
B
R

IC
S

R
S

-98-12
O

.D
anvy:

F
unctionalU

nparsing

BRICS
Basic Research in Computer Science

Functional Unparsing

Olivier Danvy

BRICS Report Series RS-98-12

ISSN 0909-0878 May 1998



Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/12/



Functional Unparsing ∗

Olivier Danvy

BRICS †

Department of Computer Science
University of Aarhus ‡

November 1997 (revised in March and then in May 1998)

Abstract

A string-formatting function such as printf in C seemingly requires
dependent types, because its control string determines the rest of its
arguments.

Examples:

printf ("Hello world.\n");

printf ("The %s is %d.\n", "answer", 42);

We show how changing the representation of the control string
makes it possible to program printf in ML (which does not allow de-
pendent types). The result is well typed and perceptibly more efficient
than the corresponding library functions in Standard ML of New Jersey
and in Caml.

∗Extended version of an article to appear in the Journal of Functional Programming.
A preliminary version appeared as BRICS RS-98-5.
†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
Phone: (+45) 89 42 33 69. Fax: (+45) 89 42 32 55.
E-mail: danvy@brics.dk

Home page: http://www.brics.dk/~danvy

1



1 The Problem

In ML, expressing a printf-like function is not as trivial as in C. For example,
we would like that evaluating the expression

format "%i is %s%n" 3 "x"

yields the string "3 is x\n", as specified by the pattern "%i is %s%n", which
tells format to issue an integer, followed by the constant string " is ", itself
followed by a string and ended by the newline character.

What is the type of format? In this example, it is

string -> int -> string -> string

but we would like our printf-like function to handle any kind of pattern. For
example, we would like

format "%i/%i" 10 20

to yield "10/20". In that example, format is used with the type

string -> int -> int -> string

However, we cannot do that in ML: format can only have one type.

2 Analysis

The crux of the problem is that the type of format depends on the value
of its first argument, i.e., the pattern. This has led, for example, Shields,
Sheard, and Peyton Jones to propose a dynamic type system that makes
it possible to express such a formatting function by delaying type inference
until the pattern is available [3].

The culprit, however, is not ML’s type system, but the fact that the
pattern is represented as a string, which format in essence has to interpret
(in the sense of a programming-language interpreter).

3 A Solution

Let us pursue this programming-language analogy, i.e., that format inter-
prets the pattern. Instead of considering the concrete syntax of each pattern
– as a string, we can consider its abstract syntax – as a data type.

2



Abstract syntax of patterns: The data type of patterns is composed of
the following pattern directives:

• lit for declaring literal strings (" is " and "/" above);

• eol for declaring newlines (%n above);

• int for specifying integers (%i above); and

• str for specifying strings (%s above).

In addition, we provide the user with an associative infix operator oo to glue
pattern components together.

Cosmetics: For cosmetic value, we could also provide two “outfix” direc-
tives << and >> to delimit a pattern.

We could also define the operator % to be the polymorphic identity func-
tion, so that, e.g., %int (or even %i for that matter) would be a valid pattern
directive.

Two examples: Thus equipped, we can make format construct an ap-
propriate (statically typed) higher-order function, as in the following two
examples.

format (int oo lit " is " oo str oo eol) : int -> string -> string

format (int oo lit "/" oo int) : int -> int -> string

The insights: Rather than making format interpret the pattern recur-
sively, we make the pattern construct an appropriate higher-order function
inductively. In that, we follow Harry Mairson’s observation that most of the
time, our programs are inductive, not recursive [2]. More concretely, we use
continuation-passing style (CPS) to thread the constructed string through-
out. We also exploit the polymorphic domain of answers to instantiate it to
the appropriately typed function. Formatting a string then boils down to
supplying the initial continuation and the initial string.

For example, the type of the eol directive reads as follows.

(string -> ’a) -> string -> ’a

Its first argument is the continuation, which expects a string and yields the
final answer. Its second argument is the threaded string, and because it is
in CPS, this directive also yields the final answer.

3



For a second example, the type of the int directive reads as follows.

(string -> ’a) -> string -> int -> ’a

Its first argument is the continuation and its second argument is the threaded
string. This directive yields a function expecting an integer and yielding the
final answer.

The directives: lit and eol operate in a similar way:

fun lit x k s (* : string -> (string -> ’a) -> string -> ’a *)

= k (s ^ x)

fun eol k s (* : (string -> ’a) -> string -> ’a *)

= k (s ^ "\n")

As for int and str, they also operate in a similar way:

fun int k s (x:int) (* : (string -> ’a) -> string -> int -> ’a *)

= k (s ^ (makestring x))

fun str k s x (* : (string -> ’a) -> string -> string -> ’a *)

= k (s ^ x)

N.B. One can uncurry the directives and also change the order of their
parameters, but the present formulation yields the simplest definition of oo.

Glueing the directives: We can implement oo, for example, as function
composition (o in ML). So glueing int together with itself, for example,
yields a function of the following type.

int oo int : (string -> ’a) -> string -> int -> int -> ’a

Initializing the computation: The job of format reduces to providing an
initial continuation and an initial string to trigger the computation specified
by the pattern:

fun format p (* : ((string -> string) -> string -> ’a) -> ’a *)

= p (fn (s:string) => s) ""

So given the pattern int oo int, the format function supplies it with an
initial continuation (the identity function over strings) and an initial string
(the empty string), yielding a value of the following type, as desired.

int -> int -> string

4



4 An Alternative Solution

Alternatively, and given an end-of-pattern directive (implemented as the
identity function), we can implement glueing as function application in-
stead of as function composition. In both cases, the implementation of the
directives remains the same, but the definition of format need no longer sup-
ply an initial continuation, since the initial continuation in effect is already
provided by the end-of-pattern directive:

fun format’ p (* : (string -> ’a) -> ’a *)

= p ""

fun eod (s:string) (* : string -> string *)

= s

Therefore, glueing int together with itself and the end-of-pattern directive,
for example, yields a function of the following type.

int oo int oo eod : string -> int -> int -> string

More on cosmetics: Implementing glueing as function application makes
it simple to implement the outfix directives << and >> mentioned in Section
3. We can simply define each of them as the polymorphic identity function:

fun << x

= x

fun >> x

= x

And then we can write, e.g., the following:

<< int oo int >> : string -> int -> int -> string

format’ (<< int oo int >>) : int -> int -> string

5 Assessment

Formatting strings is a standard example in partial evaluation [1]: the for-
matting function can be specialized with respect to any given pattern. Par-
tial evaluation then removes the overhead of interpreting each pattern. So,
for example, specializing a term such as

5



format (int oo lit " is " oo str oo eol)

yields the following more efficient residual term.

fn (x1:int) => fn x2 => (makestring x1) ^ " is " ^ x2 ^ "\n"

The required partial-evaluation steps can be very mild: for the functional
specification described here, mere inlining (β-reduction) suffices. The back
end of the ML Kit, for example, provides the specialization just above (Mar-
tin Elsmann, personal communication, March 1998).

Independently of partial evaluation, the functional specification is also
efficient on its own. For example, besides being type-safer, it appears to
be perceptibly faster than the resident format function in the New Jersey
library Format: it is 3 to 4 times faster if glueing is implemented as function
composition. Ditto for the resident sprintf function in the Caml library:
the functional specification is 2 to 3 times faster if glueing is implemented
as function composition. In both cases, making function composition left-
or right-associative has little influence on the overall efficiency. Finally, im-
plementing glueing as (right-associative) function application gives another
10% speedup both in Standard ML of New Jersey and in Caml.

Independently of efficiency, this functional specification of format further
illustrates the expressive power of ML, or for that matter of any functional
language based on the Hindley-Milner static type system [4]. It also easily
scales up to inductive types such as lists.

fun lis t k s [] (* : ((string -> ’a) -> string -> ’b -> ’a) -> *)

= k (s ^ "[]") (* (string -> ’a) -> string -> ’b list -> ’a *)

| lis t k s xs

= let fun loop [x] k s

= t (fn s => k (s ^ "]")) s x

| loop (x :: xs) k s

= t (fn s => loop xs k (s ^ ", ")) s x

in loop xs k (s ^ "[")

end

This new directive is parameterized with a type and is used as follows.

format (lis int oo lit " " oo lis (lis str))

: int list -> string list list -> string

6



Acknowledgements

Thanks to Richard Bird for editorial advice.

References

[1] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation.
In Susan L. Graham, editor, Proceedings of the Twentieth Annual ACM
Symposium on Principles of Programming Languages, pages 493–501,
Charleston, South Carolina, January 1993. ACM Press.

[2] Harry Mairson. Outline of a proof theory of parametricity. In John
Hughes, editor, Proceedings of the Fifth ACM Conference on Functional
Programming and Computer Architecture, number 523 in Lecture Notes
in Computer Science, pages 313–327, Cambridge, Massachusetts, August
1991. Springer-Verlag.

[3] Mark Shields, Tim Sheard, and Simon Peyton Jones. Dynamic typing
as staged type inference. In Luca Cardelli, editor, Proceedings of the
Twenty-Fifth Annual ACM Symposium on Principles of Programming
Languages, pages 289–302, San Diego, California, January 1998. ACM
Press.

[4] Zhe Yang. Encoding types in ML-like languages (preliminary version).
Technical Report BRICS RS-98-9, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, April 1998.

7



Recent BRICS Report Series Publications

RS-98-12 Olivier Danvy. Functional Unparsing. May 1998. 7 pp. This
report supersedes the earlier report BRICS RS-98-5. Extended
version of an article to appear in Journal of Functional Pro-
gramming.

RS-98-11 Gudmund Skovbjerg Frandsen, Johan P. Hansen, and Pe-
ter Bro Miltersen. Lower Bounds for Dynamic Algebraic Prob-
lems. May 1998. 30 pp.

RS-98-10 Jakob Pagter and Theis Rauhe.Optimal Time-Space Trade-Offs
for Sorting. May 1998. 12 pp.

RS-98-9 Zhe Yang.Encoding Types in ML-like Languages (Preliminary
Version). April 1998. 32 pp.

RS-98-8 P. S. Thiagarajan and Jesper G. Henriksen.Distributed Ver-
sions of Linear Time Temporal Logic: A Trace Perspective. April
1998. 49 pp. To appear in3rd Advanced Course on Petri Nets,
ACPN ’96 Proceedings, LNCS, 1998.

RS-98-7 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe.Marked
Ancestor Problems (Preliminary Version). April 1998. 36 pp.

RS-98-6 Kim Sunesen.Further Results on Partial Order Equivalences
on Infinite Systems. March 1998. 48 pp.

RS-98-5 Olivier Danvy. Formatting Strings in ML. March 1998. 3 pp.
This report is superseded by the later report BRICS RS-98-12.

RS-98-4 Mogens Nielsen and Thomas S. Hune.Deciding Timed Bisimu-
lation through Open Maps. February 1998.

RS-98-3 Christian N. S. Pedersen, Rune B. Lyngsø, and Jotun Hein.
Comparison of Coding DNA. January 1998. 20 pp. To ap-
pear in Combinatorial Pattern Matching: 9th Annual Sympo-
sium, CPM ’98 Proceedings, LNCS, 1998.

RS-98-2 Olivier Danvy. An Extensional Characterization of Lambda-
Lifting and Lambda-Dropping. January 1998.

RS-98-1 Olivier Danvy. A Simple Solution to Type Specialization (Ex-
tended Abstract). January 1998. 7 pp.


