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Hereditary History Preserving Bisimilarity

Is Undecidable

Marcin Jurdziński∗ Mogens Nielsen∗

BRICS†

Department of Computer Science
University of Aarhus

June 1999

Abstract

We show undecidability of hereditary history preserving bisimilarity
for finite asynchronous transition systems by a reduction from the halting
problem of deterministic 2-counter machines. To make the proof more
transparent we introduce an intermediate problem of checking domino
bisimilarity for origin constrained tiling systems. First we reduce the
halting problem of deterministic 2-counter machines to origin constrained
domino bisimilarity. Then we show how to model domino bisimulations as
hereditary history preserving bisimulations for finite asynchronous tran-
sitions systems. We also argue that the undecidability result holds for
finite 1-safe Petri nets, which can be seen as a proper subclass of finite
asynchronous transition systems.

1 Hereditary history preserving bisimilarity

Definition 1 (Labelled asynchronous transition system)
A labelled asynchronous transition system is a tuple A = (S, sini, E,→, L, λ, I),
where S is its set of states, sini ∈ S is the initial state, E is the set of events,
→⊆ S × E × S is the set of transitions, L is the set of labels, and λ : E → L

is the labelling function, and I ⊆ E2 is the independence relation which is
irreflexive and symmetric. We often write s

e→ s′, instead of (s, e, s′) ∈ →.
Moreover, the following conditions have to be satisfied:

1. if s
e→ s′, and s

e→ s′′, then s′ = s′′,

∗Address: BRICS, Department of Computer Science, University of Aarhus, Ny Munke-
gade, Building 540, 8000 Aarhus C, Denmark. Emails: {mju,mn}@brics.dk.
†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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2. if (e, e′) ∈ I, s
e→ s′, and s′

e′→ t, then s
e′→ s′′, and s′′

e→ t for some
s′′ ∈ S.

An asynchronous transition system is coherent if it satisfies one further con-
dition:

3. if (e, e′) ∈ I, s
e→ s′, and s

e′→ s′′, then s′
e′→ t, and s′′

e→ t for some t ∈ S.
[Definition 1] �

Asynchronous transition systems were introduced independently by Bednar-
czyk [Bed88], and Shields [Shi85]. Winskel and Nielsen [WN95, NW96] give
a thorough survey and establish formal relationships between asynchronous
transition systems and other models for concurrency, such as Petri nets, and
event structures.

The definition of an asynchronous transition system may seem to be quite
liberal, in the sense that it requires the transition system to satisfy very few
properties related to its independence relation. For example, labelled asyn-
chronous transition systems arising from finite labelled 1-safe Petri nets form
a proper subclass of the class of all finite coherent asynchronous transitions
systems. We want to stress, however, that we have chosen this liberal defini-
tion only for technical convenience. In fact, as we show in section 4, the proof
of our undecidability result goes through even for finite labelled 1-safe Petri
nets.

Let A = (S, sini, E,→, L, λ, I) be a labelled asynchronous transition sys-
tem. A sequence of events e = 〈e1, e2, . . . , en〉 ∈ En is a run of A if there
are states s1, s2, . . . , sn+1 ∈ S, such that s1 = sini, and for all i ∈ [n] we

have si
ei→ si+1. We denote the set of runs of A by Run(A). We say

that k ∈ [n] is most recent in e, and we denote it by k ∈ MR(e), if and
only if (ek, e`) ∈ I for all k < ` ≤ n. Note that if k ∈ MR(e) then
e� k = 〈e1, . . . , ek−1, ek+1, . . . , en〉 ∈ Run(A).

Definition 2 (Hereditary history preserving bisimulation)
Let Ai = (Si, si, Ei,→i, L, λi, Ii) for i ∈ {1, 2} be labelled asynchronous tran-
sition systems. A relation B ⊆ Run(A1) × Run(A2) is a hereditary history
preserving (hhp-) bisimulation relating A1 and A2 if the following conditions
are satisfied:

1. (ε, ε) ∈ B,

and if (e1, e2) ∈ B then:

2. for all e1 ∈ E1, if e1 · e1 ∈ Run(A1), then there exists e2 ∈ E2, such that
e2 · e2 ∈ Run(A2), and λ1(e1) = λ2(e2), and (e1 · e1, e2 · e2) ∈ B,

3. for all e2 ∈ E2, if e2 · e2 ∈ Run(A2), then there exists e1 ∈ E1, such that
e1 · e1 ∈ Run(A1), and λ1(e1) = λ2(e2), and (e1 · e1, e2 · e2) ∈ B,
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4. k ∈ MR(e1), if and only if k ∈ MR(e2),

5. if k ∈ MR(e1) = MR(e2), then (e1 � k, e2 � k) ∈ B.

A relation B ⊆ Run(A1)×Run(A2) is a history preserving (hp-) bisimulation
if it satisfies conditions 1.–4. [Definition 2] �

We say that two asynchronous transition systems A1, and A2 are hereditary
history preserving (hhp-) bisimilar, if there is a hhp-bisimulation relating
them; they are history preserving (hp-) bisimilar, if there is a history pre-
serving bisimulation relating them.

Remark 1 Notice that for standard labelled transition systems, i.e., asyn-
chronous transition systems without the independence relation, (h)hp-bisimi-
larity coincides with the standard bisimilarity. If the independence relation is
empty then only the latest event is most recent, so conditions 4. and 5. are
redundant. [Remark 1] 3

Remark 2 Hhp- and hp-bisimilarities are so called non-interleaving notions
of equivalence for concurrent programs. They are different from the standard
interleaving bisimulation in that they relate behaviours of concurrent pro-
grams viewed as partial orders of events ordered by causality relation, rather
than as interleavings, i.e., sequences of events. We sketch below the standard
partial order semantics for asynchronous transition systems, and we explain
how notions of (h)hp-bisimilarity arise naturally in this context. The rest of
the paper does not rely on any of the concepts discussed in this remark, so it
can be safely omited in first reading.

Let A = (S, sini, E,→, L, λ, I) be a labelled asynchronous transition sys-
tem. For every run e ∈ En of A the independence relation induces an E-
labelled partial order π(e) = ([n],E, ε), where ε : [n] → E is the labelling
function. For all i ∈ [n] we set ε(i) = ei. For i, j ∈ [n] we define i l j to
hold, if i ≤ j, and (ei, ej) 6∈ I. We get E as the transitive closure of l. For
e, e′ ∈ Run(A) we define e ∼= e′ to hold, if the corresponding labelled partial
orders π(e) and π(e′) are isomorphic. This is clearly an equivalence relation.

The set of partial order runs PORun(A) of A is the set Run(A)/∼=, i.e.,
isomorphism classes of E-labelled partial orders corresponding to runs of A.
Let τ = (|τ |,E, ε) be a partial order run of A, where ε : |τ | → E is the labelling
function. A partial order behaviour corresponding to run τ is the L-labelled
partial order λ(τ) =

(
|τ |,E, λ ◦ ε

)
.

A non-interleaving notion of behavioural equivalence for concurrent pro-
grams should respect the partial order semantics, i.e., it should relate isomor-
phic partial order behaviours.

Before we give an alternative definition of hereditary history preserving
bisimulation we introduce some notations. If τ ∈ PORun(A), and e ∈ τ , and
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e · e ∈ Run(A), for some e ∈ E, then we write τ ⊕ e for [e · e]∼= ∈ PORun(A);
otherwise τ ⊕ e is undefined. Similarly, if e ∈ τ , and e = e′ · e, for some
e′ ∈ Run(A), and e ∈ E, then we write τ 	 e for [e′]∼= ∈ PORun(A); otherwise
τ 	 e is undefined. By Iso(L) we denote the set of isomorphisms of L-labelled
partial orders. By POBeh(A1, A2) we denote the set of triples (τ1,Ξ, τ2) ∈
PORun(A1)×Iso(L)×PORun(A2), such that Ξ : |τ1| → |τ2| is an isomorphism
of L-labelled partial orders λ1(τ1) and λ2(τ2), i.e., an isomorphism of partial
order behaviours corresponding to partial order runs τ1 and τ2.

Let (τ1,Ξ, τ2) ∈ POBeh(A1, A2), and let τi⊕ei ∈ PORun(Ai) be defined for
some ei ∈ Ei for i = 1, 2. If the unique extension Ξ′ : |τ1⊕ e1| → |τ2⊕ e2| of Ξ
(i.e., Ξ′ ⊃ Ξ) is an isomorphism of the L-labelled partial orders λ1(τ1⊕e1), and
λ2(τ2⊕e2), then by (τ1,Ξ, τ2)⊕(e1, e2) we denote the triple (τ1⊕e1,Ξ

′, τ2⊕e2) ∈
POBeh(A1, A2). Otherwise (τ1,Ξ, τ2)⊕ (e1, e2) is undefined.

Similarly, if τi	ei ∈ PORun(Ai) are defined for some ei ∈ Ei, and i = 1, 2,
and moreover the restriction Ξ′ of Ξ to |τ1	e1| is an isomorphism of L-labelled
partial orders λ(τ1	e1), and λ2(τ2	e2), then by (τ1,Ξ, τ2)	(e1, e2) we denote
the triple (τ1	 e1,Ξ

′, τ2	 e2) ∈ POBeh(A1, A2); otherwise (τ1,Ξ, τ2)	 (e1, e2)
is undefined.

Now we are ready to give an alternative definition of hereditary history
preserving bisimulation.

Definition 2’ (Hereditary history preserving bisimulation)
Let Ai = (Si, si, Ei,→i, L, λi, Ii) for i ∈ {1, 2} be labelled asynchronous transi-
tion systems. A relation B ⊆ POBeh(A1, A2) is a hereditary history preserving
(hhp-) bisimulation relating A1 and A2 if the following conditions are satisfied:

1. (∅, ∅, ∅) ∈ B,

and if (τ1,Ξ, τ2) ∈ B then:

2. for all e1 ∈ E1, if τ1 ⊕ e1 is defined, then there is e2 ∈ E2, such that
(τ1,Ξ, τ2)⊕ (e1, e2) is defined, and (τ1,Ξ, τ2)⊕ (e1, e2) ∈ B,

3. for all e2 ∈ E2, if τ2 ⊕ e2 is defined, then there is e1 ∈ E1, such that
(τ1,Ξ, τ2)⊕ (e1, e2) is defined, and (τ1,Ξ, τ2)⊕ (e1, e2) ∈ B,

4. for all ei ∈ Ei, and i = 1, 2, if (τ1,Ξ, τ2) 	 (e1, e2) is defined, then
(τ1,Ξ, τ2)	 (e1, e2) ∈ B.

A relation B ⊆ POBeh(A1, A2) is a hp-bisimulation relating A1 and A2 if it
satisfies conditions 1.–3. [Definition 2’] �

It can be shown that notions of bisimilarity induced by Definitions 2 and 2’
are equivalent [NC95]; we have decided to make Definition 2 the primary one
here, since it is technically simpler and more intuitive. [Remark 2] 3
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Hp-bisimilarity has been introduced by many authors, among others Ra-
binovich and Trakhtenbrot [RT88], and van Glabbeek and Goltz [vGG89].
Hhp-bisimilarity has been introduced by Bednarczyk [Bed91], and discovered
independently by Joyal et al. [JNW96], as the open map bisimulation for ob-
servations being labelled partial orders.

Nielsen and Clausen [NC95] have established game and logic characteriza-
tions of hhp-bisimilarity. An hhp-bisimulation game is played by two players
Spoiler and Duplicator on the graphs of (partial order) runs of asynchronous
transition systems. Spoiler wants to show that the two asynchronous transition
systems are not hhp-bisimilar. Duplicator has a winning strategy if and only
if the two asynchronous transition systems are hhp-bisimilar, and an hhp-
bisimulation is in fact a winning strategy for Duplicator. Hhp-bisimulation
games can be seen as Ehrenfeucht-Fräıssé games for a modal logic with a
backwards modality interpreted over the graphs of partial order runs of asyn-
chronous transition systems, i.e., there is a hhp-bisimulation relating two asyn-
chronous transition systems, if and only if they are indistinguishable by for-
mulas of the logic.

History preserving bisimilarity has been shown to be decidable for 1-safe
Petri nets by Vogler [Vog91], and to be DEXP-complete by Jategaonkar,
and Mayer [JM96]. Decidability of hereditary history preserving bisimulation
for 1-safe Petri nets has remained open instead [NW96, FH99]. Fröschle and
Hildebrandt [FH99] have discovered an infinite hierarchy of bisimilarity notions
refining hp-bisimilarity, and coarser than hhp-bisimilarity; hhp-bisimilarity is
the intersection of all the bisimilarities in the hierarchy. They have shown
all the bisimilarities in the hierarchy to be decidable for 1-safe Petri nets.
Fröschle [Frö99] has shown hhp-bisimilarity to be decidable for BPP-processes.

The main result of this paper is the following theorem proved in section 3.

Theorem 3 (Undecidability of hhp-bisimilarity)
Hhp-bisimilarity for finite labelled asynchronous transition systems is unde-
cidable.

2 Domino bisimilarity is undecidable

2.1 Domino bisimilarity

Definition 4 (Origin constrained tiling system)
An origin constrained tiling system T =

(
D,Dori, (H,H0), (V, V 0), L, λ

)
con-

sists of a set D of dominoes, its subset Dori ⊆ D called the origin constraint,
two horizontal compatibility relations H,H0 ⊆ D2, two vertical compatibility
relations V, V 0 ⊆ D2, a set L of labels, and a labelling function λ : D → L.

[Definition 4] �

5



A configuration of T is a triple (d, x, y) ∈ D × N × N, such that if x = y = 0
then d ∈ Dori. In other words, in the “origin” position (x, y) = (0, 0) of the
non-negative integer grid only dominoes from the origin constraint Dori are
allowed.

Let (d, x, y), and (d′, x′, y′) be configurations of T such that |x′−x|+ |y′−
y| = 1, i.e., the positions (x, y), and (x′, y′) are neighbours in the non-negative
integer grid. Without loss of generality we may assume that x+ y < x′ + y′.
We say that configurations (d, x, y), and (d′, x′, y′) are compatible if either of
the two conditions below holds:

• x′ = x, and y′ = y + 1, and
if y = 0, then (d, d′) ∈ V 0, and if y > 0, then (d, d′) ∈ V , or

• x′ = x+ 1, and y′ = y, and
if x = 0, then (d, d′) ∈ H0, and if x > 0, then (d, d′) ∈ H.

Definition 5 (Domino bisimulation)
Let Ti =

(
Di,D

ori
i , (Hi,H

0
i ), (Vi, V

0
i ), Li, λi

)
for i ∈ {1, 2} be origin con-

strained tiling systems. A relation B ⊆ D1 × D2 × N × N is a domino
bisimulation relating T1 and T2, if the following conditions are satisfied for
all i ∈ {1, 2}:

1. for all di ∈ Dori
i , there exists d3−i ∈ Dori

3−i, such that λ1(d1) = λ2(d2),
and (d1, d2, 0, 0) ∈ B,

2. for all x, y ∈ N, such that (x, y) 6= (0, 0), and di ∈ Di, there exists
d3−i ∈ D3−i, such that λ1(d1) = λ2(d2), and (d1, d2, x, y) ∈ B,

3. if (d1, d2, x, y) ∈ B, then for all x′, y′ ∈ N, and d′i ∈ Di, if configurations
(di, x, y), and (d′i, x

′, y′) of Ti are compatible, then there exists d′3−i ∈
D3−i, such that λ1(d1) = λ2(d2), and configurations (d3−i, x, y), and
(d′3−i, x

′, y′) of T3−i are compatible, and (d′1, d
′
2, x
′, y′) ∈ B.

[Definition 5] �

We say that two tiling systems are domino bisimilar if and only if there is a
domino bisimulation relating them.

Theorem 6 (Undecidability of domino bisimilarity)
Domino bisimilarity is undecidable for origin constrained tiling systems.

The proof is a reduction from the halting problem for deterministic 2-counter
machines. For a deterministic 2-counter machine M we define in section 2.3
two origin constrained tiling systems T1, and T2, enjoying the following prop-
erty.

Proposition 7 Machine M does not halt, if and only if there is a domino
bisimulation relating T1 and T2.
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2.2 Counter machines

A 2-counter machine M consists of a finite program with the set L of instruc-
tion labels, and instructions of the form:

• start: goto `

• `: ci := ci + 1; goto m

• `: if ci = 0 then ci := ci + 1; goto m

else ci := ci - 1; goto n

• halt:

where i = 1, 2; `,m, n ∈ L, and {start, halt} ⊂ L. A configuration of M is a
triple (`, x, y) ∈ L×N×N, where ` is the label of the current instruction, and x,
and y are the values stored in counters c1, and c2, respectively; we denote the
set of configurations of M by Conf(M). The semantics of 2-counter machines
is standard: let `M ⊆ Conf(M) × Conf(M) be the usual one-step derivation
relation on configurations of M ; by `+

M we denote the reachability (in at least
one step) relation for configurations, i.e., the transitive closure of `M .

Before we give a reduction from the halting problem of 2-counter machines
to origin constrained domino bisimilarity let us take a look at the directed
graph (Conf(M), `M), with configurations of M as vertices, and edges de-
noting derivation in one step. Since machine M is deterministic, for each
configuration there is at most one outgoing edge; moreover only halting con-
figurations have no outgoing edges. It follows that connected components of
the graph (Conf(M), `M ) are either trees with edges going to the root which
is the unique halting configuration in the component, or have no halting con-
figuration at all. This observation implies the following proposition.

Proposition 8 Let M be a 2-counter machine. The following conditions are
equivalent:

1. machine M halts on input (0, 0), i.e., (start, 0, 0) `+
M (halt, x, y) for

some x, y ∈ N,

2. (start, 0, 0) ∼M (halt, x, y) for some x, y ∈ N, where ∼M ⊆ Conf(M)×
Conf(M) is the symmetric, and transitive closure of `M .

2.3 The reduction

Now we go for a proof of Proposition 7. The idea is to design a tiling system
which “simulates” behaviour of a 2-counter machine.

Let M be a 2-counter machine. We construct a tiling system TM with
the set L of instruction labels of M as the set of dominoes, and the identity
function on L as the labelling function. Note that this implies that all tuples
belonging to a domino bisimulation relating copies of TM are of the form

7



(`, `, x, y), so we can identify them with configurations of M , i.e., sometimes
we will make no distinction between (`, `, x, y) and (`, x, y) ∈ Conf(M) for
` ∈ L.

We define the horizontal compatibility relations HM ,H
0
M ⊆ L × L of the

tiling system TM as follows:

• (`,m) ∈ HM if and only if either of the instructions below is an instruc-
tion of machine M :

– `: c1 := c1 + 1; goto m

– m: if c1 = 0 then c1 := c1 + 1; goto n

else c1 := c1 - 1; goto `

• (`,m) ∈ H0
M if and only if (`,m) ∈ HM , or the instruction below is an

instruction of machine M :

– `: if c1 = 0 then c1 := c1 + 1; goto m

else c1 := c1 - 1; goto n

The vertical compatibility relations VM , and V 0
M are defined in the same way,

with c1 instructions replaced with c2 instructions. We also take Dori
M = L, i.e.,

all dominoes are allowed in position (0, 0). Note that the identity function
is a 1-1 correspondence between configurations of M , and configurations of
the tiling system TM ; from now on we will hence identify configurations of
M and TM . It follows immediately from the construction of TM , that two
configurations c, c′ ∈ Conf(M) are compatible as configurations of TM , if and
only if c `M c′, or c′ `M c, i.e., compatibility relation of TM coincides with
the symmetric closure of `M . By ≈M we denote the symmetric and transitive
closure of the compatibility relation of TM . The following proposition is then
straightforward.

Proposition 9 The two relations ∼M , and ≈M coincide.

Now we are ready to define the two origin constrained tiling systems T1,
and T2, postulated in Proposition 7. The idea is to have two independent
and slightly pruned copies of TM in T2: one without the initial configuration
(start, 0, 0), and the other without any halting configurations (halt, x, y).
The other tiling system T1 is going to have three independent copies of TM :
the two of T2, and moreover, another full copy of TM .

More formally we define D2 =
(
L × {1, 2}

)
\
{

(halt, 2)
}

, and Dori
2 =

D2 \
{

(start, 1)
}

, and V2 =
(
(VM ⊗ 1) ∪ (VM ⊗ 2)

)
∩ (D2 ×D2), where for a

binary relation R we define R⊗i to be the relation
{(

(a, i), (b, i)
)

: (a, b) ∈ R
}

.
The other compatibility relations V 0

2 , H2, and H0
2 are defined analogously from

the respective compatibility relations of TM .
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The tiling system T1 is obtained from T2 by adding yet another independent
copy of TM , this time a complete one: D1 = D2 ∪ (L × {3}), and Dori

1 =
Dori

2 ∪ (VM ⊗ 3), and V1 = V2 ∪ (VM ⊗ 3), etc. The labelling functions of T1,
and T2 are defined as λi

(
(`, i)

)
= `.

In order to show Proposition 7 we establish the following two claims.

Claim 10
If machine M halts on input (0, 0), then there is no domino bisimulation
relating T1 and T2.

Proof: If B is a domino bisimulation relating T1 and T2, then it must be the
case that

(
(start, 3), (start, 2), 0, 0

)
∈ B, since (start, 1) 6∈ Dori

2 . But then
using condition 3 of the definition of a domino bisimulation while “simulating”
the halting computation of M in copy 3 of T1, we conclude that we must have(
(halt, 3), (halt, 2), x, y

)
∈ B for some x, y ∈ N, but this is impossible, since

(halt, 2) 6∈ D2. [Claim 10] �

Claim 11
If machine M does not halt on input (0, 0), then there is a domino bisimulation
relating T1 and T2.

Proof: Suppose that M does not halt on input (0, 0). We claim that the
following relation B is a domino bisimulation for T1 and T2:{ (

(`, i), (`, i), x, y
)

: i ∈ {1, 2} and
(
(`, i), x, y

)
∈ Conf(T1)

}
∪{ (

(`, 1), (`, 3), x, y
)

: (`, x, y) ∼M (halt, x′, y′) for some x′, y′ ∈ N
}
∪{ (

(`, 2), (`, 3), x, y
)

: (`, x, y) 6∼M (halt, x′, y′) for all x′, y′ ∈ N
}
.

Conditions 1. and 2. of the definition of a domino bisimulation, and condition 3.
for the first component of the above union follow immediately. We check
condition 3. for elements of the second and third components of the above
union.

Suppose that
(
(`, 1), (`, 3), x, y

)
∈ B; note that it suffices to check that

(`, x, y) is not compatible with (start, 0, 0), since copy 1 of T1 differs from
copy 3 of T2 only in that it does not have (start, 0, 0) as a configuration. By
definition of B we have that (`, x, y) ∼M (halt, x′, y′) for some x′, y′ ∈ N, so
the assumption that M does not halt on input (0, 0), and Proposition 8 im-
ply that (start, 0, 0) 6∼M (`, x, y). Then it follows by Proposition 9 that
(start, 0, 0) 6≈M (`, x, y), so in particular (`, x, y) is not compatible with
(start, 0, 0) and hence we are done.

The case for
(
(`, 2), (`, 3), x, y

)
∈ B is similar. It suffices then to check that

(`, x, y) is not compatible with (halt, x′, y′) for any x′, y′ ∈ N. This follows

9



from Proposition 9 applied to the assumption that (`, x, y) 6∼M (halt, x′, y′)
for all x′, y′ ∈ N. [Claim 11] �

This concludes the proof of Theorem 6.

3 Hhp-bisimilarity is undecidable

The proof of Theorem 3 is a reduction from the problem of deciding bisimilarity
for origin constrained tiling systems. A method of encoding a tiling system on
an infinite grid in the graph of behaviours of a finite asynchronous transition
system is due to Madhusudan and Thiagarajan [MT98]; we use a modified
version of a gadget invented by them. For each origin constrained tiling system
T we define an asynchronous transition system A(T ), such that the following
proposition holds.

Proposition 12 There is a domino bisimulation relating origin constrained
tiling systems T1 and T2, if and only if there is a hhp-bisimulation relating the
asynchronous transition systems A(T1) and A(T2).

Let T =
(
D,Dori, (H,H0), (V, V 0), L, λ

)
be an origin constrained tiling sys-

tem. We define the asynchronous transitions system A(T ). The schematic
structure of A(T ) can be seen in Figure 1. The set of events is defined as:

EA(T ) =
{
xi, yi : i ∈ {0, 1, 2, 3}

}
∪

{
dij, dij : i, j ∈ {0, 1, 2}, d ∈ D, and d ∈ Dori if (i, j) = (0, 0)

}
.

By abuse of notation we sometimes write dxy or dxy for x, y ∈ N; we always
mean by that the events dx̂ŷ or dx̂ŷ, respectively, where for z ∈ N we define

ẑ =

{
z if z ≤ 2,

2− (z mod 2) if z > 2.

The labelling function replaces dominoes in “d”-, and “d”-events, with their
labels in the tiling system:

λA(T )(e) =


e if e ∈

{
xi, yi : i ∈ {0, . . . , 3}

}
,

λ(d)ij if e = dij, for some d ∈ D,
λ(d)ij if e = dij, for some d ∈ D.

The states, events, and transitions of A(T ) can be read from Figure 1; we
briefly explain below how to do it.

There are sixteen states in the bottom layer of the structure in Figure 1(a).
Let us identify these sixteen states with pairs of numbers shown on the vertical
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(b) The fine structure of the upper-right cube of A(T ).

Figure 1: The structure of the asynchronous transition system A(T ).
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macro-arrows originating in these states shown in Figure 1(a). Each of these
macro-arrows denotes a bundle of dij-, and dij-event transitions sticking out of
the state below, arranged in the fashion shown in Figure 1(b). For each state
(i, j), and domino d ∈ D, there are dij-, and dij-event transitions sticking out,
and moreover for each state (i′, j′) from which there is an arrow in Figure 1(a)
to state (i, j), there is a di′j′-event transition sticking out of (i, j). The state
(0, 0) is exceptional: only dominoes from the origin constraint Dori are allowed
as events of transitions sticking out of it. It is also the initial state of A(T ).

As can be seen in Figure 1(b), from both ends of the dij-event transition
rooted in state (i, j), there is an xi-event transition to the corresponding (bot-
tom, or top) (i ⊕ 1, j) state, and an yi-event transition to the corresponding
(i, j ⊕ 1) state, where

i⊕ 1 =

{
i+ 1 for i < 3,

2 for i = 3.

For each di′j′-event transition t sticking out of state (i, j), and each e ∈ D,
there can be a pair of transitions which together with t and the eij-event
transition form a “diamond” of transitions; the events of the transitions lying
on the opposite sides of the diamond coincide then. This type of transitions is
shown in Figure 1(b) as dotted arrows. The condition for the two transitions
closing the diamond to exist is that configurations (d, i′, j′) and

(
e, i′ + |i′ −

i|, j′+ |j′− j|
)

of T are compatible, or (i′, j′) = (i, j) and e = d. We define the
independence relation IA(T ) ⊆ EA(T ) × EA(T ), to be the symmetric closure of
the set: {

(xi, yj), (xi, dij), (yj , dij) : i, j ∈ {0, . . . , 3}, and d ∈ D
}
∪{

(dij , dij) : i, j ∈ {0, . . . , 3}, and d ∈ D
}
∪{

(d0j , e1j) : j ∈ {0, . . . , 3}, and (d, e) ∈ H0
}
∪{

(dij , e(i+1)j) : i ∈ {1, 2, 3}, j ∈ {0, . . . , 3}, and (d, e) ∈ H
}{

(di0, ei1) : i ∈ {0, . . . , 3}, and (d, e) ∈ V 0
}
∪{

(dij , ei(j+1)) : i ∈ {0, . . . , 3}, j ∈ {1, 2, 3}, and (d, e) ∈ V
}
.

Note that it follows from the above that all diamonds of transitions in A(T )
are in fact independence diamonds.

Proof (of Proposition 12)
The idea is to show that every domino bisimulation for T1 and T2 gives rise
to a hhp-bisimulation for A(T1) and A(T2), and vice versa. First observe,
that a run of A(Ti) for i ∈ {1, 2} is uniquely determined by the numbers x
and y of the occurrences of the xj-events, and the yk-events, respectively, and
the set of its “d”- and “d”-events, which is of size at most two. In other
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words, we can identify runs of A(Ti) with triples (Fi, x, y), where Fi ⊆ EA(Ti)

contains at most two “d”- and “d”-events, and x, y ∈ N, and elements of a
hhp-bisimulation relating A(T1) and A(T2) with quadruples (F1, F2, x, y). The
following claim immediately implies Proposition 12.

Claim 13

1. Let B ⊆ Conf
(
A(T1), A(T2)

)
be an hhp-bisimulation relating A(T1) and

A(T2). Then the set
{

(d, e, x, y) :
(
{dxy}, {exy}, x, y

)
∈ B

}
is a domino

bisimulation for T1 and T2.

2. Let B ⊆ Conf(T1, T2) be a domino bisimulation relating T1 and T2. Then
the set

{ (
{dxy}, {exy}, x, y

)
: (d, e, x, y) ∈ B

}
can be extended to an

hhp-bisimulation for A(T1) and A(T2).

Proof: Let B ⊆ Conf
(
A(T1), A(T2)

)
be an hhp-bisimulation. We need to

check that the set
{

(d, d′, x, y) :
(
{dxy}, {d′xy}, x, y

)
∈ B

}
satisfies conditions

1.–3. of Definition 5. Conditions 1. and 2. follow easily by first applying
condition 1. and then repeatedly applying condition 2., or condition 3. of
Definition 2.

We argue that condition 3. of Definition 5 is satisfied as well. With-
out loss of generality assume that i = 1; the other case is symmetric. Let(
{dxy}, {exy}, x, y

)
∈ B, and configurations (d, x, y) and (d′, x′, y′) of T1 be

compatible. Let x′ = x+ 1, and y′ = y; the other three cases are analogous.
From the construction of A(T1) and A(T2), and by condition 2. of Defini-

tion 2 it follows that
(
{dxy, dxy}, {exy, exy}, x, y

)
∈ B. Hence by condition 5.

of Definition 2 we have that
(
{dxy}, {exy}, x, y

)
∈ B, and by condition 2., that(

{dxy}, {exy}, x+ 1, y
)

=
(
{dxy}, {exy}, x′, y′

)
∈ B.

If x > 0 then (dxy, d
′
x′y′) ∈ HT1 , and if x = 0 then (dxy, d

′
x′y′) ∈ H0

T1
.

Hence by the construction of A(T1) it follows that
(
{dxy, d′x′y′}, x′, y′

)
is a run

of A(T1). Then condition 2. of Definition 2 implies that there is an e′ ∈ DT2 ,
such that

(
{exy, e′x′y′}, x′, y′

)
is a run of A(T2), and λ1(d′) = λ2(e′), and(

{dxy, d′x′y′}, {exy , e′x′y′}, x′, y′
)
∈ B. Therefore, by condition 5. of Defini-

tion 2 we have that
(
{d′x′y′}, {e′x′y′}, x′, y′) ∈ B, and by construction of A(T2)

it follows that (d′, e′) ∈ HT2 if x > 0, and (d′, e′) ∈ H0
T2

if x = 0, i.e., configu-
rations (e, x, y) and (e′, x′, y′) of T2 are compatible. This concludes the proof
of clause 1. of the claim.

Now we sketch a proof of clause 2. of the claim. Note that the maximal
runs of A(Ti) for i ∈ {1, 2} are of one of the following forms:

1.
(
{dxy, dxy}, x, y

)
,

2.
(
{d(x−1)y , d

′
xy}, x, y

)
, such that (d, d′) ∈ H0

Ti
if x = 1, and (d, d′) ∈ HTi

if x > 1.
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3.
(
{dx(y−1), d

′
xy}, x, y

)
, such that (d, d′) ∈ V 0

Ti
if y = 1, and (d, d′) ∈ VTi if

y > 1.

Suppose B ⊆ D1×D2×N×N is a domino bisimulation relating T1 and T2. To
get an hhp-bisimulation B ⊆ Run

(
A(T1)

)
×Run

(
A(T2)

)
we do the following:

1. add toB all the tuples
(
{dxy, dxy}, {exy, exy}, x, y

)
, such that (d, e, x, y) ∈

B,

2. add to B all the tuples
(
{d(x−1)y , d′xy}, {e(x−1)y , e′xy}, x, y

)
, such that

(d, e, x − 1, y) ∈ B and (d′, e′, x, y) ∈ B, and moreover, (d, x − 1, y) and
(d′, x, y) are compatible as configurations of T1, and (e, x − 1, y) and
(e′, x, y) are compatible as configurations of T2,

3. add to B all the tuples
(
{dx(y−1), d

′
xy}, {ex(y−1), e

′
xy}, x, y

)
, such that

(d, e, x, y − 1) ∈ B and (d′, e′, x, y) ∈ B, and moreover, (d, x, y − 1) and
(d′, x, y) are compatible as configurations of T1, and (e, x − 1, y) and
(e′, x, y) are compatible as configurations of T2,

4. close B “downwards”, i.e., complete it so that condition 5. of the Defi-
nition 2 is satisfied.

We leave it as an exercise to the Reader to check that B is indeed an hhp-
bisimulation. [Claim 13] � [Proposition 12] �

This concludes the proof of Theorem 3.

4 A 1-safe Petri net

An attentive Reader might have noticed, that the asynchronous transitions
system A(T ) as described in the previous section, and sketched in Figure 1, is
not coherent, while all asynchronous transition systems derived from (1-safe)
Petri nets are [WN95, NW96]. It turns out, however, that A(T ) is not far
from being coherent: it suffices to close all the diamonds with events dij , and
xi in positions (i, j ⊕ 1), and with events dij , and yj in positions (i ⊕ 1, j),
for i, j ∈ {0, . . . , 3}; note that runs ending at the top of these diamonds are
maximal runs. This completion of the transition structure of A(T ) does not
affect the arguments used to establish Claim 13, and hence Theorem 3, but
since it would obscure the picture in Figure 1(b), we have decided not to draw
it there.

Our aim now is to present a finite 1-safe Petri net N(T ) whose derived
asynchronous transition system is isomorphic to the completion of A(T ) men-
tioned above. The set of transitions of the net N(T ) is just the set of events of
the asynchronous transitions system A(T ). The structure of the net N(T ) is
shown in Figure 2. The operation k 	 1 for k ∈ {0, 1, 2} is defined as follows:
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Figure 2: The structure of the 1-safe Petri net N(T ).
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k 	 1 =


undefined for k = 0,

0 or 2 for k = 1,

1 for k = 2.

For example a transition d12 has arrows from places e01 and e21 for all e ∈ D,
because possible values for (1	 1, 2	 1) are (0, 1) and (2, 1).

We leave it as an exercise for the Reader to check that there is indeed a 1-1
correspondence between firing sequences of the Petri net N(T ), and runs of (a
completion—mentioned above—of) the asynchronous transition system A(T ),
and this correspondence also respects the independence structure of the Petri
net and the asynchronous transition system. Let us only give a few remarks
on the design of N(T ):

• The place # serves as a resource shared by all “dij”-events for all i, j ∈
{0, 1, 2}, and hence guarantees “mutual exclusion” of these events. Note
that for example if the place # was not connected to events d11 and e21

for some d 6= e, then they could both occur in a configuration of N(T ).

• For every configuration C of N(T ) we have that n ∈ N is the number
of occurrences of xi-events, and m ∈ N is the number of occurrences
of yj-events in C for i, j ∈ {0, 1, 2, 3}, if and only if there is a token
in place xn̂, and there is a token in place ym̂ in the marking of N(T )
corresponding to C, or an event dnm occurs in C.

• Arrows from places xi for i ∈ {0, 1, 2} to events xi+1, and arrows from
places yj for j ∈ {0, 1, 2} to events yi+1, together with the arrows from
places xi and yj to events dij , guarantee that the N(T ) counterparts of
configurations

(
{dxy}, x+ 1, y + 1

)
of A(T ) are maximal.
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