
B
R

IC
S

R
S

-99-23
D

anvy
etal.:

O
n

proving
syntactic

properties
ofC

P
S

program
s

BRICS
Basic Research in Computer Science

On proving syntactic properties of
CPS programs

Olivier Danvy
Belmina Dzafic
Frank Pfenning

BRICS Report Series RS-99-23

ISSN 0909-0878 August 1999

Copyright c© 1999, Olivier Danvy & Belmina Dzafic & Frank
Pfenning.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/23/

On proving syntactic properties of CPS programs ∗

Olivier Danvy and Belmina Dzafic

BRICS †

Department of Computer Science
University of Aarhus ‡

Frank Pfenning

School of Computer Science
Carnegie Mellon University §

August 30, 1999

Abstract

Higher-order program transformations raise new challenges for proving
properties of their output, since they resist traditional, first-order proof
techniques. In this work, we consider (1) the “one-pass” continuation-
passing style (CPS) transformation, which is second-order, and (2) the
occurrences of parameters of continuations in its output. To this end, we
specify the one-pass CPS transformation relationally and we use the proof
technique of logical relations.

∗To be presented at HOOTS99, Paris, France, September 30-October 1, 1999
(http://www.cl.cam.ac.uk/˜ap/hoots)
†Basic Research in Computer Science (http://www.brics.dk),
Centre of the Danish National Research Foundation.
‡Building 540, Ny Munkegade, DK-8000 Aarhus C, Denmark.
E-mail: {danvy,belmina}@brics.dk
§5000 Forbes Ave., Pittsburgh, PA 15213-3891, USA.
E-mail: fp@cs.cmu.edu
This work is supported by NSF Grant CCR-9303383.

1

1 Introduction

We are interested in two syntactic properties of CPS programs: the occurrences
of continuation identifiers and of parameters of continuations. The first occur-
rence formalizes a folklore property in the continuation community that “one
k is enough” [10]. The second occurrence was informally stated in connection
with the direct-style transformation, which is an inverse of the CPS transfor-
mation [3]. We address the second occurrence property here.

CPS programs are typically obtained by CPS transformation, and the canon-
ical CPS transformation is due to Plotkin, in the mid-70’s [17]. It, however, gives
rise to annoying “administrative reductions” that are interleaved with actual re-
ductions. Proving properties of CPS programs such as relating their reduction
steps with the corresponding reduction steps in direct style thus required Plotkin
to develop a so-called “colon translation” [17] which has stuck [12, 19].

In the late 80’s, however, a new CPS transformation was developed that
operates in one pass and performs administrative reductions at transformation
time [1, 6, 23]. This one-pass transformation is higher-order (or more precisely:
second-order), and it is not clear how to prove properties about it, which is our
goal here.

This work. We restate the one-pass CPS transformation in relational form
and we present a proof technique using logical relations to prove a syntactic
property of the output of the CPS transformation. This note grew out of a
general study of the two syntactic properties mentioned above [5, 7, 9].

Overview. The rest of this note is organized as follows. In Section 2, we
present a BNF of the λ-calculus in direct style, the corresponding BNF of the
λ-calculus in CPS, and two successive refinements of the CPS transformation:
Plotkin’s original specification, the one-pass specification in functional form,
and our one-pass specification in relational form. In Section 3, we present the
syntactic property of interest, and we prove that it is satisfied by the output of
the CPS transformation. Section 4 concludes.

2 Direct style, continuation-passing style, and the CPS
transformation

2.1 Direct-style (DS) programs

The BNF of the pure λ-calculus reads as follows. We refer to this λ-calculus
as direct style (DS) to distinguish it from the continuation-passing style (CPS)
calculus introduced below.

r ∈ DRoot — DS terms r ::= e
e ∈ DExp — DS expressions e ::= e0 e1 | t
t ∈ DTriv — DS trivial expressions t ::= x | λx.r
x ∈ Ide — identifiers

2

The distinction between trivial expressions and (serious) expressions origi-
nates in Reynolds’s work [18].

2.2 Continuation-passing style (CPS) programs

The BNF of CPS terms reads as follows. (NB: We distinguish between the
original identifiers x coming from the direct-style term, and the fresh identifiers
k and v denoting continuations and the arguments of continuations.)

r ∈ CRoot — CPS terms r ::= λk.e
e ∈ CExp — CPS (serious) expression e ::= t0 t1 c | c t
t ∈ CTriv — CPS trivial expression t ::= x | λx.r | v
c ∈ CCont — CPS continuations c ::= λv.e | k
x ∈ Ide — source identifiers
k ∈ Cont — fresh continuation identifiers
v ∈ Var — fresh parameters of continuations

CPS terms are remarkable in that they satisfy the three properties of indif-
ference, simulation, and translation [14, 17, 20]. Indifference: CPS terms are
evaluation-order independent. Simulation: the CPS transformation encodes an
evaluation order. Translation: there is an equational correspondence between
direct-style and CPS calculi.

2.3 The CPS transformation

2.3.1 From Plotkin’s CPS transformation to the one-pass CPS trans-
formation

Plotkin’s original call-by-value CPS transformation is displayed in Figure 1,
where it is phrased to match the syntactic domains of Section 2.1 [17]. Us-
ing it as a first-order rewriting system, however, gives rise to the notion of
administrative redexes: redexes solely due to the CPS transformation and not
corresponding to an actual reduction step in the original program. The corre-
sponding administrative reductions are annoying because they are interleaved
with actual reductions [12, 13, 17, 19, 20]:

DS

@AGFactual
reductions

ED�� CPS
transformation // CPS

BCED administrative
+ actual

reductions

GF��
Let us consider the following simple example, using Figure 1.

[[λx.x x]]DRoot = λk.k λx.λk.(λk.k x) (λv0.(λk.k x) (λv1.v0 v1 k))

The CPS-transformed program contains two administrative redexes: the two
occurrences of (λk....) And reducing them yields two more administrative
redexes.

3

[[e]]DRoot = [[e]]DExp

[[e0 e1]]DExp = λk.[[e0]]DExp λv0.[[e1]]DExp λv1.v0 v1 k

where k, v0 and v1 are fresh.

[[t]]DExp = λk.k [[t]]DTriv where k is fresh.

[[x]]DTriv = x

[[λx.r]]DTriv = λx.[[r]]DRoot

Figure 1: Plotkin’s left-to-right, call-by-value CPS transformation

[[·]]DRoot : DRoot→ CRoot

[[e]]DRoot = λk.[[e]]DExp([t] k t) where k is fresh.

[[·]]DExp : DExp→ (CTriv→ CExp)→ CExp

[[e0 e1]]DExp = [κ] [[e0]]DExp [t0] [[e1]]DExp [t1] t0 t1 λv.κ(v)

where v is fresh.

[[t]]DExp = [κ]κ([[t]]DTriv)

[[·]]DTriv : DTriv→ CTriv

[[x]]DTriv = x

[[λx.r]]DTriv = λx.[[r]]DRoot

Figure 2: The one-pass CPS transformation formulated as a function

4

It turns out, however, that administrative reductions can be factored out of
a CPS program, so that the resulting reductions are actual ones:

DS

@AGFactual
reductions

ED �� CPS
transformation // CPS

administrative
reductions // CPS

BCED actual
reductions

GF��
Sabry and Felleisen have documented such an approach [2, 19, 20, 21].

Furthermore, it turns out that CPS transformation and administrative re-
ductions can be integrated into one, higher-order, rewriting system that directly
produces a CPS program without administrative redexes, in one pass [1, 6, 8, 23]:

DS

@AGFactual
reductions

ED �� CPS
transformation

+
administrative

reductions

// CPS

BCED actual
reductions

GF��
Let us revisit the simple example above, using Figure 2.

[[λx.x x]]DRoot = λk.k λx.λk.x x k

We consider this higher-order CPS transformation here, as displayed in Fig-
ure 2, where it is phrased to match the syntactic domains of Sections 2.1 and
2.2. The one-pass CPS transformation requires meta-level abstractions, written
as [t] e, and the corresponding applications, written as κ(t), where κ ranges over
meta-level functions from trivial CPS expressions to CPS expressions. The key
type reads

[[·]]DExp : DExp→ (CTriv→ CExp)→ CExp.

2.4 The one-pass CPS transformation in relational form

For the purpose of our work here, Figure 3 re-expresses the one-pass CPS trans-
formation of Figure 2 in relational form. It uses three judgments. A direct-style
term r is transformed into a CPS term r′ whenever the judgment

` r DRoot−→ r′

is satisfied. Given a (higher-order) accumulator κ, a direct-style expression e is
transformed into a CPS expression e′ whenever the judgment

` e ; κ
DExp−→ e′

is satisfied. Finally, a direct-style trivial expression t is transformed into a CPS
trivial expression t′ whenever the judgment

` t DTriv−→ t′

is satisfied.

5

` e ; [t] k t
DExp−→ e′

` e DRoot−→ λk.e′

` t DTriv−→ t′

` t ; κ
DExp−→ κ(t′)

` e1 ; [t1] t0 t1 λv.κ(v)
DExp−→ e′1 ` e0 ; [t0] e′1

DExp−→ e′

` e0 e1 ; κ
DExp−→ e′

` x DTriv−→ x

` r DRoot−→ r′

` λx.r DTriv−→ λx.r′

Figure 3: The one-pass CPS transformation formulated as a judgment

These judgments can be interpreted operationally by assuming that r, e and
κ, or t are given and r′, e′, and t′ are to be constructed by building a derivation
in a bottom-up fashion. The meta-level applications arising in two of the rules
are reduced administratively.

NB: In the inference rule for applications, t0 is “new”, i.e., the deduction of
the left premise is parametric in t0. This parameter may, however, occur free in
e′1, which means that we can substitute an arbitrary trivial term t for t0 in this

derivation and obtain a derivation of ` e1 ; [t1] t t1 λv.κ(v)
DExp−→ e′1[t/t0]. This

property is exploited crucially in the proof of Section 3.

2.5 Summary and conclusion

We have specified (1) the input language of Plotkin’s left-to-right, call-by-value
CPS transformation, (2) the corresponding output language, which incidentally
is closed under β-reduction, and (3) a one-pass version of Plotkin’s CPS trans-
formation in relational form.

3 A syntactic property of CPS programs

The CPS transformation introduces two classes of fresh identifiers: the contin-
uation identifiers k and the parameters of continuations v. We consider the
occurrences of v’s here.

Figure 4 characterizes the occurrence conditions on the formal parameters
of continuations v, which occur in a stack-like fashion [3]. Here we use Ξ to
range over stacks of continuation parameters defined below, where • denotes

6

• |=CExp
Var e

|=CRoot
Var λk.e

Ξ |=CTriv
Var t ; Ξ′ Ξ′ |=CCont

Var c

Ξ |=CExp
Var c t

Ξ |=CTriv
Var t1 ; Ξ1 Ξ1 |=CTriv

Var t0 ; Ξ0 Ξ0 |=CCont
Var c

Ξ |=CExp
Var t0 t1 c

Ξ |=CTriv
Var x ; Ξ

|=CRoot
Var r

Ξ |=CTriv
Var λx.r ; Ξ Ξ, v |=CTriv

Var v ; Ξ

• |=CCont
Var k

Ξ, v |=CExp
Var e

Ξ |=CCont
Var λv.e

Figure 4: Valid occurrences of parameters of continuations in a CPS term

the empty stack.

Ξ ::= • | Ξ, v

Figure 4 should be read as follows. Given a CPS term λk.e, the judgment

|=CRoot
Var λk.e

is satisfied whenever the parameters of continuations declared in e occur prop-
erly in e. Given a CPS expression e occurring in the scope of parameters of
continuations properly listed in Ξ, the judgment

Ξ |=CExp
Var e

is satisfied whenever the variables in Ξ and all the other parameters of con-
tinuations declared in e occur properly in e. Similarly, given a trivial term t
occurring in the scope of parameters of continuations properly listed in Ξ, the
judgment

Ξ |=CTriv
Var t ; Ξ′

is satisfied whenever Ξ′ is a prefix of Ξ and the remaining variables of Ξ occur
properly in t. And finally, given a continuation c occurring in the scope of

7

parameters of continuations properly listed in a list Ξ, the judgment

Ξ |=CCont
Var c

is satisfied whenever all the parameters of continuations declared in c and the
variables listed in Ξ occur properly in c.

This occurrence condition essentially says that formal parameters of contin-
uations are introduced and used in a stack-like manner.

Let us prove that CPS-transforming a direct-style term r yields a CPS term
r′ whose continuation identifiers satisfy the occurrence conditions of Figure 4.
In other words, we would like to show that

if ` r DRoot−→ r′ then |=CRoot
Var r′.

Clearly, we cannot prove this inductively by itself since properties at the root
of a term are defined in terms of the expressions it contains. The critical issue
is the property of the higher-order accumulators κ we must prove (in the induc-
tive conclusion) and require (in the inductive hypothesis) for the translation of
expressions in Figure 3. In the CPS transformation, a higher-order accumulator
is a (meta-level) function from trivial terms to expressions, which suggests the
method of logical relations [22]. The idea behind binary logical relations is to
consider two functions related if they map related arguments to related results.
In unary form: a function is valid if it maps valid arguments to valid results.
This kind of definition is pervasive in the application of logical frameworks to
meta-theoretic reasoning (e.g., [9, 15]). It works smoothly here.

Four notions of validity arise: for root terms, for serious expressions, for
trivial expressions, and for accumulators. In their definitions, we must account
for the context Ξ in which an expression might occur. For root terms, serious
expressions, and trivial expressions, the notion of validity is derived directly
from the property we are trying to prove; for accumulators it arises from the
considerations of logical relations as motivated above. We also streamline the
definitions by considering separately the case of a trivial variable v, since such
a variable is never the result of the translation of a trivial direct-style term (see
Theorem 2 (3)).

Definition 1

(1) r′ is Var-valid if |=CRoot
Var r′.

(2) e′ is Ξ-Var-valid if Ξ |=CExp
Var e′.

(3) t′ is Var-valid if Ξ |=CTriv
Var t′ ; Ξ for every Ξ.

(4) κ is Ξ-Var-valid if

(a) Ξ, v |=CExp
Var κ(v), and

(b) Ξ |=CExp
Var κ(t′), for any Var-valid t′.

8

(5) c is Ξ-Var-valid if Ξ |=CCont
Var c.

This definition is more complex than it may appear at first, since it involves
meta-level applications κ(v) and κ(t′) and therefore, implicitly, substitution.

Theorem 2

(1) If ` r DRoot−→ r′ then r′ is Var-valid.

(2) If κ is Ξ-Var-valid and ` e ; κ
DExp−→ e′ then e′ is Ξ-Var-valid.

(3) If ` t DTriv−→ t′ then t′ is Var-valid.

Proof: By mutual induction on the derivations R, E , and T of ` r DRoot−→ r′,

` e ; κ
DExp−→ e′, and ` t DTriv−→ t′, respectively.

In a slight abuse of notation, we write e(t0) and E(t0) to indicate the depen-
dence of e or E on a parameter t0 and e(t) and E(t) for the result of substituting
t for t0 in e and E , respectively.

Case R =

E
` e ; [t] k t

DExp−→ e′

` e DRoot−→ λk.e′

Then κ = [t] k t is •-Var-valid:

(a)
•, v |=CTriv

Var v ; •
•, v |=CExp

Var k v
holds, and

(b)
• |=CTriv

Var t′ ; •
• |=CExp

Var k t′
for any Var-valid t′.

Hence, by induction hypothesis (2) on E , • |=CExp
Var e′, and thus |=CRoot

Var

λk.e′.

Case E =

E1(t0)

` e1 ; [t1] t0 t1 λv.κ(v)
DExp−→ e′1(t0)

E0
` e0 ; [t0] e′1(t0)

DExp−→ e′

` e0 e1 ; κ
DExp−→ e′

Assume κ is Ξ-Var-valid. We need to show that κ0 = [t0] e′1(t0) is Ξ-Var-

valid, since then Ξ |=CExp
Var e′ by induction hypothesis (2) on E0. Thus we

need to show Properties (a) and (b) of Definition 1(4) for κ0.

(a) We need Ξ, v0 |=CExp
Var κ0(v0). Consider

E1(v0)

` e1 ; [t1] v0 t1 λv.κ(v)
DExp−→ e′1(v0)

9

We would like to show that

κ1 = [t1] v0 t1 λv.κ(v)

is Ξ, v0-Var-valid, since then e′1(v0) = κ0(v0) is Ξ, v0-Var-valid by
induction hypothesis (2) on E1(v0). Therefore we need to consider
the two cases of Definition 1(4).

(a) Ξ, v0, v1 |=CExp
Var κ1(v1). We derive this as follows:

Ξ, v0, v1 |=CTriv
Var v1 ; Ξ, v0 Ξ, v0 |=CTriv

Var v0 ; Ξ

since κ is Ξ-Var-valid
Ξ, v |=CExp

Var κ(v)

Ξ |=CCont
Var λv.κ(v)

Ξ, v0, v1 |=CExp
Var v0 v1 λv.κ(v)

(b) Ξ, v0 |=CExp
Var κ1(t′1), where t′1 is Var-valid. This is established by

the derivation

since t′1 is Var-valid
Ξ, v0 |=CTriv

Var t′1 ; Ξ, v0 Ξ, v0 |=CTriv
Var v0 ; Ξ

since κ is Ξ-Var-valid
Ξ, v |=CExp

Var κ(v)

Ξ |=CCont
Var λv.κ(v)

Ξ, v0 |=CExp
Var v0 t′1 λv.κ(v)

Thus κ1 is Ξ, v0-Var-valid. Therefore, by induction hypothesis on
E1(v0),

Ξ, v0 |=CExp
Var κ0(v0).

(b) We need Ξ |=CExp
Var κ0(t′0) for any Var-valid t′0. Consider

E1(t′0)

` e1 ; [t1] t′0 t1 λv.κ(v)
DExp−→ e′1(t′0)︸ ︷︷ ︸

= κ0(t′0)

We would like to show that

κ1 = [t1] t′0 t1 λv.κ(v)

is Ξ-Var-valid, so we can apply the induction hypothesis to E1(t′0).
Again, we need to consider the two clauses of Definition 1(4).

(a) Ξ, v1 |=CExp
Var κ1(v1). We derive this as follows:

Ξ, v1 |=CTriv
Var v1 ; Ξ

since t′0 is Var-valid
Ξ |=CTriv

Var t′0 ; Ξ

since κ is Ξ-Var-valid
Ξ, v |=CExp

Var κ(v)

Ξ |=CCont
Var λv.κ(v)

Ξ, v1 |=CExp
Var t′0 v1 λv.κ(v)

10

(b) Ξ |=CExp
Var κ1(t′1) for any Var-valid t′1. We construct:

since t′1 is Var-valid
Ξ |=CTriv

Var t′1 ; Ξ
since t′0 is Var-valid

Ξ |=CTriv
Var t′0 ; Ξ

since κ is Ξ-Var-valid
Ξ, v |=CExp

Var κ(v)

Ξ |=CCont
Var λv.κ(v)

Ξ |=CExp
Var t′0 t

′
1 λv.κ(v)

Hence κ1 is Ξ-Var-valid and thus Ξ |=CExp
Var e′1(t′0)︸ ︷︷ ︸

= κ0(t′0)

by induction

hypothesis (2) on E1(t′0).

Thus κ0 is Ξ-Var-valid. Hence e′ is Ξ-Var-valid by induction hypothesis
(2) on E0.

Case E =

T
` t DTriv−→ t′

` t ; κ
DExp−→ κ(t′)

.

By induction hypothesis (3) on T , t′ is Var-valid. Since we assume that κ
is Ξ-Var-valid, κ(t′) is also Ξ-Var-valid by clause 4b in Definition 1.

Case T =
` x DTriv−→ x

.

Ξ |=CTriv
Var x ; Ξ

is an axiom for any Ξ.

Case T =

R
` r DRoot−→ r′

` λx.r DTriv−→ λx.r′
.

We construct

by i.h. (1) on R
|=CRoot

Var r′

Ξ |=CTriv
Var λx.r′ ; Ξ

.

2

4 Conclusion

We have characterized an occurrence condition in CPS programs, Var-validity,
and we have proven that this condition holds for the output of the one-pass
CPS transformation. To this end, we developed a third-order proof technique
matching the second-order nature of the one-pass CPS transformation.

Elsewhere [5, 9], we investigate another, similar, occurrence condition on
continuation identifiers. Using the same technique, we prove that the one-pass
CPS transformation yields terms that satisfy this other occurrence condition.
We then consider the closure of both occurrence conditions under β-reduction
and their application to the direct-style transformation and to stack-based ab-
stract machines for CPS programs.

11

We have also formalized most of the languages, transformations, properties,
and proofs in Elf, a constraint logic-programming language based on the log-
ical framework LF [9, 11, 16]. This formalization is small but non-trivial. It
captures the computational content of the translations and the meta-theoretic
reasoning in a declarative, yet executable way. Because Elf is built around the
notions of substitution and meta-level function, the formalization is direct and
(we find) elegant. It is also unusual in that since it abstracts over continuations,
it requires third-order constants for the CPS transformation. This exemplifies
a new technique for representing deductive systems in LF, which is interesting
in its own right.

We can summarize this new technique as follows: we translate a two-level
functional presentation to a relational representation in a logical framework by
mapping “static” abstractions and applications directly to meta-level abstrac-
tions and applications. This means that static redexes of a two-level functional
representation become β-redexes in the logical framework. Statically convertible
terms are therefore definitionally equal, avoiding explicit treatment of adminis-
trative reductions. A direct encoding of the meta-theory of such a representation
will be third-order, since we reason about second-order objects.

Examples of two-level functional presentations include all one-pass CPS
transformations, state-passing transformations, etc., and more generally the
one-pass transformation into monadic style [13]. Type-directed partial eval-
uation provides another example of two-level functional presentations [4, 9].

Finally, and most significantly, the encoding suggested the proof technique.
This work thus demonstrates, on a small scale, the value of a logical framework
as a conceptual tool in the theoretical study of programming languages.

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, New York, 1992.

[2] Gilles Barthe, John Hatcliff, and Morten Heine Sørensen. Reflections on
reflections. In Hugh Glaser, H. Hartel, and Herbert Kuchen, editors, Ninth
International Symposium on Programming Language Implementation and
Logic Programming, number 1292 in Lecture Notes in Computer Science,
pages 241–258, Southampton, UK, September 1997. Springer-Verlag.

[3] Olivier Danvy. Back to direct style. Science of Computer Programming,
22(3):183–195, 1994.

[4] Olivier Danvy. Type-directed partial evaluation. Lecture Notes BRICS
LN-98-3, Department of Computer Science, University of Aarhus, Aarhus,
Denmark, December 1998. Extended version.

[5] Olivier Danvy, Belmina Dzafic, and Frank Pfenning. On the occurrence of
continuation parameters in CPS programs. Unpublished note, June 1999.

12

[6] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, December 1992.

[7] Olivier Danvy and Frank Pfenning. The occurrence of continuation parame-
ters in CPS terms. Technical report CMU-CS-95-121, School of Computer
Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, February
1995.

[8] Olivier Danvy and Kristoffer Høgsbro Rose. Higher-order rewriting and
partial evaluation. In Tobias Nipkow, editor, Rewriting Techniques and
Applications, Lecture Notes in Computer Science, Kyoto, Japan, March
1998. Springer-Verlag. Extended version available as the technical report
BRICS-RS-97-46.

[9] Belmina Dzafic. Formalizing program transformations. Master’s thesis,
DAIMI, Department of Computer Science, University of Aarhus, Aarhus,
Denmark, December 1998.

[10] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In David W. Wall, editor, Pro-
ceedings of the ACM SIGPLAN’93 Conference on Programming Languages
Design and Implementation, SIGPLAN Notices, Vol. 28, No 6, pages 237–
247, Albuquerque, New Mexico, June 1993. ACM Press.

[11] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. Journal of the ACM, 40(1):143–184, 1993. A preliminary ver-
sion appeared in the proceedings of the First IEEE Symposium on Logic
in Computer Science, pages 194–204, June 1987.

[12] John Hatcliff. The Structure of Continuation-Passing Styles. PhD thesis,
Department of Computing and Information Sciences, Kansas State Univer-
sity, Manhattan, Kansas, June 1994.

[13] John Hatcliff and Olivier Danvy. A generic account of continuation-passing
styles. In Hans-J. Boehm, editor, Proceedings of the Twenty-First Annual
ACM Symposium on Principles of Programming Languages, pages 458–471,
Portland, Oregon, January 1994. ACM Press.

[14] John Hatcliff and Olivier Danvy. Thunks and the λ-calculus. Journal of
Functional Programming, 7(2):303–319, 1997.

[15] Frank Pfenning. A proof of the Church-Rosser theorem and its representa-
tion in a logical framework. Journal of Automated Reasoning. To appear.
A preliminary version is available as Carnegie Mellon Technical Report
CMU-CS-92-186, September 1992.

[16] Frank Pfenning. Logic programming in the LF logical framework. In Gérard
Huet and Gordon Plotkin, editors, Logical Frameworks, pages 149–181.
Cambridge University Press, 1991.

13

[17] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theo-
retical Computer Science, 1:125–159, 1975.

[18] John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference
(1972).

[19] Amr Sabry. The Formal Relationship between Direct and Continuation-
Passing Style Optimizing Compilers: A Synthesis of Two Paradigms. PhD
thesis, Computer Science Department, Rice University, Houston, Texas,
August 1994. Technical report TR94-242.

[20] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. Lisp and Symbolic Computation, 6(3/4):289–
360, December 1993.

[21] Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Trans-
actions on Programming Languages and Systems, 19(6):916–941, November
1997.

[22] W. W. Tait. Intensional interpretation of functionals of finite type I. Jour-
nal of Symbolic Logic, 32:198–212, 1967.

[23] Mitchell Wand. Correctness of procedure representations in higher-order
assembly language. In Stephen Brookes, Michael Main, Austin Melton,
Michael Mislove, and David Schmidt, editors, Proceedings of the 7th In-
ternational Conference on Mathematical Foundations of Programming Se-
mantics, number 598 in Lecture Notes in Computer Science, pages 294–311,
Pittsburgh, Pennsylvania, March 1991. Springer-Verlag.

14

Recent BRICS Report Series Publications

RS-99-23 Olivier Danvy, Belmina Dzafic, and Frank Pfenning. On
proving syntactic properties of CPS programs. August 1999.
14 pp. To appear in Gordon and Pitts, editors, 3rd Work-
shop on Higher Order Operational Techniques in Semantics,
HOOTS ’99 Proceedings, ENTCS, 1999.

RS-99-22 Luca Aceto, Zolt́an Ésik, and Anna Ingólfsdóttir. On the Two-
Variable Fragment of the Equational Theory of the Max-Sum
Algebra of the Natural Numbers. August 1999. 22 pp.

RS-99-21 Olivier Danvy. An Extensional Characterization of Lambda-
Lifting and Lambda-Dropping. August 1999. 13 pp. Extended
version of an article to appear in Fourth Fuji International
Symposium on Functional and Logic Programming, FLOPS ’99
Proceedings (Tsukuba, Japan, November 11–13, 1999). This
report supersedes the earlier report BRICS RS-98-2.

RS-99-20 Ulrich Kohlenbach. A Note on Spector’s Quantifier-Free Rule
of Extensionality. August 1999. 5 pp. To appear inArchive for
Mathematical Logic.

RS-99-19 Marcin Jurdziński and Mogens Nielsen. Hereditary History
Preserving Bisimilarity is Undecidable. June 1999. 18 pp.

RS-99-18 M. Oliver Möller and Harald Rueß. Solving Bit-Vector Equa-
tions of Fixed and Non-Fixed Size. June 1999. 18 pp. Re-
vised version of an article appearing under the titleSolving
Bit-Vector Equationsin Gopalakrishnan and Windley, editors,
Formal Methods in Computer-Aided Design: Second Interna-
tional Conference, FMCAD ’98 Proceedings, LNCS 1522, 1998,
pages 36–48.

RS-99-17 Andrzej Filinski. A Semantic Account of Type-Directed Partial
Evaluation. June 1999. To appear in Nadathur, editor,Inter-
national Conference on Principles and Practice of Declarative
Programming, PPDP99 ’99 Proceedings, LNCS, 1999.

RS-99-16 Rune B. Lyngsø and Christian N. S. Pedersen.Protein Folding
in the 2D HP Model. June 1999. 15 pp.

