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Abstract

A systematic treatment of weak bisimulation and observational con-
gruence on presheaf models is presented. The theory is developed with
respect to a “hiding” functor from a category of paths to observable
paths. Via a view of processes as bundles, we are able to account for
weak morphisms (roughly only required to preserve observable paths)
and to derive a saturation monad (on the category of presheaves over
the category of paths). Weak morphisms may be encoded as strong
ones via the Kleisli construction associated to the saturation monad.
A general notion of weak open-map bisimulation is introduced, and
results relating various notions of strong and weak bisimulation are
provided. The abstract theory is accompanied by the concrete study
of two key models for concurrency, the interleaving model of synchro-
nisation trees and the independence model of labelled event structures.
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Introduction

Strong bisimulation of Park and Milner is often too discriminating an equiv-
alence on transitions systems. For this reason Milner invented weak bisim-
ulation [16] which abstracts away from invisible actions, usually labelled τ .
Although an action is itself invisible its effect need not be, leading Milner
to a construction which we can view as adjoining to a transition system all
its weak transitions. A weak transition with label τ represents a, possibly
empty, sequence of τ -transitions whereas a weak transition with non-τ label
a represents the visible action a preceded and followed by, possibly empty,
sequences of τ -transitions in the original transition system. Transition sys-
tems are weakly bisimilar if they become strongly bisimilar when saturated
with all their weak transitions.

Weak bisimulation has the drawback of not being a congruence with
respect to the usual operations of process calculi—it is not respected by
nondeterministic sum—which forced Milner to refine weak bisimulation to
observational congruence. Again observational congruence can be reduced to
strong bisimulation via an operation on transition systems like that for weak
bisimulation, but this time treating the initial actions specially. For this
operation to make sense the transition systems need to be “non-restarting”
(i.e., transition systems for which there are no transitions back to the initial
state).

Milner’s operations on transition systems translate to the category of
transition systems with label-preserving maps [25]. Both operations be-
come monads on the category of transition systems, in line with their being
operations of saturation. Corresponding monads on the category of synchro-
nisation trees are derived by composing the coreflection from synchronisation
trees to transition systems with the monads on transition systems.

The paper [13] shows how to generalise strong bisimulation to other
classes of models presented as categories via spans of open maps. Once we
have strong bisimulation in place for a particular category of models, given
analogues of Milner’s operations as monads we can define the corresponding
weak bisimulation and observational congruence. But this raises the ques-
tion of how to define the monads for other models. Indeed the question
of weak bisimulation and observational congruence has traditionally been
addressed afresh for each new process language.

The contribution of this paper is a study of a systematic way to de-
fine weak bisimulation and observational congruence on presheaf models.
Presheaf models have been shown to include traditional models like syn-
chronisation trees and event structures [13] along with their notion of bisim-



ulation, to be related by powerful preservation properties associated with
colimit-preserving functors [9], and to form a domain theory for bisimu-
lation [23, 7, 6] in which a wide range of, possibly higher-order, process
languages can receive a denotational semantics.

In [17] an approach to an open-map account of weak bisimulation on
transition systems is based on “weak morphisms”, a reconstruction of the
maps between transition systems to account for the invisibility of τ -actions.
That paper implicitly takes the weak morphisms to be maps in the Kleisli
category of the saturation monad and shows that weak bisimulation coin-
cides with open-map bisimulation in this Kleisli category.

This line can be followed for presheaf models but more generally with
respect to any “hiding” functor h : P // Q. Here we think of P as a category
of computation paths with invisible actions and Q as paths without; for
instance P might be strings of actions with τ while Q is strings of just visible
actions. A treatment of weak bisimulation must also yield an operation
of hiding which makes certain events of a process invisible. For example,
Milner’s operations can be regarded as hiding the τ -actions a process can
do by allowing arbitrarily many τ -actions to participate in any transition
between states—a sort of hiding by obfuscation. Our treatment of weak
bisimulation goes via an intermediary construction of hiding on processes
regarded as bundles—this view seems important in its own right. A presheaf
over P can be viewed as a discrete fibration and so as an object in Cat/P,
i.e., as a bundle over P in Cat. We can regard such bundles as generalised
transition systems as advocated in [26, 4]. Now we can express the operation
of hiding directly: via composition with the hiding functor h a bundle over
P becomes a bundle over Q. Maps in Cat/Q need only respect the “visible”
actions Q and generalise “weak morphisms”. The operation of taking a
presheaf over P to a bundle over Q has a right adjoint. This adjunction
induces a saturation monad Th on presheaves over P. This monad is shown to
preserve open-map bisimulation, generalising the expectation that strongly
bisimilar processes should be weakly bisimilar.

There are two ways we might say that presheaves X, Y over P are weakly
bisimilar:

(i) if Th(X) and Th(Y ) are open-map bisimilar as presheaves over P;

(ii) if X and Y are open-map bisimilar in the Kleisli category of Th.

The two conditions are not equivalent in general. We investigate when they
are (see ‘Sharp functors’, Section 3).
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Interestingly, in our work it is the analogue of observational congruence
which becomes primary; the general treatment of weak bisimulation involves
considering initial states explicitly. We accompany the general theory of
weak bisimulation and observational congruence with a discussion of two
running examples, the principal models for concurrency of synchronisation
trees and labelled event structures. We leave to future work the investigation
of weak bisimulation for higher-order process languages whose semantics is
supported by presheaf models.

Organisation of the paper. In Sections 1 and 2, after reviewing the
notions of open-map bisimulation and the view of processes as presheaves,
we advocate a view of processes as bundles. Section 3 contains the main
theoretical development. The notions of weak morphism and weak open-map
bisimulation, and the construction of the saturation monad are introduced.
Results relating the various notions of strong and weak bisimulation are
provided. In Section 4 consequences of the general theory are derived for the
models of synchronisation trees and of labelled event structures. In the case
of synchronisation trees, weak open-map bisimulation is shown to coincide
with Milner’s weak bisimulation and observational congruence depending
on whether the “hiding” functor is defined on all strings of actions or just
on the non-empty ones. For event structures, weak open-map bisimulation
is characterised in terms of a weak form of hereditary history preserving
bisimulation.

1 Open maps and bisimulation

We briefly review the notion of open map bisimulation [13]. The starting
point is the work on categorical models for concurrency, such as [24, 19,
21, 22], which has concentrated on understanding the structure and rela-
tionships between classes of models, ranging from synchronisation trees to
transition systems, event structures and Petri nets. Morphisms between
models account for the possibility of a model to simulate the behaviour of
another. In other words they represent functional simulations. A primary
example of such a category of models is represented by transition systems.

Definition 1.1 For a set of actions A, let TSA be the category of transition
systems over A with morphisms given by functions between the correspond-
ing sets of states that preserve the initial state and the transition relation,
respecting the labelling (see [13]).
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If morphisms in a category of models are understood as functional simula-
tions. It is natural to ask whether it is possible to distinguish among all
such functional simulations those that in fact are bisimulations. Consider
two transition systems over the same set of actions A, T0 = (S0, ∗0, //

0)
and T1 = (S1, ∗1, //

1), and a morphism f : T0
// T1 between them. The

morphism f is said to be a zig-zag morphism [2] if it further satisfies the
following property, for every reachable state s ∈ S0 and every action a ∈ A:

f(s) a //
1 t′ implies ∃ t ∈ S0. s

a //
0 t and f(t) = t′ .

In other words, f not only preserves but also reflects reachable transitions.
If f is a zig-zag morphism, then its graph is a bisimulation between the two
transition systems. In [13] the above situation was axiomatised in terms
of the following path lifting property (see [13, 6] for more detailed explana-
tions). Suppose that within a category of models, M, one can distinguish a
subcategory of computation paths (or shapes), P. The objects of P account
for runs (or history) of a process and their morphisms tell us how one path
can be extended by another one. Given the inclusion functor I : P // M,
a morphism X // Y in M is said to be an I-open map if, for all e : p // q
in P, every commutative square

Ip //

Ie
��

X

��

Iq //

∃ ??

Y

has a fill-in as indicated. Note that the definition of open map makes sense
for any functor P // M and not only for inclusions.

Going back to transition systems, a natural choice for the category P is
that of transition systems whose transition graph consists of a finite sequence
of transitions. If A is the set of actions, this category is equivalent to the
partial order A∗ of finite strings of elements of A. With this choice of P for
M = TSA, we have that the I-open maps are the zig-zag morphisms.

Since I-open maps correspond to functional bisimulations, open map
bisimilarity is defined in terms of spans of open maps: two objects in M are
said to be I-open map bisimilar if they are related by a span of I-open maps.
Not surprisingly one can prove that two transition systems are Park-Milner
strong bisimilar iff they are I-open map bisimilar for I : A∗ � � // TSA [13].

Preservation properties. We list some properties of the notion of open-
ness (see also [13]) that will be used in the study of weak open-map bisimi-
larity in Section 3.
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In the situation C H // A
F

//> B,
Goo

we have that:

1. For every g ∈ B, Gg is H-open iff g is FH-open.

Therefore, given a monad T on A, it follows that, for all f ∈ A,
FT f ∈ Kleisli(T ) is FT H-open iff Tf ∈ A is H-open.

2. For X,Y ∈ A, if FX and FY are FH-open map bisimilar then GFX
and GFY are H-open map bisimilar. In addition, if GF preserves
H-open maps and the multiplication of the monad induced by the
adjunction F a G is pointwise H-open, then the converse also holds.

2 Presheaf models

2.1 Processes as presheaves

There is much freedom in the choice of the path category, P, which, in prin-
ciple, bears no particular relationship with the category of models M other
than being one of its subcategories. For some concrete examples, such as
transition systems, certain path categories immediately suggest themselves
as “natural” choices (see [13]) but, in general we cannot expect this to hap-
pen. There is an important class of categories which are equipped with a
canonical choice of path category. These are the so-called presheaf cate-
gories. Given a small category P, the category of presheaves over P, written
P̂, is the category of functors Pop // Set (where Set is the category of sets
and functions) and natural transformations. What is crucial for us is that
the category P̂ is also a concrete representation of the free colimit completion
of P (we shall expand on the corresponding universal property in the last
paragraph of this section). The embedding of a category P into its presheaf
completion, P̂, is the well-known Yoneda embedding, YP : P ↪ // P̂ [14].
Henceforth we will identify P with its image in P̂ under YP.

Given a category P, we write P⊥ for the category P to which a strict
new initial object, ⊥, has been added. Writing Y◦

P
: P⊥ // P̂ for the strict

(i.e., initial-object preserving) extension of YP, a map in P̂ is Y◦
P
-open iff it

is surjective and YP-open, the canonical choice for open-map bisimulation
in a presheaf category [13].

Presheaf categories subsume more traditional categories of models. It
was suggested in [13] that they deserve to be studied as categories of models
for concurrency in their own right. Subsequent work on this line appeared
in [9, 23, 26, 8, 7, 11, 6].
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Synchronisation trees. A simple example of a presheaf model is given by
synchronisation trees. A synchronisation tree is a transition system whose
transition graph is a tree with root the initial state.

Definition 2.1 For a set of actions A, let STA be the full subcategory of
TSA of synchronisation trees.

We have already seen the partial order, regarded as a category, A∗. We
define A+ to be its subcategory consisting of non-empty strings. Notice
that (A+)⊥ ∼= A∗.

Proposition 2.2 (cf. [13]) For a set of actions A, the categories STA and
Â+ are equivalent.

Via the equivalence of the above proposition, Park-Milner strong bisimula-
tion [16] coincides with Y◦

A+-open map bisimulation [13].

Event structures. Event structures do not correspond to presheaf cat-
egories as transparently as synchronisation trees. Still, categories of event
structures embed in presheaf categories over pomset categories as observed
in [13].

Definition 2.3 For a set of actions A, let ESA be the category of event
structures labelled in A with arrows given by total functions between event
sets which respect actions and whose direct image preserve configurations
bijectively on events, as in [13]. A morphism is said to be strict if it is
a monotone function with respect to the partial order relation on events.
Define ESs

A to be the subcategory of ESA with the same objects but only
strict morphisms.

In [13] open map bisimulation for event structures was studied with respect
to the choice of pomsets [18] as objects of the path category.

Definition 2.4 Define a pomset to be a triple (P,≤, l) with P a finite set,
(P,≤) a partial order and l : P // A a labelling function.

Any pomset gives rise to an event structure (see [13]). The full subcategory
of ESA of pomsets is a large category, though equivalent to a small one. We
thus take as path category a small category equivalent to the category of
pomsets. In particular we can choose it to be skeletal, i.e., such that any
two isomorphic objects are equal. (This will have some technical advantages
for proving the results of Subsection 4.2.)
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Definition 2.5 For a set of actions A, let PomA be a skeleton of the full
subcategory of ESA of non-empty pomsets labelled in A. Define Poms

A to be
the subcategory of PomA with the same objects but only strict morphisms.

The embeddings of PomA into ESA and of Poms
A into ESs

A are dense
functors; hence ESA fully embeds into P̂omA and ESs

A fully embeds into
P̂oms

A (see [14, 13]). Moreover, for either Y◦ : (PomA)⊥
� � // P̂omA or

Y◦ : (Poms
A)⊥

� � // P̂oms
A, open map bisimulation corresponds to hereditary

history preserving bisimulation [1] (see [13, 26] for more details).

Universal property of presheaf categories. As mentioned at the
beginning of this subsection, the Yoneda embedding Y : P � � // P̂ exhibits
P̂ as the free cocompletion of P (see, eg., [15]). More precisely, for every
cocomplete category C, we have the following equivalence of categories.

Adj(P̂, C) ' Cocont(P̂, C) ' CAT(P, C)
(L a R) � // L � // LY

where Adj(A,B) is the category of adjoint pairs L a R : B // A (and nat-
ural transformations between left adjoints), Cocont(A,B) is the category
of colimit preserving (i.e., cocontinuous) functors A // B (and natural
transformations), and CAT(A,B) is the category of functors A // B (and
natural transformations). This information can be succinctly expressed by
the diagram

P
� � Y

//

F
��

???????? ∼=
P̂

L
��

a

C
R

OO

with L = LanY(F ), the left Kan extension [14] of F along Y, and R = (C � //

C(F ,C)). In particular, for C = Q̂, we have the following coend formula
for left Kan extensions

L(X)(q) =
∫ p∈P

X(p) × F (p)(q) .

2.2 Processes as bundles

We advocate a viewpoint of processes, as bundles (see also [4, 26]), that
is important in our treatment of weak bisimulation. Roughly speaking, “a
bundle is just a map viewed as an object in a particular category” [12,
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page 11]; which in our case is the category of small categories and functors
Cat.

To motivate this point of view let us consider a synchronisation tree
T = (S, ∗, //) over a set of actions A. This representation of processes is
misleading in that it does not provide a clear cut between two conceptually
different notions; viz., the transitions between states and the actions being
observed along a transition. However, a structure embodying these concepts

may be disentangled from the above representation, to obtain a bundle
T

A

��

in Cat, as follows.

1. The category of computation states and transitions T associated to the
synchronisation tree T has objects given by pairs (α ∈ A+, s ∈ S) such

that ∗ α //∗s in T , and morphisms β : (α, s) // (αβ, s′) iff s
β

//∗s′ in T ,
where for a string α = a1a2 . . . an, we write s

α //∗s′ to mean that there
exist states s1, s2, . . . , sn such that s

a1 // s1
a2 // s2

// . . .
an // sn = s′.

2. The category of path shapes (or observation stages) is given by the
poset A+.

3. The labelling functor T // A associates to a transition β : (α, s) //

(αβ, s′) the sequence of actions β observed along the computation path

s
β

//∗s′ in T .

This association of a bundle to a synchronisation tree (that is, a presheaf
in Â+) can be done for presheaves over an arbitrary path category, and
corresponds to the well-known Grothendieck construction [15] given by the
functor:

P̂
D // Cat/P

(X
f

// Y ) � //
P/X

Σf
//

domX ��
====

P/Y
domY������

P

where Σf (x) = f ◦ x and Σf (x
χ

// x′) = χ. Intuitively, the category of
computation states and transitions P/X (usually denoted

∫
X) consists of

the computation paths x : p // X (in P̂) of the process X with transitions
e : (p, x) // (p′, x′) (in P) given by path extensions (that is, subject to the
equality p = p′ ◦ e).
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The Grothendieck construction D is an embedding (i.e., full and faith-
ful). Thus, a map of processes X // Y in P̂ amounts precisely to a functor∫

X //
∫

Y between the corresponding categories of computation states
and transitions that is compatible with the observations along transitions;
that is, such that the diagram∫

X //

DX !!BBBB

∫
Y

DY~~||||

P

(1)

commutes. Moreover, D cuts down to an equivalence

P̂ ' DFib/P ,

where DFib/P is the full subcategory of discrete fibrations over P [10], which
characterises presheaf models as bundles.

As it will be useful for us in the next section, we remark on a univer-
sal characterisation of the Grothendieck construction (that is presumably
folklore—cf. [20]) summarised in the statement below.

Theorem 2.6 We have the following situation

p
�

��
???????? P

� � Y
//� o

dom

��
>>>>>>>>>>> P̂� _

D
��

a
P/p

P

domp ��
Cat/P

U

OO

where D = LanY(dom), U(
X

P

�� ) = Cat/P(
P/(−)

P

dom �� ,
X

P

�� ).

Informally, the functor U unfolds a bundle
X

P

�� into the process consisting

of all the possible runs, along paths in P, in the category of states and
transitions X.

3 Weak open-map bisimulation on presheaf mod-
els

We provide a uniform treatment of weak open-map bisimulation for presheaf
models. In this section, we focus in the motivation and analysis of the
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concepts and mathematical structures involved; case studies of particular
examples are deferred to Section 4.

Weak bisimulation. A central rôle in the development of weak bisim-
ulation in [16, Chapter 5, Section 1] is played by notions of weak tran-
sitions. Given a transition system T = (S, ∗, //) over a set of actions
A = L + {τ}, for s, t ∈ S, there is a weak transition s

α +3 t (α = a1 . . . an)

iff s ( τ //)∗ a1 // ( τ //)∗ · · · ( τ //)∗ an // ( τ //)∗ t. With the aid of this definition,
given a transition system T = (S, ∗, //) one may construct its saturation by
τ actions (cf. [16]) as the transition system T (T ) = (S, ∗, ///o ) where s

a ///o s′

iff s
â +3 s′ with τ̂ = ε and ̂̀= ` (` ∈ L). This construction is important for

defining and characterising weak bisimulation. Indeed, recall that a relation
R ⊆ S0 × S1 between states of transition systems T0 and T1 is said to be a
weak bisimulation [16] if ∗0 R ∗1 and, whenever s R s′, we have that s

a //
0 t

implies s′ â +3
1 t′ with t R t′, for some t′; and s′ a //

1 t′ implies s
â +3

0 t with
t R t′, for some t. Moreover, as is well-known, two transition systems are
weakly bisimilar iff their saturations are strongly bisimilar.

Notice in particular that a functional weak-bisimulation f from T0 to T1

is a function S0
// S1 between states which preserves the initial state and

is such that

1. for every s ∈ S0, s
a //

0 t in T0 implies f(s) a ///o
1 f(t) in T (T1),

2. for every reachable s ∈ S0, f(s) a //
1 t′ in T1 implies s

a ///o
0 t in T (T0)

with f(t) = t′, for some t.

This suggests that in order to capture the notion of weak bisimilarity via
(spans of) open maps one should consider weak morphisms mapping strong
transitions to weak ones, as in condition (1) above. The idea of considering
weak morphisms in connection with studies of weak bisimulation has been
considered before; it first appeared in [5] and was used in [17] to characterise
weak bisimulation via open maps. However, what is new in our work is the
following conceptual treatment of weak morphisms and of the saturation
construction.

Weak morphisms. The definition of the weak transition ///o involves two
ingredients:

1. the consideration of sequences of transitions, and

2. a notion of hiding associated to observations.

10



The viewpoint of processes as bundles of Subsection 2.2 already accounts
for (1), as the structure of states and transitions is given by a category
(where transitions may be composed). The incorporation of (2) requires the
assumption of extra structure. For instance, the hiding operation associated
to the observations on synchronisation trees over the set of actions A =
L + {τ} (i.e., presheaves over A+) is given by the (monotone) function
(̂−) : A+ // L∗ that hides the invisible τ actions. Indeed, given a presheaf

T on A+, a weak transition s
` ///o t (` ∈ L) corresponds to a transition

β : (α, s) // (αβ, t) in the category of computation states
∫

T such that
β̂ = ` (i.e., β = τm`τn); whilst s

τ ///o t corresponds to a transition β :
(α, s) // (αβ, t) in

∫
T for which β̂ = ε (i.e., β = τn).

These considerations, scaled-up to arbitrary presheaf models, motivate
introducing the notion of weak morphism between processes in P̂ with re-
spect to a functor h : P // Q that interprets the paths in P as observations
in Q. Hence, we define an h-weak morphism between processes X,Y ∈ P̂
as a functor

∫
X //

∫
Y between their associated categories of computa-

tion states and transitions that is compatible with the observations along
transitions; that is, such that the diagram∫

X //

DX ��

∫
Y

DY��

P

h ��
==== P

h������

Q

commutes. We write Weak(h) for the category of h-weak morphisms between
presheaves in P̂. Notice that since
every (strong) morphism in P̂ yields a weak morphism in Weak(h) (see (1))
we have an identity-on-objects
faithful functor Wh : P̂ // Weak(h) : f � // Σf . This equips the cat-
egory Weak(h) with the path functor WhY◦ : P⊥ // Weak(h) which in-
duces a notion of weak open-map bisimilarity, WhY◦-open map bisimilarity,
referred to as h-bisimilarity .

Saturation monad. We show that a saturation construction for presheaf
models, allowing the encoding of weak morphisms as strong ones, arises
naturally from our analysis. Notice first that, for h : P // Q, the category
of h-weak morphisms may be more abstractly presented using the functor

Dh = P̂ � � D // Cat/P
Σh // Cat/Q ;

11



since, for X,Y ∈ P̂,

Weak(h)(X,Y ) = Cat/Q (DhX,DhY ) . (2)

As Dh has a right adjoint Uh given as follows

P̂ � �

D
//>

Uoo
Cat/P

Σh

//>
h∗

oo
Cat/Q , (3)

(where h∗ denotes the functor that pullbacks a bundle along h) we have,
from (2), that

Weak(h)(X,Y ) ∼= P̂(X,UhDhY )
= Kleisli(Th)(X,Y )

where Th is the saturation monad on P̂ induced by the adjunction (3). Thus,
Weak(h) is (isomorphic to) the Kleisli category of the saturation monad Th.

The saturation monad has the following explicit description

Th(X) = Cat/Q (Dh(−),DhX) (4)

from which one clearly sees that the computation paths in Th(X) correspond
to weak computation paths in X.

To see the saturation monad at work, let us consider the hiding functor
h = (̂ ) : A+ // L∗. To compute, for instance, the saturation of the
synchronisation tree T = (∗ τ // 0 τ // 1) we proceed as follows.

1. We regard T as the bundle

∫
T

A+

t �� given by

0 //
_

��

1_

��
τ // ττ .

2. We hide observations as prescribed by h to obtain the bundle

∫
T

L∗
ht ��

that collapses
∫

T into ε.
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3. We pullback along h to obtain the first-projection bundle
h∗ ∫ T

A+

h∗(ht) ��

where h∗ ∫
T is the category

(τ, 0) //

!!DDDDDDD

))RRRRRRRRRRRRR (ττ, 0) //

##GGGGGGG

))SSSSSSSSSSSSSS (τττ, 0) //

$$HHHHHHH
· · ·
···

(τ, 1) // (ττ, 1) // (τττ, 1) // · · ·
(5)

4. Finally, we unfold (5) to obtain the synchronisation tree

· · ·

000 //

66mmmmmm · · ·

00 τ
//

τ 66nnnnnn
001 // · · ·

0 τ
//

τ 77pppppp 01 τ
// 011 // · · ·

∗ τ
//

τ 88rrrrrr
1 τ

// 11 τ
// 111 // · · · .

Note that the saturation is actually taking place in steps (2) and (3), which
correspond to the adjunction

Cat/P
Σh

//>
h∗

oo
Cat/Q

related to the treatment of existential quantifiers as adjoints (see [15]).
We have remarked in (4) that the saturation monad can be given explic-

itly by considering weak computation paths. In order to obtain a deeper
understanding of the saturation process, we study weak computation paths
in detail. In particular, we show that every weak computation path admits
a universal factorisation as a weak path extension followed by a (strong)
computation path. Indeed, for x : Dh(p) // DhX (p ∈ P, X ∈ P̂) in
Cat/Q,

• let x : p // X in P̂ be x(idp), and

• define x̃ : Dh(p) // Dh(p) by x̃(e) def= x(e) and x̃(e ε // e′) def= x(ε).

Then, we have the following factorisation lemma.

Lemma 3.1 For x : Dh(p) // DhX (p ∈ P, X ∈ P̂) in Cat/Q ,
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1. x = Dh(x) ◦ x̃; and

2. for y : q // X (q ∈ P) in P̂ and f : Dh(p) // Dh(q) in Cat/Q such
that x = Dh(y) ◦ f , there exists a unique e : p // q in P such that
f = Dh(e) ◦ x̃ and x = y ◦ e.

It follows that, for q ∈ P and X ∈ P̂, the family

{ X(p) × Cat/Q (Dh(q),Dh(p)) // Th(X)(q) }p∈P
(x, f) � // Dh(x) ◦ f

exhibits Th(X)(q) as the coend∫ p∈P
X(p) × Cat/Q (Dh(q),Dh(p)) , (6)

and hence that Th is a left Kan extension of the functor P // P̂ : p � //

Cat/Q (Dh(−),Dh(p)) along the Yoneda embedding. We have shown the
following result.

Theorem 3.2 For every functor h, the saturation monad Th is cocontinu-
ous.

Properties. For h : P // Q, the following hold.

1. A map f : X // Y in Weak(h) is WhY◦-open iff the map f : DhX //

DhY in Cat/Q is DhY◦-open.

2. For a map f in P̂, Th(f) is Y◦-open iff Dh(f) is DhY◦-open.

3. Th preserves Y◦-open maps (as so does every cocontinuous functor,
see [9, 6]) and hence Y◦-open map bisimilarity implies h-bisimilarity.

The last statement is an abstract expression of the result “strong bisimilarity
implies weak bisimilarity (observational congruence)”.

Sharp functors. A functor h is said to be sharp whenever the multipli-
cation of the saturation monad Th is pointwise Y◦-open (cf. ‘Preservation
Properties (2)’, Section 1). The notion of bisimilarity with respect to sharp
functors has interesting properties.

Proposition 3.3 Let h : P // Q .

1. If two presheaves over P are h-bisimilar then their saturations are Y◦-
open map bisimilar. In addition, if h is sharp then the converse also
holds.

14



2. For a sharp functor h, h-bisimilarity is a congruence with respect to
sums.

In presheaf models in which sums interpret choice (as it is the case in Â+)
the last result shows that the notion of h-bisimilarity, for sharp functors h,
is closer to observational congruence rather than to weak bisimilarity. We
will see in the next section that this is indeed the case.

A characterisation of sharp functors. Assuming a functor h : P // Q ,
we first see how to understand the components of the multiplication µ of
the monad Th as derived from composition in Cat/Q .

Define profunctors V,W : P + //P, in other words presheaves V,W over
Pop × P, as follows:

V (p, p′) def= Cat/Q (Dh(p′),Dh(p)) ,

W (p, p′) def=
∫ q

V (q, p′) × V (p, q) .

Define γ to be the natural transformation from W to V (so a map in P̂op × P)
such that

γp,p′ : W (p, p′) // V (p, p′)

is induced by composition.
Recalling the coend formula (6) for Th applied to X ∈ P̂, we see that

Th(X)(p) =
∫ q

X(q) × V (q, p) .

Applying the coend formula for Th twice, using “Fubini” [14] to interchange
coends and that products in Set preserve colimits, we obtain

T 2
h (X)(p) =

∫ q

X(q) × W (q, p) .

A calculation shows that the natural transformation with p-components∫ q

X(q) × γq,p : (T 2
h X)(p) // (ThX)(p)

induced by composition in Cat/Q is the multiplication µX . (In other words
µX = γ∗X, where ∗ is the horizontal composition of 2-cells in the bicategory
of profunctors [3], in this case “whiskering” the 2-cell γ : W +3 V with the
one cell X : 1 + //P.)
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Thus we see µX as the result of applying the cocontinuous functor

P̂op × P // P̂
U � // (p � //

∫ q
X(q) × U(q, p))

to the map γ : W // V . Hence if γ is open as a map in P̂op × P, then for
any X ∈ P̂ the multiplication µX will be open. But γ will be open iff it is
open in each argument separately, yielding conditions corresponding to the
covariant and contravariant arguments:

Covariant openness. Fixing p, we require that γp,− : W (p,−) // V (p,−) is
open in P̂.

Contravariant openness. Fixing p′, we require that γ−,p′ : W (−, p′) //

V (−, p′) is open in P̂op.

These two conditions are sufficient for the functor h to be sharp. The first
condition (covariant openness) is also necessary—instantiating the presheaf
X to a representable we see that the openness of µX amounts to the first
condition. The following “fill-in” condition can be shown to be sufficient to
ensure covariant openness:

Dh(p)

x

��

Dh(e)
// Dh(q)

z

��

x′
��

Dh(p′)

y
--

Dh(e′)
// Dh(q′)

w
$$

Dh(o) ,

(7)

meaning if the outer arrows commute in Cat/Q then one can fill-in with the
dotted arrows. All arrows but Dh(e) and Dh(e′) may be weak morphisms.
The arrow x : Dh(p) // Dh(p′) is assumed extreme in the sense that x(idp) =
idp′ . A fill-in condition dual to (7) can be proved to always hold ensuring
contravariant openness in general.

In summary, we have the following result.

Theorem 3.4 1. The functor h is sharp iff for all p ∈ P the map γp,− :
W (p,−) // V (p,−) is open in P̂.

2. The functor h is sharp if the fill-in condition (7) above holds.

16



4 Examples

4.1 Synchronisation trees

Observational congruence. We study bisimilarity with respect to the
hiding functor h = (̂ ) : A+ // L∗ where A = L + {τ}.

The (Kleisli) category Weak(h) is (equivalent to) the category with ob-
jects given by synchronisation trees and morphisms T0

// T1 given by func-
tions f : S0

// S1 between states that preserve the initial state (i.e., f(∗0) =
∗1) and are such that

1. ∗0
a //

0 s implies ∗1
a +3

1 f(s);

2. ∗0 6= s
a //

0 s′ implies f(s) â +3
1 f(s′).

We have the following characterisation of h-bisimilarity (cf. [5]).

Proposition 4.1 For h = (̂ ) : A+ // L∗, h-bisimilarity coincides with
observational congruence.

It is well-known that two synchronisation trees are observationally con-
gruent if, after the saturation construction, they are strongly bisimilar (cf. [16]).
This property is reflected here by the fact that the hiding functor h is sharp.
Indeed, referring to the diagram (7) for the fill-in condition, suppose that
e represents the string extension q = ps. Fill-in by taking: q′ = p′s and
e′ the witness to this extension; the map x′ such that x′(ps0) = p′s0 and
x′(p0) = x(p0) when p0 ≤ p; the map w such that w(p′s0) = z(ps0) and
w(p′0) = y(p′0) if p′0 ≤ p′.

Weak bisimulation. Let A be L + {τ}. For h the hiding functor (̂ ) :
A∗ // L∗, the (Kleisli) category Weak(h) is (equivalent to) the category with
objects given by synchronisation forests and morphisms T0

// T1 given by
functions f : S0

// S1 between the corresponding sets of states such that

s
a // s′ implies f(s) â +3 f(s′) (cf. [17]).

Proposition 4.2 For h = (̂ ) : A∗ // L∗, h-bisimilarity between synchro-
nisation trees coincides with weak bisimulation.

As for observational congruence, one can verify that also in this case the
hiding functor (̂ ) : A∗ // L∗ is sharp.
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4.2 Event structures

In this section we begin the study of weak bisimulation for event structures.
The category ESs

A fully embeds in the presheaf category P̂oms
A. It is natural

to consider the hiding functor h : Poms
A

// (Poms
L)⊥ which removes from

a pomset P all the events which are labelled τ . In particular if all the events
of P are labelled τ , h(P ) is the empty pomset that we denote as ⊥.

For a pomset P , write P↓ for the partial order of sub-pomsets of P .

Definition 4.3 Given a monotone function f : P↓ // Q↓, we say that f is
extreme if f(P ) = Q (cf. the assumption on the fill-in condition (7)), and
we say that f is h-respecting if, for every P ′ ⊆ P , h(P ′) is isomorphic to
h(f(P ′)).

Extreme, h-respecting maps induce isomorphisms between pomsets with τ -
events hidden.

Proposition 4.4 For every f : P ↓ // Q↓ extreme and h-respecting there
exists a (necessarily unique) isomorphism f ′ : h(P ) // h(Q) in (Poms

L)⊥
such that for every P ′ ⊆ P , f ′(h(P ′)) = h(f(P ′)).

Definition 4.5 Define WPoms
A to be the category with the same objects

as Poms
A and arrows h-respecting monotone functions.

The category WPoms
A corresponds to a category of pomsets and weak

morphisms.

Proposition 4.6 The category WPoms
A is isomorphic to the full subcate-

gory of Weak(h) with objects given by the images under the Yoneda embed-
ding of the pomsets in Poms

A.

We can now show that the hiding functor h is sharp hence by Propo-
sition 3.3 h-bisimilarity and Y0-open bisimilarity after saturation coincide
for presheaves over Poms

A. We show that h is sharp by verifying the fill-in
condition of diagram (7). By Theorem 3.4, it is sufficient to verify that the
fill-in condition holds in WPoms

A. Adopting the same names for maps as
in the fill-in diagram (7), we can (without loss of generality) assume that e
is an inclusion of pomsets e : P ⊆ Q; otherwise modify Q to within isomor-
phism and z accordingly—a fill-in for the new diagram implies one for the
old. In a similar way we may further assume that Q and P ′ have disjoint
sets of events. It is sufficient to get a fill-in for the situation when Q consists
of the pomset P with only one additional event α; a fill-in for a general
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inclusion can be got from the fill-in’s from adding one (enabled) event at a
time. Let C = {ε ∈ P | ε ≤ α}, the events in P on which α causally de-
pends. We can identify downward-closed subsets of events of a pomset with
its corresponding sub-pomset and, in particular, C with a pomset C ⊆ P .

Write Tau(R) for the τ -events of a pomset R. Now define the pomset Q′

to consist of α, the events of P ′ and events Tau(P ) with their original labels
and ordered as follows. The events of P ′ are ordered as in P ′. The event α
is to causally depend on precisely the events x(C) in P ′. Suppose a τ -event
ε of P causally depends on the subset of events P0 of P . Then in Q′ the
τ -event ε is to causally depend on precisely the set of events h(x(P0)). The
filling-in map e′ is just the inclusion of P ′ in Q′. The remaining filling-in
maps x′ and w are defined by

x′(Q0) =
{

x(Q0) if α /∈ Q0 .
x(Q0 ∩ P ) ∪ Tau(Q0) ∪ {α} if α ∈ Q0 .

w(Q0
′) =

y(Q0
′ ∩ P ′) ∪

⋃
{z(Q0) | α ∈ Q0 & x′(Q0) ⊆ Q0

′} .

This concludes the verification that the hiding functor h : Poms
A

// (Poms
L)⊥

is sharp.

For a pomset morphism f : P // Q, we will write
f↓: P↓ // Q↓ for the monotone function defined as f↓ (R ⊆ P ) = (f(R) ⊆ Q).

Definition 4.7 A hereditary history-preserving weak bisimulation, S, be-
tween two event structures E and F in ESs

A is given by a set of spans

(x↓ αoo P↓ β
// y↓) ,

where x is a finite configuration of E, y a finite configuration of F , P a
pomset in (Poms

A)⊥ while α and β are two monotone functions. The initial
span (∅↓ oo ⊥↓ // ∅↓) must be in S and the following conditions need to be

met whenever (x↓ αoo P↓ β
// y↓) is an element of S:

1. If (x↓ αoo P↓ β
// y↓) 6= (∅↓ oo ⊥↓ // ∅↓), then α and β are extreme

and h-respecting.

2. For m : Q // P , we have (x′↓ α′
oo Q↓ β′

// y′↓) ∈ S where α′ def= α◦(m↓)
and β′ def= β ◦ (m↓).
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3. If the following square of monotone functions commutes

P↓ α //

m↓
��

x↓� _

��

Q↓
α′

// x′↓ ,

where m : P // Q is a strict pomset morphism, x′ ⊇ x is a finite
configuration of E and α′(Q) = x′, then there exists y′ ⊇ y and β′ :

Q↓ // y↓ such that (x′↓ α′
oo Q↓ β′

// y′↓) ∈ S and the following square
commutes

P↓ β
//

m↓
��

y↓� _

��

Q↓
β′

// y′↓ .

4. As (3) above where α is swapped with β and x swapped with y.

If for every span (x↓ oo P↓ // y↓) ∈ S, it is also the case that x = ∅ iff
y = ∅ iff P = ⊥, then we say that S is an observational congruence.

Note that a hereditary history-preserving weak bisimulation between event
structures E and F induces, by the action of the hiding functor h, a hered-
itary history-preserving bisimulation [1, 13] between h(E) and h(F ).

Hereditary history-preserving observational congruence characterises h-
bisimilarity.

Theorem 4.8 Two event structures in ESs
A are hereditary history-preserving

observationally congruent if and only if they are h-bisimilar.

If h is extended in the obvious way to act on the empty pomset over A, then
the version of the above theorem obtained by replacing “observationally
congruent” by “weakly bisimilar” also holds.

The characterisation of Definition 4.7 for h-bisimilarity requires relat-
ing computations of the same shape in E and F rather than, more simply,
matching only system states, i.e., configurations. For event structures re-
garded as presheaves over PomA, i.e., when we no longer restrict to strict
morphisms, Definition 4.7 needs to be refined by considering augmentations
of the configurations (cf. [26]) in any span. We believe, but lack a proof,
that the corresponding hiding functor h : PomA

// (PomL)⊥ is also sharp.
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It is important to notice that it is only by embedding event structures in
the presheaf category P̂oms

A that we have been able to define the saturation
monad for weak bisimulation which cannot be restricted to ESs

A.
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