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Abstract

A temporal logic of causality (TLC) was introduced by Alur, Pen-
czek and Peled in [1]. It is basically a linear time temporal logic
interpreted over Mazurkiewicz traces which allows quantification over
causal chains. Through this device one can directly formulate causal-
ity properties of distributed systems. In this paper we consider an
extension of TLC by strengthening the chain quantification operators.
We show that our logic TLC∗ adds to the expressive power of TLC.
We do so by defining an Ehrenfeucht-Fräıssé game to capture the ex-
pressive power of TLC. We then exhibit a property and by means of
this game prove that the chosen property is not definable in TLC. We
then show that the same property is definable in TLC∗. We prove in
fact the stronger result that TLC∗ is expressively stronger than TLC
exactly when the dependency relation associated with the underlying
trace alphabet is not transitive.

1 Introduction

One traditional approach to automatic program verification is model checking
LTL [13] specifications. In this context, the model checking problem is to

∗Part of this work was done at Lehrstuhl für Informatik VII, RWTH Aachen, Germany
†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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decide whether or not all computation sequences of the system at hand satisfy
the required properties formulated as an assertion of LTL. Several software
packages exploiting the rich theory of LTL are now available to carry out the
automated verification task for quite large finite-state systems, e.g. [2, 9].

Usually computations of a distributed system will constitute interleavings
of the occurrences of causally independent actions. Often, the computation
sequences can be naturally grouped together into equivalence classes of se-
quences corresponding to different interleavings of the same partially ordered
computation stretch. For a large class of interesting properties expressed
by linear time temporal logics, it turns out that either all members of an
equivalence class satisfy a certain property or none do. For such properties
the computional resources needed for the verification task can be substan-
tially reduced by means of the so-called partial-order methods for verifica-
tion [8, 12, 18].

Such equivalence classes can be canonically represented by restricted la-
belled partial orders known as Mazurkiewicz traces [5, 10]. These objects
— apart from alleviating the state-explosion problems of verification — also
allow direct formulations of properties expressing concurrency and causal-
ity. A number of linear time temporal logics to be interpreted directly over
Mazurkiewicz traces (e.g. [1, 4, 11, 14, 15, 16, 17]) has been proposed in the
literature starting with TrPTL [15].

Among these, we consider here a temporal logic of causality (TLC) in-
troduced in [1] to express serializability (of partially ordered computations)
in a direct fashion. The operators of TLC are essentially the branching-time
operators of CTL [3] interpreted over causal chains of traces. However, the
expressive power of this logic has remained an interesting open problem. In-
deed, not much is known about the relative expressive powers of the various
temporal logics over traces.

What is known is that a linear time temporal LTrL, patterned after LTL,
was introduced [17] and proven expressively equivalent to the first-order the-
ory of traces [6]. LTrL has a simple and natural formulation with very re-
stricted past operators, but was shown non-elementary in [19]. Recently,
it was shown that the restricted past operators of LTrL can be replaced
by certain new future operators while maintaining expressive completeness.
In other work, Niebert introduced a fixed point based linear time temporal
logic [11]. This logic has an elementary-time decision procesure and is equal
in expressive power to the monadic second-order theory of traces.

However, the expressive powers of most other logics put forth (e.g. [1, 14,
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15]) still have an unresolved relationship to each other and, in particular, to
first-order logic. Most notably, it is still a challenging open problem whether
or not TrPTL or TLC is expressively weaker than first-order logic. With vir-
tually no other seperation result known, this paper is a contribution towards
understanding the relative expressive power of such logics.

A weakness of TLC is that it doesn’t facilitate direct reasoning about
causal relationships between the individual events on the causal chains. In
this paper we remedy this deficiency and extend TLC by strengthening quan-
tification over causal chains. This extended logic, which we call TLC∗, will
enjoy a similarity to CTL∗ [3] that TLC has to CTL. The main result of this
paper is that our extension TLC∗ is expressively stronger than TLC for gen-
eral trace alphabets whereas they express the same class of properties over
trace alphabets with a transitive dependency relation. We prove this result
with the aid of an Ehrenfeucht-Fräıssé game for traces that we develop. To
our knowledge this is the first instance of the use of such games to obtain
seperation results for temporal logics defined over partial orders. We believe
that this approach is fruitful and that similar techniques may lead to other
seperation results within this area.

In the next section we briefly recall Mazurkiewicz traces and a few re-
lated notions. In Section 3 we introduce TLC and TLC∗, the main objects
of study in this paper. We give a very simple and natural example of a
property easily captured in TLC∗ but not in TLC. In Section 4 we define an
Ehrenfeucht-Fräıssé game and prove its correspondence to TLC. We use this
correspondence in Section 5 to exhibit a property which we prove is unde-
finable in TLC. In Section 6 we show that the said property can be defined
within TLC∗. Finally, we put all the pieces together to arrive at the main
result. We conclude by a quick overview of the relative expressive powers of
logics over traces.

2 Preliminaries

A (Mazurkiewicz) trace alphabet is a pair (Σ, I), where Σ, the alphabet, is a
finite set and I ⊆ Σ×Σ is an irreflexive and symmetric independence relation.
Usually, Σ consists of the actions performed by a distributed system while
I captures a static notion of causal independence between actions. For the
rest of the section we fix a trace alphabet (Σ, I). We define D = (Σ×Σ)− I
to be the dependency relation which is then reflexive and symmetric.
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Let T = (E,≤, λ) be a Σ-labelled poset. In other words, (E,≤) is a poset
and λ : E → Σ is a labelling function. For e ∈ E we define ↓e = {x ∈ E | x ≤
e}. We also let l be the covering relation given by xl y iff x < y and for all
z ∈ E, x ≤ z ≤ y implies x = z or z = y. Moreover, we let the concurrency
relation be defined as x co y iff x 6≤ y and y 6≤ x. A Mazurkiewicz trace (over
(Σ, I)) is then a Σ-labelled poset T = (E,≤, λ) satisfying:

(T1) ∀e ∈ E. ↓e is a finite set
(T2) ∀e, e′ ∈ E. el e′ implies λ(e) D λ(e′).
(T3) ∀e, e′ ∈ E. λ(e) D λ(e′) implies e ≤ e′ or e′ ≤ e.

We shall let TR(Σ, I) denote the class of traces over (Σ, I). As usual, a trace
language L is a subset of traces, i.e. L ⊆ TR(Σ, I). Throughout the paper
we will not distinguish between isomorphic elements in TR(Σ, I). We will
refer to members of E as events. It will be convenient to assume the existence
of a unique least event ⊥ ∈ E corresponding to a system initialization event
carrying no label, i.e. λ(⊥) is undefined and ⊥ < e for every e ∈ E − {⊥}.

It’s not hard to show that the traces introduced above as restricted la-
belled partial orders can be equivalently represented as congruence classes of
strings corresponding to the same partially ordered computations (and vice
versa; see e.g. [16]). We will sometimes abuse notation and let a string in Σ∗

denote its corresponding trace in (Σ, I) whenever no confusion arises. This is
enforced by using conventional parentheses for string languages and square
brackets for trace languages.

In setting the scene for defining the semantics of formulas of TLC∗ we
first introduce some notation for sequences. The length of a finite sequence
ρ will be denoted by |ρ|. In case ρ is infinite we set |ρ| = ω. Let ρ =
(e0, e1, . . . , en, . . .) and 0 ≤ k < |ρ|. We set ρk = (ek, ek+1, . . . , en, . . .).

Let T = (E,≤, λ) be a trace over (Σ, I). A future causal chain rooted
at e ∈ E is a (finite or infinite) sequence ρ = (e0, e1, . . . , en, . . .) with e =
e0, ei ∈ E such that ei−1 l ei for every i ≥ 1. The labelling function
λ : E → Σ is extended to causal chains in the obvious way by: λ(ρ) =
(λ(e0)λ(e1) · · ·λ(en) · · ·). We say that a future causal chain ρ is maximal
in case ρ is either infinite or it is finite and there exists no e′ ∈ E such
that e|ρ| l e′. A past causal chain rooted at e ∈ E is a (finite) sequence
ρ = (en, . . . , e1, e0) with e = e0, ei ∈ E such that eilei−1 for every 1 ≤ i ≤ n.
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3 Syntax and Semantics

In this section we will define the syntax and semantics of the temporal logics
over traces to be considered in this paper. We start by introducing TLC∗

and continue by giving an explicit definition of the sublogic TLC. We will
not define first-order logic over traces (FO), but we refer the reader to e.g. [6,
16, 17].

TLC∗ consists of three different syntactic entities; event formulas (Φev),
future chain formulas (Φ+

ch) and past chain formulas (Φ−ch) defined by mutual
induction as described below:

Φev ::= pa | ∼α | α1 ∨ α2 | co(α) | E(φ) | E−(ψ), with a ∈ Σ.

Φ+
ch ::= α | ∼φ | φ1 ∨ φ2 | Xφ | φ1Uφ2.

Φ−ch ::= α | ∼ψ | ψ1 ∨ ψ2 | X−ψ | ψ1U
−ψ2 ,

where α, φ and ψ with or without subscripts here and throughout the rest
of the paper are formulas of Φev, Φ+

ch and Φ−ch, respectively. The formulas of
TLC∗(Σ, I) are the set of event formulas Φev as defined above1.

The semantics of formulas of TLC∗ is divided into two parts; event for-
mulas and chain formulas. Let T ∈ TR(Σ, I) and e ∈ E. The notion of an
event formula α being satified at an event e of T is defined inductively in the
following manner.

• T, e |= pa iff λ(e) = a.

• T, e |= ∼α iff T, e 6|= α.

• T, e |= α1 ∨ α2 iff T, e |= α1 or T, e |= α2.

• T, e |= co(α) iff there exists an e′ ∈ E with e co e′ and T, e′ |= α.

• T, e |= E(φ) iff there exists a future causal chain ρ rooted at e with
T, ρ |= φ.

• T, e |= E−(ψ) iff there exists a past causal chain ρ rooted at e with
T, ρ |= ψ.

1Another logic was in [1] termed “TLC∗”, but as that logic denoted TLC interpreted
over linearizations it is unrelated to our logic which seems naturally to earn the name
“TLC∗”.
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As usual, tt = pa ∨ ∼pa and ff = ∼tt. Suppose ρ = (e0, e1, . . . , en, . . .) is a
future causal chain. The notion of T, ρ |= φ for a future chain formula φ is
defined inductively below.

• T, ρ |= α iff T, e0 |= α.

• T, ρ |= ∼φ iff T, ρ 6|= φ.

• T, ρ |= φ1 ∨ φ2 iff T, ρ |= φ1 or T, ρ |= φ2.

• T, ρ |= Xφ iff T, ρ1 |= φ.

• T, ρ |= φ1Uφ2 iff there exists a 0 ≤ k < |ρ| such that T, ρk |= φ2.
Moreover, T, ρm |= φ1 for each 0 ≤ m < k.

The notion of T, ρ |= ψ for a past causal chain ρ and past chain formula
ψ is defined in the straightforward manner. The well-known future chain
operators are derived as Fφ = ttUφ and Gφ = ∼F∼φ.

Suppose T ∈ TR(Σ, I) and α ∈ TLC∗(Σ, I). Then T satisfies α iff
T,⊥ |= α, denoted T |= α. The language defined by α is: L(α) = {T ∈
TR(Σ, I) | T |= α}. We say that L ⊆ TR(Σ, I) is definable in TLC∗ if there
exists some α ∈ TLC∗(Σ, I) such that L(α) = L. By slight abuse of notation,
the class of trace languages over (Σ, I) definable in TLC∗ will also be denoted
by TLC∗(Σ, I).

The formulas of TLC(Σ, I) — introduced in [1] with a slightly different
syntax — is then the set of formulas of TLC∗(Σ, I) where each of the chain
operators X,U,G,X−, U− is immediately preceded by a chain quantifier E.
As TLC will play a prominent role in this paper we will bring out its definition
in more detail. More precisely, the set of formulas is given as:

TLC(Σ, I) ::= pa | ∼α | α ∨ β | EX(α) | EU(α, β) |
EG(α) | EX−(α) | EU−(α, β) | co(α),

where a ∈ Σ. The semantics is inherited directly from TLC∗ in the obvious
manner, so notions of definability etc. are carried over directly. It can be
shown that our extension TLC∗ remains decidable. In work to appear we
construct an elementary-time decision procedure for TLC∗ by means of Büchi
automata.

Hence while the formulas of TLC are basically the well-known operators
of the branching-time logic CTL [3] augmented with symmetrical past oper-
ators and concurrency information, the operators of TLC∗ are basically the
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well-known operators of CTL∗[3] similarly extended with past quantifiers in
a restricted fashion as well as concurrency information. The crucial differ-
ence is that while CTL and CTL∗ are branching-time logics interpreted over
Kripke structures, TLC and TLC∗ are linear time temporal logics on traces
interpreted over the underlying Hasse diagrams of the partial orders.

One of the weaknesses of TLC is that it doesn’t directly facilitate reason-
ing about causal relationships of the individual events of the causal chains at
hand. As a consequence, a number of interesting properties are not (either
easily or at all) expressible within TLC. Section 5 provides a formal proof
of this claim, but we will in the following bring out another such property
which is very natural.

Suppose that a and b are actions representing the acquiring and releasing,
respectively, of some resource. A relevant property of this system is then
whether or not there exists some causal chain in the execution of the system
— presumably containing other system actions than {a, b} — such that the
a’s and b’s alternate strictly until the task is perhaps eventually completed.
Via the future chain formula φxy = px → X(∼(px ∨ py)U(py)) we can easily
express this property in TLC∗ by E(G(φab ∧ φba)). The point is here that
TLC∗ allows us to investigate each causal chain in mention by a causal chain
formula, which is then confined to this very chain. This is not possible in
TLC, as the existential quantifications interpreted at some fixed event of the
chain would potentially consider all causal chains originating at this event
— not just the one presently being investigated.

We conclude with two important notions relating to TLC. Firstly, let α
be a formula of TLC(Σ, I). The operator depth of α is defined inductively as
follows:

• od(pa) = 0.

• od(∼α) = od(α) and od(α ∨ β) = max(od(α), od(β)).

• od(EX(α)) = od(EG(α)) = od(EX−(α)) = od(co(α)) = 1 + od(α).

• od(EU(α, β)) = od(EU−(α, β)) = 1 + max(od(α), od(β)).

The set of formulas of operator depth k is denoted by OD(k).
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Given T0, T1 ∈ TR(Σ, I) and ei events of Ti we define that (T0, e0) ≡n
(T1, e1) if for any formula α ∈ TLC(Σ, I) with od(α) ≤ n, T0, e0 |= α iff
T1, e1 |= α, i.e. both structures agree on all subformulas of operator depth
at most n ≥ 0. It is then not hard to see that (T0, e0) ≡0 (T1, e1) iff e0 and
e1 are identically labelled, i.e. either λ(e0) = λ(e1) or e0 = e1 = ⊥.

4 An Ehrenfeucht-Fräıssé Game for TLC

In this section we will present an Ehrenfeucht-Fräıssé game to capture the
expressive power of TLC. The game is played directly on the poset represen-
tation of (finite or infinite) Mazurkiewicz traces and it is similar in spirit to
the Ehrenfeucht-Fräıssé game for LTL introduced by Etessami and Wilke [7].
We extend their approach to the richer setting of traces by highlighting cur-
rent causal chains in the until-based moves and adding past- and co-moves.

The EF-TLC game is a game played between two persons, Spoiler and
Preserver, on a pair of traces (T0, T1). The game is played over k rounds
starting from an initial game state (e0, e1) and after each round the current
game state is a pair of events (e′0, e

′
1) with e′i ∈ Ei. Each round starts with

the game in some specific initial game state (e0, e1) and Spoiler chooses one
of the moves defined below and the game proceeds accordingly:

EX-Move: This move can only be played by Spoiler if there exists an e′0 ∈
E0 such that e0 l e′0 or there exists an e′1 ∈ E1 such that e1 l e′1.
Spoiler then wins the game in case there either exists no e′0 ∈ E0 such
that e0 l e′0 or no e′1 ∈ E1 such that e1 l e′1. Otherwise (in which case
both e0 and e1 has l-successors) the game proceeds as follows:

1. Spoiler chooses i ∈ {0, 1}, and an event e′i ∈ Ei such that ei l e′i.

2. Preserver responds by choosing an event e′1−i ∈ E1−i such that
e1−i l e′1−i.

3. The new game state is now (e′0, e
′
1).
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EU-Move:

1. Spoiler chooses i ∈ {0, 1}, and an event e′i ∈ Ei such that ei ≤ e′i
and he highlights a future causal chain (ei = f 0

i , f
1
i , . . . , f

n
i = e′i)

with n ≥ 0.

2. Preserver responds by choosing an event e′1−i ∈ E1−i with e1−i ≤
e′1−i such that if ei = e′i then e1−i = e′1−i. Furthermore she high-
lights a future causal chain (e1−i = f 0

1−i, f
1
1−i, . . . , f

m
1−i = e′1−i) with

m ≥ 0.

3. Spoiler now chooses one of the following two steps:

• Spoiler sets the game state to (e′0, e
′
1).

• Spoiler chooses an event f1−i ∈ {f 0
1−i, f

1
1−i . . . f

m
1−i}. Preserver

responds with an event fi ∈ {f 0
i , f

1
i . . . f

n
i } and the game con-

tinues in the state (f0, f1).

EG-Move:

1. Spoiler chooses i ∈ {0, 1}, and highlights a maximal future causal
chain (ei = f 0

i , f
1
i , . . . , f

n
i , . . .) with f ji ∈ Ei and n ≥ 0.

2. Preserver responds by highlighting a maximal future causal chain
(e1−i = f 0

1−i, f
1
1−i, . . . , f

m
1−i, . . .) with f ji ∈ E1−i and m ≥ 0.

3. Spoiler chooses an event f1−i ∈ {f 0
1−i, f

1
1−i . . . f

m
1−i}. Preserver

responds with an event fi ∈ {f 0
i , f

1
i . . . f

n
i } and the game continues

in the state (f0, f1).

co-Move: This move can only be played by Spoiler if there exists an e′0 ∈ E0

such that e0 co e
′
0 or there exists an e′1 ∈ E1 such that e1 co e

′
1. Spoiler

then wins the game in case there either exists no e′0 ∈ E0 such that
e0 co e

′
0 or no e′1 ∈ E1 such that e1 co e

′
1. Otherwise (in which case

both e0 and e1 have concurrent events) the game proceeds as follows:

1. Spoiler chooses i ∈ {0, 1}, and an event e′i ∈ Ei such that ei co e
′
i

in Ti.

2. Preserver responds by choosing an event e′1−i ∈ E1−i such that
e1−i co e

′
1−i in T1−i.

3. The new game state is now (e′0, e
′
1).
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EX−-Move: This move can only be played by Spoiler if e0 6= ⊥ or e1 6= ⊥.
Spoiler then wins the game in case e0 = ⊥ or e1 = ⊥. Otherwise (in
which case neither e0 nor e1 is ⊥) the game proceeds as follows:

1. Spoiler chooses i ∈ {0, 1}, and an event e′i ∈ Ei such that e′i l ei.

2. Preserver responds by choosing an event e′1−i ∈ E1−i such that
e′1−i l e1−i.

3. The new game state is now (e′0, e
′
1).

EU−-Move:

1. Spoiler chooses i ∈ {0, 1}, and an event e′i ∈ Ei such that e′i ≤ ei
and he highlights a past causal chain (e′i = fni , f

n−1
i , . . . , f 0

i = ei)
with n ≥ 0.

2. Preserver responds by choosing an event e′1−i ∈ E1−i with e′1−i ≤
e1−i such that if ei = e′i then e1−i = e′1−i. Furthermore she high-
lights a past causal chain (e′1−i = fm1−i, f

m−1
1−i , . . . , f

0
1−i = e1−i) with

m ≥ 0.

3. Spoiler now chooses one of the following two steps:

• Spoiler sets the game state to (e′0, e
′
1).

• Spoiler chooses an event f1−i ∈ {f 0
1−i, f

1
1−i . . . f

m
1−i}. Preserver

responds with an event fi ∈ {f 0
i , f

1
i . . . f

n
i } and the game con-

tinues in the state (f0, f1).

In the 0-round game Spoiler wins if (T0, e0) 6≡0 (T1, e1) and otherwise
Preserver wins. In the (k+ 1)-round game Spoiler wins if (T0, e0) 6≡0 (T1, e1).
If it is the case that (T0, e0) ≡0 (T1, e1), a round is played according to the
above moves. This round either results in a win for Spoiler (e.g. by the
EX-move) or a new game state (e′0, e

′
1). In the latter case, a k-round game

is then played starting from the initial game state (e′0, e
′
1).

We say that Preserver has a winning strategy in the k-round game on
(T0, e0) and (T1, e1), denoted (T0, e0) ∼k (T1, e1), if she can win the k-round
game on the structures T0 and T1 starting in the initial game state (e0, e1)
no matter which moves are performed by Spoiler. If not, we say that Spoiler
has a winning strategy. We refer to [7] for basic intuitions about the game.

Our interest in the game lies in the following fact.
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Proposition 4.1 For every k ≥ 0, (T0, e0) ∼k (T1, e1) iff (T0, e0) ≡k (T1, e1).

Proof: We prove that (T0, e0) ∼k (T1, e1) iff (T0, e0) ≡k (T1, e1) by induction
on k. The base case where k = 0 follows trivially from the definition.

For the inductive step suppose that the claim is true for k. We first
prove the direction from left to right. Suppose that (T0, e0)∼k+1(T1, e1).
Let α ∈ TLC(Σ, I) with od(α) = k + 1. We must show that T0, e0 |= α iff
T1, e1 |= α. It suffices to prove the statement when the top-level connective of
α is a chain-operator because by boolean combinations (T0, e0) and (T1, e1)
would then agree on all formulas of operator depth k + 1. We will only
consider the case where the top-level chain-operator is EU . The other cases
follow similarly.

Suppose now α = EU(β, β ′). Assume without loss of generality that
T0, e0 |= α, i.e. there exists a future causal chain ρ0 = (f 0

0 , f
1
0 , . . . , f

n
0 ) with

e0 = f 0
0 and fn0 = e′0 such that T0, f

j
0 |= β for each 0 ≤ j < n and T0, e

′
0 |=

β ′. Hence we let Spoiler play the EU -move on T0 and make him highlight
ρ0 on T0. Preserver now uses her winning strategy and highlights ρ1 =
(f 0

1 , f
1
1 , . . . , f

m
1 ) with e1 = f 0

1 and fm1 = e′1. Two subcases now arise.
Assume first that Spoiler sets the new game state to (e′0, e

′
1). As e′1

was chosen from Preserver’s winning strategy we have that (T0, e
′
0)∼k(T1, e

′
1)

which by induction hypothesis implies that (T0, e
′
0)≡k(T1, e

′
1). Thus T1, e

′
1 |=

β ′. Now, assume that Spoiler instead picked an event f1 on ρ1. By Preserver’s
winning strategy she could pick an event f0 on ρ0 (This is possible due to
the requirement that if e0 = e′0 then e1 = e′1). Again by the winning strategy
we have that (T0, f0)∼k(T1, f1) and by induction hypothesis that T1, f1 |= β.
Hence T1, f1 |= EU(β, β ′), which concludes this direction of the proof.

We prove the direction from right to left by contraposition, so suppose
that (T0, e0) 6∼k+1 (T1, e1). We will then exhibit a formula α ∈ TLC(Σ, I)
with od(α) = k + 1 such that T0, e0 |= α but T1, e1 6|= α. Again, we will only
prove the case where Spoiler’s first move of his winning strategy is either the
EU -move. The other cases either follows in analogous or easier manners.

Suppose Spoiler plays the EU -move on T0 (without loss of generality),
i.e. he chooses a future causal chain ρ0 = (f 0

0 , f
1
0 , . . . , f

n
0 ) with e0 = f 0

0

and fn0 = e′0. It is not hard to show by induction that there are only a
finite number of semantically inequivalent formulas α with od(α) ≤ k and
T0, e |= α for any e ∈ E0. Hence, each formula βj0 =

∧
{α ∈ OD(k) |

T0, f
j
0 |= α} ∧

∧
{∼α ∈ OD(k) | T0, f

j
0 6|= α} is well-defined and equivalent

to a formula of operator depth k for each 0 ≤ j < n, so letting βe′0 = βn0 we
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have that α = EU(
∨

0≤j<n β
j
0, βe′0) is a TLC-formula with od(α) = k+ 1 and

by definition T0, e0 |= α. We will argue that T1, e1 6|= α.
Suppose that T1, e1 |= α. Then there exists a future causal chain ρ1 =

(f 0
1 , f

1
1 , . . . , f

m
1 ) with e1 = f 0

1 and fm1 = e′1 such that T1, f
l
1 |=

∨
0≤j<n β

j
0 for

each 0 ≤ l < m and T1, e
′
1 |= βe′0 .

Assume first that Spoiler chooses to set the new game state to (e′0, e
′
1)

by following his winning strategy. As T1, e
′
1 |= βe′0 it must be the case that

for each γ ∈ OD(k), T0, e
′
0 |= γ iff T1, e

′
1 |= γ. By induction hypothe-

sis (T0, e
′
0)∼k(T1, e

′
1) which contradicts that Spoiler has a winning strategy

because Preserver could initially have played ρ1 as above and continued ac-
cording to (T0, e

′
0)∼k(T1, e

′
1).

Now assume that Spoiler instead by his winning strategy picks an event
f1 on ρ1. Then T1, f1 |= βj0 for some 0 ≤ j < n as T1, f1 |=

∨
0≤j<n β

j
0. Again

by induction hypothesis we know that (T0, f
j
0 )∼k(T1, f1) which again contra-

dicts that Spoiler has a winning strategy because Preserver could respond
by picking f j0 ∈ E0 and continue from the game state (f j0 , f1) according to
(T0, f

j
0 )∼k(T1, f1).

Hence T1, e1 6|= α as required. 2

5 An Undefinability Result

In this section we will give an example of a natural property which we, by
means of the game characterization of the previous section, will show is not
definable in TLC. Let (Σ, I) be a trace alphabet with {a, b, c} ⊆ Σ such that
a D c and c D b but a I b. Consider L = [abcabc]∗ ⊆ TR(Σ, I).

Lemma 5.1 L is not definable in TLC(Σ, I).

Proof: Let k ≥ 0 be given and consider T k0 = [abc]4k and T k1 = [abc]4k+1. It
suffices to show that (T k0 ,⊥)∼k(T k1 ,⊥). By Proposition 4.1 it then follows
that (T k0 ,⊥)≡k(T k1 ,⊥). Suppose L would be definable by a TLC-formula
α of operator depth n. In particular then (T n0 ,⊥)≡n(T n1 ,⊥). However, by
definition it must be the case that T n0 ∈ L and T n1 6∈ L, contradicting that T n0
and T n1 satisfy the same set of formulas of operator depth at most n. Hence, L
cannot be expressed by any formula of TLC assuming (T k0 ,⊥)∼k(T k1 ,⊥) holds
for any k ≥ 0. The remainder of the proof will be devoted to showing that it
is the case that (T k0 ,⊥)∼k(T k1 ,⊥). To bring this out we need a few definitions.
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Figure 1: T k0 (top) and T k1 (bottom) on which the game is played.

As depicted in Figure 1 the game is played on T k0 and T k1 consisting of 4k
and 4k + 1 copies of the trace factor [abc], respectively. The section of ei for
i ∈ {0, 1} is then defined to be the number of the enclosing [abc]-factor in T ik
counting from left and starting with 1. We denote this number by sect(ei).
In case ei = ⊥ we set sect(ei) = 0. Furthermore, we say that e0 and e1 are
position equivalent, in case either (e0, e1) = (⊥,⊥) or λ(e0) = λ(e1). From
the definition of T0 and T1 it follows that e0 and e1 are position equivalent
in case e0 and e1 denote the same local positions in two (possibly distinct)
sections of T0 and T1, respectively. The unique event of section s ≥ 1 labelled
with letter x ∈ {a, b, c} in T ki will be denoted ex,si . For example, the fourth
b-labelled event of T k0 is denoted eb,40 .

We will then show that Preserver has a strategy such that after k′ ≤ k
rounds played on (T k0 , T

k
1 ) with current game state (e0, e1), the following

invariant holds:

(i) e0 and e1 are position equivalent.

(ii) sect(e0) = sect(e1) or sect(e0) = sect(e1)− 1.

(iii) sect(e0) = sect(e1) implies sect(e0) ≤ 2(k + k′).

(iv) sect(e0) = sect(e1)− 1 implies sect(e0) ≥ 2(k − k′) + 1.

13



We prove that the invariant holds by induction on k′. It is trivial to
observe, that in the base case we have that (e0, e1) = (⊥,⊥), sect(e0) =
sect(e1) = 0 and k′ = 0 thus satisfying (i),(ii), (iii) and (iv) above.

For the inductive step, assume that the statement holds for k′ < k. From
(i) it follows that (T0, e0) ≡0 (T1, e1), so a next round is played. We then show
that the Preserver can move so as to maintain the invariant for the next game
state (e′0, e

′
1) by case analysis on the next move chosen by Spoiler. We only

consider the case for the EU -move. The other moves follow analogously.
From (ii) we know that sect(e0) = sect(e1) or sect(e0) = sect(e1) − 1, so
two subcases arise. Subcase I: sect(e0) = sect(e1). Suppose Spoiler chooses

to play the EU -move on T k0 and highlights a future causal chain ρ0 = (e0 =
ex0,s0

0 , ex1,s1
0 , . . . , exn,sn0 = e′0). By assumption sect(e0) ≤ 2(k + k′).

Suppose first that sn ≤ 2(k + k′ + 1). Then Preserver can just copy
the move and respond with ρ1 = (e1 = ex0,s0

1 , ex1,s1
1 , . . . , exn,sn1 = e′1). If

Spoiler chooses to set the new game state to (e′0, e
′
1), sect(e′0) = sect(e′1) ≤

2(k+k′+1) and the invariant is maintained. If Spoiler instead chooses to pick
an event exi,si1 , Preserver would respond by picking exi,si0 and the invariant is
maintained in a similar manner.

Suppose then that sn > 2(k + k′ + 1). Preserver must then “insert” an
additional occurrence of a section into ρ0 at section 2(k + k′ + 1). To bring
this out, let l be the least index such that sl = 2(k+ k′+ 1), which exists by
assumption. Preserver then responds with

ρ1 = (ex0,s0
1 , . . . , exl,sl1 , e

xl+1,sl+1

1 , exl,sl+1
1 , e

xl+1,sl+1+1
1 , e

xl+2,sl+2+1
1 , . . . , exn,sn+1

1 )

with e′1 = exn,sn+1
1 . If Spoiler chooses to set the new game state to (e′0, e

′
1),

sect(e′0) = sn = sect(e′1) − 1. However, the invariant is maintained as
sect(e′0) ≥ 2(k + k′ + 1) ≥ 2(k − (k′ + 1)) + 1. If Spoiler instead chooses to
pick an event on ρ1, Preserver responds dependent upon its index. If Spoiler
picks one of the first l + 2 events exi,si1 , Preserver responds with exi,si0 . As
sect(exi,si0 ) = si = sect(exi,si1 ) ≤ 2(k + k′ + 1) the invariant is maintained.
If Spoiler picks one of the remaining events exi,si+1

1 , Preserver responds with
exi,si0 in which case sect(exi,si0 ) = si = sect(exi,si+1

1 ) − 1 and the invariant is
maintained as sect(exi,si0 ) ≥ 2(k + k′ + 1) > 2(k − (k′ + 1)) + 1.

Suppose spoiler chooses to play the EU -move on T k1 and highlights a
future causal chain ρ1 = (e1 = ex0,s0

1 , ex1,s1
1 , . . . , exn,sn1 = e′1). By assumption

sect(e0) ≤ 2(k + k′). If sn ≤ 2(k + k′ + 1) then Preserver can, as above, just
copy the move and maintain the invariant, so suppose that sn > 2(k+k′+1).
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Preserver must then “chop” a duplicate occurrence off ρ1 around the sections
2(k + k′) + 1, 2(k + k′) + 2 = 2(k + k′ + 1), 2(k + k′) + 3 which exist by
construction. Any causal chain passing through these three sections must
pass (at least) two identical ac-labelled or bc-labelled stretches. Now, let l
be the least index such that sl = 2(k + k′) + 1 and consider the sequence
σ = (xl, xl+2, xl+4) with λ(σ) ∈ {a, b}3. Remove from σ the first occurrence
xi where there exists an j > i with xj in σ and xi = xj . Let σ′ = (xp, xq)
denote the resulting sequence where p, q ∈ {l, l + 2, l + 4}. Preserver then
plays the chain ρ0:

(ex0,s0
0 , . . . , e

xl−1,sl−1

0 , e
xp,sl
0 , e

c,sl+1

0 , e
xq,sl+2

0 , e
c,sl+3

0 , e
xl+5,sl+5−1
0 , . . . , exn,sn−1

0 )

with e′0 = exn,sn−1
0 . If Spoiler chooses to set the new game state to (e′0, e

′
1)

then sect(e′0) = sn = sect(e′1) − 1 so the invariant is maintained because
sn > 2(k + k′ + 1) > 2(k − (k′ + 1)) + 1. If Spoiler chooses to pick an event
on ρ0, Preserver responds according to one of several cases. If Spoiler picks
one of the first l events exi,si0 then Preserver picks exi,si1 and the invariant is
maintained as usual. If Spoiler picks either e

c,sl+1

0 or e
c,sl+3

0 then Preserver
picks either e

c,sl+1

1 or e
c,sl+3

1 , respectively. As the sections are both sl+1 or both
sl+3 and sl+1 < sl+3 = sl + 1 = 2(k + k′ + 1) the invariant follows. If Spoiler
picks an event, exm,s0 say, in {exp,sl0 , e

xq,sl+2

0 } before the removed occurrence in
σ then m ∈ {l, l + 2} and Preserver responds by exm,s1 . Then sect(exm,s0 ) =
s = sect(exm,s1 ) ≤ sl+2 = 2(k + k′ + 1). Similarly, if exm,s0 occurs after the
removed occurrence then m ∈ {l+2, l+4} and Preserver picks exm,s+1

1 . Then
sect(exm,s0 ) = s = sect(ex

m,s+1
1 ) − 1 ≥ 2(k + k′) > 2(k − (k′ + 1)) + 1 and in

both cases the invariant is maintained. Finally, if Spoiler picks one of the
remaining events exi,si−1

0 with i ≥ l + 5 then Preserver responds with exi,si1 .
As sect(exi,si−1

0 ) = sect(exi,si1 )− 1 ≥ 2(k − (k′ + 1)) + 1 the invariant is also
maintained in this case.

Subcase II: sect(e0) = sect(e1)− 1. Here the futures of e0 in T k0 and e1 in

T k1 both consist of 4k−sect(e0) factors of [abc] and are identical with respect
to future moves. Hence Preserver can just “copy” the move made by Spoiler.
with the obvious correspondence. 2

6 The Expressiveness of TLC∗

Let (Σ, I) be any trace alphabet with {a, b, c} ⊆ Σ such that a D c and c D b
but a I b. Consider L = [abcabc]∗ ⊆ TR(Σ, I) from the previous section.
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Lemma 6.1 L is definable in TLC∗(Σ, I).

Proof: Our proof will in fact show that the future fragment of TLC with
only one future chain quantifier of TLC∗ suffices to express L. First define

α[abc]∗ = AG(
∧

d∈Σ−{a,b,c}

∼pd) ∧ EX(pa ∧ EX(pc)) ∧ EX(pb ∧ EX(pc)) ∧

AG(pc ∧ EX(tt)→ EX(pa ∧EX(pc)) ∧EX(pb ∧EX(pc)).

It is easy to see that T |= α[abc]∗ iff T ∈ [abc]∗. We will then use existence
of “zig-zagging” future causal chains to restrict to [abcabc]∗ ⊂ [abc]∗ below.
Define the future chain formula φ(acbc)∗ as follows.

φ(acbc)∗ = pa ∧G(pa → X(pc ∧X(pb ∧X(pc ∧ (∼Xtt ∨Xpa))))).

It’s easy to see that T, e |= E(φ(acbc)∗) iff there exists a future causal chain ρ
rooted at e such that λ(ρ) ∈ (acbc)∗ ⊆ Σ∗. The statement of the lemma now
follows by taking αL = α[abc]∗ ∧ (∼EXtt ∨ EX(E(φ(acbc)∗))). 2

Putting all the pieces together, we can now state and prove the main
result of the paper.

Theorem 6.2 Let (Σ, I) be any trace alphabet. Then

1. TLC(Σ, I) = TLC∗(Σ, I) if D is transitive.

2. TLC(Σ, I) ⊂ TLC∗(Σ, I) if D is not transitive.

Proof: Obviously TLC(Σ, I) ⊆ TLC∗(Σ, I), so (2) follows easily from
Lemma 5.1 and Lemma 6.1 as (a, c), (c, b) ∈ D but (a, b) 6∈ D witness that
D is not transitive. Hence it suffices to prove (1).

Let (Σ, I) be a trace alphabet with D transitive, i.e. the graph (Σ, D)
is a disjoint union of cliques {Ci}ni=1. Thus any trace T ∈ TR(Σ, I) consists
of disjoint Ci-labelled causal chains only initially connected by ⊥. We can
then define three mutually inductive translations || · ||ev, || · ||+ch and || · ||−ch
converting event formulas, future chain formulas and past chain formulas,
respectively, of TLC∗(Σ, I) to formulas of TLC(Σ, I) as follows.

• ||pa||ev = pa and the boolean connectives are as expected.

• ||co(α)||ev = co(||α||ev).
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• ||E(φ)||ev = ||φ||+ch and ||E−(φ)||ev = ||φ||−ch.

• ||α||+ch = ||α||−ch = ||α||ev and the boolean connectives are as expected.

• ||Xφ||+ch = EX(||φ||+ch) and ||X−φ||−ch = EX−(||φ||−ch).

• ||φUψ||+ch = EU(||φ||+ch, ||ψ||+ch) and ||φU−ψ||−ch = EU(||φ||−ch, ||ψ||−ch).

By nested inductions one can show that for each α ∈ TLC∗(Σ, I), T, e |= α

iff T, e |= ||α||ev. As ||α||ev ∈ TLC(Σ, I) the required conclusion follows. 2

One can show that TLC∗(Σ, I) can be expressed within MSO(Σ, I). More-
over, it’s not hard to see that FO(Σ, I), TLC(Σ, I) and TLC∗(Σ, I) are all
expressively equivalent in the sequential case where I = ∅. Hence, we obtain
the following corollary.

Corollary 6.3

1. TLC∗(Σ, ∅) ⊂ MSO(Σ, ∅).

2. TLC∗(Σ, I) 6⊆ FO(Σ, I) if D is not transitive.

Proof: The proof of (1) follows from TLC∗(Σ, ∅) = FO(Σ, ∅) and the well-
known classical fact that FO(Σ, ∅) ⊂ MSO(Σ, ∅).

For the proof of (2), let (Σ, I) be given and suppose D is not transitive.
As before, we can then define L = [abcabc]∗. By a standard argument one
can show that ((abc+ bac)(abc + bac))∗, the set of linearizations of L, is not
a first-order definable language of strings over Σ. From [6] it then follows
that L is not definable in FO(Σ, I). Lemma 6.1 now yields the required
conclusion. 2

We conclude by summarizing what is currently known about the relative
expressive powers of the various linear time temporal logics over traces. A
quick overview is displayed in Figure 2. A dotted (solid) arrow from A to B
indicates that B is at least as expressive as (strictly more expressive than) A.
Squiggled lines denote that the logics are incomparable to each other, while
cut lines denote negation.

Theorem 6.2 and Corollary 6.3 have been applied to place TLC∗ in Fig-
ure 2. Like most other logics, its relationship to the first-order logic of traces
needs to be pinned down exactly. Also, one might try to capture the expres-
sive power of TLC∗ as (fragments of) either FO2(TC), two-variable first-order
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Figure 2: Overview of relative expressive powers

logic of traces augmented with the transitive-closure operator, or MSO with
set quantifications restricted to causal chains. This constitutes an interesting
open problem to be investigated in future work.
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