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CaAsL: A Guided Tour of its Design

Peter D. Mosses! 2

! BRICS and Department of Computer Science,
University of Aarhus, Denmark
2 COFI: The Common Framework Initiative
for algebraic specification and development

Abstract. CASL is an expressive language for the specification of func-
tional requirements and modular design of software. It has been designed
by CoOFI, the international Common Framework Initiative for algebraic
specification and development. It is based on a critical selection of fea-
tures that have already been explored in various contexts, including sub-
sorts, partial functions, first-order logic, and structured and architectural
specifications. CASL should facilitate interoperability of many existing al-
gebraic prototyping and verification tools.

This guided tour of the CASL design is based closely on a 1/2-day tuto-
rial held at ETAPS’98 (corresponding slides are available from the COFI
archives). The major issues that had to be resolved in the design pro-
cess are indicated, and all the main concepts and constructs of CASL
are briefly explained and illustrated—the reader is referred to the CASL
Language Summary for further details. Some familiarity with the funda-
mental concepts of algebraic specification would be advantageous.

1 Background

The algebraic approach to software specification originated in the
early 1970’s. Since then, dozens of algebraic specification languages
have been developed—all of them supporting the basic idea of using
axioms to specify algebras, but differing in design choices concern-
ing syntax (concrete and abstract) and semantics. The lack of a
common framework for algebraic specification and development has
discouraged industrial acceptance of the algebraic method, hindered
its dissemination, and limited tool applicability.

Why not agree on a common framework? This was the provoca-
tive question asked at a WADT meeting in Santa Margherita, 1994.
At least the main concepts to be incorporated were thought to be
clear—although it was realized that it might not be so easy to agree
on a common language to express these concepts.



The following aims and scope were formulated at the start of the
Common Framework Initiative, COFI, in September 1995 [13]:
The aims of COFT are to provide a common framework:

— by a collaborative effort

— for algebraic specification and development

— attractive to researchers as well as for use in industry

— providing a common specification language with uniform, user-
friendly syntax and straightforward semantics

— able to subsume many previous frameworks

— with good documentation and tool support

— free—but protected (cf. GNU)

The scope of COF1 is:

— specification of functional requirements

— formal development and verification of software

— relation of specifications to informal requirements and imple-
mented code

— prototyping, theorem-proving

— libraries, reuse, evolution

— tool interoperability

The specification language developed by COFTI is called CASL: the
Common Algebraic Specification Language. Its main features are:

— a critical selection of known constructs

— expressive, simple, pragmatic

— for specifying requirements and design for conventional software
packages

— restrictions to sublanguages

— extensions to higher-order, state-based, concurrent, ...

The CASL design effort started in September 1995. An initial de-
sign was proposed in May 1997 (with a language summary, abstract
syntax, formal semantics, but no agreed concrete syntax) and tenta-
tively approved by IFIP WG1.3. Apart from a few details, the design
was finalized in April 1998, with a complete draft language summary
available, including concrete syntax. CASL version 1.0 was released
in October 1998; the formal semantics given for the proposed design
has now been updated to reflect the changes.



2 Guide

CASL consists of several major parts, which are quite independent
and may be understood (and used) separately:

— basic specifications: declarations, definitions, axioms

— structured specifications: translations, reductions, unions, exten-
sions, freeness, named specifications, generic specifications, views

— architectural specifications: implementation units, composition

— specification libraries: local, distributed

The above division of CASL into parts is orthogonal to taking sub-
languages of CASL.

The CASL language design integrates several different aspects,
which are here explained separately:

— pragmatic issues: methodology, tools, aesthetics

— semantic concepts: formal (institutions, environments), informal
(expansions, scopes)

— language constructs: abstract syntax (structure, annotations);
concrete syntax (input format, display format)

In this guided tour, each part of CASL is presented in turn, consid-
ering all the aspects listed above before proceeding to the next part.
Of course the reader is free to ignore the guide, and wander through
the various sections in a different order (but then the author cannot
accept responsibility for any resulting disorientation. .. ).

3 Basic Specifications

Basic specifications consist of declarations, definitions, and axioms.
Section 3.1 considers various pragmatic issues affecting the CASL
design. Section 3.2 presents the main concepts that underly the se-
mantics of basic specifications. Finally, Section 3.3 provides exam-
ples that illustrate the CASL language constructs for use in basic
specifications.

3.1 Pragmatic Issues

Partial and Total Functions: CASL supports both partial and total
algebraic specification. Partiality is a particularly natural and simple



way of treating errors such as division by zero, and error propaga-
tion is implicit, so that whenever any argument of an operation is
undefined, the result is undefined too. CASL also includes subsorts
and error supersorts, to allow specification of exception handling
when this is relevant. Totality is of course an important property,
and CASL allows it to be declared along with the types of functions,
rather than relegating it to the axioms. The domain of definition of a
partial function may be made explicit by introducing it as a subsort
of the argument sort and declaring the function to be total on it.

For instance, consider the familiar operations on (possibly-empty)
lists: the list constructor cons would be declared as total, whereas
the list head and tail selectors would be partial, being undefined on
the empty list. The domain of definition of the selectors may be made
explicit by introducing the subsort of non-empty lists, and declar-
ing them to be total functions on that subsort. (This and further
examples are specified in CASL in Section 3.3.)

In the presence of partiality, equations may require definedness:
so-called ‘existential’ equations require it, ‘strong’ equations do not.
In general, it is appropriate to use existential equations in condi-
tions (since properties do not usually follow from undefinedness)
but strong equations when defining partial functions inductively. So
CAsL allows both kinds of equations.

Definedness assertions can also be expressed directly. In fact de-
finedness of a term is equivalent to its existential equality to itself—it
could also be regarded as a unary predicate. Existential equality is
equivalent to the conjunction of a strong equality and two defined-
ness assertions; strong equality is equivalent to the conjunction of
two conditionals involving only existential equality.

Logic and Predicates: CASL is based on classical 2-valued first-order
logic, with the standard interpretation of connectives. It supports
user-declared predicates, which have some advantages over the (to-
tal) Boolean functions that were used instead of predicates in most
previous languages.! When an argument of a predicate is undefined,
the predicate application cannot hold.

CASL provides the standard universal and existential quantifica-
tion and logical connectives, i.e., ordinary first-order predicate logic.

! For example, predicates hold minimally in initial models.
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The motivation for this is expressiveness: restricting to conditional
equations sometimes requires quite contrived specifications. For in-
stance, it is a straightforward exercise to specify when a string is a
permutation of another using quantifiers, and negation provides the
complementary property; but the latter is quite awkward to specify
using (positive) conditional equations.

The usual equational and conditional specification frameworks
are provided as sublanguages of CASL, simply by restricting the use
of quantifiers and logical connectives.

Classes of Models: Most previous frameworks allow only one kind of
model class to be specified. The default in CASL is to take all models
of a specification, i.e., so-called loose semantics; but it is also possible
to specify the restriction of models to the class of generated models
(only expressible values are included, and properties may be proved
by induction) or to the class of initial (and freely-generated) models
(providing minimal satisfaction of atomic formulae). Of course initial
models may not exist when disjunction, negation, etc., are used.

QOverloading: In a CASL specification the same symbol may be de-
clared with various profiles (i.e., list of argument and result sorts),
e.g. ‘+’ may be declared as an operation on integers, reals, and
strings. When such an overloaded symbol is used, the intended pro-
file is to be determined by the context. Explicit disambiguation can
be used when needed, by specifying the profile (or result sort) in an
application.

Subsorts: It is appropriate to declare a sort as a subsort of another
when the values of the subsort are regarded a special case of those in
the other sort. For instance, the positive integers and the positive odd
integers are best regarded as subsorts of the sort of natural numbers,
which is itself a subsort of the integers. In contrast to most previ-
ous frameworks, CASL interprets subsorts as embeddings between
carriers—not necessarily inclusions. This allows, e.g., models where
values of sort integer are represented differently from values of sort
real (as in most computers). CASL still allows the models where the
subsort happens to be a subset. The extra generality of embeddings
seems to be useful, and does not complicate the foundations at all.



Subsort embeddings commute with overloaded functions, so the
values are independent of which profiles are used: 24+2=4, regardless
of whether the ‘4’ is that declared for natural numbers or integers.

CASL does not impose any conditions of ‘regularity’, ‘coherence’,
or ‘sensibleness’ on the relationship between overloading and sub-
sorts. This is partly for simplicity (no such conditions are required
for the semantics of CASL), partly because most such conditions lack
modularity (which is a disadvantage in connection with structured
specifications). Note that overloaded constants are allowed in CASL.

Datatype Constructors/Selectors: Specifications of ‘datatypes’ with
constructor and (possibly also) selector operations are frequently
needed: they correspond to (unions of) record types and enumeration
types in programming languages. CASL provides special constructs
for datatype declarations to abbreviate the rather tedious declara-
tions and axioms for constructors and selectors. Datatypes may be
loose, generated, or free.

3.2 Semantic Concepts

The essential semantic concepts for basic specifications are well-
known: signatures (of declared symbols), models (interpreting the
declared symbols), and sentences (asserting properties of the inter-
pretation), with a satisfaction relation between models and sets of
sentences. Defining these (together with some categorical structure,
and such that translation of symbols preserves satisfaction) provides
a so-called institution for basic specifications.

A well-formed basic specification in CASL determines a signature
and a set of sentences, and hence the class of all models over that
signature which satisfy all the sentences.

Signatures X = (S, TF, PF, P,<): A signature X' for a CASL spec-
ification consists of a set of sorts S, disjoint sets TF, PF of total
and partial operation symbols (for each profile of argument and re-
sult sorts), a set of predicate symbols P (for each profile of argu-
ment sorts), and a partial order of subsort embeddings <. The same
symbol may be overloaded, with more than one profile; there are
no conditions on the relationship between overloading and subsorts,



and both so-called ad-hoc overloading and subsort overloading are
allowed.

Models M € Mod(X): A model M provides a non-empty carrier set
for each sort in S, a partial function for each operation symbol in
PFUTF (for each of its profiles), a relation for each predicate symbol
in P (for each of its profiles), and an embedding for each pair of sorts
related by <. The interpretation of an operation symbol in TF has
to be a total function. Moreover, embedding and overloading have
to be compatible: embeddings commute with overloaded operations.

Sentences @ € Sen(X): A sentence @ is generally a closed, many-
sorted first-order formula. The atomic formulae in it may be equa-
tions (strong or existential), definedness and (subsort) membership
assertions, and fully-qualified predicate applications. The terms in
atomic formulae may be fully-qualified operation applications, vari-
ables, explicitly-sorted terms (interpreted as subsort embeddings) or
casts (interpreted as projection onto subsorts).

Satisfaction M F &: The satisfaction of a closed first-order formula
@ in a model M is as usual regarding quantifiers and logical con-
nectives; it involves the holding of open formulae, and the values of
terms, relative to assignments of values to variables.

The value of a term may be undefined when it involves the ap-
plication of a partial operation symbol (or a cast). When the value
of any argument term is undefined, the application of a predicate
never holds, and the application of an operation is always undefined
(as usual in partial algebra). Definedness of terms also affects the
holding of atomic formulae: an existential equation holds when both
terms are defined and equal, whereas a strong equation holds when
they are both undefined, or defined and equal.

Sort Generation Constraints (S, F') C (S, F), where F = TFUPF:
A sort generation constraint is treated as a further kind of sentence.
It is satisfied in a model when the carriers of sorts in S’ are generated
by functions in F’ (possibly from sorts in S\ S’).

Institution: The institution for basic specifications in CASL is given
by equipping signatures with morphisms, and models with homomor-
phisms. A signature morphism o from X' to X’ preserves overloading,
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embeddings, and totality of operation symbols. A homomorphism
h:M; — My (M;, My, € Mod(X)) preserves operation values (in-
cluding definedness), and the holding predicates.

A signature morphism ¢ from X to X’ determines a transla-
tion of sentences from Sen(X) to Sen(X’), and a reduct functor
Mod(o) : Mod(X’) — Mod(Y). Translation preserves satisfaction:
M'F o(®) iff Mod(0)(M') - &.

Semantic Functions: Whereas applications of predicates and opera-
tions in the atomic formulae and terms of the CASL institution are
fully qualified by their profiles, basic specifications in the CASL lan-
guage allow the profiles to be omitted (since they are usually evident
from the context). In general, there may be many ways—but possibly
none at all—of expanding an atomic formula in CASL by inserting
profiles to give a well-sorted fully-qualified atom for constructing a
sentence of the underlying institution. The atomic formula is deemed
to be well-formed when its expansion is unique (up to the commut-
ing of embeddings with overloaded operations); the axioms of a well-
formed basic specification determine a set of sentences of the CASL
institution.

In fact the subsorted CASL institution outlined above may be
reduced to an ordinary many-sorted CASL institution, by replacing
subsort inclusion by explicit embeddings: X' = (S, TF, PF, P, <)
reduces to X# = (S, TFU Emb, PF U Proj, PUMemb) where Emb =
{embs s | s < s’} is a set of total operation symbols for subsort
embeddings, and the sets Proj (of projections onto subsorts) and
Memb (of subsort membership predicates) are defined similarly.

The semantics of a well-formed basic specification in CASL is
given by a signature X' together with the class of those models
M € Mod(X) that satisfy all the sentences determined by the spec-
ification.

3.3 Language Constructs

This section provides examples that illustrate the CASL language
constructs for use in basic specifications: declarations and defini-
tions (of sorts, operations, predicates, and datatypes), sort genera-
tion constraints, and axioms (involving variable declarations, quan-
tifiers, connectives, atomic formulae, and terms). The examples are
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shown in display format; for input, a suggestive (ASCII or ISO Latin-
1) plain text approximation is used, e.g., ‘=’ is input as ‘=>’, and
‘Y’ is input as ‘forall’.

Note that CASL allows declarations to be interspersed with defi-
nitions and axioms (as illustrated in Section 3.4). Visibility is linear:
symbols have to be declared before they can be used (except within
datatype declarations, where non-linear visibility allows mutually-
recursive datatypes—e.g., List and NeList on page 10).

Sorts: Several sorts may be declared at once, possibly as subsorts of
some other sort:?

sorts Elem, List
sorts Nat, Neg < Int

The values of a subsort may also be defined by a formula, e.g.:
sort Pos={n:Naten> 0}

This corresponds to declaring Pos < Nat and asserting that a value
n in Nat is the embedding of some value from Pos iff the formula
n > 0 holds.

Operations: Operations may be declared as total (using ‘—’) or par-
tial (using ‘—7’) and given familiar attributes:

ops 0 : Nat;
suc : Nat — Nat;
pre : Nat —7 Nat;
__+ __: Nat X Nat — Nat,assoc,comm, unit 0

So-called mizfiz notation is allowed: place-holders for arguments are
written as pairs of underscores (single underscores are treated as
letters in identifiers). All symbols should be input in the ISO Latin-
1 character set, but annotations® may cause them to be displayed
differently, e.g., as mathematical symbols.

In simple cases, operations may also be defined at the same time
they are declared:

2 CasL also allows sorts to be declared as isomorphic, with mutual subsort embeddings.
3 An annotation is an auxiliary part of a specification, for use by tools, and not affecting
the semantics of the specification.



ops 1 : Nat = suc(0);
dbl(n : Nat) : Nat = n+n

Predicates: Predicate declarations resemble operation declarations,
but there is no result sort:

preds odd : Nat;
__< __: Nat X Nat

They too may also be defined at the same time they are declared:

preds even(n : Nat) < —odd(n);
< _(myn:Nat)&m<nVm=n

Datatypes: A datatype declaration looks like a context-free grammar
in a variant of BNF. It declares the symbols on the left of ‘::=’ as
sorts, and for each alternative on the right it declares a constructor—
possibly with some selectors. When datatypes are declared as ‘free’,
the specified models are as for a free extension in a structured spec-
ification: distinct constructor terms of the same sort are interpreted
as distinct values, and each declared sort is freely-generated by its

constructors.

type Collection ::= empty | just(Elem) |
join(Collection; Collection)

free type Bit := 0| 1

free type Pair ::= pair(left, right : Elem)

When there is more than one alternative in a datatype declaration,
any selectors are generally partial and have to be declared as such,
by inserting ?7:4

free type List ::= nil | cons(hd :?Elem; tl :7 List)
Partial selectors can generally be avoided by use of subsort embed-
dings as constructors:

free types List  ::= nil | sort NeList;
NeList ::= cons(hd : Elem; tl : List)

The last declaration above illustrates non-linear visibility within
a list of datatype declarations: NeList is used before it has been
declared.

4 Constructors can also be partial.
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Sort Generation Constraints: The CASL syntax allows datatypes to
be declared as ‘generated’, so that the sorts are constrained to be
generated by their constructors (and embedded subsorts):

generated type Bag ::= empty | add(Elem; Bag)
generated types Nat ::= 0 | sort Pos;
Pos ::= suc(pre : Nat)

More generally, any group of signature declarations can be subject
to a sort generation constraint, e.g.:

generated
{ sorts Pos < Nat,
ops 0: Nat; suc: Nat — Pos }

Axioms: Variables for use in axioms may be declared ‘globally’, in
advance:

vars m,n : Nat;p : Pos
axioms n<m = ...;suc(n)=p=...;...

Variables may also be declared locally to an ‘itemized’ list of formu-
lae:

vars z,Yy, 2 : Elem
) <z
. r<yNy<z=z<z2

or within a formula using explicit quantification:

Vn : Nat « d3m : Nat e n < m
Vp : Pos e Aln : Nat « suc(n) =p

The logical connectives have their usual interpretation:

even(n) < — odd(n)
m<<n&Sm<nVm=n
m<n=-n=10

even(m + n) if odd(m) A odd(n)

Atomic Formulae: Definedness assertions can be explicit:

def pre(suc(n)) A —def pre(0)
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or implicit in existential equations, which are distinguished from
strong equations by writing ‘=’ (input as ‘=e=’) instead of ‘=":

def pre(n) = suc(pre(n)) = pre(suc(n))

—0k(z, e) = find(z, cons(e,l)) = find(z,1)
Subsort membership assertions are written suggestively using ‘€’
(input as ‘in’):

n € Pos < defpre(n)

Applications of predicates are written the same way as those of op-
erations, possibly using mixfix notation.

Terms: Constants and variables may be written as sequences of
words (optionally separated by single underscores—pairs of under-
scores are reserved for indicating place-holders in mixfix symbols—
and decorated with primes) or mathematical signs: nil, empty_set,
n, n', CURRENT _STATE.

Applications may be written using standard functional or mixfix
notation: cons(e,!l),{|e|} U s; they may also be written with ex-
plicit qualification, e.g., pre(n) may be written as (op pre : Nat —7
Nat)(n). Sorted terms (interpreted as applications of identity or sub-
sort embeddings) are written straightforwardly, e.g.: dbl(suc(n) :
Nat). Casts (interpreted as applications of projections onto subsorts,
the result of which may be undefined) are written using the reserved
word ‘as’, e.g.: pre(n as Pos).

3.4 Example
The following example illustrates a complete basic specification:

free types Nat ::= 0 | sort Pos;
Pos ::= suc(pre : Nat)
op pre: Nat —?7 Nat
axioms
—def pre(0);
Vn : Nat « pre(suc(n)) =n

pred even__: Nat

var n: Nat

. even 0

. even suc(n) < —even n
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Notice that the second line above declares suc : Nat — Pos and
pre : Pos — Nat. The subsequent declaration of pre : Nat —7 Nat
allows terms where pre is applied to an argument that is of sort Nat
but not of sort Pos—such terms can be perfectly meaningful, e.g.,
pre(pre(suc(suc(0)))).

Further examples may be found in later sections, and in the ap-
pendices of the CASL Summary [4].

4 Structured Specifications

Structured specifications in CASL are formed in various familiar
ways (union, extension, translation, reduction, etc.) starting from
basic specifications; they may also be named, to facilitate reuse. Sec-
tion 4.1 considers various pragmatic issues affecting the CASL design.
Section 4.2 presents the main concepts that underly the semantics
of structured specifications. Finally, Section 4.3 provides examples
that illustrate the CASL language constructs for use in structured
specifications.

4.1 Pragmatic Issues

No Model Structure: The crucial point is that structuring a specifi-
cation does not specify any structure in models! In fact the models
of structured specifications are of exactly the same kind as for basic
specifications, i.e., algebras interpreting the declared symbols and
satisfying all the asserted properties.

For example, consider a specification of the integers. One might
choose to structure it as an extension of a specification of natural
numbers, rather than giving it as a single basic specification. This
choice does not affect the semantics of the specification: neither the
signature nor the models reflect the structure of the extension.

Section 5 explains the ‘architectural’ specifications of CASL, which
do allow the structure of models to be specified.

Names of Symbols: A general principle underlying the CASL design
is ‘same name, same thing’. Thus when one sees two occurrences of
the same sort in the same basic specification, one may be sure that
they are always interpreted as the same carrier set. For operations
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and predicates, the situation is a little more subtle: the ‘name’ of an
operation (or predicate) includes its profile of argument and result
sorts, so there need be no relationship at all between say, ‘+’ on
integers and ‘+’ on lists or sets, at least in the absence of subsort
inclusions.

The ‘same name, same thing’ principle applies also in unions and
extensions—but not between named specifications in libraries: the
same sort may be used in different named specifications in the same
library, with entirely different interpretations; similarly for opera-
tions or predicates with the same profiles.

When named specifications are combined in the same structured
specification (by references to their names—perhaps indirectly via
other named specifications), any unintended clashes can be elimi-
nated by translating the symbols used in them to new ones. From
a methodological point of view, it seems indeed appropriate for the
writer of a specification to avoid accidental use of the same sort
or (qualified) symbol for different purposes, since it could confuse
readers. (The same argument does not apply to overloading: for ex-
ample, use of the ‘<’ predicate for partial orders on different sorts
is conventional and nicely emphasises their common properties).

Another point is that in CASL, it is easy to hide auxiliary sym-
bols, i.e., symbols that are not inherent to what is to be specified.
For example, to specify addition and subtraction on the integers it is
common practice to introduce successor and predecessor operations,
but they may be regarded as auxiliary and hidden afterwards—they
can in any case be recovered using addition and subtraction of 1.

Finally, tools may warn users about multiple declarations of the
same name in the same specification, in case they are accidental.

Generic Extension: A specification definition names a specification,
allowing reuse by reference to the name. For example, INT might
refer to a specification of the integers. In CASL, a named specifica-
tion may also have parameters, intended to vary between references;
the specification body is an extension of what is specified in the pa-
rameters. Each reference to the specification requires instantiation of
all its parameters. For example, L1ST might refer to a specification
that extends a parameter specification named ELEM; any reference
to LIST has to provide an argument specification that ‘fits” ELEM.
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Note that generic extensions in CASL are not intended for defin-
ing arbitrary functions on specifications, unlike in some other frame-
works such as ASL—the CASL user is expected to express the struc-
ture of specifications directly using the CASL language constructs
that are provided for that purpose.

4.2 Semantic Concepts

The notions of signature and class of models are the same as for basic
specifications. In fact the structuring part of CASL is (essentially)
independent of the details of basic specification: the same structur-
ing may be used regardless of whether basic specifications are re-
stricted (e.g., by eliminating partial functions, subsorts, predicates,
or explicit quantifiers) or extended (e.g., to higher-order functions).
The reduct homomorphisms induced by signature morphisms in the
institution for basic specifications are especially significant in the
semantics of structured specifications.

In a specification, the so-called local environment records the
symbol declarations that are currently visible. For basic specifica-
tions, visibility is linear (except within lists of datatype declarations)
so the local environment merely grows as one proceeds through the
declarations. For structured specifications, however, the local envi-
ronments at different places may be completely unrelated.

Semantic Functions: Structured specifications can have arbitrarily
deep structure, and a compositional semantics is appropriate: the
denotation of a construct is determined entirely by the denotations
of its components. The denotation of a self-contained specification is
a signature and class of models for that signature. The denotation of
a part that extends a self-contained specification is a (partial) func-
tion from signatures to extended signatures, and from corresponding
model classes to extended-model classes.

4.3 Language Constructs

This section provides examples that illustrate the CASL language
constructs for use in structured specifications: translation, reduc-
tion, union, extension, free extension, local specifications, specifica-
tion definitions, generic parameters, instantiation, views, and com-
pound identifiers.
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Translation and Reduction: Translation of declared symbols to new
symbols is specified straightforwardly by giving a list of ‘maplets’ of
the form old — new. Identity maplets old — old may be abbreviated
to old, or simply omitted altogether. Optionally, the nature of the
symbols concerned (sorts, operations, predicates) may be indicated
by inserting the corresponding keywords.

NAT with Nat — Natural, suc — succ__

NAT with op __+ __+> plus, pred __ < __— [t

Reduction means removing symbols from the signature of a spec-
ification, and removing the corresponding items from models. When
a sort is removed, so are all operations and predicates whose profiles
include that sort. CASL provides two ways of specifying a reduction:
by listing the symbols to be hidden, or by listing those to be left vis-
ible, i.e., revealed. In the latter case, (some of) the revealed symbols
may also be translated to new symbols.

NAT hide Pos, suc
NAT reveal Nat, 0, 4+ _,__ < __+— 1t

Unions and Extensions: The signature of a union of two (or more)
specifications is the union of their signatures. The models of a union
are those whose reducts to the component signatures are models
of the component specifications. There are two extremes: when the
specifications have disjoint signatures, their union provides amal-
gamation of their models; when they have the same signature, it
provides the intersection of the model classes, giving models that
satisfy both the specifications at once. For example, the signatures
of NAT and STRING might be disjoint, so models of

NAT and STRING

would be amalgamations of models of NAT and of STRING, whereas
the signatures of MONOID and COMMUTATIVE might be the same,
so models of

MonoID and COMMUTATIVE
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would be those that are simultaneously models of MONOID and of
COMMUTATIVE (i.e., commutative monoids).
Extensions may specify new symbols (known as enrichment):

NAT then
sort Nat < Int;
ops __+ __: Int X Int — Int,

or merely require further properties of old ones:

COLLECTION then
axiom V¢ : Collection o join(c,c) = c

An extension is called conservative when no models are lost: every
model of the specification being extended is a reduct of some model
of the extended specification. Whether an extension is conservative
or not may be indicated by an annotation (not illustrated here).?

Free Specifications: The simplest case of a free specification is when
the component specification is self-contained. The signature of the
specification is unchanged, but the models are restricted to (the iso-
morphism class of) its initial models. E.g., the only models of the
following specification are the standard models of Peano’s axioms:

free
{ sort Nat; ops 0 : Nat; suc: Nat — Nat }

The conciseness and perspicuity of such specifications may account
for the popularity of frameworks that support initiality. When ax-
ioms are restricted to positive conditional existential equations, ini-
tial models always exist.

More generally, a free specification may be a free extension, e.g.:

sort FElem then

free
{ type Set :=0 | {|—|}(Elem) | --U __(Set; Set)
op __U __: Set x Set — Set,assoc,comm, idem, unit ()

}

5 If conservative extension were to be a construct of the language, its semantics would
be the same as for ordinary extension whenever the specified extension happened to
be conservative, and otherwise undefined.
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Note that free specifications are especially useful for inductively-
defined predicates, since only the cases where the predicates hold
need be given: all other cases are automatically false. Similarly for
partial operations in a free specification, which are as undefined as
possible in all its models.

Local Specifications: CASL facilitates the hiding of auxiliary symbols
by allowing the local scope of their declarations to be indicated. E.g.,
suc below is an auxiliary symbol for use in specifying addition:

sort Nat
op 0: Nat
then local
op suc: Nat — Nat
within
op __+ _—: Nat x Nat — Nat
vars m,n : Nat
e m+0=m
e m+ suc(n) = suc(m + n)

Ideally, the operations and predicates of interest are specified directly
by their properties, without the introduction of auxiliary symbols
that have to be hidden. However, there are classes of models that
cannot be specified (finitely) without the use of auxiliary symbols; in
other cases the introduction of auxiliary symbols may lead ‘merely’
to increased conciseness and perspicuity.

Named Specifications: Only self-contained specifications can be
named—the local environment for a named specification is always
empty. Named specifications are intended for inclusion in libraries,
see Section 6. Subsequent specifications in the library (or in other
libraries) may include a copy of the named specification simply by
referring to its name, e.g.:

spec NAT = free { ... }
spec INT = NAT then free { ... }

Generic Parameters: A parameter is a closed subspecification—
typically a reference to a rather simple named specification such
as ELEM:
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spec ELEM = sort Elem

spec LisT [ELEM] =
free type List ::= nil | cons(Elem; List)

A named specification is essentially an extension of all its parame-
ters. A reference to a named specification with parameters is called
an instantiation, and has to provide an argument specification for
each parameter, indicating how it ‘fits’ by giving a map from the
parameter signature to the argument signature, e.g.:

LisT [NAT fit Elem — Nat]

Since there is only one possible signature morphism from ELEM to
NAT, the fitting may be left implicit, and the instantiation written
may be written simply as LIST [NAT|. As with translation maps,
identity fittings may always be omitted. Of course the map is re-
quired to induce not just a signature morphism but also a specifica-
tion morphism: all models of the argument specification must also
be models of the parameter specification.

Sharing between parameter symbols is preserved by fitting, so it
may be necessary to rename symbols when separate instantiation of
similar parameters is required, e.g.:

spec PAIR [sort Elem1] [sort Elem2] =
free type Pair ::= pair(Elem1; Elem2)

Note that the ‘same name, same thing’ principle is maintained here.
Moreover, to use the same sort name (say Elem) in both parameters
would require some way of disambiguating the different uses of the
name in the body, similar to an explicit renaming.

Sharing of symbols between the body of a generic specification
and its arguments in an instantiation is restricted to explicit imports,
indicated as ‘given’:

spec LIST_LENGTH [ELEM]| given NAT =

free type List ::= nil | cons(FElem; List)
op length : List — Nat
Well-formed instantiations always have a ‘push-out’ semantics. Had

NAT been merely referenced in the body of LIST_LENGTH, an in-
stantiation such as LIST_LENGTH [NAT| would be ill-formed.
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Compound Identifiers: Suppose that two different instantiations of
L1ST are combined, e.g.,

LisT [NAT fit Elem — Nat| and
L1sT [CHAR fit Elem — Char|

With the previous definition of LIST, an unintentional name clash
arises: the sort List is declared by both instantiations, but clearly
should have different interpretations. To avoid the need for explicit
renaming in such circumstances, compound identifiers such as
List[Elem| may be used:

spec LisT [ELEM] =
free type List[Elem| ::= nil | cons(Elem; List[Elem])

Now when this LIST is instantiated, the translation induced by the
fitting morphism is applied to the component Elem also where it
occurs in List[Elem|, so the sorts in the above instantiations are
now distinct: List[Nat] and List[Char].

Views: To allow reuse of fitting ‘views’, specification morphisms
(from parameters to arguments) may be themselves named, e.g.:

spec PO2NAT : PARTIAL_ORDER to NAT =
Elem — Nat, __ < _+— __< __

The syntax for referencing a named specification morphism, e.g.:
L1sST_WITH_ORDER [view PO2NAT)]

makes it clear that the argument is not merely some named specifi-
cation with an implicit fitting map, which would be written simply
L1sST_WITH_ORDER [NAT]

The rules regarding omission of ‘evident’ maps in explicit fittings
apply to named specification morphisms too.

4.4 Example

The following example illustrates a complete structured specifica-
tion definition (referencing a specification named PARTIAL_ORDER,
which is assumed to declare the sort Elem and the predicate __ < _):
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spec LIST_WITH_ORDER [PARTIAL_ORDER| =
free type List|Elem| ::= nil | cons(hd :?Elem; tl :? List[Elem))
then
local
op insert : Elem X List|Elem| — List[Elem];
vars z,y : Elem; [ : List[Elem]
axioms
insert(z, nil) = cons(zx, nil);
r <y = insert(z, cons(y, ) = cons(z, insert(y,));
—(z < y) = insert(z, cons(y, 1)) = cons(y, insert(z, 1))
within
pred order[__ < _|: List|Elem| x List|Elem)|
vars z : Elem; [ : List|Elem)|

axioms
order|- < __|(nil) = nil;
order[- < __|(cons(z,1)) = insert(z, order[-- < __|(]))

end

5 Architectural Specifications

Architectural specifications in CASL are formed by declaring the
units that are to be implemented separately, also indicating how
they are to be linked together to give the desired result. Section 5.1
considers various pragmatic issues affecting the CASL design. Sec-
tion 5.2 presents the main concepts that underly the semantics of
architectural specifications. Finally, Section 5.3 provides examples
that illustrate the CASL language constructs for use in architectural
specifications.

5.1 Pragmatic Issues

Reusability: Whereas the structuring of specifications into unions
and extensions encourages the reuse of (self-contained) parts of spec-
ifications, it does not affect the models at all, and the monolithic
result of implementing a structured specification is unlikely to be
reusable. To allow implementation units to be reusable, CASL pro-
vides further constructs for the specification of structure.

For a simple example, suppose that one wishes to structure the
implementation of L1ST [NAT]| to include:
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— an implementation N of NAT,

— a function F extending any such N to an implementation of
LisT [NAT], and

— the obvious way of obtaining the desired result: applying F' to N

The models of the corresponding architectural specification in CASL
are required to provide the units N and F', as well as their compo-
sition. If the implementation N of NAT is subsequently changed, F
may be reused, and does not have to be re-implemented. (F may
also be changed without changing N, of course.)

Interfaces: These are the explicit assumptions that parts of an imple-
mentation make about other parts. In CASL, interfaces are expressed
as ordinary (structured) specifications, asserting that the symbols
declared by the specification not only have to be implemented, but
also have to satisfy all the asserted properties. A specification of a
functional unit involves the specifications of all its arguments and
of its result. It is guaranteed that the results of applying functional
units to argument units will meet their target specifications, pro-
vided that the argument units meet their given specifications.

Decomposition/Composition: A crucial aspect of architectural spec-
ifications is that they provide decompositions of (possibly large) im-
plementation development tasks into smaller sub-tasks—as well as
indicating how to compose (or link together) the results of sub-tasks.
A unit specification expresses all that those who are implementing
it need to know.

It is clearly desirable to distinguish between structure of specifi-
cations and specification of structure, so that specifying (e.g.) INT
as an extension of NAT does not require separate implementations
of these two specifications. What may not be quite so obvious is that
the distinction is actually essential—at least if one is using the famil-
iar specification structuring constructs provided by CASL. Consider
the union of two specifications with some declared common symbols
but different axioms: if each specification is implemented separately,
without taking account of the properties required by the other speci-
fication, it may well happen that the common symbols have different,
incompatible implementations which cannot be combined.
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5.2 Semantic Concepts
A model of an architectural specification consists of:

— a collection of named unit constructors, together with
— the unit (constructor) resulting from a particular composition of
those units.

Unit constructors are either constants, or functions from units to
units. In the latter case, the functions are always persistent, extend-
ing their arguments (the function F' considered above should clearly
not be allowed to ignore the argument implementation N and in-
corporate a different implementation of NAT). When functions have
more than one argument, the arguments must be compatible, imple-
menting any common symbols in exactly the same way (this follows
immediately from the requirement that a function should extend
each argument separately).

5.3 Language Constructs

This section provides examples that illustrate the CASL language
constructs for use in architectural specifications: architectural spec-
ification definitions, unit declarations, unit definitions, unit specifi-
cations, and unit expressions.

Architectural Specifications: A definition of an architectural specifi-
cation specifies some units and how to compose them, e.g.:

arch spec IMP_NAT_LIST =
units N : NAT ;
F : NAT — LIST [NAT|
result F[N]

A model of the above architectural specification consists of a unit
N, a unit function F, and the unit F[N], which is itself a model of
the structured specification L1ST [NAT].

Unit Declarations and Definitions: A unit declaration names a unit

that is to be developed, and gives its type. When the type is an
ordinary specification, the unit is to be an ordinary model of it;
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when the type is a function type, the unit is to be a function from
(compatible) ordinary models to ordinary models that extend the
arguments. Some examples of unit declarations:

N : NAaT
L : LisT [NAT| given N
F : NAT — LIST [NAT]

The form of unit declaration using ‘given’ provides an implicit dec-
laration of a unit function that gets applied just once. If the dec-
laration of F' were to be replaced by that of L in the architectural
specification example given above (letting the result be simply L as
well) then an implementation of the architectural specification would
still involve providing a function that could give an implementation
of LisT [NAT| extending any implementation N of NAT.

A unit definition names a unit that can be obtained from previ-
ous units (in the same architectural specification), possibly involving
fitting, hiding, translation, etc.:

L = F|N]

L = FIN fit...] hide. ..
The unit expressions in the right-hand sides of unit definitions are
of the same form as used for specifying the result unit of an archi-
tectural specification (as explained below).

Unit Specifications: A unit specification definition names a unit type,
allowing it to be reused. E.g.:

unit spec GEN_LIST = NAT — LiST [NAT]

A unit declaration may then refer to it, as in F' : GEN_LIST.
Architectural specifications themselves may also be used as unit
specifications.

Unit Fxpressions: The various forms of unit expression mostly re-
semble those of structured specifications:

— application (to compatible arguments): F[N], F[N fit.. .|
— abstraction: AN : NAT e ... N ...

— translation, reduction: U with ..., U hide ..., ...

— amalgamation (of compatible units): N and C
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However, the semantics of unit expressions involves operations on
individual models, rather than on entire model classes. In particu-
lar, amalgamation of models requires that any common symbols are
interpreted the same way. Note that abstraction is needed to allow
architectural specifications whose results are unit functions.

5.4 Example

The following simple example illustrates an architectural specifi-
cation definition (referencing ordinary specifications named LIST,
CHAR, and NAT, assumed to declare the sorts Elem and List[Elem],
Char, and Nat, respectively):

arch spec CN_LIST =

units
C : CHAR ;
N : NAT ;

F : ELEM — LIST[ELEM]
result F[C fit Elem — Char] and F[N fit Elem — Nat|

Further examples of architectural specifications are given in the
CAsL Summary [4] and in a recent paper [1].

6 Libraries of Specifications

Libraries in CASL are formed by collecting definitions of structured
specifications, views, architectural specifications, and unit specifica-
tions. Moreover, libraries can refer to specifications defined in other
libraries.

Section 6.1 mentions some pragmatic issues affecting the CASL
design. Section 6.1 presents the concepts that underly the semantics
of libraries. Finally, Section 6.1 briefly illustrates the CASL language
constructs for use in libraries.

6.1 Pragmatic issues

When specifications are collected into libraries, the question of visi-
bility of symbols between specifications arises. In CASL, the symbols
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available in a specification are only those that it declares itself, to-
gether with those declared (and not hidden) in named specifications
that it explicitly references. Thus when a specification in a library
is changed, it is straightforward to locate other specifications that
might be affected by the changes.

Another issue concerns visibility of specification names. In CASL,
it is linear: a specification may only refer to names of specifications
(and views) that precede it in the library. The motivation for this
restriction is partly methodological (the library is presented in a
bottom-up fashion), partly from implementation considerations (a li-
brary can be processed sequentially), and partly from the difficulty of
giving a satisfactory formal semantics to mutually-dependent speci-
fications.

CASL provides direct support for establishing distributed libraries
on the Internet. A registered library is given a unique name, which is
used to refer to it from other libraries when ‘downloading’ particular
specifications. Name servers provide the current locations of regis-
tered libraries (before a library is registered, it is referred to by its
current URL). Version control is an important pragmatic concern,
and the names of CASL libraries incorporate version numbers; how-
ever, it is possible to refer to a library without specifying a version
(corresponding to using the largest version number that has so far
been registered for the library concerned).

It may happen that the same name is used for specifications in
different libraries. To avoid confusion between the names of local and
downloaded specifications in libraries, a specification that is down-
loaded from a remote library may be given a different local name. In
fact downloading bears a strong resemblance to the FTP command
‘get’, which provides similar possibilities.

6.2 Semantic Concepts

The semantics of a specification in a library is a function of a global
environment that maps names of specifications (previously declared
or downloaded in the same library) to their denotations. The global
environment at the end of the library gives the semantics of the
entire library.

26



A directory of registered libraries maps library names to their
registered URLs. Since the names include version numbers, this di-
rectory also gives access to previous versions of libraries.

Finally, the semantics of the whole collection of CASL libraries
depends on the current state of the Internet, associating URLs to
the contents of particular libraries.

6.3 Language Constructs

This section outlines some examples that illustrate the CASL lan-
guage constructs for use in libraries.

Local Libraries: The specifications and views in a self-contained li-
brary are simply listed in a bottom-up order: a name has to be
defined before it is referenced.

library COFI_BEANS

spec NAT = ...

view ... = ...

arch spec ... = ... NAT...
unit spec ... = ...

Distributed Libraries: Other libraries may refer to specifications in
registered libraries at other Internet sites by including explicit down-
loadings, optionally providing a different local name for the remote
specification:

from COFI_BEANS get LiST, NAT +— NATURAL

Libraries may have different versions, indicated by their names, both
when defining libraries and downloading specifications from them:

library COFI_BEANS version 1.2
from COFI_PLANT version 1.0.1 get...

If the version number is omitted in a library definition, it is implicitly
0. The default version when referring to a library is the one that has
been registered with the greatest version number.
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7 Foreground

Having completed the guided tour, let us review the current status
of the Common Framework Initiative. Various task groups have been
created, concerning language design, semantics, tools, methodology,
and reactive systems. There is a substantial amount of interaction
between the task groups, which is supported by many of the COFI
participants being active in more than one task group.

The overall coordination of these task groups was managed by
the present author from the start of COFI in September 1995 until
August 1998, and subsequently by Don Sannella (Edinburgh). In
October 1998, an ESPRIT CoFI Working Group started (COFI
had previously relied on unfunded efforts by its participants, also
with initial support from the ESPRIT CompPAss Working Group
until that terminated in March 1996).

Language Design Task Group: (Coordination: Bernd Krieg-Briickner,
Bremen)

Until October 1998, the main language design task was finaliza-
tion of the CASL design. The documentation of the final design is
given by the CASL Language Summary [4]; a (by now slightly out-
dated) rationale for the language design was published in 1997 [16].
The semantics, tools, and methodology task groups have all provided
essential feedback regarding language design proposals.

The current work in this task group involves the definition of
various interesting sublanguages of CASL, e.g., total, many-sorted,
equational—mostly corresponding closely to embeddings of the spec-
ification languages of other frameworks into CASL [10, 11]. Some ex-
tensions are also being investigated, in particular higher-order [7]
and state-based specifications (possible extensions for specification
of reactive systems is a separate task group).

Semantics Task Group: (Coordination: Andrzej Tarlecki, Warsaw)

The major semantics task has of course been defining the for-
mal semantics of CASL, which was produced for earlier versions of
the CASL design (in fact CASL had a formal semantics even before
its concrete syntax was designed [5]) and which has recently been
updated to CASL v1.0 [6].
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Apart from consideration of the semantics of sublanguages and
extensions of CASL, the main work remaining for the semantics task
group is the choice of proof system for CASL.

Methodology Task Group: (Coordination: Michel Bidoit, Cachan)
The major task here is the production of a user’s guide for CASL.
Moreover, various case studies are to be coordinated within this task
group. Further topics include the relation of specifications to require-
ments and code, and a study of software development processes.

Tools Task Group: (Coordination: Hélene Kirchner, Nancy)

The concrete syntax for CASL has been designed in joint work
between the language design and tools task groups, and its imple-
mentation by prototype parsers has provided essential feedback. The
various parsers are currently being validated. A IXTEX package for
formatting CASL specifications has been developed [17], and can also
be used for displaying CASL specifications in HTML.

A major aim of CASL is to support interoperability of existing
tools [8, 15, 19]. Collaboration with the developers of tools for other
languages will usually be needed to enable the use of CASL specifi-
cations in those tools. Other work concerns static analysis and proof
tools for CASL, with a prototype (currently for CASL basic specifi-
cations only) already implemented using HOL/Isabelle [12].

Reactive System Task Group: (Coordination: Egidio Astesiano, Gen-
ova)

This task group is mainly concerned with extensions of CASL
for reactive system specification, and the combination of CASL with
concurrency.

External Relations Task Group: (Coordination: the present author)

The design of CASL is based on a (critical) selection of constructs
from existing languages, and it should be possible to translate spec-
ifications from other languages into (sublanguages or extensions) of
CASL. Preliminary investigations have considered ASF+SDF [14]
and OBJ3 [9]; moreover, CASL is in many respects close to the KIV
language [18]. COFI does not currently have adequate resources to
study and implement translations of other languages into CASL, and
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must depend on attracting the interest and collaboration of those
who have the necessary expertise.

The design of CASL has been sponsored by IFIP WG1.3 (on
Foundations of System Specification), which also provided expert
referees to review the proposed design in June 1997 [3]. The ongoing
work in COFT is of great interest to WG1.3, and the author (who
was appointed chairman of WG1.3 in 1998) is responsible for liason
between COFI WG and WG1.3.

A major pending task for external relations is to provide an at-
tractive web presentation of CASL. This guided tour of the CASL
design, which was presented in half a day as a tutorial at ETAPS’98,
should also be improved—suggestions are welcomel—and supple-
mented by a tutorial with the emphasis on methodology and realistic
examples.

Join now! All COFI task groups welcome new participants. Please
contact the coordinators via the COFT web pages [2]. There is a mod-
erated mailing list for each task group, with open subscription, ad-
ministered by the Majordomo program (majordomo@brics.dk). All
COFI participants are requested to subscribe to a further mailing
list, cofi-list@brics.dk (very low-volume, for major announcements
only). All COFI documents are available via the COFI web pages

2].
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