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Abstract

We use Martingale inequalities to give a simple and uniform anal-
ysis of two families of distributed randomised algorithms for edge
colouring graphs.

1 Introduction

The aim of this paper is to advocate the use of certain Martingale inequalities
known as “The Method of Bounded Differences” (henceforth abbreviated to
MOBD) [9] as a tool for the analysis of distributed randomized algorithms
that work in the locality paradigm. The form of the inequality we employ
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visiting BRICS, Basic Research in Computer Science, Centre of the Danish National
Research Foundation, Department of Computer Science, University of Aarhus, Denmark.
Partly supported by the Research program of the EU under contract No. 20244 (ALCOM–
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and its application here is significantly different from previous successful uses
of the method in Computer Science applications in that it exerts much finer
control on the effects of the underlying variables to get significantly stronger
bounds , and it succeeds in spite of the lack of complete independence. This
last feature particularly, makes it a valuable tool in Computer Science con-
texts where lack of independence is omnipresent. This aspect of the MOBD
has, to the best of our knowledge, never been adequately brought out before.
Our contribution is to highlight its special relevance for Computer Science
applications by demonstrating its use in the context of a class of distributed
computations in the locality paradigm.

We give a high probability analysis of a two classes of distributed edge
colouring algorithms, [2, 4, 11]. Apart from its intrinsic interest as a classical
combinatorial problem, and as a paradigm example for locality in distributed
computing, edge colouring is also useful from a practical standpoint because
of its connection to scheduling. In distributed networks or architectures an
edge colouring corresponds to a set of data transfers that can be executed in
parallel. So, a partition of the edges into a small number of colour classes – i.e.
a “good” edge colouring– gives an efficient schedule to perform data trans-
fers (for more details, see [11, 2]). The analysis of edge colouring algorithms
published in the literature is extremely long and difficult and that in [11]
is moreover, based an a certain ad hoc extension of the Chernoff-Hoeffding
bounds. In contrast, our analysis is a very simple, short and streamlined ap-
plication of the MOBD, only two pages long, and besides, also yields slightly
stronger bounds. These two examples are intended moreover, as a dramatic
illustration of the versatility and power of the method for the analysis of lo-
cality in distributed computing in general, a framework for which is sketched
at the end.
In a message-passing distributed network, one is faced with the twin prob-
lems of locality and symmetry breaking . Each processor can gather data only
locally so as to minimise communication which is at a premium rather than
computation. Moreover all processors are identical form the point of view of
the network which makes it hard, if not impossible, to schedule the operations
of the various processors at different times in order to avoid congestion and
converge toward the common computing goal. An often successful way to cir-
cumvent these difficulties– the locality bottleneck and symmetry-breaking–
is to resort to randomization. When randomization is used, one is required
to prove performance guarantees on the results delivered by a randomised
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algorithm. Notice that in truly distributed environments the usual solution
available in sequential or other centralized settings such as a PRAM, namely
to restart the randomized algorithm in case of bad outcome, is simply not
available. This is because of the cost of collecting and distributing such in-
formation to every node in the network. In this context then, it becomes
especially important to be able to certify that the randomized algorithm will
almost surely work correctly i.e. provide a high probability guarantee.
Even for simple algorithms, this is a challenging task, and the analysis of
edge colouring algorithms in the literature are very long and complicated,
often requiring ad hoc stratagems, as noted above. We show how these anal-
yses can be dramatically simplified and streamlined. The main technical
tool used in this paper is a version of the “Method of Bounded Differences”
that is more powerful and versatile than the generally known and used ver-
sion. This version typically yields much stronger bounds. Perhaps even more
significantly, the restriction on independence on the underlying random vari-
ables which is necessary for the usual version is removed and this greatly
extends the scope of applicability of the method. Although these facts are
implicit in some of the existing literature, they have never been explicitly
noted and highlighted, to the best of our knowledge. For instance, in the
(otherwise excellent) survey of McDiarmid [9], the simpler version is stated
right at the outset (Lemma 1.2) and illustrated with a number of examples
from combinatorics. But the more powerful version is buried away in an
obscure corollary towards the end (Corollary 6.10) rather than highlighted
as we feel it it deserves to be, and finds no applications. It is our intention
here to highlight the more powerful version, especially those aspects that
are crucial to make it particularly suitable for analysis of the edge colouring
algorithms and more generally, for locality in distributed computing.

2 Distributed Edge Colouring

Vizing’s Theorem shows that every graph G can be edge coloured sequentially
in polynomial time with ∆ or ∆+1 colours, where ∆ is the maximum degree
of the input graph (see, for instance, [1]).

It is a challenging open problem whether colourings as good as these
can be computed fast in a distributed model. In the absence of such a
result one might aim at the more modest goal of computing reasonably good
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colourings, instead of optimal ones. By a trivial modification of a well-known
vertex colouring algorithm of Luby it is possible to edge colour a graph using
2∆− 2 colours in O(logn) rounds (where n is the number of processors) [6].

We shall present and analyze two classes of simple localised distributed
algorithms that compute near optimal edge colourings. Both algorithms
proceed in a sequence of rounds. In each round, a simple randomised heuristic
is invoked to colour a significant fraction of the edges successfully. The
remaining edges are passed over to succeeding rounds. This continues until
the number of edges is small enough to employ a brute–force method at
the final step. For example, the algorithm of Luby mentioned above can be
invoked when the degree of the graph becomes small i.e. when the condition
∆� log n is no longer satisfied.

One of the classes of algorithms involves a standard reduction to bipartite
graphs described in [11]: the graph is split into two parts T (“top”) and B
(bottom). The bipartite graph G[T,B] induced by the edges connecting top
and bottom vertices is coloured by invoking the Algorithm P described below.
The algorithm is then invoked recursively in parallel on G[T ] and G[B], the
graphs respectively induced by the top and bottom vertices. Both graphs
are coloured using the same set of colours. Thus it suffices to describe the
algorithm used for colouring bipartite graphs.

We describe the action carried out by both algorithms in a single round.
For the second class of algorithms, we describe the action only for bipartite
graphs; additionally, each vertex knows whether it is top or bottom. At the
beginning of each round, there is a palette of fresh new available colours,
[∆], where ∆ is the maximum degree of the graph at the current stage. For
simplicity we will assume that the graph is ∆–regular.

Algorithm I(Independent): Each edge independently picks a colour.
This tentative colour becomes permanent if there are no conflicting edges
picking the same tentative colour at either endpoint.

Algorithm P(Permutation): There is a two step protocol:

• Each bottom vertex, in parallel, makes a proposal independently of
other bottom vertices by assigning a random permutation of the colours
to their incident edges.

• Each top vertex, in parallel, then picks a winner out of every set of
incident edges that have the same colour. Tentative colours of winner
edges become final.
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• The losers– edges who are not winners– are decoloured and passed to
the next round.

For the purposes of the high probability analysis below, the exact rule
used for selecting the winner edge is unimportant – it can be chosen arbi-
trarily from any of the edges of the relevant colour; we merely require that it
should not depend on edges of different colours. This is another illustration
of the power of the martingale method.

It is apparent that both algorithms are truly distributed. That is to say,
each vertex need only exchange information with the neighbours to execute
the algorithm. This and its simplicity make the algorithms amenable for
implementations in a distributed environment. Algorithm I is used with
some more modifications in a number of edge colouring algorithms [2, 4].
Algorithm P is exactly the algorithm used in [11].

We focus all our attention in the analysis of one round of both algorithms.
Let ∆ denote the maximum degree of the graph at the beginning of the round
and ∆′ denote the maximum degree of the leftover graph. One can easily
show that both algorithms, E[∆′ | ∆] ≤ β∆, for some constant β < 1. For
algorithm I, β = 1− e−2 while for algorithm P, β = 1/e. The goal is to show
that this holds with high probability. This is done in § 4 after the relevant
tools – the Martingale inequalities – are introduced in the next section.

For completeness, we sketch a calculation of the total number of colours
bc(∆) used by Algorithm P for the bipartite colouring of a graph with max-
imum degree ∆: with high probability, it is,

bc(∆) = ∆ +
(1 + ε)∆

e
+

(1 + ε)2∆

e

2

+ . . .

≤ 1

1− (1 + ε)e
∆ ≈ 1.59∆ for small enough ε.

To this, one should add O(logn) colours at the end of the process. As can
be seen by analyzing the simple recursion describing the number of colours
used by the outer level of the recursion, the overall numbers of colours is the
same 1.59∆ +O(logn), [11].
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3 Martingale Inequalities

We shall use martingale inequalities in the avataras of the “Method of
Bounded Differences” [9]. We shall use the following notations and conven-
tions: X1, . . . , Xn will denote random variables with Xi taking values in some
set Ai for each i ∈ [n]. For each i ∈ [n], ai, a

′
i will denote arbitrary elements

from Ai. For a function f of several arguments, f(∗, ai, ∗) will denote that all
arguments except the indicated one are held fixed. We shall use boldface no-
tation to abbreviate the sequences: so X denotes X1, . . . , Xn, and a denotes
a1, . . . , an. Finally, for each i ∈ [n], we abbreviate X1 = a1, . . . , Xi = ai by
Xi = ai.

3.1 Method(s) of Bounded Differences

The most widely known and used form of the “Method of Bounded Differ-
ences” is as follows:

Theorem 1 (Method of Bounded Differences)
Let f be a function that is Lipschitz with constants ci, i ∈ [n] i.e.

|f(∗, ai, ∗)− f(∗, a′i, ∗)| ≤ ci, for i ∈ [n]. (1)

Then, if X1, . . . , Xn are independent random variables, for any t > 0,

Pr[|f − E[f ]| > t] ≤ 2 exp

(
−2t2∑
i c

2
i

)
.

While extremely convenient to use, this version has two drawbacks. First
the bound obtained can be quite weak (because

∑
i c

2
i is large) and second,

the assumption of independence limits its range of applicability. A stronger
form of the inequality that removes both these limitations is the following

Theorem 2 (Method of Bounded Average Differences)
Let f be a function and X1, . . . , Xn a set of random variables (not necessarily
independent) such that there are constants ci, i ∈ [n], for which

|E[f | Xi−1 = ai−1, Xi = ai]− E[f | Xi−1 = ai−1, Xi = a′i]| ≤ ci, (2)
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for each i ∈ [n] and for every two assignments Xi−1 = ai−1, Xi = ai, a
′
i

that are separately consistent (hence of non–zero probability). Then, for any
t > 0,

Pr[|f − E[f ]| > t] ≤ 2 exp

(
−2t2∑
i c

2
i

)
.

For a discussion of the relative strengths of these methods, see [3].

3.2 Coupling

In order to make effective use of the Method of Average Bounded Differences,
we need to get a good handle on the bound (2), for the difference in the
expected values of a function under two different conditioned distributions. A
very useful technique for this is the method of coupling. Suppose that we can
find a joint distribution π(Y,Y′) such that the marginal distribution for Y
is the same as the distribution of X conditioned on Xi−1 = ai−1, Xi = ai and
the marginal distribution for Y′ is the same as the distribution X conditioned
on Xi−1 = ai−1, Xi = a′i. Such a joint distribution is called a coupling of the
two original distributions. Then,

|E[f | Xi−1 = ai−1, Xi = ai]− E[f | Xi−1 = ai−1, Xi = a′i]| =

|Eπ[f(Y)]− Eπ[f(Y′)]| = |Eπ[f(Y)− f(Y′)]| . (3)

If the coupling π is well–chosen so that |f(Y)− f(Y′)| is usually very small,
we can get a good bound on the difference (2). For example, suppose that

• For any sample point (y,y′) we have |f(y) − f(y′)| ≤ d for some
constant d > 0; and

• For most sample points (y,y′, f(y) = f(y′). That is, π[f(Y)−f(Y′)] ≤
p, for some p << 1.

Then, we can conclude using (3) that

|E[f | Xi−1 = ai−1, Xi = ai]− E[f | Xi−1 = ai−1, Xi = a′i]| ≤ pd.

We shall construct suitable couplings to bound the difference in (2).
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4 High Probability Analyses

4.1 Top Vertices

The analysis is particularly easy when v is a top vertex in Algorithm P.
For, in this case, the incident edges all receive colours independently of each
other. This is exactly the situation of the classical balls and bins experiment:
the incident edges are the “balls” that are falling at random independently
into the colours that represent the “bins”. One can apply the method of
bounded differences in the simplest form. Let Te, e ∈ E, be the random
variables taking values in [∆] that represent the tentative colours of the
edges. Then the number of edges successfully coloured around v is a function
f(Te, e ∈ N1(v)), where N1(v) denotes the set of edges incident on v.

It is easily seen that this function has the Lipschitz property with constant
1: changing only one argument while leaving the others fixed only changes
the value of f by at most 2. Note that this is true regardless of the rule for
choosing winners, as long as this rule does not depend on edges of different
colours. This will also be true of the remaining analyses below and illustrates
once again, the power of the martingale methods.

Moreover, the variables Te, e ∈ N1(v) are independent when v is a “top”
vertex. Hence, by the method of bounded differences in the simplest form,
we get the following sharp concentration result by plugging into Theorem 1:

Theorem 3 Let v be a top vertex in algorithm P and let f be the number of
edges around v that are successfully coloured in one round of the algorithm.
Then,

Pr[|f − E[f ]| > t] ≤ exp

(
−t2
2∆

)
,

For t := ε∆ (0 < ε < 1), this gives an exponentially decreasing probability
for deviations around the mean. If ∆ � logn then the probability that
the new degree of any vertex deviates far from its expected value is inverse
polynomial, i.e. the new max degree is sharply concentrated around its mean.

4.2 Other Vertices: The Difficulty

The analysis for the “bottom” vertices in Algorithm P is more complicated
in several respects. It is useful to see why so that one can appreciate the
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need for using a more sophisticated tool such as the Method of Bounded
Average Differences. To start with, one could introduce an indicator random
variable Xe for each edge e incident upon a bottom vertex v. These random
variable are not independent however. Consider a four cycle with vertices
v, a, w, b, where v and w are bottom vertices and a and b are top vertices.
Let’s refer to the process of selecting the winner (step 2 of the algorithm P)
as “the lottery”. Suppose that we are given the information that edge va got
tentative colour red and lost the lottery— i.e. Xva = 0— and that edge vb
got tentative colour green. We’ll argue intuitively that given this, it is more
likely that Xvb = 0. Since edge va lost the lottery, the probability that edge
wa gets tentative colour red increases. In turn, this increases the probability
that edge wb gets tentative colour green, which implies that edge vb is more
likely to lose the lottery. So, not only are the Xe’s not independent, but the
dependency among them is particularly malicious.

One could hope to bound this effect by using the MOBD in it simplest
form. This is also ruled out however, for two reasons. The first is that the
tentative colour choices of the edges around a vertex are not independent.
This is because the edges incident on vertex are assigned a permutation of
the colours. The second reason applies also to algorithm I where all edges
act independently. The new degree of v, a bottom vertex in algorithm P or
an arbitrary vertex in algorithm I, is a function f = f(Te, e ∈ N(v)), where
N(v) is the set of edges at distance at most 2 from v. Thus f depends on as
many as ∆(∆−1) = Θ(∆2) edges. Even if f is Lipshitz with constants di = 2,
this is not enough to get a strong enough bound because d =

∑
i d

2
i = Θ(∆2).

Applying the method of bounded differences in the simple form, Theorem 1,
would give the bound

Pr[|f − E[f ]| > t] ≤ 2 exp

(
− t2

Θ(∆2)

)
.

This bound however is useless for t = εE[f ] since E[f ] ≈ ∆/e.
We will use the Method of Bounded Average Differences, Theorem 2, to

get a much better bound. We shall invoke the two crucial features of this
more general method. Namely that it does not presume that the underlying
variables are independent 1 , and that, as we shall see, it allows us to bound

1A referee pointed out that one can redefine variables in the analysis of Algorithm P to
make them independent; however, this is unnecessary since Theorem to be applied does
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the effect of individual random choices with constants much smaller than
those given by the MOBD in simple form.

Let’s now move on to the analysis. A similar analysis applies to both
cases: when v is a bottom vertex in algorithm P or an arbitrary vertex
in algorithm I. Let N1(v) denote the set of “direct” edges– i.e. the edges
incident on v– and let N2(v) denote the set of “indirect edges” that is, the
edges incident on a neighbour of v. Let N(v) := N1(v)

⋃
N2(v). The number

of edges successfully coloured at vertex v is a function f(Te, e ∈ N(v)). Note
that in Algorithm P, even though f seems to depend on edges at distance
3 from v via their effect on edges at distance 2, f can still be regarded as
a function of the edges in N(v) only (i.e. f is fixed by giving colours to all
edges in N(v) regardless of what happens to other edges) and hence only
these edges need be considered in the analysis.

Let us number the variables so that the direct edges are numbered after
the indirect edges (this will be important for the calculations to follow). We
need to compute

λk := |E[f | Tk−1, Tk = ck]− E[f | Tk−1, Tk = c′k]|. (4)

We decompose f as a sum to ease the computations later. Introduce the
indicator functions fe, e ∈ E:

fe(c) :=
{

1; if edge e is successfully coloured in colouring c,
0; otherwise.

Then f =
∑
v∈e fe.

Hence we are reduced, by linearity of expectation, to computing for each
e ∈ N1(v),

|Pr[fe = 1 | Tk−1, Tk = ck]− Pr[fe = 1 | Tk−1, Tk = c′k]|.

For the computations that follows we should keep in mind that in al-
gorithm P bottom vertices assign colours independently of each other. This
implies that in either algorithm, the colour choices of the edges incident upon
a neighbour of v are independent of each other. In Algorithm I, all edges
have their colours assigned independently.

not need independence. Moreover, in general, it may not always be possible to make such
a redefinition of variables. But the general method will still apply.
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4.3 General Vertex in Algorithm I

To compute a good bound for λk in (4), we shall construct a suitable cou-
pling of the two different conditioned distributions. The coupling (Y,Y′)
is almost trivial: Y is distributed as T conditioned on Tk−1, Tk = ck and
Y′ is identically equal to Y except that Y′k = c′k. It is easily seen that by
the independence of all tentative colours, the marginal distributions of Y
and Y′ are exactly the two conditioned distributions [T | Tk−1, Tk = ck] and
[T | Tk−1, Tk = c′k] respectively.

Now let us compute |E[f(Y)− f(Y′)]|.

• First, let us consider the case when e1, . . . , ek ∈ N2(v), i.e. only the
choices of indirect edges are exposed. Let ek = (w, z), where w is a
neighbour of v. Then for a direct edge e 6= vw, fe(y) = fe(y

′) because
in the joint distribution space, y and y′ agree on all edges incident on
e. So we only need to compute |E[fvw(Y) − fvw(Y′)]|. To bound this
simply, we observe first that fvw(y)−fvw(y′) ∈ [−1, 1] and second that
fvw(y) = fvw(y′) unless yvw = ckorc

′
k. Thus we can conclude that

E[fvw(Y)− fvw(Y′)]| ≤ Pr[Ye = ck ∨ Ye = c′k] ≤
2

∆
.

In fact one can do a tighter analysis using the same observations. Let us
denote fe(y, yw,z = c1, ye = c2) by fe(c1, c2). Note that fvw(ck, ck) = 0
and similarly fvw(c′k, c

′
k) = 0. Hence

E[fe(Y)− fe(Y′) | z] =

(fvw(ck, ck)−fvw(c′k, ck))Pr[Ye=ck]+(fvw(ck, c
′
k)−fvw(c′k, c

′
k))Pr[Ye=c

′
k]

= (fvw(ck, c
′
k)− fvw(c′k, ck))

1

∆

(Here we used the fact that the distribution of colour around v is un-
affected by the conditioning around z and that each colour is equally
likely.) Hence |E[fe(Y)− fe(Y′)]| ≤ 1

∆
.

• Now let us consider the case when ek ∈ N1(v), i.e. choices of all indirect
edges and of some direct edges have been exposed. In this case, we
merely observe that f is Lipshitz with constant 2: |f(y) − f(y′)| ≤ 2
whenever y and y′ differ in only one co–ordinate. Hence we can easily
conclude that |E[f(Y)− f(Y′)]| ≤ 2.
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Overall,

λk ≤
{

1/∆; for an edge ek ∈ N2(v),
2; for an edge ek ∈ N1(v)

,

and we get ∑
k

λ2
k =

∑
e∈N2(v)

1

∆2
+

∑
e∈N1(v)

4 ≤ 4∆ + 1.

We thus arrive at the following sharp concentration result by plugging
into Theorem 2:

Theorem 4 Let v be an arbitrary vertex in algorithm I and let Let f be
the number of edges successfully coloured around v in one stage of either
algorithm. Then,

Pr[|f − E[f ]| > t] ≤ 2 exp

(
− t2

2∆ + 1
2

)
.

A referee observed that a similar result can be obtained very simply for
Algorithm I by applying Theorem 1: regard f as a function of 2∆ variables:
Te, v ∈ e and T(w), (v, w) ∈ E, where T(w) records the colours of all edges
incident on w except vw. Since f is Lipshitz with constant 2 with respect to
each of these variables, we get the bound:

Pr[|f − E[f ]| > t] ≤ 2 exp

(
− t2

4∆

)
.

4.4 Bottom Vertices in Algorithm P

Once again, to compute a good bound for λk in (4), we shall construct a
suitable coupling of the two different conditioned distributions Tk−1, Tk = ck
and Tk−1, Tk = c′k. Suppose ek is an edge zy where z is a bottom vertex.
The coupling (Y,Y′) in this case is the following: Y is distributed as T
conditioned on Tk−1, Tk = ck and Y′ is identically equal to Y except on
the edges incident on z, where the colours ck and c′k are switched. We can
think of the distribution as divided into two classes: on the edges incident
on a vertex other than z, the two variables Y and Y′ are identically equal.
In particular, when z is not v, they have the same uniform distribution
on all permutations of colours on the edges around v. However, on the
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edges incident on z, the two variables differ on exactly two edges where the
colours ck and c′k are switched. It is easily seen that by the independence
of different vertices, the marginal distributions of Y and Y′ are exactly the
two conditioned distributions [T | Tk−1, Tk = ck] and [T | Tk−1, Tk = c′k]
respectively.

Now let us compute |E[f(Y)− f(Y′)]|. Recall that f was decomposed as
a sum

∑
v∈e fe. Hence by linearity of expectation, we need only bound each

|E[fe(Y)− fe(Y′)]| separately.

• First, let us consider the case when e1, . . . , ek ∈ N2(v), i.e. only the
choices of indirect edges are exposed. Let ek = (w, z) for a neighbour
w of v. Note that since

E[f(Y)− f(Y′)] = E[E[f(Y)− f(Y′) | Ye,Y
′
e, z ∈ e]],

it suffices to bound |E[f(Y) − f(Y′) | Ye,Y
′
e, z ∈ e]|. Hence, fix

some distribution of the colours around z. Recall that Yw,z = ck and
Y′w,z = c′k. Suppose Yz,w′ = c′k for some other neighbour w′ of z.
Then by our coupling construction, Y′z,w′ = ck and on the remaining
edges Y and Y′ agree identically. Moreover, by the independence of
the other vertices, the distributions of Y and Y′ on the remaining edges
conditioned on the distribution around z is unaffected. let us denote
the conditioned joint distribution by [(Y,Y′) | z]. We thus need to
bound |E[f(Y)− f(Y′) | z]|.
Then for a direct edge e 6∈ vw, vw′, fe(y) = fe(y

′) because in the
joint distribution space, y and y′ agree on all edges incident on e.
So we only need to compute |E[fe(Y) − fe(Y′)]| for e ∈ vw, vw′. To
bound this simply, we observe that for either e = vw or e = vw′,
first, fe(y) − fe(y

′) ∈ [−1, 1] and second that fe(y) = fe(y
′) unless

ye = ckorc
′
k. Thus we can conclude that

E[fe(Y)− fe(Y′)]| ≤ Pr[Ye = ck ∨ Ye = c′k] ≤
2

∆
.

Thus taking the two contributions for vw and vw′ together, |E[f(Y)−
f(Y′) | z]| ≤ 4

∆
.

In fact one can do a tighter analysis using the same observations. Let
us denote fe(y, yw,z = c1, ye = c2) by fe(c1, c2). Note that fvw(ck, ck) =
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0 = fvw(c′k, c
′
k) and similarly fvw′(ck, ck) = 0 = fvw′(c

′
k, c
′
k). Thus, for

e = vw or e = vw′,

E[fe(Y)− fe(Y′) | z] =

(fe(ck, ck)−fe(c′k, ck))Pr[Ye=ck] + (fe(ck, c
′
k)−fe(c′k, y′e=c′k))Pr[Ye=c

′
k]

= (fe(ck, c
′
k)− fe(c′k, ck))

1

∆

Hence |E[fe(Y) − fe(Y′) | z]| ≤ 1
∆

. Taking the two contributions for
edges vw and vw′ together, |E[f(Y)− f(Y′) | x]| ≤ 2

∆
.

• Now let us consider the case when ek ∈ N1(v), i.e. choices of all indirect
edges and of some direct edges have been exposed. In this case, we
observe again that |f(y)− f(y′)| ≤ 2 since y and y′ differ on exactly
two edges. Hence we can easily conclude that |E[f(Y)− f(Y′)]| ≤ 2.

Overall,

λk ≤
{

2/∆; for an edge ek ∈ N2(v),
2; for an edge ek ∈ N1(v)

,

and we get ∑
k

λ2
k =

∑
e∈N2(v)

4

∆2
+

∑
e∈N1(v)

4 ≤ 4(∆ + 1).

We thus arrive at the following sharp concentration result by plugging
into Theorem 2:

Theorem 5 Let v be an arbitrary vertex in algorithm I and let f be the
number of edges successfully coloured around v in one stage of algorithm P.
Then,

Pr[|f − E[f ]| > t] ≤ 2 exp

(
− t2

2∆ + 2

)
.

Comparing this with the corresponding bound for Algorithm I, we see that
the failure probabilities for both algorithms are almost identical. For t = ε∆,
both a probability that decreases exponentially in ∆. As remarked earlier,
if ∆ � log n, this implies that the new max degree is sharply concentrated
around the mean (with failure probability inverse polynomial in n). The
constant in the exponent here is better than the one in the analysis in [11].
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4.5 Extensions

It is fairly clear that the method extends more generally to cover similar
scenarios in distributed computing. We sketch such a general setting: One
has a distributed randomised algorithm that requires vertices to assign labels
to themselves and incident edges. Each vertex acts independently of the
others, and furthermore is symmetric with respect to the labels (colours).
The function of interest, f depends only on a small local neighbourhood
around some vertex v, is Lipschitz and satisfies some version of the following
locality property: the labels on vertices and edges far away from v only effect
f if certain events are triggered on nearer vertices and edges; these triggering
events correspond to the setting of the nearer vertices and edges to specific
values. For example, in edge colouring, the colour of an idirect edge only
affects f if the incident direct edge has the same colour. One can extend
the same arguments as above virtually intact for this general setting. This
encompasses all the edge colouring algorithms mentioned above as well as the
vertex colouring algorithms in [10] and [5]. More details of such a framework
are given in the appendix.
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A A General Framework

Let f be a function to be computed by a randomised local algorithm in
a distributed environment represented by a graph G = (V,E). We shall
lay down conditions on f and on algorithms computing f locally that will
enable the methods in the previous section to be extended to to derive a sharp
concentration result on f . In this way, the resulting theorem can be applied
in a cook–book substitution style to get sharp concentration results on other
problems and algorithms in a localised distributed setting. In particular, we
indicate how the edge colouring algorithms from [2, 4, 11] discussed above
fit the framework and hence are special cases of it.

Suppose that f is a function determined by labels `(e), e ∈ E on the edges
of G which are assigned by the randomised algorithm. In the edge colouring
problem, the labels on the edges are their colours.

First, f must be local : that is, there is a vertex v and a radius r such that
f is completely determined by the labels of the edges in the neighbourhood
of radius r centered around v. More precisely, let d(v, e) denote the distance
of e from v in the graph G and let us define the neighbourhood N(v, r) :=
{e ∈ E | d(v, e) ≤ r}. Then f = f(`(e), e ∈ N(v, r)). In the edge colouring
example, f is the number of edges coloured successfully around a fixed vertex
v, and the radius r = 2.

Second, is a symmetry condition on the algorithm: the elementary events
`(e) = v must occur with probability at most 1/∆ where ∆ is the maximum
degree of a vertex in the network. This condition is satisfied by almost any
conceivable algorithm in a distributed setting, due to symmetry, in particular,
the two algorithms for edge colouring discussed above.

Third, is a combined locality property of the function as well as a de-
pendence property of the computing algorithm: the influence of edges on f
decreases as one goes further away from v. Edges are divided into two classes:
primary , which are in the close neighbourhood of v and secondary , which are
further away. The function f is Lipschitz with respect to the primary edges:
that is, if all labels are held fixed except for that of a single primary edge
e, then the function value changes by at most c for some constant c. In the
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edge colouring problem, the edges in N1(v) are the primary edges and c = 2.
On the other hand, changing the label of a secondary edge only has an

effect on f if certain triggering events on nearer edges are enabled. The
further away an edge is, the more such events need to be triggered. In the
edge colouring example, the edges in N2(v) are secondary. Changing the
colour of an edge in N2(v) only has an effect if the neighbouring edge in
N1(v) has the same colour.

All these conditions are natural and intuitive, and all except this last
one are also simple to formulate precisely. For the last, we ask for the for-
bearance of the reader. For each secondary edge e at distance d > 1 from
v, and each label c, corresponding to the event `(e) = c, there exists a set
E(e, c) consisting of at least d/2 pairs (e∗, c∗) corresponding to the event∧

(e∗,c∗)∈E(e,c) `(e
∗) = c∗,(also denoted by E(e, c) for economy of notation) in-

volving only edges e∗ of distance less than d from v satisfying the following
two properties:

• For any two labels c, c′,

f(∗, `(e) = c, ∗) = f(∗, `(e) = c′, ∗), if ¬E(e, c)
∧¬E(e, c′).

In words, changing the value of `(e) while keeping all other labels the
same has no effect on f if the setting of the other labels does not
enable the two corresponding triggering sets of events on nearer edges.
This can also be viewed as a locality property of the function – it
is a strengthening of the Lipschitz condition. In the edge colouring
problem, E(e, c) consists of the single event `(e∗) = c where e∗ is the
edge connecting e to v.

• The events in each set E(e, c) are independent. This is a property of
the algorithm. In fact, the following weaker condition is sufficient: the
events in each set E(e, c) should be negatively dependent so that

Pr[E(e, c)] ≤
∏
E(e,c)

Pr[`(e) = c].

Both the edge colouring algorithms satisfy this property trivially.

A similar analysis to that in the previous section leads to the following
general sharp concentration result.
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Theorem 6 Let f be a function with Lipschitz constant c determined locally
by a symmetric algorithm as above in a neighbourhood of radius r and p

primary edges. Then if E[f ] ≥ ∆δ
√

4r + c2p for some δ > 0, then

Pr[|f − E[f ]| > εE[f ]] ≤ 2 exp

(
−ε

2

2
∆2δ

)
.
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