
B
R

IC
S

R
S

-99-25
B

rodal&
P

edersen:
F

inding
M

axim
alQ

uasiperiodicities
in

S
trings

BRICS
Basic Research in Computer Science

Finding Maximal Quasiperiodicities in Strings

Gerth Stølting Brodal
Christian N. S. Pedersen

BRICS Report Series RS-99-25

ISSN 0909-0878 September 1999

Copyright c© 1999, Gerth Stølting Brodal & Christian N. S.
Pedersen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/25/

Finding maximal quasiperiodicities in strings

Gerth Stølting Brodal∗ Christian N. S. Pedersen∗

Abstract

Apostolico and Ehrenfeucht defined the notion of a maximal quasiperi-
odic substring and gave an algorithm that finds all maximal quasiperiodic
substrings in a string of length n in time O(n log2 n). In this paper we
give an algorithm that finds all maximal quasiperiodic substrings in a
string of length n in time O(n logn) and space O(n). Our algorithm uses
the suffix tree as the fundamental data structure combined with efficient
methods for merging and performing multiple searches in search trees.
Besides finding all maximal quasiperiodic substrings, our algorithm also
marks the nodes in the suffix tree that have a superprimitive path-label.

1 Introduction

Characterizing and finding regularities in strings are important problems in
many areas of science. In molecular biology repetitive elements in chromo-
somes determine the likelihood of certain diseases. In probability theory reg-
ularities are important in the analysis of stochastic processes. In computer
science repetitive elements in strings are important in e.g. data compression,
speech recognition, coding, automata and formal language theory.

A widely studied regularity in strings are consecutive occurrences of the
same substring. Two consecutive occurrences of the same substring is called
an occurrence of a square or a tandem repeat. This type of regularity was first
studied by Thue [27, 28] at the beginning of this century. Thue showed that
it is possible to construct arbitrary long strings over any alphabet of more
than two characters that contain no squares. Since then a lot of work has
been done to develop efficient methods to detect or count squares in strings.
Several methods [12, 20, 25] have been presented that determine if a string of
length n contains a square in time O(n). Several methods [6, 9, 11, 18, 19, 26]
have been presented that find occurrences of squares in a string of length n in
time O(n log n) plus the time it takes to output the detected squares. Recently

∗Basic Research In Computer Science (BRICS), Center of the Danish National Re-
search Foundation, Department of Computer Science, University of Aarhus, Ny Munkegade,
8000 Århus C, Denmark. E-mail: {gerth,cstorm}@brics.dk.

1

two methods [15, 17] have been presented that find a compact representation
of all squares in a string of length n in time O(n).

A way to describe the regularity of an entire string in terms of repetitive
substrings is the notion of a periodic string. Gusfield [14, page 40] defines
string S as periodic if it can be constructed by concatenations of a shorter
string α. The shortest string from which S can be generated by concatena-
tions is the period of S. A string that is not periodic is primitive. Some regu-
larities in strings cannot be characterized efficiently using periods or squares.
To remedy this, Ehrenfeucht, as referred in [3], suggested the notation of
a quasiperiodic string. A string S is quasiperiodic if it can be constructed
by concatenations and superpositions of a shorter string α. We say that α
covers S. Several strings might cover S. The shortest string that covers S
is the quasiperiod of S. A covering of S implies that S contains a square,
so by the result of Thue not all strings are quasiperiodic. A string that is
not quasiperiodic is superprimitive. Apostolico, Farach and Iliopoulos [5] pre-
sented an algorithm that finds the quasiperiod of a given string of length n in
time O(n). This algorithm was simplified and made on-line by Breslauer [8].
Moore and Smyth [24] presented an algorithm that finds all substrings that
covers a given string of length n in time O(n).

Similar to the period of a string, the quasiperiod of a string describes a
global property of the string, but quasiperiods can also be used to characterize
substrings. Apostolico and Ehrenfeucht [4] introduced the notion of maximal
quasiperiodic substrings of a string. Informally, a quasiperiodic substring γ

of S with quasiperiod α is maximal if no extension of γ can be covered by α
or αa, where a is the character following γ in S. Apostolico and Ehrenfeucht
showed that the maximal quasiperiodic substrings of S correspond to path-
labels of certain nodes in the suffix tree of S, and gave an algorithm that finds
all maximal quasiperiodic substrings of a string of length n in time O(n log2 n)
and space O(n log n). The algorithm is based on a bottom-up traversal of the
suffix tree in which maximal quasiperiodic substrings are detected at the nodes
in the suffix tree by maintaining various data structures during the traversal.
The general structure of the algorithm resembles the structure of the algorithm
by Apostolico and Preparata [6] for finding tandem repeats.

In this paper we present an algorithm that finds all maximal quasiperiodic
substrings in a string of length n in time O(n log n) and space O(n). Simi-
lar to the algorithm by Apostolico and Ehrenfeucht, our algorithm finds the
maximal quasiperiodic substrings in a bottom-up traversal of the suffix tree.
The improved time and space bound is a result of using efficient methods for
merging and performing multiple searches in search trees, combined with ob-
serving that some of the work done, and data stored, by the Apostolico and
Ehrenfeucht algorithm is avoidable. The analysis of our algorithm is based
on a stronger version of the well known “smaller-half trick” used in the algo-

2

rithms in [6, 11, 26] for finding tandem repeats. The stronger version of the
“smaller-half trick” is hinted at in [22, Exercise 35] and stated in Lemma 6.
In [23, Chapter 5] it is used in the analysis of finger searches, and in [9] it is
used in the analysis and formulation of an algorithm to find all maximal pairs
with bounded gap in a string.

Recently, and independent of our work, Iliopoulos and Mouchard in [16] re-
ported to have an algorithm for finding all maximal quasiperiodic substrings
in a string of length n. They stated the running time of the algorithm to
be O(n log n). Their algorithm differs from our algorithm as it does not use
the suffix tree as the fundamental data structure, but uses the partitioning
technique used by Crochemore [11] combined with several other data struc-
tures. Our algorithm together with the algorithm by Iliopoulos and Mouchard
show that finding maximal quasiperiodic substrings in a string can be done
in two different ways similar to the difference between the algorithms by
Crochemore [11] and Apostolico and Preparata [6] for finding tandem repeats.

The rest of this paper is organized as follows. In Section 2 we define
the preliminaries used in the rest of the paper. In Section 3 we state and
prove properties of quasiperiodic substrings and suffix trees. In Section 4 we
state and prove results about efficient merging of and searching in height-
balanced trees. In Section 5 we stated our algorithm to find all maximal
quasiperiodic substrings in a string. In Section 6 we analyze the running
time of our algorithm and in Section 7 we show how the algorithm can be
implemented to use linear space.

2 Definitions

In the following we let S,α, β, γ ∈ Σ∗ denote strings over some finite alpha-
bet Σ. We let |s| denote the length of S, S[i] the ith character in S for
1 ≤ i ≤ |S|, and S[i .. j] = S[i]S[i + 1] · · · S[j] a substring of S. A string α

occurs in a string γ at position i if α = γ[i .. i+ |α| − 1]. We say that γ[j], for
all i ≤ j ≤ i+ |α| − 1, is covered by the occurrence of α at position i.

A string α covers a string γ if every position in γ is covered by an oc-
currence of α. See Figure 1. Note that if α covers γ then α is both a prefix
and a suffix of γ. A string is quasiperiodic if it can be covered by a shorter
string. A string is superprimitive if it is not quasiperiodic, that is, if it cannot

γ
} α

Figure 1: A covering of a string γ by a substring α of γ.

3

be covered by a shorter string. A superprimitive string α is a quasiperiod of
a string γ if α covers γ. In Lemma 1 we show that if α is unique, and α is
therefore denoted the quasiperiod of γ.

The suffix tree T (S) of the string S is the compressed trie of all suffixes of
the string S$, where $ /∈ Σ. Each leaf in T (S) represents a suffix S[i .. n] of S
and is annotated with the index i. We refer to the set of indices stored at the
leaves in the subtree rooted at node v as the leaf-list of v and denote it LL(v).
Each edge in T (S) is labelled with a nonempty substring of S such that the
path from the root to the leaf annotated with index i spells the suffix S[i .. n].
We refer to the substring of S spelled by the path from the root to node v as
the path-label of v and denote it L(v).

For a node v in T (S) we partition LL(v) = (i1, i2, . . . , ik), ij < ij+1 for
1 ≤ j < k, into a sequence of disjoint subsequences R1, R2, . . . , Rr, such that
each R` is a maximal subsequence ia, ia+1, . . . , ib, where ij+1 − ij ≤ |L(v)| for
a ≤ j < b. Each R` is denoted a run at v and represents a maximal substring
of S that can be covered by L(v), i.e. L(v) covers S[minR` .. |L(v)| − 1 +
maxR`], and we say that R` is a run from minR` to |L(v)| − 1 + maxR`. A
run R` at v is said to coalesce at v if R` contains indices from at least two
children of v, i.e. if for no child w of v we have R` ⊆ LL(w). We use C(v) to
denote the set of coalescing runs at v.

3 Maximal quasiperiodic substrings

If S is a string and γ = S[i .. j] a substring covered by a shorter string α =
S[i .. i+|α|−1], then γ is quasiperiodic and we describe it by the triple (i, j, |α|).
A triple (i, j, |α|) describes a maximal quasiperiodic substring of S, in the
following abbreviated MQS, if the following requirements are satisfied.

1. γ = S[i .. j] is quasiperiodic with quasiperiod α.

2. If α covers S[i′ .. j′], where i′ ≤ i ≤ j ≤ j′, then i′ = i and j′ = j.

3. αS[j + 1] does not cover S[i .. j + 1].

The problem we consider in this paper is for a string S to generate all triples
(i, j, |α|) that describe MQSs. This problem was first studied by Apostolico
and Ehrenfeucht in [4]. In the following we state important properties of
quasiperiodic substrings which are essential to the algorithm to be presented.

Lemma 1 Every quasiperiodic string γ has a unique quasiperiod α.

Proof. Assume that γ is cover by two distinct superprimitive strings α and β.
Since α and β are prefixes of γ we can without loss of generality assume that α
is a proper prefix of β. Since α and β are suffixes of γ, then α is also a proper

4

suffix of β. Since α and β cover γ, and α is a prefix and suffix of β it follows
that α covers β, implying the contradiction that β is not superprimitive. 2

Lemma 2 If γ occurs at position i and j in S, and 1 ≤ j − i ≤ |γ|/2, then γ

is quasiperiodic.

Proof. Let α be the prefix of γ of length |γ|−(j− i), i.e. α = S[i .. i+ |γ|−(j−
i)−1] = S[j .. i+|γ|−1]. Since j−i ≤ |γ|/2 implies that i−1+|v|−(j−i) ≥ j−1,
we conclude that α covers γ. 2

Lemma 3 If the triple (i, j, |α|) describes a MQS in S, then there exists a
non-leaf node in the suffix tree T (S) with path-label α.

Proof. Assume that α covers the quasiperiodic substring S[i .. j] and that no
node in T (S) has path-label α. Since all occurrences of α in S are followed
by the same character a = S[i+ |α|], αa must cover S[i .. j + 1], contradicting
the maximality requirement 3. 2

Lemma 4 If γ is a quasiperiodic substring in S with quasiperiod α and u is
a non-leaf node in the suffix tree T (S) with path-label γ, then there exists an
ancestor node v of u in T (S) with path-label α.

Proof. Since u is a non-leaf node in T (S) of degree at least two, there exist
characters a and b such that both γa and γb occur in S. Since α is a suffix
of γ we then have that both αa and αb occur in S, i.e. there exist two suffixes
of S having respectively prefix αa and αb, implying that there exists a node v
in T (S) with L(v) = α. Since α is also a prefix of γ, node v is an ancestor
node of u in T (S). 2

Lemma 5 If v is a node in the suffix tree T (S) with a superprimitive path-
label α, then the triple (i, j, |α|) describes a MQS in S if and only if there is a
run R from i to j that coalesces at v.

Proof. Let (i, j, |α|) describe a MQS in S and assume that the run R ∈ C(v)
from i and j does not coalesce at v. Then there exists a child v′ of v in
T (S) such that R ⊆ LL(v′). The first symbol along the edge from v to v′ is
a = S[i+ |α|]. Every occurrence of α in R is thus followed by a, i.e. αa covers
S[i .. j+1]. This contradicts the maximality requirement 3 and shows the “if”
part of the theorem.

Let R be a coalescing run from i to j at node v, i.e. L(v) = α covers
S[i .. j], and let a = S[j + 1]. To show that (i, j, |α|) describes a MQS in S

5

it is sufficient to show that αa does not cover S[i .. j + 1]. Since R coalesces
at v, there exists a minimal i′′ ∈ R such that αa does not occur in S at
position i′′. If i′′ = i = minR then αa cannot cover S at position i′′ since it by
the definition of R cannot occur any position ` in S satisfying i−|α| ≤ ` ≤ i. If
i′′ 6= i = minR then αa occurs at minR and maxR, i.e. there exists i′, i′′′ ∈ R,
such that i′ < i′′ < i′′′, αa occurs at i′ and i′′′ in S, and αa does not occour at
any position ` in S satisfying i′ < ` < i′′′. To conclude that (i, j, |α|) describes
a MQS we only have to show that S[i′′′ − 1] is not covered by the occourence
of αa at position i′, i.e. i′′′−i′ > |α|+1. By Lemma 2 follows that i′′−i′ > |α|/2
and i′′′ − i′′ > |α|/2, so i′′′ − i′ ≥ |α| + 1. Now assume that i′′′ − i′ = |α| + 1.
This implies that |α| is odd and that i′′ − i′ = i′′′ − i′′ = (|α| + 1)/2. Using
this we get

a = S[i′ + |v|] = S[i′′ + (|v| − 1)/2] = S[i′′′ + (|v| − 1)/2] = S[i′′ + |v|] 6= a .

This contradiction shows that (i, j, |α|) describes a MQS and shows the “only
if” part of the theorem. 2

Theorem 1 Let v be a non-leaf node in T (S) with path-label α. Since v is
a non-leaf node in T (S) there exists i1, i2 ∈ LL(v) such that S[i1 + |α|] 6=
S[i2 + |α|]. The path-label α is quasiperiodic if and only if there exists an
ancestor node u 6= v of v in T (S) with path-label β that for ` = 1 or ` = 2
satisfies the following two conditions.

1. Both i` and i` + |α| − |β| belong to a coalescing run R at u, and

2. for all i′, i′′ ∈ LL(u), |i′ − i′′| > |β|/2.

Proof. If α is superprimitive, then no string β covers α, i.e. there exists no
node u in T (S) where C(u) includes a run containing both i` and i`+ |α|− |β|
for ` = 1 or ` = 2. If α is quasiperiodic, then we argue that the quasiperiod β
of α satisfies 1 and 2. Since β is superprimitive, 2 is satisfied by Lemma 2.
Since β is the quasiperiod of α, we by Lemma 4 have that β is the path-label
of a node u in T (S). Since β = S[i1 .. i1 + |β|−1] = S[i2 .. i2 + |β|−1] = S[i1 +
|α|−|β| .. i1 + |α|−1] = S[i2 + |α|−|β| .. i2 + |α|−1] and S[i1 + |α|] 6= S[i2 + |α|]
then either S[i1+|α|] 6= S[i1+|β|] or S[i2+|α|] 6= S[i2+|β|], which implies that
either i1 and i1 + |α| − |β| are in a coalescing run at u, or i2 and i2 + |α| − |β|
are in a coalescing run at u. 2

Theorem 2 A triple (i, j, |α|) describes a MQS in S if and only if the follow-
ing three requirements are satisfied

1. There exists a non-leaf node v in T (S) with path-label α.

6

31

13 41

5 25 37 44

7 17 30 35 42 49

14 21

Figure 2: A height-balanced tree.

2. The path-label α is superprimitive.

3. There exists a coalescing run R from i to j at v.

Proof. The theorem follows directly from the definition of MQS, Lemma 3 and
Lemma 5. 2

4 Searching and merging height-balanced trees

In this section we consider various operations on height-balanced binary trees,
e.g. AVL-trees [1], and present an extension of the well-known “smaller-half
trick” which implies a non-trivial bound on the time it takes to perform a
sequence of operations on height-balanced binary trees. This bound is essen-
tial to the running time of our algorithm for finding maximal quasiperiodic
substrings to be presented in the next section.

A height-balanced tree is a binary search tree where each node stores an
element from a sorted list, such that for each node v, the elements in the left
subtree of v are smaller than the element at v, and the elements in the right
subtree of v are larger than the element at v. A height-balanced tree satisfies
that for each node v, the heights of the left and right subtree of v differ by at
most one. Figure 2 shows a height-balanced tree with 15 elements. A height-
balanced tree with n elements has height O(log n), and element insertions,
deletions, and membership queries can be performed in time O(log n), where
updates are based on performing left and right rotations in the tree. We refer
to [2] for further details.

For a sorted list L = (x1, . . . , xn) of n distinct elements, and an element x
and a value δ, we define the following functions which capture the notation of
predecessors and successors of an element, and the notation of ∆-predecessors
and ∆-successors which in Section 5 will be used to compute the head and

7

315 49

6

135 30

6

4135 49

5

55 7

2

2514 30

5

3735 37

2

4442 49

5

7 1714 21

4

30 35 42 49

14 21

Figure 3: An extended height-balanced tree. Each node with at least one
child is annotated with min (left), max (right) and max-gap (bottom). The
emphasized path is the search path for ∆-Pred(T, 4, 42)

the tail of a coalescing run.

pred(L, x) = max{y ∈ L | y ≤ x} ,
succ(L, x) = min{y ∈ L | y ≥ x} ,

max-gap(L) = max{0, x2 − x1, x3 − x2, . . . , xn − xn−1} ,
∆-pred(L, δ, x) = min{y ∈ L | y ≤ x ∧ max-gap(L ∩ [y, x]) ≤ δ} ,
∆-succ(L, δ, x) = max{y ∈ L | y ≥ x ∧ max-gap(L ∩ [x, y]) ≤ δ} .

If L = (5, 7, 13, 14, 17, 21, 25, 30, 31), then pred(L, 20) = 17, succ(L, 20) = 21,
max-gap(L) = 13 − 7 = 6, ∆-pred(L, 4, 20) = 13, and ∆-succ(L, 4, 20) = 25.
Note that pred(L, x) = ∆-pred(L, 0, x) and succ(L, x) = ∆-succ(L, 0, x).

In this section we consider an extension of hight-balanced trees where each
node v in addition to key(v), height(v), left(v), right(v), and parent(v), which
respectively stores the element at v, the height of the subtree Tv rooted at v,
pointers to the left and right children of v and a pointer to the parent node
of v, also stores the following information: previous(v) and next(v) are pointers
to the nodes which store the immediate predecessor and successor elements of
key(v) in the sorted list, min(v) and max(v) are pointers to the nodes storing
the smallest and largest elements in the subtree rooted at v, and max-gap(v)
is the value of max-gap applied to the list of all elements in the subtree Tv
rooted at v. The extended height-balanced tree for the tree in Figure 2 is
shown in Figure 3 (previous and next pointers are omitted in the figure).

If v has a left child v1, min(v) points to min(v1). Otherwise min(v) points
to v. Symmetrically, if v has a right child v2, max(v) points to max(v2).
Otherwise max(v) points to v. If v stores element e and has a left child v1 and

8

a right child v2, then max-gap(v) can be computed as

max-gap(v) = max{0,max-gap(v1),max-gap(v2),

key(v)− key(max(v1)), key(min(v2))− key(v)} . (1)

If v1 and/or v2 do not exist, then the expression is reduced by removing the
parts of the expression involving the missing nodes/node. The equation can be
used to recompute the information at nodes being rotated when rebalancing
a height-balanced search tree. Similar to the function max-gap(L) and the
operation max-gap(v), we can define and support the function min-gap(L)
and the operation min-gap(v).

The operations we consider supported for an extended height-balanced
tree T are the following, where e1, . . . , ek denotes a sorted list of k distinct
elements. The output of the four last operations is a list of k pointers to
nodes in T containing the answer to each search key ei.

• MultiInsert(T, e1, . . . , ek) inserts (or merges) the k elements into T .

• MultiPred(T, e1, . . . , ek) for each ei finds pred(T, ei).

• MultiSucc(T, e1, . . . , ek) for each ei finds succ(T, ei).

• Multi-∆-Pred(T, δ, e1, . . . , ek) for each ei finds ∆-pred(T, δ, ei).

• Multi-∆-Succ(T, δ, e1, . . . , ek) for each ei finds ∆-succ(T, δ, ei).

We merge two height-balanced trees T and T ′, |T | ≥ |T ′|, by inserting the
elements in T ′ into T , i.e. MultiInsert(T, e1, e2, . . . , ek) where e1, e2, . . . , ek are
the elements in T ′ in sorted order. The following theorem states the running
time of the operations.

Theorem 3 Each of the operations MultiInsert, MultiPred, MultiSucc, Multi-
∆-Pred, and Multi-∆-Succ can be performed in time O(k ·max{1, log(n/k)}),
where n is the size of the tree and k the number elements to be inserted or
searched for.

Proof. If k ≥ n, then we can in time O(n) convert T to a linear list and answer
all multi-queries by performing a linear scan of the list of elements from T and
the list (e1, . . . , ek). MultiInsert can be performed in time O(n) by merging the
two lists and building a new height-balanced tree. In the following we without
loss of generality assume k ≤ n.

Brown and Tarjan in [10] show how to merge two (standard) height-
balanced trees in time O(k ·max{1, log(n/k)}), especially their algorithm per-
forms k top-down searches in time O(k ·max{1, log(n/k)}). Since a search for
an element e either finds the element e or the predecessor/successor of e it
follows that MultiPred and MultiSucc can be computed in time O(k · max{1,

9

log(n/k)}) using the previous and next pointers. The implementation of Mul-
tiInsert follows from the algorithm of [10] by observing that only the O(k ·
max{1, log(n/k)}) nodes visited by the merging need to have their associ-
ated min, max and max-gap information recomputed due to the inserted el-
ements, and the recomputation can be done in a traversal of these nodes in
time O(k ·max{1, log(n/k)}) using Equation 1.

We now consider the Multi-∆-Pred operation. The Multi-∆-Succ operation
is implemented symmetrically to the Multi-∆-Pred operation, and the details of
Multi-∆-Succ are therefore omitted. The first step of Multi-∆-Pred is to apply
MultiPred, such that for each ei we find the node vi with key(vi) = pred(T, ei).
By definition ∆-pred(T, δ, ei) = ∆-pred(T, δ, key(vi)). Figure 4 contains code
for computing ∆-pred(T, δ, key(vi)). The procedure ∆-pred(v, δ) finds for a
node v in T the node v′ with key(v′) = ∆-pred(T, δ, key(v)). The procedure
uses the two recursive procedures ∆-pred-max(v, δ) and ∆-pred-min(v, δ) which
find nodes v′ and v′′ satisfying respectively key(v′) = ∆-pred(Tv, δ, key(max(v)))
and key(v′′) = ∆-pred(T, δ, key(min(v))). Note that ∆-pred-max only has
search domain Tv. The search ∆-pred(v, δ) basically proceeds in two steps:
in the first step a path from v is followed upwards to some ancestor w of v
using ∆-pred-min, and in the second step a path is followed from w to the
descended of w with key ∆-pred(T, δ, key(v)) using ∆-pred-max. See Figure 3
for a possible search path.

A ∆-predecessor search can be done in time O(log n), implying that we can
find k ∆-predecessors in time O(k log n). To improve this time bound we apply
dynamic programming. Observe that each call to ∆-pred-min corresponds
to following a child-parent edge and each call to ∆-pred-max corresponds to
following a parent-child edge. By memorizing the results of the calls to ∆-pred-
min and ∆-pred-max it follows that each edge is “traversed” in each direction
at most once, that all calls to ∆-pred-min and textsf∆-pred-max correspond
to edges in at most k leaf-to-root paths.

From [10, Lemma 6] we have the statement: If T is a height-balanced tree
with n nodes, and T ′ is a subtree of T with at most k leaves, then T ′ contains
O(k·max{1, log(n/k)}) nodes and edges. We conclude that Multi-∆-Pred takes
time O(k ·max{1, log(n/k)}), since the time required for the k calls to ∆-Pred
is O(k) plus the number of non-memorized recursive calls. 2

The “smaller-half trick” states that if each node v in a binary tree supplies
a term O(k), where k is the number of leaves in the smallest subtree rooted
at a child of v, then the sum over all terms is O(N logN). The “smaller-half
trick” is essential to the running time of several methods for finding tandem
repeats [6, 11, 26]. Our method for finding maximal quasiperiodic substrings
uses a stronger version of the “smaller-half trick” hinted at in [22, Exercise 35]
and stated in Lemma 6. The lemma implies that we at every node in a binary

10

proc ∆-pred(v, δ)
if left(v) 6= nil and key(v)− key(max(left(v))) > δ

return v

if left(v) = nil or max-gap(left(v)) ≤ δ
return ∆-pred-min(v, δ)

return ∆-pred-max(left(v), δ)

proc ∆-pred-max(v, δ)
if right(v) 6= nil and (max-gap(right(v)) > δ or key(min(right(v))) − key(v) > δ)

return ∆-pred-max(right(v), δ))
if left(v) = nil or (key(v)− key(max(left(v))) > δ

return v

return ∆-pred-max(left(v), δ))

proc ∆-pred-min(v, δ)
if parent(v) = nil

return min(v)
if v = left(parent(v))

return ∆-pred-min(parent(v), δ)
if key(min(v)) − key(parent(v)) > δ

return min(v)
if left(parent(v)) 6= nil and key(parent(v)) − key(max(left(parent(v)))) > δ

return parent(v)
if left(parent(v)) 6= nil and max-gap(left(parent(v))) > δ

return ∆-pred-max(left(parent(v)), δ))
return ∆-pred-min(parent(v), δ)

Figure 4: Code for computing the ∆-predecessor of a node in an extended
height-balanced tree.

tree with N leaves can perform a fixed number of the operations stated in
Theorem 3, with n and k as stated in the lemma, in total time O(N logN).

Lemma 6 If each internal node v in a binary tree with N leaves supplies a
term O(k log(n/k)), where n is the number of leaves in the subtree rooted at v
and k ≤ n/2 is the number of leaves in the smallest subtree rooted at a child
of v, then the sum over all terms is O(N logN).

Proof. As the terms are O(k log(n/k)) we can find constants, a and b, such
that the terms are upper bounded by a+ bk log(n/k). We will by induction in
the number of leaves of the binary tree prove that the sum is upper bounded
by (N − 1)a+ bN logN = O(N logN).

11

If the tree is a leaf then the upper bound holds vacuously. Now assume
inductively that the upper bound holds for all trees with at most N−1 leaves.
Consider a tree with N leaves where the number of leaves in the subtrees
rooted at the two children of the root are k and N − k where 0 < k ≤ N/2.
According to the induction hypothesis the sum over all nodes in these two
subtrees, i.e. the sum over all nodes of in the tree except the root, is bounded
by (k − 1)a+ bk log k+ ((N − k)− 1)a+ b(N − k) log(N − k). The the entire
sum is thus bounded by

a+ bk log(N/k) + (k − 1)a+bk log k + ((N − k)− 1)a+ b(N − k) log(N − k)

= (N − 1)a+ bk logN + b(N − k) log(N − k)

< (N − 1)a+ bk logN + b(N − k) logN

= (N − 1)a+ bN logN

which proves the lemma. 2

5 Algorithm

The algorithm to find all maximal quasiperiodic substrings in a string S first
constructs the suffix tree T (S) of S in time O(n) using any existing suffix tree
construction algorithm, e.g. [13, 21, 29, 30], and then processes T (S) in two
phases. Each phase involves one or more traversals of T (S). In the first phase
the algorithm identifies all nodes of T (S) with a superprimitive path-label. In
the second phase the algorithm reports the maximal quasiperiodic substrings
in S. This is done by reporting the coalescing runs at the nodes which in the
first phase were identified to have superprimitive path-labels.

To identify nodes with superprimitive path-labels we apply the concepts of
questions, characteristic occurrences of a path-label, and sentinels of a node.
Let v be a non-leaf node in T (S) and u 6= v an ancestor node of v in T (S).
Let v1 and v2 be the two leftmost children of v, and i1 = min(LL(v1)) and
i2 = min(LL(v2)). A question posed to u is a triple (i, j, v) where i ∈ LL(v) ⊂
LL(u) and j = i+ |L(v)| − |L(u)| ∈ LL(u), and the answer to the question is
true if and only if i and j are in the same coalescing run at u. We define the two
occurrences of L(v) at positions i1 and i2 to be the characteristic occurrences
of L(v), and define the sentinels v̂1 and v̂2 of v as the positions immediately
after the two characteristic occurrences of L(v), i.e. v̂1 = i1 + |L(v)| and
v̂2 = i2 + |L(v)|. Since i1 and i2 are indices in leaf-lists of two distinct children
of v, we have S[v̂1] 6= S[v̂2]. In the following we let SL(v) be the list of the
sentinels of the nodes in the subtree rooted at v in T (S). Since there are two
sentinels for each non-leaf node |SL(v)| ≤ 2|LL(v)| − 2.

Theorem 1 implies the following technical lemma which forms the basis for
detecting nodes with superprimitive path-labels in T (S).

12

Lemma 7 The path-label L(v) is quasiperiodic if and only if there exists a
sentinel v̂ of v, and an ancestor w of v (possibly w = v) for which there exists
j ∈ LL(w)∩]v̂−2·min-gap(LL(w)) ; v̂[such that (v̂−|L(v)|, j, v) is a question
that can be posed and answered successfully at an ancestor node u 6= v of w
(possibly u = w) with |L(u)| = v̂ − j and min-gap(LL(u)) > |L(u)|/2.

Proof. If there exists a question (v̂−|L(v)|, v̂−|L(u)|, v) that can be answered
successfully at u, then v̂ − |L(v)| and v̂ − |L(u)| are in the same run at u, i.e.
L(u) covers L(v) and L(v) is quasiperiodic.

If L(v) is quasiperiodic, we have from Theorem 1 that there for i` =
v̂`−|L(v)|, where ` = 1 or ` = 2, exists an ancestor node u 6= v of v where both
i` and i`+|L(v)|−|L(u)| belong to a coalescing run at u and min-gap(LL(u)) >
|L(u)|/2. The lemma follows by letting w = u and j = v̂` − |L(u)|. 2

Since j and v̂ uniquely determines the question (v̂ − |L(v)|, j, v), it fol-
lows that in order to decide the superprimitivity of all nodes it is sufficient
for each node w to find all pairs (v̂, j) where v̂ ∈ SL(w) and j ∈ LL(w) ∩
]v̂ − 2 ·min-gap(LL(w)) ; v̂[, or equivalently j ∈ LL(w) and v̂ ∈ SL(w) ∩
]j ; j + 2 ·min-gap(LL(w))[. Furthermore, if v̂ and j result in a question at w,
but j ∈ LL(w′) and v̂ ∈ SL(w′) for some child w′ of w, then v̂ and j result
in the same question at w′ since min-gap(LL(w′)) ≥ min-gap(LL(w)), i.e. we
only need to find all pairs (v̂, j) at w where v̂ and j come from two distinct
children of w. We can now state the details of the algorithm.

Phase I – Marking nodes with quasiperiodic path-labels

In Phase I we mark all nodes in T (S) that have a quasiperiodic path-label
by performing three traversals of T (S). We first make a depth-first traver-
sal of T (S) where we for each node v compute min-gap(LL(v)). We do this
by constructing for each node v a search tree TLL(v) that stores LL(v) and
supports the operations in Section 4. In particular the root of TLL(v) should
store the value min-gap(TLL(v)) to be assigned to v. If v is a leaf, TLL(v)
only contains the index annotated to v. If v is an internal node, we con-
struct TLL(v) by merging the TLL trees of the children of v from left-to-right
when these have been computed. If the children of v are v1, . . . , vk we merge
TLL(v1), . . . , TLL(vi+1) by performing a binary merge of TLL(vi+1) with the
result of merging TLL(v1), . . . , TLL(vi). As a side effect of computing TLL(v)
the TLL trees of the children of v are destroyed. We pose and answer ques-
tions in two traversals of T (S) explained below as Step 1 and Step 2. For each
node v we let Q(v) contain the list of questions posed at v. Inititially Q(v) is
empty.

13

Step 1 (Generating questions) In this step we perform a depth-first
traversal of T (S). At each node v we construct search trees TLL(v) and TSL(v)
which store respectively LL(v) and SL(v) and support the operations men-
tioned in Section 4. For a non-leaf node v with leftmost children v1 and v2, we
compute the sentinels of v as v̂1 = min(TLL(v1)) and v̂2 = min(TLL(v2)). The
TLL trees need to be recomputed since these are destroyed in the first traversal
of T (S). The computation of TSL(v) is done similarly to the computation of
TLL(v) by merging the TSL lists of the children of v from left-to-right, except
that after the merging the TSL trees of the children we also need to insert the
two sentinels v̂1 and v̂2 in TSL(v).

We visit node v, and call it the current node, when the TLL and TSL trees
at the children of v are available. During the depth-first traversal we maintain
an array depth such that depth(k) is a reference to the node u on the path from
the current node to the root with |L(u)| = k if such a node exists. Otherwise
depth(k) has the value undef. We maintain depth by setting depth(|L(u)|) to u
when we arrive at u from its parent, and setting depth(|L(u)|) to undef when
we return from u to its parent.

When v is the current node we have from Lemma 7 that it is sufficient
to generate questions for pairs (ŵ, j) where ŵ and j come from two different
children of v. We do this while merging the TLL and TSL trees of the children.
Let the children of v be v1, . . . , vk. Assume LLi = LL(v1) ∪ · · · ∪ LL(vi) and
SLi = SL(v1) ∪ · · · ∪ SL(vi) has been computed as TLLi and TSLi and we
are in the process of computing LLi+1 and SLi+1. The questions we need
to generate while computing LLi+1 and SLi+1 are those where j ∈ LLi and
ŵ ∈ SL(vi+1) or j ∈ LL(vi+1) and ŵ ∈ SLi. Assume j ∈ TLL and ŵ ∈ TSL,
where either TLL = TLLi and TSL = TSL(vi+1) or TLL = TLL(vi+1) and
TSL = TSLi . There are two cases. If |TLL| ≤ |TSL| we locate each j ∈ TLL
in TSL by performing a MultiSucc operation. Using the next pointers we can
then for each j report those ŵ ∈ TSL where ŵ ∈]j ; j + min-gap(v)[. If
|TLL| > |TSL| we locate each ŵ ∈ TSL in TLL by performing a MultiPred
operation. Using the previous pointers we can then for each ŵ report those
j ∈ TSL where j ∈]ŵ −min-gap(v) ; ŵ[. The two sentinels v̂1 and v̂2 of v
are handled similarly to the later case by performing two searches in TLL(v)
and using the previous pointers to generate the required pairs involving the
sentinels v̂1 and v̂2 of v.

For a pair (ŵ, j) generated at the current node v we generate a question
(ŵ−|L(w)|, j, w) about descendent w of v with sentinel ŵ and pose the question
at ancestor u = depth(ŵ − j) by inserting (ŵ − |L(w)|, j, w) into Q(u). If u
does not exists, i.e. depth(ŵ − j) is undef, or min-gap(LL(u)) ≤ |L(u)|/2 then
no question is posed.

14

Step 2 (Answering questions) Let Q(v) be the set of questions posed at
node v in Step 1. If there is a coalescing run R in C(v) and a question (i, j, w)
in Q(v) such that minR ≤ i < j ≤ maxR, then i and j are in the same
coalescing run at v and we mark node w as having a quasiperiodic path-label.

We identify each coalescing run R in C(v) by the tuple (minR,maxR). We
answer question (i, j, w) in Q(v) by deciding if there is a run (minR,maxR)
in C(v) such that minR ≤ i < j ≤ maxR. If the questions (i, j, w) in Q(v)
and runs (minR,maxR) in C(v) are sorted lexicographically, we can answer
all questions by a linear scan through Q(v) and C(v). In the following we
describe how to generate C(v) in sorted order and how to sort Q(v).

Constructing coalecsing runs The coalescing runs are generated in a
traversal of T (S). At each node v we construct TLL(v) storing LL(v). We
construct TLL(v) by merging the TLL trees of the children of v from left-to-
right. A coalescing run R in LL(v) contains an index from at least two distinct
children of v, i.e. there are indices i′ ∈ LL(v1) and i′′ ∈ LL(v2) in R for two
distinct children v1 and v2 of v such that i′ < i′′ are neighbors in LL(v) and
i′′ − i′ ≤ |L(v)|. We say that i′ is a seed of R. We identify R by the tuple
(minR,maxR). We have minR = ∆-pred(LL(v), |L(v)|, i′) and maxR = ∆-
succ(LL(v), |L(v)|, i′).

To construct C(v) we collect seeds ir1 , ir2 , . . . , irk of every coalescing run
in LL(v) in sorted order. This done by checking while merging the TLL trees
of the children of v if an index gets a new neighbor in which case the in-
dex can be identified as a seed. Since each insertion at most generates two
seeds we can collect all seeds into a sorted list while performing the merg-
ing. From the seeds we can compute the first and last index of the coa-
lesing runs by doing Multi-∆-Pred(TLL(v), |L(v)|, ir1 , ir2 , . . . , irk) and Multi-
∆-Succ(TLL(v), |L(v)|, ir1 , ir2 , . . . , irk). Since we might have collected several
seeds of the same run, the list of coalescing runs R1, R2, . . . , Rk might contain
duplets which can be removed by reading through the list once. Since the
seeds is collected in sorted order, the resulting list of runs is also sorted.

Sorting the questions We collect the elements in Q(v) for every node v
in T (S) into a single list Q that contains all question (i, j, w) posed at nodes
in T (S). We annotate every element in Q with the node v it was collected
from. By construction every question (i, j, w) posed at a node in T (S) satisfies
that 0 ≤ i < j < n. We can thus sort the elements in Q lexicographically
with respect to i and j using radix sort. After sorting the elements in Q we
distribute the questions back to the proper nodes in sorted order by a linear
scan through Q.

15

Phase II – Reporting maximal quasiperiodic substrings

After Phase I all nodes that have a quasiperiodic path-label are marked, i.e.
all unmarked nodes are nodes that have a superprimitive path-label. By The-
orem 2 we report all maximal quasiperiodic substrings by reporting the coa-
lescing runs at every node that has a superprimitive path-label. In a traversal
of the marked suffix tree we as in Phase I construct C(v) at every unmarked
node and report for every R in C(v) the triple (minR,maxR, |L(v)|) that
identifies the corresponding maximal quasiperiodic substring.

6 Running time

In every phase of the algorithm we traverse the suffix tree and construct at
each node v search trees that stores LL(v) and/or SL(v). At every node v we
construct various lists by considering the children of v from left-to-right and
perform a constant number of the operations in Theorem 3. Since the overall
merging of information in T (S) is done by binary merging we by Lemma 6
have that this amounts to time O(n log n) in total. To generate and answer
questions we use time proportional to the total number of questions generated.
Lemma 8 state that the number of questions is bounded by O(n log n). We
conclude that the running time of the algorithm is O(n log n).

Lemma 8 At most O(n log n) questions are generated.

Proof. We prove that each of the 2n sentinels can at most result in the genera-
tion of O(log n) questions. Consider a sentinel ŵ of node w and assume that it
generates a question (ŵ−|L(w)|, j, w) at node v. Since ŵ− j < 2 ·min-gap(v),
j is either pred(LL(v), ŵ − 1) (a question of Type A) or the left neighbor of
pred(LL(v), ŵ − 1) in LL(v) (a question of Type B). For ŵ we first consider
all indices resulting in questions of Type A along the path from w to the root.
Note that this is an increasing sequence of indices. We now show that the
distance of ŵ to the indices is geometrically decreasing, i.e. there are at most
O(log n) questions generated of Type A. Let j and j′ be two consecutive in-
dices resulting in questions of Type A at node v and at an ancestor node u of
v. Since j < j′ < ŵ and j′ − j ≥ min-gap(u) and ŵ − j′ < 2 ·min-gap(u), we
have that ŵ− j′ < 2

3(ŵ− j). Similarly we can bound the number of questions
generated of Type B for sentinel ŵ by O(log n). 2

7 Achieving linear space

Storing the suffix tree T (S) uses space O(n). During a traversal of the suffix
tree we construct search trees as explained. Since no element, index or sentinel,

16

at any time is stored in more than a constant number of search trees, storing
the search trees uses spaceO(n). Unfortunately, storing the sets C(v) andQ(v)
of coalescing runs and questions at every node v in the suffix tree uses space
O(n log n). To reduce the space consumption we must thus avoid to store C(v)
and Q(v) at all nodes simultaneously. The trick is to modify Phase I to
alternate between generating and answering questions.

We observe that generating questions and coalescing runs (Step 1 and the
first part of Step 2) can be done in a single traversal of the suffix tree. This
traversal is Part 1 of Phase I. Answering questions (the last part of Step 1)
is Part 2 of Phase I. To reduce the space used by the algorithm to O(n) we
modify Phase I to alternate in rounds between Part 1 (generating questions
and coalescing runs) and Part 2 (answering questions).

We say that node v is ready if C(v) is available and all questions from
it has been generated, i.e. Part 1 has been performed on it. If node v is
ready then all nodes in its subtree are ready. Since all questions to node v
are generated at nodes in its subtree, this implies that Q(v) is also available.
By definition no coalescing runs are stored at non-ready nodes and Lemma 9
states that only O(n) questions are stored at non-ready nodes. In a round
we produce ready nodes (perform Part 1) until the number of questions plus
coalescing runs stored at nodes readied in the round exceed n, we then answer
the questions (perform Part 2) at nodes readied in the round. After a round
we dispose questions and coalescing runs stored at nodes readied in the round.
We continue until all nodes in the suffix tree have been visited.

Lemma 9 There are at most O(n) questions stored at non-ready nodes.

Proof. Let v be a node in T (S) such that all nodes on the path from v to
the root are non-ready. Consider a sentinel ŵ corresponding to a node in
the subtree rooted at v. Assume that three questions (ŵ − |L(w)|, j′, w),
(ŵ − |L(w)|, j′′, w) and (ŵ − |L(w)|, j′′′, w) where j′ < j′′ < j′′′, because
of ŵ have been posed to ancestors of v, i.e. non-ready nodes. Consider
node u = depth(ŵ − j′). Since question (ŵ − |L(w)|, j′, w) is posed at u,
min-gap(LL(u)) > |L(u)|/2. Since j′, j′′, j′′′ ∈ LL(u) and j′′′ − j′ ≤ ŵ − j′ =
|L(u)|, min-gap(LL(u)) ≤ min{j′′ − j′, j′′′ − j′′} ≤ |L(u)|/2. This contradicts
that min-gap(LL(u)) > |L(u)|/2 and shows that each sentinel has generated
at most two questions to non-ready nodes. The lemma follows because there
are at most 2n sentinels in total. 2

Alternating between Part 1 and Part 2 clearly results in generating and
answering the same questions as if Part 1 and Part 2 were performed with-
out alternation. The correctness of the algorithm is thus unaffected by the
modification of Phase I. Now consider the running time. The running time
of a round can be divided into time spent on readying nodes (Part 1) and

17

time spent on answering questions (Part 2). The total time spent on readying
nodes is clearly unaffected by the alternation. To conclude the same for the
total time spent on answering questions, we must argue that the time spend
on sorting the posed questions in each round is proportional to the time oth-
erwise spend in the round. The crucial observation is that each round takes
time Ω(n) for posing questions and identifying coalescing runs, implying that
the O(n) term in each radix sorting is neglectable. We conclude that the run-
ning time is unaffected by the modification of Phase I. Finally consider the
space used by the modified algorithm. Besides storing the suffix tree and the
search trees which uses space O(n), it only stores O(n) questions and coalesc-
ing runs at nodes readied in the current round (by construction of a round)
and O(n) questions at non-ready nodes (by Lemma 9). In summary we have
the following theorem.

Theorem 4 All maximal quasiperiodic substrings of a string of length n can
be found in time O(n log n) and space O(n).

8 Conclusion

We have presented an algorithm that finds all maximal quasiperiodic sub-
strings of a string of length n in time O(n log n) and space O(n). Besides
improving on a previous algorithm by Apostolico and Ehrenfeucht, the al-
gorithm demonstrates the usefulness of suffix trees combined with efficient
methods for merging and performing multiple searches in search trees. We
believe that the techniques presented in this paper could also be useful in
improving the running time of the algorithm for the string statistic problem
presented by Apostolico and Preparata [7] to O(n log n).

References

[1] G. M. Adel’son-Vel’skii and Y. M. Landis. An algorithm for the organi-
zation of information. Doklady Akademii Nauk SSSR, 146:263–266, 1962.
English translation in Soviet Math. Dokl., 3:1259–1262.

[2] A. V. Aho, J. E. Hopcraft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison–Wesley, Reading, Massachusetts, 1974.

[3] A. Apostolico and D. Breslauer. Of periods, quasiperiods, repetitions and
covers. In A selection of essays in honor of A. Ehrenfeucht, volume 1261
of Lecture Notes in Computer Science. Springer, 1997.

[4] A. Apostolico and A. Ehrenfeucht. Efficient detection of quasiperiodicities
in strings. Theoretical Computer Science, 119:247–265, 1993.

18

[5] A. Apostolico, M. Farach, and C. S. Iliopoulos. Optimal superprimitivity
testing for strings. Information Processing Letters, 39:17–20, 1991.

[6] A. Apostolico and F. P. Preparata. Optimal off-line detection of repeti-
tions in a string. Theoretical Computer Science, 22:297–315, 1983.

[7] A. Apostolico and F. P. Preparata. Data structures and algorithms for
the string statistics problem. Algorithmica, 15:481–494, 1996.

[8] D. Breslauer. An on-line string superprimitivity test. Information Pro-
cessing Letters, 44:345–347, 1992.

[9] G. S. Brodal, R. B. Lyngsø, C. N. S. Pedersen, and J. Stoye. Finding
maximal pairs with bounded gap. In Proceedings of the 10th Annual
Symposium on Combinatorial Pattern Matching (CPM), volume 1645 of
Lecture Notes in Computer Science, pages 134–149, 1999.

[10] M. R. Brown and R. E. Tarjan. A fast merging algorithm. Journal of the
ACM, 26(2):211–226, 1979.

[11] M. Crochemore. An optimal algorithm for computing the repetitions in
a word. Information Processing Letters, 12(5):244–250, 1981.

[12] M. Crochemore. Transducers and repetitions. Theoretical Computer Sci-
ence, 45:63–86, 1986.

[13] M. Farach. Optimal suffix tree construction with large alphabets. In
Proceedings of the 38th Annual Symposium on Foundations of Computer
Science (FOCS), pages 137–143, 1997.

[14] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Sci-
ence and Computational Biology. Cambridge University Press, 1997.

[15] D. Gusfield and J. Stoye. Linear time algorithms for finding and repre-
senting all the tandem repeats in a string. Technical Report CSE-98-4,
Department of Computer Science, UC Davis, 1998.

[16] C. S. Iliopoulos and L. Mouchard. Quasiperiodicity: from detection to
normal form. Journal of Automata, Languages and Combinatorics, 1999.
To appear.

[17] R. Kolpakov and G. Kucherov. Maximal repetitions in words or how to
find all squares in linear time. Technical Report 98-R-227, LORIA, 1998.

[18] S. R. Kosaraju. Computation of squares in a string. In Proceedings of
the 5th Annual Symposium on Combinatorial Pattern Matching (CPM),
volume 807 of Lecture Notes in Computer Science, pages 146–150, 1994.

19

[19] M. G. Main and R. J. Lorentz. An O(n log n) algorithm for finding all
repetitions in a string. Journal of Algorithms, 5:422–432, 1984.

[20] M. G. Main and R. J. Lorentz. Linear time recognition of squarefree
strings. In A. Apostolico and Z. Galil, editors, Combinatorial Algorithms
on Words, volume F12 of NATO ASI Series, pages 271–278. Springer,
Berlin, 1985.

[21] E. M. McCreight. A space-economical suffix tree construction algorithm.
Journal of the ACM, 23(2):262–272, 1976.

[22] K. Mehlhorn. Sorting and Searching, volume 1 of Data Structures and
Algorithms. Springer-Verlag, 1994.

[23] K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and
Geometric Computing. Cambridge University Press, 1999. To appear.
See http://www.mpi-sb.mpg.de/∼mehlhorn/LEDAbook.html.

[24] D. Moore and W. F. Smyth. Computing the covers of a string in linear
time. In Proceedings of the 5th Annual Symposium on Discrete Algorithms
(SODA), pages 511–515, 1994.

[25] M. Rabin. Discovering repetitions in strings. In A. Apostolico and
Z. Galil, editors, Combinatorial Algorithms on Words, volume F12 of
NATO ASI Series, pages 279–288. Springer, Berlin, 1985.

[26] J. Stoye and D. Gusfield. Simple and flexible detection of contiguous
repeats using a suffix tree. In Proceedings of the 9th Annual Symposium
on Combinatorial Pattern Matching (CPM), volume 1448 of Lecture Notes
in Computer Science, pages 140–152, 1998.

[27] A. Thue. Über unendliche Zeichenreihen. Skrifter udgivne af Videnskabs-
Selskabet i Christiania, Mathematisk-Naturvidenskabelig Klasse, 7:1–22,
1906.

[28] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenrei-
hen. Skrifter udgivne af Videnskabs-Selskabet i Christiania, Mathematisk-
Naturvidenskabelig Klasse, 1:1–67, 1912.

[29] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–
260, 1995.

[30] P. Weiner. Linear pattern matching algorithms. In Proceedings of the
14th Symposium on Switching and Automata Theory, pages 1–11, 1973.

20

Recent BRICS Report Series Publications

RS-99-25 Gerth Stølting Brodal and Christian N. S. Pedersen.Finding
Maximal Quasiperiodicities in Strings. September 1999. 20 pp.

RS-99-24 Luca Aceto, Willem Jan Fokkink, and Chris Verhoef.Conser-
vative Extension in Structural Operational Semantics. Septem-
ber 1999. 23 pp. To appear in theBulletin of the EATCS.

RS-99-23 Olivier Danvy, Belmina Dzafic, and Frank Pfenning. On
proving syntactic properties of CPS programs. August 1999.
14 pp. To appear in Gordon and Pitts, editors, 3rd Work-
shop on Higher Order Operational Techniques in Semantics,
HOOTS ’99 Proceedings, ENTCS, 1999.

RS-99-22 Luca Aceto, Zolt́an Ésik, and Anna Ingólfsdóttir. On the Two-
Variable Fragment of the Equational Theory of the Max-Sum
Algebra of the Natural Numbers. August 1999. 22 pp.

RS-99-21 Olivier Danvy. An Extensional Characterization of Lambda-
Lifting and Lambda-Dropping. August 1999. 13 pp. Extended
version of an article to appear in Fourth Fuji International
Symposium on Functional and Logic Programming, FLOPS ’99
Proceedings (Tsukuba, Japan, November 11–13, 1999). This
report supersedes the earlier report BRICS RS-98-2.

RS-99-20 Ulrich Kohlenbach. A Note on Spector’s Quantifier-Free Rule
of Extensionality. August 1999. 5 pp. To appear inArchive for
Mathematical Logic.

RS-99-19 Marcin Jurdziński and Mogens Nielsen. Hereditary History
Preserving Bisimilarity is Undecidable. June 1999. 18 pp.

RS-99-18 M. Oliver Möller and Harald Rueß. Solving Bit-Vector Equa-
tions of Fixed and Non-Fixed Size. June 1999. 18 pp. Re-
vised version of an article appearing under the titleSolving
Bit-Vector Equationsin Gopalakrishnan and Windley, editors,
Formal Methods in Computer-Aided Design: Second Interna-
tional Conference, FMCAD ’98 Proceedings, LNCS 1522, 1998,
pages 36–48.

RS-99-17 Andrzej Filinski. A Semantic Account of Type-Directed Partial
Evaluation. June 1999. To appear in Nadathur, editor,Inter-
national Conference on Principles and Practice of Declarative
Programming, PPDP99 ’99 Proceedings, LNCS, 1999.

