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Abstract

We consider dynamic evaluation of algebraic functions (matrix mul-
tiplication, determinant, convolution, Fourier transform, etc.) in the
model of Reif and Tate; i.e., if f(x1, . . . , xn) = (y1, . . . , ym) is an alge-
braic problem, we consider serving on-line requests of the form “change
input xi to value v” or “what is the value of output yi?”. We present
techniques for showing lower bounds on the worst case time complex-
ity per operation for such problems. The first gives lower bounds in a
wide range of rather powerful models (for instance history dependent
algebraic computation trees over any infinite subset of a field, the in-
teger RAM, and the generalized real RAM model of Ben-Amram and
Galil). Using this technique, we show optimal Ω(n) bounds for dy-
namic matrix-vector product, dynamic matrix multiplication and dy-
namic discriminant and an Ω(

√
n) lower bound for dynamic polynomial

multiplication (convolution), providing a good match with Reif and
Tate’s O(

√
n logn) upper bound. We also show linear lower bounds

for dynamic determinant, matrix adjoint and matrix inverse and an
Ω(
√
n) lower bound for the elementary symmetric functions. The

second technique is the communication complexity technique of Mil-
tersen, Nisan, Safra, and Wigderson which we apply to the setting
of dynamic algebraic problems, obtaining similar lower bounds in the
word RAM model. The third technique gives lower bounds in the
weaker straight line program model. Using this technique, we show an
Ω((logn)2/ log logn) lower bound for dynamic discrete Fourier trans-
form. Technical ingredients of our techniques are the incompressibility
technique of Ben-Amram and Galil and the lower bound for depth-two
superconcentrators of Radhakrishnan and Ta-Shma. The incompress-
ibility technique is extended to arithmetic computation in arbitrary
fields.
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1 Introduction

1.1 Setup

Reif and Tate [RT97] considered the following setup of dynamic algebraic
algorithms. Let f1, . . . , fm be a system of n-variate polynomials over a com-
mutative ring or rational functions over a field. We seek an algorithm,
that, when given an initial input vector x = (x1, x2, . . . , xn) to the system,
does some preprocessing and then afterwards is able to efficiently handle
on-line requests of two forms: “changek(v): Change xk to the new value
v” and “queryk: Return the value of output fk(x)”. Several natural con-
crete examples were given by Reif and Tate, including dynamic polynomial
evaluation, dynamic matrix-vector multiplication, dynamic matrix-matrix
multiplication, dynamic polynomial multiplication, and dynamic discrete
Fourier transform. Reif and Tate provided two general techniques for the
design of efficient dynamic algebraic algorithms. They also presented lower
bounds and time-space trade-offs for several problems. Apart from Reif and
Tate’s work, we also meet dynamic algebraic problems in the literature on
the prefix sum problem [Fre82, Fre81, Yao85, HF93, FS89, BAG91]; the
specific case of fi(x) =

∑i
j=1 xi for i = 1, . . . , n.

The aim of this paper is to present three techniques for showing lower
bounds for dynamic algebraic problems. We use them to show lower bounds
on the worst case time complexity per operation for several natural problems
where Reif and Tate had no lower bounds or only lower bounds for the time-
space trade-off.

1.2 Problems considered

Given a commutative ring R, we look at the following systems of functions.
matrix-vector multiplication : Rn

2+n 7→ Rn. The first n2 compo-
nents of the input are interpreted as an n×nmatrix A, the last n components
are interpreted as an n-vector x, and Ax is returned.

matrix multiplication : R2n2 7→ Rn
2
. The input is interpreted as two

n× n matrices which are multiplied.
convolution : R2n 7→ R2n: The input is interpreted as two n-vectors

x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1), whose convolution is returned.
That is, the i’th component of the output is zi =

∑
j+k=i xjyk.

determinant : Rn
2 7→ R: The input is interpreted as a matrix, whose

determinant is returned.

3



matrix adjoint : Rn
2 7→ Rn

2
is the function that maps an n×n matrix

A into the corresponding adjoint matrix given by matrix adjoint(A)ij =
(−1)i+j det(Aji), where Aji denotes the (n − 1) × (n − 1) matrix resulting
when deleting the j’th row and the i’th column from A.

If k is a field, matrix inverse : kn
2 7→ kn

2
is the partial function

that maps a nonsingular n × n matrix A into the corresponding inverse
matrix A−1. Note that for a nonsingular matrix, matrix inverse(A) =

1
detAmatrix adjoint(A).

discriminant : Rn 7→ R: The discriminant of the polynomial for which
the n inputs are roots is returned, i.e.

discriminant(x1, . . . , xn) =
∏
i6=j

(xi − xj)

symmetric : Rn 7→ Rn. All n elementary symmetric polynomials of the
inputs are computed, i.e., the j’th component of the output is

yj =
∑

I⊆{1,2,...,n},|I|=j

∏
i∈I

xi

polynomial evaluation : Rn+2 7→ R. A vector (x, a0, a1, . . . , an) is
mapped to a0 + a1x+ a2x

2 + . . .+ anx
n.

Finally, the following problem is defined for any algebraically closed field
k. Let ω be a primitive n’th root of unity k, and let F be the n× n matrix
F = (ωij)i,j. The Discrete Fourier Transform dft : kn 7→ kn, is the map
x→ Fx.

1.3 Models of computation

A pivotal issue when considering lower bounds is the model of computa-
tion. For dynamic algebraic problems, this issue is quite subtle; models can
vary according to the algebraic domain (reals, integers, finite fields, etc.),
the atomic operations allowed (only arithmetic operations or more general
operations), and the possibility of influencing the control flow of the solution
(to what extent is the sequence of atomic operations performed allowed to
depend on the previous history of the algorithm). We prove lower bounds
in the following models of computation.

The straight line program model. This is the most basic model. Given
the problem of dynamic evaluation of a function f : kn 7→ km, we assign
a straight line program to each of the operations change1, change2, . . .,
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changen, query1, query2, . . ., querym. The programs corresponding to the
change-operations take a single input x and have no output, while the pro-
grams corresponding to the query-operations have no input but one output.
Each program is a sequence of instructions of the form yi ← yj ◦ yk, where
◦ ∈ {+,−, ∗, /}, and yj and yk are either input variables, memory variables,
or constants. We could also assign a program to the initialization operation.
However, we find it more convenient to assume that we always initialize
to some specific vector (say, (0, 0, 0, . . . , 0)). Then, we just need to assign
an initial value to each variable which appears somewhere in one of the
programs. Then, the complexity of a solution is the length of the longest
program in the solution.

History dependent algebraic computation trees. In the straight line pro-
gram model, it is not possible for the algorithm to modify the sequence of
atomic operations performed. In the history dependent algebraic computa-
tion tree model, we allow the algorithm to control the sequence in a strong
way. First, instead of assigning straight line programs to operations, we as-
sign algebraic computation trees. As branching nodes, we do not just allow
<-comparison (which only makes sense for certain fields), instead we allow
branching according to arbitrary predicates of finite arity. Also, to each op-
eration (such as change12) we assign not one, but several (in fact infinitely
many) algebraic computation trees: One for each history, where a history
is every bit of discrete information the system has obtained so far; namely,
the sequence of input variables that were changed and output variables that
were queried, and the result of every branching test made so far during the
execution of the operations performed. When we execute an operation, we
find the tree corresponding to the current history and execute that. The
complexity of a solution is the depth of its deepest tree.

Random access machine models. A very general way of defining RAM
models is outlined by Ben-Amram and Galil [BAG92]. Here, we will only
give an informal discussion. A RAM has an infinite number of registers,
indexed by the integers. It also has a finite number of CPU-registers with
proper names. Each register contains an element of the domain of com-
putation: if we consider computation over the reals, each register contains
a real; if we consider computation over the integers, each register contains
an integer. In any case, it is convenient if the integers (or at least a suf-
ficiently large subset of the integers) is a subset of the domain of interest;
this makes indirect addressing possible, an important feature of the RAM.
The machine operates on the memory using a finite program containing the
following kinds of instructions: direct and indirect reads and writes, con-
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ditional jumps and a finite number of atomic computational instructions
operating on the CPU-registers. Each instruction is executed at unit cost.
When the domain of the registers is the set of integers and the atomic op-
erations are +,−, ∗, we get the integer RAM. Another model of interest is
the generalized real RAM [BAG92]. Here, the registers contain arbitrary
reals and as atomic operations we allow any set of functions Rc 7→ R for a
constant c, with the property that for some countable closed set C ⊂ Rc,
each function is continuous in Rc \ C.

The word RAM [FW93, FW94, Hag98] has a somewhat different flavor
from the integer RAM and the real RAM. The integer RAM can be consid-
ered unreasonably powerful, since it can handle arbitrary integers with unit
cost. Then again, the user can give it any sequence of n integers as input
and measure the complexity of the computation as a function of n. The
word RAM is the result of relaxing the power of both parties, the algorithm
and the user. The word RAM does computation on words, i.e. integers in
{0, 1, . . . , 2w − 1} for some parameter w, intuitively determined at compile-
time. The RAM has registers indexed by {0, 1, . . . , 2w−1}; in particular, we
assume w ≥ log n, so that the input can be given in registers and read. The
RAM can operate on words using a number of unit cost operations includ-
ing addition, subtraction, multiplication, integer division, bitwise Boolean
operations, and left and right shifts. The algorithm should be correct for
any value of w ≥ log n, but n, the number of words in the problem, should
be the only variable appearing in the time bound. The word RAM has
been extensively studied as a model for sorting and searching. For instance,
Andersson et al [AHNR95] show that sorting n words can be done in time
O(n log log n) on a word RAM. The survey of Hagerup [Hag98] gives a good
overview of these results. When considered as a model for dynamic algebraic
problems, the word RAM is appropriate when the function in question is a
constant degree polynomial over the integers. This ensures that when the
input is a sequence of single words, i.e. integers in {0, 1, . . . , 2w − 1}, the
output can be given in a constant number of words, i.e. we can at least
write the output with unit cost. For instance, dynamic matrix multiplica-
tion makes good sense in the word RAM model while we will not consider
dynamic determinant in this model.

1.4 Our results

We present three techniques for proving lower bounds for dynamic algebraic
problems. The first technique is very robust. In particular, it holds under a
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wide range on assumptions about the algebraic domain and the operations
allowed, and even if the algorithm is allowed to control the flow of computa-
tion in strong ways. The technique is closely related to the incompressibility
technique of Ben-Amram and Galil [BAG92]. The second technique holds
only for the word RAM model (where the first technique fails). It is a
modest extension of communication complexity techniques of Miltersen et
al [MNSW95]. With the first and second technique we show

Theorem 1 Any solution to dynamic matrix-vector multiplication,
matrix multiplication, matrix adjoint, matrix inverse, determi-

nant, polynomial evaluation or discriminant has worst case com-
plexity Ω(n) per operation and any solution to dynamic convolution or
symmetric has worst case complexity Ω(

√
n) per operation, in the following

models of computation:

• Straight line programs over any fixed finite field (except for polyno-

mial evaluation, discriminant and symmetric), with the allowed
set of change-arguments being the field itself.

• History dependent algebraic computation trees over any infinite field,
with the allowed set of change-arguments being any infinite subset of
the field.

• The integer RAM (except for matrix inverse), with the allowed set
of change-arguments being any infinite subset of the integers, and the
generalized real RAM, with the allowed set of change-arguments being
the reals.

• The word RAM (except for matrix adjoint, matrix inverse, de-

terminant, discriminant, polynomial evaluation and symmet-

ric), with the allowed set of change-arguments being the set of words.

We should note that the lower bound for dynamic polynomial evalua-

tion was also proved by Reif and Tate, though not for as wide a range of
models as above. Reif and Tate present lower bounds for a number of other
problems by reductions from polynomial evaluation; we can apply the
same reductions to get the lower bounds in the wider range of models.

We should also note that for certain models and certain of the above
problems, there is an easier way of showing the same lower bound. For
instance, we can show a lower bound for dynamic matrix-vector multi-

plication over the reals using arithmetic operations as follows: It is well

7



known [Win67, Win70] that n × n matrices A over the reals exist so that
computing x → Ax requires Ω(n2) arithmetic operations. Now, given an
alleged dynamic algorithm for dynamic matrix-vector multiplication

with complexity o(n) per operation, we can initialize the matrix input to
this matrix. Then, we can evaluate Ax for any given x using n change and
n query operations, i.e., a total of o(n2) arithmetic operations, a contradic-
tion. The same technique was, in fact, used by Reif and Tate to show the
lower bounds of their paper (using the fact that explicit hard polynomials
exist, rather than the fact that explicit hard matrices exist). However, this
argument does not seem to generalize to show, for instance, the linear lower
bound for straight line programs over a finite field (where matrices requir-
ing Ω(n2) arithmetic operations do not exist [Sav74]), nor to show any lower
bound for the generalized real RAM or the word RAM. Also, our technique
applies to a wider variety of problems in a uniform way.

Our third technique is more fragile. It only works in the model of history
independent straight line programs. A technical ingredient of the technique
is the lower bound for depth-two superconcentrators by Radhakrishnan and
Ta-Shma [RTS97]. With the third technique we show

Theorem 2 Any solution to dynamic dft in the straight line program model
over an algebraically closed field of characteristic 0, with change-arguments
restricted to any infinite subset of the field, has worst case complexity
Ω((log n)2/ log logn) per operation.

1.5 Optimality (and otherwise) of results

The lower bounds for matrix-vector multiplication and matrix mul-

tiplication are tight, there are straightforward linear upper bounds. The
lower bound for discriminant is also tight, there is a linear upper bound
for any infinite field (see Theorem 3), and a straightforward constant upper
bound for any finite domain in the straight line program model. Interest-
ingly, the linear upper bound does not seem to be implementable in the
straight line program model. The lower bound for convolution has a
fairly good match in the O(

√
n log n) upper bound of Reif and Tate [RT97]

for the same problem. The upper and lower bounds for determinant, ma-

trix adjoint, matrix inverse and symmetric are not tight, we don’t
know any solution for determinant, matrix adjoint and matrix in-

verse better than evaluating queries from scratch, and we don’t know any
better upper bound for dynamic symmetric than a (not quite obvious)
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changei(v) : assume xi = vk for [vk, nk] ∈ L; if nk > 1 then nk := nk − 1
else D := D/

∏
j 6=k(−1)(vj − vk)2; L := L \ {[vk, 1]};

if v = vl for some [vl, nl] ∈ L then nl := nl + 1
else D := D ·

∏
j(−1)(vj − v)2; L := L ∪ {[v, 1]};

xi := v;

Figure 1: Computation tree solution for discriminant.

O(n) upper bound (see Theorem 4).
Reif and Tate show an O(

√
n) upper bound for dynamic dft which is

valid in the straight line program model. This leaves a rather large gap
between upper and lower bounds. Our third technique is inherently unable
to show better lower bounds than a constant times (log n)2/ log log n, this
quantity being the average number of edges per input/output-vertex in an
optimal depth 2 superconcentrator.

Theorem 3 There is a computation tree solution of complexity O(n) for
dynamic evaluation of discriminant. The solution works over any field.

Proof. All the current inputs x1, . . . , xn are maintained, and so is the set
of their (distinct) values together with the number of occurrences in L =
{[v1, n1], . . . , [v|L|, n|L|]}, i.e. ni ≥ 1 and

∑
i ni = n. Finally, we maintain

the (nonzero) discriminant of the distinct values: D =
∏
i6=j(vi − vj).

With this representation query is simple; if all ni’s are 1, we return D,
otherwise we return 0. For change, we must update D and L, which is easily
done in linear time (see Figure 1).

Theorem 4 There is a straight line program solution of complexity O(n)
for symmetric. The solution works over any commutative ring.

Proof. All the current inputs x1, . . . , xn and corresponding outputs y1, . . . , yn
are maintained. This makes the straight-line program for queryi trivial; it
needs only return yi. For the implementation of change, we observe that
for any i, k, we have that yk = xizk−1,i + zki, where zki does not depend on
xi, which makes the solution in Figure 2 valid.

9



changei(v) : z0 := 1;
for k = 1 . . . n do

zk := yk − xizk−1;
yk := zk + vzk−1;

xi := v;

Figure 2: Straight line solution for symmetric.

1.6 Organization of paper

In Section 2, we present our first technique as it applies to the case of history
dependent algebraic computation trees and then show how to generalize it
to straight line programs over a finite field, the integer RAM, and the gen-
eralized real RAM. The lower bounds for the word RAM are presented in
Section 3. In Section 4, we present the technique based on superconcentra-
tors and its application to dft.

2 Incompressibility based lower bounds

Our technique is essentially based on the following incompressibility state-
ment: If k is an algebraically closed field, a rational map kn 7→ kn−1 can not
be injective. Thus, it is closely related to the technique of Ben-Amram and
Galil, who applied incompressibility in various domains to show a gap be-
tween the power of random access machines and pointer machines [BAG92].

First, a technical lemma stating a generalization of the above fact. Let
k be an algebraically closed field. Recall that an algebraic subset W ⊂ kn is
an intersection of sets of the form {x ∈ kn|p(x) = 0}, where p is a non-trivial
multivariate polynomial.

Lemma 5 Let k be an algebraically closed field. Let W be an algebraic
subset of km and let φ = (f1/g1, . . . , fn/gn) : km \W 7→ kn be a rational
map where fi, gi ∈ k[x1, . . . , xm] for i = 1, . . . , n. Assume that there exists
y ∈ kn such that φ−1(y) is non-empty and finite. Then m ≤ n.

Proof.
1. reduction. We can assume that y = (0, . . . , 0).

Otherwise let y = (y1, . . . , yn) and replace
(
f1

g1
, . . . , fngn

)
with(

f1

g1
− y1, . . . ,

fn
gn
− yn

)
.
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2. reduction. We can assume that W is the set of common zeroes of
g1, . . . , gn.

Otherwise let x ∈ φ−1(y) \W and choose a polynomial g that vanishes
on W with g(x) 6= 0. Consider the rational function

φ̃ =

(
f1g

g1g
, . . . ,

fng

gng

)
: km \ Z(g) 7→ kn

where Z(g) is the zeroes of g. As x ∈ φ̃−1(y) ⊆ φ−1(y) it is enough to prove
the claim for φ̃.

3. reduction. We can assume that W is the empty set, and φ is a
polynomial function.

Otherwise, we assume that y = (0, . . . , 0), and that W is the set of
common zeroes of g1, . . . , gn. Consider the polynomial function

φ̃ = (f1, . . . , fn, xm+1 · g1 · . . . · gn − 1) : km+1 7→ kn+1

The fiber φ̃−1(0, . . . , 0) consists of the tuples (x1, . . . , xm, xm+1) such that
φ(x1, . . . , xm) =
(0, . . . , 0) and such that xm+1 = 1

g1(x1,...,xm)·...·gn(x1,...,xm) which by assump-
tions on φ is non-empty and finite. Therefore it is enough to prove the claim
for polynomial functions with y = (0, . . . , 0) which follows from Lemma 6
below.

Lemma 6 Let k be an algebraically closed field. Assume that the set of
common zeroes of fi ∈ k[x1, . . . , xm] for i = 1, . . . , n is non-empty and
finite. Then m ≤ n.

Proof. LetX be the set of common zeroes and considerA(X), the coordinate
ring of polynomial functions on X. By finiteness of X we conclude that

A(X) =
∏
P∈X

A(P ) =
∏
P∈X

k

is a finite dimensional vector space over k. The idealMṔ =
∏
P∈X∧P 6=Ṕ A(P )

is a maximal ideal for all Ṕ ∈ X.
Let P be a prime ideal in A(X), then P =MṔ for some Ṕ ∈ X. Other-

wise we obtain a contradiction by choosing for each P ∈ X a hP ∈ MP \ P
and considering 0 =

∏
P∈X hP /∈ P.
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As k is algebraically closed, Hilbert’s Nullstellensatz (cf. [Eis95], Theo-
rem 1.6) gives that

A(X) = k[x1, . . . , xm]/Rad(f1, . . . , fn)

where Rad(f1, . . . , fn) is the radical ideal of (f1, . . . , fn).
A minimal prime ideal of (f1, . . . , fn) in k[x1, . . . , xm] is also a minimal

prime ideal of
Rad(f1, . . . , fn) and from above a maximal ideal in k[x1, . . . , xm]. According
to Krull’s Principal Ideal Theorem (cf. [Eis95], Theorem 10.2) we have that
m = dim k[x1, . . . , xm] ≤ n

We shall also need the following version of the well-known “Schwartz-
Zippel Lemma”.

Lemma 7 Let k be a field.
(i) Let T ⊂ k be finite. If a multivariate polynomial q ∈ k[x1, . . . , xn]

of total degree deg q ≤ |T | is not the zero-polynomial, then q(a) = 0 for at
most a fraction deg q

|T | of all the n-tuples a ∈ T n.

(ii) Let S ⊂ k be infinite (implying that k is infinite), and let W be
a proper algebraic subset of kn. Let p be a multivariate polynomial in n

variables. If p is identically zero as a function restricted to Sn \W , then p

is the zero-polynomial.

Proof. The statement of part (i) is adapted from a paper by Schwartz
[Sch80]. For part (ii) assume that there is a multivariate polynomial q (that
is not the zero-polynomial) such that W ⊆ {x ∈ kn|q(x) = 0}. It follows (by
part (i)) that if p is not the zero polynomial and if |T | > deg p+ deg q, then
there exists a ∈ T n \W such that p(a) 6= 0.

Definition 8 Let k be a field.
(i) Let B be an arbitrary set. A function f : kn 7→ B is quasi-injective if

there is a proper algebraic subset W ⊂ kn such that f−1(f(a)) is finite for
all a ∈ kn \W .

(ii) Let f : kn 7→ km be a function. Let X = {x1, . . . , xn} be the set
of inputs. Let X1 ⊂ X of size l. Permute the variables of f so that the
variables of X1 are first, and view f as a function f : (kl × kn−l) 7→ km.
f is said to specialize quasi-injectively (injectively) to X1 if the function
F : kn−l 7→ (kl 7→ km) is quasi-injective (injective), where F maps a ∈ kn−l
into fa, the function arising from specializing f to the constant vector a on
the input set X \X1.
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Remark. F being quasi-injective means that for almost all a there are only
finitely many b such that fa and fb are identical functions. An exam-
ple of a function specializing injectively is matrix-vector multiplica-

tion: Different matrices over a field represent different linear maps. Thus,
matrix-vector multiplication specializes injectively to the n variables
representing the vector-part of the input.

Theorem 9 Let k be an algebraically closed field. Let the polynomial func-
tion f : kn 7→ km specialize quasi-injectively to some set X1 of size l. Then
any history dependent algebraic computation tree solution for dynamic eval-
uation of f has complexity at least n−l

2(l+m) .

Proof. (After permutation of indices) we may assume X1 = {x1, . . . , xl}.
Let a family of algebraic computation trees solving dynamic evaluation of
f be given, and let the max depth of any computation tree representing a
change or query be d.

Consider the specific off-line solution P = P1;P2 for f that arises from
using change/query-operations in the following order:

P1 : changel+1(z1); · · · ; changen(zn−l)

P2 : change1(x1); · · · ; changel(xl); y1 := query1; · · · ; ym := querym

¿From the algebraic computation tree P = P1;P2, we are going to con-
struct a straight line program Q = Q1;Q2 that computes f when inputs,
i.e. arguments (x1, . . . , xl, z1, . . . , zn−l) to change-operations, are restricted
to be tuples in kn \W , where W is a proper algebraic subset of kn. Let
L be the number of leaves in the computation tree P . Let D = 2d(n+m),
i.e. D is an upper bound on the degree of any polynomial/rational function
occurring in any intermediate result in P . Let T ⊂ k be a finite subset
of k satisfying that |T | > L(D + deg f). Divide the elements of T n in L

classes C1, . . . , CL such that any n-tuple a ∈ Ci when given as argument
to change-operations will make the computation of P follow the path to
leaf number i. Clearly, some Ci must have size at least |T |n/L, and with-
out loss of generality assume that |C1| ≥ |T |n/L. Let Q = Q1;Q2 be the
straight-line program arising from the computation path induced by C1 with
all branching tests removed. Then Q computes f̃ : C1 7→ km, for some ra-
tional function f̃ = (p1

q1
, . . . , pmqm ) that is defined on all of C1 and since none

of the qi’s are the zero-polynomial, Q can be extended to be defined on all
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of kn except for a proper algebraic subset W defined by q1, . . . , qm. Since
f̃ is identical to the polynomial function f for the restricted input set C1,
it follows by Lemma 7(i) that Q does compute the polynomial function f

whenever no division by zero occurs, i.e. for inputs restricted to kn \W .
We observe that there exists a proper algebraic subset W1 ⊂ kn−l such

that for all a ∈ kn−l\W1, we can find a proper algebraic subset Wa ⊂ kl such
that the straight-line program Q = Q1;Q2 will compute f(x,a) correctly for
all a ∈ kn−l \W1, and x ∈ kl \Wa.

For given (n− l)-tuple a ∈ kn−l \W1, we may specialize the inputs of Q1

to a, resulting in program Qa such that Qa;Q2 computes the polynomial
function fa restricted to kl \Wa.

Let V1 ⊆ V denote the set of variables read by the program Q2. By
assumption |V1| ≤ 2(l +m)d.

Let Ṽ1 denote the values of the variables V1 after the execution of Qa

but before the execution of Q2, and let f̃ denote the unique (by Lemma 7(ii))
polynomial function that extends the rational function (fromX1 = {x1, . . . , xl}
to Y = {y1, . . . , ym}) computed by program Q2.

Clearly, Ṽ1 is a rational function of a. Let g : (kn−l \W1) 7→ k|V1| denote
this function. Similarly, f̃ is a function of Ṽ1, since Q2 does only depend on
a through the intermediate values Ṽ1. Let h : codomain(g) 7→ (kl 7→ km)
denote this function. We see that F = h ◦ g. Since F by assumption is
quasi-injective, so must also g be quasi-injective and by Lemma 5 this is
only possible for |V1| ≥ n− l.

Combining the two inequalities for |V1|, we get n− l ≤ |V1| ≤ 2(l+m)d,
i.e. d ≥ n−l

2(l+m) .

Theorem 9 can be used to show lower bounds for a setting where the
computation is over an algebraically closed field and arguments to change-
operations are arbitrary elements thereof. We now give a generalization of
Theorem 9 needed to get the lower bounds claimed in Theorem 1, i.e., when
the computation is over an arbitrary field and the arguments allowed to
change-operations an infinite subset thereof. We also need this generaliza-
tion to get the lower bound for the integer RAM. Note that we can without
loss of generality assume that the field is algebraically closed, since, if it is
not, we can just consider computation in its algebraic closure.

Theorem 10 Let k be an algebraically closed field. Let the polynomial func-
tion f : kn 7→ km specialize quasi-injectively to some set X1 of size l.

Then, for any infinite subset S ⊆ k it holds that any proposed history
dependent algebraic computation tree solution for dynamic evaluation of f
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that is correct when arguments to change-operations are restricted to be
elements of S must have complexity at least n−l

2(l+m) .

Proof. This is essentially a repetition of the proof of Theorem 9. In the
terminology of that proof, one must observe that when constructing the
straight-line program Q, we only need to know that the original dynamic
solution works properly when arguments to change-operations are restricted
to some sufficiently large finite subset T ⊂ k. By choosing T ⊂ S the entire
proof of Theorem 9 carries over.

2.1 Applications

In this section we show, using Theorem 10, the lower bounds that were
claimed for the history dependent algebraic computation tree model in The-
orem 1 of the Introduction.

Different matrices over a field represent different linear maps. This
means matrix-vector multiplication specializes injectively to the n

variables representing the vector-part of the input and Theorem 10 gives
us that any solution to dynamic matrix-vector multiplication in the
history dependent algebraic computation tree model over a field with argu-
ments of change-operations restricted to some infinite subset of the field has
complexity Ω(n). Similarly, polynomial evaluation over an infinite field
specializes injectively to its first input, yielding an Ω(n) lower bound for
dynamic polynomial evaluation. Since matrix-vector multiplication is a
specialization of matrix-matrix multiplication, an Ω(n) lower bound holds
for dynamic matrix multiplication.

We may construct a dynamic solution for matrix multiplication from a
dynamic solution for matrix adjoint or matrix inverse using the following
fact:

matrix adjoint

 I A 0
0 I B

0 0 I

 =

 I A 0
0 I B

0 0 I

−1

=

 I −A AB

0 I −B
0 0 I

 ,

where A,B are square matrices of dimension n
3 and I is the identity matrix of

that dimension. Thus, the Ω(n) lower bound also holds for matrix adjoint

and matrix inverse.
We may construct a dynamic solution for matrix adjoint from a dy-

namic solution for determinant (of the same matrix), when noting that
changing the (ij)’th entry in a matrix A by ∆, changes the determinant
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matrix adjoint.changeij(v) : xij := v;

determinant.changeij(v);

matrix adjoint.queryij : z := determinant.query;

determinant.changeji(xji + 1);

w := determinant.query;
determinant.changeji(xji);

return (w − z);

Figure 3: matrix adjoint reduces to determinant.

by ∆ · (−1)i+j detAij , where Aij is the submatrix arising from deleting the
ith row and jth column (Figure 3). Thus, we also have an Ω(n) lower bound
for determinant.

Next, we show the lower bound for convolution. We can specialize con-

volution to a function g : kn+
√
n 7→ k

√
n by setting y√n = y√n+1 = · · · =

yn = 0 and ignoring all outputs but z√n−1, z2
√
n−1, . . . , zn−1. Now g is

computing a matrix vector product:

g(


x√n−1 x√n−2 · · · x0

x2
√
n−1 x2

√
n−2 · · · x√n

...
. . .

...
xn−1 xn−2 · · · xn−

√
n

 ,


y0

y1
...

y√n−1

) =


z√n−1

z2
√
n−1
...

zn−1


Hence, we get the Ω(

√
n) lower bound for convolution from the Ω(n)

lower bound for matrix-vector multiplication.
For the discriminant function, we need to apply Theorem 10 again.

discriminant specializes quasi-injectively to its first input: Let discriminanta :
k 7→ k denote the function arising from substituting a ∈ kn−1 for the re-
maining inputs, i.e. discriminanta(x) = D(a)(−1)n−1

∏n
i=2(x−ai)2, where

D denotes the discriminant function on only n − 1 roots. Observe that if
discriminanta and discriminantb are identical functions and D(a) 6= 0,
then the coordinates of a and b must be identical up to a permutation,
and since there is only (n − 1)! distinct permutations on n − 1 elements,
then the function F : kn−1 7→ (k 7→ k) is quasi-injective, where F (a) =
discriminanta, and by Theorem 10 we have proved an Ω(n) lower bound
for discriminant.
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For the symmetric function, we also need to apply Theorem 10 again.
Assume, for convenience, that n is a perfect square. Let X1, Y1 be the
following subsets of inputs and outputs respectively: X1 = {x1, . . . , x√n},
Y1 = {y√n, y2

√
n, . . . , yn}, and let πY1 : kn 7→ k

√
n be the projection that

ignores all outputs but those in Y1. In fact, πY1 ◦ symmetric specializes
quasi-injectively to the inputs in X1. To see this, observe that if a ∈ kn−

√
n,

x ∈ k
√
n, y = symmetrica(x) and σl is the lth elementary symmetric

function (of all arities and σ0(·) = 1), then yk
√
n =

∑√n
i=0 σi(x) · σk√n−i(a).

Since σi(x) is a form of degree i, it follows (by Lemma 7) that yk
√
n as

a function of x ∈ k
√
n uniquely determines σk

√
n−i(a) for i = 0, . . . ,

√
n.

Consequently, for a,b ∈ kn−
√
n, we have that πY1 ◦ symmetrica = πY1 ◦

symmetricb if and only if a and b are identical up to a permutation of
entries. By Theorem 10, we have an Ω(

√
n) lower bound for symmetric.

2.2 Lower bounds for straight line programs over finite fields

In this section, we show our lower bounds for straight line programs over
finite fields. We also show certain weak lower bounds when branching is al-
lowed. Note that in a finite domain, we cannot hope for lower bounds in the
history dependent algebraic computation tree model, since we may encode
the entire input vector as part of the history, yielding a constant upper bound
for every problem. The natural model to consider is history independent
computation trees, with the allowed branching instructions being arbitrary
predicates on two variables. In this model, Fredman [Fre82] showed a lower
bound of Ω(log n/ log log n) for the prefix sum-problem over F2. By reduc-
tion, one gets the same lower bound for matrix-vector multiplication

and the related problems. We get a slightly better Ω(log n) lower bound for
the latter problems by the following theorem. On the other hand, we don’t
know any sub-linear upper bound for dynamic matrix-vector multipli-

cation over a fixed finite field, even if branching is allowed. It is a very
interesting open problem to get super-Ω(logn) lower bounds for any explicit
problem over F2 when branching is allowed.

Theorem 11 Let F be a finite field. Let the function f : Fn 7→ Fm specialize
injectively to some set X1 of size l. Then any straight line solution for
dynamic evaluation of f over F has complexity at least n−l

2(l+m) . Any history
independent computation tree solution for dynamic evaluation of f over F
has complexity at least log n−l

2(l+m) .
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Proof. The proof of Theorem 9 carries over, with the following adaptations
(and simplifications):

First consider the case of straight line programs. We may take Q = P ,
since P is a straight line program that is defined for all possible arguments
to change-operations. The use of Lemma 5 is replaced by a simple counting
argument: when the function g : Fn−l 7→ F|V1| is injective and F is finite, we
have that |V1| ≥ n− l by the pigeon hole principle.

In the case of computation trees, we don’t convert the solution to a
straight line program. Rather, we let V1 be the set of variables appearing
in the entire tree corresponding to P2. Then, since the original trees are
history independent, |V1| ≤ 2(l + m)2d, yielding the desired lower bound.

2.3 Lower bounds for the integer RAM and the generalized
real RAM

We first show how to use Theorem 10 to prove lower bounds in the integer
RAM model. Since the integers is a subset of the complex numbers, Theorem
10 implies that the lower bounds holds in the history dependent algebraic
computation tree model over the integers (with division disallowed). Now,
if an integer RAM solution of a certain complexity exists, we can “fold out”
the solution to a solution in the history dependent algebraic computation
tree model. Similar unfoldings have been done in several papers, see, for
instance, Paul and Simon [PS82]. Unfortunately, in our setting, the unfolded
solution may have higher complexity than the original, the problem being
indirect addressing: An indirect addressing instruction has to be folded out
into a chain of branching nodes, the exact number of nodes depending on
the number of indirect writes already performed by the system. However,
if we inspect the proofs of Theorems 9 and 10, we see that the lower bound
holds even if branching instructions are completely free, as long as the trees
remain finite. Thus, the lower bounds we obtained for polynomial functions
apply to the integer RAM as well.

To show the lower bound for the generalized real RAM, we have to re-
place the use of Lemma 5 with results of Ben-Amram and Galil [BAG92]
regarding the incompressibility of real numbers using almost continuous op-
erations.

Let c be a positive integer. Let Fc be the set of functions f : Rc 7→ R,
for any k,m > 0, such that for some countable, closed set C ⊂ Rc, f is
continuous in Rc \ C.
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As explained above, we just have to generalize the lower bound to history
dependent computation trees with the allowed computational operations
being Fc and the allowed branching instruction being <. If the lower bound
holds, even if branching is free (as long as the trees remain finite), the lower
bound holds for the generalized real RAM.

Let F∗c be the closure of Fc under function composition and aggregation
(aggregation combines functions f1, f2, . . . , fk : Rm 7→ R to a vector valued
function f = (f1, f2, . . . , fn) : Rm 7→ Rk).

Fact 12 (Ben-Amram and Galil [BAG92, Theorem 6]) Let f ∈ F∗c .
Then there is a non-empty open set O such that f is continuous in O.

Fact 13 (Ben-Amram and Galil [BAG92, Theorem 10]) Let f ∈ F∗c ,
f : Rn 7→ Rm with m < n. Then f is not injective.

By a box in Rn we mean a set I1 × I2 × . . . × In where In is an open
interval.

Theorem 14 Given a polynomial function f : Rn 7→ Rm that specialize
injectively to a set of variables of size l. Then, any system of history depen-
dent Fc-computation trees solving dynamic evaluation of f has complexity
Ω( n−ll+m).

Proof. Suppose a solution with complexity d is given. As in the proof of
Theorem 9, we let

P1 : changel+1(z1); · · · ; changen(zn−l)

P2 : change1(x1); · · · ; changel(xl); y1 := query1; · · · ; ym := querym

P = P1;P2 is now an Fc-computation tree with input variables x1, . . ., xl,
z1, . . ., zn−l. The leaves of the tree defines a partition of Rn. We will
show that one of the classes of this partition contains an open set. For
this, we only have to show that if all elements of some open set S reaches
a branching vertex of the tree, we can find an open subset S′ ⊆ S, so
that all elements of S′ take the same branch. Without loss of generality,
we can assume that the branching vertex branches according to whether
g(x1, . . . , xl, z1, . . . , zn−l) > 0, where g is an Fc-function. Being open, S
contains a subset homeomorphic to Rn. This means that Fact 12 applies to
functions restricted to S, so we can find a non-empty open subset T ⊆ S

so that g is continuous in T . Now, the set U = {x ∈ T |g(x) > 0} is open.
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If it is empty, we let S′ = T . If it is non-empty, we let S′ = U . We have
now established that we can find a leaf of the tree whose associated subset
of Rn contains an open set. Let Q be the straight line program we get
when we take the path from the root of the tree to this leaf and ignore all
branching instructions. Split Q into Q1;Q2, where Q1 corresponds to P1

and Q2 corresponds to P2. Let V1 denote the set of variables read by the
program Q2. By assumption, |V1| ≤ c(l +m)d.

Q1;Q2 computes the same function as P1;P2 on an open subset S of Rn.
If we view S as a subset of Rn−l × Rl, we can find a box S1 ⊂ Rn−l and a
box S2 ⊂ Rl so that S1 × S2 ⊆ S.

Let Ṽ1 denote the values of the variables V1 after the execution of Q1

but before the execution of Q2, and let f̃ denote the function (from X1 =
{x1, . . . , xl} ∈ S2 to Y = {y1, . . . , ym}) computed by the program Q2.

Clearly, Ṽ1 is a function of a = (a1, a2, . . . , al) ∈ S1. Denote this function
by g : S1 7→ R|V1|, and observe that g ∈ F∗c . Similarly, f̃ is a function of Ṽ1,
since Q2 does only depend on a through the intermediate values Ṽ1. Denote
this function by h : R|V1| 7→ (S2 7→ Rm). Note that, by construction, any
function h(y) is a polynomial function defined on an open set S2 ⊂ Rl. This
extends in a unique way to a polynomial function on Rl, so we can view h

as a function h : R|V1| 7→ (Rl 7→ Rm). Using that f specializes injectively
to X1, we see that F = h ◦ g is injective, and hence also g is injective, We
can easily find an injective function g′ in F∗c mapping Rn−l to S1, so g ◦ g′
is an injective map from Rn−l to R|V1|. By Fact 13, this is only possible if
|V1| ≥ n− l.

Combining the two inequalities for V1, we get n− l ≤ |V1| ≤ c(l +m)d,
i.e. d = Ω( n−ll+m).

Using the same reductions as previously, we have: Any generalized
real RAM solution for dynamic evaluation of any of the problems matrix-

vector multiplication, matrix multiplication, matrix adjoint, ma-

trix inverse, determinant and polynomial evaluation has complex-
ity Ω(n) per operation. Any solution for dynamic evaluation of convolu-

tion has complexity Ω(
√
n) per operation.

To get a lower bound for discriminant we consider a weakening of
the concept of specializing injectively. The weakening we need is somewhat
different from the concept of quasi-injectivity, used in the algebraic case:

Definition 15 Let f : Rn 7→ Rm be a system of polynomials. Let X =
{x1, . . . , xn} be the set of inputs. Let X1 ⊂ X be of size l. f is said to
specialize weakly injectively to X1 if, for some open subset S ⊆ Rn−l, the
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function F : S 7→ (Rl 7→ Rm) is injective, where F maps a ∈ S into fa, the
function arising from specializing f to the constant vector a on the input set
X \X1.

It is easy to see that the proof of Theorem 14 goes through with “injec-
tively” replaced with “weakly injectively”.

We shall show that discriminant specializes weakly injectively to its
first variable. Let X1 = {x1} and S ⊆ Rn−1 be the Cartesian product of
n − 1 disjoint intervals. Let fa : R 7→ R denote the function arising from
substituting a ∈ S for the inputs in X \X1 = {x2, . . . , xn}, i.e.

discriminanta(x) = D(a)(−1)n−1
n∏
i=2

(x− ai)2,

where D denotes the discriminant function on only n − 1 roots. Note
that D(a) is non-zero for all a in S. Observe that if discriminanta and
discriminantb are identical functions then the coordinates of a and b must
be identical up to a permutation, but by construction, this means that they
are equal. We have shown: any generalized real RAM solution for dynamic
evaluation of discriminant has complexity Ω(n) per operation.

A similar argument shows the Ω(
√
n) lower bound for symmetric on

the generalized real RAM.

3 Lower bounds for the word RAM

We show a lower bound for dynamic matrix-vector multiplication on
the word RAM. The word size of the RAM is denoted w, i.e. each register
contains an integer between 0 and 2w − 1 (a word) which is also the range
of possible input values. A solution to the problem should work no matter
how w and n relate, as long as w ≥ log n. This fact is exploited in the lower
bound proof.

The technique used is the communication complexity technique of Mil-
tersen et al [MNSW95] and the proof is in fact a reduction from a variation
of the span-problem from that paper. For an exposition of the communi-
cation complexity technique and this example in particular, we refer to the
book of Kushilevitz and Nisan [KN97].

We present the lower bound proof as a series of reductions. First, assume,
to the contrary, that the following holds.
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• There is a solution to dynamic matrix-vector multiplication on
the word RAM with worst case time o(n) per operation.

In particular

• There is an algorithm which maintains a representation of an n × n
word matrix A so that matrix entries can be updated in time t1 =
o(n) and, given an n-vector x of words, we can compute Ax in time
t2 = o(n2).

Using perfect hashing to compress the representation, as explained, for in-
stance, in [Mil94], we get

• There is a scheme for representing n×n word matrices so that a matrix
can be stored in s = O(t1n

2) = o(n3) words so that, given an n-vector
x of words, we can compute Ax in time t2 = o(n2).

Now consider the following communication gameG1 between two players,
Alice and Bob. Bob gets an n × n matrix A of words and Alice gets an n-
vector x of words. The object of the game is for Alice to obtain the value
of Ax using as few bits of communication as possible. Bob does not need to
obtain this information. Using the communication complexity technique on
the scheme above (For instance, Kushilevitz and Nisan, Lemma 9.6, page
116), we arrive at a communication protocol:

• There is a protocol for G1 where Alice sends O(t2 log s) = o(n2 log n)
bits and Bob sends O(t2w) = o(n2w) bits.

Note that the above protocol works no matter how w and n relate, as
this was the case for the original RAM algorithm.

Given w, let p be the smallest prime between 2w−1 and 2w. Now consider
the following communication game G2: Bob gets n vectors v1,v2, . . . ,vn
over Fp (where Fp is the finite field with p elements), Alice gets a single
vector x over Fp and they must determine if x is in the span of v1,v2, . . . ,vn.
We can derive a protocol for G2 from a protocol for G1 in the following way:
Bob picks an n × n matrix A over Fp so that the kernel of A is exactly
the span of v1,v2, . . . ,vn. They now identify Fp with {0, . . . , p − 1} in the
natural way and run the G1 protocol on A and x. Alice now knows Ax and
can check if it is 0 modulo p and tell Bob if it is. Thus we have:

• There is a protocol for G2 where Alice sends o(n2 log n) bits and Bob
sends o(n2w) bits.
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The following lemma now gives us a contradiction, if we put w = Ω(n log n),
as we are allowed to do. The same lemma was shown in [MNSW95] for the
case p = 2. The proof here is an immediate generalization.

Lemma 16 In any protocol for G2, either Alice sends Ω(nw) bits or Bob
sends Ω(n2w) bits.

Proof. For the proof we assume, without loss of generality, that Bob is given
exactly n/2 linearly independent vectors.

Consider the communication matrix M of G2, i.e., M has a row for every
possible input of Alice (i.e. vectors x) and a column for every possible input
of Bob (i.e. sets of vectors V ), and Mx,V = 1 if and only if x is in the span
of V .

A 0-1 matrix M is called (u, v)-rich if at least v columns contain at least
u 1-entries. Miltersen et al [MNSW95] showed that if a communication
problem has a (u, v)-rich communication matrix and a protocol where Alice
sends a bits and Bob sends b bits, then M contains a submatrix of dimensions
at least u/2a+2 × v/2a+b+2 containing only 1-entries.

Using this, it suffices to show

1. M is (pn/2, pn
2/4)-rich, and

2. M does not contain a 1-monochromatic submatrix of dimensions pn/3×
pn

2/6.

For 1, notice that every subspace of Fnp of dimension exactly n/2 contains ex-

actly pn/2 vectors, and that there are more than pn
2/4 subspaces of dimension

n/2. To see this, we count the number of ways of choosing a basis for such a
space (i.e., to choose n/2 independent vectors). There are pn−1 possibilities
of choosing the first basis element (different from ~0), pn − 2 of choosing the
second, pn− 4 of choosing the third etc. Also note that each basis is chosen

this way n
2 ! times. Hence the number of bases is

∏n/2−1
i=0 (pn − pi)/n2 !. Now,

each subspace has a lot of bases. By a similar argument, their number is∏n/2−1
i=0 (pn/2 − pi)/n2 !. Hence the total number of subspaces is:

∏n/2−1
i=0 (pn − pi)∏n/2−1
i=0 (pn/2 − pi)

=

n/2−1∏
i=0

pn − pi
pn/2 − pi

≥
n/2−1∏
i=0

pn/2 = pn
2/4.

For 2, consider a 1-rectangle with at least pn/3 rows. Note that any pn/3

vectors span a subspace of Fnp of dimension at least n/3 and that, by a
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similar argument to the one presented above, the number of subspaces of
dimension n/2 that contain a given subspace of dimension n/3 is at most∏n/6−1

i=0 (pn − pn/3+i)∏n/6−1
i=0 (pn/2 − pn/3+i)

=

n/6−1∏
i=0

pn − pn/3+i

pn/2 − pn/3+i
≤

n/6−1∏
i=0

pn = pn
2/6,

as needed.

Using the same reductions as previously, we have shown: Any solution
to dynamic matrix-vector multiplication and matrix multiplica-

tion on the word RAM has complexity Ω(n). Any solution to dynamic
convolution has complexity Ω(

√
n).

4 Lower bounds based on superconcentrators

For the purposes of our paper, we shall use the following definition of a super-
concentrator of depth 2. The equivalence of this definition to the standard
definition is due to Meshulam [Mes84].

Definition 17 An n-superconcentrator of depth 2 is a graph G with nodes
X ∪ V ∪ Y , where X,V and Y are disjoint, |X| = |Y | = n, and with edges
E ⊆ (X × V ) ∪ (V × Y ) such that for any l, for any X1 ⊆ X and for
any Y1 ⊆ Y with |X1| = |Y1| = l, we have |N(X1) ∩ N(Y1)| ≥ l, where
N(X1),N(Y1) ⊆ V denote the neighbors to X1, Y1.

Fact 18 (Radhakrishnan and Ta-Shma [RTS97]) The number of edges

in an n-superconcentrator of depth 2 is at least Ω(n log2 n
log logn).

Definition 19 Let k be an algebraically closed field. Let f : kn 7→ kn be a
function. Let X = {x1, . . . , xn} be the set of inputs, and let Y = {y1, . . . , yn}
be the set of outputs.

f is said to be super-injective, when for every l, for every X1 ⊆ X and
for every Y1 ⊆ Y satisfying that |X1| = |Y1| = l there is a ∈ kn−l such
that fa : kl 7→ kl is injective, where fa denotes the function arising from
specializing f to the constants a on the inputs X \ X1 and ignoring all
outputs in Y \ Y1.

Lemma 20 Let k be an algebraically closed field. Let f : kn 7→ kn be a
super-injective polynomial function. From any family of straight line pro-
grams for dynamic evaluation of f and of complexity d, one may construct
an n-superconcentrator of depth 2 and with at most 3dn edges.

24



Proof. From the dynamic solution for f , define a graph G as follows. The
nodes of G is X ∪ V ∪ Y , where V is the variables used in the dynamic
solution for f , i.e. we may assume that V = {v1, . . . , vm}, where m ≤ 2dn.
The edges of G is E ⊆ (X × V ) ∪ (V × Y ) and (xi, v) ∈ E, if the program
for changei writes the variable v. Similarly, (v, yj) ∈ E, if the program for
queryj reads the variable v. Clearly, |E| ≤ 3dn. We shall argue that G is a
superconcentrator.

Let l be given, and let X1 ⊆ X, Y1 ⊆ Y be given such that |X1| =
|Y1| = l. Let V1 = N(X1) ∩ N(Y1). We need to argue that |V1| ≥ l.
(After permutation of indices) we may assume that X1 = {x1, . . . , xl} and
Y1 = {y1, . . . , yl}. Use the super-injectivity of f to choose a ∈ kn−l such
that fa : kl 7→ kl is injective, where fa denotes the function arising from
specializing the inputs (xl+1, . . . , xn) to the constants a = (a1, . . . , an−l) and
ignoring all the outputs (yl+1, . . . , yn).

¿From the dynamic solution for f , construct an off-line solution P =
P1;P2;P3 for fa as follows

P1 : changel+1(a1); · · · ; changen(an−l)

P2 : change1(x1); · · · ; changel(xl)
P3 : y1 := query1; · · · ; yl := queryl

Let X̃1 denote the values of the input variables X1 (before the execution
of P2), let Ṽ1 denote the values of the variables V1 after the execution of P2

but before the execution of P3, and let Ỹ1 denote the values of the output
variables Y1 (after the execution of P3). Clearly, Ṽ1 is a rational function of
X̃1. Denote this rational function by g : kl 7→ k|V1|. Similarly, Ỹ1 is a rational
function of Ṽ1, since the output does only depend on the input through the
intermediate values Ṽ1. Denote this rational function by h : k|V1| 7→ kl. We
see that fa = h ◦ g. Since fa is injective, so must also g be injective, and by
Lemma 5 this is only possible if |V1| ≥ l.

Lemma 20 and Fact 18 together implies the following theorem.

Theorem 21 Let k be an algebraically closed field. Let f : kn 7→ kn be a
super-injective polynomial function. Any family of straight line programs for

dynamic evaluation of f has complexity Ω( log2 n
log logn).

4.1 Lower bound for discrete Fourier transform

It is obvious that a linear map is super-injective if and only if all minors
of the corresponding matrix are non-zero. Thus, by Theorem 21, to show
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the Ω((log n)2/ log log n) lower bound for dynamic dft claimed in Theorem
2 of the introduction, we need to show that this is the case for a large
(nΩ(1) × nΩ(1)) submatrix of the Fourier transform matrix. The following
lemma accomplishes this.

Lemma 22 Let k be an algebraically closed field of characteristic 0, let
ω ∈ k be a primitive n’th root of unity, and let F = (aij) be the n × n

discrete Fourier transform matrix with aij = ωij.

Then F contains an l × l submatrix B for some l = Ω( 3

√
n

log logn) such

that all minors of B are nonzero.

Proof. Let l = b 3
√
φ(n)c, where φ(n) denotes the Euler phi function, which

is also the number of distinct primitive n’th roots of unity. It is known that
lim infn→∞

φ(n) ln lnn
n = e−γ ≈ 0.56 (see Hardy and Wright [HW54] page 267,

theorem 328), so l = Ω( 3

√
n

log logn) as required.

Let z be a variable and let C(z) be the l× l matrix with the ij’th entry
being cij = zij . Let B = C(ω) and note that B occurs as the l× l submatrix
in the upper left corner of F .

We show that all minors of B are nonzero. Clearly, each minor of C(z)
is a polynomial in z with integer coefficients, and we will later show that
no minor of C(z) is the zero-polynomial. Therefore, each minor in C(z) is
a nonzero polynomial of degree strictly less than l3 ≤ φ(n) (assuming that
l ≥ 2). This implies that the minors of B = C(ω) are nonzero. To see this,
observe that ω is a root of the nth cyclotomic polynomial which has degree
φ(n) and is irreducible over the field Q (see Hungerford [Hun74], page 299,
Proposition 8.3). Therefore ω is not root of any polynomial with integer
coefficients and of degree strictly smaller than φ(n), as k has characteristic
0.

We now show that no minor in the matrix C(z) is the zero-polynomial.
Let an m ×m minor D in C(z) be given by row-indices i1 < · · · < im and
column indices j1 < · · · < jm. By Lemma 23, D = zi1j1+···+imjm + p(z),
where p(z) is either the zero-polynomial or has degree strictly less than
i1j1 + · · ·+ imjm.

Lemma 23 Let two sets of m positive integers each be given, namely I con-
taining i1 < · · · < im and J containing j1 < · · · < jm. For any permutation
σ of {1, . . . ,m}, let Sσ = i1jσ(1) + · · · + imjσ(m). Then S1 > Sσ for σ 6= 1,
where 1 denotes the identity permutation.
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Proof. Let σ be a permutation on {1, . . . , l} such that σ 6= 1. We will argue
that by changing σ slightly, we can get a new permutation τ (possibly with
τ = 1) such that Sτ > Sσ, which suffices to prove the lemma.

Since σ 6= 1, we can find a < b such that σ(a) > σ(b). Define τ to be
identical to σ except that τ(a) = σ(b) and τ(b) = σ(a). This implies that
Sτ = Sσ− iajσ(a)− ibjσ(b) + iajτ(a) + ibjτ(b) = Sσ− iajσ(a)− ibjσ(b) + iajσ(b) +
ibjσ(a) = Sσ + (ib − ia)(jσ(a) − jσ(b)) > Sσ.

We have established the lower bound claimed in Theorem 2 when the
allowed set of change-arguments is the entire field. We show how to establish
it when arguments are restricted to an infinite subset S. A specific query-
operation returns a value that is a rational function of the current input
values (the function may depend on the sequence of earlier operations). If
this function is the correct one when inputs are from Sn, Lemma 7 implies
that it will be correct in general, except perhaps on some algebraic subset.
This subset could be a problem, since superinjectivity just guarantees that
there exists an a such that fa is injective, but this particular a may cause
division by zero. Fortunately, in the case of dft, we observe that any value
of a works. Hence, the lower bound holds with restricted inputs.

27



References

[AHNR95] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in
linear time? In Proc. Twenty-Seventh Annual ACM Symposium
on the Theory of Computing, pages 427–436, 1995.

[BAG91] Amir M. Ben-Amram and Zvi Galil. Lower bounds for data
structure problems on RAMs (extended abstract). In Proc. 32nd
Annual Symposium on Foundations of Computer Science, pages
622–631, 1991.

[BAG92] Amir M. Ben-Amram and Zvi Galil. On pointers versus ad-
dresses. J. Assoc. Comput. Mach, 39:617–648, 1992.

[Eis95] David Eisenbud. Commutative Algebra, volume 150 of Graduate
Texts in Mathematics. Springer-Verlag, 1995.

[Fre81] M.L. Fredman. Lower bounds on the complexity of some optimal
data structures. SIAM J. Comput., 10:1–10, 1981.

[Fre82] M.L. Fredman. The complexity of maintaining an array and
computing its partial sums. J. Assoc. Comput. Mach., 29:250–
260, 1982.

[FS89] M.L. Fredman and M.E. Saks. The cell probe complexity of
dynamic data structures. In Proc. Twenty First Annual ACM
Symposium on Theory of Computing, pages 345–354, 1989.

[FW93] M.L. Fredman and D.E. Willard. Surpassing the information-
theoretic bound with fusion trees. J. Comput. System Sci.,
47:424–436, 1993.

[FW94] M.L. Fredman and D.E. Willard. Trans-dichotomous algorithms
for mimimum spanning trees and shortest paths. J. Comput.
System Sci., 48:533–551, 1994.

[Hag98] Torben Hagerup. Sorting and searching on the Word RAM. In
Proc. 15th Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 1373 of Lecture Notes in Computer Sci-
ence, pages 366–398. Springer-Verlag, 1998.

28



[HF93] H. Hampapuram and M.L. Fredman. Optimal bi-weighted bi-
nary trees and the complexity of maintaining partial sums. In
Proc. 34th Annual Symposium on Foundations of Computer Sci-
ence, pages 480–485, 1993.

[Hun74] Thomas W. Hungerford. Algebra, volume 73 of Graduate Texts
in Mathematics. Springer-Verlag, 1974.

[HW54] G. H. Hardy and E. M. Wright. An Introduction to the Theory
of Numbers. (Third Edition). Oxford University Press, 1954.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity.
Cambridge University Press, 1997.

[Mes84] Roy Meshulam. A geometric construction of a superconcentra-
tor of depth 2. Theoret. Comput. Sci., 32:215–219, 1984.

[Mil94] P.B. Miltersen. Lower bounds for Union-Split-Find related prob-
lems on random access machines. In Proc. Twenty-Sixth Annual
ACM Symposium on the Theory of Computing, pages 625–634,
1994.

[MNSW95] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi
Wigderson. On data structures and asymmetric communication
complexity. In Proc. Twenty-Seventh Annual ACM Symposium
on the Theory of Computing, pages 103–111, 1995. To appear
in J. Comput. System Sci.

[PS82] W. Paul and J. Simon. Decision trees and random access ma-
chines. In Logic and Algorithmic, volume 30 of Monograph.
Enseign. Math., pages 331–340. Univ. Genève, 1982.
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