
B
R

IC
S

R
S

-98-34
B

inderup
etal.:

T
he

C
om

plexity
ofIdentifying

Large
E

quivalence
C

lasses

BRICS
Basic Research in Computer Science

The Complexity of Identifying
Large Equivalence Classes

Peter G. Binderup
Gudmund Skovbjerg Frandsen
Peter Bro Miltersen
Sven Skyum

BRICS Report Series RS-98-34

ISSN 0909-0878 December 1998



Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/34/



The Complexity of Identifying Large Equivalence

Classes∗

Peter G. Binderup Gudmund S. Frandsen
Peter Bro Miltersen Sven Skyum

BRICS, Basic Research in Computer Science,
Centre of the Danish National Research Foundation,

Department of Computer Science, University of Aarhus.

December, 1998

Abstract

We prove that at least 3k−4
k(2k−3)

(
n
2

)
− O(k) equivalence tests and no

more than 2
k

(
n
2

)
+ O(n) equivalence tests are needed in the worst case

to identify the equivalence classes with at least k members in set of n
elements. The upper bound is an improvement by a factor 2 compared
to known results. For k = 3 we give tighter bounds. Finally, for
k > n

2 we prove that it is necessary and it suffices to make 2n− k − 1
equivalence tests which generalizes a known result for k = dn+1

2 e.

1 Introduction

Consider a “Master Mind”-like combinatorial game between two players,
Alice and Bob. Bob hides n coloured pegs in n positions. Pegs come in
infinitely many different colours. The aim for Alice is then to decide whether
Bob has hidden at least k pegs of the same colour. To this end, Alice may
pose only one kinds of question to Bob, which is, if a peg in one position
has the same colour as a peg in another position. What is the number of
questions Alice needs to ask in the worst case?

∗This paper is based on the conference paper [7] by the last three
authors and the Master’s Thesis [3] by the first author. Email:
{binderup,gudmund,bromille,sskyum}@brics.dk. Supported by the ESPRIT Long
Term Research Programme of the EU under project number 20244 (ALCOM-IT).
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Upper bounds will be given through analyzing efficient strategies for Alice.
A strategy for Alice describes what the next question should be when given
the answers to previous questions.

To obtain lower bounds, we will use what is known as adversary strategies.
What does this mean? Assume Bob doesn’t hide the pegs in the beginning
but that he makes Alice believe that he did. Then Alice will not discover
that Bob hasn’t hidden the pegs as long as Bob’s answers are consistent with
at least one way of placing n coloured pegs in n positions. The least number
of questions Bob can force Alice to pose (no matter what strategy Alice
uses) through answering shrewdly but consistently, is a lower bound. The
description of how Bob should answer a question from Alice given answers
to previous questions is what is called an adversary strategy. Originally the
interest in the problem was for k = dn+1

2 e motivated by the design of fault
tolerant computer systems where a majority of processors must agree on the
output [11].

Moving to more formal terminology, we will use a computational model,
where the only allowed operation is equivalence test on pairs of elements.
The problems are parameterized by two parameters n and k. We define the
following complexity measures:

Definition 1.1 Let E(k, n), 2 ≤ k ≤ n, denote the minimum number of
equivalence tests needed in the worst case for an algorithm to decide whether
a set of n elements contains an equivalence class with at least k members.

Definition 1.2 Let R(k, n), 2 ≤ k ≤ n, denote the minimum number of
equivalence tests needed in the worst case for an algorithm to find a rep-
resentative of each equivalence class with at least k members in a set of n
elements.

Definition 1.3 Let C(k, n), 2 ≤ k ≤ n, denote the minimum number of
equivalence tests needed in the worst case for an algorithm to find a repre-
sentative and the cardinality of each equivalence class with at least k members
in a set of n elements.

It is obvious that in the example above E(k, n) is exactly the number of
questions Alice needs to ask Bob in the worst case. Furthermore, it is clear
that E(k, n) ≤ R(k, n) ≤ C(k, n). We prove that E(k, n) = R(k, n) for all k
and E(3, n) = R(3, n) = C(3, n). Whether equality holds between E(k, n)
and C(k, n) is open for 3 < k < n

2 .

C(k, n) is nonincreasing in k – if one has a representative of all equivalence
classes of size at least k and knows the cardinality of these classes, it will
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be possible without extra tests to select those representatives representing
equivalence classes of size at least k + 1. However, no such monotonicity
knowledge of E(k, n)(= R(k, n)) is known.

Clearly E(2, n) = R(2, n) = C(2, n) =
(n

2

)
and E(n, n) = R(n, n) =

C(n, n) = n − 1. The fact that no elements are equivalent can only be
known to an algorithm after all elements have been tested against each
other. That all elements are equivalent can be tested by testing one element
against the remaining n− 1 elements.

However, the problem becomes nontrivial for 2 < k < n. The following
table summarizes our results together with the results known to us from
the literature. Several of the bounds listed are slightly weaker than those
actually obtained. This is to make comparisons easier.

Range
Upper bound on

C

Lower bound on
E = R

Reference

k = 3 3
5

(n
2

)
+ O(n) 7

12

(n
2

)
−O(n) Theorems 3.1 and 3.2

All k 4
k

(n
2

)
[5]

All k 2
k

(n
2

)
+ 1 3k−4

k(2k−3)

(n
2

)
−O(k) Theorems 4.1 and 5.1

n
2 > k > n

3 4n − 5k − 2 4n − 4k − 2 Theorems 4.1 and 5.1

k = dn+1
2 e b3

2 (n− 1)c b3
2 (n− 1)c [6, 9]

k > n
2 2n− k − 1 2n− k − 1 Theorems 4.1 and 5.1

If it is known in advance that there is only two kinds of elements (two equiv-
alence classes) then better bounds are known for k = dn+1

2 e. It is necessary
and it suffices to make n−B(n) equivalence tests to find a representative of
the larger class if n is odd (B(n) denotes the number of ones in the binary
representation of n) [12].

If the elements are from an ordered set and two elements are equivalent if
and only if they are equal, then if ≤-tests are allowed, it is possible to sort
n elements in time O(n log n) and thereby get full information about the
equivalence classes. But is it possible to find representatives of equivalence
classes with at least k members even faster? The answer to this is affirmative
and given in [10], where it is proven that the number of tests is Θ(n log n

k ).

1.1 Notation

When we solve a problem concerning a set of n elements using equivalence
tests on pairs we may keep track of previous answers to queries in an undi-
rected, complete graph on n vertices. Each vertex represents an element and
the edges are coloured black, red, and green. Initially, all edges are black.
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Whenever a test x?y is answered with ≡ (6≡), the corresponding edge in the
graph is coloured green (red). Furthermore, a vertex is green if it has at least
one outgoing green edge – otherwise the vertex is red. So, there are no black
vertices. A red clique (black clique) is a subgraph on red vertices connected
exclusively with red (black) edges. We call such a graph an information
graph.

An algorithm for deciding whether there are k equivalent elements among
n may terminate with the answer YES if a tree of at least k− 1 green edges
occurs in the graph. Using the transitivity of ≡, the vertices connected by
these edges will be an equivalence class of size at least k. If at some point
in time, on the other hand, all cliques of size k in the graph contains a red
edge, the algorithm may terminate with the answer NO. The algorithm may
not terminate in any other situation.

2 Relations Between Measures

It is clear that E(k, n) ≤ R(k, n) ≤ C(k, n). That E(k, n) = R(k, n) is less
clear but nevertheless the case.

Theorem 2.1 E(k, n) = R(k, n).

Proof Let A be an optimal algorithm deciding whether there exists a large
class (size at least k) in a set of n elements or not using at most E(k, n)
equivalence tests.

The algorithm A can be used as a black box to create an algorithm B that
finds representatives of all large classes. Given the set of elements, B uses
A to determine which tests to make. The answers are passed on to A by B,
but B might lie to A and thereby avoid that A terminates prematurely. B’s
strategy for lying is as follows. If B gets a 6≡-answer, the correct answer is
passed on to A. If B gets an ≡-answer, B will lie and give A a 6≡-answer
if A upon reception of an ≡-answer could conclude that there was a large
equivalence class.

At termination, A will conclude (perhaps based on false information) that
there are no large classes. We will show that B is able to present exactly
one representative of every true large class. Since B only changes ≡-answers
to 6≡-answers and not vice-versa, we know that at termination every class
known to A will be a subclass of a true class. In other words, the class
division known to A is a refinement of the true class division.

Assume that large classes exist and let U be one of them. We will show
that B at termination will present exactly one element from U . Since A is
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not aware of any large classes it will at some point in time have made a test
between two elements in U and have received a false answer. The only way
A could have been given a false answer is, if A previously had discovered two
subclasses U1 and U2 of U , such that |U1|+ |U2| ≥ k and then had tested an
element of U1 against an element of U2. When A got the false answer from
B, B knew the right answer and hence that U1 and U2 contained equivalent
elements.

Conclusively, B will know large subclasses of all true large classes at termi-
nation. We have to show that B only presents one representative for each
true large class.

Assume B knows two large subclasses V and W of the same true large class
– but doesn’t know that they contain equivalent elements. A will know two
subclasses V1 and V2 of V , such that |V1|+ |V2| ≥ k. Similarly, A will know
of subclasses W1 and W2 in W with the same properties. Assume wlog that
|V1| ≥ |V2| and |W1| ≥ |W2|. Then |V1| + |W1| ≥ k. A and thereby B will
therefore have had to make a test between an element of V1 and an element
of W1. This contradicts that B was assumed not to know that V and W

contained equivalent elements. 2

Note that if k = 3 then A will know a pair in all large classes and will
have had to tested this against all other classes - including singletons. So
at termination, B will know the cardinality of all large classes. This implies
the following corollary:

Corollary 2.1 E(3, n) = R(3, n) = C(3, n).

3 The Complexity of Finding Triplicates

3.1 Upper Bound

Theorem 3.1

E(3, n) = R(3, n) = C(3, n) ≤ 3

5

(
n

2

)
+ O(n).

Proof The algorithm to be described in the following will, given n elements,
determine whether there exists three equivalent elements among them or not.
If the algorithm at any point in time determines three or more equivalent
elements it stops and answers YES. The algorithm runs in three phases.

Phase 1: The elements are inserted one by one and two sets S1 and D1

are maintained in the following way. The new element e is tested against
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elements in S1. If it is equivalent to one of them, e′ say, then e′ is removed
from S1 and e together with e′ are added to D1 as a pair. e is tested
against representatives for the other pairs in D1. Phase 1 terminates when
|S1|+ |D1|

2 ≥ 2n
5 .

Phase 2 As Phase 1 but with sets S2 and D2. Phase 2 terminates when all
the remaining elements have been inserted.

Phase 3 Elements in S1 and representatives for pairs in D1 are tested
against elements in S2 and representatives for pairs in D2. Notice that since
no elements in S1 and S2 respectively are equivalent to each other there is
no need to make tests among elements in S1 and S2.

Let si = |Si|, di = |Di|
2 for i = 1, 2 and d = d1 +d2. Then by the termination

criteria for Phase 1 we know that 2n
5 ≤ s1 + d1 < 2n

5 + 1 and s2 + d2 =
n− s1 − d1 − d > 3n

5 − d− 1.

We count the number of black edges in the information graph at termination
or the number of tests saved by the algorithm:

For every two pairs {a1, b1}, {a2, b2} ∈ (D1×D1)∪ (D2×D2) we have saved
at least two tests between the elements a1, b1, a2 and b2. Thus |black((D1×
D1) ∪ (D2 ×D2)| ≥ d1(d1 − 1) + d2(d2 − 1).

For every two pairs {a1, b1}, {a2, b2} ∈ D1 ×D2 we have saved three tests.
Thus |black(D1 ×D2)| ≥ 3d1d2.

For every a ∈ S1 and {a1, b1} ∈ D2 we have saved one. Equivalently for S2

and D1. Thus |black(S1 ×D2) ∪ (S2 ×D2))| ≥ s1d2 + s2d1.

Finally, |black(S1 × S2)| = s1s2 since elements in S1 are not tested against
elements in S2.

Altogether at least

d1(d1 − 1) + d2(d2 − 1) + 3d1d2 + s1d2 + s2d1 + s1s2 =

d2 − d+ (s1 + d1)(s2 + d2) > d2 − d+
2n

5
(
3n

5
− d− 1)

tests are saved. The last expression is minimal for d = n
5 + 1

2 where the
value is

n(n− 3)

5
− 1

4
.

Thus at most (
n

2

)
− (

n(n− 3)

5
− 1

4
) =

3

5

(
n

2

)
+ O(n)

tests are needed.
2
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3.2 Lower Bound

Theorem 3.2

7

12

(
n

2

)
−O(n) ≤ E(3, n) = R(3, n) = C(3, n).

Proof The following adversary strategy is used:

When an a?b test is made ({a, b} a black edge) then the answer given is 6≡
unless this means that a red clique of size at least n

3 will occur in the graph.
Then the answer ≡ is given and a and b then become a pair of green vertices.

Let A be an arbitrary algorithm determining whether there are three equiv-
alent elements among n or not.

Let D be the set of green vertices and S the set of red vertices in the
information graph at termination of A. Let d = |D|

2 and s = |S| = n− 2d.

At termination A must have verified that there are no triplicates. For that
reason |red(D×(D∪S))| ≥ ds+ d(d−1)

2 . At the time when a green pair {a, b}
is formed, at least n

3 −2 vertices are connected to both a and b by a red edge.
Only half of them are needed in the end to verify that no triplicates exist.
Consequently extra d(n3 − 2) red edges between vertices in D and D∪S can
be identified. In S there can be no black 3-clique and no red clique of size
n
3 or more. The combinatorial theorem and lemma below then imply that

|red(S × S)| ≥ max{
(s
2

)
− s2

4 ,
s
2 (s− n

3 − 1)}.

Altogether

dr +
d(d− 1)

2
+ d(

n

3
− 2) + max{s

2

4
,
s

2
(s− n

3
− 1)} (1)

is a lower bound on the number of tests A needs to make.

s must be at least n
3 − 2. Elementary calculations shows that (1) in the

interval [n3 − 2, n] has its minimum for s = 2n
3 where the value is

7n2

24
− 3n

4
.

2

Theorem 3.3 Let G be an undirected graph with n vertices. For integer
k ≥ 2, if the number of edges is more than

k − 2

2(k − 1)
n2

then there is a clique of size k in G.
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Proof The theorem is an immediate consequence of Turán’s Theorem (see
e.g. [4] or [8]).

Lemma 3.1 Let G be an undirected graph with n vertices and k > 2 an
integer. If the number of edges is less than n

2 (n − k − 1) then there exists
either 3 independent vertices or a clique of size k.

Proof Assume no 3 vertices are independent and that G has no clique of
size k. Let v be an arbitrary vertex. The vertices that are not neighbours
to v must form a clique (of size less than k). Thus v has at least n − k − 1
neighbours. Since v was arbitrary, the lemma follows. 2

4 An Upper Bound on C(k, n)

The algorithm to be presented is a generalization of the majority algorithm
presented in [6]. That is, for k = dn+1

2 e the two algorithms do exactly the
same.

Theorem 4.1

C(k, n) ≤ bn
k
c (2n − kbn

k
c − 1) ≤ d2

k

(
n

2

)
e.

Proof Equivalence classes with at least k members are called large classes
in the following. There can be at most q = bnk c large classes. The algorithm
to be described works in two phases. In the first phase at most q distinct
candidates to be representatives of the large classes are found. In the second
phase, it is checked whether each candidate in fact is a representative of a
large class and if so the cardinality of the class is determined.

The elements are inserted successively into the data structure consisting
of buckets of elements. All elements within a bucket are equivalent. The
buckets are indexed 0 through m. Initially, only bucket B0 exists (m = 0).
Only the buckets B0, . . . , Bq may contain more than one element – so each
bucket Bq+1 . . . , Bm (called the chain) has exactly one element. B0 is only
temporarily non-empty. Just before an insertion is initiated, B0 is always
empty. Let e1, e2, . . . , em be representatives for the buckets. The following
property is kept invariantly true through the algorithm:

If i 6= j and ei ≡ ej then |i− j| > q (2)

Phase 1: Insertion works as follows. The new element is tested against
e1, e2, . . . , emin(q,m). This is done most efficiently (for reasons which will

8



B0 B1 B2 B3 · · · · · · · · · · · · Bq Bm

� ���
the chain

Figure 1: The data structure

become clear) when buckets with more elements are visited before buckets
with fewer elements. In case two buckets have the same number of elements,
the bucket with the lowest index is visited first. Testing goes on until a test
results in that an equivalent element is found. When and if that happens,
the element is put into the bucket in question. If the new element is not
among {e1, e2, . . . , emin(q,m)}, it is put into B0.

In the latter case we have to rearrange the elements in the data structure
so that B0 will become empty again. To this end, we create a new bucket
Bm+1 and shift the contents of the buckets one up. If bucket Bq+1 exists, it
may now contain more than one element. If so, all but one of these elements
are moved to B0, and a new shift is performed. The sequential shifting is
continued until Bq+1 only houses one element. This will happen after at
most q + 1 shifts since B0 contains one element to start with. Notice that
shifting does not violate property (2).

� ���
→

� ���
→

� ���
→ · · · →

� ���

Figure 2: Shifting

Phase 2: All large classes is necessarily represented in the first min(q,m)
buckets – there is simply not enough space to house k equivalent elements
in the chain because of property (2). If m ≤ q, we have full information
of the data and the algorithm may terminate. Otherwise, e1, e2, . . . , eq are
tested against the elements in the chain. Notice that because of property
(2), ei need not be tested against elements of the first i buckets in the chain
(buckets Bq+1, Bq+2, . . . , Bq+i).

Analysis

If m ≤ q at termination there is no need for tests in Phase 2. In Phase 1, at
most q tests will be needed to insert an element into the data structure. The

9



element first inserted will obviously be inserted without tests. Therefore, at
most q(n − 1) ≤ q(2n − kq − 1) tests are needed in all and so the theorem
holds in this simple case.

If m > q we first analyze how many tests are needed in Phase 2. The
following lemma is used.

Lemma 4.1 Let property (2) hold for elements e1, e2, . . . , es. Let t > 0 and
e be an arbitrary element. Finally let ce = |{i | ei ≡ e}|.
By at most max{0, s− q(t− 1)} tests it can be determined whether ce ≥ t or
not and if ce ≥ t the value of ce can be computed.

Proof We may test e against e1, e2, . . . , es one by one. If e ≡ ej the next
q elements are skipped. We stop if there is no hope of finding at least t
elements equivalent to e.

Notice that ce ≤ s−1
q+1 + 1.

Assume u elements are found to be equal to e.

If u = ce ≥ t at least q(u− 1) ≥ q(t− 1) elements are skipped.

If 0 < u < t the last v elements are skipped where v satisfies t−u = v
q+1 +1 or

v = (q+1)(t−u−1). qu other elements are also skipped so the total number
of skipped elements are qu+(q+1)(t−u−1) = (q+1)(t−1)−u ≥ q(t−1).

In both cases at most s− q(t− 1) tests are made. 2

Let bi denote the number of elements in bucket Bi, let d = b1 + · · ·+bq−q =
n − m denote the number of “duplicates” situated in buckets B1 through
Bq, and let r = n− qk.

According to Lemma 4.1 max{0,m− (q+ i)−q(k−bi−1)} = max{0, r−d+
qbi − i} tests suffice in Phase 2 to determine whether ei is a representative
for a large class or not and to determine the size of it if it is large.

Now let ai = r− d+ qbi − i. The ai’s are all different and max{ai, 0} is the
number of tests made in Phase 2 to deal with elements equivalent to ei.

Claim:

Φ = pq + (r − 1) max{q −m, 0}+
q∑
i=1

max{ai, 0}

tests suffice to add the last p elements in Phase 1 and to perform Phase 2.

Initially Φ = nq + q(r − 1) = bnk c(2n − b
n
k ck − 1) so the theorem follows

when the claim has been proven correct.

The claim is proven by induction in p:

10



When p = 0 only Phase 2 remains. Then Φ =
∑q
i=1 max{ai, 0} which is

enough for Phase 2 according to discussion above.

Now assume that the claim is true for some p less than n. We will show
that then it is true for p+ 1.

Let e be the p + 1’st last element to be added to the structure. In what
follows, unmarked constants refer to values before the p+ 1’st last step and
marked constants to values after the step. The induction step is therefore
to prove that Φ− Φ′ is at least the number of tests involved in the step.

There are three cases to consider:

Case 1: e ≡ ej for some 1 ≤ j ≤ q. Then m′ = m, d′ = d+ 1,

bi
′ =

{
bi if i 6= j

bj + 1 if i = j
and ai

′ =

{
ai − 1 if i 6= j

aj + q − 1 if i = j.

e is tested against s elements ei1 , ei2 , . . . , eis (= ej), where ai1 > ai2 > . . . >

ais (= aj).

Let t be maximal such that ait > 0. If t < s then 0 ≥ ait+1 > ait+2 > · · · >
as = aj and aj ≤ t− s−1. Therefore Φ−Φ′ ≥ q+ t− (t− s+ 1+ q−1) = s.
If t = s then aj > 0 and Φ− Φ′ = q + s− q = s.

In both cases Φ− Φ′ ≥ s and we are done.

Case 2: e 6≡ ei for i = 1, 2, . . . ,m and m < q. Then m′ = m+ 1, d′ = d

bi
′ =

{
1 if i = 1
bi−1 if i > 1

and ai
′ =

{
r − d+ q − 1 if i = 1
ai−1 − 1 if i > 1

Let t = |{i | ai > 0}. Then Φ−Φ′ ≥ q+(r−1)+t−(r−d+q−1) = t+d ≥ m.

The last inequality needs an argument. If d = 0 then t = m. Increasing d
by one can change at most one of the ai’s from being positive since they are
different.

The number of tests is m so we are done. 2

Case 3: e 6≡ ei for i = 1, 2, . . . ,m and m ≥ q.

Assume s ≤ q + 1 shifts are made. That is bq−s+1 = 1 while bi > 1 for
i > q − s+ 1. Then d′ = d− s+ 1, m′ = m+ s,

bi
′ =


bi+q−s+1 − 1 if i < s

1 if i = s

bi−s if i > s.

and ai
′ =


ai+q−s+1 if i < s

r − d+ q − 1 if i = s

ai−s − 1 if i > s.

Let t = |{i | (s < i ≤ q) ∧ (ai−s > 0)}| = |{i | (i ≤ q − s) ∧ (ai > 0)}|.

Then Φ− Φ′ = q + t+ max{aq−s+1, 0} −max{as′, 0}.

11



If as
′ ≤ 0 this is at least q. If as

′ > 0 then ai
′ > 0 for i > s, and t = q − s.

Therefore Φ − Φ′ = q + t + max{0, r − d + s − 1} − (r − d + q − 1) =
q + max{0, r − d+ s− 1} − (r − d+ s− 1) which again is at least q.

The number of tests is q so we are done again. 2

out that the algorithm are will with a n− (q + i)− q(k − 2) algorithm is

5 A Lower Bound on E(k, n) = R(k, n)

by means of an

In [6] it was proven that E(dn+1
2 e, n) = C(dn+1

2 e, n) = b3
2 (n − 1)c. The

tight lower bound was obtained using an adversary strategy with 5 cases.
This result will come out as a simple special case of the lower bound to
be presented. The bound will be obtained by means of a simple adversary
strategy.

Theorem 5.1

E(k, n) = R(k, n) ≥ bn
k
c((2n − kbn

k
c − 1)− k

(
bnk c
2

)
and

E(k, n) = R(k, n) ≥ 3k − 4

k(2k − 3)

(
n

2

)
− 3k

4
.

Proof number of

For a fixed constant q (chosen later) we use the following adversary strategy:

When an a?b test is made ({a, b} a black edge) then answer 6≡ when this
answer is consistent with there being exactly q disjoint classes of size k

among the n elements and that the remaining r = n − pk elements are
singletons (classes of size one). Otherwise, answer ≡.

At termination an algorithm for solving the problem must have discovered
all q classes and can present to us a representative for each of those q classes.
Denote the classes C1, C2, . . . , Cq, C = ∪Ci and the r singletons R.

to the

The number of red and green edges in the graph at termination will be
equal to the number of tests the algorithm has made. For a set F of edges
let red(F ) (green(F )) denote the set of red (green) edges in F .

We count red and green edges in four disjoint sets of edges:

12



⋃q
i=1 Ci × Ci:

For each i, the algorithm knows that Ci is a class so |green(Ci×Ci)| ≥ k−1.
In total

|green(
q⋃
i=1

Ci × Ci)| ≥ q(k − 1).

C ×R:
Let 1 ≤ i ≤ q and a ∈ R be arbitrary and assume that |red(a × Ci)| = 0.
Let {b, c} be the first edge in Ci×Ci that became green. The answer should
have been 6≡ since (Ci \ {b}) ∪ {a} was another possibility for the i’th class.
If |red(a×Ci)| = 1 let b ∈ Ci be the vertex connected to a by a red edge. Let
{b, c} be the first green edge connecting b with another vertex in Ci. {a, c}
is black so the answer is once again wrong since (Ci \ {b}) ∪ {a} is another
possibility for the i’th class. Consequently |red(a × Ci)| ≥ 2 for all a ∈ R
and i. Thus

|red(C ×R)| ≥ 2qr = 2q(n− kq).⋃
i<j Ci × Cj:

Let 1 ≤ i < j ≤ q be arbitrary and assume that |red(Ci × Cj)| < k. Then
there is an (a, b) ∈ Ci×Cj such that red(a×Cj) = red(Ci×b) = ∅. Let {c, d}
be the first edge in (Ci × Ci) ∪ (Cj × Cj) that became green. Assume wlog
that {c, d} ∈ Ci × Ci. {c, b} and {d, b} are black. Consequently the answer
should have been 6≡ since (Ci \ {c}) ∪ {b} and (Cj \ {b}) ∪ {c} was another
possibility for the i’th and j’th class. Thus |red(Ci × Cj)| ≥ k. In total

|red(
⋃
i<j

Ci × Cj)| ≥
kq(q − 1)

2
.

If we choose q = bnk c and add the three terms together we get

E(n, k) ≥ bn
k
c(k − 1) + 2bn

k
c(n − kbn

k
c) +

kbnk c(b
n
k c − 1)

2
(3)

from which the first half of the theorem follows.

R×R:
There is no subset of R forming a black clique of size k and no edges are
green. By Theorem 3.3 we get that

|red(R ×R)| >
(
r

2

)
− k − 2

2(k − 1
r2 =

r2

2(k − 1)
− r

2
=

(n− kq)2

2(k − 1)
− n− kq

2
.

Adding all four terms together, we get the following lower bound on the
number of queries, the algorithm needs to make:

q(k − 1) + k
q(q − 1)

2
+ 2q(n − kq) +

(n− kq)2

2(k − 1)
− n− kq

2
.e0.5in (4)
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This is a second degree polynomial in q that assumes its maximum when

q = qmax =
(k − 1)2 + n(k − 2)

k(2k − 3)
.

This value might not be an integer. When k ≥ 2 this is clearly positive and
if k ≤ n

3 then dqmaxe < qmax + 1 ≤ n
k . So if qmax + 1 is substituted for q in

(4) we get a valid lower bound when k ≤ n
3 .

When qmax + 1 is substituted for q in (4) we get after some calculations:

3k − 4

k(2k − 3)

(
n

2

)
− 3k4 − 8k3 + 3k2 + 4k − 1

2k(k − 1)(2k − 3)
.

When k > n
3 the bound given above (3) is stronger so both bounds are valid

in general. 2
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