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Efficient Multiparty Computations
with Dishonest Minority

Ronald Cramer*  Ivan Damgéard’  Stefan Dziembowskit
Martin Hirt} Tal Rabin’

Abstract

We consider verifiable secret sharing (VSS) and multiparty compu-
tation (MPC) in the secure channels model, where a broadcast channel
is given and a non-zero error probability is allowed. In this model Ra-
bin and Ben-Or proposed VSS and MPC protocols, secure against an
adversary that can corrupt any minority of the players. In this paper,
we first observe that a subprotocol of theirs, known as weak secret
sharing (WSS), is not secure against an adaptive adversary, contrary
to what was believed earlier. We then propose new and adaptively
secure protocols for WSS, VSS and MPC that are substantially more
efficient than the original ones. Our protocols generalize easily to
provide security against general Q? adversaries.

1 Introduction

1.1 MPC and VSS

Consider a set of players each holding a private input, who wish to compute
some agreed upon function of their inputs in a manner which would preserve
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the secrecy of their inputs. They need to carry out the computation even if
some of the players may become corrupted and actively try to interfere with
the computation.

As the first general solution to this problem, [GMWS8T7] presented a pro-
tocol that allows n players to securely compute an arbitrary function even if
a central adversary actively corrupts any ¢t < n/2 of the players and makes
them misbehave maliciously. However, this protocol assumes that the ad-
versary is computationally bounded. In a model with secure and authen-
ticated channels between each pair of players (the secure-channels model),
[BGWS88, CCD88| proved that unconditional security is possible if at most
t < n/3 of the players are actively corrupted. This bound was improved in
[RB89, Bea9l] to t < n/2 by assuming the existence of a broadcast channel.

One important subprotocol of multiparty computation is Verifiable Secret
Sharing (VSS) [CGMAS5]. A VSS scheme for n players that is resilient
against an adversary that actively corrupts ¢ malicious players allows the
dealer to share a secret among the players in such a way that the adversary
obtains no information about the secret, and that the secret can be efficiently
reconstructed, even if the corrupted players try to disturb the protocol.

1.2 Contributions

Rabin and Ben-Or [RB89, Rab94] proposed VSS and MPC protocols, se-
cure against an adversary that can actively corrupt any minority of the
players. In this paper, we observe that a subprotocol of theirs, known as
weak secret sharing (WSS, a type of unconditionally secure commitment
scheme), is not secure against an adaptive adversary, contrary to what was
believed earlier (and claimed in [RB89, Rab94]). However, the VSS protocol
of [RB89, Rab94] is in fact adaptively secure.

We propose new and adaptively secure protocols for WSS, VSS and MPC
that are substantially more efficient than the original ones of [RB89] and later
protocols by Beaver [Bea91]. To obtain error probability 2-#+00°8") with n
players, the VSS protocols of [RB89, Bea91] communicate Q(k*n*) bits. Our
VSS protocol is constant round and uses communication O(kn?) bits, to
achieve the same error probability 2-k+0ogn),

This improvement is based in part on a more efficient implementation of
Information Checking Protocol, a concept introduced in [RB89] which can be
described very loosely speaking as a kind of unconditionally secure signature



scheme. Our implementation is linear meaning that for two values that can
be verified by the scheme, and linear combination of them can also be verified
with no additional information. When using our VSS in MPC, this means
that linear computations can be done non-interactively, contrary to what the
implementation of [RB89] (this property was also obtained in [Bea91], but
with a less efficient Information Checking implementation).

An essential tool in MPC (provided in both [RB89] and [Bea91]) is a
protocol that allows a player who has committed to values a, b, ¢ using WSS,
to show that ab = c¢ without revealing extra information. We provide a
protocol for this purpose giving error probability 27% which is extremely
simple.

Using methods recently developed in [CDM98|, our protocols generalize
easily to provide security against general Q* adversaries [HM97].

1.3 Outline

We first show that the Weak Secret Sharing (WSS) scheme of [RB89, Rab94]
is not adaptively secure (Section 3). In Section 4, we propose an efficient
implementation of Information Checking, and in Section 5, a scheme for
Verifiable Secret Sharing (VSS) id developed. Based on these protocols, in
Section 6 an efficient protocol for multiparty computation (MPC) is pre-
sented. Finally, in Section 7 an efficient protocol secure against general
(non-threshold) adversaries is sketched.

2 Model and Definitions

In this paper, we consider the secure-channels model with broadcast, i.e. there
are n players Py, ..., P, who are pairwise connected with perfectly private
and authenticated channels, and there is a broadcast channel. There is a
central adversary with unbounded computing power who actively corrupts
up to ¢ players where t < n/2. To actively corrupt a player means to take full
control over that player, i.e. to make the player (mis)behave in an arbitrary
manner. The adversary is assumed to be adaptive (or dynamic), this means
that he is allowed to corrupt players during the protocol execution (and his
choice may depend on data seen so far), in contrast to a static adversary
who only corrupts players before the protocol starts. The security of the



presented protocols is unconditional with some negligible error probability,
which is expressed in term of a security parameter k. The protocols operate
in a finite field K = GF(q), where ¢ > max(n, 2*).

2.1 Definition of Information Checking

A scheme for information checking (IC) consists of three protocols.

Distr(D, INT, R, s) is initiated by the dealer D. In this phase D hands the
secret s to the intermediary INT and some auxiliary data to both INT
and the recipient R.

AuthVal(INT, R, s) is initiated by INT and carried out by INT and R. In
this phase INT ensures that in the protocol RevealVal R (if honest) will
accept s, the secret held by INT.

RevealVal(INT, R, s) is initiated by INT and carried out by INT and R. In
this phase R receives a value s’ from INT, along with some auxiliary
data, and either accepts s’ or rejects it.

The IC scheme has the following properties:

Correctness:

A. If D, INT, and R are uncorrupted, and D has a secret s then R will
accept s in phase RevealVal.

B. If INT and R are honest then after the phases Distr and AuthVal the

INT player knows a value s such that R will accept s in the phase
RevealVal (except with probability 27).

C. If D and R are uncorrupted, then in phase RevealVal with probability
at least 1 — 27%_ player R will reject every value s’ different from s.

Secrecy:

D. The information that D hands R in phase Distr is distributed indepen-
dently of the secret s. (Consequently, if D and INT are uncorrupted,
and INT has not executed the protocol RevealVal, R has no information
about the secret s.)

Definition 1 An IC scheme is a triple (Distr, AuthVal, RevealVal) of proto-
cols that satisfy the above properties A. to D.



2.2 Definition of WSS

An intuitive explanation for a weak secret-sharing (WSS) scheme is that it is
the non-computational analog of a computational commitment. It exhibits
the same properties, i.e. it binds the committer to a single value after the
sharing phase Sh, yet the committer can choose not to expose this value in
the reconstruction phase Rec. A WSS scheme for sharing a secret s € K
consists of the two protocols Sh and Rec that satisfy the following properties,
with an allowed error probability 27*:

o Termination: If the dealer D is honest then all honest player will com-
plete Sh, and if the honest players invoke Rec, then each honest player
will complete Rec.

e Secrecy: If the dealer is honest and no honest player has yet started
Rec, then the adversary has no information about the shared secret s.

e (orrectness: Once all currently uncorrupted players complete protocol
Sh, there exists a fized value, r € K U {NULL}, such that the following
requirements hold:

1. If the dealer is uncorrupted throughout protocols Sh and Rec then
r is the shared secret, i.e. 7 = s, and each uncorrupted player will
outputs r at the end of protocol Rec.

2. If the dealer is corrupted then each uncorrupted player outputs
either » or NULL upon completing protocol Rec.

Definition 2 A t-secure WSS scheme for sharing a secret s € K is a pair
(Sh, Rec) of two protocols that satisfy the above properties even in the presence
of an active adversary who corrupts up to t players.

2.3 Definition of VSS

A pair (Sh,Rec) of protocols is a verifiable secret-sharing (VSS) scheme if
it satisfies a stronger correctness property, with an allowed error probability
27k

e (orrectness: Once all currently uncorrupted players complete protocol
Sh, there exists a fized value, r € K, such that the following require-
ments hold:



1. If the dealer is uncorrupted throughout protocol Sh then r is the
shared secret, i.e. r = s, and each uncorrupted player outputs r
at the end protocol Rec.

2. If the dealer is corrupted then each uncorrupted player outputs r
upon completing protocol Rec.

Definition 3 A t-secure VSS scheme for sharing a secret s € K is a pair
(Sh, Rec) of two protocols that satisfy the Termination and the Secrecy prop-
erty of WSS, and the above, stronger, Correctness property, even in the pres-
ence of an active adversary who corrupts up to t players.

2.4 Definition of MPC

The goal of multiparty computation (MPC) is to evaluate an agreed function
g : K" — K, where each player provides one input and receives the output.
The privacy of the inputs and the correctness of the output is guaranteed
even if the adversary corrupts any t players. For a formal definition for
security see [GL90, MR91, Bea91, Can98, MR9S8].

3 Adaptive Security of WSS in [RB89]

In this section we describe an adaptive attack against the weak secret-sharing
scheme (WSS) of Rabin and Ben-Or [RB89, Rab94]. The attack can be
derived due to the ability of the adaptive adversary to choose the set of
corrupted players at any point in the protocol. The attack will only work
when ¢ > n/3. It is important to note that this attack applies only to the
WSS protocol of [RB89] as a stand-alone protocol, and does not apply to
their VSS scheme, although it uses the WSS as a subprotocol.

In order to explain the attack we present a simplified protocol of the
[RB89] protocol which assumes digital signatures. It is in essence the same
protocol but with many complicating (non relevant) details omitted.

WSS Share (Sh)

The dealer chooses a random polynomial f(x) of degree ¢, such that f(0) = s
the secret to be shared, and sends the share s; = f(i) with his signature for
s; to each player P;.



WSS Reconstruct (Rec)

1. Every player reveals his share s; and the signature on s;.

2. If all properly signed shares s;i,...s;; for £ > t interpolate a single
polynomial f’'(z) of degree at most ¢, then the secret is taken to be
f'(0) otherwise no secret is reconstructed.

The definition of WSS requires that at the end of Sh a single value r €
K U{NULL} is set so that only that value (or NULL) will be reconstructed in
Rec. We will show that under an adaptive adversary this requirement does
not hold in the above described protocol.

The attack proceeds as follows: in the protocol Sh the adaptive adversary
corrupts the dealer causing him to deviate from the protocol. The dealer
chooses two polynomials fi(x) and fo(z) both of degree at most ¢, where
f1(0) # f2(0), and fi(i) = fo(3) for ¢ = 1,...,¢t. The players ¢ = 1,...,¢
receive fi(i) = fa(i) as their share, the players i =t + 1,...,2t receive f1(i)
as their share, and the remaining (at most t) players receive f5(i) as their
share. All shares are given out with valid signatures.

In Rec the adversary can decide whether to corrupt P, 1, ..., Py thus forc-
ing the secret to be f5(0) or to corrupt Pay1, ..., P, and thus force the secret
to be f1(0). Hence it is clear that at the end of Sh there is not a single value
which can be reconstructed in Rec. The decision on which value to recon-
struct can be deferred by the adversary until the reconstruction protocol Rec
is started.

Therefore the basic problem with stand-alone WSS is that it is not en-
sured that all honest players are on the same polynomial immediately after
distribution. But when using it inside the VSS of [RB89], this property is en-
sured as a side effect of the VSS distribute protocol, hence the VSS protocol
works correctly.

4 The Information Checking Protocol

In this section we present protocols that satisfy Definition 1 for information
checking (cf. Section 2.1). They provide the same functionality as the check
vector protocol from [RB89, Rab94] and the Time Capsule protocol from
[Bea91]. However, our implementation of Information Checking also pos-
sesses an additional property which will be utilized later in the paper. The
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property is the following: given two secrets and the ability to verify them,
it is possible to also verify any linear combination of the two, without any
additional information.

The basic idea for the construction will be that the secret and the verifi-
cation information will all lie on a polynomial of degree 2, where the secret
will be the value at the origin. INT will receive two points on this polynomial
(one being the secret) and R will receive two additional points. Thus, INT
will be able to authenticate the secret to R only if it will be able to give R
two points which complete the values held by R into a polynomial of degree
2. We will see that such a construction enables to verify linearly dependent
secrets. We describe our protocols in the following.

Definition 4 A vector € = (e, ...,e,—1) € K™ is t-consistent if there exists
a polynomial w(x) of degree at most t such that w(i) = e; for 0 <1i < n.

Protocol Distr(D, INT, R, s):

The dealer D chooses two 2-consistent vectors of length 4. The first one is
constructed by setting eq = s, choosing two random values ey, e3 € K and
computing the last value e; to satisfy the requirement of 2-consistency. The
second vector 7 is chosen at random. D hands the pairs (eg, e;) and (rg, )
to the intermediary INT and the pairs (e, e3) and (r2,73) to the recipient
R.

It is easy to see that the protocol Distr (together with RevealVal below)
ensures Properties A, C and D as required in the definition — but not B
(i.e., all properties are satisfied if the dealer is honest). The next protocol is
designed to ensure Property B as well, without affecting A, C and D.

Protocol AuthVal(INT, R, s):
1. INT chooses a random element ¢ € K and broadcasts it.

2. R broadcasts (az,a3) = c- (e2,e3) + (r2,73). Now the dealer decides
whether these values agree with the data sent to R before. If they do
then he broadcast approval and the protocol goes to 3. Otherwise the
dealer broadcasts that R should always accept s(= ep).

3. INT checks whether (c- ey + ro,c - €1 + r1,az,a3) is 2-consistent. If
yes, then the protocol is finished, otherwise R complaints and D has
to broadcast the value of s(= ep). Now s is publicly known, and the
RevealVal phase will be trivial.



Protocol RevealVal(INT, R, s):
1. INT sends to R the values (eg, e;).

2. R checks whether (eg, e1, €9, €3) is 2-consistent and if they are R accepts
the value ey as the value handed out by D.

Lemma 1 The protocols (Distr, AuthVal, RevealVal) described above satisfy
Definition 1 for Information Checking (Section 2.1).

Proof We show that each property is satisfied:

A. Can be easily verified from the protocol.

B. R will reject eq only if € = (e, e1, €2, e3) is not 2-consistent. Assume
that this is the case, which means that € is 3-consistent. It is easy
to see that for a fixed 7 there exists at most one value of ¢ such that
¢+ €+ 1 is 2-consistent, hence the cheating dealer has a probability of
1/|K| of having € be 3-consistent, and the test carried out by INT be
successful.

C. If INT chooses a value s’ # s = ey then he must find €] such that
(s', €], e, e3) is 2-consistent. For a given (eq, e3) only one value €] will
be 2-consistent. INT has no knowledge of (e, e3), and all pairs are
equally likely. Thus, the probability that R will accept s’ is 1/|K]|.

D. The information that R holds is independent of the secret.

[

In the sequel we will use the Information Checking Protocol as “digital
signatures” in the following way. Protocol Distr will be carried out by the
dealer D with intermediary INT and the receiver being each player P, ..., P,,
each with respect to the same value s. Next, the AuthVal protocol will be
performed by INT and each player P;. Then, in protocol RevealVal INT will
broadcast s and the authentication information, and if ¢ + 1 players accept
the value s then we shall say that the “signature” has been confirmed. We
shall call these signatures IC-signatures. It should be noted that these do
not capture all the properties of digital signatures, and more specifically, if D
gives INT a “signature” only INT can verify it to the other players. Thus,
we use these IC-signatures as a specific signature from D to INT, and we
denote an IC-signature from D to INT on a value a as o,(D, INT).
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5 Verifiable Secret Sharing

We now present our simplified VSS protocol. For ease of presentation we
shall describe the protocol first using digital signatures and then proceed to
show that the properties which we are utilizing of the digital signatures can
be achieved using Information Checking signatures (IC-signatures). The pro-
tocol is based on the bivariate solution of Feldman [FM88, BGWS88| (omitting
the need for error correcting codes). The protocol will use our new variant
of Information Checking which will provide us with high efficiency.

The intuition behind the construction is that the secret will be shared
using an n X n matrix of values, where each row and column is ¢-consistent.
The dealer will commit himself to all these values by signing each value in the
matrix. Thus, if he did not act properly this fact would be exposed using the
signatures. The consistency property will be verified by the players together.
Hence we are guaranteed that all the values held by (yet) uncorrupted players
are consistent and define a single secret!. In order to prevent the adversary
from corrupting the secret at reconstruction time, we also require that each
player sign all the values which he holds in a given row. And thus no new
values can be injected into the computation in the reconstruction.

The signature given from A to B for the value s will be denoted by
os(A, B). (We make the signature dependent on B since in the real protocol
the IC Protocol is used.)

VSS Share (Sh)

1. The dealer D chooses a random bivariate polynomial f(z,y) of degree
at most t in each variable, such that f(0,0) = s. Let s;; = f(¢,7).
The dealer sends to player P; the values ay; = S14,...,0, = Sp; and
bii = Si1,...,bin = Si. For each value aj;, b;; D attaches a digital
signature o, (D, B;), o, (D, ;).

2. Player P; checks that the two sets ay;,...,a,; and b;1,...,0b; are t-
consistent. If the values are not t-consistent, P; broadcasts these values
with D’s signature on them. If a player hears a broadcast of inconsistent
values with the dealer’s signature then D is disqualified and execution
is halted.

1So far, this results in a WSS which is secure against an adaptive adversary.
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3. P; sends aj; and a signature which he generates on a;j, o4, (P, P;)
privately to P;.

4. Player P; compares the value a;; which he received from P; in the pre-
vious step to the values b;; received from D. If there is an inconsistency
or if he did not receive a value then P; broadcasts b;;, oy, (D, F;).

5. Player P; checks if P; broadcasted a value bj;, 03, (D, P;) which is dif-

j
ferent than the value aj; which he holds. If such a broadcast exists then

P; broadcasts a;i, 04,,(D, P;).

6. If for an index pair (i, 7) a player hears two broadcasts with signatures
from the dealer on different values, then D is disqualified and execution
is halted.

VSS Reconstruct (Rec)

1. Player P; broadcasts the values b;1, ..., b;, with the signature for value
b;; which he received from player P;. (If he did not receive a signature
from P; in the protocol Sh then he had already broadcasted that value
with a signature from D.)

2. Player P; checks whether player P;’s shares broadcasted in the previous
step are t-consistent and all the signatures are valid. If not then P; is
disqualified.

3. The values of all non-disqualified player are taken and interpolated to
compute the secret.

Before we proceed to state and prove our theorem, we note that the “real”
version of our protocols with information theoretic security is obtained by
replacing the digital signatures with IC-signatures, i.e. the creation of a
signatures by executions of Distr and AuthVal protocols, and broadcasting of
signed messages by executions of RevealVal protocols. The basic reason why
this works is that the only properties of signatures we rely on are captured
by the properties A.-D. of Information Checking protocols.

Theorem 1 The above protocols (Sh, Rec) satisfy Definition 3 for VSS pro-
tocols.
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Proof We proof that each required property is satisfied:

Secrecy. Observe that in Steps 2-6, the adversary learns nothing that he
was not already told in Step 1. Thus the claim follows immediately from
the properties of a bi-variate polynomial of degree ¢t and the properties
of the Information Checking.

Termination. From examining the protocol it is clear that the dealer D can
be disqualified only if data which he shared is inconsistent, assuming
that the players cannot forged the dealers signatures. Thus, an honest
dealer will be disqualified at most with probability O(27*).

Correctness First we will show that there is a fixed value r. Define r to be
the secret which interpolates through the shares held by the set of the
first ¢+ 1 players who have not been corrupted during Sh. Their shares
are trivially t-consistent, and with probability at least 1 —O(27%), there
are correct signatures for their shares, and thus the value r is well de-
fined with an underlying implicit polynomial f'(z,y). Let us look at
another uncorrupted player outside this set. He has corroborated his
shares with all these ¢ + 1 players and has not found an inconsistency
with them. Thus, his shares interpolate (at the minimum) through
f'(x,y) and hence are at least t-consistent. But this player has also
verified that his shares are t-consistent. Hence, when this player’s
shares are added to the initial set of players’ shares the set remains
t-consistent, thus defining the same secret r. Now we examine the two
correctness conditions:

1. Tt is easy to see that if D is uncorrupted then this value r = s.

2. A value different than r will be interpolated (or the reconstruc-
tion will fail) only if a corrupted player would be able to introduce
values which are inconsistent with the values held by the honest
players. A corrupted player succeeded doing it only when he was
not disqualified in Step 2. of the reconstruction procedure. This
means that he was able to produce a set of n values which are t¢-
consistent, and for each value to have a signature from the appro-
priate player to which it relates. Clearly, ¢ + 1 of these signatures
must be from still uncorrupted players. We have already shown
that these players’ shares lie on f’(x,y), thus if the corrupted
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player’s shares are t-consistent they must define lie on f'(z,y) as
well. Therefore the adversary cannot influence the value of the
revealed secret.

[

Efficiency By inspection of the VSS distribution protocol Sh, one finds that
n? field elements are distributed from D, and each of these are authenticated
using Distr and AuthVal a constant number of times. Executing Distr and
AuthVal requires communicating a constant number of field elements for each
player, and so we find that the total communication is O(n3k) bits, for an
error probability of 2-F+0(een),

6 Multiparty Computation

Based on the VSS scheme of the previous section, we now build a multiparty
computation protocol. Based on the [BGW88| paradigm it is known that it is
sufficient to devise methods for adding and multiplying two shared numbers.

Note that in our case (contrary to e.g. [BGWS8S8]) a VSS of a value a
consists not only of the shares ay, ..., a, where q; is held (in fact implicitly)
by P;, it is explicitly held by P; via the subshares a;i, ..., a;, where a;; is
held also by player P;, and F; has a IC-signature from P; on that value. This
structure and the IC-signatures are required for the reconstruction. Thus, if
we wish to compute the sum/multiplication of two secrets we need to have
the resultant in this same form.

We will prove the following theorem in the next two subsections.

Theorem 2 Assume the model with a complete network of private chan-
nels between n players and a broadcast channel. Let C' be any arithmetic
circuit over the field K, where |K| > maz(n,logk) and k is a security pa-
rameter. Then there is a multiparty computation protocol for computing C,
secure against any adaptive adversary corrupting less than n/2 of the play-
ers. The complexity of this protocol is O(n?|C|) VSS protocols with error
probability 27F+000en) “ywhere |C| is the number of gates in C. This amounts
to O(|C|knS) bits of communication.

13



6.1 Addition

Addition is straightforward: For two secrets a and b shared with (implicit)
shares aq,...,a, and by, ...,b,, all the subshares, and their appropriate 1C-
signatures, each player P; needs to add his two (implicit) shares a; and b;
which means that he needs to hold a IC-signature from P; for a;; + b;;. But
this is immediately achieved as the linear combination of two IC-signatures
results in an IC-signature for the linear combination of the values signed.
Thus, we have computed the addition of two shared secrets.

6.2 Multiplication

Multiplication is slightly more involved. Assume that we have two secrets a
and b with (implicit) shares ay, ..., a, and by, ..., b, and all the subshares and
their appropriate IC-signatures. We apply the method from [GRR98]. This
method calls for every player to multiply his shares of a, resp. b and to share
the result of this using VSS. This results in n VSS’s and a proper sharing
of the result ¢ can be computed as a fixed linear combination of these (i.e.
each player computes a linear combination of his shares from the n VSS’s).
Since our VSS is linear, like the one used in [GRR98], the same method will
work for us, provided we can show that player P; can share a secret ¢; using
VSS, such that it will hold that ¢; = a;b; and to prove that he has done so
properly. If P; fails to complete this process the simplest solution for recovery
is to go back to the start of the computation, reconstruct the inputs of P;,
and redo the computation, this time simulating P; openly. This will allow
the adversary to slow down the computation by at most a factor linear in n.

In order to eliminate subindices let us recap our goal stated from the
point of view of a player D. He needs to share a secret ¢ using VSS which
satisfies that ¢ = ab. The value a is shared via subshares ay, ..., a,, (lying on a
polynomial f,, say) where a; is held by player P; and D holds an IC-signature
of this value from P;. The same holds for the value b (with a polynomial f;).

1. D shares the value ¢ = ab using the VSS Share protocol. Let f. be the
polynomial defined by this sharing.

2. D chooses a random 3 € K and he shares § and ($b. The sharing
of these values is very primitive. D chooses a polynomial fsz(z) =

14



Bix' + ... + fix + [ and gives player P; the value fg(i) and an IC-
signature on this value. A player complains if he did not receive a
share and a signature, and the dealer exposes these values. The same
is done for $b (with a polynomial fg).

. The players jointly generate, using standard techniques, a random value
r, and expose it.

. D broadcast the polynomial fi(z) = rf,(z) + fs(x).

. Player P; checks that the appropriate linear combination of his shares
lies on this polynomial, if it does not he exposes his signed share fz(i)
and requires the dealer to expose the IC-signature which the dealer
holds generated by P; for the value a;. If the dealer fails then D is
disqualified.

. If the dealer has not been disqualified each player locally computes
T = fl (0)

. D broadcasts the polynomial fa(x) = 71 fo(z) + fae(x) — 7 fe(z).

. Each player checks that the appropriate linear combination of his shares
lies on this polynomial, if it does not he exposes his signed share fg,(¢)
and f.(7) and requires the dealer to expose the IC-signature which the
dealer holds generated by P; for the value b;. If the dealer fails then D
is disqualified.

. If D has not been disqualified P; verifies that f,(0) = 0, and accepts
the sharing of ¢, otherwise D is disqualified.

The security of the protocol is guaranteed by the following lemma.

Lemma 2 Ezecuting the above protocol for sharing ¢ = ab does not give the
adversary any information that he did not know before.

Proof Wlog we can assume that the dealer is honest. Thus all the values
revealed during the protocol look random to the adversary (except of the
polynomial f, which is a random polynomial such that f(0) = 0). Therefore
the adversary learns nothing. n
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Lemma 3 Ifc # ab in the above protocol, then for a given honest player P;,
the probability that dealer succeeds to perform the above procedure for 7 = 7o
15 at most ﬁ

Proof Suppose there exist two distinct challenges r; and r} such that if
any of them is chosen in in Step 3. then D is not disqualified in the next
rounds. Step 4. guarantees that honest players have consistent shares of f3,
since we open f; and we know f, is consistent. So there is a well-defined value
B shared by fz. In the same way Step 7 guarantees that fg, is consistent, so
it defines some value z (which may or may not be 5b). Now from Step 4.,
ry =ra+ 3 and r} = r’a+ (3, so from Step 7., we get (ra+ B)b+ z + rc =
0= (r"a+ B)b+ z + r'c and we conclude that ab = c. n

7 General Adversaries

It is possible to go beyond adaptive security against any dishonest minority,
by considering general, i.e. not necessarily threshold adversaries HM97]. Our
results in this paper extend to this general scenario in a number of ways,
following ideas developed in [CDM98].

First, by replacing Shamir Secret Sharing by Monotone Span Program
Secret Sharing [KW94] in our WSS, we immediately obtain WSS protocols
secure against any Q*-adversary [HM97], with communication and computa-
tion polynomial in the monotone span program complexity of the adversary
[CDMO98|.

Building on the linearity of this WSS and Monotone Span Program Secret
Sharing, we can construct efficient VSS (with negligible, but non-zero error)
secure against any (Q?-adversary.

Yet another approach is suggested by a method from [CDM98|, that first
transforms a linear secret sharing scheme into one that is “locally verifiable”,
i.e. the honest players can check by pairwise verifications that they received
consistent shares. If we apply this transformation to a linear secret shar-
ing scheme with a “built-in” check-vector mechanism, we can construct the
desired VSS in a way similar to the construction of efficient VSS given in
[CDM98|, which has zero error probability but offers security against any
Q3-adversary.
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Regardless of which of these approaches we follow, the resulting VSS fa-
cilitates multi-party computation secure against any QQ*-adversary if we base
the construction of VSS on Monotone Span Programs with Multiplication
[CDM98]. As far as general adversaries are concerned, security against Q*-
adversaries is the maximum attainable level of security.

Both of the constructions give complexity O(km?*) bits, where m is the
size of the monotone span program.?

much more
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