
B
R

IC
S

R
S

-99-16
Lyngsø

&
P

edersen:
P

rotein
F

olding
in

the
2D

H
P

M
odel

BRICS
Basic Research in Computer Science

Protein Folding in the 2D HP Model

Rune B. Lyngsø
Christian N. S. Pedersen

BRICS Report Series RS-99-16

ISSN 0909-0878 June 1999

Copyright c© 1999, Rune B. Lyngsø & Christian N. S. Pedersen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/16/

Protein folding in the 2D HP model

Rune B. Lyngsø∗ Christian N. S. Pedersen†

Abstract

We study folding algorithms in the two dimensional Hydrophobic-
Hydrophilic model (2D HP model) for protein structure formation. We
consider three generalizations of the best known approximation algo-
rithm. We show that two of the generalizations do not improve the worst
case approximation ratio. The third generalization seems to be better,
and the analysis of its approximation ratio leads to an interesting com-
binatorial problem.

1 Introduction

Proteins are polymer chains of amino acids. An interesting feature of nature
is that even though there are an infinite amount of amino acids, only twenty
different amino acids are used in the formation of proteins. The amino acid se-
quence of a protein can thus be abstracted as a string over an alphabet of size
twenty. In nature proteins are of course not one dimensional strings but fold
into three dimensional structures. The three dimensional structure of a protein
is not static, but vibrates around an equilibrium known as the native state.
Famous experiments by Anfinsen et al. [1] showed that a protein in its natural
environment folds into, i.e. vibrates around, a unique three dimensional struc-
ture, the native conformation, independent of the starting conformation. The
native conformation of a protein plays an essential role in the functionality of
the protein, and it is widely believed that the native conformation of a protein
is determined by the amino acid sequence of the protein. As experimental de-
termination of the native conformation is difficult and time consuming, much
work has been done to predict the native conformation computationally.

To predict the structure of a protein computationally it is necessary to
model protein structure formation in the real system, i.e. in the proteins nat-
ural environment. A model is relevant if it reflects some of the properties of

∗ Department of Computer Science, University of Aarhus, Ny Munkegade, 8000 Århus C,
Denmark. E-mail: rlyngsoe@daimi.au.dk.
† Basic Research In Computer Science (BRICS), Center of the Danish National Research

Foundation, Department of Computer Science, University of Aarhus, Ny Munkegade, 8000
Århus C, Denmark. E-mail: cstorm@brics.dk.

1

protein structure formation in the real system. One obvious property could
be visual equivalence between the native conformations in the model and the
native conformations in the real system. Another more subtle, but useful
property, could be behavioral equivalence between protein structure formation
in the model and protein structure formation in the real system. As the laws
of thermodynamics state that the native state of a protein is the state of least
free energy, the real system is often modeled by a free energy model that spec-
ifies an energy function that assigns a free energy to every conformation in
a set of legal conformations. The native conformation of a protein is then
predicted to be a conformation that minimizes the energy function over the
set of legal conformations.

The hydrophobic-hydrophilic model proposed by Dill [4] is a free energy
model that models the belief that a major contribution to the free energy of the
native conformation of a protein is due to interactions between hydrophobic
amino acids that tend to form a core in the spatial structure shielded from the
surrounding solvent by hydrophilic amino acids. In the model the amino acid
sequence of a protein is abstracted as a binary sequence of hydrophobic and
hydrophilic amino acids. Even though some amino acids cannot be classified
clearly as being either hydrophobic or hydrophilic, the model disregards this
fact to achieve simplicity. The model is usually referred to as the HP model
where H stands for hydrophobic and P stands for polar.

The HP model is a lattice model, so called because the set of legal confor-
mations is embeddings of the abstracted amino acid sequence in a lattice, in
this case the two or three dimensional square lattice. In legal conformations
amino acids that are adjacent in the sequence occupy adjacent grid points
in the lattice, and no grid point in the lattice is occupied by more than one
amino acid. Depending on the dimension of the square lattice we refer to the
model as the 2D or 3D HP model. The free energy of a conformation depends
on the number of non-adjacent hydrophobic amino acids that occupy adjacent
grid points in the lattice. Figure 1 shows a conformation in the 2D HP model
where 9 non-adjacent hydrophobic amino acids occupy adjacent grid points.

Despite the simplicity of the HP model, the folding process in the model
have behavioral similarities with the folding process in the real system [5], and
the model has been used by chemists to evaluate new hypothesis of protein
structure formation [9]. The success of the HP model as a tool for chemists
partly stems from the fact that the discrete set of legal conformations makes it
possible to enumerate and consider all conformations of small proteins. Many
attempts have been made to predict the native conformation, i.e. the con-
formation of lowest free energy, of a protein in the HP model [10, 11]. Most
interestingly, the HP model was the first relevant model for protein folding
for which approximation algorithms for the structure prediction problem, i.e.
algorithms that find a conformation with free energy guaranteed close to the

2

free energy of the native conformation, were formulated [6]. For a while it
was believed that the structure prediction problem in the HP model would be
solvable in polynomial time, but recently it was shown NP-complete [2, 3].

In this paper we describe three attempts to improve the best known ap-
proximation algorithm for the structure prediction problem in the 2D HP
model. We show that two generalizations of this algorithm, the U-fold al-
gorithm and S-fold algorithm, do not improve on the best known 1/4 worst
case approximation ratio. The approximation ratio of the third generaliza-
tion, the C-fold algorithm, seems to be better. We prove that the worst case
approximation ratio of the C-fold algorithm is at most 1/3 and observe that
it is closely related to an interesting combinatorial problem which we examine
experimentally. Most of the work described in this paper was done in the
Spring 1996 as part of a graduate course [7]. Independently of our work Mauri
et al. [8] observe experimentally that the approximation ratio of an algorithm
similar to our C-fold algorithm seems to be around 3/8.

The rest of this paper is organized as follows. In Section 2 we formally de-
scribe the 2D HP model and bound the free energy of the native conformation
of a protein in the model. In Section 3 we describe three attempts to improve
the currently best approximation algorithm for the structure prediction prob-
lem in the 2D HP model. In Section 4 we describe and examine experimentally
an interesting problem that is related to the approximation ratio of one of the
approximation algorithms described in Section 3.

2 The 2D HP model

In the 2D HP model a protein, i.e. an amino acid sequence, is abstracted as
a string describing the hydrophobicity of each amino acid in the sequence.
Throughout this paper we will use S to denote the abstraction of an amino
acid sequence of length n, that is, S is a string of length n over the alphabet
{0, 1} where S[i], for i = 1, 2, . . . , n, is 1 if the ith amino acid in the sequence
is hydrophobic and 0 if it is hydrophilic. We will use the term “hydrophobic
amino acid” to refer to a 1 at some position in S, and say that the parity of
the 1 is even if its position in S is even, and odd if its position in S is odd.

A folding of a protein in the 2D HP model is an embedding of its ab-
straction S in the 2D square lattice such that adjacent characters in S occupy
adjacent grid points in the lattice, and no grid point in the lattice is occupied
by more than one character. We say that two 1’s in S form a non-local 1-1
bond if they occupy adjacent grid points in the lattice but are not adjacent
in S. Figure 1 shows a folding of the string 111010100101001001 in the 2D
HP model with nine non-local 1-1 bonds. The free energy of a folding of S
is the number of non-local 1-1 bonds in the folding multiplied by some con-
stant ε < 0. The free energy function models the belief that the driving force of

3

Figure 1: A conformation in the 2D HP model with 9 non-local 1-1 bonds.

protein structure formation is interactions between hydrophobic amino acids.
We say that the score of a folding of S is the number of non-local 1-1

bonds in it, and that the optimal score of a folding of S, OPT(S), is the
maximum score of a folding of S. The simple energy function implies that the
native conformation of a protein in 2D HP model is a folding of its abstraction
with optimal score. The structure prediction problem in the 2D HP model is
thus to find a folding of S in the 2D square lattice with optimal score. This
problem has recently been shown to be NP-complete [2, 3], which makes it
interesting to look for approximation algorithms that find a folding of S with
score guaranteed to be some fraction of the optimal score of a folding of S.
To issue such a guarantee for a folding algorithm, we need an upper bound on
OPT(S). To derive an upper bound on OPT(S) we make two observations.

The first observation is that a hydrophobic amino acid can form at most
two non-local 1-1 bonds in the 2D square lattice except if it is the first or the
last amino acid in the sequence, in which case it can form at most three non-
local 1-1 bonds. The second observation is that two hydrophobic amino acids,
S[i] and S[j], can occupy adjacent grid points in the 2D square lattice, i.e. form
a non-local 1-1 bond, if and only if i is even j is odd or vice versa. If we define
EVEN(S) as the set of even positions in S containing a hydrophobic amino
acid, i.e. {i | i is even and S[i] = 1}, and ODD(S) as the set of odd positions
in S containing a hydrophobic amino acid, i.e. {i | i is odd and S[i] = 1}, then
the two observations gives

OPT(S) ≤ 2 ·min{|EVEN(S)|, |ODD(S)|} + 2. (1)

This upper bound was first derived by Hart and Istrail [6], who used it
in the performance analysis of a simple folding algorithm that guarantees
a folding with score 1/4 of the optimal score. This algorithm and various
attempts to improve it is the topic of the next section.

4

3 The folding algorithms

A simple strategy for folding a string in the 2D square lattice is to find a
suitable folding point that divides the string into two parts, a prefix and a
suffix, that we fold against each other. This creates a “U” structure in which
non-local 1-1 bonds can be formed between 1’s on opposite stems of the “U”.
Loops protruding from the two stems of the “U” can be used to increase the
number of non-local 1-1 bonds between the stems by contracting parts of the
stems. We say that a folding created this way is a U-fold. Figure 2 shows
a schematic U-fold and the left part of Figure 3 shows a U-fold of the string
1001001010010101000011 with four non-local 1-1 bonds between the stems and
five non-local 1-1 bonds in total.

The two stems of the fold
:
z

Loops

 R

Loops

]

6

�

Figure 2: A schematic U-fold.

Hart and Istrail [6] present a folding algorithm that computes a U-fold
of S with a guaranteed number of non-local 1-1 bonds between the stems.
By a simple argument they show that the folding point can always be chosen
such that at least half of the 1’s with position in EVEN(S) are on one stem
and at least half of the 1’s with position in ODD(S) are on the other stem.
Since there is an odd number of characters between any two characters in S

with positions in either EVEN(S) or ODD(S), loops can be used to contract
each stem such that every second character on the contracted stem is a 1 with
even or odd parity depending on the stem. As each contracted stem contains
at least min{|EVEN(S)|, |ODD(S)|}/2 1’s with equal parity placed in every
second position along stem, the number of non-local 1-1 bonds between the
stems of the created U-fold is at least min{|EVEN(S)|, |ODD(S)|}/2, so except
for a constant term the created U-fold scores at least 1/4 of the upper bound
on OPT(S) given by (1). We say that the asymptotic approximation ratio of
the algorithm is 1/4. By being a little bit more careful in the choice of folding
point Hart and Istrail are able to formulate the folding algorithm such that

5

1

1

0

−
0

−
1

1

0

0

0

0

−
0

−
0

−
1

−
0

1

1

0

0

1

1

0

0

1

1

−
0

−
0

1

1

0

−
0

−
−
0

−
0

1

1

Figure 3: Left: Alignment of the prefix 1001001010 of the string
1001001010010101000011 with the rest of the string and the corresponding
U-fold. Right: An example of an alignment with illegal gaps. The transfor-
mation to a folding implies that two loops protrude from the same element.

the create a U-fold, for every string S, scores at least 1/4 of the upper bound
on OPT(S). We say that the absolute approximation ratio of the algorithm
is 1/4. The folding algorithm runs in time O(n) where n is the length of S.

Our first attempt to improve the approximation ratio of the folding algo-
rithm by Hart and Istrail, is to count all non-local 1-1 bonds between the two
stems of the U-fold, and not only those where the 1’s on each stem have equal
parity. More precisely, we want to compute a U-fold of S with the maximum
number of non-local 1-1 bonds between the stems, i.e. a U-fold of S with op-
timal score between the stems. Computing such a U-fold is not difficult. As
illustrated in Figure 3, the trick is to observe that a U-fold of S, with folding
point k, that maximizes the number of non-local 1-1 bonds between the stems,
corresponds to the an alignment of the prefix S[1 .. k − 1] with the reversed
suffix S[k + 2 .. n]R that maximizes the number of matches between 1’s, and
allows gaps to be folded as loops.

Such an alignment corresponds to an optimal similarity alignment between
S[1 .. k − 1] and S[k + 2 .. n]R, where a match between two 1’s score 1, and all
other matches and gaps score 0. To allow gaps to be folded out as loops, all
gaps must have even length and between any two gaps in the same string there
must be at least two matched characters. These additional rules on gaps can
be enforced without increasing the running time of the alignment algorithm, so
a U-fold of S with folding point k and optimal score between the stems can be
computed in the time required to compute an optimal similarity alignment, i.e.
in time O(n2) where n is the length of S. By considering every folding point
this immediately gives an algorithm, the U-fold algorithm, that computes a
U-fold with optimal score between the stems in time O(n3). By observing
that the best folding point k corresponds to an entry (k − 1, n − k − 1) with

6

An optimal folding A U-fold

Figure 4: A string of the form (10)i0(10)i00(10)i00(10)i(01)i. For these strings
the U-fold with optimal score between the stems is only 1/4 of the score of
the optimal folding.

maximum value in the alignment matrix resulting from an alignment of S and
SR with the above parameters, i.e. matches between 1’s score 1, everything else
score 0, and gaps have to be expressible as loops, we can reduce the running
time of the U-fold algorithm to O(n2).

As the foldings considered by the folding algorithm by Hart and Istrail are
a subset of the foldings considered by our U-fold algorithm, the approximation
ratio of the U-fold algorithm is at least 1/4. Unfortunately it is no better in
the worst case. As illustrated in Figure 4, this follows because any string of the
form (10)i0(10)i00(10)i(01)i, i > 0, when folded as a U-fold with optimal score
between the stems only scores 1/4 of the score of an optimal folding. The 1/4
approximation ratio of our U-fold algorithm and the folding algorithm by Hart
and Istrail is thus tight. An obvious way to try to improve the approximation
ratio of the U-fold algorithm would be to also count and maximize the number
of non-local 1-1 bonds occurring between 1’s on the loops. Unfortunately, as
above, a set of strings can be constructed such that when folded this way they
only score 1/4 of the score of an optimal fold.

Another way to try to improve the approximation ratio of the U-fold algo-
rithm is to consider a larger set of foldings than U-folds. Figure 5 illustrates
two ways to do this. The first way is to allow multiple bends of the string and
loops on the outer stems. This gives rise to what we call S-folds. The second
way is to allow two bends of the string that fold the two ends of the string
towards each other and loops on the two stems. This gives rise to what we
call C-folds. Both the S-fold and the C-fold with optimal score between the
stems can be computed in time O(n3) using dynamic programming. For the
C-fold it is easy to see how. A C-fold of S is a U-fold of a prefix, S[1 .. k], and
a U-fold of a suffix, S[k + 1 .. n], glued together to form a C-fold. As there
are less than n ways to divide the string, the best C-fold can be found by
computing and gluing together 2n U-folds. As each of these U-folds can be
computed in time O(n2), the best C-fold can be computed in time O(n3). The

7

(a) S-fold (b) C-fold

Figure 5: Two ways to generalize the U-fold.

computation of the best S-fold in time O(n3) is somewhat more technical. We
choose to omit the details of the S-fold algorithm as it, as explained below,
unfortunately turns out that its approximation ratio is no better than 1/4.

As S- and C-folds are supersets of U-folds, the approximation ratio of both
the S- and C-fold algorithm is at least 1/4. Unfortunately this approxima-
tion ratio is tight for the S-fold algorithm because any string of the form
(10)i(02i+11)4i(10)i, i > 0, when folded as a S-fold with optimal score between
the stems only scores 1/4 of the score of an optimal folding. Similar to U-
folds, we can show that counting and maximizing the number of non-local 1-1
bonds occurring between 1’s on the loops of the S-fold does not improve the
worst case approximation ratio of the folding algorithm. In contrast to U-
and S-folds, we have not been able to find a set of strings that show that the
1/4 approximation ratio of the C-fold algorithm is tight. In fact experiments
indicates, as explained in the next section, that the approximation ratio of the
C-fold algorithm is somewhat better than 1/4. This is also observed in [8].

In our analysis of the approximation ratio of the C-fold algorithm we came
up with a relation to an interesting matching problem. This is the topic of
the next section. We end this section by summarizing the presented results.

Theorem 1 The score of the best U- and S-fold of string S is at least, and at
most in the worst case, 1/4 of the score of an optimal fold of S. The score of
the best C-fold of string S is at least 1/4 of the score of the optimal fold of S.

4 The circle problem

Let P ∈ {+,−}∗ be a string that contains equally many +’s and −’s. We say
that P is a balanced string of length n = |P |. Consider P wrapped around the

8

+ +
−
−

+

+

−
++−

−
−

−

+

+
−

Figure 6: An example of a matching in a balanced string

perimeter of a circle. A matching in P is obtained by dividing the circle by
a line and connecting +’s with −’s using non-crossing lines that all intersect
the dividing line. The size of the matching is the number of non-crossing lines
connecting +’s with −’s that intersect the dividing line. Figure 6 shows an
example of a matching of size 6. A maximum matching in P is a matching in P
of maximum size. We use M(P) to denote the size of a maximum matching
in P and we use M(n) to denote the minimum of M(P) over all balanced
strings P of length n, that is

M(n) = min
P :|P |=n

M(P).

The matching problem in balanced strings, or the circle problem as we call it,
is closely related to the approximation ratio of our C-fold algorithm. To see
the relation, we introduce the parity labelling of a string.

The parity labelling of a string S ∈ {0, 1}∗ is a string PS ∈ {+,−}∗ in
which the ith character indicates the parity of the ith 1 in S, e.g. the parity
labelling of 100101110101 is − + + − + + +. A balanced parity labelling
of S is a maximum length subsequence of PS that contains equally many
+’s and −’s. From the definition of EVEN(S) and ODD(S) follows that PS
contains |EVEN(S)| +’s and |ODD(S)| −’s, so a balanced parity labelling of S
is obtained by removing

∣∣|EVEN(S)| − |ODD(S)|
∣∣ +’s or −’s from PS . The

length of a balance parity labelling of S is 2 ·min{|EVEN(S)|, |ODD(S)|}, but
the labelling is not unique as there can be several ways to choose the +’s or
−’s to remove from PS , e.g. the parity labelling −+ +−+ + + gives −+ +−,
−+−+ and −−++ as possible balanced parity labellings.

Upper bounding the C-fold approximation ratio

To get the relation to C-folds, we observe that a C-fold of S with k non-
local 1-1 bonds between the stems corresponds to a matching of size k in a
balanced parity labelling of S. This implies that an upper bound on M(n) is

9

� U︸ ︷︷ ︸
i

︸ ︷︷ ︸
2i

︸ ︷︷ ︸
i

Figure 7: A folding of a string of the form (01)i000(01)i(010)2i(10)i000(10)i.
Only the two 1’s indicated with arrows have less than the optimal two
non-local bonds. The total number of non-local bonds in this folding is
2 ·min{|EVEN(S)|, |ODD(S)|} − 1 = 4i− 1 and thus, by the balanced parity
labelling argument, the optimal score between the stems in a C-fold of this
string is approximately 1/3 of the score of the optimal folding.

also an upper bound on the score between the stems of C-folds of strings with
balanced parity labellings of length n. In other words, if M(n) ≤ αn then the
score between the stems of a C-fold of S is upper bounded by α multiplied
by the length of a balanced parity labelling of S, i.e. upper bounded by α · 2 ·
min{|EVEN(S)|, |ODD(S)|}. Since the length of a balanced parity labelling
of S is equal to the upper bound on OPT(S) given by (1), M(n) ≤ αn implies
that the approximation ratio of the C-fold algorithm, with respect to the upper
bound on OPT(S) given by (1), is at most α.

It is easy to prove that M(+i −i (+−)i −i +i) = 2i + 1 for any i > 0.
Hence, M(n) ≤ n/3 + 1, so the asymptotic approximation ratio of our C-
fold algorithm is at most 1/3 if analyzed with respect to the upper bound on
OPT(S) given by (1). Fortunately, as illustrated in Figure 7, for any i > 0
there exists a string (01)i000(01)i(010)2i(10)i000(10)i with balanced parity
labelling +i−i (+−)i−i +i for which OPT(S) deviates from the upper bound
of (1) by at most a constant term. This example shows that the asymptotic
approximation ratio of the C-fold algorithm is at most 1/3.

Lower bounding the C-fold approximation ratio

To use a matching in a balanced parity labelling of S to improve on the 1/4
approximation ratio of the C-fold algorithm, two requirements must be met.
First, we need to be able to transform a matching in a balanced parity labelling
of S into a C-fold of S with a number of non-local bonds proportional by some
factor β to the size of the matching. Secondly, we need to lower bound the

10

+
1
1
−

0
−

0
−

−
1
1
+

0
−

0
−

+
1
1
−
· · ·

+
1
1
−

0
−

0
−

−
1
1
+

Figure 8: An example where the obvious transformation from a matching of
a balanced parity labelling of a string to a C-fold, trying to place two 1’s with
connected labels opposite each other on the stems of a C-fold, fails.

asymptotic ratio of M(n)/n by some constant γ > 1/(4 · β). This would yield
an asymptotic approximation ratio of the C-fold algorithm of β · γ > 1/4. We
have not yet solved these problems but will in the following report on some
promising approaches and experiments.

The task of transforming a matching in a balanced parity labelling of S
to a C-fold of S is not as straightforward as transforming the non-local bonds
between the stems of a C-fold of S to a matching in one of the balanced parity
labellings of S. Though one can identify the labels with 1’s it will not always
be the case that there is a legal C-fold of S where the non-local bonds between
the stems corresponds to the connections between the corresponding labels in
a matching in a balanced parity labelling of S.

To observe this, consider the two strings S′ = 12i and S′′ = (100)2i−11,
both with balanced parity labellings PS′ = PS′′ = (−+)i. Assume that S
contains S′ and S′′ as substrings and that the labels of these two substrings
have been connected with each other in the matching in a balanced parity
labelling of S. As illustrated in Figure 8, we get the same problem as in
the right-hand example in Figure 3 with two loops protruding from the same
element if we try to make the obvious transformation of this matching to a
C-fold of S. We observe that the obvious transformation only fails when we
have stretches of consecutive 1’s in one of the stems. One approach to solve
the problem of transforming a matching in the balanced parity matching of S
to a C-fold of S would thus be to ‘eliminate’ or at least ‘shorten’ consecutive
stretches of 1’s by removing 1’s while ensuring compensatory non-local bonds.

This can be done in much the same way as when contracting the stems
of a C-fold by folding out loops. As illustrated in Figure 9 we can fold out
a stretch of an even number of consecutive 1’s in a hydrophobic loop such
that only two 1’s remains along the stem. In such a loop where 2i 1’s have
been removed, i of which are at positions in EVEN(S) and i of which are at
positions in ODD(S), there will be i non-local bonds. As long as β · γ ≤ 1/2

11

�

�

�

Figure 9: Possible hydrophobic loops of eight consecutive 1’s. The positions
of the embedding of the last 1 in the stretch is indicated with an arrow.

we can thus ensure compensatory non-local bonds. This allows us to remove
the 1’s that can be folded out in hydrophobic loops from S before finding a
matching of a balanced parity labelling of the modified sequence.

Two problems still remain, though. First, the hydrophobic loops make the
sequence less flexible since we cannot contract the stems immediately after a
hydrophobic loop simply by folding out another loop. As indicated in Figure 9
we can however choose the position of the embedding of the last 1 in the stretch
of 1’s folded out rather freely which allows almost any contracting by an even
number of amino acids immediately after a hydrophobic loop. Only when the
loop removes 2i 1’s with i odd there is a problem with contracting the stem by
i+ 1 amino acids as we have to round the corner of the loop from the position
furthest away from the stem where we can embed the last 1. Secondly, we have
not eliminated stretches of consecutive 1’s but merely limited them to being
of length at most three. Though we find this approach promising we have
not yet been able to carry through with the rigorous case-by-case analysis, an
analysis that will require additional tricks besides the hydrophobic loops to
handle special cases, of the various situations that can arise when trying to
transform a matching of a balanced parity labelling of S to a C-fold of S.

To lower bound the asymptotic ratio of M(n)/n it is easy to observe that
M(n) ≥ n/4. Unless we, unrealistically, hope to transform a matching in the
balanced parity labelling of S into a C-fold of S with more non-local bonds
than connections in the matching this lower bound does not say anything we do
not already known, namely that the approximation of the C-fold algorithm is
at least 1/4. Narrowing the gap between the trivial lower bound M(n) ≥ n/4
and the upper bound M(n) ≤ n/3 + 1 presented above has turned out to be
a very difficult problem.

To get an impression of whether or not the trivial lower bound is tight, we
did two experiments. First, we computed the value of M(n) for all n ≤ 34. As
illustrated in Figure 10, this showed that M(n) ≥ n/3 for all n ≤ 34. Secondly,
we computed M(n) for a large number of randomly selected larger balanced
strings. This random search did not produce a string in which the size of the

12

0

2

4

6

8

10

12

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

M
in

im
um

 s
iz

e
of

 m
ax

im
um

 m
at

ch
in

g
(M

(n
))

Length of string (n)

"plot.data"

Figure 10: The minimum size of the maximum matching in balanced strings
with length up to 34.

maximum matching was less than n/3. Combined these two experiments lead
us to believe that M(n) ≥ n/3.

To help prove a non-trivial lower bound, one might consider the restricted
matching problem where the dividing line must be chosen such that it divides
the circle into two halfs. This restriction does not seem to affect the lower
bound, as rerunning the experiment presented in Figure 10 gives the same
results. It might also be helpful to consider other formulations of the problem.
We observe that a dividing line in the circular representation of P corresponds
to a partition XYZ of P , where the one side of the divided circle is Y and
the other side is ZX. The maximum size of a matching in P given a partition
XY Z is the length of the longest common subsequence of Y and ZX

R
, so

M(P) = max
XYZ : P=XYZ

|LCS(Y,ZX
R

)|.

In this terminology the above restriction of the problem, i.e. that the cir-
cle should be divided into two halfs, corresponds to only maximizing over
partitions XYZ of P where |Y | = |ZX|. Another formulation of the problem
follows from the observation that part of LCS(Y,ZX

R
) is a subsequence of a

prefix Y and X
R

and the rest is a subsequence of the rest of Y and Z
R

. We
can thus split Y according to this and reformulate the calculation of M(P) as

M(P) = max
X1,X2

{|X1|+ |X2| | X1X1
R
X2X2

R
is a subsequence of P}.

13

This lends an immediate generalization of the problem as we can define

Mk(P) = max
X1,... ,Xk

{
k∑
i=1

|Xi| | X1X1
R
. . . XkXk

R
is a subsequence of P},

where M(P) = M2(P) and M1(P) is the corresponding problem for the U-fold
(equivalent to fixing one end-point of the dividing line in the circle formulation
of the problem). One can observe that Mk(n) < n/2 for any k because the
string P = + + +−−+−− gives that Mk(P) = M1(P) = 3, but apart from
this we have not been able to come up with any non-trivial bounds for Mk(n).

5 Conclusion

We have presented three generalizations of the best known approximation
algorithm for structure prediction in the 2D HP model. We have shown that
two of these generalization do not improve the worst case approximation ratio,
while the third generalization might be better. The future work is clear. First,
prove that a matching in a balanced string can be transformed to a C-fold
with score equal to the size of the matching. Secondly, prove or disprove that
M(n) ≥ αn for some α > 1/4. Combined this would give whether or not our C-
fold algorithm improves the best known 1/4 approximation ratio for structure
prediction in the 2D HP model. We conjecture that the approximation ratio of
our C-fold algorithm where non-local bonds in the loops are considered is 1/3.

References

[1] C. B. Anfinsen, E. Haber, and F. H. White. The kinetics of the forma-
tion of native ribonuclease during oxidation of the reduced polypetide
domain. Proceedings of the National Academy of Science, USA, 47:1309–
1314, 1961.

[2] B. Berger and T. Leighton. Protein folding in the hydrophobic-hydrophilic
(HP) model is NP-complete. Journal of Computational Biology, 5(1):27–
40, 1998.

[3] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and M. Yan-
nakakis. On the complexity of protein folding. Journal of Computational
Biology, 5(3):423–465, 1998.

[4] K. A. Dill. Theory for the folding and stability of globular proteins.
Biochemistry, 24:1501, 1985.

14

[5] K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas,
and H. S. Chan. Principles of protein folding – a perspective from simple
exact models. Protein Science, 4:561–602, 1995.

[6] W. E. Hart and S. Istrail. Fast protein folding in the hydrophobic-
hydrophilic model within three-eights of optimal. Journal of Compu-
tational Biology, Spring 1996, 1996.

[7] R. B. Lyngsø and C. N. S. Pedersen. Prediction of protein structures
using simple exact models. Project in a Graduate Course. Available from
http://www.daimi.au.dk/∼cstorm/papers, June 1996.

[8] G. Mauri, G. Pavesi, and A. Piccolboni. Approximation algorithms for
protein folding prediction. In Proceedings of the 10th Annual Symposium
on Discrete Algorithms (SODA), pages 945–946, 1999.

[9] A. Sali, E. Shahknovich, and M. Karplus. How does a protein fold?
Nature, 369:248–251, 1994.

[10] R. Unger and J. Moult. Genetic algorithms for protein folding simulations.
Journal of Molecular Biology, 231:75–81, 1993.

[11] K. Yue and K. A. Dill. Forces of tertiary structural organization in glob-
ular proteins. In Proceedings of the National Academy of Science, USA,
volume 92, pages 146–150, 1994.

15

Recent BRICS Report Series Publications

RS-99-16 Rune B. Lyngsø and Christian N. S. Pedersen.Protein Folding
in the 2D HP Model. June 1999. 15 pp.

RS-99-15 Rune B. Lyngsø, Michael Zuker, and Christian N. S. Pedersen.
An Improved Algorithm for RNA Secondary Structure Predic-
tion. May 1999. 24 pp. An alloy of two articles appearing in
Istrail, Pevzner and Waterman, editors, Third Annual Inter-
national Conference on Computational Molecular Biology, RE-
COMB 99 Proceedings, 1999, pages 260–267, andBioinformat-
ics, 15, 1999.

RS-99-14 Marcelo P. Fiore, Gian Luca Cattani, and Glynn Winskel.
Weak Bisimulation and Open Maps. May 1999. To appear in
Longo, editor, Fourteenth Annual IEEE Symposium on Logic
in Computer Science, LICS ’99 Proceedings, 1999.

RS-99-13 Rasmus Pagh.Hash and Displace: Efficient Evaluation of Min-
imal Perfect Hash Functions. May 1999. 11 pp. A short version
to appear in Algorithms and Data Structures: 6th International
Workshop, WADS ’99 Proceedings, LNCS, 1999.

RS-99-12 Gerth Stølting Brodal, Rune B. Lyngsø, Christian N. S. Peder-
sen, and Jens Stoye.Finding Maximal Pairs with Bounded Gap.
April 1999. 31 pp. To appear inCombinatorial Pattern Match-
ing: 10th Annual Symposium, CPM ’99 Proceedings, LNCS,
1999.

RS-99-11 Ulrich Kohlenbach. On the Uniform Weak K̈onig’s Lemma.
March 1999. 13 pp.

RS-99-10 Jon G. Riecke and Anders B. Sandholm.A Relational Account
of Call-by-Value Sequentiality. March 1999. 51 pp. To appear
in Information and Computation, LICS ’97 Special Issue. Ex-
tended version of an article appearing inTwelfth Annual IEEE
Symposium on Logic in Computer Science, LICS ’97 Proceed-
ings, 1997, pages 258–267. This report supersedes the earlier
report BRICS RS-97-41.

