression e whose closest enclosing formal parameters are
denoted by P is block-floated whenever the judgment

P `Exp
BF e

is satisfied. The key to Figure 4 is the side condition for blocks: based on the
observation that mutually recursive functions should float together, we parti-
tion the definition {d1, ..., dk} into strongly connected components of their call
graph. Such strongly connected components cannot float above the enclosing
abstraction f ≡ λ(v1, ..., vn).e if they dominate a strongly connected compo-
nent (possibly themselves) where at least one vi occurs free. (Reminder: in a
graph with root r, a node a dominates a node b if all paths from r to b go
through a.) For example, in the lambda-abstraction

λ(x). letrec f = λ().x
g = λ().f()

in ...

f cannot float because x occurs free in its definition and g cannot float because
it refers to f . (g dominates f in the call graph.)

If the source program is parameter-lifted, then a block-floated program de-
generates to recursive equations.

2.2.2 Lambda-lifting algorithm

We consider Johnsson’s algorithm, which first performs parameter lifting and
then performs block floating [4, 23, 24].

Figure 5 describes the parameter-lifting part of Johnsson’s algorithm. To
parameter-lift a program, all free variables of a function must be explicitly
passed as parameters to this function. Thus, all callers of the function must be
provided with these variables as additional arguments. The algorithm traverses
the program while building a set of solutions. A solution associates each function
with the minimal set of additional variables it needs to be passed as arguments.
Each block gives rise to a collection of set equations that describe which variables
should be passed as arguments to the functions defined by the block. The
equations are mutually recursive for mutually recursive functions, and they are
thus solved by fixed-point iteration. The set of solutions is extended with the
solution of the set equations, and is then used to analyze the body of the block
and the body of each local function.

Figure 6 describes the block-floating part of Johnsson’s algorithm. In the
general case, the floating of functions outwards through the block-structure is
constrained by the scope of formal parameters and function names. However,
a parameter-lifted program is scope-insensitive, meaning that no function de-
pends on being defined within the scope of the formal parameters of some other
function. Furthermore, a global function is visible to all other global functions,

14

parameterLiftProgram :: Program→ Program
parameterLiftProgram p = map (parameterLiftDef ∅) p

parameterLiftDef :: Set(FunName,Set(Variable))→ Def→ Def
parameterLiftDef S (f ≡ λ(v1, ..., vn).e) =

applySolutionToDef S (f ≡ λ(v1, ..., vn).(parameterLiftExp S e))

parameterLiftExp :: Set(FunName,Set(Variable))→ Exp→ Exp
parameterLiftExp S (`) = `
parameterLiftExp S (v) = v
parameterLiftExp S (f (e1, ..., en)) =

applySolutionToExp S (f (map parameterLiftExp (e1, ..., en)))
parameterLiftExp S (LetRec {d1, ..., dk} e0) =

foreach (fi ≡ li) ∈ {d1, ..., dk} do
Vfi := FV(fi ≡ li);
Ffi := FF(fi ≡ li)

foreach Ffi ∈ {Ff1 , . . . , Ffk} do
foreach (g, Vg) ∈ S such that g ∈ Ffi do

Vfi := Vfi ∪ Vg;
Ffi := Ffi\{g}

fixpoint over {Vf1 , . . . , Vfk} by
foreach Ffi ∈ {Ff1 , . . . , Ffk} do

foreach g ∈ Ffi do
Vfi := Vfi ∪ Vg

let S′ = S ∪ {(f1, Vf1), . . . , (fk, Vfk)}
fs = map (parameterLiftDef S′) {d1, . . . , dk}
e′0 = parameterLiftExp S′ e0

in (LetRec fs e
′
0)

applySolutionToDef :: Set(FunName,Set(Variable))→ Def→ Def
applySolutionToDef {. . . , (f, {v1, ..., vn}), . . .} (f ≡ λ(v′1, ..., v′n).e) =

(f ≡ λ(v1, ..., vn, v
′
1, ..., v′n).e)

applySolutionToDef S d = d

applySolutionToExp :: Set(FunName,Set(Variable))→ Exp→ Exp
applySolutionToExp {. . . , (f, {v1, ..., vn}), . . .} (f (e1, ..., en)) =

(f (v1, ..., vn, e1, ..., en))
applySolutionToExp S e = e

Figure 5: Parameter lifting – free variables are made parameters.

15

blockFloatProgram :: Program→ Program
blockFloatProgram p = foldr makeUnion ∅ (map blockFloatDef p)

blockFloatDef :: Def→ (Set(Def),Def)
blockFloatDef (f ≡ λ(v1, ..., vn).e) = let (Fnew,e′) = blockFloatExp e

in (Fnew, f ≡ λ(v1, ..., vn).e′)

blockFloatExp :: Exp→ (Set(Def),Exp)
blockFloatExp (`) = (∅, `)
blockFloatExp (v) = (∅, v)
blockFloatExp (f (e1, ..., en)) = let x = map blockFloatExp (e1, ..., en)

Fnew= foldr (∪) ∅ (map fst x)
(e′1, ..., e′n) = map snd x

in (Fnew,f (e′1, ..., e′n))
blockFloatExp (LetRec {d1, ..., dk} e0) =

let x = map blockFloatDef {d1, ..., dk}
b = blockFloatExp e0

Fnew = foldr makeUnion ∅ x
in (Fnew ∪ (fst b), snd b)

makeUnion :: (Set(Def),Def)→ Set(Def)→ Set(Def)
makeUnion (Fnew, d) S = Fnew ∪ {d} ∪ S

Figure 6: Block floating – flattening of block structure.

so references to function names are trivially resolved. Programs are parameter-
lifted before block-floating, and all functions can be declared as global, so a
very simple algorithm can be used for block-floating: the program is merely
traversed, all local functions are collected and all blocks are replaced by their
bodies. The collected function definitions are then appended to the program as
global functions. The resulting program can simply be characterized as having
no local blocks.

Other styles and implementations of lambda-lifting exist. We review them
in Section 6.2.

2.2.3 Example

Figure 7 displays a textbook example that Andrew Appel borrowed from the
Static Single Assignment (SSA) community to make his point that SSA is func-
tional programming [3, Chapter 19]. In this example, two mutually recursive

16

(define main

(lambda (i1 j1 k1)

(letrec ([f2 (lambda (j2 k2)

(if (< k2 100)

(letrec ([f7 (lambda (j4 k4)

(f2 j4 k4))])

(if (< j2 20)

(f7 i1 (+ k2 1))

(f7 k2 (+ k2 1))))

j2))])

(f2 j1 k1))))

;(main 1 1 0)

Figure 7: A textbook example.

functions, f2 and f7, are located in a global function, main. The formal param-
eter i1 is free in the bodies of f2 and f7.

In this section, we describe the process of lambda-lifting this program ac-
cording to the algorithms of Figures 5 and 6.

Parameter lifting: The parameter-lifting algorithm of Figure 5 is used on the
example program of Figure 7 by applying the function “parameterLiftProgram”
to the function main:

parameterLiftProgram {(define main ...)}: We apply “parameterLiftDef” to
main, with an empty set of solutions.

parameterLiftDef ∅ (define main ...): We descend recursively into the body
of the function.

parameterLiftExp ∅ (letrec ([f2 ...]) ...): We create two sets Vf2 = {i1}
and Ff2 = ∅, which remain unchanged through the first fixed-point it-
eration. We extend the empty set of solutions with (f2, {i1}) and then
continue recursively on f2 and the body of the letrec.

parameterLiftDef S [f2 (lambda (j2 k2) ...)]: The set of solutions S = {(f2,
{i1})} directs us to extend the list of formal parameters of f2 to (i1 j2

k2). We continue recursively on the body of the function.

parameterLiftExp S (letrec ([f7 ...]) ...): We create two sets Vf7 = ∅ and
Ff7 = {f2}, and since f2 is described in the set of solutions S = (f2, {i1}),
we extend Vf7 accordingly to Vf7 = {i1}. The set remains unchanged

17

(define main

(lambda (i1 j1 k1)

(letrec ([f2 (lambda (x1 j2 k2)

(if (< k2 100)

(letrec ([f7 (lambda (y1 j4 k4)

(f2 y1 j4 k4))])

(if (< j2 20)

(f7 x1 x1 (+ k2 1))

(f7 x1 k2 (+ k2 1))))

j2))])

(f2 i1 j1 k1))))

;(main 1 1 0)

Figure 8: The program of Figure 7, after parameter lifting.

through the first fixed-point iteration. We extend the set of solutions with
(f7, {i1}). We continue recursively on f7 and the body of the letrec.

parameterLiftDef S [f7 (lambda (j4 k4) ...)]: The set of solutions S = {(f7,
{i1}), ...} directs us to extend the list of formal parameters of f7 to (i1

j4 k4). We continue recursively on the body of the function.

parameterLiftExp S (f2 j4 k4): The set of solutions S = {(f2, {i1}), ...} di-
rects us to insert i1 as the first argument of f2.

parameterLiftExp S (f7 i1 (...)): The set of solutions S = {(f7, {i1}), ...}
directs us to insert i1 as the first argument of f7.

parameterLiftExp S (f7 k2 (...)): The set of solutions S = {(f7, {i1}), ...}
directs us to insert i1 as the first argument of f7.

parameterLiftExp S (f2 j1 k1): The set of solutions S = {(f2, {i1}), ...} di-
rects us to insert i1 as the first argument of f2.

The result, after alpha-renaming to ensure variable hygiene, is displayed in
Figure 8.

Block floating: The block-floating algorithm of Figure 6 is used on the scope-
insensitive program of Figure 8 by applying the function “blockFloatProgram”
to the function main. This function traverses the program, gathering local defi-
nitions and removing blocks. The result is displayed in Figure 9.

18

(define main

(lambda (i1 j1 k1)

(f2 i1 j1 k1)))

(define f2

(lambda (x1 j2 k2)

(if (< k2 100)

(if (< j2 20)

(f7 x1 x1 (+ k2 1))

(f7 x1 k2 (+ k2 1)))

j2)))

(define f7

(lambda (y1 j4 k4)

(f2 y1 j4 k4)))

;(main 1 1 0)

Figure 9: The program of Figure 8, after block floating.

2.3 Reversing lambda-lifting

As described in Section 2.2, lambda-lifting first makes functions scope-insensi-
tive, by expanding their list of formal parameters, and then proceeds to make all
functions global through block-floating. To reverse lambda-lifting, we can make
the appropriate global functions local, and then make them scope-sensitive by
reducing their list of formal parameters. (Reminder: In our simplified syntax,
we always generate letrec blocks, even when a let block would suffice.)

Localizing a function in a block moves it into the context where it is used.
Once a function is localized, it is no longer visible outside the block. In the
abstract-syntax tree, localization thus stops at the closest common context of
all the uses. Going any further would entail code duplication.

2.3.1 Block sinking

To reverse the effect of lambda-lifting, let us examine the program of Figure 9,
which was lambda-lifted in Section 2.2.3. The main function of the program is
main. The two other functions are used only by main, and are thus localizable to
main. We replace the body of main with a block declaring these functions and
having the original body of main as its body.

define main = letrec f2 = ...

f7 = ...

in ...

19

We can see that the body of f2 refers to the function f7. The function main,
however, does not use f7. Therefore it makes sense to localize f7 to f2.

define r = letrec f2 = letrec f7 = ...

in ...

in ...

The functions of the program cannot be localized any further. The block struc-
ture of this program is identical to that of the original (of Figure 7). In Sec-
tion 1.2, we made the point that one tends to write partly lifted / partly dropped
programs in practice. In such cases, lambda-dropping a program would create
more block structure than was in the original program. We discuss efficiency
issues in Section 4.6.

2.3.2 Parameter dropping

To reverse the parameter lifting performed during lambda-lifting, we need to
determine the origin of each formal parameter. The mutually recursive functions
f2 and f7 both pass the variables x1 and y1 to each other, as their first formal
parameter. These formal parameters always correspond to the variable i1 of
main. Since i1 is now visible where the two functions are declared, there is no
need to pass it around as a parameter. We can simply remove the first formal
parameter from the declaration of both functions and refrain from passing it as
argument at each application site. As for the other formal parameters, they are
bound to different arguments at certain application sites, and thus they are not
candidates for parameter dropping.

Figure 7 displays the final result of our reversal process, which is also the
program we started with to illustrate lambda-lifting. If this program had con-
tained parameter-droppable formal parameters to start with, then the functions
of our final program would have had fewer formal parameters.

2.4 Lambda-dropping

We now specify lambda-dropping more formally. Lambda-dropping a program
minimizes parameter passing, and serves in principle as an inverse of lambda-
lifting. Function definitions are localized maximally using lexically scoped block
structure. Parameters made redundant by the newly created scope are elimi-
nated.

This section makes extensive use of graphs. The graph functions are de-
scribed in the appendix, in Figure 24. In particular, the dominator tree of a
graph is computed for both stages. (Reminder: in the dominator tree of a graph,
a node a precedes a node b if a dominates b in the graph.)

20

`Def
BS d1 ... `Def

BS dm

`BS {d1, ..., dm}
if in the call graph of {d1, ..., dm} for
a given root, no function dominates any
other function.

{v1, ..., vn} `Exp
BS e

`Def
BS f ≡ λ(v1, ..., vn).e

P `Exp
BS ` P `Exp

BS v

P `Exp
BS e1 ... P `Exp

BS en

P `Exp
BS f (e1, ..., en)

`Def
BS d1 ... `Def

BS dk P `Exp
BS e0

P `Exp
BS LetRec {d1, ..., dk} e0

if in the call graph of {d1, ..., dk} rooted
in e0, no function dominates any other
function.

Figure 10: Specification of a block-sunk program.

2.4.1 Characterization of lambda-dropped programs

We define a lambda-dropped program as a program that has been both “block
sunk” and “parameter dropped.”

Block-sunk programs: A block-structured program is completely block sunk
when no function can be sunk into some definition in which it is used. A function
that is used by at least two other functions from the same block cannot by itself
be sunk into either function. Likewise, a group of mutually recursive functions
that are used by at least two other functions from the same block, cannot be
sunk into either function. In addition, no function that is used in the body of a
block can be sunk into a function defined in this block.

Figure 10 formally defines block-sunk programs. A program p is block-sunk
whenever the judgment

`BS p

is satisfied. A declaration d is block-sunk whenever the judgment

`Def
BS d

is satisfied. And an expression e whose closest enclosing formal parameters are
denoted by P is block-sunk whenever the judgment

P `Exp
BS e

is satisfied.

21

∅, G `Def
PD d1 ... ∅, G `Def

PD dm

`PD {d1, ..., dm}
where G is the flow graph of
{d1, ..., dm}, given some root.

S ∪ {v1, ..., vn}, G `Exp
PD e

S,G `Def
PD f ≡ λ(v1, ..., vn).e S,G `Exp

PD `

S,G `Exp
PD v

S,G `Exp
PD e1 ... S,G `Exp

PD en

S,G `Exp
PD f (e1, ..., en)

S,G `Def
PD d1 ... S,G `Def

PD dk S,G `Exp
PD e0

S,G `Exp
PD LetRec {d1, ..., dk} e0

∀di = f ≡ λ(v1, ..., vn).e,
v ∈ {v1, ..., vn}, and
gw vertex of G,
if gw dominates fv
then w 6∈ S, i.e.,
w is not lexically visible.

Figure 11: Specification of a parameter-dropped program.

Parameter-dropped programs: A block-structured program is completely
parameter-dropped when no variable whose scope extends into a function def-
inition is passed as a parameter as well in all invocations of this function. In
the flow graph of the program, a formal parameter that dominates some other
formal parameter occurs in every path from the root to this formal parameter.
Thus, a program is completely parameter-dropped when no formal parameter
that dominates a formal parameter of some other function is visible to this
function.

Figure 11 formally defines parameter-dropped programs. A program p is
parameter-dropped whenever the judgment

`PD p

is satisfied. Let G denote its flow graph for some given root. A declaration
d occurring in the scope of the variables contained in the set S is parameter-
dropped whenever the judgment

S,G `Def
PD d

is satisfied. And an expression e occurring in the scope of the variables contained
in the set S is parameter-dropped whenever the judgment

S,G `Exp
PD e

is satisfied.

22

2.4.2 Lambda-dropping algorithm

The lambda-dropping algorithm works on any kind of program, but is perhaps
most easily understood as operating on lambda-lifted programs. It is composed
of two stages, block sinking and parameter dropping.

Figure 12 describes the block-sinking part of lambda-dropping. Two entry
points are provided. The first retains the “main” function and any unused
functions as global functions, and the other allows the caller to specify a set
of functions to retain as global rather than the default “main” function. To
block-sink a program, any set of functions that are used solely within some
other function must be moved into a block local to this function. We use a call
graph to describe the dependencies between the functions of the program. A
function f that calls some other function g depends on g. A function g that is
dominated by some other function f in the call graph can only be called from
the definition of f .

The dominator tree of the call graph is thus a tree that induces a new block
structure into the program. In the new program, each function is declared
locally to its predecessor.

Figure 13 describes the parameter-dropping part of lambda-dropping. We
use the notation fx to indicate the formal parameter x of the function f , as
explained in the appendix. To parameter-drop a program, any formal parameter
of a function that in every invocation of the function is bound to a variable whose
scope extends to the declaration of the function, is considered redundant and
can be removed. If in the flow graph of the program a formal parameter w of a
function g is dominated by some other formal parameter v of a function f , then
w will always denote the value of v. If the scope of v extends to the declaration
of g, then w can be removed and v can be substituted for w throughout the
body of g.

Several formal parameters {v1, ..., vn} (where vi of fi dominates vi+1 of fi+1)
may dominate the parameter-droppable formal parameter w of g. Let vj of the
function fj be the first node in this list whose scope extends to the declaration
of g, meaning that g is declared within fj. Every function whose parameters are
dominated by vj is declared within fj , since they could not otherwise invoke the
function g. The scope of vj thus extends to all the declarations it dominates,
and thereby makes redundant the formal parameters that it dominates. Thus,
the algorithm need only parameter-drop the first parameter vj , since this will
have the same effect as iteratively dropping all of the variables {vj , . . . , vn}.

For simplicity, we have defined lambda-dropping over recursive equations. In
general, however, lambda-dropping and thus block-sinking can be given block-
structured programs to increase their nesting.

23

blockSinkProgram :: Program→ Program
blockSinkProgram p = blockSinkProgram2 p {main}

blockSinkProgram2 :: Program→ Set(FunName)→ Program
blockSinkProgram2 p globalFns =

let buildCallGraph :: ()→ (Graph(Def),Def)
buildCallGraph () =

let (G as (V,E)) = ref (∅, ∅)
root = Graph.addNode G “root”

in foreach ((d as (f ≡ l)) ∈ p) do
foreach f ′ ∈ (FF(d)\{f}) do

let (d′ as (f ′ ≡ l′)) ∈ p in Graph.addEdge G (d, d′)
foreach f ∈ globalFns do

let (d as (f ≡ l)) ∈ p in Graph.addEdge G (root, d)
foreach d ∈ V do

if (∀d′ ∈ V : (d′, d) 6∈ E) then Graph.addEdge G (root, d)
(G, root)

buildProgram :: (Graph(Def),Def)→ Program
buildProgram (G as (V,E), root) =

let succ :: Def→ Set(Def)
succ d = {d′ ∈ V |(d, d′) ∈ E}
build :: Def→ Def
build (d as f ≡ λ(v1, ..., vn).e) =

let S = map build (succ d)
in if S = ∅

then d
else (f ≡ λ(v1, ..., vn).(LetRecS e))

in map build (succ root)
in buildProgram (Graph.findDominators (buildCallGraph ()))

Figure 12: Block sinking – re-creation of block structure.

24

parameterDropProgram :: Program → Program
parameterDropProgram p =

let (G as (V,E), r) = Graph.findDominators (Graph.flowGraph p)
processGlobalDef :: Def→ Def
processGlobalDef = removeMarkedPartsDef

◦ (markArgumentsDef ∅)
◦ (markFormalsDef ∅)

markFormalsDef :: Set(Variable)→ Def→ Def
markFormalsDef S (f ≡ λ(v1, ..., vn).e) =

let markFormalsExp :: Set(Variable)→ Exp→ Exp
markFormalsExp S e =

. . . descend recursively, calling markFormalsDef on definitions. . .

mark :: Variable→ (Exp, List(Variable))→ (Exp, List(Variable))
mark v (e, s) =

if ∃gw ∈ V : (Graph.isPath G gw fv) ∧ w ∈ S
∧((r, gw) ∈ E ∨ ∃hx ∈ V : (hx, gw) ∈ E ∧ x 6∈ S)

then (e[v/w], v :: s)
else (e, v :: s)

(e′, s′) = foldr mark (e, []) (v1, ..., vn)
in (f ≡ λs′.(markFormalsExp (S ∪ {v1, ..., vn}) e′))

markArgumentsDef :: Set(Def)→ Def→ Def
markArgumentsDef S (f ≡ λ(v1, ..., vn).e) =

let markArgumentsExp :: Set(Def)→ Exp→ Exp
markArgumentsExp S (`) = `

markArgumentsExp S (v) = v

markArgumentsExp S (f (e1, ..., en)) =
let (f ≡ λ(v1, ..., vn).e) ∈ S

mark :: (Variable,Exp)→ Exp
mark (v , e) = e

mark (v, e) = markArgumentsExp S e

in (f (map mark (zip (v1, ..., vn) (e1, ..., en))))
markArgumentsExp S (LetRecB e) =

LetRec {map (markArgumentsDef (S ∪B)) B}
(markArgumentsExp (S ∪B) e)

body = markArgumentsExp (S ∪ {f ≡ λ(v1, ..., vn).e}) e
in (f ≡ λ(v1, ..., vn).body)

removeMarkedPartsDef :: Def→Def
removeMarkedPartsDef d =

. . . descend recursively, removing all marked parts of the definition . . .

in map processGlobalDef p

Figure 13: Parameter dropping – removing parameters.

25

2.4.3 Example (revisited)

In Section 2.2.3, we demonstrated how the program of Figure 7 was lambda-
lifted, resulting in the program displayed in Figure 9. Let us lambda-drop this
program according to the algorithms of Figures 12 and 13.

Block sinking

The block-sinking algorithm of Figure 12 is used on the program of Figure 9
by applying the function “blockSinkProgram” to the set of global functions.
Applying “buildCallGraph” builds the call graph of the program:

“root” // main // f2 --
f7mm

It is straightforward to compute the dominator tree of this graph:

“root” // main // f2 // f7

The function “buildProgram” builds a new program by invoking “build” on
main. This creates the definition of main with its successor f2 as a local function.
Likewise, the function f2 is created with f7 as a local function. The result is
the program of Figure 8.

Parameter dropping

The parameter-dropping algorithm of Figure 13 is used on the scope-insensitive
program of Figure 8 by applying the function “parameterDropProgram” to the
function main. The function first builds the flow graph of the program:

“root”

yytttttttttt

�� %%JJJJJJJJJJ

��

maini1

��

mainj1

��

maink1

��
f2x1

 $$JJJJJJJJJ
f2j2 f2k2

zzttttttttt

f7y1

MM

f7j4

OO

f7k4

OO

(Reminder: the notation fx indicates the formal parameter x of the function
f .) The dominator tree of this graph is:

26

“root”

yytttttttttt

�� %%JJJJJJJJJJ

��7777777777777777

��////////////////////////

��

��

maini1

��

mainj1 maink1

f2x1

��

f2j2 f2k2

f7y1 f7j4 f7k4

The dominator tree reveals that the only parameter that is passed to other
functions on every invocation is i1, which may be bound to x1 and y1. All other
parameters are direct successors of the root node, meaning that they are bound
to different variables at their application sites.

The function “processGlobalDef” is invoked on a global function, and pro-
ceeds in three stages, first marking formals for removal, then the corresponding
arguments, and finally removing them. The function “markFormalsDef” is used
to traverse the program and mark those formal parameters that can be parame-
ter dropped. The traversal over expressions is trivial, serving only to process all
function definitions. Invoking “markFormalsDef” on a function whose formal
parameters are dominated only by the root node always works as an identity
function, since these variables cannot have been made redundant by other vari-
ables. For this reason, we only describe the invocations of this function on those
functions whose formal parameters have a predecessor that is not the root node:

markFormalsDef [f2 (lambda (x1 j2 k2) ...)]: Each formal parameter is pro-
cessed in turn, using the “mark” function. The formal parameter x1 is
dominated by the formal parameter i1, which is in the set S of visible
formal parameters. Since (i1, x1) is an edge in the dominator tree, x1 is
replaced by x1 and i1 is substituted for x1 throughout the body of f2.
The other two variables are dominated only by the root node and are thus
of no interest.

markFormalsDef [f7 (lambda (y1 j2 k2) ...)]: Again, each formal parameter
is processed in turn, using the “mark” function. The formal parameter y1
is dominated by the formal parameters i1 and x1, both of which are in
the set S of visible formal parameters. However, the variable i1 is a direct
successor of the root, so it will be used as a replacement. The variable y1

is replaced by y1 and i1 is substituted for y1 throughout the body of f7.
Again, the other two variables are dominated only by the root node, and
are thus of no interest.

27

The function “markArgumentsDef” is used to traverse the program and
mark those arguments of functions that correspond to formal parameters that
were marked as removable. Thus, the first argument of f2 and f7 is removed
in all invocations. Finally, the function “removeMarkedPartsDef” is used to
remove all marked parts of the program, both as formal parameters and as
actual parameters. The result is the program of Figure 7.

2.5 Summary

Lambda-lifting of first-order programs is composed of two stages, parameter-
lifting and block-floating. Parameter-lifting extends the formal parameters of
each function definition, binding all local variables through applications to these
variables. The resulting program is scope insensitive. Block-floating then moves
its local functions to the outermost level, making them global recursive equa-
tions.

Symmetrically, lambda-dropping of first-order programs is also composed of
two stages, parameter-dropping and block-sinking. Block-sinking moves global
functions that only are used within the body of some other function into this
function. Parameter-dropping then removes redundant formal parameters from
each function definition and the corresponding actual parameters from each
function application.

3 Higher-Order Programs

This section provides a simple generalization of lambda-lifting and lambda-
dropping to higher-order programs, along the same lines as Section 2.

3.1 Introduction

Higher-order programs can be lambda-lifted without considering the applica-
tions of higher-order functions that have been passed as parameters. Similarly,
higher-order programs can be lambda-dropped while only considering the first-
order function applications. As illustrated in Section 5.3, going further would
require a control-flow analysis [40, 43]. Introducing higher-order functions into
our language thus only entails slight changes to the specifications and algorithms
for lambda-lifting and lambda-dropping.

For higher-order programs, we generalize the syntax of Figure 1 by allow-
ing functions to appear as arguments and variables to be applied as functions.
We consider curried functions as a whole, rather than as a sequence of nested
functions. Anonymous functions can be explicitly named and thus uniformly
represented in the generalized syntax.

28

3.2 Lambda-lifting

The specification of lambda-lifting (Figures 3 and 4) requires only trivial changes.
A higher-order program is completely parameter-lifted when no functions have
any free variables. A higher-order program is completely block-floated when its
functions cannot be moved further out through the block structure.

To parameter-lift a higher-order program, an algorithm almost identical to
that for first-order programs can be used. In first-order and higher-order pro-
grams alike, functions may have free variables. However, in a higher-order pro-
gram, a function may be passed as an argument, and applied elsewhere under
a different name. While this seemingly poses problems because we cannot ex-
pand the application of each function with its free variables, having higher-order
functions does enable us to create curried functions. The approach is thus to
curry each function that has free variables, making the free variables the formal
parameters on the newly introduced lambda. We thus rewrite a function f with
free variables {v′1, ..., v′n} as follows:

f ≡ λ(v1, ..., vn).e ⇒ f ≡ λ(v′1, ..., v′n).λ(v1, ..., vn).e

Similarly, each occurrence of the function name is replaced by an application to
its free variables. For the function f :

f ⇒ (f (v′1, ..., v′n))

Using this technique, parameter lifting can be performed with a slightly modified
version of the existing algorithm. The only difference lies in the way that the
function definition is expanded with its free variables and that the occurrences
of the function application to be expanded with its free variables may be in any
expression.

To block-float a scope-insensitive higher-order program, exactly the same al-
gorithm can be used as for first-order programs. A curried function is considered
as a whole, and is thus kept together as a global function.

Example

Figure 14 shows a program that maps a higher-order function onto a list. The
function filter, which filters out values that do not satisfy some predicate, is
mapped onto a list of numbers.

To parameter-lift the program of Figure 14, the free variables pred and i

must be passed to filter. Similarly, the free variable f must be passed to the
function loop. In both cases, we bind these variables by extending the function
declaration with a curried parameter list. All occurrences of these functions are
replaced by applications of the functions onto the variables its declaration was
extended with. This makes the program scope insensitive, as shown in Figure
15, enabling the usual block-floating pass. The result is displayed in Figure 16.

29

(define main

(lambda (pred i ls)

(letrec ([filter (lambda (j)

(if (pred j) j i))]

[map (lambda (f xs)

(letrec ([loop (lambda (s)

(if (null? s)

’()

(cons (f (car s))

(loop (cdr s)))))])

(loop xs)))])

(map filter ls))))

Figure 14: Example involving a higher-order function.

(define main

(lambda (pred i ls)

(letrec ([filter (lambda (pred i)

(lambda (j)

(if (pred j) j i)))]

[map (lambda (f xs)

(letrec ([loop (lambda (f)

(lambda (s)

(if (null? s)

’()

(cons (f (car s))

((loop f)

(cdr s))))))])

((loop f) xs)))])

(map (filter pred i) ls))))

Figure 15: The program of Figure 14, after parameter-lifting.

30

(define main

(lambda (pred i ls)

(map (filter pred i) ls)))

(define filter

(lambda (pred i)

(lambda (j)

(if (pred j) j i))))

(define map

(lambda (f xs)

((loop f) xs)))

(define loop

(lambda (f)

(lambda (s)

(if (null? s)

’()

(cons (f (car s))

((loop f) (cdr s)))))))

Figure 16: The program of Figure 15, after block-floating.

31

3.3 Reversing lambda-lifting

As was the case for first-order programs, reversing lambda-lifting must be done
by first re-creating block-structure and then removing redundant formal param-
eters. In the first-order case, all occurrences of functions were in the form of
applications. It was these occurrences that constrained the creation of block
structure. In the higher-order case, functions may appear at any place, but
they still constrain the creation of block structure in the same way as before.

As was the case for first-order programs, variables that were free in a function
in the original program are given directly as arguments to the function. However,
lambda-lifting introduced an extra level of currying into the program and thus
lambda-dropping should remove this extra level of currying. Thus, a curried
function without any arguments, a “thunk,” that is always applied directly to
obtain its curried value, should de “thawed” by removing this extra level of
currying.

3.4 Lambda-dropping

Like lambda-lifting, the specification of lambda-dropping (Figures 10 and 11)
requires only trivial changes. A higher-order program is completely block-sunk
when references to function names between functions prevent further localiza-
tion. A higher-order program is completely parameter-dropped when no param-
eters that are given as direct arguments to a function are redundant.

To block-sink a higher-order program, the first-order block-sinking algorithm
can be used. The only difference is conceptual: free functions now represent
scope dependencies between functions, not necessarily calls. So rather than
beginning by constructing the call graph of the program, we proceed in exactly
the same fashion, and construct the “dependence graph” of the program.

To parameter-drop a higher-order program, an algorithm almost identical
to the one for first-order programs can be used. In first-order and higher-order
programs alike, the only variables that we consider as being redundant are those
that are given as direct arguments to a function. However, in a higher-order
program, we may be left with a parameterless function after having dropped
the redundant formal parameters. A curried function of no arguments that only
occurs as an application should be uncurried. For a function f that is always
applied, this uncurrying reads as follows:

f ≡ λ().λ(v1, ..., vn).e ⇒ f ≡ λ(v1, ..., vn).e

Similarly, each occurrence of the function is in an application, which is replaced
by the function itself. For the function f above, this reads:

(f ()) ⇒ f

This “thawing” transformation should be performed as the last stage of pa-
rameter-dropping. The ordinary first-order flow graph of the program is still

32

sufficient for our purposes. Functions that are passed as arguments are simply
ignored, since they cannot have redundant parameters that are passed to them
directly.

Example (revisited)

To block-float the program of Figure 16, we construct the function dependence
graph of the program. Re-constructing the program accordingly yields the block
structure of the original program after parameter lifting shown in Figure 15.
Parameter dropping proceeds as in the first-order case, ignoring any curried
arguments of a function. This eliminates the formal parameters pred and i

of filter, and f of loop. However, filter and loop are still curried functions
without arguments. Both functions had arguments removed, so none of them
are passed as arguments to other parts of the program. Thus we are sure that in
every occurrence of these functions, they are applied to zero arguments. We can
therefore remove the empty currying in the definition and in the applications of
each of these functions, yielding the program of Figure 14.

3.5 Summary

The algorithms for lambda-lifting and lambda-dropping higher-order programs
are simple generalizations of those that operate on first-order programs. Lamb-
da-lifting must create curried functions rather than expanding the list of formal
parameters, and change each occurrence of such functions into an application.
Lambda-dropping must thaw curried functions of zero arguments, changing each
application of these functions correspondingly.

4 Perspectives on Lambda-Lifting and Lambda-

Dropping

Lambda-dropping has been indirectly addressed in other contexts, in relation
to SSA form (Section 4.1), in relation to optimizing compilers (Section 4.2) and
in relation to a similar block-structure transformation (Section 4.3). We have
already provided precise definitions of programs that are completely lambda-
lifted and lambda-dropped, as well as formal descriptions of each algorithm.
We further discuss correctness and properties in Section 4.4, as well as time
complexity in Section 4.5. Finally, in Section 4.6, we address efficiency issues
through an empirical study.

4.1 Optimal Static Single Assignment (SSA) form

In an imperative program in SSA form, each variable is assigned only at a
single point in the program. Values from different branches in the flow graph

33

of program are merged using “φ-nodes.” A naive algorithm for transforming an
imperative program into SSA form creates φ-nodes for all variables, at all merge
points in the program. Minimizing the number of φ-nodes yields a program in
optimal SSA form.

Several algorithms exist for transforming a program into optimal SSA form.
They work by creating a dominator tree for the flow graph of the program.

In his textbook on compiler construction [3], Appel made a significant con-
nection between SSA and functional programming: converting an imperative
program in SSA form (represented by its flow graph) to functional form creates
a block-structured functional program, where each function corresponds to a
basic block.

What struck us in Appel’s connection is that converting from naive SSA form
to optimal SSA form corresponds to parameter-dropping. A program in naive
SSA form that is translated into its functional counterpart, parameter dropped,
and then translated back into SSA form is in optimal SSA form. Similarly,
the translation from SSA form to a block-structured program is done using the
dominator tree of the flow graph, which corresponds exactly to block-sinking.

imperative program
in naive SSA form

from
flow graph

to
recursive equations

//

���
�
�
�
�
�
�
�
�
�

first-order
recursive
equations

lambda
dropping

��

imperative program
in optimal SSA form

first-order
block-structured

program

from
block-structured program

to
flow graph

oo

Once we had realized this coincidence, it became clear how we could simplify
our initial presentation of lambda-dropping [17]. Specifically, using dominator
graphs simplified our overall presentation. It also yields a substantial improve-
ment of lambda-dropping in time complexity.

4.2 Optimizing compilers

Peyton Jones, Partain, and Santos optimize programs using block floating, block
sinking and parameter dropping in the Glasgow Haskell compiler [32]. In par-
ticular, blocks are not necessarily floated all the way to the top level. As for
source programs, they are no longer systematically lambda-lifted [34, 35].

34

Parameter dropping has been specifically addressed as an optimization in
two very similar studies. Appel performs loop-invariant removal after loop-
header introduction in Standard ML of New Jersey [2]. Santos performs Static-
Argument Removal in the Glasgow Haskell Compiler [37]. In each case, the pri-
mary concern is to optimize single (as opposed to mutually) recursive functions.
In neither case is block sinking performed. Rather, in both cases an enclosing
definition is introduced that creates the scope which enables the compiler to
perform parameter dropping. In the Glasgow Haskell Compiler, the optimiza-
tion was later judged to be of very little effect, and subsequently disabled. In
Standard ML of New Jersey, the optimization gave consistent improvements in
compilation time, running time and space consumption. It is our experience
that both compilers significantly benefit from source lambda-dropping in the
case of mutually recursive functions.

4.3 Peyton Jones’s dependency analysis

In his textbook on implementing functional languages [34], Peyton Jones uses
an analysis to generate block structure from recursive equations. In several
ways, the algorithm for this dependency analysis is similar to the algorithm we
employ for block sinking. Its goal, however, differs. Assume that the lambda-
lifted version of the example program of Figure 9 was extended with a main
expression calling the function main with appropriate arguments. Peyton Jones’s
dependency analysis would then yield the following skeleton:

(letrec ([f2 (lambda (x1 j2 k2) ...)]

[f7 (lambda (y1 j4 k4) ...)])

(letrec ([main (lambda (i1 j1 k1) ...)])

(main 1 1 0)))

In this skeleton, any function is visible to other functions that refer to it. In
contrast to the program in Figure 8, though, their formal parameters are not
visible to these other functions and thus they cannot be dropped. Peyton Jones’s
analysis places no function in the scope of any formal parameters and thus it
inhibits parameter dropping.

More detail on Peyton Jones’s dependency analysis, its purpose and proper-
ties, and its relation to our transformation can be found in the second author’s
MS thesis [39].

4.4 Correctness issues

Lambda-lifting has never been proven correct formally.
In his MS thesis, the second author informally addresses the correctness of

lambda-lifting and lambda-dropping by relating each algorithm to basic steps
consisting of let-floating/sinking and formal parameter list expansion/reduction
[39]. He argues that the correctness of the transformations would follow from

35

proving the correctness of the basic steps and expressing lambda-lifting and
lambda-dropping in terms of these basic steps, while correctness of the algo-
rithms presented in Section 2 would follow from showing these to be equivalent
to the fixed point reached by the stepwise algorithms.

In an alternative attempt, the first author has recast the two transformations
extensionally, expressing them as transformations on functionals prior to taking
their fixed point [15].

As already pointed out, several algorithms exist for lambda-lifting. Our fa-
vorite one is Johnsson’s [23], and we designed lambda-dropping as its inverse for
maximally nested programs. (We take equality of programs as syntactic equal-
ity, modulo renaming of variables and modulo the ordering of mutually recur-
sive declarations.) Indeed, since source programs are often partly lifted / partly
dropped, we cannot hope to provide a unique inverse for lambda-lifting. Given
several versions of the same program with varied nesting, lambda-lifting maps
them into the same set of mutually recursive equations. We thus conjecture the
following two properties, which are reminiscent of a Galois connection [31]:

Property 1 Lambda-dropping is the inverse of lambda-lifting on all programs
that have been lambda-dropped.

Property 2 Lambda-lifting is the inverse of lambda-dropping on all programs
that have been lambda-lifted.

Property 1 is arguably the most complex of the two. Lambda-dropping
a program requires re-constructing of the block structure that was flattened
by lambda-lifting and omitting the formal parameters that were lifted by the
lambda-lifter.

Examining the lambda-dropping algorithm reveals that a function that is
passed as argument never has its parameters dropped. Dropping the parame-
ters of such functions is certainly possible, but is non-trivial since it requires a
control-flow analysis to determine the set of variables being passed as arguments
(Section 5.3 provides an example).

Restricting ourselves to providing a left inverse for lambda-lifting eliminates
the need for this analysis. If a function has no free variables before lambda-
lifting, no additional parameters are added, and we need not drop any param-
eters to provide a proper inverse. If the function did have free variables, these
variables are applied as arguments to the function at the point where it is passed
as an argument. Thus, the extra parameters are easily dropped, since they are
unambiguously associated to the function.

In languages such as Scheme where currying is explicit, a lambda-lifter may
need to construct a function as a curried, higher-order function when lifting
parameters. A lambda-dropper can easily detect such declarations (the curry-
ing performed by the lambda-lifter is redundant after lambda-dropping), and
remove them.

36

Johnsson’s lambda-lifting algorithm explicitly names anonymous lambda
forms with let expressions, and eliminates let expressions by converting them
into applications. A lambda-dropper can recognize the resulting constructs and
reverse the transformations, thereby satisfying the inverseness properties.

4.5 Time complexity

The lambda-lifting algorithm has a time complexity of O(n3 +m logm), where
n is the maximal number of functions declared in a block and m is the size
of the program. The n3 component is derived from solving the set equations
during the parameter-lifting stage [23]. As the present article is going to press,
we have actually reduced this complexity to be quadratic, which we believe is
an optimal bound.

The lambda-dropping algorithm has a time complexity of O(n log n), where
n is the size of the program. This complexity assumes the use of a linear-time
algorithm for finding dominator graphs, such as Harel’s [3].

4.6 Empirical study

Lambda-dropping a program removes formal parameters from functions, making
locally bound variables free to the function. An implementation must handle
these free variables. In higher-order languages, it is usually necessary to store
the bindings of these free variables when passing a function as a value. Most
implementations use closures for this purpose [27].

4.6.1 Issues

There is a natural trade-off between passing arguments as formal parameters
and accessing them via the closure. Passing formal parameters on the stack is
simple but must be done on every function invocation. Creating a closure usually
incurs extra overhead. Values must be copied into each closure, taking either
stack or heap space. Looking up values in a closure often takes more instructions
than referencing a formal parameter. The closure of a function is created upon
entry into its definitional block. Thus, the function can be called many times
with the same closure. This is relevant in the case of recursive functions, since
the surrounding block has already been entered when the function calls itself
and thus the same closure is used in every recursive invocation of the function.

A recursive function in a program written without block structure must ex-
plicitly manipulate everything it needs from the environment at every recursive
call. By contrast, if the function instead uses free variables, e.g., after lambda-
dropping, the performance of the program may be improved:

• Fewer values need to be pushed onto the stack at each recursive call.
This reduces the number of machine instructions spent on each function

37

invocation. However, if accessing a variable in a closure is more expensive,
then more instructions may be spent during the execution of the function.

• If a free variable is used in special cases only, it might not be manipulated
during the execution of the body of the function. This reduces the amount
of data manipulation, potentially reducing register spilling and improving
cache performance.

A compiler unfolding recursive functions up to a threshold could lambda-
drop locally before unfolding, thereby globalizing constant parameters, for ex-
ample.

4.6.2 Experiments

Initial experiments suggest that lambda-dropping can improve the performance
of recursive functions, most typically for programs performing recursive de-
scents. The improvement depends on the implementation, the number of pa-
rameters removed, the resulting number of parameters, and the depth of the
recursion. It is our experience that lambda-dropping increases performance for
the following implementations of block-structured functional languages:

• Scheme: Chez Scheme and SCM;

• ML: Standard ML of New Jersey and Moscow ML;

• Haskell: the Glasgow Haskell Compiler;

• Miranda,

and also for implementations of block-structured imperative languages such as
Delphi Pascal, Gnu C and Java 1.1.

The results of our experiments are shown in Figure 17. Except for Miranda,
they were all performed on a Pentium machine. The experiments with Java and
Pascal were done with Windows and all the others with Linux. The Miranda
experiments were carried out on an HPPA RISC machine with HPUX. The
reported speedup SL→D is the time taken by the lambda-lifted version of the
program divided by the time taken by the lambda-dropped version.

The first two experiments evaluate the efficiency of append in different situ-
ations. The third, slightly contrived, experiment evaluates the efficiency of mu-
tually recursive functions that perform simple arithmetic computations, where
five out of seven parameters are redundant. It represents an ideal case for opti-
mization by lambda-dropping. The last experiment evaluates the performance
of a generic fold function over an abstract-syntax tree, instantiated to CPS-
transform a generated program in one pass and to compute the lexical size of
the result.

In some implementations, such as Standard ML of New Jersey, dropping five
out of seven parameters can yield a program which is 2.5 times faster than the

38

Language SL→D
ML (Moscow ML) 1.77
Miranda∗ 1.50
Pascal (Delphi) 1.09
Haskell (GHC 2.01) 1.02
“C” (GCC) 1.00
ML (SML/NJ 110) 1.00
Scheme (SCM) 1.00
Scheme (Chez v5) 0.98
Java (Sun JDK 1.1.1) 0.40

Append
(many invocations on small lists)

Language SL→D
ML (Moscow ML) 1.96
Miranda∗ 1.52
Pascal (Delphi) 1.10
Haskell (GHC 2.01) 1.01
“C” (GCC) 1.00
ML (SML/NJ 110) 1.00
Scheme (SCM) 1.00
Scheme (Chez v5) 0.95
Java (Sun JDK 1.1.1) 0.90

Append
(few invocations on long lists)

Language SL→D
ML (SML/NJ 110) 2.74
Miranda∗ 2.02
ML (Moscow ML) 1.42
Haskell (GHC 2.01) 1.23
Scheme (SCM) 1.16
Java (Sun JDK 1.1.1) 1.13
Pascal (Delphi) 1.12
Scheme (Chez v5) 1.02
“C” (GCC) 1.01
Mutually recursive functions

(many parameters)

Language SL→D
Scheme (SCM) 1.21
Miranda∗ 1.19
ML (SML/NJ 110) 1.17
Scheme (Chez v5) 1.17
Haskell (GHC 2.01) 1.13
ML (Moscow ML) 1.09

Fold function
(CPS and lexical size)

(∗): Performed on a different
architecture

SL→D is the time taken by the lambda-lifted version of the pro-
gram divided by the time taken by the lambda-dropped version.

Figure 17: Experiments with lambda-dropping.

39

original. In Chez Scheme, however, lambda-dropping entails a slight slowdown
in some cases, for reasons we could not fathom. Limiting our tests to a few
programs stressing recursion and parameter passing gave speedups ranging from
1.05 to 2.0 in most cases. This was observed on all implementations but Chez
Scheme.

The results indicate that applying lambda-dropping locally can optimize
recursive functions. We have done this experimentally, on a very limited scale,
using two mature compilers: the Glasgow Haskell Compiler and Standard ML
of New Jersey (see Section 4.2). Standard ML of New Jersey in particular does
benefit from lambda-dropping mutually recursive functions.

4.6.3 Analysis

The second author’s MS thesis presents an abstract model describing the costs
of procedure invocation and closure creation. The model is parameterized by
the costs of these basic operations of a low-level abstract machine. We have
found this abstract model useful for reasoning about the effect of lambda-lifting
and lambda-dropping on programs, even though it does not account for unpre-
dictable factors later on at compile time (e.g., register allocation) and at run
time (e.g., cache behavior). These make the model unreliable for predicting
actual run-time behaviors.

More detailed information on the experiments, the abstract model, and the
results can be found in the second author’s MS thesis [39].

5 Applications and Synergy

5.1 Partial evaluation

Our compelling motivation to sort out lambda-lifting and lambda-dropping was
partial evaluation [13, 25]. As mentioned in Section 1, recursive equations offer
a convenient format for a partial evaluator. Similix and Schism, for exam-
ple [9, 11], lambda-lift source programs before specialization and they produce
residual programs in the form of recursive equations. Very often, however, these
recursive equations are plagued with a huge number of parameters, which in-
creases their compilation time enormously, sometimes to the point of making
the whole process of partial evaluation impractical [16]. We thus lambda-drop
residual programs to reduce the arities of their residual functions. As a side ben-
efit, lambda-dropping also re-creates a block structure which is often similar to
the nesting of the corresponding source program, thereby increasing readability.

Our lambda-dropper handles the output language of Schism.

40

(define-type binary-tree

(leaf alpha)

(node left right))

(define binary-tree-fold

(lambda (process-leaf process-node init)

(letrec ([traverse (lambda (t)

(case-type t

[(leaf n)

(process-leaf n)]

[(node left right)

(process-node (traverse left)

(traverse right))]))])

(lambda (t) (init (traverse t))))))

(define main

(lambda (t x y)

((binary-tree-fold (lambda (n) (leaf (* (+ x n) y)))

(lambda (r1 r2) (node r1 r2))

(lambda (x) x)) t)))

Figure 18: Source program.

41

(define (main-1 t x y)

(traverse:1-1 t y x))

(define (traverse:1-1 t y x)

(casetype t

[(leaf n)

(leaf (* (+ x n) y))]

[(node left right)

(node (traverse:1-1 left y x)

(traverse:1-1 right y x))]))

Figure 19: Specialized (lambda-lifted) version of Figure 18.

5.1.1 Example: a fold function

Figure 18 displays a source program, which uses a standard fold function over
a binary tree. Without any static input, Schism propagates the two static
abstractions from the main function into the fold function. The raw residual
program appears in Figure 19. It is composed of two recursive equations. The
static abstractions have been propagated and statically reduced. The dynamic
parameters x and y have been retained and occur as residual parameters.1 They
make the traversal function an obvious candidate for lambda-dropping. Figure
20 displays the corresponding lambda-dropped program, which was obtained
automatically.

1That is how partially static values and higher-order functions inflate (raise) the arity of
recursive equations.

42

(define (main-1 t x y)

(letrec ([traverse:1-1 (lambda (t)

(case-type t

[(leaf n)

(leaf (* (+ x n) y))]

[(node left right)

(node (traverse:1-1 left)

(traverse:1-1 right))]))])

(traverse:1-1 t)))

Figure 20: Lambda-dropped version of Figure 19.

{

int res=1; int n=4; int cnt=1;

while (cnt > 0) { res = 1;

n = 4;

while (n > 0) { res = n * res;

n = n - 1;

}

cnt = cnt - 1;

}

}

Figure 21: Example imperative program.

43

(define (evprogram-1 s)

(evwhile-1

(intupdate 2 1 (intupdate 1 4 (intupdate 0 1 s)))))

(define (evwhile-1 s)

(if (gtint (fetchint 2 s) 0)

(evwhile-2 (intupdate 1 4 (intupdate 0 1 s)))

s))

(define (evwhile-2 s)

(if (gtint (fetchint 1 s) 0)

(let ([s-1 (intupdate 0

(mulint (fetchint 1 s) (fetchint 0 s))

s)])

(evwhile-2 (intupdate 1 (subint (fetchint 1 s-1) 1) s-1)))

(evwhile-1 (intupdate 2 (subint (fetchint 2 s) 1) s))))

Figure 22: Specialized (lambda-lifted) version of the definitional interpreter with
respect to Figure 21.

Figures 19 and 20 directly tell us that the dynamic parameters x and y are
the sole survivors of the two static abstractions in the source program. As
partial-evaluation users, however, we find it clearer to compare Figure 18 and
Figure 20 rather than Figure 18 and Figure 19. Indeed Figure 20 shows more
clearly that the letrec block of Figure 18 has been inlined and specialized into
the main function. In contrast, the letrec block is more disconnected in Figure
19 and its spurious parameters get in the way of readability.

5.1.2 Example: the first Futamura projection

Let us consider a while-loop language as is traditional in partial evaluation
and semantics-based compiling [12]. Figure 21 displays a source program with
several while loops. Specializing the corresponding definitional interpreter (not
shown here) using Schism with respect to this source program yields the residual
program of Figure 22. Each source while loop has given rise to a recursive
equation. Figure 23 displays the corresponding lambda-dropped program, which
was obtained automatically.

Again, we find it clearer to compare Figure 21 and Figure 23 rather than Fig-
ure 21 and Figure 22. The relative positions of the residual recursive functions
now match the relative positions of the source while loops. (N.B. A monovariant
specializer would have directly produced the lambda-dropped program [14, 20].)

44

(define (evprogram-1 s)

(letrec ([evwhile-1

(lambda (s)

(letrec ([evwhile-2

(lambda (s)

(if (gtint (fetchint 1 s) 0)

(let ([s-1 (intupdate 0

(mulint

(fetchint 1 s)

(fetchint 0 s))

s)])

(evwhile-2

(intupdate 1

(subint (fetchint 1 s-1)

1)

s-1)))

(evwhile-1

(intupdate 2

(subint (fetchint 2 s) 1)

s))))])

(if (gtint (fetchint 2 s) 0)

(evwhile-2 (intupdate 1 4 (intupdate 0 1 s)))

s)))])

(evwhile-1 (intupdate 2 1 (intupdate 1 4 (intupdate 0 1 s))))))

Figure 23: Lambda-dropped version of Figure 22.

5.2 Programming environment

It is our programming experience that lambda-lifting and lambda-dropping go
beyond a mere phase in a compiler for functional programs. They can offer
truly useful (and often unexpected) views of one’s programs. In the context of
teaching, in particular, these unexpected views often help students to improve
their understanding of lexical scope and block structure, and to use them more
effectively in programming. For example, lambda-dropping tells us that in Fig-
ure 18, the fold functional could have been defined locally to the main function.
Sections 5.3 to 5.5 present more examples.

5.3 From Curry to Turing

Together, lambda-lifting, lambda-dropping and control-flow analysis allow one
to convert Curry’s fixpoint operator into Turing’s fixpoint operator.

45

Here is Curry’s fixpoint operator [6]:

λf.let g = λx.f (x x)
in g g

f occurs free in g. Lambda-lifting this block yields the following λ-term:

λf.let g = λf.λx.f (x x)
in g f (g f)

Control-flow analysis tells us that x can only denote g f and that all the oc-
currences of f denote the same value. Thus we can safely relocate the second
occurrence of f , in the let body, into the let header:

λf.let g = λf.λx.f (x f x)
in g f g

Now x only denotes g. Again, control-flow analysis reveals the only applica-
tion sites of the λ-abstraction denoted by g. Thus we can safely swap its two
parameters:

λf.let g = λx.λf.f (x x f)
in g g f

Eta-reducing this term yields Turing’s fixpoint operator [6].

5.4 Detecting global variables

Following Schmidt’s initial impetus on single-threading [38], Sestoft has inves-
tigated the detection of global variables in recursive equations [41]. Likewise,
Fradet has investigated the detection of single-threaded variables using continu-
ations [19]. Such variables come in two flavors: global, read-only variables, and
updatable, single-threaded variables.

Lambda-dropping reveals global read-only variables by localizing blocks.
(N.B. Many of these global variables are not global to a whole program, only
for parts of it. These parts are localized.) Conversely, transforming a program
into continuation-passing style (CPS) reveals single-threaded variables: their
value is passed to the continuation. This last point, of course, indicates that we
should lambda-drop after CPS transforming a program.

5.5 Continuation-based programming

Shivers optimizes a tail-recursive function by “promoting” its CPS counterpart
from being a function to being a continuation [43]. For example, consider the
function returning the last element of a non-empty list.

46

letrec last = λx.let t = tl x
in if t = nil

then hd x
else last t

in last l

Its (call-by-name2) CPS counterpart can be written as follows.

λk.letrec last′ = λx.λk.tl′ x λt.if t = nil
then hd′ x k
else last′ t k

in last′ l k

where hd′ and tl′ are the CPS versions of hd and tl, respectively. The type of
last′ reads:

Value→ (Value→ Answer)→ Answer.

Shivers promotes last′ from the status of function to the status of continuation.
He rewrites it as follows:

λk.letrec last′ = λx.tl′ x λt.if t = nil
then hd′ x k
else last′ t

in last′ l

The type of last′ now reads:

Value→ Answer.

It coincides with the type of a continuation, since last′ does not pass continua-
tions anymore. Promoting a function into a continuation amounts to parameter-
dropping its continuation parameter.

Lambda-dropping the CPS counterpart of a program that uses call/cc also
offers a convenient alternative to dragging around escape functions at each func-
tion call.

6 Related Work

Aside from SSA-related transformations (Section 4.1), parameter-dropping sin-
gle recursive functions (Section 4.2), Peyton Jones’s localization of blocks (Sec-
tion 4.3), Sestoft’s detection of read-only variables (Section 5.4) and Erik Mei-
jer’s unpublished note “Down with Lambda-Lifting” (April 1992) — none of
which directly addresses lambda-dropping as such — we do not know of any
work about lambda-dropping. There is, however, plenty of work related to
lambda-lifting.

2For example.

47

6.1 Enabling principles

The enabling principles of lambda-lifting are worth pointing out: Landin’s cor-
respondence principle [28], which has been formalized as categorical exponen-
tiation [5], makes it possible for Johnsson’s original algorithm to remove let
statements.

let x = a in e ≡ (λx.e) a

Expansion makes it possible to remove free variables. Let associativity enables
let-floating, which makes it possible to globalize function definitions that have
no free variables.

6.2 Curried and lazy vs. uncurried and eager programs

Johnsson concentrated on lambda-lifting towards mutually recursive equations
[23], but alternative approaches exist. The first seems to be Hughes’s super-
combinator abstraction, where recursion is handled through self-application and
full laziness is a point of concern [21]. Peyton Jones provides a broad overview
of fully lazy supercombinators [33, 34, 35]. Essentially, instead of lifting only
free variables, one lifts maximally free expressions. Fully lazy lambda-dropping
would amount to keeping maximally free expressions instead of identifiers in the
initial calls to local functions.

In their Scheme compiler Twobit, Clinger and Hansen also use lambda-
lifting [10]. They, however, modify the flow equations to reduce the arity of
lambda-lifted procedures. Lambda-lifting is also stopped when its cost out-
weighs its benefits, regarding tail-recursion and allocation of closures in the
heap. Lambda-lifting helps register allocation by indicating unchanging argu-
ments across procedure calls.

6.3 Closure conversion

To compile Standard ML programs, Appel represents a closure as a vector [1].
The first element of the vector points to a code address. The rest of the vector
contains the values of the free variables. Applying a closure to actual parameters
is done by passing the closure itself and the actual parameters to the code
address. Thus calls are compiled independently of the number of free variables
of the called function. This situation is obtained by “closure conversion.” Once
a program is closure-converted, it is insensitive to lexical scope and thus it can
be turned into recursive equations.

Closure conversion, however, differs from lambda-lifting for the following two
reasons:

• In both closure-converted and lambda-lifted programs, lambda abstrac-
tions are named. In a closure-converted program, free variables are passed

48

only when the name is defined. In a lambda-lifted program, free variables
are passed each time the name is used.

• Closure conversion only considers the free variables of a lambda-abstrac-
tion. Lambda-lifting also considers those of the callees of this lambda-ab-
straction.

In the latter sense, lambda-lifting can be seen as the transitive closure of closure
conversion.

Steckler and Wand consider a mix between lambda-dropping and closure
conversion: so-called “lightweight closures” [44]. Such closures do not hold the
free variables that are in scope at the application sites of this closure. A similar
concern leads Shao and Appel to consider whether to implement closures in a
deep or in a flat way [42].

6.4 Analogy with the CPS transformation

An analogy can be drawn between lambda-dropping and continuation-based
compilation. As observed by Sabry, Felleisen, et al. [18], CPS compilers proceed
in two steps: first, source programs are transformed into continuation-passing
style, but eventually they are mapped back to direct style.

One is left with the conjecture that both transformations (lambda-dropping
and CPS transformation) expose, in a simpler way, more information about
the structure of a program during its journey through a compiler. The CPS
transformation reveals control-flow information, while lambda-dropping reveals
scope information. As pointed out in Section 6.2, this information is useful for
lambda-lifting proper. We believe that it is also useful for stackability detection
by region inference.

6.5 Stackability

Recently, Tofte and Talpin have proposed to implement the λ-calculus with a
stack of regions and no garbage collector [46]. Their basic idea is to associate
a region for each lexical block, and to collect the region on block exit. While
this scheme is very much allergic to CPS (which “never returns”), it may very
well benefit from preliminary lambda-dropping, since the more lexical blocks,
the better for the region inferencer. We leave this issue for future work.

6.6 Partial evaluation

Instead of lambda-lifting source programs and lambda-dropping residual pro-
grams, a partial evaluator could process block-structured programs directly. In
the diagram of the abstract, we have depicted such a partial evaluator with a
dashed arrow. To the best of our knowledge, however, except for Malmkjær

49

and Ørbæk’s case study presented at PEPM’95 [30] and for Hughes’s type spe-
cializer [22], no polyvariant partial evaluator for procedural programs handles
block structure today.

As analyzed by Malmkjær and Ørbæk, polyvariant specialization of higher-
order, block-structured programs faces a problem similar to Lisp’s “upward
funarg.” An upward funarg is a closure that is returned beyond the point of
definition of its free variables, thus defeating stackability. The partial-evaluation
analogue of an upward funarg is a higher-order function that refers to a special-
ization point but is returned past the scope of this specialization point. What
should the specializer do? Ideally it should move the specialization point out-
wards to its closest common ancestor together with the point of use for the
higher-order function. Lambda-dropping residual recursive equations achieves
precisely that, merely by sinking blocks as low as possible.

The problem only occurs for polyvariant specializers for higher-order, block-
structured programs where source programs are not lambda-lifted and program
points are specialized with respect to higher-order values. Most partial eval-
uators do not face that problem: Lambda-Mix [20] and type-directed partial
evaluation [14] are monovariant; Schism [11] and Similix [9] lambda-lift before
binding-time analysis; Pell-Mell [29] lambda-lifts after binding-time analysis;
ML-Mix [7] does not specialize with respect to higher-order values; and Fuse
[36] does not allow upwards funargs.

Recently, in his type specializer [22], Hughes introduced “first-class polyvari-
ance,” i.e., in effect, specialization with respect to higher-order values without
any prior lambda-lifting. The problem mentioned above is avoided at the cost
of duplicating residual code.

6.7 Other program transformations

Other program transformations can also benefit from lambda-dropping: in
Wadler’s work on deforestation [47], for example, the “macro” style amounts
to lambda-dropping by hand.

7 Conclusion and Issues

In the mid 80’s, Hughes, Johnsson and Peyton Jones presented lambda-lifting:
the transformation of functional programs into recursive equations. Since then,
lambda-lifting seems to have been mostly considered as an intermediate phase in
compilers. It is our contention that lambda-lifting is also interesting as a source-
to-source program transformation, together with its inverse: lambda-dropping.
For example, we observe that Appel’s characterization of SSA as functional
programming relies on lambda-dropping.

In this article, we have introduced lambda-dropping, outlined some of its
properties, and mentioned some other applications than our main one: as a

50

back end in a partial evaluator. We have implemented a lambda-dropper in
Scheme for the target language of Schism and we plan to port it in ML for
Pell-Mell. We are currently developing a faster lambda-lifter, and we are still
working on the formal semantics of lambda-lifting and lambda-dropping.

Acknowledgements

Thanks are due to Anindya Banerjee, Charles Consel, John Anker Corneliussen,
Andrzej Filinski, Daniel P. Friedman, Nevin C. Heintze, Tue Jakobsen, Kristof-
fer Rose, Peter Sestoft, and Sergei Soloviev for their kind interest on the general
topic of lambda-lifting and lambda-dropping. We are grateful to John Hatcliff,
Karoline Malmkjær, Tommy Thorn, and the anonymous referees for their per-
ceptive comments, including a pointer to the Miranda manual. Special thanks to
Julia L. Lawall for sensible and very timely comments, and to Niels Ole Jensen
for implementing lambda-dropping in ML.

The diagrams were drawn with Kristoffer Rose’s XY-pic package. The Scheme
programs were pretty-printed with R. Kent Dybvig’s Chez Scheme system.

51

A Graph algorithms

The descriptions of the algorithms for lambda-lifting and lambda-dropping (Sec-
tions 2.2 and 2.4) make use of a set of standard functions for manipulating
graphs. The functions for adding nodes and edges are trivial. Creating the
dominator tree can be done in linear time using Harel’s algorithm [3]. Creating
the first-order flow graph of a program in the syntax of Figure 1 can be done
using a simple traversal of the program.

Graph.addNode :: Graph(α)→ α→ α
Graph.addNode (G as (V,E)) a = V := V ∪ {a}; a

Graph.addEdge :: Graph(α)→ (α, α)→ (α, α)
Graph.addEdge (G as (V,E)) (a, b) =

if a 6∈ V then V := V ∪ {a};
if b 6∈ V then V := V ∪ {b};
if (a, b) 6∈ E then E := E ∪ {(a, b)};
(a, b)

Graph.findDominators :: (Graph(α), α)→ (Graph(α), α)
Graph.findDominators (G, r) : Returns the dominator tree of G

[3]. In the dominator tree, node b
is a successor of node a if and only
if all paths from r to b go through
a.

Graph.flowGraph :: Program→ (Graph(DefNode),DefNode)
Graph.flowGraph P : Returns the flowgraph of P [3]. The flow-

graph has an edge from node fa to node gb
iff g is invoked from within f , binding the
formal argument b of g to a, where a is a
formal parameter of f .

Graph.isPath :: Graph(α)→ α→ α→ Bool
Graph.ispath G a b : true if there is a path from a to b in G.

Figure 24: Graph functions.

52

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, New York, 1992.

[2] Andrew W. Appel. Loop headers in lambda-calculus or CPS. Lisp and
Symbolic Computation, 7(7):337–343, 1994.

[3] Andrew W. Appel. Modern Compiler Implementation in {C, Java, ML}.
Cambridge University Press, New York, 1998.

[4] Lennart Augustsson. Compiling Lazy Functional Languages, part II. PhD
thesis, Department of Computer Sciences, Chalmers University of Technol-
ogy, Göteborg, Sweden, 1988.

[5] Anindya Banerjee and David A. Schmidt. A categorical interpretation of
Landin’s correspondence principle. In Stephen Brookes, Michael Main,
Austin Melton, Michael Mislove, and David Schmidt, editors, Proceedings
of the 9th Conference on Mathematical Foundations of Programming Se-
mantics, number 802 in Lecture Notes in Computer Science, pages 587–602,
New Orleans, Louisiana, April 1993. Springer-Verlag.

[6] Henk Barendregt. The Lambda Calculus — Its Syntax and Semantics.
North-Holland, 1984.

[7] Lars Birkedal and Morten Welinder. Partial evaluation of Standard
ML. Master’s thesis, DIKU, Computer Science Department, University
of Copenhagen, August 1993. DIKU Rapport 93/22.

[8] Hans-J. Boehm, editor. Proceedings of the Twenty-First Annual ACM Sym-
posium on Principles of Programming Languages, Portland, Oregon, Jan-
uary 1994. ACM Press.

[9] Anders Bondorf and Jesper Jørgensen. Efficient analyses for realistic off-
line partial evaluation. Journal of Functional Programming, 3(3):315–346,
1993.

[10] William Clinger and Lars Thomas Hansen. Lambda, the ultimate label, or
a simple optimizing compiler for Scheme. In Talcott [45], pages 128–139.

[11] Charles Consel. A tour of Schism: A partial evaluation system for higher-
order applicative languages. In David A. Schmidt, editor, Proceedings of the
Second ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 145–154, Copenhagen, Denmark, June
1993. ACM Press.

53

[12] Charles Consel and Olivier Danvy. Static and dynamic semantics process-
ing. In Robert (Corky) Cartwright, editor, Proceedings of the Eighteenth
Annual ACM Symposium on Principles of Programming Languages, pages
14–24, Orlando, Florida, January 1991. ACM Press.

[13] Charles Consel and Olivier Danvy. Tutorial notes on partial evalua-
tion. In Susan L. Graham, editor, Proceedings of the Twentieth Annual
ACM Symposium on Principles of Programming Languages, pages 493–501,
Charleston, South Carolina, January 1993. ACM Press.

[14] Olivier Danvy. Type-directed partial evaluation. In Guy L. Steele Jr., ed-
itor, Proceedings of the Twenty-Third Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 242–257, St. Petersburg Beach,
Florida, January 1996. ACM Press.

[15] Olivier Danvy. An extensional characterization of lambda-lifting and
lambda-dropping. Technical Report BRICS RS-98-2, Department of Com-
puter Science, University of Aarhus, Aarhus, Denmark, January 1998.

[16] Olivier Danvy, Nevin C. Heintze, and Karoline Malmkjær. Resource-
bounded partial evaluation. ACM Computing Surveys, 28(2):329–332, June
1996.

[17] Olivier Danvy and Ulrik Pagh Schultz. Lambda-dropping: transforming
recursive equations into programs with block structure. In Charles Consel,
editor, Proceedings of the ACM SIGPLAN Symposium on Partial Evalua-
tion and Semantics-Based Program Manipulation, pages 90–106, Amster-
dam, The Netherlands, June 1997. ACM Press. Extended version available
as the technical report BRICS-RS-97-6.

[18] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In David W. Wall, editor, Pro-
ceedings of the ACM SIGPLAN’93 Conference on Programming Languages
Design and Implementation, SIGPLAN Notices, Vol. 28, No 6, pages 237–
247, Albuquerque, New Mexico, June 1993. ACM Press.

[19] Pascal Fradet. Syntactic detection of single-threading using continuations.
In John Hughes, editor, Proceedings of the Fifth ACM Conference on Func-
tional Programming and Computer Architecture, number 523 in Lecture
Notes in Computer Science, pages 241–258, Cambridge, Massachusetts,
August 1991. Springer-Verlag.

[20] Carsten K. Gomard and Neil D. Jones. A partial evaluator for the untyped
lambda-calculus. Journal of Functional Programming, 1(1):21–69, 1991.

[21] John Hughes. Super combinators: A new implementation method for ap-
plicative languages. In Daniel P. Friedman and David S. Wise, editors,

54

Conference Record of the 1982 ACM Symposium on Lisp and Functional
Programming, pages 1–10, Pittsburgh, Pennsylvania, August 1982. ACM
Press.

[22] John Hughes. Type specialisation for the lambda calculus; or, a new
paradigm for partial evaluation based on type inference. In Olivier Danvy,
Robert Glück, and Peter Thiemann, editors, Partial Evaluation, number
1110 in Lecture Notes in Computer Science, Dagstuhl, Germany, February
1996. Springer-Verlag.

[23] Thomas Johnsson. Lambda lifting: Transforming programs to recursive
equations. In Jean-Pierre Jouannaud, editor, Functional Programming Lan-
guages and Computer Architecture, number 201 in Lecture Notes in Com-
puter Science, pages 190–203, Nancy, France, September 1985. Springer-
Verlag.

[24] Thomas Johnsson. Compiling Lazy Functional Languages. PhD thesis,
Department of Computer Sciences, Chalmers University of Technology,
Göteborg, Sweden, 1987.

[25] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall International Series in
Computer Science. Prentice-Hall, 1993.

[26] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. MIX: A self-
applicable partial evaluator for experiments in compiler generation. Lisp
and Symbolic Computation, 2(1):9–50, 1989.

[27] Peter J. Landin. The mechanical evaluation of expressions. Computer
Journal, 6:308–320, 1964.

[28] Peter J. Landin. The next 700 programming languages. Communications
of the ACM, 9(3):157–166, 1966.

[29] Karoline Malmkjær, Nevin Heintze, and Olivier Danvy. ML partial eval-
uation using set-based analysis. In John Reppy, editor, Record of the
1994 ACM SIGPLAN Workshop on ML and its Applications, Rapport de
recherche No 2265, INRIA, pages 112–119, Orlando, Florida, June 1994.
Also appears as Technical report CMU-CS-94-129.

[30] Karoline Malmkjær and Peter Ørbæk. Polyvariant specialization for higher-
order, block-structured languages. In William L. Scherlis, editor, Pro-
ceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 66–76, La Jolla, California,
June 1995. ACM Press.

55

[31] Austin Melton, David A. Schmidt, and George Strecker. Galois connections
and computer science applications. In David H. Pitt et al., editors, Category
Theory and Computer Programming, number 240 in Lecture Notes in Com-
puter Science, pages 299–312, Guildford, UK, September 1986. Springer-
Verlag.

[32] Simon Peyton Jones, Will Partain, and André Santos. Let-floating: moving
bindings to give faster programs. In R. Kent Dybvig, editor, Proceedings
of the 1996 ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 1–12, Philadelphia, Pennsylvania, May 1996. ACM Press.

[33] Simon L. Peyton Jones. An introduction to fully-lazy supercombinators.
In Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet, editors,
Combinators and Functional Programming Languages, number 242 in Lec-
ture Notes in Computer Science, pages 176–208, Val d’Ajol, France, 1985.
Springer-Verlag.

[34] Simon L. Peyton Jones. The Implementation of Functional Program-
ming Languages. Prentice Hall International Series in Computer Science.
Prentice-Hall International, 1987.

[35] Simon L. Peyton Jones and David R. Lester. Implementing Functional Lan-
guages. Prentice Hall International Series in Computer Science. Prentice-
Hall, 1992.

[36] Erik Ruf. Topics in Online Partial Evaluation. PhD thesis, Stanford Uni-
versity, Stanford, California, February 1993. Technical report CSL-TR-93-
563.

[37] André Santos. Compilation by transformation in non-strict functional lan-
guages. PhD thesis, Department of Computing, University of Glasgow,
Glasgow, Scotland, 1996.

[38] David A. Schmidt. Detecting global variables in denotational definitions.
ACM Transactions on Programming Languages and Systems, 7(2):299–310,
April 1985.

[39] Ulrik P. Schultz. Implicit and explicit aspects of scope and block structure.
Master’s thesis, DAIMI, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, June 1997.

[40] Peter Sestoft. Replacing function parameters by global variables. Master’s
thesis, DIKU, Computer Science Department, University of Copenhagen,
Copenhagen, Denmark, October 1988.

[41] Peter Sestoft. Replacing function parameters by global variables. In
Joseph E. Stoy, editor, Proceedings of the Fourth International Confer-
ence on Functional Programming and Computer Architecture, pages 39–53,
London, England, September 1989. ACM Press.

56

[42] Zhong Shao and Andrew W. Appel. Space-efficient closure representations.
In Talcott [45], pages 150–161.

[43] Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Tam-
ing Lambda. PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, May 1991. Technical Report CMU-
CS-91-145.

[44] Paul A. Steckler and Mitchell Wand. Lightweight closure conversion. ACM
Transactions on Programming Languages and Systems, 19(1):48–86, Jan-
uary 1997.

[45] Carolyn L. Talcott, editor. Proceedings of the 1994 ACM Conference on
Lisp and Functional Programming, LISP Pointers, Vol. VII, No. 3, Orlando,
Florida, June 1994. ACM Press.

[46] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-
by-value lambda-calculus using a stack of regions. In Boehm [8], pages
188–201.

[47] Philip Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73(2):231–248, 1989. Special issue on
ESOP’88, the Second European Symposium on Programming, Nancy,
France, March 21-24, 1988.

57

Recent BRICS Report Series Publications

RS-99-27 Olivier Danvy and Ulrik P. Schultz. Lambda-Dropping: Trans-
forming Recursive Equations into Programs with Block Struc-
ture. September 1999. 57 pp. To appear in the November 2000
issue ofTheoretical Computer Science. This revised report su-
persedes the earlier report BRICS RS-98-54.

RS-99-26 Jesper G. Henriksen.An Expressive Extension of TLC. Septem-
ber 1999. To appear in Thiagarajan and Yap, editors,Fifth
Asian Computing Science Conference, ASIAN ’99 Proceedings,
LNCS, 1998.

RS-99-25 Gerth Stølting Brodal and Christian N. S. Pedersen.Finding
Maximal Quasiperiodicities in Strings. September 1999. 20 pp.

RS-99-24 Luca Aceto, Willem Jan Fokkink, and Chris Verhoef.Conser-
vative Extension in Structural Operational Semantics. Septem-
ber 1999. 23 pp. To appear in theBulletin of the EATCS.

RS-99-23 Olivier Danvy, Belmina Dzafic, and Frank Pfenning. On
proving syntactic properties of CPS programs. August 1999.
14 pp. To appear in Gordon and Pitts, editors, 3rd Work-
shop on Higher Order Operational Techniques in Semantics,
HOOTS ’99 Proceedings, ENTCS, 1999.

RS-99-22 Luca Aceto, Zolt́an Ésik, and Anna Ingólfsdóttir. On the Two-
Variable Fragment of the Equational Theory of the Max-Sum
Algebra of the Natural Numbers. August 1999. 22 pp.

RS-99-21 Olivier Danvy. An Extensional Characterization of Lambda-
Lifting and Lambda-Dropping. August 1999. 13 pp. Extended
version of an article to appear in Fourth Fuji International
Symposium on Functional and Logic Programming, FLOPS ’99
Proceedings (Tsukuba, Japan, November 11–13, 1999). This
report supersedes the earlier report BRICS RS-98-2.

RS-99-20 Ulrich Kohlenbach. A Note on Spector’s Quantifier-Free Rule
of Extensionality. August 1999. 5 pp. To appear inArchive for
Mathematical Logic.

RS-99-19 Marcin Jurdziński and Mogens Nielsen. Hereditary History
Preserving Bisimilarity is Undecidable. June 1999. 18 pp.

